blob: b2ac11b5ee1bd0c275dbb941cc62a007057f9ff4 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
645an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000646
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000647Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000648:ref:`Thread Local Storage Model <tls_model>`.
649
Nico Rieck7157bb72014-01-14 15:22:47 +0000650Syntax::
651
Rafael Espindola32483a72016-05-10 18:22:45 +0000652 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000653 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
654 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000655 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000656 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000657 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659For example, the following defines a global in a numbered address space
660with an initializer, section, and alignment:
661
662.. code-block:: llvm
663
664 @G = addrspace(5) constant float 1.0, section "foo", align 4
665
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000666The following example just declares a global variable
667
668.. code-block:: llvm
669
670 @G = external global i32
671
Sean Silvab084af42012-12-07 10:36:55 +0000672The following example defines a thread-local global with the
673``initialexec`` TLS model:
674
675.. code-block:: llvm
676
677 @G = thread_local(initialexec) global i32 0, align 4
678
679.. _functionstructure:
680
681Functions
682---------
683
684LLVM function definitions consist of the "``define``" keyword, an
685optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000686style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
687an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000688an optional ``unnamed_addr`` attribute, a return type, an optional
689:ref:`parameter attribute <paramattrs>` for the return type, a function
690name, a (possibly empty) argument list (each with optional :ref:`parameter
691attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000692an optional section, an optional alignment,
693an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000694an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000695an optional :ref:`prologue <prologuedata>`,
696an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000697an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000698an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000699
700LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000701optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
702<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
703optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
704or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
705attribute <paramattrs>` for the return type, a function name, a possibly
706empty list of arguments, an optional alignment, an optional :ref:`garbage
707collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
708:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000709
Bill Wendling6822ecb2013-10-27 05:09:12 +0000710A function definition contains a list of basic blocks, forming the CFG (Control
711Flow Graph) for the function. Each basic block may optionally start with a label
712(giving the basic block a symbol table entry), contains a list of instructions,
713and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
714function return). If an explicit label is not provided, a block is assigned an
715implicit numbered label, using the next value from the same counter as used for
716unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
717entry block does not have an explicit label, it will be assigned label "%0",
718then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000719
720The first basic block in a function is special in two ways: it is
721immediately executed on entrance to the function, and it is not allowed
722to have predecessor basic blocks (i.e. there can not be any branches to
723the entry block of a function). Because the block can have no
724predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
725
726LLVM allows an explicit section to be specified for functions. If the
727target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000728Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730An explicit alignment may be specified for a function. If not present,
731or if the alignment is set to zero, the alignment of the function is set
732by the target to whatever it feels convenient. If an explicit alignment
733is specified, the function is forced to have at least that much
734alignment. All alignments must be a power of 2.
735
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000736If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000737be significant and two identical functions can be merged.
738
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000739If the ``local_unnamed_addr`` attribute is given, the address is known to
740not be significant within the module.
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Syntax::
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000745 [cconv] [ret attrs]
746 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000747 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
748 [comdat [($name)]] [align N] [gc] [prefix Constant]
749 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000750
Sean Silva706fba52015-08-06 22:56:24 +0000751The argument list is a comma separated sequence of arguments where each
752argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000753
754Syntax::
755
756 <type> [parameter Attrs] [name]
757
758
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000759.. _langref_aliases:
760
Sean Silvab084af42012-12-07 10:36:55 +0000761Aliases
762-------
763
Rafael Espindola64c1e182014-06-03 02:41:57 +0000764Aliases, unlike function or variables, don't create any new data. They
765are just a new symbol and metadata for an existing position.
766
767Aliases have a name and an aliasee that is either a global value or a
768constant expression.
769
Nico Rieck7157bb72014-01-14 15:22:47 +0000770Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000771:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
772<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000773
774Syntax::
775
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000776 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000777
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000778The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000779``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000780might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000781
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000782Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000783the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
784to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000785
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000786If the ``local_unnamed_addr`` attribute is given, the address is known to
787not be significant within the module.
788
Rafael Espindola64c1e182014-06-03 02:41:57 +0000789Since aliases are only a second name, some restrictions apply, of which
790some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000791
Rafael Espindola64c1e182014-06-03 02:41:57 +0000792* The expression defining the aliasee must be computable at assembly
793 time. Since it is just a name, no relocations can be used.
794
795* No alias in the expression can be weak as the possibility of the
796 intermediate alias being overridden cannot be represented in an
797 object file.
798
799* No global value in the expression can be a declaration, since that
800 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000801
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000802.. _langref_ifunc:
803
804IFuncs
805-------
806
807IFuncs, like as aliases, don't create any new data or func. They are just a new
808symbol that dynamic linker resolves at runtime by calling a resolver function.
809
810IFuncs have a name and a resolver that is a function called by dynamic linker
811that returns address of another function associated with the name.
812
813IFunc may have an optional :ref:`linkage type <linkage>` and an optional
814:ref:`visibility style <visibility>`.
815
816Syntax::
817
818 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821.. _langref_comdats:
822
823Comdats
824-------
825
826Comdat IR provides access to COFF and ELF object file COMDAT functionality.
827
Sean Silvaa1190322015-08-06 22:56:48 +0000828Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000829specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000830that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000831aliasee computes to, if any.
832
833Comdats have a selection kind to provide input on how the linker should
834choose between keys in two different object files.
835
836Syntax::
837
838 $<Name> = comdat SelectionKind
839
840The selection kind must be one of the following:
841
842``any``
843 The linker may choose any COMDAT key, the choice is arbitrary.
844``exactmatch``
845 The linker may choose any COMDAT key but the sections must contain the
846 same data.
847``largest``
848 The linker will choose the section containing the largest COMDAT key.
849``noduplicates``
850 The linker requires that only section with this COMDAT key exist.
851``samesize``
852 The linker may choose any COMDAT key but the sections must contain the
853 same amount of data.
854
855Note that the Mach-O platform doesn't support COMDATs and ELF only supports
856``any`` as a selection kind.
857
858Here is an example of a COMDAT group where a function will only be selected if
859the COMDAT key's section is the largest:
860
Renato Golin124f2592016-07-20 12:16:38 +0000861.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000862
863 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000864 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000865
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000867 ret void
868 }
869
Rafael Espindola83a362c2015-01-06 22:55:16 +0000870As a syntactic sugar the ``$name`` can be omitted if the name is the same as
871the global name:
872
Renato Golin124f2592016-07-20 12:16:38 +0000873.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000874
875 $foo = comdat any
876 @foo = global i32 2, comdat
877
878
David Majnemerdad0a642014-06-27 18:19:56 +0000879In a COFF object file, this will create a COMDAT section with selection kind
880``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
881and another COMDAT section with selection kind
882``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000883section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885There are some restrictions on the properties of the global object.
886It, or an alias to it, must have the same name as the COMDAT group when
887targeting COFF.
888The contents and size of this object may be used during link-time to determine
889which COMDAT groups get selected depending on the selection kind.
890Because the name of the object must match the name of the COMDAT group, the
891linkage of the global object must not be local; local symbols can get renamed
892if a collision occurs in the symbol table.
893
894The combined use of COMDATS and section attributes may yield surprising results.
895For example:
896
Renato Golin124f2592016-07-20 12:16:38 +0000897.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000898
899 $foo = comdat any
900 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901 @g1 = global i32 42, section "sec", comdat($foo)
902 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000903
904From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000905with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000906COMDAT groups and COMDATs, at the object file level, are represented by
907sections.
908
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000909Note that certain IR constructs like global variables and functions may
910create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000911COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000912in individual sections (e.g. when `-data-sections` or `-function-sections`
913is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000914
Sean Silvab084af42012-12-07 10:36:55 +0000915.. _namedmetadatastructure:
916
917Named Metadata
918--------------
919
920Named metadata is a collection of metadata. :ref:`Metadata
921nodes <metadata>` (but not metadata strings) are the only valid
922operands for a named metadata.
923
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000924#. Named metadata are represented as a string of characters with the
925 metadata prefix. The rules for metadata names are the same as for
926 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
927 are still valid, which allows any character to be part of a name.
928
Sean Silvab084af42012-12-07 10:36:55 +0000929Syntax::
930
931 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000932 !0 = !{!"zero"}
933 !1 = !{!"one"}
934 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000935 ; A named metadata.
936 !name = !{!0, !1, !2}
937
938.. _paramattrs:
939
940Parameter Attributes
941--------------------
942
943The return type and each parameter of a function type may have a set of
944*parameter attributes* associated with them. Parameter attributes are
945used to communicate additional information about the result or
946parameters of a function. Parameter attributes are considered to be part
947of the function, not of the function type, so functions with different
948parameter attributes can have the same function type.
949
950Parameter attributes are simple keywords that follow the type specified.
951If multiple parameter attributes are needed, they are space separated.
952For example:
953
954.. code-block:: llvm
955
956 declare i32 @printf(i8* noalias nocapture, ...)
957 declare i32 @atoi(i8 zeroext)
958 declare signext i8 @returns_signed_char()
959
960Note that any attributes for the function result (``nounwind``,
961``readonly``) come immediately after the argument list.
962
963Currently, only the following parameter attributes are defined:
964
965``zeroext``
966 This indicates to the code generator that the parameter or return
967 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000968 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000969``signext``
970 This indicates to the code generator that the parameter or return
971 value should be sign-extended to the extent required by the target's
972 ABI (which is usually 32-bits) by the caller (for a parameter) or
973 the callee (for a return value).
974``inreg``
975 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000976 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000977 a function call or return (usually, by putting it in a register as
978 opposed to memory, though some targets use it to distinguish between
979 two different kinds of registers). Use of this attribute is
980 target-specific.
981``byval``
982 This indicates that the pointer parameter should really be passed by
983 value to the function. The attribute implies that a hidden copy of
984 the pointee is made between the caller and the callee, so the callee
985 is unable to modify the value in the caller. This attribute is only
986 valid on LLVM pointer arguments. It is generally used to pass
987 structs and arrays by value, but is also valid on pointers to
988 scalars. The copy is considered to belong to the caller not the
989 callee (for example, ``readonly`` functions should not write to
990 ``byval`` parameters). This is not a valid attribute for return
991 values.
992
993 The byval attribute also supports specifying an alignment with the
994 align attribute. It indicates the alignment of the stack slot to
995 form and the known alignment of the pointer specified to the call
996 site. If the alignment is not specified, then the code generator
997 makes a target-specific assumption.
998
Reid Klecknera534a382013-12-19 02:14:12 +0000999.. _attr_inalloca:
1000
1001``inalloca``
1002
Reid Kleckner60d3a832014-01-16 22:59:24 +00001003 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001004 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001005 be a pointer to stack memory produced by an ``alloca`` instruction.
1006 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001007 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001008 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001009
Reid Kleckner436c42e2014-01-17 23:58:17 +00001010 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001011 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001012 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001013 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001014 ``inalloca`` attribute also disables LLVM's implicit lowering of
1015 large aggregate return values, which means that frontend authors
1016 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001017
Reid Kleckner60d3a832014-01-16 22:59:24 +00001018 When the call site is reached, the argument allocation must have
1019 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001020 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001021 space after an argument allocation and before its call site, but it
1022 must be cleared off with :ref:`llvm.stackrestore
1023 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001024
1025 See :doc:`InAlloca` for more information on how to use this
1026 attribute.
1027
Sean Silvab084af42012-12-07 10:36:55 +00001028``sret``
1029 This indicates that the pointer parameter specifies the address of a
1030 structure that is the return value of the function in the source
1031 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001032 loads and stores to the structure may be assumed by the callee not
1033 to trap and to be properly aligned. This is not a valid attribute
1034 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001035
Hal Finkelccc70902014-07-22 16:58:55 +00001036``align <n>``
1037 This indicates that the pointer value may be assumed by the optimizer to
1038 have the specified alignment.
1039
1040 Note that this attribute has additional semantics when combined with the
1041 ``byval`` attribute.
1042
Sean Silva1703e702014-04-08 21:06:22 +00001043.. _noalias:
1044
Sean Silvab084af42012-12-07 10:36:55 +00001045``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001046 This indicates that objects accessed via pointer values
1047 :ref:`based <pointeraliasing>` on the argument or return value are not also
1048 accessed, during the execution of the function, via pointer values not
1049 *based* on the argument or return value. The attribute on a return value
1050 also has additional semantics described below. The caller shares the
1051 responsibility with the callee for ensuring that these requirements are met.
1052 For further details, please see the discussion of the NoAlias response in
1053 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001054
1055 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001056 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001057
1058 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001059 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1060 attribute on return values are stronger than the semantics of the attribute
1061 when used on function arguments. On function return values, the ``noalias``
1062 attribute indicates that the function acts like a system memory allocation
1063 function, returning a pointer to allocated storage disjoint from the
1064 storage for any other object accessible to the caller.
1065
Sean Silvab084af42012-12-07 10:36:55 +00001066``nocapture``
1067 This indicates that the callee does not make any copies of the
1068 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001069 attribute for return values. Addresses used in volatile operations
1070 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001071
1072.. _nest:
1073
1074``nest``
1075 This indicates that the pointer parameter can be excised using the
1076 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001077 attribute for return values and can only be applied to one parameter.
1078
1079``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001080 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001081 value. This is a hint to the optimizer and code generator used when
1082 generating the caller, allowing value propagation, tail call optimization,
1083 and omission of register saves and restores in some cases; it is not
1084 checked or enforced when generating the callee. The parameter and the
1085 function return type must be valid operands for the
1086 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1087 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001088
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001089``nonnull``
1090 This indicates that the parameter or return pointer is not null. This
1091 attribute may only be applied to pointer typed parameters. This is not
1092 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001093 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001094 is non-null.
1095
Hal Finkelb0407ba2014-07-18 15:51:28 +00001096``dereferenceable(<n>)``
1097 This indicates that the parameter or return pointer is dereferenceable. This
1098 attribute may only be applied to pointer typed parameters. A pointer that
1099 is dereferenceable can be loaded from speculatively without a risk of
1100 trapping. The number of bytes known to be dereferenceable must be provided
1101 in parentheses. It is legal for the number of bytes to be less than the
1102 size of the pointee type. The ``nonnull`` attribute does not imply
1103 dereferenceability (consider a pointer to one element past the end of an
1104 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1105 ``addrspace(0)`` (which is the default address space).
1106
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001107``dereferenceable_or_null(<n>)``
1108 This indicates that the parameter or return value isn't both
1109 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001110 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001111 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1112 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1113 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1114 and in other address spaces ``dereferenceable_or_null(<n>)``
1115 implies that a pointer is at least one of ``dereferenceable(<n>)``
1116 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001117 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001118 pointer typed parameters.
1119
Manman Renf46262e2016-03-29 17:37:21 +00001120``swiftself``
1121 This indicates that the parameter is the self/context parameter. This is not
1122 a valid attribute for return values and can only be applied to one
1123 parameter.
1124
Manman Ren9bfd0d02016-04-01 21:41:15 +00001125``swifterror``
1126 This attribute is motivated to model and optimize Swift error handling. It
1127 can be applied to a parameter with pointer to pointer type or a
1128 pointer-sized alloca. At the call site, the actual argument that corresponds
1129 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca. A
1130 ``swifterror`` value (either the parameter or the alloca) can only be loaded
1131 and stored from, or used as a ``swifterror`` argument. This is not a valid
1132 attribute for return values and can only be applied to one parameter.
1133
1134 These constraints allow the calling convention to optimize access to
1135 ``swifterror`` variables by associating them with a specific register at
1136 call boundaries rather than placing them in memory. Since this does change
1137 the calling convention, a function which uses the ``swifterror`` attribute
1138 on a parameter is not ABI-compatible with one which does not.
1139
1140 These constraints also allow LLVM to assume that a ``swifterror`` argument
1141 does not alias any other memory visible within a function and that a
1142 ``swifterror`` alloca passed as an argument does not escape.
1143
Sean Silvab084af42012-12-07 10:36:55 +00001144.. _gc:
1145
Philip Reamesf80bbff2015-02-25 23:45:20 +00001146Garbage Collector Strategy Names
1147--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001148
Philip Reamesf80bbff2015-02-25 23:45:20 +00001149Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001150string:
1151
1152.. code-block:: llvm
1153
1154 define void @f() gc "name" { ... }
1155
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001156The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001157<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001158strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001159named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001160garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001161which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001162
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001163.. _prefixdata:
1164
1165Prefix Data
1166-----------
1167
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001168Prefix data is data associated with a function which the code
1169generator will emit immediately before the function's entrypoint.
1170The purpose of this feature is to allow frontends to associate
1171language-specific runtime metadata with specific functions and make it
1172available through the function pointer while still allowing the
1173function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001174
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001175To access the data for a given function, a program may bitcast the
1176function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001177index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001178the prefix data. For instance, take the example of a function annotated
1179with a single ``i32``,
1180
1181.. code-block:: llvm
1182
1183 define void @f() prefix i32 123 { ... }
1184
1185The prefix data can be referenced as,
1186
1187.. code-block:: llvm
1188
David Blaikie16a97eb2015-03-04 22:02:58 +00001189 %0 = bitcast void* () @f to i32*
1190 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001191 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001192
1193Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001194of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001195beginning of the prefix data is aligned. This means that if the size
1196of the prefix data is not a multiple of the alignment size, the
1197function's entrypoint will not be aligned. If alignment of the
1198function's entrypoint is desired, padding must be added to the prefix
1199data.
1200
Sean Silvaa1190322015-08-06 22:56:48 +00001201A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001202to the ``available_externally`` linkage in that the data may be used by the
1203optimizers but will not be emitted in the object file.
1204
1205.. _prologuedata:
1206
1207Prologue Data
1208-------------
1209
1210The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1211be inserted prior to the function body. This can be used for enabling
1212function hot-patching and instrumentation.
1213
1214To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001215have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001216bytes which decode to a sequence of machine instructions, valid for the
1217module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001218the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001219the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001220definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001221makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001222
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001223A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001224which encodes the ``nop`` instruction:
1225
Renato Golin124f2592016-07-20 12:16:38 +00001226.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001227
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001228 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001229
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001230Generally prologue data can be formed by encoding a relative branch instruction
1231which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001232x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1233
Renato Golin124f2592016-07-20 12:16:38 +00001234.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001235
1236 %0 = type <{ i8, i8, i8* }>
1237
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001238 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001239
Sean Silvaa1190322015-08-06 22:56:48 +00001240A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001241to the ``available_externally`` linkage in that the data may be used by the
1242optimizers but will not be emitted in the object file.
1243
David Majnemer7fddecc2015-06-17 20:52:32 +00001244.. _personalityfn:
1245
1246Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001247--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001248
1249The ``personality`` attribute permits functions to specify what function
1250to use for exception handling.
1251
Bill Wendling63b88192013-02-06 06:52:58 +00001252.. _attrgrp:
1253
1254Attribute Groups
1255----------------
1256
1257Attribute groups are groups of attributes that are referenced by objects within
1258the IR. They are important for keeping ``.ll`` files readable, because a lot of
1259functions will use the same set of attributes. In the degenerative case of a
1260``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1261group will capture the important command line flags used to build that file.
1262
1263An attribute group is a module-level object. To use an attribute group, an
1264object references the attribute group's ID (e.g. ``#37``). An object may refer
1265to more than one attribute group. In that situation, the attributes from the
1266different groups are merged.
1267
1268Here is an example of attribute groups for a function that should always be
1269inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1270
1271.. code-block:: llvm
1272
1273 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001274 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001275
1276 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001277 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001278
1279 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1280 define void @f() #0 #1 { ... }
1281
Sean Silvab084af42012-12-07 10:36:55 +00001282.. _fnattrs:
1283
1284Function Attributes
1285-------------------
1286
1287Function attributes are set to communicate additional information about
1288a function. Function attributes are considered to be part of the
1289function, not of the function type, so functions with different function
1290attributes can have the same function type.
1291
1292Function attributes are simple keywords that follow the type specified.
1293If multiple attributes are needed, they are space separated. For
1294example:
1295
1296.. code-block:: llvm
1297
1298 define void @f() noinline { ... }
1299 define void @f() alwaysinline { ... }
1300 define void @f() alwaysinline optsize { ... }
1301 define void @f() optsize { ... }
1302
Sean Silvab084af42012-12-07 10:36:55 +00001303``alignstack(<n>)``
1304 This attribute indicates that, when emitting the prologue and
1305 epilogue, the backend should forcibly align the stack pointer.
1306 Specify the desired alignment, which must be a power of two, in
1307 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001308``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1309 This attribute indicates that the annotated function will always return at
1310 least a given number of bytes (or null). Its arguments are zero-indexed
1311 parameter numbers; if one argument is provided, then it's assumed that at
1312 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1313 returned pointer. If two are provided, then it's assumed that
1314 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1315 available. The referenced parameters must be integer types. No assumptions
1316 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001317``alwaysinline``
1318 This attribute indicates that the inliner should attempt to inline
1319 this function into callers whenever possible, ignoring any active
1320 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001321``builtin``
1322 This indicates that the callee function at a call site should be
1323 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001324 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001325 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001326 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001327``cold``
1328 This attribute indicates that this function is rarely called. When
1329 computing edge weights, basic blocks post-dominated by a cold
1330 function call are also considered to be cold; and, thus, given low
1331 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001332``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001333 In some parallel execution models, there exist operations that cannot be
1334 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001335 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001336
Justin Lebar58535b12016-02-17 17:46:41 +00001337 The ``convergent`` attribute may appear on functions or call/invoke
1338 instructions. When it appears on a function, it indicates that calls to
1339 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001340 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001341 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001342 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001343
Justin Lebar58535b12016-02-17 17:46:41 +00001344 When it appears on a call/invoke, the ``convergent`` attribute indicates
1345 that we should treat the call as though we're calling a convergent
1346 function. This is particularly useful on indirect calls; without this we
1347 may treat such calls as though the target is non-convergent.
1348
1349 The optimizer may remove the ``convergent`` attribute on functions when it
1350 can prove that the function does not execute any convergent operations.
1351 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1352 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001353``inaccessiblememonly``
1354 This attribute indicates that the function may only access memory that
1355 is not accessible by the module being compiled. This is a weaker form
1356 of ``readnone``.
1357``inaccessiblemem_or_argmemonly``
1358 This attribute indicates that the function may only access memory that is
1359 either not accessible by the module being compiled, or is pointed to
1360 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001361``inlinehint``
1362 This attribute indicates that the source code contained a hint that
1363 inlining this function is desirable (such as the "inline" keyword in
1364 C/C++). It is just a hint; it imposes no requirements on the
1365 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001366``jumptable``
1367 This attribute indicates that the function should be added to a
1368 jump-instruction table at code-generation time, and that all address-taken
1369 references to this function should be replaced with a reference to the
1370 appropriate jump-instruction-table function pointer. Note that this creates
1371 a new pointer for the original function, which means that code that depends
1372 on function-pointer identity can break. So, any function annotated with
1373 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001374``minsize``
1375 This attribute suggests that optimization passes and code generator
1376 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001377 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001378 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001379``naked``
1380 This attribute disables prologue / epilogue emission for the
1381 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001382``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001383 This indicates that the callee function at a call site is not recognized as
1384 a built-in function. LLVM will retain the original call and not replace it
1385 with equivalent code based on the semantics of the built-in function, unless
1386 the call site uses the ``builtin`` attribute. This is valid at call sites
1387 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001388``noduplicate``
1389 This attribute indicates that calls to the function cannot be
1390 duplicated. A call to a ``noduplicate`` function may be moved
1391 within its parent function, but may not be duplicated within
1392 its parent function.
1393
1394 A function containing a ``noduplicate`` call may still
1395 be an inlining candidate, provided that the call is not
1396 duplicated by inlining. That implies that the function has
1397 internal linkage and only has one call site, so the original
1398 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001399``noimplicitfloat``
1400 This attributes disables implicit floating point instructions.
1401``noinline``
1402 This attribute indicates that the inliner should never inline this
1403 function in any situation. This attribute may not be used together
1404 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001405``nonlazybind``
1406 This attribute suppresses lazy symbol binding for the function. This
1407 may make calls to the function faster, at the cost of extra program
1408 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001409``noredzone``
1410 This attribute indicates that the code generator should not use a
1411 red zone, even if the target-specific ABI normally permits it.
1412``noreturn``
1413 This function attribute indicates that the function never returns
1414 normally. This produces undefined behavior at runtime if the
1415 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001416``norecurse``
1417 This function attribute indicates that the function does not call itself
1418 either directly or indirectly down any possible call path. This produces
1419 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001420``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001421 This function attribute indicates that the function never raises an
1422 exception. If the function does raise an exception, its runtime
1423 behavior is undefined. However, functions marked nounwind may still
1424 trap or generate asynchronous exceptions. Exception handling schemes
1425 that are recognized by LLVM to handle asynchronous exceptions, such
1426 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001427``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001428 This function attribute indicates that most optimization passes will skip
1429 this function, with the exception of interprocedural optimization passes.
1430 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001431 This attribute cannot be used together with the ``alwaysinline``
1432 attribute; this attribute is also incompatible
1433 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001434
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001435 This attribute requires the ``noinline`` attribute to be specified on
1436 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001437 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001438 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001439``optsize``
1440 This attribute suggests that optimization passes and code generator
1441 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001442 and otherwise do optimizations specifically to reduce code size as
1443 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001444``"patchable-function"``
1445 This attribute tells the code generator that the code
1446 generated for this function needs to follow certain conventions that
1447 make it possible for a runtime function to patch over it later.
1448 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001449 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001450
1451 * ``"prologue-short-redirect"`` - This style of patchable
1452 function is intended to support patching a function prologue to
1453 redirect control away from the function in a thread safe
1454 manner. It guarantees that the first instruction of the
1455 function will be large enough to accommodate a short jump
1456 instruction, and will be sufficiently aligned to allow being
1457 fully changed via an atomic compare-and-swap instruction.
1458 While the first requirement can be satisfied by inserting large
1459 enough NOP, LLVM can and will try to re-purpose an existing
1460 instruction (i.e. one that would have to be emitted anyway) as
1461 the patchable instruction larger than a short jump.
1462
1463 ``"prologue-short-redirect"`` is currently only supported on
1464 x86-64.
1465
1466 This attribute by itself does not imply restrictions on
1467 inter-procedural optimizations. All of the semantic effects the
1468 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001469``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001470 On a function, this attribute indicates that the function computes its
1471 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001472 without dereferencing any pointer arguments or otherwise accessing
1473 any mutable state (e.g. memory, control registers, etc) visible to
1474 caller functions. It does not write through any pointer arguments
1475 (including ``byval`` arguments) and never changes any state visible
1476 to callers. This means that it cannot unwind exceptions by calling
1477 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001478
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001479 On an argument, this attribute indicates that the function does not
1480 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001481 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001482``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001483 On a function, this attribute indicates that the function does not write
1484 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001485 modify any state (e.g. memory, control registers, etc) visible to
1486 caller functions. It may dereference pointer arguments and read
1487 state that may be set in the caller. A readonly function always
1488 returns the same value (or unwinds an exception identically) when
1489 called with the same set of arguments and global state. It cannot
1490 unwind an exception by calling the ``C++`` exception throwing
1491 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001492
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001493 On an argument, this attribute indicates that the function does not write
1494 through this pointer argument, even though it may write to the memory that
1495 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001496``writeonly``
1497 On a function, this attribute indicates that the function may write to but
1498 does not read from memory.
1499
1500 On an argument, this attribute indicates that the function may write to but
1501 does not read through this pointer argument (even though it may read from
1502 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001503``argmemonly``
1504 This attribute indicates that the only memory accesses inside function are
1505 loads and stores from objects pointed to by its pointer-typed arguments,
1506 with arbitrary offsets. Or in other words, all memory operations in the
1507 function can refer to memory only using pointers based on its function
1508 arguments.
1509 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1510 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001511``returns_twice``
1512 This attribute indicates that this function can return twice. The C
1513 ``setjmp`` is an example of such a function. The compiler disables
1514 some optimizations (like tail calls) in the caller of these
1515 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001516``safestack``
1517 This attribute indicates that
1518 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1519 protection is enabled for this function.
1520
1521 If a function that has a ``safestack`` attribute is inlined into a
1522 function that doesn't have a ``safestack`` attribute or which has an
1523 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1524 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001525``sanitize_address``
1526 This attribute indicates that AddressSanitizer checks
1527 (dynamic address safety analysis) are enabled for this function.
1528``sanitize_memory``
1529 This attribute indicates that MemorySanitizer checks (dynamic detection
1530 of accesses to uninitialized memory) are enabled for this function.
1531``sanitize_thread``
1532 This attribute indicates that ThreadSanitizer checks
1533 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001534``ssp``
1535 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001536 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001537 placed on the stack before the local variables that's checked upon
1538 return from the function to see if it has been overwritten. A
1539 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001540 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001541
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001542 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1543 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1544 - Calls to alloca() with variable sizes or constant sizes greater than
1545 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001546
Josh Magee24c7f062014-02-01 01:36:16 +00001547 Variables that are identified as requiring a protector will be arranged
1548 on the stack such that they are adjacent to the stack protector guard.
1549
Sean Silvab084af42012-12-07 10:36:55 +00001550 If a function that has an ``ssp`` attribute is inlined into a
1551 function that doesn't have an ``ssp`` attribute, then the resulting
1552 function will have an ``ssp`` attribute.
1553``sspreq``
1554 This attribute indicates that the function should *always* emit a
1555 stack smashing protector. This overrides the ``ssp`` function
1556 attribute.
1557
Josh Magee24c7f062014-02-01 01:36:16 +00001558 Variables that are identified as requiring a protector will be arranged
1559 on the stack such that they are adjacent to the stack protector guard.
1560 The specific layout rules are:
1561
1562 #. Large arrays and structures containing large arrays
1563 (``>= ssp-buffer-size``) are closest to the stack protector.
1564 #. Small arrays and structures containing small arrays
1565 (``< ssp-buffer-size``) are 2nd closest to the protector.
1566 #. Variables that have had their address taken are 3rd closest to the
1567 protector.
1568
Sean Silvab084af42012-12-07 10:36:55 +00001569 If a function that has an ``sspreq`` attribute is inlined into a
1570 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001571 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1572 an ``sspreq`` attribute.
1573``sspstrong``
1574 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001575 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001576 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001577 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001578
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001579 - Arrays of any size and type
1580 - Aggregates containing an array of any size and type.
1581 - Calls to alloca().
1582 - Local variables that have had their address taken.
1583
Josh Magee24c7f062014-02-01 01:36:16 +00001584 Variables that are identified as requiring a protector will be arranged
1585 on the stack such that they are adjacent to the stack protector guard.
1586 The specific layout rules are:
1587
1588 #. Large arrays and structures containing large arrays
1589 (``>= ssp-buffer-size``) are closest to the stack protector.
1590 #. Small arrays and structures containing small arrays
1591 (``< ssp-buffer-size``) are 2nd closest to the protector.
1592 #. Variables that have had their address taken are 3rd closest to the
1593 protector.
1594
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001595 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001596
1597 If a function that has an ``sspstrong`` attribute is inlined into a
1598 function that doesn't have an ``sspstrong`` attribute, then the
1599 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001600``"thunk"``
1601 This attribute indicates that the function will delegate to some other
1602 function with a tail call. The prototype of a thunk should not be used for
1603 optimization purposes. The caller is expected to cast the thunk prototype to
1604 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001605``uwtable``
1606 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001607 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001608 show that no exceptions passes by it. This is normally the case for
1609 the ELF x86-64 abi, but it can be disabled for some compilation
1610 units.
Sean Silvab084af42012-12-07 10:36:55 +00001611
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001612
1613.. _opbundles:
1614
1615Operand Bundles
1616---------------
1617
1618Note: operand bundles are a work in progress, and they should be
1619considered experimental at this time.
1620
1621Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001622with certain LLVM instructions (currently only ``call`` s and
1623``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001624incorrect and will change program semantics.
1625
1626Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001627
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001628 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001629 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1630 bundle operand ::= SSA value
1631 tag ::= string constant
1632
1633Operand bundles are **not** part of a function's signature, and a
1634given function may be called from multiple places with different kinds
1635of operand bundles. This reflects the fact that the operand bundles
1636are conceptually a part of the ``call`` (or ``invoke``), not the
1637callee being dispatched to.
1638
1639Operand bundles are a generic mechanism intended to support
1640runtime-introspection-like functionality for managed languages. While
1641the exact semantics of an operand bundle depend on the bundle tag,
1642there are certain limitations to how much the presence of an operand
1643bundle can influence the semantics of a program. These restrictions
1644are described as the semantics of an "unknown" operand bundle. As
1645long as the behavior of an operand bundle is describable within these
1646restrictions, LLVM does not need to have special knowledge of the
1647operand bundle to not miscompile programs containing it.
1648
David Majnemer34cacb42015-10-22 01:46:38 +00001649- The bundle operands for an unknown operand bundle escape in unknown
1650 ways before control is transferred to the callee or invokee.
1651- Calls and invokes with operand bundles have unknown read / write
1652 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001653 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001654 callsite specific attributes.
1655- An operand bundle at a call site cannot change the implementation
1656 of the called function. Inter-procedural optimizations work as
1657 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001658
Sanjoy Dascdafd842015-11-11 21:38:02 +00001659More specific types of operand bundles are described below.
1660
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001661.. _deopt_opbundles:
1662
Sanjoy Dascdafd842015-11-11 21:38:02 +00001663Deoptimization Operand Bundles
1664^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1665
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001666Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001667operand bundle tag. These operand bundles represent an alternate
1668"safe" continuation for the call site they're attached to, and can be
1669used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001670specified call site. There can be at most one ``"deopt"`` operand
1671bundle attached to a call site. Exact details of deoptimization is
1672out of scope for the language reference, but it usually involves
1673rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001674
1675From the compiler's perspective, deoptimization operand bundles make
1676the call sites they're attached to at least ``readonly``. They read
1677through all of their pointer typed operands (even if they're not
1678otherwise escaped) and the entire visible heap. Deoptimization
1679operand bundles do not capture their operands except during
1680deoptimization, in which case control will not be returned to the
1681compiled frame.
1682
Sanjoy Das2d161452015-11-18 06:23:38 +00001683The inliner knows how to inline through calls that have deoptimization
1684operand bundles. Just like inlining through a normal call site
1685involves composing the normal and exceptional continuations, inlining
1686through a call site with a deoptimization operand bundle needs to
1687appropriately compose the "safe" deoptimization continuation. The
1688inliner does this by prepending the parent's deoptimization
1689continuation to every deoptimization continuation in the inlined body.
1690E.g. inlining ``@f`` into ``@g`` in the following example
1691
1692.. code-block:: llvm
1693
1694 define void @f() {
1695 call void @x() ;; no deopt state
1696 call void @y() [ "deopt"(i32 10) ]
1697 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1698 ret void
1699 }
1700
1701 define void @g() {
1702 call void @f() [ "deopt"(i32 20) ]
1703 ret void
1704 }
1705
1706will result in
1707
1708.. code-block:: llvm
1709
1710 define void @g() {
1711 call void @x() ;; still no deopt state
1712 call void @y() [ "deopt"(i32 20, i32 10) ]
1713 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1714 ret void
1715 }
1716
1717It is the frontend's responsibility to structure or encode the
1718deoptimization state in a way that syntactically prepending the
1719caller's deoptimization state to the callee's deoptimization state is
1720semantically equivalent to composing the caller's deoptimization
1721continuation after the callee's deoptimization continuation.
1722
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001723.. _ob_funclet:
1724
David Majnemer3bb88c02015-12-15 21:27:27 +00001725Funclet Operand Bundles
1726^^^^^^^^^^^^^^^^^^^^^^^
1727
1728Funclet operand bundles are characterized by the ``"funclet"``
1729operand bundle tag. These operand bundles indicate that a call site
1730is within a particular funclet. There can be at most one
1731``"funclet"`` operand bundle attached to a call site and it must have
1732exactly one bundle operand.
1733
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001734If any funclet EH pads have been "entered" but not "exited" (per the
1735`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1736it is undefined behavior to execute a ``call`` or ``invoke`` which:
1737
1738* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1739 intrinsic, or
1740* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1741 not-yet-exited funclet EH pad.
1742
1743Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1744executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1745
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001746GC Transition Operand Bundles
1747^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1748
1749GC transition operand bundles are characterized by the
1750``"gc-transition"`` operand bundle tag. These operand bundles mark a
1751call as a transition between a function with one GC strategy to a
1752function with a different GC strategy. If coordinating the transition
1753between GC strategies requires additional code generation at the call
1754site, these bundles may contain any values that are needed by the
1755generated code. For more details, see :ref:`GC Transitions
1756<gc_transition_args>`.
1757
Sean Silvab084af42012-12-07 10:36:55 +00001758.. _moduleasm:
1759
1760Module-Level Inline Assembly
1761----------------------------
1762
1763Modules may contain "module-level inline asm" blocks, which corresponds
1764to the GCC "file scope inline asm" blocks. These blocks are internally
1765concatenated by LLVM and treated as a single unit, but may be separated
1766in the ``.ll`` file if desired. The syntax is very simple:
1767
1768.. code-block:: llvm
1769
1770 module asm "inline asm code goes here"
1771 module asm "more can go here"
1772
1773The strings can contain any character by escaping non-printable
1774characters. The escape sequence used is simply "\\xx" where "xx" is the
1775two digit hex code for the number.
1776
James Y Knightbc832ed2015-07-08 18:08:36 +00001777Note that the assembly string *must* be parseable by LLVM's integrated assembler
1778(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001779
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001780.. _langref_datalayout:
1781
Sean Silvab084af42012-12-07 10:36:55 +00001782Data Layout
1783-----------
1784
1785A module may specify a target specific data layout string that specifies
1786how data is to be laid out in memory. The syntax for the data layout is
1787simply:
1788
1789.. code-block:: llvm
1790
1791 target datalayout = "layout specification"
1792
1793The *layout specification* consists of a list of specifications
1794separated by the minus sign character ('-'). Each specification starts
1795with a letter and may include other information after the letter to
1796define some aspect of the data layout. The specifications accepted are
1797as follows:
1798
1799``E``
1800 Specifies that the target lays out data in big-endian form. That is,
1801 the bits with the most significance have the lowest address
1802 location.
1803``e``
1804 Specifies that the target lays out data in little-endian form. That
1805 is, the bits with the least significance have the lowest address
1806 location.
1807``S<size>``
1808 Specifies the natural alignment of the stack in bits. Alignment
1809 promotion of stack variables is limited to the natural stack
1810 alignment to avoid dynamic stack realignment. The stack alignment
1811 must be a multiple of 8-bits. If omitted, the natural stack
1812 alignment defaults to "unspecified", which does not prevent any
1813 alignment promotions.
1814``p[n]:<size>:<abi>:<pref>``
1815 This specifies the *size* of a pointer and its ``<abi>`` and
1816 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001817 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001818 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001819 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001820``i<size>:<abi>:<pref>``
1821 This specifies the alignment for an integer type of a given bit
1822 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1823``v<size>:<abi>:<pref>``
1824 This specifies the alignment for a vector type of a given bit
1825 ``<size>``.
1826``f<size>:<abi>:<pref>``
1827 This specifies the alignment for a floating point type of a given bit
1828 ``<size>``. Only values of ``<size>`` that are supported by the target
1829 will work. 32 (float) and 64 (double) are supported on all targets; 80
1830 or 128 (different flavors of long double) are also supported on some
1831 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001832``a:<abi>:<pref>``
1833 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001834``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001835 If present, specifies that llvm names are mangled in the output. The
1836 options are
1837
1838 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1839 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1840 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1841 symbols get a ``_`` prefix.
1842 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1843 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001844 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1845 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001846``n<size1>:<size2>:<size3>...``
1847 This specifies a set of native integer widths for the target CPU in
1848 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1849 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1850 this set are considered to support most general arithmetic operations
1851 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001852``ni:<address space0>:<address space1>:<address space2>...``
1853 This specifies pointer types with the specified address spaces
1854 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1855 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001856
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001857On every specification that takes a ``<abi>:<pref>``, specifying the
1858``<pref>`` alignment is optional. If omitted, the preceding ``:``
1859should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1860
Sean Silvab084af42012-12-07 10:36:55 +00001861When constructing the data layout for a given target, LLVM starts with a
1862default set of specifications which are then (possibly) overridden by
1863the specifications in the ``datalayout`` keyword. The default
1864specifications are given in this list:
1865
1866- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001867- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1868- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1869 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001870- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001871- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1872- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1873- ``i16:16:16`` - i16 is 16-bit aligned
1874- ``i32:32:32`` - i32 is 32-bit aligned
1875- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1876 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001877- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001878- ``f32:32:32`` - float is 32-bit aligned
1879- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001880- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001881- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1882- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001883- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001884
1885When LLVM is determining the alignment for a given type, it uses the
1886following rules:
1887
1888#. If the type sought is an exact match for one of the specifications,
1889 that specification is used.
1890#. If no match is found, and the type sought is an integer type, then
1891 the smallest integer type that is larger than the bitwidth of the
1892 sought type is used. If none of the specifications are larger than
1893 the bitwidth then the largest integer type is used. For example,
1894 given the default specifications above, the i7 type will use the
1895 alignment of i8 (next largest) while both i65 and i256 will use the
1896 alignment of i64 (largest specified).
1897#. If no match is found, and the type sought is a vector type, then the
1898 largest vector type that is smaller than the sought vector type will
1899 be used as a fall back. This happens because <128 x double> can be
1900 implemented in terms of 64 <2 x double>, for example.
1901
1902The function of the data layout string may not be what you expect.
1903Notably, this is not a specification from the frontend of what alignment
1904the code generator should use.
1905
1906Instead, if specified, the target data layout is required to match what
1907the ultimate *code generator* expects. This string is used by the
1908mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001909what the ultimate code generator uses. There is no way to generate IR
1910that does not embed this target-specific detail into the IR. If you
1911don't specify the string, the default specifications will be used to
1912generate a Data Layout and the optimization phases will operate
1913accordingly and introduce target specificity into the IR with respect to
1914these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001915
Bill Wendling5cc90842013-10-18 23:41:25 +00001916.. _langref_triple:
1917
1918Target Triple
1919-------------
1920
1921A module may specify a target triple string that describes the target
1922host. The syntax for the target triple is simply:
1923
1924.. code-block:: llvm
1925
1926 target triple = "x86_64-apple-macosx10.7.0"
1927
1928The *target triple* string consists of a series of identifiers delimited
1929by the minus sign character ('-'). The canonical forms are:
1930
1931::
1932
1933 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1934 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1935
1936This information is passed along to the backend so that it generates
1937code for the proper architecture. It's possible to override this on the
1938command line with the ``-mtriple`` command line option.
1939
Sean Silvab084af42012-12-07 10:36:55 +00001940.. _pointeraliasing:
1941
1942Pointer Aliasing Rules
1943----------------------
1944
1945Any memory access must be done through a pointer value associated with
1946an address range of the memory access, otherwise the behavior is
1947undefined. Pointer values are associated with address ranges according
1948to the following rules:
1949
1950- A pointer value is associated with the addresses associated with any
1951 value it is *based* on.
1952- An address of a global variable is associated with the address range
1953 of the variable's storage.
1954- The result value of an allocation instruction is associated with the
1955 address range of the allocated storage.
1956- A null pointer in the default address-space is associated with no
1957 address.
1958- An integer constant other than zero or a pointer value returned from
1959 a function not defined within LLVM may be associated with address
1960 ranges allocated through mechanisms other than those provided by
1961 LLVM. Such ranges shall not overlap with any ranges of addresses
1962 allocated by mechanisms provided by LLVM.
1963
1964A pointer value is *based* on another pointer value according to the
1965following rules:
1966
1967- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001968 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001969- The result value of a ``bitcast`` is *based* on the operand of the
1970 ``bitcast``.
1971- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1972 values that contribute (directly or indirectly) to the computation of
1973 the pointer's value.
1974- The "*based* on" relationship is transitive.
1975
1976Note that this definition of *"based"* is intentionally similar to the
1977definition of *"based"* in C99, though it is slightly weaker.
1978
1979LLVM IR does not associate types with memory. The result type of a
1980``load`` merely indicates the size and alignment of the memory from
1981which to load, as well as the interpretation of the value. The first
1982operand type of a ``store`` similarly only indicates the size and
1983alignment of the store.
1984
1985Consequently, type-based alias analysis, aka TBAA, aka
1986``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1987:ref:`Metadata <metadata>` may be used to encode additional information
1988which specialized optimization passes may use to implement type-based
1989alias analysis.
1990
1991.. _volatile:
1992
1993Volatile Memory Accesses
1994------------------------
1995
1996Certain memory accesses, such as :ref:`load <i_load>`'s,
1997:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1998marked ``volatile``. The optimizers must not change the number of
1999volatile operations or change their order of execution relative to other
2000volatile operations. The optimizers *may* change the order of volatile
2001operations relative to non-volatile operations. This is not Java's
2002"volatile" and has no cross-thread synchronization behavior.
2003
Andrew Trick89fc5a62013-01-30 21:19:35 +00002004IR-level volatile loads and stores cannot safely be optimized into
2005llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2006flagged volatile. Likewise, the backend should never split or merge
2007target-legal volatile load/store instructions.
2008
Andrew Trick7e6f9282013-01-31 00:49:39 +00002009.. admonition:: Rationale
2010
2011 Platforms may rely on volatile loads and stores of natively supported
2012 data width to be executed as single instruction. For example, in C
2013 this holds for an l-value of volatile primitive type with native
2014 hardware support, but not necessarily for aggregate types. The
2015 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002016 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002017 do not violate the frontend's contract with the language.
2018
Sean Silvab084af42012-12-07 10:36:55 +00002019.. _memmodel:
2020
2021Memory Model for Concurrent Operations
2022--------------------------------------
2023
2024The LLVM IR does not define any way to start parallel threads of
2025execution or to register signal handlers. Nonetheless, there are
2026platform-specific ways to create them, and we define LLVM IR's behavior
2027in their presence. This model is inspired by the C++0x memory model.
2028
2029For a more informal introduction to this model, see the :doc:`Atomics`.
2030
2031We define a *happens-before* partial order as the least partial order
2032that
2033
2034- Is a superset of single-thread program order, and
2035- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2036 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2037 techniques, like pthread locks, thread creation, thread joining,
2038 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2039 Constraints <ordering>`).
2040
2041Note that program order does not introduce *happens-before* edges
2042between a thread and signals executing inside that thread.
2043
2044Every (defined) read operation (load instructions, memcpy, atomic
2045loads/read-modify-writes, etc.) R reads a series of bytes written by
2046(defined) write operations (store instructions, atomic
2047stores/read-modify-writes, memcpy, etc.). For the purposes of this
2048section, initialized globals are considered to have a write of the
2049initializer which is atomic and happens before any other read or write
2050of the memory in question. For each byte of a read R, R\ :sub:`byte`
2051may see any write to the same byte, except:
2052
2053- If write\ :sub:`1` happens before write\ :sub:`2`, and
2054 write\ :sub:`2` happens before R\ :sub:`byte`, then
2055 R\ :sub:`byte` does not see write\ :sub:`1`.
2056- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2057 R\ :sub:`byte` does not see write\ :sub:`3`.
2058
2059Given that definition, R\ :sub:`byte` is defined as follows:
2060
2061- If R is volatile, the result is target-dependent. (Volatile is
2062 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002063 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002064 like normal memory. It does not generally provide cross-thread
2065 synchronization.)
2066- Otherwise, if there is no write to the same byte that happens before
2067 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2068- Otherwise, if R\ :sub:`byte` may see exactly one write,
2069 R\ :sub:`byte` returns the value written by that write.
2070- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2071 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2072 Memory Ordering Constraints <ordering>` section for additional
2073 constraints on how the choice is made.
2074- Otherwise R\ :sub:`byte` returns ``undef``.
2075
2076R returns the value composed of the series of bytes it read. This
2077implies that some bytes within the value may be ``undef`` **without**
2078the entire value being ``undef``. Note that this only defines the
2079semantics of the operation; it doesn't mean that targets will emit more
2080than one instruction to read the series of bytes.
2081
2082Note that in cases where none of the atomic intrinsics are used, this
2083model places only one restriction on IR transformations on top of what
2084is required for single-threaded execution: introducing a store to a byte
2085which might not otherwise be stored is not allowed in general.
2086(Specifically, in the case where another thread might write to and read
2087from an address, introducing a store can change a load that may see
2088exactly one write into a load that may see multiple writes.)
2089
2090.. _ordering:
2091
2092Atomic Memory Ordering Constraints
2093----------------------------------
2094
2095Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2096:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2097:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002098ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002099the same address they *synchronize with*. These semantics are borrowed
2100from Java and C++0x, but are somewhat more colloquial. If these
2101descriptions aren't precise enough, check those specs (see spec
2102references in the :doc:`atomics guide <Atomics>`).
2103:ref:`fence <i_fence>` instructions treat these orderings somewhat
2104differently since they don't take an address. See that instruction's
2105documentation for details.
2106
2107For a simpler introduction to the ordering constraints, see the
2108:doc:`Atomics`.
2109
2110``unordered``
2111 The set of values that can be read is governed by the happens-before
2112 partial order. A value cannot be read unless some operation wrote
2113 it. This is intended to provide a guarantee strong enough to model
2114 Java's non-volatile shared variables. This ordering cannot be
2115 specified for read-modify-write operations; it is not strong enough
2116 to make them atomic in any interesting way.
2117``monotonic``
2118 In addition to the guarantees of ``unordered``, there is a single
2119 total order for modifications by ``monotonic`` operations on each
2120 address. All modification orders must be compatible with the
2121 happens-before order. There is no guarantee that the modification
2122 orders can be combined to a global total order for the whole program
2123 (and this often will not be possible). The read in an atomic
2124 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2125 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2126 order immediately before the value it writes. If one atomic read
2127 happens before another atomic read of the same address, the later
2128 read must see the same value or a later value in the address's
2129 modification order. This disallows reordering of ``monotonic`` (or
2130 stronger) operations on the same address. If an address is written
2131 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2132 read that address repeatedly, the other threads must eventually see
2133 the write. This corresponds to the C++0x/C1x
2134 ``memory_order_relaxed``.
2135``acquire``
2136 In addition to the guarantees of ``monotonic``, a
2137 *synchronizes-with* edge may be formed with a ``release`` operation.
2138 This is intended to model C++'s ``memory_order_acquire``.
2139``release``
2140 In addition to the guarantees of ``monotonic``, if this operation
2141 writes a value which is subsequently read by an ``acquire``
2142 operation, it *synchronizes-with* that operation. (This isn't a
2143 complete description; see the C++0x definition of a release
2144 sequence.) This corresponds to the C++0x/C1x
2145 ``memory_order_release``.
2146``acq_rel`` (acquire+release)
2147 Acts as both an ``acquire`` and ``release`` operation on its
2148 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2149``seq_cst`` (sequentially consistent)
2150 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002151 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002152 writes), there is a global total order on all
2153 sequentially-consistent operations on all addresses, which is
2154 consistent with the *happens-before* partial order and with the
2155 modification orders of all the affected addresses. Each
2156 sequentially-consistent read sees the last preceding write to the
2157 same address in this global order. This corresponds to the C++0x/C1x
2158 ``memory_order_seq_cst`` and Java volatile.
2159
2160.. _singlethread:
2161
2162If an atomic operation is marked ``singlethread``, it only *synchronizes
2163with* or participates in modification and seq\_cst total orderings with
2164other operations running in the same thread (for example, in signal
2165handlers).
2166
2167.. _fastmath:
2168
2169Fast-Math Flags
2170---------------
2171
2172LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2173:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002174:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2175be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002176
2177``nnan``
2178 No NaNs - Allow optimizations to assume the arguments and result are not
2179 NaN. Such optimizations are required to retain defined behavior over
2180 NaNs, but the value of the result is undefined.
2181
2182``ninf``
2183 No Infs - Allow optimizations to assume the arguments and result are not
2184 +/-Inf. Such optimizations are required to retain defined behavior over
2185 +/-Inf, but the value of the result is undefined.
2186
2187``nsz``
2188 No Signed Zeros - Allow optimizations to treat the sign of a zero
2189 argument or result as insignificant.
2190
2191``arcp``
2192 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2193 argument rather than perform division.
2194
2195``fast``
2196 Fast - Allow algebraically equivalent transformations that may
2197 dramatically change results in floating point (e.g. reassociate). This
2198 flag implies all the others.
2199
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002200.. _uselistorder:
2201
2202Use-list Order Directives
2203-------------------------
2204
2205Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002206order to be recreated. ``<order-indexes>`` is a comma-separated list of
2207indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002208value's use-list is immediately sorted by these indexes.
2209
Sean Silvaa1190322015-08-06 22:56:48 +00002210Use-list directives may appear at function scope or global scope. They are not
2211instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002212function scope, they must appear after the terminator of the final basic block.
2213
2214If basic blocks have their address taken via ``blockaddress()`` expressions,
2215``uselistorder_bb`` can be used to reorder their use-lists from outside their
2216function's scope.
2217
2218:Syntax:
2219
2220::
2221
2222 uselistorder <ty> <value>, { <order-indexes> }
2223 uselistorder_bb @function, %block { <order-indexes> }
2224
2225:Examples:
2226
2227::
2228
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002229 define void @foo(i32 %arg1, i32 %arg2) {
2230 entry:
2231 ; ... instructions ...
2232 bb:
2233 ; ... instructions ...
2234
2235 ; At function scope.
2236 uselistorder i32 %arg1, { 1, 0, 2 }
2237 uselistorder label %bb, { 1, 0 }
2238 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002239
2240 ; At global scope.
2241 uselistorder i32* @global, { 1, 2, 0 }
2242 uselistorder i32 7, { 1, 0 }
2243 uselistorder i32 (i32) @bar, { 1, 0 }
2244 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2245
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002246.. _source_filename:
2247
2248Source Filename
2249---------------
2250
2251The *source filename* string is set to the original module identifier,
2252which will be the name of the compiled source file when compiling from
2253source through the clang front end, for example. It is then preserved through
2254the IR and bitcode.
2255
2256This is currently necessary to generate a consistent unique global
2257identifier for local functions used in profile data, which prepends the
2258source file name to the local function name.
2259
2260The syntax for the source file name is simply:
2261
Renato Golin124f2592016-07-20 12:16:38 +00002262.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002263
2264 source_filename = "/path/to/source.c"
2265
Sean Silvab084af42012-12-07 10:36:55 +00002266.. _typesystem:
2267
2268Type System
2269===========
2270
2271The LLVM type system is one of the most important features of the
2272intermediate representation. Being typed enables a number of
2273optimizations to be performed on the intermediate representation
2274directly, without having to do extra analyses on the side before the
2275transformation. A strong type system makes it easier to read the
2276generated code and enables novel analyses and transformations that are
2277not feasible to perform on normal three address code representations.
2278
Rafael Espindola08013342013-12-07 19:34:20 +00002279.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002280
Rafael Espindola08013342013-12-07 19:34:20 +00002281Void Type
2282---------
Sean Silvab084af42012-12-07 10:36:55 +00002283
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002284:Overview:
2285
Rafael Espindola08013342013-12-07 19:34:20 +00002286
2287The void type does not represent any value and has no size.
2288
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002289:Syntax:
2290
Rafael Espindola08013342013-12-07 19:34:20 +00002291
2292::
2293
2294 void
Sean Silvab084af42012-12-07 10:36:55 +00002295
2296
Rafael Espindola08013342013-12-07 19:34:20 +00002297.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002298
Rafael Espindola08013342013-12-07 19:34:20 +00002299Function Type
2300-------------
Sean Silvab084af42012-12-07 10:36:55 +00002301
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002302:Overview:
2303
Sean Silvab084af42012-12-07 10:36:55 +00002304
Rafael Espindola08013342013-12-07 19:34:20 +00002305The function type can be thought of as a function signature. It consists of a
2306return type and a list of formal parameter types. The return type of a function
2307type is a void type or first class type --- except for :ref:`label <t_label>`
2308and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002309
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002310:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002311
Rafael Espindola08013342013-12-07 19:34:20 +00002312::
Sean Silvab084af42012-12-07 10:36:55 +00002313
Rafael Espindola08013342013-12-07 19:34:20 +00002314 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002315
Rafael Espindola08013342013-12-07 19:34:20 +00002316...where '``<parameter list>``' is a comma-separated list of type
2317specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002318indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002319argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002320handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002321except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002322
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002323:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002324
Rafael Espindola08013342013-12-07 19:34:20 +00002325+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2326| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2327+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2328| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2329+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2330| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2331+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2332| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2333+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2334
2335.. _t_firstclass:
2336
2337First Class Types
2338-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002339
2340The :ref:`first class <t_firstclass>` types are perhaps the most important.
2341Values of these types are the only ones which can be produced by
2342instructions.
2343
Rafael Espindola08013342013-12-07 19:34:20 +00002344.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002345
Rafael Espindola08013342013-12-07 19:34:20 +00002346Single Value Types
2347^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002348
Rafael Espindola08013342013-12-07 19:34:20 +00002349These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002350
2351.. _t_integer:
2352
2353Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002354""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002355
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002356:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002357
2358The integer type is a very simple type that simply specifies an
2359arbitrary bit width for the integer type desired. Any bit width from 1
2360bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2361
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002362:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002363
2364::
2365
2366 iN
2367
2368The number of bits the integer will occupy is specified by the ``N``
2369value.
2370
2371Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002372*********
Sean Silvab084af42012-12-07 10:36:55 +00002373
2374+----------------+------------------------------------------------+
2375| ``i1`` | a single-bit integer. |
2376+----------------+------------------------------------------------+
2377| ``i32`` | a 32-bit integer. |
2378+----------------+------------------------------------------------+
2379| ``i1942652`` | a really big integer of over 1 million bits. |
2380+----------------+------------------------------------------------+
2381
2382.. _t_floating:
2383
2384Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002385""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002386
2387.. list-table::
2388 :header-rows: 1
2389
2390 * - Type
2391 - Description
2392
2393 * - ``half``
2394 - 16-bit floating point value
2395
2396 * - ``float``
2397 - 32-bit floating point value
2398
2399 * - ``double``
2400 - 64-bit floating point value
2401
2402 * - ``fp128``
2403 - 128-bit floating point value (112-bit mantissa)
2404
2405 * - ``x86_fp80``
2406 - 80-bit floating point value (X87)
2407
2408 * - ``ppc_fp128``
2409 - 128-bit floating point value (two 64-bits)
2410
Reid Kleckner9a16d082014-03-05 02:41:37 +00002411X86_mmx Type
2412""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002413
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002414:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002415
Reid Kleckner9a16d082014-03-05 02:41:37 +00002416The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002417machine. The operations allowed on it are quite limited: parameters and
2418return values, load and store, and bitcast. User-specified MMX
2419instructions are represented as intrinsic or asm calls with arguments
2420and/or results of this type. There are no arrays, vectors or constants
2421of this type.
2422
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002423:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002424
2425::
2426
Reid Kleckner9a16d082014-03-05 02:41:37 +00002427 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002428
Sean Silvab084af42012-12-07 10:36:55 +00002429
Rafael Espindola08013342013-12-07 19:34:20 +00002430.. _t_pointer:
2431
2432Pointer Type
2433""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002434
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002435:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002436
Rafael Espindola08013342013-12-07 19:34:20 +00002437The pointer type is used to specify memory locations. Pointers are
2438commonly used to reference objects in memory.
2439
2440Pointer types may have an optional address space attribute defining the
2441numbered address space where the pointed-to object resides. The default
2442address space is number zero. The semantics of non-zero address spaces
2443are target-specific.
2444
2445Note that LLVM does not permit pointers to void (``void*``) nor does it
2446permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002447
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002448:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002449
2450::
2451
Rafael Espindola08013342013-12-07 19:34:20 +00002452 <type> *
2453
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002454:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002455
2456+-------------------------+--------------------------------------------------------------------------------------------------------------+
2457| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2458+-------------------------+--------------------------------------------------------------------------------------------------------------+
2459| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2460+-------------------------+--------------------------------------------------------------------------------------------------------------+
2461| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2462+-------------------------+--------------------------------------------------------------------------------------------------------------+
2463
2464.. _t_vector:
2465
2466Vector Type
2467"""""""""""
2468
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002469:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002470
2471A vector type is a simple derived type that represents a vector of
2472elements. Vector types are used when multiple primitive data are
2473operated in parallel using a single instruction (SIMD). A vector type
2474requires a size (number of elements) and an underlying primitive data
2475type. Vector types are considered :ref:`first class <t_firstclass>`.
2476
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002477:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002478
2479::
2480
2481 < <# elements> x <elementtype> >
2482
2483The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002484elementtype may be any integer, floating point or pointer type. Vectors
2485of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002486
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002487:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002488
2489+-------------------+--------------------------------------------------+
2490| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2491+-------------------+--------------------------------------------------+
2492| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2493+-------------------+--------------------------------------------------+
2494| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2495+-------------------+--------------------------------------------------+
2496| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2497+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002498
2499.. _t_label:
2500
2501Label Type
2502^^^^^^^^^^
2503
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002504:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002505
2506The label type represents code labels.
2507
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002508:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002509
2510::
2511
2512 label
2513
David Majnemerb611e3f2015-08-14 05:09:07 +00002514.. _t_token:
2515
2516Token Type
2517^^^^^^^^^^
2518
2519:Overview:
2520
2521The token type is used when a value is associated with an instruction
2522but all uses of the value must not attempt to introspect or obscure it.
2523As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2524:ref:`select <i_select>` of type token.
2525
2526:Syntax:
2527
2528::
2529
2530 token
2531
2532
2533
Sean Silvab084af42012-12-07 10:36:55 +00002534.. _t_metadata:
2535
2536Metadata Type
2537^^^^^^^^^^^^^
2538
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002539:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002540
2541The metadata type represents embedded metadata. No derived types may be
2542created from metadata except for :ref:`function <t_function>` arguments.
2543
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002544:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002545
2546::
2547
2548 metadata
2549
Sean Silvab084af42012-12-07 10:36:55 +00002550.. _t_aggregate:
2551
2552Aggregate Types
2553^^^^^^^^^^^^^^^
2554
2555Aggregate Types are a subset of derived types that can contain multiple
2556member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2557aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2558aggregate types.
2559
2560.. _t_array:
2561
2562Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002563""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002564
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002565:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002566
2567The array type is a very simple derived type that arranges elements
2568sequentially in memory. The array type requires a size (number of
2569elements) and an underlying data type.
2570
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002571:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002572
2573::
2574
2575 [<# elements> x <elementtype>]
2576
2577The number of elements is a constant integer value; ``elementtype`` may
2578be any type with a size.
2579
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002580:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002581
2582+------------------+--------------------------------------+
2583| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2584+------------------+--------------------------------------+
2585| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2586+------------------+--------------------------------------+
2587| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2588+------------------+--------------------------------------+
2589
2590Here are some examples of multidimensional arrays:
2591
2592+-----------------------------+----------------------------------------------------------+
2593| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2594+-----------------------------+----------------------------------------------------------+
2595| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2596+-----------------------------+----------------------------------------------------------+
2597| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2598+-----------------------------+----------------------------------------------------------+
2599
2600There is no restriction on indexing beyond the end of the array implied
2601by a static type (though there are restrictions on indexing beyond the
2602bounds of an allocated object in some cases). This means that
2603single-dimension 'variable sized array' addressing can be implemented in
2604LLVM with a zero length array type. An implementation of 'pascal style
2605arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2606example.
2607
Sean Silvab084af42012-12-07 10:36:55 +00002608.. _t_struct:
2609
2610Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002611""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002612
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002613:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002614
2615The structure type is used to represent a collection of data members
2616together in memory. The elements of a structure may be any type that has
2617a size.
2618
2619Structures in memory are accessed using '``load``' and '``store``' by
2620getting a pointer to a field with the '``getelementptr``' instruction.
2621Structures in registers are accessed using the '``extractvalue``' and
2622'``insertvalue``' instructions.
2623
2624Structures may optionally be "packed" structures, which indicate that
2625the alignment of the struct is one byte, and that there is no padding
2626between the elements. In non-packed structs, padding between field types
2627is inserted as defined by the DataLayout string in the module, which is
2628required to match what the underlying code generator expects.
2629
2630Structures can either be "literal" or "identified". A literal structure
2631is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2632identified types are always defined at the top level with a name.
2633Literal types are uniqued by their contents and can never be recursive
2634or opaque since there is no way to write one. Identified types can be
2635recursive, can be opaqued, and are never uniqued.
2636
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002637:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002638
2639::
2640
2641 %T1 = type { <type list> } ; Identified normal struct type
2642 %T2 = type <{ <type list> }> ; Identified packed struct type
2643
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002644:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002645
2646+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2647| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2648+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002649| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002650+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2651| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2652+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2653
2654.. _t_opaque:
2655
2656Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002657""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002658
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002659:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002660
2661Opaque structure types are used to represent named structure types that
2662do not have a body specified. This corresponds (for example) to the C
2663notion of a forward declared structure.
2664
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002665:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002666
2667::
2668
2669 %X = type opaque
2670 %52 = type opaque
2671
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002672:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002673
2674+--------------+-------------------+
2675| ``opaque`` | An opaque type. |
2676+--------------+-------------------+
2677
Sean Silva1703e702014-04-08 21:06:22 +00002678.. _constants:
2679
Sean Silvab084af42012-12-07 10:36:55 +00002680Constants
2681=========
2682
2683LLVM has several different basic types of constants. This section
2684describes them all and their syntax.
2685
2686Simple Constants
2687----------------
2688
2689**Boolean constants**
2690 The two strings '``true``' and '``false``' are both valid constants
2691 of the ``i1`` type.
2692**Integer constants**
2693 Standard integers (such as '4') are constants of the
2694 :ref:`integer <t_integer>` type. Negative numbers may be used with
2695 integer types.
2696**Floating point constants**
2697 Floating point constants use standard decimal notation (e.g.
2698 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2699 hexadecimal notation (see below). The assembler requires the exact
2700 decimal value of a floating-point constant. For example, the
2701 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2702 decimal in binary. Floating point constants must have a :ref:`floating
2703 point <t_floating>` type.
2704**Null pointer constants**
2705 The identifier '``null``' is recognized as a null pointer constant
2706 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002707**Token constants**
2708 The identifier '``none``' is recognized as an empty token constant
2709 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002710
2711The one non-intuitive notation for constants is the hexadecimal form of
2712floating point constants. For example, the form
2713'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2714than) '``double 4.5e+15``'. The only time hexadecimal floating point
2715constants are required (and the only time that they are generated by the
2716disassembler) is when a floating point constant must be emitted but it
2717cannot be represented as a decimal floating point number in a reasonable
2718number of digits. For example, NaN's, infinities, and other special
2719values are represented in their IEEE hexadecimal format so that assembly
2720and disassembly do not cause any bits to change in the constants.
2721
2722When using the hexadecimal form, constants of types half, float, and
2723double are represented using the 16-digit form shown above (which
2724matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002725must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002726precision, respectively. Hexadecimal format is always used for long
2727double, and there are three forms of long double. The 80-bit format used
2728by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2729128-bit format used by PowerPC (two adjacent doubles) is represented by
2730``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002731represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2732will only work if they match the long double format on your target.
2733The IEEE 16-bit format (half precision) is represented by ``0xH``
2734followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2735(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002736
Reid Kleckner9a16d082014-03-05 02:41:37 +00002737There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002738
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002739.. _complexconstants:
2740
Sean Silvab084af42012-12-07 10:36:55 +00002741Complex Constants
2742-----------------
2743
2744Complex constants are a (potentially recursive) combination of simple
2745constants and smaller complex constants.
2746
2747**Structure constants**
2748 Structure constants are represented with notation similar to
2749 structure type definitions (a comma separated list of elements,
2750 surrounded by braces (``{}``)). For example:
2751 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2752 "``@G = external global i32``". Structure constants must have
2753 :ref:`structure type <t_struct>`, and the number and types of elements
2754 must match those specified by the type.
2755**Array constants**
2756 Array constants are represented with notation similar to array type
2757 definitions (a comma separated list of elements, surrounded by
2758 square brackets (``[]``)). For example:
2759 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2760 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002761 match those specified by the type. As a special case, character array
2762 constants may also be represented as a double-quoted string using the ``c``
2763 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002764**Vector constants**
2765 Vector constants are represented with notation similar to vector
2766 type definitions (a comma separated list of elements, surrounded by
2767 less-than/greater-than's (``<>``)). For example:
2768 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2769 must have :ref:`vector type <t_vector>`, and the number and types of
2770 elements must match those specified by the type.
2771**Zero initialization**
2772 The string '``zeroinitializer``' can be used to zero initialize a
2773 value to zero of *any* type, including scalar and
2774 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2775 having to print large zero initializers (e.g. for large arrays) and
2776 is always exactly equivalent to using explicit zero initializers.
2777**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002778 A metadata node is a constant tuple without types. For example:
2779 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002780 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2781 Unlike other typed constants that are meant to be interpreted as part of
2782 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002783 information such as debug info.
2784
2785Global Variable and Function Addresses
2786--------------------------------------
2787
2788The addresses of :ref:`global variables <globalvars>` and
2789:ref:`functions <functionstructure>` are always implicitly valid
2790(link-time) constants. These constants are explicitly referenced when
2791the :ref:`identifier for the global <identifiers>` is used and always have
2792:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2793file:
2794
2795.. code-block:: llvm
2796
2797 @X = global i32 17
2798 @Y = global i32 42
2799 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2800
2801.. _undefvalues:
2802
2803Undefined Values
2804----------------
2805
2806The string '``undef``' can be used anywhere a constant is expected, and
2807indicates that the user of the value may receive an unspecified
2808bit-pattern. Undefined values may be of any type (other than '``label``'
2809or '``void``') and be used anywhere a constant is permitted.
2810
2811Undefined values are useful because they indicate to the compiler that
2812the program is well defined no matter what value is used. This gives the
2813compiler more freedom to optimize. Here are some examples of
2814(potentially surprising) transformations that are valid (in pseudo IR):
2815
2816.. code-block:: llvm
2817
2818 %A = add %X, undef
2819 %B = sub %X, undef
2820 %C = xor %X, undef
2821 Safe:
2822 %A = undef
2823 %B = undef
2824 %C = undef
2825
2826This is safe because all of the output bits are affected by the undef
2827bits. Any output bit can have a zero or one depending on the input bits.
2828
2829.. code-block:: llvm
2830
2831 %A = or %X, undef
2832 %B = and %X, undef
2833 Safe:
2834 %A = -1
2835 %B = 0
2836 Unsafe:
2837 %A = undef
2838 %B = undef
2839
2840These logical operations have bits that are not always affected by the
2841input. For example, if ``%X`` has a zero bit, then the output of the
2842'``and``' operation will always be a zero for that bit, no matter what
2843the corresponding bit from the '``undef``' is. As such, it is unsafe to
2844optimize or assume that the result of the '``and``' is '``undef``'.
2845However, it is safe to assume that all bits of the '``undef``' could be
28460, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2847all the bits of the '``undef``' operand to the '``or``' could be set,
2848allowing the '``or``' to be folded to -1.
2849
2850.. code-block:: llvm
2851
2852 %A = select undef, %X, %Y
2853 %B = select undef, 42, %Y
2854 %C = select %X, %Y, undef
2855 Safe:
2856 %A = %X (or %Y)
2857 %B = 42 (or %Y)
2858 %C = %Y
2859 Unsafe:
2860 %A = undef
2861 %B = undef
2862 %C = undef
2863
2864This set of examples shows that undefined '``select``' (and conditional
2865branch) conditions can go *either way*, but they have to come from one
2866of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2867both known to have a clear low bit, then ``%A`` would have to have a
2868cleared low bit. However, in the ``%C`` example, the optimizer is
2869allowed to assume that the '``undef``' operand could be the same as
2870``%Y``, allowing the whole '``select``' to be eliminated.
2871
Renato Golin124f2592016-07-20 12:16:38 +00002872.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002873
2874 %A = xor undef, undef
2875
2876 %B = undef
2877 %C = xor %B, %B
2878
2879 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002880 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002881 %F = icmp gte %D, 4
2882
2883 Safe:
2884 %A = undef
2885 %B = undef
2886 %C = undef
2887 %D = undef
2888 %E = undef
2889 %F = undef
2890
2891This example points out that two '``undef``' operands are not
2892necessarily the same. This can be surprising to people (and also matches
2893C semantics) where they assume that "``X^X``" is always zero, even if
2894``X`` is undefined. This isn't true for a number of reasons, but the
2895short answer is that an '``undef``' "variable" can arbitrarily change
2896its value over its "live range". This is true because the variable
2897doesn't actually *have a live range*. Instead, the value is logically
2898read from arbitrary registers that happen to be around when needed, so
2899the value is not necessarily consistent over time. In fact, ``%A`` and
2900``%C`` need to have the same semantics or the core LLVM "replace all
2901uses with" concept would not hold.
2902
2903.. code-block:: llvm
2904
2905 %A = fdiv undef, %X
2906 %B = fdiv %X, undef
2907 Safe:
2908 %A = undef
2909 b: unreachable
2910
2911These examples show the crucial difference between an *undefined value*
2912and *undefined behavior*. An undefined value (like '``undef``') is
2913allowed to have an arbitrary bit-pattern. This means that the ``%A``
2914operation can be constant folded to '``undef``', because the '``undef``'
2915could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2916However, in the second example, we can make a more aggressive
2917assumption: because the ``undef`` is allowed to be an arbitrary value,
2918we are allowed to assume that it could be zero. Since a divide by zero
2919has *undefined behavior*, we are allowed to assume that the operation
2920does not execute at all. This allows us to delete the divide and all
2921code after it. Because the undefined operation "can't happen", the
2922optimizer can assume that it occurs in dead code.
2923
Renato Golin124f2592016-07-20 12:16:38 +00002924.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002925
2926 a: store undef -> %X
2927 b: store %X -> undef
2928 Safe:
2929 a: <deleted>
2930 b: unreachable
2931
2932These examples reiterate the ``fdiv`` example: a store *of* an undefined
2933value can be assumed to not have any effect; we can assume that the
2934value is overwritten with bits that happen to match what was already
2935there. However, a store *to* an undefined location could clobber
2936arbitrary memory, therefore, it has undefined behavior.
2937
2938.. _poisonvalues:
2939
2940Poison Values
2941-------------
2942
2943Poison values are similar to :ref:`undef values <undefvalues>`, however
2944they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002945that cannot evoke side effects has nevertheless detected a condition
2946that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002947
2948There is currently no way of representing a poison value in the IR; they
2949only exist when produced by operations such as :ref:`add <i_add>` with
2950the ``nsw`` flag.
2951
2952Poison value behavior is defined in terms of value *dependence*:
2953
2954- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2955- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2956 their dynamic predecessor basic block.
2957- Function arguments depend on the corresponding actual argument values
2958 in the dynamic callers of their functions.
2959- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2960 instructions that dynamically transfer control back to them.
2961- :ref:`Invoke <i_invoke>` instructions depend on the
2962 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2963 call instructions that dynamically transfer control back to them.
2964- Non-volatile loads and stores depend on the most recent stores to all
2965 of the referenced memory addresses, following the order in the IR
2966 (including loads and stores implied by intrinsics such as
2967 :ref:`@llvm.memcpy <int_memcpy>`.)
2968- An instruction with externally visible side effects depends on the
2969 most recent preceding instruction with externally visible side
2970 effects, following the order in the IR. (This includes :ref:`volatile
2971 operations <volatile>`.)
2972- An instruction *control-depends* on a :ref:`terminator
2973 instruction <terminators>` if the terminator instruction has
2974 multiple successors and the instruction is always executed when
2975 control transfers to one of the successors, and may not be executed
2976 when control is transferred to another.
2977- Additionally, an instruction also *control-depends* on a terminator
2978 instruction if the set of instructions it otherwise depends on would
2979 be different if the terminator had transferred control to a different
2980 successor.
2981- Dependence is transitive.
2982
Richard Smith32dbdf62014-07-31 04:25:36 +00002983Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2984with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002985on a poison value has undefined behavior.
2986
2987Here are some examples:
2988
2989.. code-block:: llvm
2990
2991 entry:
2992 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2993 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002994 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002995 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2996
2997 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002998 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002999
3000 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3001
3002 %narrowaddr = bitcast i32* @g to i16*
3003 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003004 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3005 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003006
3007 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3008 br i1 %cmp, label %true, label %end ; Branch to either destination.
3009
3010 true:
3011 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3012 ; it has undefined behavior.
3013 br label %end
3014
3015 end:
3016 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3017 ; Both edges into this PHI are
3018 ; control-dependent on %cmp, so this
3019 ; always results in a poison value.
3020
3021 store volatile i32 0, i32* @g ; This would depend on the store in %true
3022 ; if %cmp is true, or the store in %entry
3023 ; otherwise, so this is undefined behavior.
3024
3025 br i1 %cmp, label %second_true, label %second_end
3026 ; The same branch again, but this time the
3027 ; true block doesn't have side effects.
3028
3029 second_true:
3030 ; No side effects!
3031 ret void
3032
3033 second_end:
3034 store volatile i32 0, i32* @g ; This time, the instruction always depends
3035 ; on the store in %end. Also, it is
3036 ; control-equivalent to %end, so this is
3037 ; well-defined (ignoring earlier undefined
3038 ; behavior in this example).
3039
3040.. _blockaddress:
3041
3042Addresses of Basic Blocks
3043-------------------------
3044
3045``blockaddress(@function, %block)``
3046
3047The '``blockaddress``' constant computes the address of the specified
3048basic block in the specified function, and always has an ``i8*`` type.
3049Taking the address of the entry block is illegal.
3050
3051This value only has defined behavior when used as an operand to the
3052':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3053against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003054undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003055no label is equal to the null pointer. This may be passed around as an
3056opaque pointer sized value as long as the bits are not inspected. This
3057allows ``ptrtoint`` and arithmetic to be performed on these values so
3058long as the original value is reconstituted before the ``indirectbr``
3059instruction.
3060
3061Finally, some targets may provide defined semantics when using the value
3062as the operand to an inline assembly, but that is target specific.
3063
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003064.. _constantexprs:
3065
Sean Silvab084af42012-12-07 10:36:55 +00003066Constant Expressions
3067--------------------
3068
3069Constant expressions are used to allow expressions involving other
3070constants to be used as constants. Constant expressions may be of any
3071:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3072that does not have side effects (e.g. load and call are not supported).
3073The following is the syntax for constant expressions:
3074
3075``trunc (CST to TYPE)``
3076 Truncate a constant to another type. The bit size of CST must be
3077 larger than the bit size of TYPE. Both types must be integers.
3078``zext (CST to TYPE)``
3079 Zero extend a constant to another type. The bit size of CST must be
3080 smaller than the bit size of TYPE. Both types must be integers.
3081``sext (CST to TYPE)``
3082 Sign extend a constant to another type. The bit size of CST must be
3083 smaller than the bit size of TYPE. Both types must be integers.
3084``fptrunc (CST to TYPE)``
3085 Truncate a floating point constant to another floating point type.
3086 The size of CST must be larger than the size of TYPE. Both types
3087 must be floating point.
3088``fpext (CST to TYPE)``
3089 Floating point extend a constant to another type. The size of CST
3090 must be smaller or equal to the size of TYPE. Both types must be
3091 floating point.
3092``fptoui (CST to TYPE)``
3093 Convert a floating point constant to the corresponding unsigned
3094 integer constant. TYPE must be a scalar or vector integer type. CST
3095 must be of scalar or vector floating point type. Both CST and TYPE
3096 must be scalars, or vectors of the same number of elements. If the
3097 value won't fit in the integer type, the results are undefined.
3098``fptosi (CST to TYPE)``
3099 Convert a floating point constant to the corresponding signed
3100 integer constant. TYPE must be a scalar or vector integer type. CST
3101 must be of scalar or vector floating point type. Both CST and TYPE
3102 must be scalars, or vectors of the same number of elements. If the
3103 value won't fit in the integer type, the results are undefined.
3104``uitofp (CST to TYPE)``
3105 Convert an unsigned integer constant to the corresponding floating
3106 point constant. TYPE must be a scalar or vector floating point type.
3107 CST must be of scalar or vector integer type. Both CST and TYPE must
3108 be scalars, or vectors of the same number of elements. If the value
3109 won't fit in the floating point type, the results are undefined.
3110``sitofp (CST to TYPE)``
3111 Convert a signed integer constant to the corresponding floating
3112 point constant. TYPE must be a scalar or vector floating point type.
3113 CST must be of scalar or vector integer type. Both CST and TYPE must
3114 be scalars, or vectors of the same number of elements. If the value
3115 won't fit in the floating point type, the results are undefined.
3116``ptrtoint (CST to TYPE)``
3117 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003118 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003119 pointer type. The ``CST`` value is zero extended, truncated, or
3120 unchanged to make it fit in ``TYPE``.
3121``inttoptr (CST to TYPE)``
3122 Convert an integer constant to a pointer constant. TYPE must be a
3123 pointer type. CST must be of integer type. The CST value is zero
3124 extended, truncated, or unchanged to make it fit in a pointer size.
3125 This one is *really* dangerous!
3126``bitcast (CST to TYPE)``
3127 Convert a constant, CST, to another TYPE. The constraints of the
3128 operands are the same as those for the :ref:`bitcast
3129 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003130``addrspacecast (CST to TYPE)``
3131 Convert a constant pointer or constant vector of pointer, CST, to another
3132 TYPE in a different address space. The constraints of the operands are the
3133 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003134``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003135 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3136 constants. As with the :ref:`getelementptr <i_getelementptr>`
3137 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003138 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003139``select (COND, VAL1, VAL2)``
3140 Perform the :ref:`select operation <i_select>` on constants.
3141``icmp COND (VAL1, VAL2)``
3142 Performs the :ref:`icmp operation <i_icmp>` on constants.
3143``fcmp COND (VAL1, VAL2)``
3144 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3145``extractelement (VAL, IDX)``
3146 Perform the :ref:`extractelement operation <i_extractelement>` on
3147 constants.
3148``insertelement (VAL, ELT, IDX)``
3149 Perform the :ref:`insertelement operation <i_insertelement>` on
3150 constants.
3151``shufflevector (VEC1, VEC2, IDXMASK)``
3152 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3153 constants.
3154``extractvalue (VAL, IDX0, IDX1, ...)``
3155 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3156 constants. The index list is interpreted in a similar manner as
3157 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3158 least one index value must be specified.
3159``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3160 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3161 The index list is interpreted in a similar manner as indices in a
3162 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3163 value must be specified.
3164``OPCODE (LHS, RHS)``
3165 Perform the specified operation of the LHS and RHS constants. OPCODE
3166 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3167 binary <bitwiseops>` operations. The constraints on operands are
3168 the same as those for the corresponding instruction (e.g. no bitwise
3169 operations on floating point values are allowed).
3170
3171Other Values
3172============
3173
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003174.. _inlineasmexprs:
3175
Sean Silvab084af42012-12-07 10:36:55 +00003176Inline Assembler Expressions
3177----------------------------
3178
3179LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003180Inline Assembly <moduleasm>`) through the use of a special value. This value
3181represents the inline assembler as a template string (containing the
3182instructions to emit), a list of operand constraints (stored as a string), a
3183flag that indicates whether or not the inline asm expression has side effects,
3184and a flag indicating whether the function containing the asm needs to align its
3185stack conservatively.
3186
3187The template string supports argument substitution of the operands using "``$``"
3188followed by a number, to indicate substitution of the given register/memory
3189location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3190be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3191operand (See :ref:`inline-asm-modifiers`).
3192
3193A literal "``$``" may be included by using "``$$``" in the template. To include
3194other special characters into the output, the usual "``\XX``" escapes may be
3195used, just as in other strings. Note that after template substitution, the
3196resulting assembly string is parsed by LLVM's integrated assembler unless it is
3197disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3198syntax known to LLVM.
3199
3200LLVM's support for inline asm is modeled closely on the requirements of Clang's
3201GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3202modifier codes listed here are similar or identical to those in GCC's inline asm
3203support. However, to be clear, the syntax of the template and constraint strings
3204described here is *not* the same as the syntax accepted by GCC and Clang, and,
3205while most constraint letters are passed through as-is by Clang, some get
3206translated to other codes when converting from the C source to the LLVM
3207assembly.
3208
3209An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003210
3211.. code-block:: llvm
3212
3213 i32 (i32) asm "bswap $0", "=r,r"
3214
3215Inline assembler expressions may **only** be used as the callee operand
3216of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3217Thus, typically we have:
3218
3219.. code-block:: llvm
3220
3221 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3222
3223Inline asms with side effects not visible in the constraint list must be
3224marked as having side effects. This is done through the use of the
3225'``sideeffect``' keyword, like so:
3226
3227.. code-block:: llvm
3228
3229 call void asm sideeffect "eieio", ""()
3230
3231In some cases inline asms will contain code that will not work unless
3232the stack is aligned in some way, such as calls or SSE instructions on
3233x86, yet will not contain code that does that alignment within the asm.
3234The compiler should make conservative assumptions about what the asm
3235might contain and should generate its usual stack alignment code in the
3236prologue if the '``alignstack``' keyword is present:
3237
3238.. code-block:: llvm
3239
3240 call void asm alignstack "eieio", ""()
3241
3242Inline asms also support using non-standard assembly dialects. The
3243assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3244the inline asm is using the Intel dialect. Currently, ATT and Intel are
3245the only supported dialects. An example is:
3246
3247.. code-block:: llvm
3248
3249 call void asm inteldialect "eieio", ""()
3250
3251If multiple keywords appear the '``sideeffect``' keyword must come
3252first, the '``alignstack``' keyword second and the '``inteldialect``'
3253keyword last.
3254
James Y Knightbc832ed2015-07-08 18:08:36 +00003255Inline Asm Constraint String
3256^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3257
3258The constraint list is a comma-separated string, each element containing one or
3259more constraint codes.
3260
3261For each element in the constraint list an appropriate register or memory
3262operand will be chosen, and it will be made available to assembly template
3263string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3264second, etc.
3265
3266There are three different types of constraints, which are distinguished by a
3267prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3268constraints must always be given in that order: outputs first, then inputs, then
3269clobbers. They cannot be intermingled.
3270
3271There are also three different categories of constraint codes:
3272
3273- Register constraint. This is either a register class, or a fixed physical
3274 register. This kind of constraint will allocate a register, and if necessary,
3275 bitcast the argument or result to the appropriate type.
3276- Memory constraint. This kind of constraint is for use with an instruction
3277 taking a memory operand. Different constraints allow for different addressing
3278 modes used by the target.
3279- Immediate value constraint. This kind of constraint is for an integer or other
3280 immediate value which can be rendered directly into an instruction. The
3281 various target-specific constraints allow the selection of a value in the
3282 proper range for the instruction you wish to use it with.
3283
3284Output constraints
3285""""""""""""""""""
3286
3287Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3288indicates that the assembly will write to this operand, and the operand will
3289then be made available as a return value of the ``asm`` expression. Output
3290constraints do not consume an argument from the call instruction. (Except, see
3291below about indirect outputs).
3292
3293Normally, it is expected that no output locations are written to by the assembly
3294expression until *all* of the inputs have been read. As such, LLVM may assign
3295the same register to an output and an input. If this is not safe (e.g. if the
3296assembly contains two instructions, where the first writes to one output, and
3297the second reads an input and writes to a second output), then the "``&``"
3298modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003299"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003300will not use the same register for any inputs (other than an input tied to this
3301output).
3302
3303Input constraints
3304"""""""""""""""""
3305
3306Input constraints do not have a prefix -- just the constraint codes. Each input
3307constraint will consume one argument from the call instruction. It is not
3308permitted for the asm to write to any input register or memory location (unless
3309that input is tied to an output). Note also that multiple inputs may all be
3310assigned to the same register, if LLVM can determine that they necessarily all
3311contain the same value.
3312
3313Instead of providing a Constraint Code, input constraints may also "tie"
3314themselves to an output constraint, by providing an integer as the constraint
3315string. Tied inputs still consume an argument from the call instruction, and
3316take up a position in the asm template numbering as is usual -- they will simply
3317be constrained to always use the same register as the output they've been tied
3318to. For example, a constraint string of "``=r,0``" says to assign a register for
3319output, and use that register as an input as well (it being the 0'th
3320constraint).
3321
3322It is permitted to tie an input to an "early-clobber" output. In that case, no
3323*other* input may share the same register as the input tied to the early-clobber
3324(even when the other input has the same value).
3325
3326You may only tie an input to an output which has a register constraint, not a
3327memory constraint. Only a single input may be tied to an output.
3328
3329There is also an "interesting" feature which deserves a bit of explanation: if a
3330register class constraint allocates a register which is too small for the value
3331type operand provided as input, the input value will be split into multiple
3332registers, and all of them passed to the inline asm.
3333
3334However, this feature is often not as useful as you might think.
3335
3336Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3337architectures that have instructions which operate on multiple consecutive
3338instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3339SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3340hardware then loads into both the named register, and the next register. This
3341feature of inline asm would not be useful to support that.)
3342
3343A few of the targets provide a template string modifier allowing explicit access
3344to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3345``D``). On such an architecture, you can actually access the second allocated
3346register (yet, still, not any subsequent ones). But, in that case, you're still
3347probably better off simply splitting the value into two separate operands, for
3348clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3349despite existing only for use with this feature, is not really a good idea to
3350use)
3351
3352Indirect inputs and outputs
3353"""""""""""""""""""""""""""
3354
3355Indirect output or input constraints can be specified by the "``*``" modifier
3356(which goes after the "``=``" in case of an output). This indicates that the asm
3357will write to or read from the contents of an *address* provided as an input
3358argument. (Note that in this way, indirect outputs act more like an *input* than
3359an output: just like an input, they consume an argument of the call expression,
3360rather than producing a return value. An indirect output constraint is an
3361"output" only in that the asm is expected to write to the contents of the input
3362memory location, instead of just read from it).
3363
3364This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3365address of a variable as a value.
3366
3367It is also possible to use an indirect *register* constraint, but only on output
3368(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3369value normally, and then, separately emit a store to the address provided as
3370input, after the provided inline asm. (It's not clear what value this
3371functionality provides, compared to writing the store explicitly after the asm
3372statement, and it can only produce worse code, since it bypasses many
3373optimization passes. I would recommend not using it.)
3374
3375
3376Clobber constraints
3377"""""""""""""""""""
3378
3379A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3380consume an input operand, nor generate an output. Clobbers cannot use any of the
3381general constraint code letters -- they may use only explicit register
3382constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3383"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3384memory locations -- not only the memory pointed to by a declared indirect
3385output.
3386
Peter Zotov00257232016-08-30 10:48:31 +00003387Note that clobbering named registers that are also present in output
3388constraints is not legal.
3389
James Y Knightbc832ed2015-07-08 18:08:36 +00003390
3391Constraint Codes
3392""""""""""""""""
3393After a potential prefix comes constraint code, or codes.
3394
3395A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3396followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3397(e.g. "``{eax}``").
3398
3399The one and two letter constraint codes are typically chosen to be the same as
3400GCC's constraint codes.
3401
3402A single constraint may include one or more than constraint code in it, leaving
3403it up to LLVM to choose which one to use. This is included mainly for
3404compatibility with the translation of GCC inline asm coming from clang.
3405
3406There are two ways to specify alternatives, and either or both may be used in an
3407inline asm constraint list:
3408
34091) Append the codes to each other, making a constraint code set. E.g. "``im``"
3410 or "``{eax}m``". This means "choose any of the options in the set". The
3411 choice of constraint is made independently for each constraint in the
3412 constraint list.
3413
34142) Use "``|``" between constraint code sets, creating alternatives. Every
3415 constraint in the constraint list must have the same number of alternative
3416 sets. With this syntax, the same alternative in *all* of the items in the
3417 constraint list will be chosen together.
3418
3419Putting those together, you might have a two operand constraint string like
3420``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3421operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3422may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3423
3424However, the use of either of the alternatives features is *NOT* recommended, as
3425LLVM is not able to make an intelligent choice about which one to use. (At the
3426point it currently needs to choose, not enough information is available to do so
3427in a smart way.) Thus, it simply tries to make a choice that's most likely to
3428compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3429always choose to use memory, not registers). And, if given multiple registers,
3430or multiple register classes, it will simply choose the first one. (In fact, it
3431doesn't currently even ensure explicitly specified physical registers are
3432unique, so specifying multiple physical registers as alternatives, like
3433``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3434intended.)
3435
3436Supported Constraint Code List
3437""""""""""""""""""""""""""""""
3438
3439The constraint codes are, in general, expected to behave the same way they do in
3440GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3441inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3442and GCC likely indicates a bug in LLVM.
3443
3444Some constraint codes are typically supported by all targets:
3445
3446- ``r``: A register in the target's general purpose register class.
3447- ``m``: A memory address operand. It is target-specific what addressing modes
3448 are supported, typical examples are register, or register + register offset,
3449 or register + immediate offset (of some target-specific size).
3450- ``i``: An integer constant (of target-specific width). Allows either a simple
3451 immediate, or a relocatable value.
3452- ``n``: An integer constant -- *not* including relocatable values.
3453- ``s``: An integer constant, but allowing *only* relocatable values.
3454- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3455 useful to pass a label for an asm branch or call.
3456
3457 .. FIXME: but that surely isn't actually okay to jump out of an asm
3458 block without telling llvm about the control transfer???)
3459
3460- ``{register-name}``: Requires exactly the named physical register.
3461
3462Other constraints are target-specific:
3463
3464AArch64:
3465
3466- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3467- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3468 i.e. 0 to 4095 with optional shift by 12.
3469- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3470 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3471- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3472 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3473- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3474 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3475- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3476 32-bit register. This is a superset of ``K``: in addition to the bitmask
3477 immediate, also allows immediate integers which can be loaded with a single
3478 ``MOVZ`` or ``MOVL`` instruction.
3479- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3480 64-bit register. This is a superset of ``L``.
3481- ``Q``: Memory address operand must be in a single register (no
3482 offsets). (However, LLVM currently does this for the ``m`` constraint as
3483 well.)
3484- ``r``: A 32 or 64-bit integer register (W* or X*).
3485- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3486- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3487
3488AMDGPU:
3489
3490- ``r``: A 32 or 64-bit integer register.
3491- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3492- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3493
3494
3495All ARM modes:
3496
3497- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3498 operand. Treated the same as operand ``m``, at the moment.
3499
3500ARM and ARM's Thumb2 mode:
3501
3502- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3503- ``I``: An immediate integer valid for a data-processing instruction.
3504- ``J``: An immediate integer between -4095 and 4095.
3505- ``K``: An immediate integer whose bitwise inverse is valid for a
3506 data-processing instruction. (Can be used with template modifier "``B``" to
3507 print the inverted value).
3508- ``L``: An immediate integer whose negation is valid for a data-processing
3509 instruction. (Can be used with template modifier "``n``" to print the negated
3510 value).
3511- ``M``: A power of two or a integer between 0 and 32.
3512- ``N``: Invalid immediate constraint.
3513- ``O``: Invalid immediate constraint.
3514- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3515- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3516 as ``r``.
3517- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3518 invalid.
3519- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3520 ``d0-d31``, or ``q0-q15``.
3521- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3522 ``d0-d7``, or ``q0-q3``.
3523- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3524 ``s0-s31``.
3525
3526ARM's Thumb1 mode:
3527
3528- ``I``: An immediate integer between 0 and 255.
3529- ``J``: An immediate integer between -255 and -1.
3530- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3531 some amount.
3532- ``L``: An immediate integer between -7 and 7.
3533- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3534- ``N``: An immediate integer between 0 and 31.
3535- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3536- ``r``: A low 32-bit GPR register (``r0-r7``).
3537- ``l``: A low 32-bit GPR register (``r0-r7``).
3538- ``h``: A high GPR register (``r0-r7``).
3539- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3540 ``d0-d31``, or ``q0-q15``.
3541- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3542 ``d0-d7``, or ``q0-q3``.
3543- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3544 ``s0-s31``.
3545
3546
3547Hexagon:
3548
3549- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3550 at the moment.
3551- ``r``: A 32 or 64-bit register.
3552
3553MSP430:
3554
3555- ``r``: An 8 or 16-bit register.
3556
3557MIPS:
3558
3559- ``I``: An immediate signed 16-bit integer.
3560- ``J``: An immediate integer zero.
3561- ``K``: An immediate unsigned 16-bit integer.
3562- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3563- ``N``: An immediate integer between -65535 and -1.
3564- ``O``: An immediate signed 15-bit integer.
3565- ``P``: An immediate integer between 1 and 65535.
3566- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3567 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3568- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3569 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3570 ``m``.
3571- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3572 ``sc`` instruction on the given subtarget (details vary).
3573- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3574- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003575 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3576 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003577- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3578 ``25``).
3579- ``l``: The ``lo`` register, 32 or 64-bit.
3580- ``x``: Invalid.
3581
3582NVPTX:
3583
3584- ``b``: A 1-bit integer register.
3585- ``c`` or ``h``: A 16-bit integer register.
3586- ``r``: A 32-bit integer register.
3587- ``l`` or ``N``: A 64-bit integer register.
3588- ``f``: A 32-bit float register.
3589- ``d``: A 64-bit float register.
3590
3591
3592PowerPC:
3593
3594- ``I``: An immediate signed 16-bit integer.
3595- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3596- ``K``: An immediate unsigned 16-bit integer.
3597- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3598- ``M``: An immediate integer greater than 31.
3599- ``N``: An immediate integer that is an exact power of 2.
3600- ``O``: The immediate integer constant 0.
3601- ``P``: An immediate integer constant whose negation is a signed 16-bit
3602 constant.
3603- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3604 treated the same as ``m``.
3605- ``r``: A 32 or 64-bit integer register.
3606- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3607 ``R1-R31``).
3608- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3609 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3610- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3611 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3612 altivec vector register (``V0-V31``).
3613
3614 .. FIXME: is this a bug that v accepts QPX registers? I think this
3615 is supposed to only use the altivec vector registers?
3616
3617- ``y``: Condition register (``CR0-CR7``).
3618- ``wc``: An individual CR bit in a CR register.
3619- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3620 register set (overlapping both the floating-point and vector register files).
3621- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3622 set.
3623
3624Sparc:
3625
3626- ``I``: An immediate 13-bit signed integer.
3627- ``r``: A 32-bit integer register.
3628
3629SystemZ:
3630
3631- ``I``: An immediate unsigned 8-bit integer.
3632- ``J``: An immediate unsigned 12-bit integer.
3633- ``K``: An immediate signed 16-bit integer.
3634- ``L``: An immediate signed 20-bit integer.
3635- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003636- ``Q``: A memory address operand with a base address and a 12-bit immediate
3637 unsigned displacement.
3638- ``R``: A memory address operand with a base address, a 12-bit immediate
3639 unsigned displacement, and an index register.
3640- ``S``: A memory address operand with a base address and a 20-bit immediate
3641 signed displacement.
3642- ``T``: A memory address operand with a base address, a 20-bit immediate
3643 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003644- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3645- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3646 address context evaluates as zero).
3647- ``h``: A 32-bit value in the high part of a 64bit data register
3648 (LLVM-specific)
3649- ``f``: A 32, 64, or 128-bit floating point register.
3650
3651X86:
3652
3653- ``I``: An immediate integer between 0 and 31.
3654- ``J``: An immediate integer between 0 and 64.
3655- ``K``: An immediate signed 8-bit integer.
3656- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3657 0xffffffff.
3658- ``M``: An immediate integer between 0 and 3.
3659- ``N``: An immediate unsigned 8-bit integer.
3660- ``O``: An immediate integer between 0 and 127.
3661- ``e``: An immediate 32-bit signed integer.
3662- ``Z``: An immediate 32-bit unsigned integer.
3663- ``o``, ``v``: Treated the same as ``m``, at the moment.
3664- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3665 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3666 registers, and on X86-64, it is all of the integer registers.
3667- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3668 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3669- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3670- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3671 existed since i386, and can be accessed without the REX prefix.
3672- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3673- ``y``: A 64-bit MMX register, if MMX is enabled.
3674- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3675 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3676 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3677 512-bit vector operand in an AVX512 register, Otherwise, an error.
3678- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3679- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3680 32-bit mode, a 64-bit integer operand will get split into two registers). It
3681 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3682 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3683 you're better off splitting it yourself, before passing it to the asm
3684 statement.
3685
3686XCore:
3687
3688- ``r``: A 32-bit integer register.
3689
3690
3691.. _inline-asm-modifiers:
3692
3693Asm template argument modifiers
3694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3695
3696In the asm template string, modifiers can be used on the operand reference, like
3697"``${0:n}``".
3698
3699The modifiers are, in general, expected to behave the same way they do in
3700GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3701inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3702and GCC likely indicates a bug in LLVM.
3703
3704Target-independent:
3705
Sean Silvaa1190322015-08-06 22:56:48 +00003706- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003707 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3708- ``n``: Negate and print immediate integer constant unadorned, without the
3709 target-specific immediate punctuation (e.g. no ``$`` prefix).
3710- ``l``: Print as an unadorned label, without the target-specific label
3711 punctuation (e.g. no ``$`` prefix).
3712
3713AArch64:
3714
3715- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3716 instead of ``x30``, print ``w30``.
3717- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3718- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3719 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3720 ``v*``.
3721
3722AMDGPU:
3723
3724- ``r``: No effect.
3725
3726ARM:
3727
3728- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3729 register).
3730- ``P``: No effect.
3731- ``q``: No effect.
3732- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3733 as ``d4[1]`` instead of ``s9``)
3734- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3735 prefix.
3736- ``L``: Print the low 16-bits of an immediate integer constant.
3737- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3738 register operands subsequent to the specified one (!), so use carefully.
3739- ``Q``: Print the low-order register of a register-pair, or the low-order
3740 register of a two-register operand.
3741- ``R``: Print the high-order register of a register-pair, or the high-order
3742 register of a two-register operand.
3743- ``H``: Print the second register of a register-pair. (On a big-endian system,
3744 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3745 to ``R``.)
3746
3747 .. FIXME: H doesn't currently support printing the second register
3748 of a two-register operand.
3749
3750- ``e``: Print the low doubleword register of a NEON quad register.
3751- ``f``: Print the high doubleword register of a NEON quad register.
3752- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3753 adornment.
3754
3755Hexagon:
3756
3757- ``L``: Print the second register of a two-register operand. Requires that it
3758 has been allocated consecutively to the first.
3759
3760 .. FIXME: why is it restricted to consecutive ones? And there's
3761 nothing that ensures that happens, is there?
3762
3763- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3764 nothing. Used to print 'addi' vs 'add' instructions.
3765
3766MSP430:
3767
3768No additional modifiers.
3769
3770MIPS:
3771
3772- ``X``: Print an immediate integer as hexadecimal
3773- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3774- ``d``: Print an immediate integer as decimal.
3775- ``m``: Subtract one and print an immediate integer as decimal.
3776- ``z``: Print $0 if an immediate zero, otherwise print normally.
3777- ``L``: Print the low-order register of a two-register operand, or prints the
3778 address of the low-order word of a double-word memory operand.
3779
3780 .. FIXME: L seems to be missing memory operand support.
3781
3782- ``M``: Print the high-order register of a two-register operand, or prints the
3783 address of the high-order word of a double-word memory operand.
3784
3785 .. FIXME: M seems to be missing memory operand support.
3786
3787- ``D``: Print the second register of a two-register operand, or prints the
3788 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3789 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3790 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003791- ``w``: No effect. Provided for compatibility with GCC which requires this
3792 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3793 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003794
3795NVPTX:
3796
3797- ``r``: No effect.
3798
3799PowerPC:
3800
3801- ``L``: Print the second register of a two-register operand. Requires that it
3802 has been allocated consecutively to the first.
3803
3804 .. FIXME: why is it restricted to consecutive ones? And there's
3805 nothing that ensures that happens, is there?
3806
3807- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3808 nothing. Used to print 'addi' vs 'add' instructions.
3809- ``y``: For a memory operand, prints formatter for a two-register X-form
3810 instruction. (Currently always prints ``r0,OPERAND``).
3811- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3812 otherwise. (NOTE: LLVM does not support update form, so this will currently
3813 always print nothing)
3814- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3815 not support indexed form, so this will currently always print nothing)
3816
3817Sparc:
3818
3819- ``r``: No effect.
3820
3821SystemZ:
3822
3823SystemZ implements only ``n``, and does *not* support any of the other
3824target-independent modifiers.
3825
3826X86:
3827
3828- ``c``: Print an unadorned integer or symbol name. (The latter is
3829 target-specific behavior for this typically target-independent modifier).
3830- ``A``: Print a register name with a '``*``' before it.
3831- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3832 operand.
3833- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3834 memory operand.
3835- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3836 operand.
3837- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3838 operand.
3839- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3840 available, otherwise the 32-bit register name; do nothing on a memory operand.
3841- ``n``: Negate and print an unadorned integer, or, for operands other than an
3842 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3843 the operand. (The behavior for relocatable symbol expressions is a
3844 target-specific behavior for this typically target-independent modifier)
3845- ``H``: Print a memory reference with additional offset +8.
3846- ``P``: Print a memory reference or operand for use as the argument of a call
3847 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3848
3849XCore:
3850
3851No additional modifiers.
3852
3853
Sean Silvab084af42012-12-07 10:36:55 +00003854Inline Asm Metadata
3855^^^^^^^^^^^^^^^^^^^
3856
3857The call instructions that wrap inline asm nodes may have a
3858"``!srcloc``" MDNode attached to it that contains a list of constant
3859integers. If present, the code generator will use the integer as the
3860location cookie value when report errors through the ``LLVMContext``
3861error reporting mechanisms. This allows a front-end to correlate backend
3862errors that occur with inline asm back to the source code that produced
3863it. For example:
3864
3865.. code-block:: llvm
3866
3867 call void asm sideeffect "something bad", ""(), !srcloc !42
3868 ...
3869 !42 = !{ i32 1234567 }
3870
3871It is up to the front-end to make sense of the magic numbers it places
3872in the IR. If the MDNode contains multiple constants, the code generator
3873will use the one that corresponds to the line of the asm that the error
3874occurs on.
3875
3876.. _metadata:
3877
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003878Metadata
3879========
Sean Silvab084af42012-12-07 10:36:55 +00003880
3881LLVM IR allows metadata to be attached to instructions in the program
3882that can convey extra information about the code to the optimizers and
3883code generator. One example application of metadata is source-level
3884debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003885
Sean Silvaa1190322015-08-06 22:56:48 +00003886Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003887``call`` instruction, it uses the ``metadata`` type.
3888
3889All metadata are identified in syntax by a exclamation point ('``!``').
3890
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003891.. _metadata-string:
3892
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003893Metadata Nodes and Metadata Strings
3894-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003895
3896A metadata string is a string surrounded by double quotes. It can
3897contain any character by escaping non-printable characters with
3898"``\xx``" where "``xx``" is the two digit hex code. For example:
3899"``!"test\00"``".
3900
3901Metadata nodes are represented with notation similar to structure
3902constants (a comma separated list of elements, surrounded by braces and
3903preceded by an exclamation point). Metadata nodes can have any values as
3904their operand. For example:
3905
3906.. code-block:: llvm
3907
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003908 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003909
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003910Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3911
Renato Golin124f2592016-07-20 12:16:38 +00003912.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003913
3914 !0 = distinct !{!"test\00", i32 10}
3915
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003916``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003917content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003918when metadata operands change.
3919
Sean Silvab084af42012-12-07 10:36:55 +00003920A :ref:`named metadata <namedmetadatastructure>` is a collection of
3921metadata nodes, which can be looked up in the module symbol table. For
3922example:
3923
3924.. code-block:: llvm
3925
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003926 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003927
3928Metadata can be used as function arguments. Here ``llvm.dbg.value``
3929function is using two metadata arguments:
3930
3931.. code-block:: llvm
3932
3933 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3934
Peter Collingbourne50108682015-11-06 02:41:02 +00003935Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3936to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003937
3938.. code-block:: llvm
3939
3940 %indvar.next = add i64 %indvar, 1, !dbg !21
3941
Peter Collingbourne50108682015-11-06 02:41:02 +00003942Metadata can also be attached to a function definition. Here metadata ``!22``
3943is attached to the ``foo`` function using the ``!dbg`` identifier:
3944
3945.. code-block:: llvm
3946
3947 define void @foo() !dbg !22 {
3948 ret void
3949 }
3950
Sean Silvab084af42012-12-07 10:36:55 +00003951More information about specific metadata nodes recognized by the
3952optimizers and code generator is found below.
3953
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003954.. _specialized-metadata:
3955
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003956Specialized Metadata Nodes
3957^^^^^^^^^^^^^^^^^^^^^^^^^^
3958
3959Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003960to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003961order.
3962
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003963These aren't inherently debug info centric, but currently all the specialized
3964metadata nodes are related to debug info.
3965
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003966.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003967
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003968DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003969"""""""""""""
3970
Sean Silvaa1190322015-08-06 22:56:48 +00003971``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003972``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3973fields are tuples containing the debug info to be emitted along with the compile
3974unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003975references to them from instructions).
3976
Renato Golin124f2592016-07-20 12:16:38 +00003977.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003978
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003979 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003980 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003981 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003982 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003983 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003984
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003985Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003986specific compilation unit. File descriptors are defined using this scope.
3987These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003988keep track of subprograms, global variables, type information, and imported
3989entities (declarations and namespaces).
3990
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003991.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003992
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003993DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003994""""""
3995
Sean Silvaa1190322015-08-06 22:56:48 +00003996``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003997
3998.. code-block:: llvm
3999
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004000 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004001
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004002Files are sometimes used in ``scope:`` fields, and are the only valid target
4003for ``file:`` fields.
4004
Michael Kuperstein605308a2015-05-14 10:58:59 +00004005.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004006
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004007DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004008"""""""""""
4009
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004010``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004011``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004012
Renato Golin124f2592016-07-20 12:16:38 +00004013.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004014
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004015 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004016 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004017 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004018
Sean Silvaa1190322015-08-06 22:56:48 +00004019The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004020following:
4021
Renato Golin124f2592016-07-20 12:16:38 +00004022.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004023
4024 DW_ATE_address = 1
4025 DW_ATE_boolean = 2
4026 DW_ATE_float = 4
4027 DW_ATE_signed = 5
4028 DW_ATE_signed_char = 6
4029 DW_ATE_unsigned = 7
4030 DW_ATE_unsigned_char = 8
4031
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004032.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004033
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004034DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004035""""""""""""""""
4036
Sean Silvaa1190322015-08-06 22:56:48 +00004037``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004038refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004039types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004040represents a function with no return value (such as ``void foo() {}`` in C++).
4041
Renato Golin124f2592016-07-20 12:16:38 +00004042.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004043
4044 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4045 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004046 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004047
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004048.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004049
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004050DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004051"""""""""""""
4052
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004053``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004054qualified types.
4055
Renato Golin124f2592016-07-20 12:16:38 +00004056.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004057
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004058 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004059 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004060 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004061 align: 32)
4062
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004063The following ``tag:`` values are valid:
4064
Renato Golin124f2592016-07-20 12:16:38 +00004065.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004066
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004067 DW_TAG_member = 13
4068 DW_TAG_pointer_type = 15
4069 DW_TAG_reference_type = 16
4070 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004071 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004072 DW_TAG_ptr_to_member_type = 31
4073 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004074 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004075 DW_TAG_volatile_type = 53
4076 DW_TAG_restrict_type = 55
4077
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004078.. _DIDerivedTypeMember:
4079
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004080``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004081<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004082``offset:`` is the member's bit offset. If the composite type has an ODR
4083``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4084uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004085
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004086``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4087field of :ref:`composite types <DICompositeType>` to describe parents and
4088friends.
4089
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004090``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4091
4092``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
4093``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
4094``baseType:``.
4095
4096Note that the ``void *`` type is expressed as a type derived from NULL.
4097
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004098.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004099
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004100DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004101"""""""""""""""
4102
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004103``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004104structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004105
4106If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004107identifier used for type merging between modules. When specified,
4108:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4109derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4110``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004111
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004112For a given ``identifier:``, there should only be a single composite type that
4113does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4114together will unique such definitions at parse time via the ``identifier:``
4115field, even if the nodes are ``distinct``.
4116
Renato Golin124f2592016-07-20 12:16:38 +00004117.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004118
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004119 !0 = !DIEnumerator(name: "SixKind", value: 7)
4120 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4121 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4122 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004123 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4124 elements: !{!0, !1, !2})
4125
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004126The following ``tag:`` values are valid:
4127
Renato Golin124f2592016-07-20 12:16:38 +00004128.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004129
4130 DW_TAG_array_type = 1
4131 DW_TAG_class_type = 2
4132 DW_TAG_enumeration_type = 4
4133 DW_TAG_structure_type = 19
4134 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004135
4136For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004137descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004138level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004139array type is a native packed vector.
4140
4141For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004142descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004143value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004144``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004145
4146For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4147``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004148<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4149``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4150``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004151
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004152.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004153
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004154DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004155""""""""""
4156
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004157``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004158:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004159
4160.. code-block:: llvm
4161
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004162 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4163 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4164 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004165
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004166.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004167
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004168DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004169""""""""""""
4170
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004171``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4172variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004173
4174.. code-block:: llvm
4175
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004176 !0 = !DIEnumerator(name: "SixKind", value: 7)
4177 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4178 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004179
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004180DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004181"""""""""""""""""""""""
4182
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004183``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004184language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004185:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004186
4187.. code-block:: llvm
4188
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004189 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004190
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004191DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004192""""""""""""""""""""""""
4193
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004194``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004195language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004196but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004197``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004198:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004199
4200.. code-block:: llvm
4201
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004202 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004203
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004204DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004205"""""""""""
4206
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004207``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004208
4209.. code-block:: llvm
4210
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004211 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004212
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004213DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004214""""""""""""""""
4215
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004216``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004217
4218.. code-block:: llvm
4219
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004220 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004221 file: !2, line: 7, type: !3, isLocal: true,
4222 isDefinition: false, variable: i32* @foo,
4223 declaration: !4)
4224
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004225All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004226:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004227
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004228.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004229
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004230DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004231""""""""""""
4232
Peter Collingbourne50108682015-11-06 02:41:02 +00004233``DISubprogram`` nodes represent functions from the source language. A
4234``DISubprogram`` may be attached to a function definition using ``!dbg``
4235metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4236that must be retained, even if their IR counterparts are optimized out of
4237the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004238
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004239.. _DISubprogramDeclaration:
4240
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004241When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004242tree as opposed to a definition of a function. If the scope is a composite
4243type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4244then the subprogram declaration is uniqued based only on its ``linkageName:``
4245and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004246
Renato Golin124f2592016-07-20 12:16:38 +00004247.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004248
Peter Collingbourne50108682015-11-06 02:41:02 +00004249 define void @_Z3foov() !dbg !0 {
4250 ...
4251 }
4252
4253 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4254 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004255 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004256 containingType: !4,
4257 virtuality: DW_VIRTUALITY_pure_virtual,
4258 virtualIndex: 10, flags: DIFlagPrototyped,
4259 isOptimized: true, templateParams: !5,
4260 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004261
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004262.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004263
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004264DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004265""""""""""""""
4266
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004267``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004268<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004269two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004270fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004271
Renato Golin124f2592016-07-20 12:16:38 +00004272.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004273
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004274 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004275
4276Usually lexical blocks are ``distinct`` to prevent node merging based on
4277operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004278
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004279.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004280
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004281DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004282""""""""""""""""""
4283
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004284``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004285:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004286indicate textual inclusion, or the ``discriminator:`` field can be used to
4287discriminate between control flow within a single block in the source language.
4288
4289.. code-block:: llvm
4290
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004291 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4292 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4293 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004294
Michael Kuperstein605308a2015-05-14 10:58:59 +00004295.. _DILocation:
4296
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004297DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004298""""""""""
4299
Sean Silvaa1190322015-08-06 22:56:48 +00004300``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004301mandatory, and points at an :ref:`DILexicalBlockFile`, an
4302:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004303
4304.. code-block:: llvm
4305
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004306 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004307
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004308.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004309
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004310DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004311"""""""""""""""
4312
Sean Silvaa1190322015-08-06 22:56:48 +00004313``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004314the ``arg:`` field is set to non-zero, then this variable is a subprogram
4315parameter, and it will be included in the ``variables:`` field of its
4316:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004317
Renato Golin124f2592016-07-20 12:16:38 +00004318.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004319
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004320 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4321 type: !3, flags: DIFlagArtificial)
4322 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4323 type: !3)
4324 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004325
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004326DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004327""""""""""""
4328
Sean Silvaa1190322015-08-06 22:56:48 +00004329``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004330:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4331describe how the referenced LLVM variable relates to the source language
4332variable.
4333
4334The current supported vocabulary is limited:
4335
4336- ``DW_OP_deref`` dereferences the working expression.
4337- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4338- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4339 here, respectively) of the variable piece from the working expression.
4340
Renato Golin124f2592016-07-20 12:16:38 +00004341.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004342
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004343 !0 = !DIExpression(DW_OP_deref)
4344 !1 = !DIExpression(DW_OP_plus, 3)
4345 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4346 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004347
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004348DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004349""""""""""""""
4350
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004351``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004352
4353.. code-block:: llvm
4354
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004355 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004356 getter: "getFoo", attributes: 7, type: !2)
4357
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004358DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004359""""""""""""""""
4360
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004361``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004362compile unit.
4363
Renato Golin124f2592016-07-20 12:16:38 +00004364.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004365
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004366 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004367 entity: !1, line: 7)
4368
Amjad Abouda9bcf162015-12-10 12:56:35 +00004369DIMacro
4370"""""""
4371
4372``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4373The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004374defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004375used to expand the macro identifier.
4376
Renato Golin124f2592016-07-20 12:16:38 +00004377.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004378
4379 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4380 value: "((x) + 1)")
4381 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4382
4383DIMacroFile
4384"""""""""""
4385
4386``DIMacroFile`` nodes represent inclusion of source files.
4387The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4388appear in the included source file.
4389
Renato Golin124f2592016-07-20 12:16:38 +00004390.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004391
4392 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4393 nodes: !3)
4394
Sean Silvab084af42012-12-07 10:36:55 +00004395'``tbaa``' Metadata
4396^^^^^^^^^^^^^^^^^^^
4397
4398In LLVM IR, memory does not have types, so LLVM's own type system is not
4399suitable for doing TBAA. Instead, metadata is added to the IR to
4400describe a type system of a higher level language. This can be used to
4401implement typical C/C++ TBAA, but it can also be used to implement
4402custom alias analysis behavior for other languages.
4403
4404The current metadata format is very simple. TBAA metadata nodes have up
4405to three fields, e.g.:
4406
4407.. code-block:: llvm
4408
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004409 !0 = !{ !"an example type tree" }
4410 !1 = !{ !"int", !0 }
4411 !2 = !{ !"float", !0 }
4412 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004413
4414The first field is an identity field. It can be any value, usually a
4415metadata string, which uniquely identifies the type. The most important
4416name in the tree is the name of the root node. Two trees with different
4417root node names are entirely disjoint, even if they have leaves with
4418common names.
4419
4420The second field identifies the type's parent node in the tree, or is
4421null or omitted for a root node. A type is considered to alias all of
4422its descendants and all of its ancestors in the tree. Also, a type is
4423considered to alias all types in other trees, so that bitcode produced
4424from multiple front-ends is handled conservatively.
4425
4426If the third field is present, it's an integer which if equal to 1
4427indicates that the type is "constant" (meaning
4428``pointsToConstantMemory`` should return true; see `other useful
4429AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4430
4431'``tbaa.struct``' Metadata
4432^^^^^^^^^^^^^^^^^^^^^^^^^^
4433
4434The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4435aggregate assignment operations in C and similar languages, however it
4436is defined to copy a contiguous region of memory, which is more than
4437strictly necessary for aggregate types which contain holes due to
4438padding. Also, it doesn't contain any TBAA information about the fields
4439of the aggregate.
4440
4441``!tbaa.struct`` metadata can describe which memory subregions in a
4442memcpy are padding and what the TBAA tags of the struct are.
4443
4444The current metadata format is very simple. ``!tbaa.struct`` metadata
4445nodes are a list of operands which are in conceptual groups of three.
4446For each group of three, the first operand gives the byte offset of a
4447field in bytes, the second gives its size in bytes, and the third gives
4448its tbaa tag. e.g.:
4449
4450.. code-block:: llvm
4451
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004452 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004453
4454This describes a struct with two fields. The first is at offset 0 bytes
4455with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4456and has size 4 bytes and has tbaa tag !2.
4457
4458Note that the fields need not be contiguous. In this example, there is a
44594 byte gap between the two fields. This gap represents padding which
4460does not carry useful data and need not be preserved.
4461
Hal Finkel94146652014-07-24 14:25:39 +00004462'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004463^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004464
4465``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4466noalias memory-access sets. This means that some collection of memory access
4467instructions (loads, stores, memory-accessing calls, etc.) that carry
4468``noalias`` metadata can specifically be specified not to alias with some other
4469collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004470Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004471a domain.
4472
4473When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004474of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004475subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004476instruction's ``noalias`` list, then the two memory accesses are assumed not to
4477alias.
Hal Finkel94146652014-07-24 14:25:39 +00004478
Adam Nemet569a5b32016-04-27 00:52:48 +00004479Because scopes in one domain don't affect scopes in other domains, separate
4480domains can be used to compose multiple independent noalias sets. This is
4481used for example during inlining. As the noalias function parameters are
4482turned into noalias scope metadata, a new domain is used every time the
4483function is inlined.
4484
Hal Finkel029cde62014-07-25 15:50:02 +00004485The metadata identifying each domain is itself a list containing one or two
4486entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004487string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004488self-reference can be used to create globally unique domain names. A
4489descriptive string may optionally be provided as a second list entry.
4490
4491The metadata identifying each scope is also itself a list containing two or
4492three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004493is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004494self-reference can be used to create globally unique scope names. A metadata
4495reference to the scope's domain is the second entry. A descriptive string may
4496optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004497
4498For example,
4499
4500.. code-block:: llvm
4501
Hal Finkel029cde62014-07-25 15:50:02 +00004502 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004503 !0 = !{!0}
4504 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004505
Hal Finkel029cde62014-07-25 15:50:02 +00004506 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004507 !2 = !{!2, !0}
4508 !3 = !{!3, !0}
4509 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004510
Hal Finkel029cde62014-07-25 15:50:02 +00004511 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004512 !5 = !{!4} ; A list containing only scope !4
4513 !6 = !{!4, !3, !2}
4514 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004515
4516 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004517 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004518 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004519
Hal Finkel029cde62014-07-25 15:50:02 +00004520 ; These two instructions also don't alias (for domain !1, the set of scopes
4521 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004522 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004523 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004524
Adam Nemet0a8416f2015-05-11 08:30:28 +00004525 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004526 ; the !noalias list is not a superset of, or equal to, the scopes in the
4527 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004528 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004529 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004530
Sean Silvab084af42012-12-07 10:36:55 +00004531'``fpmath``' Metadata
4532^^^^^^^^^^^^^^^^^^^^^
4533
4534``fpmath`` metadata may be attached to any instruction of floating point
4535type. It can be used to express the maximum acceptable error in the
4536result of that instruction, in ULPs, thus potentially allowing the
4537compiler to use a more efficient but less accurate method of computing
4538it. ULP is defined as follows:
4539
4540 If ``x`` is a real number that lies between two finite consecutive
4541 floating-point numbers ``a`` and ``b``, without being equal to one
4542 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4543 distance between the two non-equal finite floating-point numbers
4544 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4545
Matt Arsenault82f41512016-06-27 19:43:15 +00004546The metadata node shall consist of a single positive float type number
4547representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004548
4549.. code-block:: llvm
4550
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004551 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004552
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004553.. _range-metadata:
4554
Sean Silvab084af42012-12-07 10:36:55 +00004555'``range``' Metadata
4556^^^^^^^^^^^^^^^^^^^^
4557
Jingyue Wu37fcb592014-06-19 16:50:16 +00004558``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4559integer types. It expresses the possible ranges the loaded value or the value
4560returned by the called function at this call site is in. The ranges are
4561represented with a flattened list of integers. The loaded value or the value
4562returned is known to be in the union of the ranges defined by each consecutive
4563pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004564
4565- The type must match the type loaded by the instruction.
4566- The pair ``a,b`` represents the range ``[a,b)``.
4567- Both ``a`` and ``b`` are constants.
4568- The range is allowed to wrap.
4569- The range should not represent the full or empty set. That is,
4570 ``a!=b``.
4571
4572In addition, the pairs must be in signed order of the lower bound and
4573they must be non-contiguous.
4574
4575Examples:
4576
4577.. code-block:: llvm
4578
David Blaikiec7aabbb2015-03-04 22:06:14 +00004579 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4580 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004581 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4582 %d = invoke i8 @bar() to label %cont
4583 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004584 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004585 !0 = !{ i8 0, i8 2 }
4586 !1 = !{ i8 255, i8 2 }
4587 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4588 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004589
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004590'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004591^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004592
4593``unpredictable`` metadata may be attached to any branch or switch
4594instruction. It can be used to express the unpredictability of control
4595flow. Similar to the llvm.expect intrinsic, it may be used to alter
4596optimizations related to compare and branch instructions. The metadata
4597is treated as a boolean value; if it exists, it signals that the branch
4598or switch that it is attached to is completely unpredictable.
4599
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004600'``llvm.loop``'
4601^^^^^^^^^^^^^^^
4602
4603It is sometimes useful to attach information to loop constructs. Currently,
4604loop metadata is implemented as metadata attached to the branch instruction
4605in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004606guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004607specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004608
4609The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004610itself to avoid merging it with any other identifier metadata, e.g.,
4611during module linkage or function inlining. That is, each loop should refer
4612to their own identification metadata even if they reside in separate functions.
4613The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004614constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004615
4616.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004617
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004618 !0 = !{!0}
4619 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004620
Mark Heffernan893752a2014-07-18 19:24:51 +00004621The loop identifier metadata can be used to specify additional
4622per-loop metadata. Any operands after the first operand can be treated
4623as user-defined metadata. For example the ``llvm.loop.unroll.count``
4624suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004625
Paul Redmond5fdf8362013-05-28 20:00:34 +00004626.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004627
Paul Redmond5fdf8362013-05-28 20:00:34 +00004628 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4629 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004630 !0 = !{!0, !1}
4631 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004632
Mark Heffernan9d20e422014-07-21 23:11:03 +00004633'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4634^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004635
Mark Heffernan9d20e422014-07-21 23:11:03 +00004636Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4637used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004638vectorization width and interleave count. These metadata should be used in
4639conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004640``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4641optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004642it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004643which contains information about loop-carried memory dependencies can be helpful
4644in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004645
Mark Heffernan9d20e422014-07-21 23:11:03 +00004646'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004647^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4648
Mark Heffernan9d20e422014-07-21 23:11:03 +00004649This metadata suggests an interleave count to the loop interleaver.
4650The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004651second operand is an integer specifying the interleave count. For
4652example:
4653
4654.. code-block:: llvm
4655
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004656 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004657
Mark Heffernan9d20e422014-07-21 23:11:03 +00004658Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004659multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004660then the interleave count will be determined automatically.
4661
4662'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004664
4665This metadata selectively enables or disables vectorization for the loop. The
4666first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004667is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000046680 disables vectorization:
4669
4670.. code-block:: llvm
4671
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004672 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4673 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004674
4675'``llvm.loop.vectorize.width``' Metadata
4676^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4677
4678This metadata sets the target width of the vectorizer. The first
4679operand is the string ``llvm.loop.vectorize.width`` and the second
4680operand is an integer specifying the width. For example:
4681
4682.. code-block:: llvm
4683
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004684 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004685
4686Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004687vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000046880 or if the loop does not have this metadata the width will be
4689determined automatically.
4690
4691'``llvm.loop.unroll``'
4692^^^^^^^^^^^^^^^^^^^^^^
4693
4694Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4695optimization hints such as the unroll factor. ``llvm.loop.unroll``
4696metadata should be used in conjunction with ``llvm.loop`` loop
4697identification metadata. The ``llvm.loop.unroll`` metadata are only
4698optimization hints and the unrolling will only be performed if the
4699optimizer believes it is safe to do so.
4700
Mark Heffernan893752a2014-07-18 19:24:51 +00004701'``llvm.loop.unroll.count``' Metadata
4702^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4703
4704This metadata suggests an unroll factor to the loop unroller. The
4705first operand is the string ``llvm.loop.unroll.count`` and the second
4706operand is a positive integer specifying the unroll factor. For
4707example:
4708
4709.. code-block:: llvm
4710
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004711 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004712
4713If the trip count of the loop is less than the unroll count the loop
4714will be partially unrolled.
4715
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004716'``llvm.loop.unroll.disable``' Metadata
4717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4718
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004719This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004720which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004721
4722.. code-block:: llvm
4723
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004724 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004725
Kevin Qin715b01e2015-03-09 06:14:18 +00004726'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004727^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004728
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004729This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004730operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004731
4732.. code-block:: llvm
4733
4734 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4735
Mark Heffernan89391542015-08-10 17:28:08 +00004736'``llvm.loop.unroll.enable``' Metadata
4737^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4738
4739This metadata suggests that the loop should be fully unrolled if the trip count
4740is known at compile time and partially unrolled if the trip count is not known
4741at compile time. The metadata has a single operand which is the string
4742``llvm.loop.unroll.enable``. For example:
4743
4744.. code-block:: llvm
4745
4746 !0 = !{!"llvm.loop.unroll.enable"}
4747
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004748'``llvm.loop.unroll.full``' Metadata
4749^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4750
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004751This metadata suggests that the loop should be unrolled fully. The
4752metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004753For example:
4754
4755.. code-block:: llvm
4756
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004757 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004758
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004759'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004760^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004761
4762This metadata indicates that the loop should not be versioned for the purpose
4763of enabling loop-invariant code motion (LICM). The metadata has a single operand
4764which is the string ``llvm.loop.licm_versioning.disable``. For example:
4765
4766.. code-block:: llvm
4767
4768 !0 = !{!"llvm.loop.licm_versioning.disable"}
4769
Adam Nemetd2fa4142016-04-27 05:28:18 +00004770'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004771^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004772
4773Loop distribution allows splitting a loop into multiple loops. Currently,
4774this is only performed if the entire loop cannot be vectorized due to unsafe
4775memory dependencies. The transformation will atempt to isolate the unsafe
4776dependencies into their own loop.
4777
4778This metadata can be used to selectively enable or disable distribution of the
4779loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4780second operand is a bit. If the bit operand value is 1 distribution is
4781enabled. A value of 0 disables distribution:
4782
4783.. code-block:: llvm
4784
4785 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4786 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4787
4788This metadata should be used in conjunction with ``llvm.loop`` loop
4789identification metadata.
4790
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004791'``llvm.mem``'
4792^^^^^^^^^^^^^^^
4793
4794Metadata types used to annotate memory accesses with information helpful
4795for optimizations are prefixed with ``llvm.mem``.
4796
4797'``llvm.mem.parallel_loop_access``' Metadata
4798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4799
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004800The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4801or metadata containing a list of loop identifiers for nested loops.
4802The metadata is attached to memory accessing instructions and denotes that
4803no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004804with the same loop identifier. The metadata on memory reads also implies that
4805if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004806
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004807Precisely, given two instructions ``m1`` and ``m2`` that both have the
4808``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4809set of loops associated with that metadata, respectively, then there is no loop
4810carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004811``L2``.
4812
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004813As a special case, if all memory accessing instructions in a loop have
4814``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4815loop has no loop carried memory dependences and is considered to be a parallel
4816loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004817
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004818Note that if not all memory access instructions have such metadata referring to
4819the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004820memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004821safe mechanism, this causes loops that were originally parallel to be considered
4822sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004823insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004824
4825Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004826both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004827metadata types that refer to the same loop identifier metadata.
4828
4829.. code-block:: llvm
4830
4831 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004832 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004833 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004834 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004835 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004836 ...
4837 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004838
4839 for.end:
4840 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004841 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004842
4843It is also possible to have nested parallel loops. In that case the
4844memory accesses refer to a list of loop identifier metadata nodes instead of
4845the loop identifier metadata node directly:
4846
4847.. code-block:: llvm
4848
4849 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004850 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004851 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004852 ...
4853 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004854
4855 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004856 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004857 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004858 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004859 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004860 ...
4861 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004862
4863 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004864 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004865 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004866 ...
4867 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004868
4869 outer.for.end: ; preds = %for.body
4870 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004871 !0 = !{!1, !2} ; a list of loop identifiers
4872 !1 = !{!1} ; an identifier for the inner loop
4873 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004874
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004875'``invariant.group``' Metadata
4876^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4877
4878The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4879The existence of the ``invariant.group`` metadata on the instruction tells
4880the optimizer that every ``load`` and ``store`` to the same pointer operand
4881within the same invariant group can be assumed to load or store the same
4882value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4883when two pointers are considered the same).
4884
4885Examples:
4886
4887.. code-block:: llvm
4888
4889 @unknownPtr = external global i8
4890 ...
4891 %ptr = alloca i8
4892 store i8 42, i8* %ptr, !invariant.group !0
4893 call void @foo(i8* %ptr)
4894
4895 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4896 call void @foo(i8* %ptr)
4897 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4898
4899 %newPtr = call i8* @getPointer(i8* %ptr)
4900 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4901
4902 %unknownValue = load i8, i8* @unknownPtr
4903 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4904
4905 call void @foo(i8* %ptr)
4906 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4907 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4908
4909 ...
4910 declare void @foo(i8*)
4911 declare i8* @getPointer(i8*)
4912 declare i8* @llvm.invariant.group.barrier(i8*)
4913
4914 !0 = !{!"magic ptr"}
4915 !1 = !{!"other ptr"}
4916
Peter Collingbournea333db82016-07-26 22:31:30 +00004917'``type``' Metadata
4918^^^^^^^^^^^^^^^^^^^
4919
4920See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004921
4922
Sean Silvab084af42012-12-07 10:36:55 +00004923Module Flags Metadata
4924=====================
4925
4926Information about the module as a whole is difficult to convey to LLVM's
4927subsystems. The LLVM IR isn't sufficient to transmit this information.
4928The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004929this. These flags are in the form of key / value pairs --- much like a
4930dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004931look it up.
4932
4933The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4934Each triplet has the following form:
4935
4936- The first element is a *behavior* flag, which specifies the behavior
4937 when two (or more) modules are merged together, and it encounters two
4938 (or more) metadata with the same ID. The supported behaviors are
4939 described below.
4940- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004941 metadata. Each module may only have one flag entry for each unique ID (not
4942 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004943- The third element is the value of the flag.
4944
4945When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004946``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4947each unique metadata ID string, there will be exactly one entry in the merged
4948modules ``llvm.module.flags`` metadata table, and the value for that entry will
4949be determined by the merge behavior flag, as described below. The only exception
4950is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004951
4952The following behaviors are supported:
4953
4954.. list-table::
4955 :header-rows: 1
4956 :widths: 10 90
4957
4958 * - Value
4959 - Behavior
4960
4961 * - 1
4962 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004963 Emits an error if two values disagree, otherwise the resulting value
4964 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004965
4966 * - 2
4967 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004968 Emits a warning if two values disagree. The result value will be the
4969 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004970
4971 * - 3
4972 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004973 Adds a requirement that another module flag be present and have a
4974 specified value after linking is performed. The value must be a
4975 metadata pair, where the first element of the pair is the ID of the
4976 module flag to be restricted, and the second element of the pair is
4977 the value the module flag should be restricted to. This behavior can
4978 be used to restrict the allowable results (via triggering of an
4979 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004980
4981 * - 4
4982 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004983 Uses the specified value, regardless of the behavior or value of the
4984 other module. If both modules specify **Override**, but the values
4985 differ, an error will be emitted.
4986
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004987 * - 5
4988 - **Append**
4989 Appends the two values, which are required to be metadata nodes.
4990
4991 * - 6
4992 - **AppendUnique**
4993 Appends the two values, which are required to be metadata
4994 nodes. However, duplicate entries in the second list are dropped
4995 during the append operation.
4996
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004997It is an error for a particular unique flag ID to have multiple behaviors,
4998except in the case of **Require** (which adds restrictions on another metadata
4999value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005000
5001An example of module flags:
5002
5003.. code-block:: llvm
5004
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005005 !0 = !{ i32 1, !"foo", i32 1 }
5006 !1 = !{ i32 4, !"bar", i32 37 }
5007 !2 = !{ i32 2, !"qux", i32 42 }
5008 !3 = !{ i32 3, !"qux",
5009 !{
5010 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005011 }
5012 }
5013 !llvm.module.flags = !{ !0, !1, !2, !3 }
5014
5015- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5016 if two or more ``!"foo"`` flags are seen is to emit an error if their
5017 values are not equal.
5018
5019- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5020 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005021 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005022
5023- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5024 behavior if two or more ``!"qux"`` flags are seen is to emit a
5025 warning if their values are not equal.
5026
5027- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5028
5029 ::
5030
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005031 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005032
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005033 The behavior is to emit an error if the ``llvm.module.flags`` does not
5034 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5035 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005036
5037Objective-C Garbage Collection Module Flags Metadata
5038----------------------------------------------------
5039
5040On the Mach-O platform, Objective-C stores metadata about garbage
5041collection in a special section called "image info". The metadata
5042consists of a version number and a bitmask specifying what types of
5043garbage collection are supported (if any) by the file. If two or more
5044modules are linked together their garbage collection metadata needs to
5045be merged rather than appended together.
5046
5047The Objective-C garbage collection module flags metadata consists of the
5048following key-value pairs:
5049
5050.. list-table::
5051 :header-rows: 1
5052 :widths: 30 70
5053
5054 * - Key
5055 - Value
5056
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005057 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005058 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005059
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005060 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005061 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005062 always 0.
5063
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005064 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005065 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005066 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5067 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5068 Objective-C ABI version 2.
5069
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005070 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005071 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005072 not. Valid values are 0, for no garbage collection, and 2, for garbage
5073 collection supported.
5074
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005075 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005076 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005077 If present, its value must be 6. This flag requires that the
5078 ``Objective-C Garbage Collection`` flag have the value 2.
5079
5080Some important flag interactions:
5081
5082- If a module with ``Objective-C Garbage Collection`` set to 0 is
5083 merged with a module with ``Objective-C Garbage Collection`` set to
5084 2, then the resulting module has the
5085 ``Objective-C Garbage Collection`` flag set to 0.
5086- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5087 merged with a module with ``Objective-C GC Only`` set to 6.
5088
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005089Automatic Linker Flags Module Flags Metadata
5090--------------------------------------------
5091
5092Some targets support embedding flags to the linker inside individual object
5093files. Typically this is used in conjunction with language extensions which
5094allow source files to explicitly declare the libraries they depend on, and have
5095these automatically be transmitted to the linker via object files.
5096
5097These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005098using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005099to be ``AppendUnique``, and the value for the key is expected to be a metadata
5100node which should be a list of other metadata nodes, each of which should be a
5101list of metadata strings defining linker options.
5102
5103For example, the following metadata section specifies two separate sets of
5104linker options, presumably to link against ``libz`` and the ``Cocoa``
5105framework::
5106
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005107 !0 = !{ i32 6, !"Linker Options",
5108 !{
5109 !{ !"-lz" },
5110 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005111 !llvm.module.flags = !{ !0 }
5112
5113The metadata encoding as lists of lists of options, as opposed to a collapsed
5114list of options, is chosen so that the IR encoding can use multiple option
5115strings to specify e.g., a single library, while still having that specifier be
5116preserved as an atomic element that can be recognized by a target specific
5117assembly writer or object file emitter.
5118
5119Each individual option is required to be either a valid option for the target's
5120linker, or an option that is reserved by the target specific assembly writer or
5121object file emitter. No other aspect of these options is defined by the IR.
5122
Oliver Stannard5dc29342014-06-20 10:08:11 +00005123C type width Module Flags Metadata
5124----------------------------------
5125
5126The ARM backend emits a section into each generated object file describing the
5127options that it was compiled with (in a compiler-independent way) to prevent
5128linking incompatible objects, and to allow automatic library selection. Some
5129of these options are not visible at the IR level, namely wchar_t width and enum
5130width.
5131
5132To pass this information to the backend, these options are encoded in module
5133flags metadata, using the following key-value pairs:
5134
5135.. list-table::
5136 :header-rows: 1
5137 :widths: 30 70
5138
5139 * - Key
5140 - Value
5141
5142 * - short_wchar
5143 - * 0 --- sizeof(wchar_t) == 4
5144 * 1 --- sizeof(wchar_t) == 2
5145
5146 * - short_enum
5147 - * 0 --- Enums are at least as large as an ``int``.
5148 * 1 --- Enums are stored in the smallest integer type which can
5149 represent all of its values.
5150
5151For example, the following metadata section specifies that the module was
5152compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5153enum is the smallest type which can represent all of its values::
5154
5155 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005156 !0 = !{i32 1, !"short_wchar", i32 1}
5157 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005158
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005159.. _intrinsicglobalvariables:
5160
Sean Silvab084af42012-12-07 10:36:55 +00005161Intrinsic Global Variables
5162==========================
5163
5164LLVM has a number of "magic" global variables that contain data that
5165affect code generation or other IR semantics. These are documented here.
5166All globals of this sort should have a section specified as
5167"``llvm.metadata``". This section and all globals that start with
5168"``llvm.``" are reserved for use by LLVM.
5169
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005170.. _gv_llvmused:
5171
Sean Silvab084af42012-12-07 10:36:55 +00005172The '``llvm.used``' Global Variable
5173-----------------------------------
5174
Rafael Espindola74f2e462013-04-22 14:58:02 +00005175The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005176:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005177pointers to named global variables, functions and aliases which may optionally
5178have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005179use of it is:
5180
5181.. code-block:: llvm
5182
5183 @X = global i8 4
5184 @Y = global i32 123
5185
5186 @llvm.used = appending global [2 x i8*] [
5187 i8* @X,
5188 i8* bitcast (i32* @Y to i8*)
5189 ], section "llvm.metadata"
5190
Rafael Espindola74f2e462013-04-22 14:58:02 +00005191If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5192and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005193symbol that it cannot see (which is why they have to be named). For example, if
5194a variable has internal linkage and no references other than that from the
5195``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5196references from inline asms and other things the compiler cannot "see", and
5197corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005198
5199On some targets, the code generator must emit a directive to the
5200assembler or object file to prevent the assembler and linker from
5201molesting the symbol.
5202
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005203.. _gv_llvmcompilerused:
5204
Sean Silvab084af42012-12-07 10:36:55 +00005205The '``llvm.compiler.used``' Global Variable
5206--------------------------------------------
5207
5208The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5209directive, except that it only prevents the compiler from touching the
5210symbol. On targets that support it, this allows an intelligent linker to
5211optimize references to the symbol without being impeded as it would be
5212by ``@llvm.used``.
5213
5214This is a rare construct that should only be used in rare circumstances,
5215and should not be exposed to source languages.
5216
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005217.. _gv_llvmglobalctors:
5218
Sean Silvab084af42012-12-07 10:36:55 +00005219The '``llvm.global_ctors``' Global Variable
5220-------------------------------------------
5221
5222.. code-block:: llvm
5223
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005224 %0 = type { i32, void ()*, i8* }
5225 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005226
5227The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005228functions, priorities, and an optional associated global or function.
5229The functions referenced by this array will be called in ascending order
5230of priority (i.e. lowest first) when the module is loaded. The order of
5231functions with the same priority is not defined.
5232
5233If the third field is present, non-null, and points to a global variable
5234or function, the initializer function will only run if the associated
5235data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005236
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005237.. _llvmglobaldtors:
5238
Sean Silvab084af42012-12-07 10:36:55 +00005239The '``llvm.global_dtors``' Global Variable
5240-------------------------------------------
5241
5242.. code-block:: llvm
5243
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005244 %0 = type { i32, void ()*, i8* }
5245 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005246
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005247The ``@llvm.global_dtors`` array contains a list of destructor
5248functions, priorities, and an optional associated global or function.
5249The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005250order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005251order of functions with the same priority is not defined.
5252
5253If the third field is present, non-null, and points to a global variable
5254or function, the destructor function will only run if the associated
5255data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005256
5257Instruction Reference
5258=====================
5259
5260The LLVM instruction set consists of several different classifications
5261of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5262instructions <binaryops>`, :ref:`bitwise binary
5263instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5264:ref:`other instructions <otherops>`.
5265
5266.. _terminators:
5267
5268Terminator Instructions
5269-----------------------
5270
5271As mentioned :ref:`previously <functionstructure>`, every basic block in a
5272program ends with a "Terminator" instruction, which indicates which
5273block should be executed after the current block is finished. These
5274terminator instructions typically yield a '``void``' value: they produce
5275control flow, not values (the one exception being the
5276':ref:`invoke <i_invoke>`' instruction).
5277
5278The terminator instructions are: ':ref:`ret <i_ret>`',
5279':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5280':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005281':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005282':ref:`catchret <i_catchret>`',
5283':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005284and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005285
5286.. _i_ret:
5287
5288'``ret``' Instruction
5289^^^^^^^^^^^^^^^^^^^^^
5290
5291Syntax:
5292"""""""
5293
5294::
5295
5296 ret <type> <value> ; Return a value from a non-void function
5297 ret void ; Return from void function
5298
5299Overview:
5300"""""""""
5301
5302The '``ret``' instruction is used to return control flow (and optionally
5303a value) from a function back to the caller.
5304
5305There are two forms of the '``ret``' instruction: one that returns a
5306value and then causes control flow, and one that just causes control
5307flow to occur.
5308
5309Arguments:
5310""""""""""
5311
5312The '``ret``' instruction optionally accepts a single argument, the
5313return value. The type of the return value must be a ':ref:`first
5314class <t_firstclass>`' type.
5315
5316A function is not :ref:`well formed <wellformed>` if it it has a non-void
5317return type and contains a '``ret``' instruction with no return value or
5318a return value with a type that does not match its type, or if it has a
5319void return type and contains a '``ret``' instruction with a return
5320value.
5321
5322Semantics:
5323""""""""""
5324
5325When the '``ret``' instruction is executed, control flow returns back to
5326the calling function's context. If the caller is a
5327":ref:`call <i_call>`" instruction, execution continues at the
5328instruction after the call. If the caller was an
5329":ref:`invoke <i_invoke>`" instruction, execution continues at the
5330beginning of the "normal" destination block. If the instruction returns
5331a value, that value shall set the call or invoke instruction's return
5332value.
5333
5334Example:
5335""""""""
5336
5337.. code-block:: llvm
5338
5339 ret i32 5 ; Return an integer value of 5
5340 ret void ; Return from a void function
5341 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5342
5343.. _i_br:
5344
5345'``br``' Instruction
5346^^^^^^^^^^^^^^^^^^^^
5347
5348Syntax:
5349"""""""
5350
5351::
5352
5353 br i1 <cond>, label <iftrue>, label <iffalse>
5354 br label <dest> ; Unconditional branch
5355
5356Overview:
5357"""""""""
5358
5359The '``br``' instruction is used to cause control flow to transfer to a
5360different basic block in the current function. There are two forms of
5361this instruction, corresponding to a conditional branch and an
5362unconditional branch.
5363
5364Arguments:
5365""""""""""
5366
5367The conditional branch form of the '``br``' instruction takes a single
5368'``i1``' value and two '``label``' values. The unconditional form of the
5369'``br``' instruction takes a single '``label``' value as a target.
5370
5371Semantics:
5372""""""""""
5373
5374Upon execution of a conditional '``br``' instruction, the '``i1``'
5375argument is evaluated. If the value is ``true``, control flows to the
5376'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5377to the '``iffalse``' ``label`` argument.
5378
5379Example:
5380""""""""
5381
5382.. code-block:: llvm
5383
5384 Test:
5385 %cond = icmp eq i32 %a, %b
5386 br i1 %cond, label %IfEqual, label %IfUnequal
5387 IfEqual:
5388 ret i32 1
5389 IfUnequal:
5390 ret i32 0
5391
5392.. _i_switch:
5393
5394'``switch``' Instruction
5395^^^^^^^^^^^^^^^^^^^^^^^^
5396
5397Syntax:
5398"""""""
5399
5400::
5401
5402 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5403
5404Overview:
5405"""""""""
5406
5407The '``switch``' instruction is used to transfer control flow to one of
5408several different places. It is a generalization of the '``br``'
5409instruction, allowing a branch to occur to one of many possible
5410destinations.
5411
5412Arguments:
5413""""""""""
5414
5415The '``switch``' instruction uses three parameters: an integer
5416comparison value '``value``', a default '``label``' destination, and an
5417array of pairs of comparison value constants and '``label``'s. The table
5418is not allowed to contain duplicate constant entries.
5419
5420Semantics:
5421""""""""""
5422
5423The ``switch`` instruction specifies a table of values and destinations.
5424When the '``switch``' instruction is executed, this table is searched
5425for the given value. If the value is found, control flow is transferred
5426to the corresponding destination; otherwise, control flow is transferred
5427to the default destination.
5428
5429Implementation:
5430"""""""""""""""
5431
5432Depending on properties of the target machine and the particular
5433``switch`` instruction, this instruction may be code generated in
5434different ways. For example, it could be generated as a series of
5435chained conditional branches or with a lookup table.
5436
5437Example:
5438""""""""
5439
5440.. code-block:: llvm
5441
5442 ; Emulate a conditional br instruction
5443 %Val = zext i1 %value to i32
5444 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5445
5446 ; Emulate an unconditional br instruction
5447 switch i32 0, label %dest [ ]
5448
5449 ; Implement a jump table:
5450 switch i32 %val, label %otherwise [ i32 0, label %onzero
5451 i32 1, label %onone
5452 i32 2, label %ontwo ]
5453
5454.. _i_indirectbr:
5455
5456'``indirectbr``' Instruction
5457^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5458
5459Syntax:
5460"""""""
5461
5462::
5463
5464 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5465
5466Overview:
5467"""""""""
5468
5469The '``indirectbr``' instruction implements an indirect branch to a
5470label within the current function, whose address is specified by
5471"``address``". Address must be derived from a
5472:ref:`blockaddress <blockaddress>` constant.
5473
5474Arguments:
5475""""""""""
5476
5477The '``address``' argument is the address of the label to jump to. The
5478rest of the arguments indicate the full set of possible destinations
5479that the address may point to. Blocks are allowed to occur multiple
5480times in the destination list, though this isn't particularly useful.
5481
5482This destination list is required so that dataflow analysis has an
5483accurate understanding of the CFG.
5484
5485Semantics:
5486""""""""""
5487
5488Control transfers to the block specified in the address argument. All
5489possible destination blocks must be listed in the label list, otherwise
5490this instruction has undefined behavior. This implies that jumps to
5491labels defined in other functions have undefined behavior as well.
5492
5493Implementation:
5494"""""""""""""""
5495
5496This is typically implemented with a jump through a register.
5497
5498Example:
5499""""""""
5500
5501.. code-block:: llvm
5502
5503 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5504
5505.. _i_invoke:
5506
5507'``invoke``' Instruction
5508^^^^^^^^^^^^^^^^^^^^^^^^
5509
5510Syntax:
5511"""""""
5512
5513::
5514
David Blaikieb83cf102016-07-13 17:21:34 +00005515 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005516 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005517
5518Overview:
5519"""""""""
5520
5521The '``invoke``' instruction causes control to transfer to a specified
5522function, with the possibility of control flow transfer to either the
5523'``normal``' label or the '``exception``' label. If the callee function
5524returns with the "``ret``" instruction, control flow will return to the
5525"normal" label. If the callee (or any indirect callees) returns via the
5526":ref:`resume <i_resume>`" instruction or other exception handling
5527mechanism, control is interrupted and continued at the dynamically
5528nearest "exception" label.
5529
5530The '``exception``' label is a `landing
5531pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5532'``exception``' label is required to have the
5533":ref:`landingpad <i_landingpad>`" instruction, which contains the
5534information about the behavior of the program after unwinding happens,
5535as its first non-PHI instruction. The restrictions on the
5536"``landingpad``" instruction's tightly couples it to the "``invoke``"
5537instruction, so that the important information contained within the
5538"``landingpad``" instruction can't be lost through normal code motion.
5539
5540Arguments:
5541""""""""""
5542
5543This instruction requires several arguments:
5544
5545#. The optional "cconv" marker indicates which :ref:`calling
5546 convention <callingconv>` the call should use. If none is
5547 specified, the call defaults to using C calling conventions.
5548#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5549 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5550 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005551#. '``ty``': the type of the call instruction itself which is also the
5552 type of the return value. Functions that return no value are marked
5553 ``void``.
5554#. '``fnty``': shall be the signature of the function being invoked. The
5555 argument types must match the types implied by this signature. This
5556 type can be omitted if the function is not varargs.
5557#. '``fnptrval``': An LLVM value containing a pointer to a function to
5558 be invoked. In most cases, this is a direct function invocation, but
5559 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5560 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005561#. '``function args``': argument list whose types match the function
5562 signature argument types and parameter attributes. All arguments must
5563 be of :ref:`first class <t_firstclass>` type. If the function signature
5564 indicates the function accepts a variable number of arguments, the
5565 extra arguments can be specified.
5566#. '``normal label``': the label reached when the called function
5567 executes a '``ret``' instruction.
5568#. '``exception label``': the label reached when a callee returns via
5569 the :ref:`resume <i_resume>` instruction or other exception handling
5570 mechanism.
5571#. The optional :ref:`function attributes <fnattrs>` list. Only
5572 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5573 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005574#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005575
5576Semantics:
5577""""""""""
5578
5579This instruction is designed to operate as a standard '``call``'
5580instruction in most regards. The primary difference is that it
5581establishes an association with a label, which is used by the runtime
5582library to unwind the stack.
5583
5584This instruction is used in languages with destructors to ensure that
5585proper cleanup is performed in the case of either a ``longjmp`` or a
5586thrown exception. Additionally, this is important for implementation of
5587'``catch``' clauses in high-level languages that support them.
5588
5589For the purposes of the SSA form, the definition of the value returned
5590by the '``invoke``' instruction is deemed to occur on the edge from the
5591current block to the "normal" label. If the callee unwinds then no
5592return value is available.
5593
5594Example:
5595""""""""
5596
5597.. code-block:: llvm
5598
5599 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005600 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005601 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005602 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005603
5604.. _i_resume:
5605
5606'``resume``' Instruction
5607^^^^^^^^^^^^^^^^^^^^^^^^
5608
5609Syntax:
5610"""""""
5611
5612::
5613
5614 resume <type> <value>
5615
5616Overview:
5617"""""""""
5618
5619The '``resume``' instruction is a terminator instruction that has no
5620successors.
5621
5622Arguments:
5623""""""""""
5624
5625The '``resume``' instruction requires one argument, which must have the
5626same type as the result of any '``landingpad``' instruction in the same
5627function.
5628
5629Semantics:
5630""""""""""
5631
5632The '``resume``' instruction resumes propagation of an existing
5633(in-flight) exception whose unwinding was interrupted with a
5634:ref:`landingpad <i_landingpad>` instruction.
5635
5636Example:
5637""""""""
5638
5639.. code-block:: llvm
5640
5641 resume { i8*, i32 } %exn
5642
David Majnemer8a1c45d2015-12-12 05:38:55 +00005643.. _i_catchswitch:
5644
5645'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005647
5648Syntax:
5649"""""""
5650
5651::
5652
5653 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5654 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5655
5656Overview:
5657"""""""""
5658
5659The '``catchswitch``' instruction is used by `LLVM's exception handling system
5660<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5661that may be executed by the :ref:`EH personality routine <personalityfn>`.
5662
5663Arguments:
5664""""""""""
5665
5666The ``parent`` argument is the token of the funclet that contains the
5667``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5668this operand may be the token ``none``.
5669
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005670The ``default`` argument is the label of another basic block beginning with
5671either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5672must be a legal target with respect to the ``parent`` links, as described in
5673the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005674
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005675The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005676:ref:`catchpad <i_catchpad>` instruction.
5677
5678Semantics:
5679""""""""""
5680
5681Executing this instruction transfers control to one of the successors in
5682``handlers``, if appropriate, or continues to unwind via the unwind label if
5683present.
5684
5685The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5686it must be both the first non-phi instruction and last instruction in the basic
5687block. Therefore, it must be the only non-phi instruction in the block.
5688
5689Example:
5690""""""""
5691
Renato Golin124f2592016-07-20 12:16:38 +00005692.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005693
5694 dispatch1:
5695 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5696 dispatch2:
5697 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5698
David Majnemer654e1302015-07-31 17:58:14 +00005699.. _i_catchret:
5700
5701'``catchret``' Instruction
5702^^^^^^^^^^^^^^^^^^^^^^^^^^
5703
5704Syntax:
5705"""""""
5706
5707::
5708
David Majnemer8a1c45d2015-12-12 05:38:55 +00005709 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005710
5711Overview:
5712"""""""""
5713
5714The '``catchret``' instruction is a terminator instruction that has a
5715single successor.
5716
5717
5718Arguments:
5719""""""""""
5720
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005721The first argument to a '``catchret``' indicates which ``catchpad`` it
5722exits. It must be a :ref:`catchpad <i_catchpad>`.
5723The second argument to a '``catchret``' specifies where control will
5724transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005725
5726Semantics:
5727""""""""""
5728
David Majnemer8a1c45d2015-12-12 05:38:55 +00005729The '``catchret``' instruction ends an existing (in-flight) exception whose
5730unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5731:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5732code to, for example, destroy the active exception. Control then transfers to
5733``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005734
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005735The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5736If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5737funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5738the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005739
5740Example:
5741""""""""
5742
Renato Golin124f2592016-07-20 12:16:38 +00005743.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005744
David Majnemer8a1c45d2015-12-12 05:38:55 +00005745 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005746
David Majnemer654e1302015-07-31 17:58:14 +00005747.. _i_cleanupret:
5748
5749'``cleanupret``' Instruction
5750^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5751
5752Syntax:
5753"""""""
5754
5755::
5756
David Majnemer8a1c45d2015-12-12 05:38:55 +00005757 cleanupret from <value> unwind label <continue>
5758 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005759
5760Overview:
5761"""""""""
5762
5763The '``cleanupret``' instruction is a terminator instruction that has
5764an optional successor.
5765
5766
5767Arguments:
5768""""""""""
5769
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005770The '``cleanupret``' instruction requires one argument, which indicates
5771which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005772If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5773funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5774the ``cleanupret``'s behavior is undefined.
5775
5776The '``cleanupret``' instruction also has an optional successor, ``continue``,
5777which must be the label of another basic block beginning with either a
5778``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5779be a legal target with respect to the ``parent`` links, as described in the
5780`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005781
5782Semantics:
5783""""""""""
5784
5785The '``cleanupret``' instruction indicates to the
5786:ref:`personality function <personalityfn>` that one
5787:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5788It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005789
David Majnemer654e1302015-07-31 17:58:14 +00005790Example:
5791""""""""
5792
Renato Golin124f2592016-07-20 12:16:38 +00005793.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005794
David Majnemer8a1c45d2015-12-12 05:38:55 +00005795 cleanupret from %cleanup unwind to caller
5796 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005797
Sean Silvab084af42012-12-07 10:36:55 +00005798.. _i_unreachable:
5799
5800'``unreachable``' Instruction
5801^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5802
5803Syntax:
5804"""""""
5805
5806::
5807
5808 unreachable
5809
5810Overview:
5811"""""""""
5812
5813The '``unreachable``' instruction has no defined semantics. This
5814instruction is used to inform the optimizer that a particular portion of
5815the code is not reachable. This can be used to indicate that the code
5816after a no-return function cannot be reached, and other facts.
5817
5818Semantics:
5819""""""""""
5820
5821The '``unreachable``' instruction has no defined semantics.
5822
5823.. _binaryops:
5824
5825Binary Operations
5826-----------------
5827
5828Binary operators are used to do most of the computation in a program.
5829They require two operands of the same type, execute an operation on
5830them, and produce a single value. The operands might represent multiple
5831data, as is the case with the :ref:`vector <t_vector>` data type. The
5832result value has the same type as its operands.
5833
5834There are several different binary operators:
5835
5836.. _i_add:
5837
5838'``add``' Instruction
5839^^^^^^^^^^^^^^^^^^^^^
5840
5841Syntax:
5842"""""""
5843
5844::
5845
Tim Northover675a0962014-06-13 14:24:23 +00005846 <result> = add <ty> <op1>, <op2> ; yields ty:result
5847 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5848 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5849 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005850
5851Overview:
5852"""""""""
5853
5854The '``add``' instruction returns the sum of its two operands.
5855
5856Arguments:
5857""""""""""
5858
5859The two arguments to the '``add``' instruction must be
5860:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5861arguments must have identical types.
5862
5863Semantics:
5864""""""""""
5865
5866The value produced is the integer sum of the two operands.
5867
5868If the sum has unsigned overflow, the result returned is the
5869mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5870the result.
5871
5872Because LLVM integers use a two's complement representation, this
5873instruction is appropriate for both signed and unsigned integers.
5874
5875``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5876respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5877result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5878unsigned and/or signed overflow, respectively, occurs.
5879
5880Example:
5881""""""""
5882
Renato Golin124f2592016-07-20 12:16:38 +00005883.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005884
Tim Northover675a0962014-06-13 14:24:23 +00005885 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005886
5887.. _i_fadd:
5888
5889'``fadd``' Instruction
5890^^^^^^^^^^^^^^^^^^^^^^
5891
5892Syntax:
5893"""""""
5894
5895::
5896
Tim Northover675a0962014-06-13 14:24:23 +00005897 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005898
5899Overview:
5900"""""""""
5901
5902The '``fadd``' instruction returns the sum of its two operands.
5903
5904Arguments:
5905""""""""""
5906
5907The two arguments to the '``fadd``' instruction must be :ref:`floating
5908point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5909Both arguments must have identical types.
5910
5911Semantics:
5912""""""""""
5913
5914The value produced is the floating point sum of the two operands. This
5915instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5916which are optimization hints to enable otherwise unsafe floating point
5917optimizations:
5918
5919Example:
5920""""""""
5921
Renato Golin124f2592016-07-20 12:16:38 +00005922.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005923
Tim Northover675a0962014-06-13 14:24:23 +00005924 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005925
5926'``sub``' Instruction
5927^^^^^^^^^^^^^^^^^^^^^
5928
5929Syntax:
5930"""""""
5931
5932::
5933
Tim Northover675a0962014-06-13 14:24:23 +00005934 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5935 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5936 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5937 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005938
5939Overview:
5940"""""""""
5941
5942The '``sub``' instruction returns the difference of its two operands.
5943
5944Note that the '``sub``' instruction is used to represent the '``neg``'
5945instruction present in most other intermediate representations.
5946
5947Arguments:
5948""""""""""
5949
5950The two arguments to the '``sub``' instruction must be
5951:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5952arguments must have identical types.
5953
5954Semantics:
5955""""""""""
5956
5957The value produced is the integer difference of the two operands.
5958
5959If the difference has unsigned overflow, the result returned is the
5960mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5961the result.
5962
5963Because LLVM integers use a two's complement representation, this
5964instruction is appropriate for both signed and unsigned integers.
5965
5966``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5967respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5968result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5969unsigned and/or signed overflow, respectively, occurs.
5970
5971Example:
5972""""""""
5973
Renato Golin124f2592016-07-20 12:16:38 +00005974.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005975
Tim Northover675a0962014-06-13 14:24:23 +00005976 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5977 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005978
5979.. _i_fsub:
5980
5981'``fsub``' Instruction
5982^^^^^^^^^^^^^^^^^^^^^^
5983
5984Syntax:
5985"""""""
5986
5987::
5988
Tim Northover675a0962014-06-13 14:24:23 +00005989 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005990
5991Overview:
5992"""""""""
5993
5994The '``fsub``' instruction returns the difference of its two operands.
5995
5996Note that the '``fsub``' instruction is used to represent the '``fneg``'
5997instruction present in most other intermediate representations.
5998
5999Arguments:
6000""""""""""
6001
6002The two arguments to the '``fsub``' instruction must be :ref:`floating
6003point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6004Both arguments must have identical types.
6005
6006Semantics:
6007""""""""""
6008
6009The value produced is the floating point difference of the two operands.
6010This instruction can also take any number of :ref:`fast-math
6011flags <fastmath>`, which are optimization hints to enable otherwise
6012unsafe floating point optimizations:
6013
6014Example:
6015""""""""
6016
Renato Golin124f2592016-07-20 12:16:38 +00006017.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006018
Tim Northover675a0962014-06-13 14:24:23 +00006019 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6020 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006021
6022'``mul``' Instruction
6023^^^^^^^^^^^^^^^^^^^^^
6024
6025Syntax:
6026"""""""
6027
6028::
6029
Tim Northover675a0962014-06-13 14:24:23 +00006030 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6031 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6032 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6033 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006034
6035Overview:
6036"""""""""
6037
6038The '``mul``' instruction returns the product of its two operands.
6039
6040Arguments:
6041""""""""""
6042
6043The two arguments to the '``mul``' instruction must be
6044:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6045arguments must have identical types.
6046
6047Semantics:
6048""""""""""
6049
6050The value produced is the integer product of the two operands.
6051
6052If the result of the multiplication has unsigned overflow, the result
6053returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6054bit width of the result.
6055
6056Because LLVM integers use a two's complement representation, and the
6057result is the same width as the operands, this instruction returns the
6058correct result for both signed and unsigned integers. If a full product
6059(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6060sign-extended or zero-extended as appropriate to the width of the full
6061product.
6062
6063``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6064respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6065result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6066unsigned and/or signed overflow, respectively, occurs.
6067
6068Example:
6069""""""""
6070
Renato Golin124f2592016-07-20 12:16:38 +00006071.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006072
Tim Northover675a0962014-06-13 14:24:23 +00006073 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006074
6075.. _i_fmul:
6076
6077'``fmul``' Instruction
6078^^^^^^^^^^^^^^^^^^^^^^
6079
6080Syntax:
6081"""""""
6082
6083::
6084
Tim Northover675a0962014-06-13 14:24:23 +00006085 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006086
6087Overview:
6088"""""""""
6089
6090The '``fmul``' instruction returns the product of its two operands.
6091
6092Arguments:
6093""""""""""
6094
6095The two arguments to the '``fmul``' instruction must be :ref:`floating
6096point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6097Both arguments must have identical types.
6098
6099Semantics:
6100""""""""""
6101
6102The value produced is the floating point product of the two operands.
6103This instruction can also take any number of :ref:`fast-math
6104flags <fastmath>`, which are optimization hints to enable otherwise
6105unsafe floating point optimizations:
6106
6107Example:
6108""""""""
6109
Renato Golin124f2592016-07-20 12:16:38 +00006110.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006111
Tim Northover675a0962014-06-13 14:24:23 +00006112 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006113
6114'``udiv``' Instruction
6115^^^^^^^^^^^^^^^^^^^^^^
6116
6117Syntax:
6118"""""""
6119
6120::
6121
Tim Northover675a0962014-06-13 14:24:23 +00006122 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6123 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006124
6125Overview:
6126"""""""""
6127
6128The '``udiv``' instruction returns the quotient of its two operands.
6129
6130Arguments:
6131""""""""""
6132
6133The two arguments to the '``udiv``' instruction must be
6134:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6135arguments must have identical types.
6136
6137Semantics:
6138""""""""""
6139
6140The value produced is the unsigned integer quotient of the two operands.
6141
6142Note that unsigned integer division and signed integer division are
6143distinct operations; for signed integer division, use '``sdiv``'.
6144
6145Division by zero leads to undefined behavior.
6146
6147If the ``exact`` keyword is present, the result value of the ``udiv`` is
6148a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6149such, "((a udiv exact b) mul b) == a").
6150
6151Example:
6152""""""""
6153
Renato Golin124f2592016-07-20 12:16:38 +00006154.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006155
Tim Northover675a0962014-06-13 14:24:23 +00006156 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006157
6158'``sdiv``' Instruction
6159^^^^^^^^^^^^^^^^^^^^^^
6160
6161Syntax:
6162"""""""
6163
6164::
6165
Tim Northover675a0962014-06-13 14:24:23 +00006166 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6167 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006168
6169Overview:
6170"""""""""
6171
6172The '``sdiv``' instruction returns the quotient of its two operands.
6173
6174Arguments:
6175""""""""""
6176
6177The two arguments to the '``sdiv``' instruction must be
6178:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6179arguments must have identical types.
6180
6181Semantics:
6182""""""""""
6183
6184The value produced is the signed integer quotient of the two operands
6185rounded towards zero.
6186
6187Note that signed integer division and unsigned integer division are
6188distinct operations; for unsigned integer division, use '``udiv``'.
6189
6190Division by zero leads to undefined behavior. Overflow also leads to
6191undefined behavior; this is a rare case, but can occur, for example, by
6192doing a 32-bit division of -2147483648 by -1.
6193
6194If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6195a :ref:`poison value <poisonvalues>` if the result would be rounded.
6196
6197Example:
6198""""""""
6199
Renato Golin124f2592016-07-20 12:16:38 +00006200.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006201
Tim Northover675a0962014-06-13 14:24:23 +00006202 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006203
6204.. _i_fdiv:
6205
6206'``fdiv``' Instruction
6207^^^^^^^^^^^^^^^^^^^^^^
6208
6209Syntax:
6210"""""""
6211
6212::
6213
Tim Northover675a0962014-06-13 14:24:23 +00006214 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006215
6216Overview:
6217"""""""""
6218
6219The '``fdiv``' instruction returns the quotient of its two operands.
6220
6221Arguments:
6222""""""""""
6223
6224The two arguments to the '``fdiv``' instruction must be :ref:`floating
6225point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6226Both arguments must have identical types.
6227
6228Semantics:
6229""""""""""
6230
6231The value produced is the floating point quotient of the two operands.
6232This instruction can also take any number of :ref:`fast-math
6233flags <fastmath>`, which are optimization hints to enable otherwise
6234unsafe floating point optimizations:
6235
6236Example:
6237""""""""
6238
Renato Golin124f2592016-07-20 12:16:38 +00006239.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006240
Tim Northover675a0962014-06-13 14:24:23 +00006241 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006242
6243'``urem``' Instruction
6244^^^^^^^^^^^^^^^^^^^^^^
6245
6246Syntax:
6247"""""""
6248
6249::
6250
Tim Northover675a0962014-06-13 14:24:23 +00006251 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006252
6253Overview:
6254"""""""""
6255
6256The '``urem``' instruction returns the remainder from the unsigned
6257division of its two arguments.
6258
6259Arguments:
6260""""""""""
6261
6262The two arguments to the '``urem``' instruction must be
6263:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6264arguments must have identical types.
6265
6266Semantics:
6267""""""""""
6268
6269This instruction returns the unsigned integer *remainder* of a division.
6270This instruction always performs an unsigned division to get the
6271remainder.
6272
6273Note that unsigned integer remainder and signed integer remainder are
6274distinct operations; for signed integer remainder, use '``srem``'.
6275
6276Taking the remainder of a division by zero leads to undefined behavior.
6277
6278Example:
6279""""""""
6280
Renato Golin124f2592016-07-20 12:16:38 +00006281.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006282
Tim Northover675a0962014-06-13 14:24:23 +00006283 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006284
6285'``srem``' Instruction
6286^^^^^^^^^^^^^^^^^^^^^^
6287
6288Syntax:
6289"""""""
6290
6291::
6292
Tim Northover675a0962014-06-13 14:24:23 +00006293 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006294
6295Overview:
6296"""""""""
6297
6298The '``srem``' instruction returns the remainder from the signed
6299division of its two operands. This instruction can also take
6300:ref:`vector <t_vector>` versions of the values in which case the elements
6301must be integers.
6302
6303Arguments:
6304""""""""""
6305
6306The two arguments to the '``srem``' instruction must be
6307:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6308arguments must have identical types.
6309
6310Semantics:
6311""""""""""
6312
6313This instruction returns the *remainder* of a division (where the result
6314is either zero or has the same sign as the dividend, ``op1``), not the
6315*modulo* operator (where the result is either zero or has the same sign
6316as the divisor, ``op2``) of a value. For more information about the
6317difference, see `The Math
6318Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6319table of how this is implemented in various languages, please see
6320`Wikipedia: modulo
6321operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6322
6323Note that signed integer remainder and unsigned integer remainder are
6324distinct operations; for unsigned integer remainder, use '``urem``'.
6325
6326Taking the remainder of a division by zero leads to undefined behavior.
6327Overflow also leads to undefined behavior; this is a rare case, but can
6328occur, for example, by taking the remainder of a 32-bit division of
6329-2147483648 by -1. (The remainder doesn't actually overflow, but this
6330rule lets srem be implemented using instructions that return both the
6331result of the division and the remainder.)
6332
6333Example:
6334""""""""
6335
Renato Golin124f2592016-07-20 12:16:38 +00006336.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006337
Tim Northover675a0962014-06-13 14:24:23 +00006338 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006339
6340.. _i_frem:
6341
6342'``frem``' Instruction
6343^^^^^^^^^^^^^^^^^^^^^^
6344
6345Syntax:
6346"""""""
6347
6348::
6349
Tim Northover675a0962014-06-13 14:24:23 +00006350 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006351
6352Overview:
6353"""""""""
6354
6355The '``frem``' instruction returns the remainder from the division of
6356its two operands.
6357
6358Arguments:
6359""""""""""
6360
6361The two arguments to the '``frem``' instruction must be :ref:`floating
6362point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6363Both arguments must have identical types.
6364
6365Semantics:
6366""""""""""
6367
6368This instruction returns the *remainder* of a division. The remainder
6369has the same sign as the dividend. This instruction can also take any
6370number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6371to enable otherwise unsafe floating point optimizations:
6372
6373Example:
6374""""""""
6375
Renato Golin124f2592016-07-20 12:16:38 +00006376.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006377
Tim Northover675a0962014-06-13 14:24:23 +00006378 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006379
6380.. _bitwiseops:
6381
6382Bitwise Binary Operations
6383-------------------------
6384
6385Bitwise binary operators are used to do various forms of bit-twiddling
6386in a program. They are generally very efficient instructions and can
6387commonly be strength reduced from other instructions. They require two
6388operands of the same type, execute an operation on them, and produce a
6389single value. The resulting value is the same type as its operands.
6390
6391'``shl``' Instruction
6392^^^^^^^^^^^^^^^^^^^^^
6393
6394Syntax:
6395"""""""
6396
6397::
6398
Tim Northover675a0962014-06-13 14:24:23 +00006399 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6400 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6401 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6402 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006403
6404Overview:
6405"""""""""
6406
6407The '``shl``' instruction returns the first operand shifted to the left
6408a specified number of bits.
6409
6410Arguments:
6411""""""""""
6412
6413Both arguments to the '``shl``' instruction must be the same
6414:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6415'``op2``' is treated as an unsigned value.
6416
6417Semantics:
6418""""""""""
6419
6420The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6421where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006422dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006423``op1``, the result is undefined. If the arguments are vectors, each
6424vector element of ``op1`` is shifted by the corresponding shift amount
6425in ``op2``.
6426
6427If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6428value <poisonvalues>` if it shifts out any non-zero bits. If the
6429``nsw`` keyword is present, then the shift produces a :ref:`poison
6430value <poisonvalues>` if it shifts out any bits that disagree with the
6431resultant sign bit. As such, NUW/NSW have the same semantics as they
6432would if the shift were expressed as a mul instruction with the same
6433nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6434
6435Example:
6436""""""""
6437
Renato Golin124f2592016-07-20 12:16:38 +00006438.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006439
Tim Northover675a0962014-06-13 14:24:23 +00006440 <result> = shl i32 4, %var ; yields i32: 4 << %var
6441 <result> = shl i32 4, 2 ; yields i32: 16
6442 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006443 <result> = shl i32 1, 32 ; undefined
6444 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6445
6446'``lshr``' Instruction
6447^^^^^^^^^^^^^^^^^^^^^^
6448
6449Syntax:
6450"""""""
6451
6452::
6453
Tim Northover675a0962014-06-13 14:24:23 +00006454 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6455 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006456
6457Overview:
6458"""""""""
6459
6460The '``lshr``' instruction (logical shift right) returns the first
6461operand shifted to the right a specified number of bits with zero fill.
6462
6463Arguments:
6464""""""""""
6465
6466Both arguments to the '``lshr``' instruction must be the same
6467:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6468'``op2``' is treated as an unsigned value.
6469
6470Semantics:
6471""""""""""
6472
6473This instruction always performs a logical shift right operation. The
6474most significant bits of the result will be filled with zero bits after
6475the shift. If ``op2`` is (statically or dynamically) equal to or larger
6476than the number of bits in ``op1``, the result is undefined. If the
6477arguments are vectors, each vector element of ``op1`` is shifted by the
6478corresponding shift amount in ``op2``.
6479
6480If the ``exact`` keyword is present, the result value of the ``lshr`` is
6481a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6482non-zero.
6483
6484Example:
6485""""""""
6486
Renato Golin124f2592016-07-20 12:16:38 +00006487.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006488
Tim Northover675a0962014-06-13 14:24:23 +00006489 <result> = lshr i32 4, 1 ; yields i32:result = 2
6490 <result> = lshr i32 4, 2 ; yields i32:result = 1
6491 <result> = lshr i8 4, 3 ; yields i8:result = 0
6492 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006493 <result> = lshr i32 1, 32 ; undefined
6494 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6495
6496'``ashr``' Instruction
6497^^^^^^^^^^^^^^^^^^^^^^
6498
6499Syntax:
6500"""""""
6501
6502::
6503
Tim Northover675a0962014-06-13 14:24:23 +00006504 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6505 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006506
6507Overview:
6508"""""""""
6509
6510The '``ashr``' instruction (arithmetic shift right) returns the first
6511operand shifted to the right a specified number of bits with sign
6512extension.
6513
6514Arguments:
6515""""""""""
6516
6517Both arguments to the '``ashr``' instruction must be the same
6518:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6519'``op2``' is treated as an unsigned value.
6520
6521Semantics:
6522""""""""""
6523
6524This instruction always performs an arithmetic shift right operation,
6525The most significant bits of the result will be filled with the sign bit
6526of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6527than the number of bits in ``op1``, the result is undefined. If the
6528arguments are vectors, each vector element of ``op1`` is shifted by the
6529corresponding shift amount in ``op2``.
6530
6531If the ``exact`` keyword is present, the result value of the ``ashr`` is
6532a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6533non-zero.
6534
6535Example:
6536""""""""
6537
Renato Golin124f2592016-07-20 12:16:38 +00006538.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006539
Tim Northover675a0962014-06-13 14:24:23 +00006540 <result> = ashr i32 4, 1 ; yields i32:result = 2
6541 <result> = ashr i32 4, 2 ; yields i32:result = 1
6542 <result> = ashr i8 4, 3 ; yields i8:result = 0
6543 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006544 <result> = ashr i32 1, 32 ; undefined
6545 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6546
6547'``and``' Instruction
6548^^^^^^^^^^^^^^^^^^^^^
6549
6550Syntax:
6551"""""""
6552
6553::
6554
Tim Northover675a0962014-06-13 14:24:23 +00006555 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006556
6557Overview:
6558"""""""""
6559
6560The '``and``' instruction returns the bitwise logical and of its two
6561operands.
6562
6563Arguments:
6564""""""""""
6565
6566The two arguments to the '``and``' instruction must be
6567:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6568arguments must have identical types.
6569
6570Semantics:
6571""""""""""
6572
6573The truth table used for the '``and``' instruction is:
6574
6575+-----+-----+-----+
6576| In0 | In1 | Out |
6577+-----+-----+-----+
6578| 0 | 0 | 0 |
6579+-----+-----+-----+
6580| 0 | 1 | 0 |
6581+-----+-----+-----+
6582| 1 | 0 | 0 |
6583+-----+-----+-----+
6584| 1 | 1 | 1 |
6585+-----+-----+-----+
6586
6587Example:
6588""""""""
6589
Renato Golin124f2592016-07-20 12:16:38 +00006590.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006591
Tim Northover675a0962014-06-13 14:24:23 +00006592 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6593 <result> = and i32 15, 40 ; yields i32:result = 8
6594 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006595
6596'``or``' Instruction
6597^^^^^^^^^^^^^^^^^^^^
6598
6599Syntax:
6600"""""""
6601
6602::
6603
Tim Northover675a0962014-06-13 14:24:23 +00006604 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006605
6606Overview:
6607"""""""""
6608
6609The '``or``' instruction returns the bitwise logical inclusive or of its
6610two operands.
6611
6612Arguments:
6613""""""""""
6614
6615The two arguments to the '``or``' instruction must be
6616:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6617arguments must have identical types.
6618
6619Semantics:
6620""""""""""
6621
6622The truth table used for the '``or``' instruction is:
6623
6624+-----+-----+-----+
6625| In0 | In1 | Out |
6626+-----+-----+-----+
6627| 0 | 0 | 0 |
6628+-----+-----+-----+
6629| 0 | 1 | 1 |
6630+-----+-----+-----+
6631| 1 | 0 | 1 |
6632+-----+-----+-----+
6633| 1 | 1 | 1 |
6634+-----+-----+-----+
6635
6636Example:
6637""""""""
6638
6639::
6640
Tim Northover675a0962014-06-13 14:24:23 +00006641 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6642 <result> = or i32 15, 40 ; yields i32:result = 47
6643 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006644
6645'``xor``' Instruction
6646^^^^^^^^^^^^^^^^^^^^^
6647
6648Syntax:
6649"""""""
6650
6651::
6652
Tim Northover675a0962014-06-13 14:24:23 +00006653 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006654
6655Overview:
6656"""""""""
6657
6658The '``xor``' instruction returns the bitwise logical exclusive or of
6659its two operands. The ``xor`` is used to implement the "one's
6660complement" operation, which is the "~" operator in C.
6661
6662Arguments:
6663""""""""""
6664
6665The two arguments to the '``xor``' instruction must be
6666:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6667arguments must have identical types.
6668
6669Semantics:
6670""""""""""
6671
6672The truth table used for the '``xor``' instruction is:
6673
6674+-----+-----+-----+
6675| In0 | In1 | Out |
6676+-----+-----+-----+
6677| 0 | 0 | 0 |
6678+-----+-----+-----+
6679| 0 | 1 | 1 |
6680+-----+-----+-----+
6681| 1 | 0 | 1 |
6682+-----+-----+-----+
6683| 1 | 1 | 0 |
6684+-----+-----+-----+
6685
6686Example:
6687""""""""
6688
Renato Golin124f2592016-07-20 12:16:38 +00006689.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006690
Tim Northover675a0962014-06-13 14:24:23 +00006691 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6692 <result> = xor i32 15, 40 ; yields i32:result = 39
6693 <result> = xor i32 4, 8 ; yields i32:result = 12
6694 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006695
6696Vector Operations
6697-----------------
6698
6699LLVM supports several instructions to represent vector operations in a
6700target-independent manner. These instructions cover the element-access
6701and vector-specific operations needed to process vectors effectively.
6702While LLVM does directly support these vector operations, many
6703sophisticated algorithms will want to use target-specific intrinsics to
6704take full advantage of a specific target.
6705
6706.. _i_extractelement:
6707
6708'``extractelement``' Instruction
6709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6710
6711Syntax:
6712"""""""
6713
6714::
6715
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006716 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006717
6718Overview:
6719"""""""""
6720
6721The '``extractelement``' instruction extracts a single scalar element
6722from a vector at a specified index.
6723
6724Arguments:
6725""""""""""
6726
6727The first operand of an '``extractelement``' instruction is a value of
6728:ref:`vector <t_vector>` type. The second operand is an index indicating
6729the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006730variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006731
6732Semantics:
6733""""""""""
6734
6735The result is a scalar of the same type as the element type of ``val``.
6736Its value is the value at position ``idx`` of ``val``. If ``idx``
6737exceeds the length of ``val``, the results are undefined.
6738
6739Example:
6740""""""""
6741
Renato Golin124f2592016-07-20 12:16:38 +00006742.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006743
6744 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6745
6746.. _i_insertelement:
6747
6748'``insertelement``' Instruction
6749^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6750
6751Syntax:
6752"""""""
6753
6754::
6755
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006756 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006757
6758Overview:
6759"""""""""
6760
6761The '``insertelement``' instruction inserts a scalar element into a
6762vector at a specified index.
6763
6764Arguments:
6765""""""""""
6766
6767The first operand of an '``insertelement``' instruction is a value of
6768:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6769type must equal the element type of the first operand. The third operand
6770is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006771index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006772
6773Semantics:
6774""""""""""
6775
6776The result is a vector of the same type as ``val``. Its element values
6777are those of ``val`` except at position ``idx``, where it gets the value
6778``elt``. If ``idx`` exceeds the length of ``val``, the results are
6779undefined.
6780
6781Example:
6782""""""""
6783
Renato Golin124f2592016-07-20 12:16:38 +00006784.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006785
6786 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6787
6788.. _i_shufflevector:
6789
6790'``shufflevector``' Instruction
6791^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6792
6793Syntax:
6794"""""""
6795
6796::
6797
6798 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6799
6800Overview:
6801"""""""""
6802
6803The '``shufflevector``' instruction constructs a permutation of elements
6804from two input vectors, returning a vector with the same element type as
6805the input and length that is the same as the shuffle mask.
6806
6807Arguments:
6808""""""""""
6809
6810The first two operands of a '``shufflevector``' instruction are vectors
6811with the same type. The third argument is a shuffle mask whose element
6812type is always 'i32'. The result of the instruction is a vector whose
6813length is the same as the shuffle mask and whose element type is the
6814same as the element type of the first two operands.
6815
6816The shuffle mask operand is required to be a constant vector with either
6817constant integer or undef values.
6818
6819Semantics:
6820""""""""""
6821
6822The elements of the two input vectors are numbered from left to right
6823across both of the vectors. The shuffle mask operand specifies, for each
6824element of the result vector, which element of the two input vectors the
6825result element gets. The element selector may be undef (meaning "don't
6826care") and the second operand may be undef if performing a shuffle from
6827only one vector.
6828
6829Example:
6830""""""""
6831
Renato Golin124f2592016-07-20 12:16:38 +00006832.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006833
6834 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6835 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6836 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6837 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6838 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6839 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6840 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6841 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6842
6843Aggregate Operations
6844--------------------
6845
6846LLVM supports several instructions for working with
6847:ref:`aggregate <t_aggregate>` values.
6848
6849.. _i_extractvalue:
6850
6851'``extractvalue``' Instruction
6852^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6853
6854Syntax:
6855"""""""
6856
6857::
6858
6859 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6860
6861Overview:
6862"""""""""
6863
6864The '``extractvalue``' instruction extracts the value of a member field
6865from an :ref:`aggregate <t_aggregate>` value.
6866
6867Arguments:
6868""""""""""
6869
6870The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006871:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006872constant indices to specify which value to extract in a similar manner
6873as indices in a '``getelementptr``' instruction.
6874
6875The major differences to ``getelementptr`` indexing are:
6876
6877- Since the value being indexed is not a pointer, the first index is
6878 omitted and assumed to be zero.
6879- At least one index must be specified.
6880- Not only struct indices but also array indices must be in bounds.
6881
6882Semantics:
6883""""""""""
6884
6885The result is the value at the position in the aggregate specified by
6886the index operands.
6887
6888Example:
6889""""""""
6890
Renato Golin124f2592016-07-20 12:16:38 +00006891.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006892
6893 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6894
6895.. _i_insertvalue:
6896
6897'``insertvalue``' Instruction
6898^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6899
6900Syntax:
6901"""""""
6902
6903::
6904
6905 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6906
6907Overview:
6908"""""""""
6909
6910The '``insertvalue``' instruction inserts a value into a member field in
6911an :ref:`aggregate <t_aggregate>` value.
6912
6913Arguments:
6914""""""""""
6915
6916The first operand of an '``insertvalue``' instruction is a value of
6917:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6918a first-class value to insert. The following operands are constant
6919indices indicating the position at which to insert the value in a
6920similar manner as indices in a '``extractvalue``' instruction. The value
6921to insert must have the same type as the value identified by the
6922indices.
6923
6924Semantics:
6925""""""""""
6926
6927The result is an aggregate of the same type as ``val``. Its value is
6928that of ``val`` except that the value at the position specified by the
6929indices is that of ``elt``.
6930
6931Example:
6932""""""""
6933
6934.. code-block:: llvm
6935
6936 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6937 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006938 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006939
6940.. _memoryops:
6941
6942Memory Access and Addressing Operations
6943---------------------------------------
6944
6945A key design point of an SSA-based representation is how it represents
6946memory. In LLVM, no memory locations are in SSA form, which makes things
6947very simple. This section describes how to read, write, and allocate
6948memory in LLVM.
6949
6950.. _i_alloca:
6951
6952'``alloca``' Instruction
6953^^^^^^^^^^^^^^^^^^^^^^^^
6954
6955Syntax:
6956"""""""
6957
6958::
6959
Tim Northover675a0962014-06-13 14:24:23 +00006960 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006961
6962Overview:
6963"""""""""
6964
6965The '``alloca``' instruction allocates memory on the stack frame of the
6966currently executing function, to be automatically released when this
6967function returns to its caller. The object is always allocated in the
6968generic address space (address space zero).
6969
6970Arguments:
6971""""""""""
6972
6973The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6974bytes of memory on the runtime stack, returning a pointer of the
6975appropriate type to the program. If "NumElements" is specified, it is
6976the number of elements allocated, otherwise "NumElements" is defaulted
6977to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006978allocation is guaranteed to be aligned to at least that boundary. The
6979alignment may not be greater than ``1 << 29``. If not specified, or if
6980zero, the target can choose to align the allocation on any convenient
6981boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006982
6983'``type``' may be any sized type.
6984
6985Semantics:
6986""""""""""
6987
6988Memory is allocated; a pointer is returned. The operation is undefined
6989if there is insufficient stack space for the allocation. '``alloca``'d
6990memory is automatically released when the function returns. The
6991'``alloca``' instruction is commonly used to represent automatic
6992variables that must have an address available. When the function returns
6993(either with the ``ret`` or ``resume`` instructions), the memory is
6994reclaimed. Allocating zero bytes is legal, but the result is undefined.
6995The order in which memory is allocated (ie., which way the stack grows)
6996is not specified.
6997
6998Example:
6999""""""""
7000
7001.. code-block:: llvm
7002
Tim Northover675a0962014-06-13 14:24:23 +00007003 %ptr = alloca i32 ; yields i32*:ptr
7004 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7005 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7006 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007007
7008.. _i_load:
7009
7010'``load``' Instruction
7011^^^^^^^^^^^^^^^^^^^^^^
7012
7013Syntax:
7014"""""""
7015
7016::
7017
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007018 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007019 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007020 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007021 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007022 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007023
7024Overview:
7025"""""""""
7026
7027The '``load``' instruction is used to read from memory.
7028
7029Arguments:
7030""""""""""
7031
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007032The argument to the ``load`` instruction specifies the memory address from which
7033to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7034known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7035the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7036modify the number or order of execution of this ``load`` with other
7037:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007038
JF Bastiend1fb5852015-12-17 22:09:19 +00007039If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7040<ordering>` and optional ``singlethread`` argument. The ``release`` and
7041``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7042produce :ref:`defined <memmodel>` results when they may see multiple atomic
7043stores. The type of the pointee must be an integer, pointer, or floating-point
7044type whose bit width is a power of two greater than or equal to eight and less
7045than or equal to a target-specific size limit. ``align`` must be explicitly
7046specified on atomic loads, and the load has undefined behavior if the alignment
7047is not set to a value which is at least the size in bytes of the
7048pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007049
7050The optional constant ``align`` argument specifies the alignment of the
7051operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007052or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007053alignment for the target. It is the responsibility of the code emitter
7054to ensure that the alignment information is correct. Overestimating the
7055alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007056may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007057maximum possible alignment is ``1 << 29``. An alignment value higher
7058than the size of the loaded type implies memory up to the alignment
7059value bytes can be safely loaded without trapping in the default
7060address space. Access of the high bytes can interfere with debugging
7061tools, so should not be accessed if the function has the
7062``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007063
7064The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007065metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007066``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007067metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007068that this load is not expected to be reused in the cache. The code
7069generator may select special instructions to save cache bandwidth, such
7070as the ``MOVNT`` instruction on x86.
7071
7072The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007073metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007074entries. If a load instruction tagged with the ``!invariant.load``
7075metadata is executed, the optimizer may assume the memory location
7076referenced by the load contains the same value at all points in the
7077program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007078
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007079The optional ``!invariant.group`` metadata must reference a single metadata name
7080 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7081
Philip Reamescdb72f32014-10-20 22:40:55 +00007082The optional ``!nonnull`` metadata must reference a single
7083metadata name ``<index>`` corresponding to a metadata node with no
7084entries. The existence of the ``!nonnull`` metadata on the
7085instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007086never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007087on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007088to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007089
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007090The optional ``!dereferenceable`` metadata must reference a single metadata
7091name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007092entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007093tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007094The number of bytes known to be dereferenceable is specified by the integer
7095value in the metadata node. This is analogous to the ''dereferenceable''
7096attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007097to loads of a pointer type.
7098
7099The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007100metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7101``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007102instruction tells the optimizer that the value loaded is known to be either
7103dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007104The number of bytes known to be dereferenceable is specified by the integer
7105value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7106attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007107to loads of a pointer type.
7108
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007109The optional ``!align`` metadata must reference a single metadata name
7110``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7111The existence of the ``!align`` metadata on the instruction tells the
7112optimizer that the value loaded is known to be aligned to a boundary specified
7113by the integer value in the metadata node. The alignment must be a power of 2.
7114This is analogous to the ''align'' attribute on parameters and return values.
7115This metadata can only be applied to loads of a pointer type.
7116
Sean Silvab084af42012-12-07 10:36:55 +00007117Semantics:
7118""""""""""
7119
7120The location of memory pointed to is loaded. If the value being loaded
7121is of scalar type then the number of bytes read does not exceed the
7122minimum number of bytes needed to hold all bits of the type. For
7123example, loading an ``i24`` reads at most three bytes. When loading a
7124value of a type like ``i20`` with a size that is not an integral number
7125of bytes, the result is undefined if the value was not originally
7126written using a store of the same type.
7127
7128Examples:
7129"""""""""
7130
7131.. code-block:: llvm
7132
Tim Northover675a0962014-06-13 14:24:23 +00007133 %ptr = alloca i32 ; yields i32*:ptr
7134 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007135 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007136
7137.. _i_store:
7138
7139'``store``' Instruction
7140^^^^^^^^^^^^^^^^^^^^^^^
7141
7142Syntax:
7143"""""""
7144
7145::
7146
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007147 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7148 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007149
7150Overview:
7151"""""""""
7152
7153The '``store``' instruction is used to write to memory.
7154
7155Arguments:
7156""""""""""
7157
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007158There are two arguments to the ``store`` instruction: a value to store and an
7159address at which to store it. The type of the ``<pointer>`` operand must be a
7160pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7161operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7162allowed to modify the number or order of execution of this ``store`` with other
7163:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7164<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7165structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007166
JF Bastiend1fb5852015-12-17 22:09:19 +00007167If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7168<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7169``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7170produce :ref:`defined <memmodel>` results when they may see multiple atomic
7171stores. The type of the pointee must be an integer, pointer, or floating-point
7172type whose bit width is a power of two greater than or equal to eight and less
7173than or equal to a target-specific size limit. ``align`` must be explicitly
7174specified on atomic stores, and the store has undefined behavior if the
7175alignment is not set to a value which is at least the size in bytes of the
7176pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007177
Eli Benderskyca380842013-04-17 17:17:20 +00007178The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007179operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007180or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007181alignment for the target. It is the responsibility of the code emitter
7182to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007183alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007184alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007185safe. The maximum possible alignment is ``1 << 29``. An alignment
7186value higher than the size of the stored type implies memory up to the
7187alignment value bytes can be stored to without trapping in the default
7188address space. Storing to the higher bytes however may result in data
7189races if another thread can access the same address. Introducing a
7190data race is not allowed. Storing to the extra bytes is not allowed
7191even in situations where a data race is known to not exist if the
7192function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007193
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007194The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007195name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007196value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007197tells the optimizer and code generator that this load is not expected to
7198be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007199instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007200x86.
7201
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007202The optional ``!invariant.group`` metadata must reference a
7203single metadata name ``<index>``. See ``invariant.group`` metadata.
7204
Sean Silvab084af42012-12-07 10:36:55 +00007205Semantics:
7206""""""""""
7207
Eli Benderskyca380842013-04-17 17:17:20 +00007208The contents of memory are updated to contain ``<value>`` at the
7209location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007210of scalar type then the number of bytes written does not exceed the
7211minimum number of bytes needed to hold all bits of the type. For
7212example, storing an ``i24`` writes at most three bytes. When writing a
7213value of a type like ``i20`` with a size that is not an integral number
7214of bytes, it is unspecified what happens to the extra bits that do not
7215belong to the type, but they will typically be overwritten.
7216
7217Example:
7218""""""""
7219
7220.. code-block:: llvm
7221
Tim Northover675a0962014-06-13 14:24:23 +00007222 %ptr = alloca i32 ; yields i32*:ptr
7223 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007224 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007225
7226.. _i_fence:
7227
7228'``fence``' Instruction
7229^^^^^^^^^^^^^^^^^^^^^^^
7230
7231Syntax:
7232"""""""
7233
7234::
7235
Tim Northover675a0962014-06-13 14:24:23 +00007236 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007237
7238Overview:
7239"""""""""
7240
7241The '``fence``' instruction is used to introduce happens-before edges
7242between operations.
7243
7244Arguments:
7245""""""""""
7246
7247'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7248defines what *synchronizes-with* edges they add. They can only be given
7249``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7250
7251Semantics:
7252""""""""""
7253
7254A fence A which has (at least) ``release`` ordering semantics
7255*synchronizes with* a fence B with (at least) ``acquire`` ordering
7256semantics if and only if there exist atomic operations X and Y, both
7257operating on some atomic object M, such that A is sequenced before X, X
7258modifies M (either directly or through some side effect of a sequence
7259headed by X), Y is sequenced before B, and Y observes M. This provides a
7260*happens-before* dependency between A and B. Rather than an explicit
7261``fence``, one (but not both) of the atomic operations X or Y might
7262provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7263still *synchronize-with* the explicit ``fence`` and establish the
7264*happens-before* edge.
7265
7266A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7267``acquire`` and ``release`` semantics specified above, participates in
7268the global program order of other ``seq_cst`` operations and/or fences.
7269
7270The optional ":ref:`singlethread <singlethread>`" argument specifies
7271that the fence only synchronizes with other fences in the same thread.
7272(This is useful for interacting with signal handlers.)
7273
7274Example:
7275""""""""
7276
7277.. code-block:: llvm
7278
Tim Northover675a0962014-06-13 14:24:23 +00007279 fence acquire ; yields void
7280 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007281
7282.. _i_cmpxchg:
7283
7284'``cmpxchg``' Instruction
7285^^^^^^^^^^^^^^^^^^^^^^^^^
7286
7287Syntax:
7288"""""""
7289
7290::
7291
Tim Northover675a0962014-06-13 14:24:23 +00007292 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007293
7294Overview:
7295"""""""""
7296
7297The '``cmpxchg``' instruction is used to atomically modify memory. It
7298loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007299equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007300
7301Arguments:
7302""""""""""
7303
7304There are three arguments to the '``cmpxchg``' instruction: an address
7305to operate on, a value to compare to the value currently be at that
7306address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007307are equal. The type of '<cmp>' must be an integer or pointer type whose
7308bit width is a power of two greater than or equal to eight and less
7309than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7310have the same type, and the type of '<pointer>' must be a pointer to
7311that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7312optimizer is not allowed to modify the number or order of execution of
7313this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007314
Tim Northovere94a5182014-03-11 10:48:52 +00007315The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007316``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7317must be at least ``monotonic``, the ordering constraint on failure must be no
7318stronger than that on success, and the failure ordering cannot be either
7319``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007320
7321The optional "``singlethread``" argument declares that the ``cmpxchg``
7322is only atomic with respect to code (usually signal handlers) running in
7323the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7324respect to all other code in the system.
7325
7326The pointer passed into cmpxchg must have alignment greater than or
7327equal to the size in memory of the operand.
7328
7329Semantics:
7330""""""""""
7331
Tim Northover420a2162014-06-13 14:24:07 +00007332The contents of memory at the location specified by the '``<pointer>``' operand
7333is read and compared to '``<cmp>``'; if the read value is the equal, the
7334'``<new>``' is written. The original value at the location is returned, together
7335with a flag indicating success (true) or failure (false).
7336
7337If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7338permitted: the operation may not write ``<new>`` even if the comparison
7339matched.
7340
7341If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7342if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007343
Tim Northovere94a5182014-03-11 10:48:52 +00007344A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7345identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7346load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007347
7348Example:
7349""""""""
7350
7351.. code-block:: llvm
7352
7353 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007354 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007355 br label %loop
7356
7357 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007358 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007359 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007360 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007361 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7362 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007363 br i1 %success, label %done, label %loop
7364
7365 done:
7366 ...
7367
7368.. _i_atomicrmw:
7369
7370'``atomicrmw``' Instruction
7371^^^^^^^^^^^^^^^^^^^^^^^^^^^
7372
7373Syntax:
7374"""""""
7375
7376::
7377
Tim Northover675a0962014-06-13 14:24:23 +00007378 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007379
7380Overview:
7381"""""""""
7382
7383The '``atomicrmw``' instruction is used to atomically modify memory.
7384
7385Arguments:
7386""""""""""
7387
7388There are three arguments to the '``atomicrmw``' instruction: an
7389operation to apply, an address whose value to modify, an argument to the
7390operation. The operation must be one of the following keywords:
7391
7392- xchg
7393- add
7394- sub
7395- and
7396- nand
7397- or
7398- xor
7399- max
7400- min
7401- umax
7402- umin
7403
7404The type of '<value>' must be an integer type whose bit width is a power
7405of two greater than or equal to eight and less than or equal to a
7406target-specific size limit. The type of the '``<pointer>``' operand must
7407be a pointer to that type. If the ``atomicrmw`` is marked as
7408``volatile``, then the optimizer is not allowed to modify the number or
7409order of execution of this ``atomicrmw`` with other :ref:`volatile
7410operations <volatile>`.
7411
7412Semantics:
7413""""""""""
7414
7415The contents of memory at the location specified by the '``<pointer>``'
7416operand are atomically read, modified, and written back. The original
7417value at the location is returned. The modification is specified by the
7418operation argument:
7419
7420- xchg: ``*ptr = val``
7421- add: ``*ptr = *ptr + val``
7422- sub: ``*ptr = *ptr - val``
7423- and: ``*ptr = *ptr & val``
7424- nand: ``*ptr = ~(*ptr & val)``
7425- or: ``*ptr = *ptr | val``
7426- xor: ``*ptr = *ptr ^ val``
7427- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7428- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7429- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7430 comparison)
7431- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7432 comparison)
7433
7434Example:
7435""""""""
7436
7437.. code-block:: llvm
7438
Tim Northover675a0962014-06-13 14:24:23 +00007439 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007440
7441.. _i_getelementptr:
7442
7443'``getelementptr``' Instruction
7444^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7445
7446Syntax:
7447"""""""
7448
7449::
7450
David Blaikie16a97eb2015-03-04 22:02:58 +00007451 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7452 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7453 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007454
7455Overview:
7456"""""""""
7457
7458The '``getelementptr``' instruction is used to get the address of a
7459subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007460address calculation only and does not access memory. The instruction can also
7461be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007462
7463Arguments:
7464""""""""""
7465
David Blaikie16a97eb2015-03-04 22:02:58 +00007466The first argument is always a type used as the basis for the calculations.
7467The second argument is always a pointer or a vector of pointers, and is the
7468base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007469that indicate which of the elements of the aggregate object are indexed.
7470The interpretation of each index is dependent on the type being indexed
7471into. The first index always indexes the pointer value given as the
7472first argument, the second index indexes a value of the type pointed to
7473(not necessarily the value directly pointed to, since the first index
7474can be non-zero), etc. The first type indexed into must be a pointer
7475value, subsequent types can be arrays, vectors, and structs. Note that
7476subsequent types being indexed into can never be pointers, since that
7477would require loading the pointer before continuing calculation.
7478
7479The type of each index argument depends on the type it is indexing into.
7480When indexing into a (optionally packed) structure, only ``i32`` integer
7481**constants** are allowed (when using a vector of indices they must all
7482be the **same** ``i32`` integer constant). When indexing into an array,
7483pointer or vector, integers of any width are allowed, and they are not
7484required to be constant. These integers are treated as signed values
7485where relevant.
7486
7487For example, let's consider a C code fragment and how it gets compiled
7488to LLVM:
7489
7490.. code-block:: c
7491
7492 struct RT {
7493 char A;
7494 int B[10][20];
7495 char C;
7496 };
7497 struct ST {
7498 int X;
7499 double Y;
7500 struct RT Z;
7501 };
7502
7503 int *foo(struct ST *s) {
7504 return &s[1].Z.B[5][13];
7505 }
7506
7507The LLVM code generated by Clang is:
7508
7509.. code-block:: llvm
7510
7511 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7512 %struct.ST = type { i32, double, %struct.RT }
7513
7514 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7515 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007516 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007517 ret i32* %arrayidx
7518 }
7519
7520Semantics:
7521""""""""""
7522
7523In the example above, the first index is indexing into the
7524'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7525= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7526indexes into the third element of the structure, yielding a
7527'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7528structure. The third index indexes into the second element of the
7529structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7530dimensions of the array are subscripted into, yielding an '``i32``'
7531type. The '``getelementptr``' instruction returns a pointer to this
7532element, thus computing a value of '``i32*``' type.
7533
7534Note that it is perfectly legal to index partially through a structure,
7535returning a pointer to an inner element. Because of this, the LLVM code
7536for the given testcase is equivalent to:
7537
7538.. code-block:: llvm
7539
7540 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007541 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7542 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7543 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7544 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7545 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007546 ret i32* %t5
7547 }
7548
7549If the ``inbounds`` keyword is present, the result value of the
7550``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7551pointer is not an *in bounds* address of an allocated object, or if any
7552of the addresses that would be formed by successive addition of the
7553offsets implied by the indices to the base address with infinitely
7554precise signed arithmetic are not an *in bounds* address of that
7555allocated object. The *in bounds* addresses for an allocated object are
7556all the addresses that point into the object, plus the address one byte
7557past the end. In cases where the base is a vector of pointers the
7558``inbounds`` keyword applies to each of the computations element-wise.
7559
7560If the ``inbounds`` keyword is not present, the offsets are added to the
7561base address with silently-wrapping two's complement arithmetic. If the
7562offsets have a different width from the pointer, they are sign-extended
7563or truncated to the width of the pointer. The result value of the
7564``getelementptr`` may be outside the object pointed to by the base
7565pointer. The result value may not necessarily be used to access memory
7566though, even if it happens to point into allocated storage. See the
7567:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7568information.
7569
7570The getelementptr instruction is often confusing. For some more insight
7571into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7572
7573Example:
7574""""""""
7575
7576.. code-block:: llvm
7577
7578 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007579 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007580 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007581 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007582 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007583 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007584 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007585 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007586
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007587Vector of pointers:
7588"""""""""""""""""""
7589
7590The ``getelementptr`` returns a vector of pointers, instead of a single address,
7591when one or more of its arguments is a vector. In such cases, all vector
7592arguments should have the same number of elements, and every scalar argument
7593will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007594
7595.. code-block:: llvm
7596
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007597 ; All arguments are vectors:
7598 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7599 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007600
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007601 ; Add the same scalar offset to each pointer of a vector:
7602 ; A[i] = ptrs[i] + offset*sizeof(i8)
7603 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007604
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007605 ; Add distinct offsets to the same pointer:
7606 ; A[i] = ptr + offsets[i]*sizeof(i8)
7607 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007608
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007609 ; In all cases described above the type of the result is <4 x i8*>
7610
7611The two following instructions are equivalent:
7612
7613.. code-block:: llvm
7614
7615 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7616 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7617 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7618 <4 x i32> %ind4,
7619 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007620
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007621 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7622 i32 2, i32 1, <4 x i32> %ind4, i64 13
7623
7624Let's look at the C code, where the vector version of ``getelementptr``
7625makes sense:
7626
7627.. code-block:: c
7628
7629 // Let's assume that we vectorize the following loop:
7630 double *A, B; int *C;
7631 for (int i = 0; i < size; ++i) {
7632 A[i] = B[C[i]];
7633 }
7634
7635.. code-block:: llvm
7636
7637 ; get pointers for 8 elements from array B
7638 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7639 ; load 8 elements from array B into A
7640 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7641 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007642
7643Conversion Operations
7644---------------------
7645
7646The instructions in this category are the conversion instructions
7647(casting) which all take a single operand and a type. They perform
7648various bit conversions on the operand.
7649
7650'``trunc .. to``' Instruction
7651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7652
7653Syntax:
7654"""""""
7655
7656::
7657
7658 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7659
7660Overview:
7661"""""""""
7662
7663The '``trunc``' instruction truncates its operand to the type ``ty2``.
7664
7665Arguments:
7666""""""""""
7667
7668The '``trunc``' instruction takes a value to trunc, and a type to trunc
7669it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7670of the same number of integers. The bit size of the ``value`` must be
7671larger than the bit size of the destination type, ``ty2``. Equal sized
7672types are not allowed.
7673
7674Semantics:
7675""""""""""
7676
7677The '``trunc``' instruction truncates the high order bits in ``value``
7678and converts the remaining bits to ``ty2``. Since the source size must
7679be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7680It will always truncate bits.
7681
7682Example:
7683""""""""
7684
7685.. code-block:: llvm
7686
7687 %X = trunc i32 257 to i8 ; yields i8:1
7688 %Y = trunc i32 123 to i1 ; yields i1:true
7689 %Z = trunc i32 122 to i1 ; yields i1:false
7690 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7691
7692'``zext .. to``' Instruction
7693^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7694
7695Syntax:
7696"""""""
7697
7698::
7699
7700 <result> = zext <ty> <value> to <ty2> ; yields ty2
7701
7702Overview:
7703"""""""""
7704
7705The '``zext``' instruction zero extends its operand to type ``ty2``.
7706
7707Arguments:
7708""""""""""
7709
7710The '``zext``' instruction takes a value to cast, and a type to cast it
7711to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7712the same number of integers. The bit size of the ``value`` must be
7713smaller than the bit size of the destination type, ``ty2``.
7714
7715Semantics:
7716""""""""""
7717
7718The ``zext`` fills the high order bits of the ``value`` with zero bits
7719until it reaches the size of the destination type, ``ty2``.
7720
7721When zero extending from i1, the result will always be either 0 or 1.
7722
7723Example:
7724""""""""
7725
7726.. code-block:: llvm
7727
7728 %X = zext i32 257 to i64 ; yields i64:257
7729 %Y = zext i1 true to i32 ; yields i32:1
7730 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7731
7732'``sext .. to``' Instruction
7733^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7734
7735Syntax:
7736"""""""
7737
7738::
7739
7740 <result> = sext <ty> <value> to <ty2> ; yields ty2
7741
7742Overview:
7743"""""""""
7744
7745The '``sext``' sign extends ``value`` to the type ``ty2``.
7746
7747Arguments:
7748""""""""""
7749
7750The '``sext``' instruction takes a value to cast, and a type to cast it
7751to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7752the same number of integers. The bit size of the ``value`` must be
7753smaller than the bit size of the destination type, ``ty2``.
7754
7755Semantics:
7756""""""""""
7757
7758The '``sext``' instruction performs a sign extension by copying the sign
7759bit (highest order bit) of the ``value`` until it reaches the bit size
7760of the type ``ty2``.
7761
7762When sign extending from i1, the extension always results in -1 or 0.
7763
7764Example:
7765""""""""
7766
7767.. code-block:: llvm
7768
7769 %X = sext i8 -1 to i16 ; yields i16 :65535
7770 %Y = sext i1 true to i32 ; yields i32:-1
7771 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7772
7773'``fptrunc .. to``' Instruction
7774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7775
7776Syntax:
7777"""""""
7778
7779::
7780
7781 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7782
7783Overview:
7784"""""""""
7785
7786The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7787
7788Arguments:
7789""""""""""
7790
7791The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7792value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7793The size of ``value`` must be larger than the size of ``ty2``. This
7794implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7795
7796Semantics:
7797""""""""""
7798
Dan Liew50456fb2015-09-03 18:43:56 +00007799The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007800:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007801point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7802destination type, ``ty2``, then the results are undefined. If the cast produces
7803an inexact result, how rounding is performed (e.g. truncation, also known as
7804round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007805
7806Example:
7807""""""""
7808
7809.. code-block:: llvm
7810
7811 %X = fptrunc double 123.0 to float ; yields float:123.0
7812 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7813
7814'``fpext .. to``' Instruction
7815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7816
7817Syntax:
7818"""""""
7819
7820::
7821
7822 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7823
7824Overview:
7825"""""""""
7826
7827The '``fpext``' extends a floating point ``value`` to a larger floating
7828point value.
7829
7830Arguments:
7831""""""""""
7832
7833The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7834``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7835to. The source type must be smaller than the destination type.
7836
7837Semantics:
7838""""""""""
7839
7840The '``fpext``' instruction extends the ``value`` from a smaller
7841:ref:`floating point <t_floating>` type to a larger :ref:`floating
7842point <t_floating>` type. The ``fpext`` cannot be used to make a
7843*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7844*no-op cast* for a floating point cast.
7845
7846Example:
7847""""""""
7848
7849.. code-block:: llvm
7850
7851 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7852 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7853
7854'``fptoui .. to``' Instruction
7855^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7856
7857Syntax:
7858"""""""
7859
7860::
7861
7862 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7863
7864Overview:
7865"""""""""
7866
7867The '``fptoui``' converts a floating point ``value`` to its unsigned
7868integer equivalent of type ``ty2``.
7869
7870Arguments:
7871""""""""""
7872
7873The '``fptoui``' instruction takes a value to cast, which must be a
7874scalar or vector :ref:`floating point <t_floating>` value, and a type to
7875cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7876``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7877type with the same number of elements as ``ty``
7878
7879Semantics:
7880""""""""""
7881
7882The '``fptoui``' instruction converts its :ref:`floating
7883point <t_floating>` operand into the nearest (rounding towards zero)
7884unsigned integer value. If the value cannot fit in ``ty2``, the results
7885are undefined.
7886
7887Example:
7888""""""""
7889
7890.. code-block:: llvm
7891
7892 %X = fptoui double 123.0 to i32 ; yields i32:123
7893 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7894 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7895
7896'``fptosi .. to``' Instruction
7897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7898
7899Syntax:
7900"""""""
7901
7902::
7903
7904 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7905
7906Overview:
7907"""""""""
7908
7909The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7910``value`` to type ``ty2``.
7911
7912Arguments:
7913""""""""""
7914
7915The '``fptosi``' instruction takes a value to cast, which must be a
7916scalar or vector :ref:`floating point <t_floating>` value, and a type to
7917cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7918``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7919type with the same number of elements as ``ty``
7920
7921Semantics:
7922""""""""""
7923
7924The '``fptosi``' instruction converts its :ref:`floating
7925point <t_floating>` operand into the nearest (rounding towards zero)
7926signed integer value. If the value cannot fit in ``ty2``, the results
7927are undefined.
7928
7929Example:
7930""""""""
7931
7932.. code-block:: llvm
7933
7934 %X = fptosi double -123.0 to i32 ; yields i32:-123
7935 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7936 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7937
7938'``uitofp .. to``' Instruction
7939^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7940
7941Syntax:
7942"""""""
7943
7944::
7945
7946 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7947
7948Overview:
7949"""""""""
7950
7951The '``uitofp``' instruction regards ``value`` as an unsigned integer
7952and converts that value to the ``ty2`` type.
7953
7954Arguments:
7955""""""""""
7956
7957The '``uitofp``' instruction takes a value to cast, which must be a
7958scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7959``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7960``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7961type with the same number of elements as ``ty``
7962
7963Semantics:
7964""""""""""
7965
7966The '``uitofp``' instruction interprets its operand as an unsigned
7967integer quantity and converts it to the corresponding floating point
7968value. If the value cannot fit in the floating point value, the results
7969are undefined.
7970
7971Example:
7972""""""""
7973
7974.. code-block:: llvm
7975
7976 %X = uitofp i32 257 to float ; yields float:257.0
7977 %Y = uitofp i8 -1 to double ; yields double:255.0
7978
7979'``sitofp .. to``' Instruction
7980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7981
7982Syntax:
7983"""""""
7984
7985::
7986
7987 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7988
7989Overview:
7990"""""""""
7991
7992The '``sitofp``' instruction regards ``value`` as a signed integer and
7993converts that value to the ``ty2`` type.
7994
7995Arguments:
7996""""""""""
7997
7998The '``sitofp``' instruction takes a value to cast, which must be a
7999scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8000``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8001``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8002type with the same number of elements as ``ty``
8003
8004Semantics:
8005""""""""""
8006
8007The '``sitofp``' instruction interprets its operand as a signed integer
8008quantity and converts it to the corresponding floating point value. If
8009the value cannot fit in the floating point value, the results are
8010undefined.
8011
8012Example:
8013""""""""
8014
8015.. code-block:: llvm
8016
8017 %X = sitofp i32 257 to float ; yields float:257.0
8018 %Y = sitofp i8 -1 to double ; yields double:-1.0
8019
8020.. _i_ptrtoint:
8021
8022'``ptrtoint .. to``' Instruction
8023^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8024
8025Syntax:
8026"""""""
8027
8028::
8029
8030 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8031
8032Overview:
8033"""""""""
8034
8035The '``ptrtoint``' instruction converts the pointer or a vector of
8036pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8037
8038Arguments:
8039""""""""""
8040
8041The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008042a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008043type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8044a vector of integers type.
8045
8046Semantics:
8047""""""""""
8048
8049The '``ptrtoint``' instruction converts ``value`` to integer type
8050``ty2`` by interpreting the pointer value as an integer and either
8051truncating or zero extending that value to the size of the integer type.
8052If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8053``value`` is larger than ``ty2`` then a truncation is done. If they are
8054the same size, then nothing is done (*no-op cast*) other than a type
8055change.
8056
8057Example:
8058""""""""
8059
8060.. code-block:: llvm
8061
8062 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8063 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8064 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8065
8066.. _i_inttoptr:
8067
8068'``inttoptr .. to``' Instruction
8069^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8070
8071Syntax:
8072"""""""
8073
8074::
8075
8076 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8077
8078Overview:
8079"""""""""
8080
8081The '``inttoptr``' instruction converts an integer ``value`` to a
8082pointer type, ``ty2``.
8083
8084Arguments:
8085""""""""""
8086
8087The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8088cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8089type.
8090
8091Semantics:
8092""""""""""
8093
8094The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8095applying either a zero extension or a truncation depending on the size
8096of the integer ``value``. If ``value`` is larger than the size of a
8097pointer then a truncation is done. If ``value`` is smaller than the size
8098of a pointer then a zero extension is done. If they are the same size,
8099nothing is done (*no-op cast*).
8100
8101Example:
8102""""""""
8103
8104.. code-block:: llvm
8105
8106 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8107 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8108 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8109 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8110
8111.. _i_bitcast:
8112
8113'``bitcast .. to``' Instruction
8114^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8115
8116Syntax:
8117"""""""
8118
8119::
8120
8121 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8122
8123Overview:
8124"""""""""
8125
8126The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8127changing any bits.
8128
8129Arguments:
8130""""""""""
8131
8132The '``bitcast``' instruction takes a value to cast, which must be a
8133non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008134also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8135bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008136identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008137also be a pointer of the same size. This instruction supports bitwise
8138conversion of vectors to integers and to vectors of other types (as
8139long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008140
8141Semantics:
8142""""""""""
8143
Matt Arsenault24b49c42013-07-31 17:49:08 +00008144The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8145is always a *no-op cast* because no bits change with this
8146conversion. The conversion is done as if the ``value`` had been stored
8147to memory and read back as type ``ty2``. Pointer (or vector of
8148pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008149pointers) types with the same address space through this instruction.
8150To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8151or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008152
8153Example:
8154""""""""
8155
Renato Golin124f2592016-07-20 12:16:38 +00008156.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008157
8158 %X = bitcast i8 255 to i8 ; yields i8 :-1
8159 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8160 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8161 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8162
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008163.. _i_addrspacecast:
8164
8165'``addrspacecast .. to``' Instruction
8166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8167
8168Syntax:
8169"""""""
8170
8171::
8172
8173 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8174
8175Overview:
8176"""""""""
8177
8178The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8179address space ``n`` to type ``pty2`` in address space ``m``.
8180
8181Arguments:
8182""""""""""
8183
8184The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8185to cast and a pointer type to cast it to, which must have a different
8186address space.
8187
8188Semantics:
8189""""""""""
8190
8191The '``addrspacecast``' instruction converts the pointer value
8192``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008193value modification, depending on the target and the address space
8194pair. Pointer conversions within the same address space must be
8195performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008196conversion is legal then both result and operand refer to the same memory
8197location.
8198
8199Example:
8200""""""""
8201
8202.. code-block:: llvm
8203
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008204 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8205 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8206 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008207
Sean Silvab084af42012-12-07 10:36:55 +00008208.. _otherops:
8209
8210Other Operations
8211----------------
8212
8213The instructions in this category are the "miscellaneous" instructions,
8214which defy better classification.
8215
8216.. _i_icmp:
8217
8218'``icmp``' Instruction
8219^^^^^^^^^^^^^^^^^^^^^^
8220
8221Syntax:
8222"""""""
8223
8224::
8225
Tim Northover675a0962014-06-13 14:24:23 +00008226 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008227
8228Overview:
8229"""""""""
8230
8231The '``icmp``' instruction returns a boolean value or a vector of
8232boolean values based on comparison of its two integer, integer vector,
8233pointer, or pointer vector operands.
8234
8235Arguments:
8236""""""""""
8237
8238The '``icmp``' instruction takes three operands. The first operand is
8239the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008240not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008241
8242#. ``eq``: equal
8243#. ``ne``: not equal
8244#. ``ugt``: unsigned greater than
8245#. ``uge``: unsigned greater or equal
8246#. ``ult``: unsigned less than
8247#. ``ule``: unsigned less or equal
8248#. ``sgt``: signed greater than
8249#. ``sge``: signed greater or equal
8250#. ``slt``: signed less than
8251#. ``sle``: signed less or equal
8252
8253The remaining two arguments must be :ref:`integer <t_integer>` or
8254:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8255must also be identical types.
8256
8257Semantics:
8258""""""""""
8259
8260The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8261code given as ``cond``. The comparison performed always yields either an
8262:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8263
8264#. ``eq``: yields ``true`` if the operands are equal, ``false``
8265 otherwise. No sign interpretation is necessary or performed.
8266#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8267 otherwise. No sign interpretation is necessary or performed.
8268#. ``ugt``: interprets the operands as unsigned values and yields
8269 ``true`` if ``op1`` is greater than ``op2``.
8270#. ``uge``: interprets the operands as unsigned values and yields
8271 ``true`` if ``op1`` is greater than or equal to ``op2``.
8272#. ``ult``: interprets the operands as unsigned values and yields
8273 ``true`` if ``op1`` is less than ``op2``.
8274#. ``ule``: interprets the operands as unsigned values and yields
8275 ``true`` if ``op1`` is less than or equal to ``op2``.
8276#. ``sgt``: interprets the operands as signed values and yields ``true``
8277 if ``op1`` is greater than ``op2``.
8278#. ``sge``: interprets the operands as signed values and yields ``true``
8279 if ``op1`` is greater than or equal to ``op2``.
8280#. ``slt``: interprets the operands as signed values and yields ``true``
8281 if ``op1`` is less than ``op2``.
8282#. ``sle``: interprets the operands as signed values and yields ``true``
8283 if ``op1`` is less than or equal to ``op2``.
8284
8285If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8286are compared as if they were integers.
8287
8288If the operands are integer vectors, then they are compared element by
8289element. The result is an ``i1`` vector with the same number of elements
8290as the values being compared. Otherwise, the result is an ``i1``.
8291
8292Example:
8293""""""""
8294
Renato Golin124f2592016-07-20 12:16:38 +00008295.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008296
8297 <result> = icmp eq i32 4, 5 ; yields: result=false
8298 <result> = icmp ne float* %X, %X ; yields: result=false
8299 <result> = icmp ult i16 4, 5 ; yields: result=true
8300 <result> = icmp sgt i16 4, 5 ; yields: result=false
8301 <result> = icmp ule i16 -4, 5 ; yields: result=false
8302 <result> = icmp sge i16 4, 5 ; yields: result=false
8303
Sean Silvab084af42012-12-07 10:36:55 +00008304.. _i_fcmp:
8305
8306'``fcmp``' Instruction
8307^^^^^^^^^^^^^^^^^^^^^^
8308
8309Syntax:
8310"""""""
8311
8312::
8313
James Molloy88eb5352015-07-10 12:52:00 +00008314 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008315
8316Overview:
8317"""""""""
8318
8319The '``fcmp``' instruction returns a boolean value or vector of boolean
8320values based on comparison of its operands.
8321
8322If the operands are floating point scalars, then the result type is a
8323boolean (:ref:`i1 <t_integer>`).
8324
8325If the operands are floating point vectors, then the result type is a
8326vector of boolean with the same number of elements as the operands being
8327compared.
8328
8329Arguments:
8330""""""""""
8331
8332The '``fcmp``' instruction takes three operands. The first operand is
8333the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008334not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008335
8336#. ``false``: no comparison, always returns false
8337#. ``oeq``: ordered and equal
8338#. ``ogt``: ordered and greater than
8339#. ``oge``: ordered and greater than or equal
8340#. ``olt``: ordered and less than
8341#. ``ole``: ordered and less than or equal
8342#. ``one``: ordered and not equal
8343#. ``ord``: ordered (no nans)
8344#. ``ueq``: unordered or equal
8345#. ``ugt``: unordered or greater than
8346#. ``uge``: unordered or greater than or equal
8347#. ``ult``: unordered or less than
8348#. ``ule``: unordered or less than or equal
8349#. ``une``: unordered or not equal
8350#. ``uno``: unordered (either nans)
8351#. ``true``: no comparison, always returns true
8352
8353*Ordered* means that neither operand is a QNAN while *unordered* means
8354that either operand may be a QNAN.
8355
8356Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8357point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8358type. They must have identical types.
8359
8360Semantics:
8361""""""""""
8362
8363The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8364condition code given as ``cond``. If the operands are vectors, then the
8365vectors are compared element by element. Each comparison performed
8366always yields an :ref:`i1 <t_integer>` result, as follows:
8367
8368#. ``false``: always yields ``false``, regardless of operands.
8369#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8370 is equal to ``op2``.
8371#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8372 is greater than ``op2``.
8373#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8374 is greater than or equal to ``op2``.
8375#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8376 is less than ``op2``.
8377#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8378 is less than or equal to ``op2``.
8379#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8380 is not equal to ``op2``.
8381#. ``ord``: yields ``true`` if both operands are not a QNAN.
8382#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8383 equal to ``op2``.
8384#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8385 greater than ``op2``.
8386#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8387 greater than or equal to ``op2``.
8388#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8389 less than ``op2``.
8390#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8391 less than or equal to ``op2``.
8392#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8393 not equal to ``op2``.
8394#. ``uno``: yields ``true`` if either operand is a QNAN.
8395#. ``true``: always yields ``true``, regardless of operands.
8396
James Molloy88eb5352015-07-10 12:52:00 +00008397The ``fcmp`` instruction can also optionally take any number of
8398:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8399otherwise unsafe floating point optimizations.
8400
8401Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8402only flags that have any effect on its semantics are those that allow
8403assumptions to be made about the values of input arguments; namely
8404``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8405
Sean Silvab084af42012-12-07 10:36:55 +00008406Example:
8407""""""""
8408
Renato Golin124f2592016-07-20 12:16:38 +00008409.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008410
8411 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8412 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8413 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8414 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8415
Sean Silvab084af42012-12-07 10:36:55 +00008416.. _i_phi:
8417
8418'``phi``' Instruction
8419^^^^^^^^^^^^^^^^^^^^^
8420
8421Syntax:
8422"""""""
8423
8424::
8425
8426 <result> = phi <ty> [ <val0>, <label0>], ...
8427
8428Overview:
8429"""""""""
8430
8431The '``phi``' instruction is used to implement the φ node in the SSA
8432graph representing the function.
8433
8434Arguments:
8435""""""""""
8436
8437The type of the incoming values is specified with the first type field.
8438After this, the '``phi``' instruction takes a list of pairs as
8439arguments, with one pair for each predecessor basic block of the current
8440block. Only values of :ref:`first class <t_firstclass>` type may be used as
8441the value arguments to the PHI node. Only labels may be used as the
8442label arguments.
8443
8444There must be no non-phi instructions between the start of a basic block
8445and the PHI instructions: i.e. PHI instructions must be first in a basic
8446block.
8447
8448For the purposes of the SSA form, the use of each incoming value is
8449deemed to occur on the edge from the corresponding predecessor block to
8450the current block (but after any definition of an '``invoke``'
8451instruction's return value on the same edge).
8452
8453Semantics:
8454""""""""""
8455
8456At runtime, the '``phi``' instruction logically takes on the value
8457specified by the pair corresponding to the predecessor basic block that
8458executed just prior to the current block.
8459
8460Example:
8461""""""""
8462
8463.. code-block:: llvm
8464
8465 Loop: ; Infinite loop that counts from 0 on up...
8466 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8467 %nextindvar = add i32 %indvar, 1
8468 br label %Loop
8469
8470.. _i_select:
8471
8472'``select``' Instruction
8473^^^^^^^^^^^^^^^^^^^^^^^^
8474
8475Syntax:
8476"""""""
8477
8478::
8479
8480 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8481
8482 selty is either i1 or {<N x i1>}
8483
8484Overview:
8485"""""""""
8486
8487The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008488condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008489
8490Arguments:
8491""""""""""
8492
8493The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8494values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008495class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008496
8497Semantics:
8498""""""""""
8499
8500If the condition is an i1 and it evaluates to 1, the instruction returns
8501the first value argument; otherwise, it returns the second value
8502argument.
8503
8504If the condition is a vector of i1, then the value arguments must be
8505vectors of the same size, and the selection is done element by element.
8506
David Majnemer40a0b592015-03-03 22:45:47 +00008507If the condition is an i1 and the value arguments are vectors of the
8508same size, then an entire vector is selected.
8509
Sean Silvab084af42012-12-07 10:36:55 +00008510Example:
8511""""""""
8512
8513.. code-block:: llvm
8514
8515 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8516
8517.. _i_call:
8518
8519'``call``' Instruction
8520^^^^^^^^^^^^^^^^^^^^^^
8521
8522Syntax:
8523"""""""
8524
8525::
8526
David Blaikieb83cf102016-07-13 17:21:34 +00008527 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008528 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008529
8530Overview:
8531"""""""""
8532
8533The '``call``' instruction represents a simple function call.
8534
8535Arguments:
8536""""""""""
8537
8538This instruction requires several arguments:
8539
Reid Kleckner5772b772014-04-24 20:14:34 +00008540#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008541 should perform tail call optimization. The ``tail`` marker is a hint that
8542 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008543 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008544 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008545
8546 #. The call will not cause unbounded stack growth if it is part of a
8547 recursive cycle in the call graph.
8548 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8549 forwarded in place.
8550
8551 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008552 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008553 rules:
8554
8555 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8556 or a pointer bitcast followed by a ret instruction.
8557 - The ret instruction must return the (possibly bitcasted) value
8558 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008559 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008560 parameters or return types may differ in pointee type, but not
8561 in address space.
8562 - The calling conventions of the caller and callee must match.
8563 - All ABI-impacting function attributes, such as sret, byval, inreg,
8564 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008565 - The callee must be varargs iff the caller is varargs. Bitcasting a
8566 non-varargs function to the appropriate varargs type is legal so
8567 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008568
8569 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8570 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008571
8572 - Caller and callee both have the calling convention ``fastcc``.
8573 - The call is in tail position (ret immediately follows call and ret
8574 uses value of call or is void).
8575 - Option ``-tailcallopt`` is enabled, or
8576 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008577 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008578 met. <CodeGenerator.html#tailcallopt>`_
8579
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008580#. The optional ``notail`` marker indicates that the optimizers should not add
8581 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8582 call optimization from being performed on the call.
8583
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008584#. The optional ``fast-math flags`` marker indicates that the call has one or more
8585 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8586 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8587 for calls that return a floating-point scalar or vector type.
8588
Sean Silvab084af42012-12-07 10:36:55 +00008589#. The optional "cconv" marker indicates which :ref:`calling
8590 convention <callingconv>` the call should use. If none is
8591 specified, the call defaults to using C calling conventions. The
8592 calling convention of the call must match the calling convention of
8593 the target function, or else the behavior is undefined.
8594#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8595 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8596 are valid here.
8597#. '``ty``': the type of the call instruction itself which is also the
8598 type of the return value. Functions that return no value are marked
8599 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008600#. '``fnty``': shall be the signature of the function being called. The
8601 argument types must match the types implied by this signature. This
8602 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008603#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008604 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008605 indirect ``call``'s are just as possible, calling an arbitrary pointer
8606 to function value.
8607#. '``function args``': argument list whose types match the function
8608 signature argument types and parameter attributes. All arguments must
8609 be of :ref:`first class <t_firstclass>` type. If the function signature
8610 indicates the function accepts a variable number of arguments, the
8611 extra arguments can be specified.
8612#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008613 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8614 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008615#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008616
8617Semantics:
8618""""""""""
8619
8620The '``call``' instruction is used to cause control flow to transfer to
8621a specified function, with its incoming arguments bound to the specified
8622values. Upon a '``ret``' instruction in the called function, control
8623flow continues with the instruction after the function call, and the
8624return value of the function is bound to the result argument.
8625
8626Example:
8627""""""""
8628
8629.. code-block:: llvm
8630
8631 %retval = call i32 @test(i32 %argc)
8632 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8633 %X = tail call i32 @foo() ; yields i32
8634 %Y = tail call fastcc i32 @foo() ; yields i32
8635 call void %foo(i8 97 signext)
8636
8637 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008638 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008639 %gr = extractvalue %struct.A %r, 0 ; yields i32
8640 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8641 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8642 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8643
8644llvm treats calls to some functions with names and arguments that match
8645the standard C99 library as being the C99 library functions, and may
8646perform optimizations or generate code for them under that assumption.
8647This is something we'd like to change in the future to provide better
8648support for freestanding environments and non-C-based languages.
8649
8650.. _i_va_arg:
8651
8652'``va_arg``' Instruction
8653^^^^^^^^^^^^^^^^^^^^^^^^
8654
8655Syntax:
8656"""""""
8657
8658::
8659
8660 <resultval> = va_arg <va_list*> <arglist>, <argty>
8661
8662Overview:
8663"""""""""
8664
8665The '``va_arg``' instruction is used to access arguments passed through
8666the "variable argument" area of a function call. It is used to implement
8667the ``va_arg`` macro in C.
8668
8669Arguments:
8670""""""""""
8671
8672This instruction takes a ``va_list*`` value and the type of the
8673argument. It returns a value of the specified argument type and
8674increments the ``va_list`` to point to the next argument. The actual
8675type of ``va_list`` is target specific.
8676
8677Semantics:
8678""""""""""
8679
8680The '``va_arg``' instruction loads an argument of the specified type
8681from the specified ``va_list`` and causes the ``va_list`` to point to
8682the next argument. For more information, see the variable argument
8683handling :ref:`Intrinsic Functions <int_varargs>`.
8684
8685It is legal for this instruction to be called in a function which does
8686not take a variable number of arguments, for example, the ``vfprintf``
8687function.
8688
8689``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8690function <intrinsics>` because it takes a type as an argument.
8691
8692Example:
8693""""""""
8694
8695See the :ref:`variable argument processing <int_varargs>` section.
8696
8697Note that the code generator does not yet fully support va\_arg on many
8698targets. Also, it does not currently support va\_arg with aggregate
8699types on any target.
8700
8701.. _i_landingpad:
8702
8703'``landingpad``' Instruction
8704^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8705
8706Syntax:
8707"""""""
8708
8709::
8710
David Majnemer7fddecc2015-06-17 20:52:32 +00008711 <resultval> = landingpad <resultty> <clause>+
8712 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008713
8714 <clause> := catch <type> <value>
8715 <clause> := filter <array constant type> <array constant>
8716
8717Overview:
8718"""""""""
8719
8720The '``landingpad``' instruction is used by `LLVM's exception handling
8721system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008722is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008723code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008724defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008725re-entry to the function. The ``resultval`` has the type ``resultty``.
8726
8727Arguments:
8728""""""""""
8729
David Majnemer7fddecc2015-06-17 20:52:32 +00008730The optional
Sean Silvab084af42012-12-07 10:36:55 +00008731``cleanup`` flag indicates that the landing pad block is a cleanup.
8732
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008733A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008734contains the global variable representing the "type" that may be caught
8735or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8736clause takes an array constant as its argument. Use
8737"``[0 x i8**] undef``" for a filter which cannot throw. The
8738'``landingpad``' instruction must contain *at least* one ``clause`` or
8739the ``cleanup`` flag.
8740
8741Semantics:
8742""""""""""
8743
8744The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008745:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008746therefore the "result type" of the ``landingpad`` instruction. As with
8747calling conventions, how the personality function results are
8748represented in LLVM IR is target specific.
8749
8750The clauses are applied in order from top to bottom. If two
8751``landingpad`` instructions are merged together through inlining, the
8752clauses from the calling function are appended to the list of clauses.
8753When the call stack is being unwound due to an exception being thrown,
8754the exception is compared against each ``clause`` in turn. If it doesn't
8755match any of the clauses, and the ``cleanup`` flag is not set, then
8756unwinding continues further up the call stack.
8757
8758The ``landingpad`` instruction has several restrictions:
8759
8760- A landing pad block is a basic block which is the unwind destination
8761 of an '``invoke``' instruction.
8762- A landing pad block must have a '``landingpad``' instruction as its
8763 first non-PHI instruction.
8764- There can be only one '``landingpad``' instruction within the landing
8765 pad block.
8766- A basic block that is not a landing pad block may not include a
8767 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008768
8769Example:
8770""""""""
8771
8772.. code-block:: llvm
8773
8774 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008775 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008776 catch i8** @_ZTIi
8777 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008778 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008779 cleanup
8780 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008781 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008782 catch i8** @_ZTIi
8783 filter [1 x i8**] [@_ZTId]
8784
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008785.. _i_catchpad:
8786
8787'``catchpad``' Instruction
8788^^^^^^^^^^^^^^^^^^^^^^^^^^
8789
8790Syntax:
8791"""""""
8792
8793::
8794
8795 <resultval> = catchpad within <catchswitch> [<args>*]
8796
8797Overview:
8798"""""""""
8799
8800The '``catchpad``' instruction is used by `LLVM's exception handling
8801system <ExceptionHandling.html#overview>`_ to specify that a basic block
8802begins a catch handler --- one where a personality routine attempts to transfer
8803control to catch an exception.
8804
8805Arguments:
8806""""""""""
8807
8808The ``catchswitch`` operand must always be a token produced by a
8809:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8810ensures that each ``catchpad`` has exactly one predecessor block, and it always
8811terminates in a ``catchswitch``.
8812
8813The ``args`` correspond to whatever information the personality routine
8814requires to know if this is an appropriate handler for the exception. Control
8815will transfer to the ``catchpad`` if this is the first appropriate handler for
8816the exception.
8817
8818The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8819``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8820pads.
8821
8822Semantics:
8823""""""""""
8824
8825When the call stack is being unwound due to an exception being thrown, the
8826exception is compared against the ``args``. If it doesn't match, control will
8827not reach the ``catchpad`` instruction. The representation of ``args`` is
8828entirely target and personality function-specific.
8829
8830Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8831instruction must be the first non-phi of its parent basic block.
8832
8833The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8834instructions is described in the
8835`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8836
8837When a ``catchpad`` has been "entered" but not yet "exited" (as
8838described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8839it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8840that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8841
8842Example:
8843""""""""
8844
Renato Golin124f2592016-07-20 12:16:38 +00008845.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008846
8847 dispatch:
8848 %cs = catchswitch within none [label %handler0] unwind to caller
8849 ;; A catch block which can catch an integer.
8850 handler0:
8851 %tok = catchpad within %cs [i8** @_ZTIi]
8852
David Majnemer654e1302015-07-31 17:58:14 +00008853.. _i_cleanuppad:
8854
8855'``cleanuppad``' Instruction
8856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8857
8858Syntax:
8859"""""""
8860
8861::
8862
David Majnemer8a1c45d2015-12-12 05:38:55 +00008863 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008864
8865Overview:
8866"""""""""
8867
8868The '``cleanuppad``' instruction is used by `LLVM's exception handling
8869system <ExceptionHandling.html#overview>`_ to specify that a basic block
8870is a cleanup block --- one where a personality routine attempts to
8871transfer control to run cleanup actions.
8872The ``args`` correspond to whatever additional
8873information the :ref:`personality function <personalityfn>` requires to
8874execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008875The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008876match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8877The ``parent`` argument is the token of the funclet that contains the
8878``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8879this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008880
8881Arguments:
8882""""""""""
8883
8884The instruction takes a list of arbitrary values which are interpreted
8885by the :ref:`personality function <personalityfn>`.
8886
8887Semantics:
8888""""""""""
8889
David Majnemer654e1302015-07-31 17:58:14 +00008890When the call stack is being unwound due to an exception being thrown,
8891the :ref:`personality function <personalityfn>` transfers control to the
8892``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008893As with calling conventions, how the personality function results are
8894represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008895
8896The ``cleanuppad`` instruction has several restrictions:
8897
8898- A cleanup block is a basic block which is the unwind destination of
8899 an exceptional instruction.
8900- A cleanup block must have a '``cleanuppad``' instruction as its
8901 first non-PHI instruction.
8902- There can be only one '``cleanuppad``' instruction within the
8903 cleanup block.
8904- A basic block that is not a cleanup block may not include a
8905 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008906
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008907When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8908described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8909it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8910that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008911
David Majnemer654e1302015-07-31 17:58:14 +00008912Example:
8913""""""""
8914
Renato Golin124f2592016-07-20 12:16:38 +00008915.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00008916
David Majnemer8a1c45d2015-12-12 05:38:55 +00008917 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008918
Sean Silvab084af42012-12-07 10:36:55 +00008919.. _intrinsics:
8920
8921Intrinsic Functions
8922===================
8923
8924LLVM supports the notion of an "intrinsic function". These functions
8925have well known names and semantics and are required to follow certain
8926restrictions. Overall, these intrinsics represent an extension mechanism
8927for the LLVM language that does not require changing all of the
8928transformations in LLVM when adding to the language (or the bitcode
8929reader/writer, the parser, etc...).
8930
8931Intrinsic function names must all start with an "``llvm.``" prefix. This
8932prefix is reserved in LLVM for intrinsic names; thus, function names may
8933not begin with this prefix. Intrinsic functions must always be external
8934functions: you cannot define the body of intrinsic functions. Intrinsic
8935functions may only be used in call or invoke instructions: it is illegal
8936to take the address of an intrinsic function. Additionally, because
8937intrinsic functions are part of the LLVM language, it is required if any
8938are added that they be documented here.
8939
8940Some intrinsic functions can be overloaded, i.e., the intrinsic
8941represents a family of functions that perform the same operation but on
8942different data types. Because LLVM can represent over 8 million
8943different integer types, overloading is used commonly to allow an
8944intrinsic function to operate on any integer type. One or more of the
8945argument types or the result type can be overloaded to accept any
8946integer type. Argument types may also be defined as exactly matching a
8947previous argument's type or the result type. This allows an intrinsic
8948function which accepts multiple arguments, but needs all of them to be
8949of the same type, to only be overloaded with respect to a single
8950argument or the result.
8951
8952Overloaded intrinsics will have the names of its overloaded argument
8953types encoded into its function name, each preceded by a period. Only
8954those types which are overloaded result in a name suffix. Arguments
8955whose type is matched against another type do not. For example, the
8956``llvm.ctpop`` function can take an integer of any width and returns an
8957integer of exactly the same integer width. This leads to a family of
8958functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8959``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8960overloaded, and only one type suffix is required. Because the argument's
8961type is matched against the return type, it does not require its own
8962name suffix.
8963
8964To learn how to add an intrinsic function, please see the `Extending
8965LLVM Guide <ExtendingLLVM.html>`_.
8966
8967.. _int_varargs:
8968
8969Variable Argument Handling Intrinsics
8970-------------------------------------
8971
8972Variable argument support is defined in LLVM with the
8973:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8974functions. These functions are related to the similarly named macros
8975defined in the ``<stdarg.h>`` header file.
8976
8977All of these functions operate on arguments that use a target-specific
8978value type "``va_list``". The LLVM assembly language reference manual
8979does not define what this type is, so all transformations should be
8980prepared to handle these functions regardless of the type used.
8981
8982This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8983variable argument handling intrinsic functions are used.
8984
8985.. code-block:: llvm
8986
Tim Northoverab60bb92014-11-02 01:21:51 +00008987 ; This struct is different for every platform. For most platforms,
8988 ; it is merely an i8*.
8989 %struct.va_list = type { i8* }
8990
8991 ; For Unix x86_64 platforms, va_list is the following struct:
8992 ; %struct.va_list = type { i32, i32, i8*, i8* }
8993
Sean Silvab084af42012-12-07 10:36:55 +00008994 define i32 @test(i32 %X, ...) {
8995 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008996 %ap = alloca %struct.va_list
8997 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008998 call void @llvm.va_start(i8* %ap2)
8999
9000 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009001 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009002
9003 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9004 %aq = alloca i8*
9005 %aq2 = bitcast i8** %aq to i8*
9006 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9007 call void @llvm.va_end(i8* %aq2)
9008
9009 ; Stop processing of arguments.
9010 call void @llvm.va_end(i8* %ap2)
9011 ret i32 %tmp
9012 }
9013
9014 declare void @llvm.va_start(i8*)
9015 declare void @llvm.va_copy(i8*, i8*)
9016 declare void @llvm.va_end(i8*)
9017
9018.. _int_va_start:
9019
9020'``llvm.va_start``' Intrinsic
9021^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9022
9023Syntax:
9024"""""""
9025
9026::
9027
Nick Lewycky04f6de02013-09-11 22:04:52 +00009028 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009029
9030Overview:
9031"""""""""
9032
9033The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9034subsequent use by ``va_arg``.
9035
9036Arguments:
9037""""""""""
9038
9039The argument is a pointer to a ``va_list`` element to initialize.
9040
9041Semantics:
9042""""""""""
9043
9044The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9045available in C. In a target-dependent way, it initializes the
9046``va_list`` element to which the argument points, so that the next call
9047to ``va_arg`` will produce the first variable argument passed to the
9048function. Unlike the C ``va_start`` macro, this intrinsic does not need
9049to know the last argument of the function as the compiler can figure
9050that out.
9051
9052'``llvm.va_end``' Intrinsic
9053^^^^^^^^^^^^^^^^^^^^^^^^^^^
9054
9055Syntax:
9056"""""""
9057
9058::
9059
9060 declare void @llvm.va_end(i8* <arglist>)
9061
9062Overview:
9063"""""""""
9064
9065The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9066initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9067
9068Arguments:
9069""""""""""
9070
9071The argument is a pointer to a ``va_list`` to destroy.
9072
9073Semantics:
9074""""""""""
9075
9076The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9077available in C. In a target-dependent way, it destroys the ``va_list``
9078element to which the argument points. Calls to
9079:ref:`llvm.va_start <int_va_start>` and
9080:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9081``llvm.va_end``.
9082
9083.. _int_va_copy:
9084
9085'``llvm.va_copy``' Intrinsic
9086^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9087
9088Syntax:
9089"""""""
9090
9091::
9092
9093 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9094
9095Overview:
9096"""""""""
9097
9098The '``llvm.va_copy``' intrinsic copies the current argument position
9099from the source argument list to the destination argument list.
9100
9101Arguments:
9102""""""""""
9103
9104The first argument is a pointer to a ``va_list`` element to initialize.
9105The second argument is a pointer to a ``va_list`` element to copy from.
9106
9107Semantics:
9108""""""""""
9109
9110The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9111available in C. In a target-dependent way, it copies the source
9112``va_list`` element into the destination ``va_list`` element. This
9113intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9114arbitrarily complex and require, for example, memory allocation.
9115
9116Accurate Garbage Collection Intrinsics
9117--------------------------------------
9118
Philip Reamesc5b0f562015-02-25 23:52:06 +00009119LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009120(GC) requires the frontend to generate code containing appropriate intrinsic
9121calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009122intrinsics in a manner which is appropriate for the target collector.
9123
Sean Silvab084af42012-12-07 10:36:55 +00009124These intrinsics allow identification of :ref:`GC roots on the
9125stack <int_gcroot>`, as well as garbage collector implementations that
9126require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009127Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009128these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009129details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009130
Philip Reamesf80bbff2015-02-25 23:45:20 +00009131Experimental Statepoint Intrinsics
9132^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9133
9134LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009135collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009136to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009137:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009138differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009139<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009140described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009141
9142.. _int_gcroot:
9143
9144'``llvm.gcroot``' Intrinsic
9145^^^^^^^^^^^^^^^^^^^^^^^^^^^
9146
9147Syntax:
9148"""""""
9149
9150::
9151
9152 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9153
9154Overview:
9155"""""""""
9156
9157The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9158the code generator, and allows some metadata to be associated with it.
9159
9160Arguments:
9161""""""""""
9162
9163The first argument specifies the address of a stack object that contains
9164the root pointer. The second pointer (which must be either a constant or
9165a global value address) contains the meta-data to be associated with the
9166root.
9167
9168Semantics:
9169""""""""""
9170
9171At runtime, a call to this intrinsic stores a null pointer into the
9172"ptrloc" location. At compile-time, the code generator generates
9173information to allow the runtime to find the pointer at GC safe points.
9174The '``llvm.gcroot``' intrinsic may only be used in a function which
9175:ref:`specifies a GC algorithm <gc>`.
9176
9177.. _int_gcread:
9178
9179'``llvm.gcread``' Intrinsic
9180^^^^^^^^^^^^^^^^^^^^^^^^^^^
9181
9182Syntax:
9183"""""""
9184
9185::
9186
9187 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9188
9189Overview:
9190"""""""""
9191
9192The '``llvm.gcread``' intrinsic identifies reads of references from heap
9193locations, allowing garbage collector implementations that require read
9194barriers.
9195
9196Arguments:
9197""""""""""
9198
9199The second argument is the address to read from, which should be an
9200address allocated from the garbage collector. The first object is a
9201pointer to the start of the referenced object, if needed by the language
9202runtime (otherwise null).
9203
9204Semantics:
9205""""""""""
9206
9207The '``llvm.gcread``' intrinsic has the same semantics as a load
9208instruction, but may be replaced with substantially more complex code by
9209the garbage collector runtime, as needed. The '``llvm.gcread``'
9210intrinsic may only be used in a function which :ref:`specifies a GC
9211algorithm <gc>`.
9212
9213.. _int_gcwrite:
9214
9215'``llvm.gcwrite``' Intrinsic
9216^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9217
9218Syntax:
9219"""""""
9220
9221::
9222
9223 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9224
9225Overview:
9226"""""""""
9227
9228The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9229locations, allowing garbage collector implementations that require write
9230barriers (such as generational or reference counting collectors).
9231
9232Arguments:
9233""""""""""
9234
9235The first argument is the reference to store, the second is the start of
9236the object to store it to, and the third is the address of the field of
9237Obj to store to. If the runtime does not require a pointer to the
9238object, Obj may be null.
9239
9240Semantics:
9241""""""""""
9242
9243The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9244instruction, but may be replaced with substantially more complex code by
9245the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9246intrinsic may only be used in a function which :ref:`specifies a GC
9247algorithm <gc>`.
9248
9249Code Generator Intrinsics
9250-------------------------
9251
9252These intrinsics are provided by LLVM to expose special features that
9253may only be implemented with code generator support.
9254
9255'``llvm.returnaddress``' Intrinsic
9256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9257
9258Syntax:
9259"""""""
9260
9261::
9262
9263 declare i8 *@llvm.returnaddress(i32 <level>)
9264
9265Overview:
9266"""""""""
9267
9268The '``llvm.returnaddress``' intrinsic attempts to compute a
9269target-specific value indicating the return address of the current
9270function or one of its callers.
9271
9272Arguments:
9273""""""""""
9274
9275The argument to this intrinsic indicates which function to return the
9276address for. Zero indicates the calling function, one indicates its
9277caller, etc. The argument is **required** to be a constant integer
9278value.
9279
9280Semantics:
9281""""""""""
9282
9283The '``llvm.returnaddress``' intrinsic either returns a pointer
9284indicating the return address of the specified call frame, or zero if it
9285cannot be identified. The value returned by this intrinsic is likely to
9286be incorrect or 0 for arguments other than zero, so it should only be
9287used for debugging purposes.
9288
9289Note that calling this intrinsic does not prevent function inlining or
9290other aggressive transformations, so the value returned may not be that
9291of the obvious source-language caller.
9292
9293'``llvm.frameaddress``' Intrinsic
9294^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9295
9296Syntax:
9297"""""""
9298
9299::
9300
9301 declare i8* @llvm.frameaddress(i32 <level>)
9302
9303Overview:
9304"""""""""
9305
9306The '``llvm.frameaddress``' intrinsic attempts to return the
9307target-specific frame pointer value for the specified stack frame.
9308
9309Arguments:
9310""""""""""
9311
9312The argument to this intrinsic indicates which function to return the
9313frame pointer for. Zero indicates the calling function, one indicates
9314its caller, etc. The argument is **required** to be a constant integer
9315value.
9316
9317Semantics:
9318""""""""""
9319
9320The '``llvm.frameaddress``' intrinsic either returns a pointer
9321indicating the frame address of the specified call frame, or zero if it
9322cannot be identified. The value returned by this intrinsic is likely to
9323be incorrect or 0 for arguments other than zero, so it should only be
9324used for debugging purposes.
9325
9326Note that calling this intrinsic does not prevent function inlining or
9327other aggressive transformations, so the value returned may not be that
9328of the obvious source-language caller.
9329
Reid Kleckner60381792015-07-07 22:25:32 +00009330'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009331^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9332
9333Syntax:
9334"""""""
9335
9336::
9337
Reid Kleckner60381792015-07-07 22:25:32 +00009338 declare void @llvm.localescape(...)
9339 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009340
9341Overview:
9342"""""""""
9343
Reid Kleckner60381792015-07-07 22:25:32 +00009344The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9345allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009346live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009347computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009348
9349Arguments:
9350""""""""""
9351
Reid Kleckner60381792015-07-07 22:25:32 +00009352All arguments to '``llvm.localescape``' must be pointers to static allocas or
9353casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009354once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009355
Reid Kleckner60381792015-07-07 22:25:32 +00009356The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009357bitcasted pointer to a function defined in the current module. The code
9358generator cannot determine the frame allocation offset of functions defined in
9359other modules.
9360
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009361The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9362call frame that is currently live. The return value of '``llvm.localaddress``'
9363is one way to produce such a value, but various runtimes also expose a suitable
9364pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009365
Reid Kleckner60381792015-07-07 22:25:32 +00009366The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9367'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009368
Reid Klecknere9b89312015-01-13 00:48:10 +00009369Semantics:
9370""""""""""
9371
Reid Kleckner60381792015-07-07 22:25:32 +00009372These intrinsics allow a group of functions to share access to a set of local
9373stack allocations of a one parent function. The parent function may call the
9374'``llvm.localescape``' intrinsic once from the function entry block, and the
9375child functions can use '``llvm.localrecover``' to access the escaped allocas.
9376The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9377the escaped allocas are allocated, which would break attempts to use
9378'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009379
Renato Golinc7aea402014-05-06 16:51:25 +00009380.. _int_read_register:
9381.. _int_write_register:
9382
9383'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9384^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9385
9386Syntax:
9387"""""""
9388
9389::
9390
9391 declare i32 @llvm.read_register.i32(metadata)
9392 declare i64 @llvm.read_register.i64(metadata)
9393 declare void @llvm.write_register.i32(metadata, i32 @value)
9394 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009395 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009396
9397Overview:
9398"""""""""
9399
9400The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9401provides access to the named register. The register must be valid on
9402the architecture being compiled to. The type needs to be compatible
9403with the register being read.
9404
9405Semantics:
9406""""""""""
9407
9408The '``llvm.read_register``' intrinsic returns the current value of the
9409register, where possible. The '``llvm.write_register``' intrinsic sets
9410the current value of the register, where possible.
9411
9412This is useful to implement named register global variables that need
9413to always be mapped to a specific register, as is common practice on
9414bare-metal programs including OS kernels.
9415
9416The compiler doesn't check for register availability or use of the used
9417register in surrounding code, including inline assembly. Because of that,
9418allocatable registers are not supported.
9419
9420Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009421architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009422work is needed to support other registers and even more so, allocatable
9423registers.
9424
Sean Silvab084af42012-12-07 10:36:55 +00009425.. _int_stacksave:
9426
9427'``llvm.stacksave``' Intrinsic
9428^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9429
9430Syntax:
9431"""""""
9432
9433::
9434
9435 declare i8* @llvm.stacksave()
9436
9437Overview:
9438"""""""""
9439
9440The '``llvm.stacksave``' intrinsic is used to remember the current state
9441of the function stack, for use with
9442:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9443implementing language features like scoped automatic variable sized
9444arrays in C99.
9445
9446Semantics:
9447""""""""""
9448
9449This intrinsic returns a opaque pointer value that can be passed to
9450:ref:`llvm.stackrestore <int_stackrestore>`. When an
9451``llvm.stackrestore`` intrinsic is executed with a value saved from
9452``llvm.stacksave``, it effectively restores the state of the stack to
9453the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9454practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9455were allocated after the ``llvm.stacksave`` was executed.
9456
9457.. _int_stackrestore:
9458
9459'``llvm.stackrestore``' Intrinsic
9460^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9461
9462Syntax:
9463"""""""
9464
9465::
9466
9467 declare void @llvm.stackrestore(i8* %ptr)
9468
9469Overview:
9470"""""""""
9471
9472The '``llvm.stackrestore``' intrinsic is used to restore the state of
9473the function stack to the state it was in when the corresponding
9474:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9475useful for implementing language features like scoped automatic variable
9476sized arrays in C99.
9477
9478Semantics:
9479""""""""""
9480
9481See the description for :ref:`llvm.stacksave <int_stacksave>`.
9482
Yury Gribovd7dbb662015-12-01 11:40:55 +00009483.. _int_get_dynamic_area_offset:
9484
9485'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009486^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009487
9488Syntax:
9489"""""""
9490
9491::
9492
9493 declare i32 @llvm.get.dynamic.area.offset.i32()
9494 declare i64 @llvm.get.dynamic.area.offset.i64()
9495
9496 Overview:
9497 """""""""
9498
9499 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9500 get the offset from native stack pointer to the address of the most
9501 recent dynamic alloca on the caller's stack. These intrinsics are
9502 intendend for use in combination with
9503 :ref:`llvm.stacksave <int_stacksave>` to get a
9504 pointer to the most recent dynamic alloca. This is useful, for example,
9505 for AddressSanitizer's stack unpoisoning routines.
9506
9507Semantics:
9508""""""""""
9509
9510 These intrinsics return a non-negative integer value that can be used to
9511 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9512 on the caller's stack. In particular, for targets where stack grows downwards,
9513 adding this offset to the native stack pointer would get the address of the most
9514 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009515 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009516 one past the end of the most recent dynamic alloca.
9517
9518 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9519 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9520 compile-time-known constant value.
9521
9522 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9523 must match the target's generic address space's (address space 0) pointer type.
9524
Sean Silvab084af42012-12-07 10:36:55 +00009525'``llvm.prefetch``' Intrinsic
9526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9527
9528Syntax:
9529"""""""
9530
9531::
9532
9533 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9534
9535Overview:
9536"""""""""
9537
9538The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9539insert a prefetch instruction if supported; otherwise, it is a noop.
9540Prefetches have no effect on the behavior of the program but can change
9541its performance characteristics.
9542
9543Arguments:
9544""""""""""
9545
9546``address`` is the address to be prefetched, ``rw`` is the specifier
9547determining if the fetch should be for a read (0) or write (1), and
9548``locality`` is a temporal locality specifier ranging from (0) - no
9549locality, to (3) - extremely local keep in cache. The ``cache type``
9550specifies whether the prefetch is performed on the data (1) or
9551instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9552arguments must be constant integers.
9553
9554Semantics:
9555""""""""""
9556
9557This intrinsic does not modify the behavior of the program. In
9558particular, prefetches cannot trap and do not produce a value. On
9559targets that support this intrinsic, the prefetch can provide hints to
9560the processor cache for better performance.
9561
9562'``llvm.pcmarker``' Intrinsic
9563^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9564
9565Syntax:
9566"""""""
9567
9568::
9569
9570 declare void @llvm.pcmarker(i32 <id>)
9571
9572Overview:
9573"""""""""
9574
9575The '``llvm.pcmarker``' intrinsic is a method to export a Program
9576Counter (PC) in a region of code to simulators and other tools. The
9577method is target specific, but it is expected that the marker will use
9578exported symbols to transmit the PC of the marker. The marker makes no
9579guarantees that it will remain with any specific instruction after
9580optimizations. It is possible that the presence of a marker will inhibit
9581optimizations. The intended use is to be inserted after optimizations to
9582allow correlations of simulation runs.
9583
9584Arguments:
9585""""""""""
9586
9587``id`` is a numerical id identifying the marker.
9588
9589Semantics:
9590""""""""""
9591
9592This intrinsic does not modify the behavior of the program. Backends
9593that do not support this intrinsic may ignore it.
9594
9595'``llvm.readcyclecounter``' Intrinsic
9596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9597
9598Syntax:
9599"""""""
9600
9601::
9602
9603 declare i64 @llvm.readcyclecounter()
9604
9605Overview:
9606"""""""""
9607
9608The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9609counter register (or similar low latency, high accuracy clocks) on those
9610targets that support it. On X86, it should map to RDTSC. On Alpha, it
9611should map to RPCC. As the backing counters overflow quickly (on the
9612order of 9 seconds on alpha), this should only be used for small
9613timings.
9614
9615Semantics:
9616""""""""""
9617
9618When directly supported, reading the cycle counter should not modify any
9619memory. Implementations are allowed to either return a application
9620specific value or a system wide value. On backends without support, this
9621is lowered to a constant 0.
9622
Tim Northoverbc933082013-05-23 19:11:20 +00009623Note that runtime support may be conditional on the privilege-level code is
9624running at and the host platform.
9625
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009626'``llvm.clear_cache``' Intrinsic
9627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9628
9629Syntax:
9630"""""""
9631
9632::
9633
9634 declare void @llvm.clear_cache(i8*, i8*)
9635
9636Overview:
9637"""""""""
9638
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009639The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9640in the specified range to the execution unit of the processor. On
9641targets with non-unified instruction and data cache, the implementation
9642flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009643
9644Semantics:
9645""""""""""
9646
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009647On platforms with coherent instruction and data caches (e.g. x86), this
9648intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009649cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009650instructions or a system call, if cache flushing requires special
9651privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009652
Sean Silvad02bf3e2014-04-07 22:29:53 +00009653The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009654time library.
Renato Golin93010e62014-03-26 14:01:32 +00009655
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009656This instrinsic does *not* empty the instruction pipeline. Modifications
9657of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009658
Justin Bogner61ba2e32014-12-08 18:02:35 +00009659'``llvm.instrprof_increment``' Intrinsic
9660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9661
9662Syntax:
9663"""""""
9664
9665::
9666
9667 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9668 i32 <num-counters>, i32 <index>)
9669
9670Overview:
9671"""""""""
9672
9673The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9674frontend for use with instrumentation based profiling. These will be
9675lowered by the ``-instrprof`` pass to generate execution counts of a
9676program at runtime.
9677
9678Arguments:
9679""""""""""
9680
9681The first argument is a pointer to a global variable containing the
9682name of the entity being instrumented. This should generally be the
9683(mangled) function name for a set of counters.
9684
9685The second argument is a hash value that can be used by the consumer
9686of the profile data to detect changes to the instrumented source, and
9687the third is the number of counters associated with ``name``. It is an
9688error if ``hash`` or ``num-counters`` differ between two instances of
9689``instrprof_increment`` that refer to the same name.
9690
9691The last argument refers to which of the counters for ``name`` should
9692be incremented. It should be a value between 0 and ``num-counters``.
9693
9694Semantics:
9695""""""""""
9696
9697This intrinsic represents an increment of a profiling counter. It will
9698cause the ``-instrprof`` pass to generate the appropriate data
9699structures and the code to increment the appropriate value, in a
9700format that can be written out by a compiler runtime and consumed via
9701the ``llvm-profdata`` tool.
9702
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009703'``llvm.instrprof_value_profile``' Intrinsic
9704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9705
9706Syntax:
9707"""""""
9708
9709::
9710
9711 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9712 i64 <value>, i32 <value_kind>,
9713 i32 <index>)
9714
9715Overview:
9716"""""""""
9717
9718The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9719frontend for use with instrumentation based profiling. This will be
9720lowered by the ``-instrprof`` pass to find out the target values,
9721instrumented expressions take in a program at runtime.
9722
9723Arguments:
9724""""""""""
9725
9726The first argument is a pointer to a global variable containing the
9727name of the entity being instrumented. ``name`` should generally be the
9728(mangled) function name for a set of counters.
9729
9730The second argument is a hash value that can be used by the consumer
9731of the profile data to detect changes to the instrumented source. It
9732is an error if ``hash`` differs between two instances of
9733``llvm.instrprof_*`` that refer to the same name.
9734
9735The third argument is the value of the expression being profiled. The profiled
9736expression's value should be representable as an unsigned 64-bit value. The
9737fourth argument represents the kind of value profiling that is being done. The
9738supported value profiling kinds are enumerated through the
9739``InstrProfValueKind`` type declared in the
9740``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9741index of the instrumented expression within ``name``. It should be >= 0.
9742
9743Semantics:
9744""""""""""
9745
9746This intrinsic represents the point where a call to a runtime routine
9747should be inserted for value profiling of target expressions. ``-instrprof``
9748pass will generate the appropriate data structures and replace the
9749``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9750runtime library with proper arguments.
9751
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009752'``llvm.thread.pointer``' Intrinsic
9753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9754
9755Syntax:
9756"""""""
9757
9758::
9759
9760 declare i8* @llvm.thread.pointer()
9761
9762Overview:
9763"""""""""
9764
9765The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9766pointer.
9767
9768Semantics:
9769""""""""""
9770
9771The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9772for the current thread. The exact semantics of this value are target
9773specific: it may point to the start of TLS area, to the end, or somewhere
9774in the middle. Depending on the target, this intrinsic may read a register,
9775call a helper function, read from an alternate memory space, or perform
9776other operations necessary to locate the TLS area. Not all targets support
9777this intrinsic.
9778
Sean Silvab084af42012-12-07 10:36:55 +00009779Standard C Library Intrinsics
9780-----------------------------
9781
9782LLVM provides intrinsics for a few important standard C library
9783functions. These intrinsics allow source-language front-ends to pass
9784information about the alignment of the pointer arguments to the code
9785generator, providing opportunity for more efficient code generation.
9786
9787.. _int_memcpy:
9788
9789'``llvm.memcpy``' Intrinsic
9790^^^^^^^^^^^^^^^^^^^^^^^^^^^
9791
9792Syntax:
9793"""""""
9794
9795This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9796integer bit width and for different address spaces. Not all targets
9797support all bit widths however.
9798
9799::
9800
9801 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9802 i32 <len>, i32 <align>, i1 <isvolatile>)
9803 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9804 i64 <len>, i32 <align>, i1 <isvolatile>)
9805
9806Overview:
9807"""""""""
9808
9809The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9810source location to the destination location.
9811
9812Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9813intrinsics do not return a value, takes extra alignment/isvolatile
9814arguments and the pointers can be in specified address spaces.
9815
9816Arguments:
9817""""""""""
9818
9819The first argument is a pointer to the destination, the second is a
9820pointer to the source. The third argument is an integer argument
9821specifying the number of bytes to copy, the fourth argument is the
9822alignment of the source and destination locations, and the fifth is a
9823boolean indicating a volatile access.
9824
9825If the call to this intrinsic has an alignment value that is not 0 or 1,
9826then the caller guarantees that both the source and destination pointers
9827are aligned to that boundary.
9828
9829If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9830a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9831very cleanly specified and it is unwise to depend on it.
9832
9833Semantics:
9834""""""""""
9835
9836The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9837source location to the destination location, which are not allowed to
9838overlap. It copies "len" bytes of memory over. If the argument is known
9839to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009840argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009841
9842'``llvm.memmove``' Intrinsic
9843^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9844
9845Syntax:
9846"""""""
9847
9848This is an overloaded intrinsic. You can use llvm.memmove on any integer
9849bit width and for different address space. Not all targets support all
9850bit widths however.
9851
9852::
9853
9854 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9855 i32 <len>, i32 <align>, i1 <isvolatile>)
9856 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9857 i64 <len>, i32 <align>, i1 <isvolatile>)
9858
9859Overview:
9860"""""""""
9861
9862The '``llvm.memmove.*``' intrinsics move a block of memory from the
9863source location to the destination location. It is similar to the
9864'``llvm.memcpy``' intrinsic but allows the two memory locations to
9865overlap.
9866
9867Note that, unlike the standard libc function, the ``llvm.memmove.*``
9868intrinsics do not return a value, takes extra alignment/isvolatile
9869arguments and the pointers can be in specified address spaces.
9870
9871Arguments:
9872""""""""""
9873
9874The first argument is a pointer to the destination, the second is a
9875pointer to the source. The third argument is an integer argument
9876specifying the number of bytes to copy, the fourth argument is the
9877alignment of the source and destination locations, and the fifth is a
9878boolean indicating a volatile access.
9879
9880If the call to this intrinsic has an alignment value that is not 0 or 1,
9881then the caller guarantees that the source and destination pointers are
9882aligned to that boundary.
9883
9884If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9885is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9886not very cleanly specified and it is unwise to depend on it.
9887
9888Semantics:
9889""""""""""
9890
9891The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9892source location to the destination location, which may overlap. It
9893copies "len" bytes of memory over. If the argument is known to be
9894aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009895otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009896
9897'``llvm.memset.*``' Intrinsics
9898^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9899
9900Syntax:
9901"""""""
9902
9903This is an overloaded intrinsic. You can use llvm.memset on any integer
9904bit width and for different address spaces. However, not all targets
9905support all bit widths.
9906
9907::
9908
9909 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9910 i32 <len>, i32 <align>, i1 <isvolatile>)
9911 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9912 i64 <len>, i32 <align>, i1 <isvolatile>)
9913
9914Overview:
9915"""""""""
9916
9917The '``llvm.memset.*``' intrinsics fill a block of memory with a
9918particular byte value.
9919
9920Note that, unlike the standard libc function, the ``llvm.memset``
9921intrinsic does not return a value and takes extra alignment/volatile
9922arguments. Also, the destination can be in an arbitrary address space.
9923
9924Arguments:
9925""""""""""
9926
9927The first argument is a pointer to the destination to fill, the second
9928is the byte value with which to fill it, the third argument is an
9929integer argument specifying the number of bytes to fill, and the fourth
9930argument is the known alignment of the destination location.
9931
9932If the call to this intrinsic has an alignment value that is not 0 or 1,
9933then the caller guarantees that the destination pointer is aligned to
9934that boundary.
9935
9936If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9937a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9938very cleanly specified and it is unwise to depend on it.
9939
9940Semantics:
9941""""""""""
9942
9943The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9944at the destination location. If the argument is known to be aligned to
9945some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009946it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009947
9948'``llvm.sqrt.*``' Intrinsic
9949^^^^^^^^^^^^^^^^^^^^^^^^^^^
9950
9951Syntax:
9952"""""""
9953
9954This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9955floating point or vector of floating point type. Not all targets support
9956all types however.
9957
9958::
9959
9960 declare float @llvm.sqrt.f32(float %Val)
9961 declare double @llvm.sqrt.f64(double %Val)
9962 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9963 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9964 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9965
9966Overview:
9967"""""""""
9968
9969The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9970returning the same value as the libm '``sqrt``' functions would. Unlike
9971``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9972negative numbers other than -0.0 (which allows for better optimization,
9973because there is no need to worry about errno being set).
9974``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9975
9976Arguments:
9977""""""""""
9978
9979The argument and return value are floating point numbers of the same
9980type.
9981
9982Semantics:
9983""""""""""
9984
9985This function returns the sqrt of the specified operand if it is a
9986nonnegative floating point number.
9987
9988'``llvm.powi.*``' Intrinsic
9989^^^^^^^^^^^^^^^^^^^^^^^^^^^
9990
9991Syntax:
9992"""""""
9993
9994This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9995floating point or vector of floating point type. Not all targets support
9996all types however.
9997
9998::
9999
10000 declare float @llvm.powi.f32(float %Val, i32 %power)
10001 declare double @llvm.powi.f64(double %Val, i32 %power)
10002 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10003 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10004 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10005
10006Overview:
10007"""""""""
10008
10009The '``llvm.powi.*``' intrinsics return the first operand raised to the
10010specified (positive or negative) power. The order of evaluation of
10011multiplications is not defined. When a vector of floating point type is
10012used, the second argument remains a scalar integer value.
10013
10014Arguments:
10015""""""""""
10016
10017The second argument is an integer power, and the first is a value to
10018raise to that power.
10019
10020Semantics:
10021""""""""""
10022
10023This function returns the first value raised to the second power with an
10024unspecified sequence of rounding operations.
10025
10026'``llvm.sin.*``' Intrinsic
10027^^^^^^^^^^^^^^^^^^^^^^^^^^
10028
10029Syntax:
10030"""""""
10031
10032This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10033floating point or vector of floating point type. Not all targets support
10034all types however.
10035
10036::
10037
10038 declare float @llvm.sin.f32(float %Val)
10039 declare double @llvm.sin.f64(double %Val)
10040 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10041 declare fp128 @llvm.sin.f128(fp128 %Val)
10042 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10043
10044Overview:
10045"""""""""
10046
10047The '``llvm.sin.*``' intrinsics return the sine of the operand.
10048
10049Arguments:
10050""""""""""
10051
10052The argument and return value are floating point numbers of the same
10053type.
10054
10055Semantics:
10056""""""""""
10057
10058This function returns the sine of the specified operand, returning the
10059same values as the libm ``sin`` functions would, and handles error
10060conditions in the same way.
10061
10062'``llvm.cos.*``' Intrinsic
10063^^^^^^^^^^^^^^^^^^^^^^^^^^
10064
10065Syntax:
10066"""""""
10067
10068This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10069floating point or vector of floating point type. Not all targets support
10070all types however.
10071
10072::
10073
10074 declare float @llvm.cos.f32(float %Val)
10075 declare double @llvm.cos.f64(double %Val)
10076 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10077 declare fp128 @llvm.cos.f128(fp128 %Val)
10078 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10079
10080Overview:
10081"""""""""
10082
10083The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10084
10085Arguments:
10086""""""""""
10087
10088The argument and return value are floating point numbers of the same
10089type.
10090
10091Semantics:
10092""""""""""
10093
10094This function returns the cosine of the specified operand, returning the
10095same values as the libm ``cos`` functions would, and handles error
10096conditions in the same way.
10097
10098'``llvm.pow.*``' Intrinsic
10099^^^^^^^^^^^^^^^^^^^^^^^^^^
10100
10101Syntax:
10102"""""""
10103
10104This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10105floating point or vector of floating point type. Not all targets support
10106all types however.
10107
10108::
10109
10110 declare float @llvm.pow.f32(float %Val, float %Power)
10111 declare double @llvm.pow.f64(double %Val, double %Power)
10112 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10113 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10114 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10115
10116Overview:
10117"""""""""
10118
10119The '``llvm.pow.*``' intrinsics return the first operand raised to the
10120specified (positive or negative) power.
10121
10122Arguments:
10123""""""""""
10124
10125The second argument is a floating point power, and the first is a value
10126to raise to that power.
10127
10128Semantics:
10129""""""""""
10130
10131This function returns the first value raised to the second power,
10132returning the same values as the libm ``pow`` functions would, and
10133handles error conditions in the same way.
10134
10135'``llvm.exp.*``' Intrinsic
10136^^^^^^^^^^^^^^^^^^^^^^^^^^
10137
10138Syntax:
10139"""""""
10140
10141This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10142floating point or vector of floating point type. Not all targets support
10143all types however.
10144
10145::
10146
10147 declare float @llvm.exp.f32(float %Val)
10148 declare double @llvm.exp.f64(double %Val)
10149 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10150 declare fp128 @llvm.exp.f128(fp128 %Val)
10151 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10152
10153Overview:
10154"""""""""
10155
10156The '``llvm.exp.*``' intrinsics perform the exp function.
10157
10158Arguments:
10159""""""""""
10160
10161The argument and return value are floating point numbers of the same
10162type.
10163
10164Semantics:
10165""""""""""
10166
10167This function returns the same values as the libm ``exp`` functions
10168would, and handles error conditions in the same way.
10169
10170'``llvm.exp2.*``' Intrinsic
10171^^^^^^^^^^^^^^^^^^^^^^^^^^^
10172
10173Syntax:
10174"""""""
10175
10176This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10177floating point or vector of floating point type. Not all targets support
10178all types however.
10179
10180::
10181
10182 declare float @llvm.exp2.f32(float %Val)
10183 declare double @llvm.exp2.f64(double %Val)
10184 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10185 declare fp128 @llvm.exp2.f128(fp128 %Val)
10186 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10187
10188Overview:
10189"""""""""
10190
10191The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10192
10193Arguments:
10194""""""""""
10195
10196The argument and return value are floating point numbers of the same
10197type.
10198
10199Semantics:
10200""""""""""
10201
10202This function returns the same values as the libm ``exp2`` functions
10203would, and handles error conditions in the same way.
10204
10205'``llvm.log.*``' Intrinsic
10206^^^^^^^^^^^^^^^^^^^^^^^^^^
10207
10208Syntax:
10209"""""""
10210
10211This is an overloaded intrinsic. You can use ``llvm.log`` on any
10212floating point or vector of floating point type. Not all targets support
10213all types however.
10214
10215::
10216
10217 declare float @llvm.log.f32(float %Val)
10218 declare double @llvm.log.f64(double %Val)
10219 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10220 declare fp128 @llvm.log.f128(fp128 %Val)
10221 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10222
10223Overview:
10224"""""""""
10225
10226The '``llvm.log.*``' intrinsics perform the log function.
10227
10228Arguments:
10229""""""""""
10230
10231The argument and return value are floating point numbers of the same
10232type.
10233
10234Semantics:
10235""""""""""
10236
10237This function returns the same values as the libm ``log`` functions
10238would, and handles error conditions in the same way.
10239
10240'``llvm.log10.*``' Intrinsic
10241^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10242
10243Syntax:
10244"""""""
10245
10246This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10247floating point or vector of floating point type. Not all targets support
10248all types however.
10249
10250::
10251
10252 declare float @llvm.log10.f32(float %Val)
10253 declare double @llvm.log10.f64(double %Val)
10254 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10255 declare fp128 @llvm.log10.f128(fp128 %Val)
10256 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10257
10258Overview:
10259"""""""""
10260
10261The '``llvm.log10.*``' intrinsics perform the log10 function.
10262
10263Arguments:
10264""""""""""
10265
10266The argument and return value are floating point numbers of the same
10267type.
10268
10269Semantics:
10270""""""""""
10271
10272This function returns the same values as the libm ``log10`` functions
10273would, and handles error conditions in the same way.
10274
10275'``llvm.log2.*``' Intrinsic
10276^^^^^^^^^^^^^^^^^^^^^^^^^^^
10277
10278Syntax:
10279"""""""
10280
10281This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10282floating point or vector of floating point type. Not all targets support
10283all types however.
10284
10285::
10286
10287 declare float @llvm.log2.f32(float %Val)
10288 declare double @llvm.log2.f64(double %Val)
10289 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10290 declare fp128 @llvm.log2.f128(fp128 %Val)
10291 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10292
10293Overview:
10294"""""""""
10295
10296The '``llvm.log2.*``' intrinsics perform the log2 function.
10297
10298Arguments:
10299""""""""""
10300
10301The argument and return value are floating point numbers of the same
10302type.
10303
10304Semantics:
10305""""""""""
10306
10307This function returns the same values as the libm ``log2`` functions
10308would, and handles error conditions in the same way.
10309
10310'``llvm.fma.*``' Intrinsic
10311^^^^^^^^^^^^^^^^^^^^^^^^^^
10312
10313Syntax:
10314"""""""
10315
10316This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10317floating point or vector of floating point type. Not all targets support
10318all types however.
10319
10320::
10321
10322 declare float @llvm.fma.f32(float %a, float %b, float %c)
10323 declare double @llvm.fma.f64(double %a, double %b, double %c)
10324 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10325 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10326 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10327
10328Overview:
10329"""""""""
10330
10331The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10332operation.
10333
10334Arguments:
10335""""""""""
10336
10337The argument and return value are floating point numbers of the same
10338type.
10339
10340Semantics:
10341""""""""""
10342
10343This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010344would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010345
10346'``llvm.fabs.*``' Intrinsic
10347^^^^^^^^^^^^^^^^^^^^^^^^^^^
10348
10349Syntax:
10350"""""""
10351
10352This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10353floating point or vector of floating point type. Not all targets support
10354all types however.
10355
10356::
10357
10358 declare float @llvm.fabs.f32(float %Val)
10359 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010360 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010361 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010362 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010363
10364Overview:
10365"""""""""
10366
10367The '``llvm.fabs.*``' intrinsics return the absolute value of the
10368operand.
10369
10370Arguments:
10371""""""""""
10372
10373The argument and return value are floating point numbers of the same
10374type.
10375
10376Semantics:
10377""""""""""
10378
10379This function returns the same values as the libm ``fabs`` functions
10380would, and handles error conditions in the same way.
10381
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010382'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010383^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010384
10385Syntax:
10386"""""""
10387
10388This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10389floating point or vector of floating point type. Not all targets support
10390all types however.
10391
10392::
10393
Matt Arsenault64313c92014-10-22 18:25:02 +000010394 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10395 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10396 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10397 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10398 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010399
10400Overview:
10401"""""""""
10402
10403The '``llvm.minnum.*``' intrinsics return the minimum of the two
10404arguments.
10405
10406
10407Arguments:
10408""""""""""
10409
10410The arguments and return value are floating point numbers of the same
10411type.
10412
10413Semantics:
10414""""""""""
10415
10416Follows the IEEE-754 semantics for minNum, which also match for libm's
10417fmin.
10418
10419If either operand is a NaN, returns the other non-NaN operand. Returns
10420NaN only if both operands are NaN. If the operands compare equal,
10421returns a value that compares equal to both operands. This means that
10422fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10423
10424'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010425^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010426
10427Syntax:
10428"""""""
10429
10430This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10431floating point or vector of floating point type. Not all targets support
10432all types however.
10433
10434::
10435
Matt Arsenault64313c92014-10-22 18:25:02 +000010436 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10437 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10438 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10439 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10440 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010441
10442Overview:
10443"""""""""
10444
10445The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10446arguments.
10447
10448
10449Arguments:
10450""""""""""
10451
10452The arguments and return value are floating point numbers of the same
10453type.
10454
10455Semantics:
10456""""""""""
10457Follows the IEEE-754 semantics for maxNum, which also match for libm's
10458fmax.
10459
10460If either operand is a NaN, returns the other non-NaN operand. Returns
10461NaN only if both operands are NaN. If the operands compare equal,
10462returns a value that compares equal to both operands. This means that
10463fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10464
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010465'``llvm.copysign.*``' Intrinsic
10466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10467
10468Syntax:
10469"""""""
10470
10471This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10472floating point or vector of floating point type. Not all targets support
10473all types however.
10474
10475::
10476
10477 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10478 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10479 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10480 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10481 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10482
10483Overview:
10484"""""""""
10485
10486The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10487first operand and the sign of the second operand.
10488
10489Arguments:
10490""""""""""
10491
10492The arguments and return value are floating point numbers of the same
10493type.
10494
10495Semantics:
10496""""""""""
10497
10498This function returns the same values as the libm ``copysign``
10499functions would, and handles error conditions in the same way.
10500
Sean Silvab084af42012-12-07 10:36:55 +000010501'``llvm.floor.*``' Intrinsic
10502^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10503
10504Syntax:
10505"""""""
10506
10507This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10508floating point or vector of floating point type. Not all targets support
10509all types however.
10510
10511::
10512
10513 declare float @llvm.floor.f32(float %Val)
10514 declare double @llvm.floor.f64(double %Val)
10515 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10516 declare fp128 @llvm.floor.f128(fp128 %Val)
10517 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10518
10519Overview:
10520"""""""""
10521
10522The '``llvm.floor.*``' intrinsics return the floor of the operand.
10523
10524Arguments:
10525""""""""""
10526
10527The argument and return value are floating point numbers of the same
10528type.
10529
10530Semantics:
10531""""""""""
10532
10533This function returns the same values as the libm ``floor`` functions
10534would, and handles error conditions in the same way.
10535
10536'``llvm.ceil.*``' Intrinsic
10537^^^^^^^^^^^^^^^^^^^^^^^^^^^
10538
10539Syntax:
10540"""""""
10541
10542This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10543floating point or vector of floating point type. Not all targets support
10544all types however.
10545
10546::
10547
10548 declare float @llvm.ceil.f32(float %Val)
10549 declare double @llvm.ceil.f64(double %Val)
10550 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10551 declare fp128 @llvm.ceil.f128(fp128 %Val)
10552 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10553
10554Overview:
10555"""""""""
10556
10557The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10558
10559Arguments:
10560""""""""""
10561
10562The argument and return value are floating point numbers of the same
10563type.
10564
10565Semantics:
10566""""""""""
10567
10568This function returns the same values as the libm ``ceil`` functions
10569would, and handles error conditions in the same way.
10570
10571'``llvm.trunc.*``' Intrinsic
10572^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10573
10574Syntax:
10575"""""""
10576
10577This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10578floating point or vector of floating point type. Not all targets support
10579all types however.
10580
10581::
10582
10583 declare float @llvm.trunc.f32(float %Val)
10584 declare double @llvm.trunc.f64(double %Val)
10585 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10586 declare fp128 @llvm.trunc.f128(fp128 %Val)
10587 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10588
10589Overview:
10590"""""""""
10591
10592The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10593nearest integer not larger in magnitude than the operand.
10594
10595Arguments:
10596""""""""""
10597
10598The argument and return value are floating point numbers of the same
10599type.
10600
10601Semantics:
10602""""""""""
10603
10604This function returns the same values as the libm ``trunc`` functions
10605would, and handles error conditions in the same way.
10606
10607'``llvm.rint.*``' Intrinsic
10608^^^^^^^^^^^^^^^^^^^^^^^^^^^
10609
10610Syntax:
10611"""""""
10612
10613This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10614floating point or vector of floating point type. Not all targets support
10615all types however.
10616
10617::
10618
10619 declare float @llvm.rint.f32(float %Val)
10620 declare double @llvm.rint.f64(double %Val)
10621 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10622 declare fp128 @llvm.rint.f128(fp128 %Val)
10623 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10624
10625Overview:
10626"""""""""
10627
10628The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10629nearest integer. It may raise an inexact floating-point exception if the
10630operand isn't an integer.
10631
10632Arguments:
10633""""""""""
10634
10635The argument and return value are floating point numbers of the same
10636type.
10637
10638Semantics:
10639""""""""""
10640
10641This function returns the same values as the libm ``rint`` functions
10642would, and handles error conditions in the same way.
10643
10644'``llvm.nearbyint.*``' Intrinsic
10645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10646
10647Syntax:
10648"""""""
10649
10650This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10651floating point or vector of floating point type. Not all targets support
10652all types however.
10653
10654::
10655
10656 declare float @llvm.nearbyint.f32(float %Val)
10657 declare double @llvm.nearbyint.f64(double %Val)
10658 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10659 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10660 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10661
10662Overview:
10663"""""""""
10664
10665The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10666nearest integer.
10667
10668Arguments:
10669""""""""""
10670
10671The argument and return value are floating point numbers of the same
10672type.
10673
10674Semantics:
10675""""""""""
10676
10677This function returns the same values as the libm ``nearbyint``
10678functions would, and handles error conditions in the same way.
10679
Hal Finkel171817e2013-08-07 22:49:12 +000010680'``llvm.round.*``' Intrinsic
10681^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10682
10683Syntax:
10684"""""""
10685
10686This is an overloaded intrinsic. You can use ``llvm.round`` on any
10687floating point or vector of floating point type. Not all targets support
10688all types however.
10689
10690::
10691
10692 declare float @llvm.round.f32(float %Val)
10693 declare double @llvm.round.f64(double %Val)
10694 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10695 declare fp128 @llvm.round.f128(fp128 %Val)
10696 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10697
10698Overview:
10699"""""""""
10700
10701The '``llvm.round.*``' intrinsics returns the operand rounded to the
10702nearest integer.
10703
10704Arguments:
10705""""""""""
10706
10707The argument and return value are floating point numbers of the same
10708type.
10709
10710Semantics:
10711""""""""""
10712
10713This function returns the same values as the libm ``round``
10714functions would, and handles error conditions in the same way.
10715
Sean Silvab084af42012-12-07 10:36:55 +000010716Bit Manipulation Intrinsics
10717---------------------------
10718
10719LLVM provides intrinsics for a few important bit manipulation
10720operations. These allow efficient code generation for some algorithms.
10721
James Molloy90111f72015-11-12 12:29:09 +000010722'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010724
10725Syntax:
10726"""""""
10727
10728This is an overloaded intrinsic function. You can use bitreverse on any
10729integer type.
10730
10731::
10732
10733 declare i16 @llvm.bitreverse.i16(i16 <id>)
10734 declare i32 @llvm.bitreverse.i32(i32 <id>)
10735 declare i64 @llvm.bitreverse.i64(i64 <id>)
10736
10737Overview:
10738"""""""""
10739
10740The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010741bitpattern of an integer value; for example ``0b10110110`` becomes
10742``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010743
10744Semantics:
10745""""""""""
10746
10747The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10748``M`` in the input moved to bit ``N-M`` in the output.
10749
Sean Silvab084af42012-12-07 10:36:55 +000010750'``llvm.bswap.*``' Intrinsics
10751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10752
10753Syntax:
10754"""""""
10755
10756This is an overloaded intrinsic function. You can use bswap on any
10757integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10758
10759::
10760
10761 declare i16 @llvm.bswap.i16(i16 <id>)
10762 declare i32 @llvm.bswap.i32(i32 <id>)
10763 declare i64 @llvm.bswap.i64(i64 <id>)
10764
10765Overview:
10766"""""""""
10767
10768The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10769values with an even number of bytes (positive multiple of 16 bits).
10770These are useful for performing operations on data that is not in the
10771target's native byte order.
10772
10773Semantics:
10774""""""""""
10775
10776The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10777and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10778intrinsic returns an i32 value that has the four bytes of the input i32
10779swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10780returned i32 will have its bytes in 3, 2, 1, 0 order. The
10781``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10782concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10783respectively).
10784
10785'``llvm.ctpop.*``' Intrinsic
10786^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10787
10788Syntax:
10789"""""""
10790
10791This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10792bit width, or on any vector with integer elements. Not all targets
10793support all bit widths or vector types, however.
10794
10795::
10796
10797 declare i8 @llvm.ctpop.i8(i8 <src>)
10798 declare i16 @llvm.ctpop.i16(i16 <src>)
10799 declare i32 @llvm.ctpop.i32(i32 <src>)
10800 declare i64 @llvm.ctpop.i64(i64 <src>)
10801 declare i256 @llvm.ctpop.i256(i256 <src>)
10802 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10803
10804Overview:
10805"""""""""
10806
10807The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10808in a value.
10809
10810Arguments:
10811""""""""""
10812
10813The only argument is the value to be counted. The argument may be of any
10814integer type, or a vector with integer elements. The return type must
10815match the argument type.
10816
10817Semantics:
10818""""""""""
10819
10820The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10821each element of a vector.
10822
10823'``llvm.ctlz.*``' Intrinsic
10824^^^^^^^^^^^^^^^^^^^^^^^^^^^
10825
10826Syntax:
10827"""""""
10828
10829This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10830integer bit width, or any vector whose elements are integers. Not all
10831targets support all bit widths or vector types, however.
10832
10833::
10834
10835 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10836 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10837 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10838 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10839 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010840 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010841
10842Overview:
10843"""""""""
10844
10845The '``llvm.ctlz``' family of intrinsic functions counts the number of
10846leading zeros in a variable.
10847
10848Arguments:
10849""""""""""
10850
10851The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010852any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010853type must match the first argument type.
10854
10855The second argument must be a constant and is a flag to indicate whether
10856the intrinsic should ensure that a zero as the first argument produces a
10857defined result. Historically some architectures did not provide a
10858defined result for zero values as efficiently, and many algorithms are
10859now predicated on avoiding zero-value inputs.
10860
10861Semantics:
10862""""""""""
10863
10864The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10865zeros in a variable, or within each element of the vector. If
10866``src == 0`` then the result is the size in bits of the type of ``src``
10867if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10868``llvm.ctlz(i32 2) = 30``.
10869
10870'``llvm.cttz.*``' Intrinsic
10871^^^^^^^^^^^^^^^^^^^^^^^^^^^
10872
10873Syntax:
10874"""""""
10875
10876This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10877integer bit width, or any vector of integer elements. Not all targets
10878support all bit widths or vector types, however.
10879
10880::
10881
10882 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10883 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10884 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10885 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10886 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010887 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010888
10889Overview:
10890"""""""""
10891
10892The '``llvm.cttz``' family of intrinsic functions counts the number of
10893trailing zeros.
10894
10895Arguments:
10896""""""""""
10897
10898The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010899any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010900type must match the first argument type.
10901
10902The second argument must be a constant and is a flag to indicate whether
10903the intrinsic should ensure that a zero as the first argument produces a
10904defined result. Historically some architectures did not provide a
10905defined result for zero values as efficiently, and many algorithms are
10906now predicated on avoiding zero-value inputs.
10907
10908Semantics:
10909""""""""""
10910
10911The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10912zeros in a variable, or within each element of a vector. If ``src == 0``
10913then the result is the size in bits of the type of ``src`` if
10914``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10915``llvm.cttz(2) = 1``.
10916
Philip Reames34843ae2015-03-05 05:55:55 +000010917.. _int_overflow:
10918
Sean Silvab084af42012-12-07 10:36:55 +000010919Arithmetic with Overflow Intrinsics
10920-----------------------------------
10921
John Regehr6a493f22016-05-12 20:55:09 +000010922LLVM provides intrinsics for fast arithmetic overflow checking.
10923
10924Each of these intrinsics returns a two-element struct. The first
10925element of this struct contains the result of the corresponding
10926arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
10927the result. Therefore, for example, the first element of the struct
10928returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
10929result of a 32-bit ``add`` instruction with the same operands, where
10930the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
10931
10932The second element of the result is an ``i1`` that is 1 if the
10933arithmetic operation overflowed and 0 otherwise. An operation
10934overflows if, for any values of its operands ``A`` and ``B`` and for
10935any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
10936not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
10937``sext`` for signed overflow and ``zext`` for unsigned overflow, and
10938``op`` is the underlying arithmetic operation.
10939
10940The behavior of these intrinsics is well-defined for all argument
10941values.
Sean Silvab084af42012-12-07 10:36:55 +000010942
10943'``llvm.sadd.with.overflow.*``' Intrinsics
10944^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10945
10946Syntax:
10947"""""""
10948
10949This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10950on any integer bit width.
10951
10952::
10953
10954 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10955 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10956 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10957
10958Overview:
10959"""""""""
10960
10961The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10962a signed addition of the two arguments, and indicate whether an overflow
10963occurred during the signed summation.
10964
10965Arguments:
10966""""""""""
10967
10968The arguments (%a and %b) and the first element of the result structure
10969may be of integer types of any bit width, but they must have the same
10970bit width. The second element of the result structure must be of type
10971``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10972addition.
10973
10974Semantics:
10975""""""""""
10976
10977The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010978a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010979first element of which is the signed summation, and the second element
10980of which is a bit specifying if the signed summation resulted in an
10981overflow.
10982
10983Examples:
10984"""""""""
10985
10986.. code-block:: llvm
10987
10988 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10989 %sum = extractvalue {i32, i1} %res, 0
10990 %obit = extractvalue {i32, i1} %res, 1
10991 br i1 %obit, label %overflow, label %normal
10992
10993'``llvm.uadd.with.overflow.*``' Intrinsics
10994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10995
10996Syntax:
10997"""""""
10998
10999This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11000on any integer bit width.
11001
11002::
11003
11004 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11005 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11006 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11007
11008Overview:
11009"""""""""
11010
11011The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11012an unsigned addition of the two arguments, and indicate whether a carry
11013occurred during the unsigned summation.
11014
11015Arguments:
11016""""""""""
11017
11018The arguments (%a and %b) and the first element of the result structure
11019may be of integer types of any bit width, but they must have the same
11020bit width. The second element of the result structure must be of type
11021``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11022addition.
11023
11024Semantics:
11025""""""""""
11026
11027The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011028an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011029first element of which is the sum, and the second element of which is a
11030bit specifying if the unsigned summation resulted in a carry.
11031
11032Examples:
11033"""""""""
11034
11035.. code-block:: llvm
11036
11037 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11038 %sum = extractvalue {i32, i1} %res, 0
11039 %obit = extractvalue {i32, i1} %res, 1
11040 br i1 %obit, label %carry, label %normal
11041
11042'``llvm.ssub.with.overflow.*``' Intrinsics
11043^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11044
11045Syntax:
11046"""""""
11047
11048This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11049on any integer bit width.
11050
11051::
11052
11053 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11054 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11055 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11056
11057Overview:
11058"""""""""
11059
11060The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11061a signed subtraction of the two arguments, and indicate whether an
11062overflow occurred during the signed subtraction.
11063
11064Arguments:
11065""""""""""
11066
11067The arguments (%a and %b) and the first element of the result structure
11068may be of integer types of any bit width, but they must have the same
11069bit width. The second element of the result structure must be of type
11070``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11071subtraction.
11072
11073Semantics:
11074""""""""""
11075
11076The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011077a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011078first element of which is the subtraction, and the second element of
11079which is a bit specifying if the signed subtraction resulted in an
11080overflow.
11081
11082Examples:
11083"""""""""
11084
11085.. code-block:: llvm
11086
11087 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11088 %sum = extractvalue {i32, i1} %res, 0
11089 %obit = extractvalue {i32, i1} %res, 1
11090 br i1 %obit, label %overflow, label %normal
11091
11092'``llvm.usub.with.overflow.*``' Intrinsics
11093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11094
11095Syntax:
11096"""""""
11097
11098This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11099on any integer bit width.
11100
11101::
11102
11103 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11104 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11105 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11106
11107Overview:
11108"""""""""
11109
11110The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11111an unsigned subtraction of the two arguments, and indicate whether an
11112overflow occurred during the unsigned subtraction.
11113
11114Arguments:
11115""""""""""
11116
11117The arguments (%a and %b) and the first element of the result structure
11118may be of integer types of any bit width, but they must have the same
11119bit width. The second element of the result structure must be of type
11120``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11121subtraction.
11122
11123Semantics:
11124""""""""""
11125
11126The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011127an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011128the first element of which is the subtraction, and the second element of
11129which is a bit specifying if the unsigned subtraction resulted in an
11130overflow.
11131
11132Examples:
11133"""""""""
11134
11135.. code-block:: llvm
11136
11137 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11138 %sum = extractvalue {i32, i1} %res, 0
11139 %obit = extractvalue {i32, i1} %res, 1
11140 br i1 %obit, label %overflow, label %normal
11141
11142'``llvm.smul.with.overflow.*``' Intrinsics
11143^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11144
11145Syntax:
11146"""""""
11147
11148This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11149on any integer bit width.
11150
11151::
11152
11153 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11154 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11155 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11156
11157Overview:
11158"""""""""
11159
11160The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11161a signed multiplication of the two arguments, and indicate whether an
11162overflow occurred during the signed multiplication.
11163
11164Arguments:
11165""""""""""
11166
11167The arguments (%a and %b) and the first element of the result structure
11168may be of integer types of any bit width, but they must have the same
11169bit width. The second element of the result structure must be of type
11170``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11171multiplication.
11172
11173Semantics:
11174""""""""""
11175
11176The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011177a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011178the first element of which is the multiplication, and the second element
11179of which is a bit specifying if the signed multiplication resulted in an
11180overflow.
11181
11182Examples:
11183"""""""""
11184
11185.. code-block:: llvm
11186
11187 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11188 %sum = extractvalue {i32, i1} %res, 0
11189 %obit = extractvalue {i32, i1} %res, 1
11190 br i1 %obit, label %overflow, label %normal
11191
11192'``llvm.umul.with.overflow.*``' Intrinsics
11193^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11194
11195Syntax:
11196"""""""
11197
11198This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11199on any integer bit width.
11200
11201::
11202
11203 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11204 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11205 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11206
11207Overview:
11208"""""""""
11209
11210The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11211a unsigned multiplication of the two arguments, and indicate whether an
11212overflow occurred during the unsigned multiplication.
11213
11214Arguments:
11215""""""""""
11216
11217The arguments (%a and %b) and the first element of the result structure
11218may be of integer types of any bit width, but they must have the same
11219bit width. The second element of the result structure must be of type
11220``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11221multiplication.
11222
11223Semantics:
11224""""""""""
11225
11226The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011227an unsigned multiplication of the two arguments. They return a structure ---
11228the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011229element of which is a bit specifying if the unsigned multiplication
11230resulted in an overflow.
11231
11232Examples:
11233"""""""""
11234
11235.. code-block:: llvm
11236
11237 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11238 %sum = extractvalue {i32, i1} %res, 0
11239 %obit = extractvalue {i32, i1} %res, 1
11240 br i1 %obit, label %overflow, label %normal
11241
11242Specialised Arithmetic Intrinsics
11243---------------------------------
11244
Owen Anderson1056a922015-07-11 07:01:27 +000011245'``llvm.canonicalize.*``' Intrinsic
11246^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11247
11248Syntax:
11249"""""""
11250
11251::
11252
11253 declare float @llvm.canonicalize.f32(float %a)
11254 declare double @llvm.canonicalize.f64(double %b)
11255
11256Overview:
11257"""""""""
11258
11259The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011260encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011261implementing certain numeric primitives such as frexp. The canonical encoding is
11262defined by IEEE-754-2008 to be:
11263
11264::
11265
11266 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011267 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011268 numbers, infinities, and NaNs, especially in decimal formats.
11269
11270This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011271conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011272according to section 6.2.
11273
11274Examples of non-canonical encodings:
11275
Sean Silvaa1190322015-08-06 22:56:48 +000011276- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011277 converted to a canonical representation per hardware-specific protocol.
11278- Many normal decimal floating point numbers have non-canonical alternative
11279 encodings.
11280- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011281 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011282 a zero of the same sign by this operation.
11283
11284Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11285default exception handling must signal an invalid exception, and produce a
11286quiet NaN result.
11287
11288This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011289that the compiler does not constant fold the operation. Likewise, division by
112901.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011291-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11292
Sean Silvaa1190322015-08-06 22:56:48 +000011293``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011294
11295- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11296- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11297 to ``(x == y)``
11298
11299Additionally, the sign of zero must be conserved:
11300``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11301
11302The payload bits of a NaN must be conserved, with two exceptions.
11303First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011304must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011305usual methods.
11306
11307The canonicalization operation may be optimized away if:
11308
Sean Silvaa1190322015-08-06 22:56:48 +000011309- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011310 floating-point operation that is required by the standard to be canonical.
11311- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011312 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011313
Sean Silvab084af42012-12-07 10:36:55 +000011314'``llvm.fmuladd.*``' Intrinsic
11315^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11316
11317Syntax:
11318"""""""
11319
11320::
11321
11322 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11323 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11324
11325Overview:
11326"""""""""
11327
11328The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011329expressions that can be fused if the code generator determines that (a) the
11330target instruction set has support for a fused operation, and (b) that the
11331fused operation is more efficient than the equivalent, separate pair of mul
11332and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011333
11334Arguments:
11335""""""""""
11336
11337The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11338multiplicands, a and b, and an addend c.
11339
11340Semantics:
11341""""""""""
11342
11343The expression:
11344
11345::
11346
11347 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11348
11349is equivalent to the expression a \* b + c, except that rounding will
11350not be performed between the multiplication and addition steps if the
11351code generator fuses the operations. Fusion is not guaranteed, even if
11352the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011353corresponding llvm.fma.\* intrinsic function should be used
11354instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011355
11356Examples:
11357"""""""""
11358
11359.. code-block:: llvm
11360
Tim Northover675a0962014-06-13 14:24:23 +000011361 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011362
11363Half Precision Floating Point Intrinsics
11364----------------------------------------
11365
11366For most target platforms, half precision floating point is a
11367storage-only format. This means that it is a dense encoding (in memory)
11368but does not support computation in the format.
11369
11370This means that code must first load the half-precision floating point
11371value as an i16, then convert it to float with
11372:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11373then be performed on the float value (including extending to double
11374etc). To store the value back to memory, it is first converted to float
11375if needed, then converted to i16 with
11376:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11377i16 value.
11378
11379.. _int_convert_to_fp16:
11380
11381'``llvm.convert.to.fp16``' Intrinsic
11382^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11383
11384Syntax:
11385"""""""
11386
11387::
11388
Tim Northoverfd7e4242014-07-17 10:51:23 +000011389 declare i16 @llvm.convert.to.fp16.f32(float %a)
11390 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011391
11392Overview:
11393"""""""""
11394
Tim Northoverfd7e4242014-07-17 10:51:23 +000011395The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11396conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011397
11398Arguments:
11399""""""""""
11400
11401The intrinsic function contains single argument - the value to be
11402converted.
11403
11404Semantics:
11405""""""""""
11406
Tim Northoverfd7e4242014-07-17 10:51:23 +000011407The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11408conventional floating point format to half precision floating point format. The
11409return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011410
11411Examples:
11412"""""""""
11413
11414.. code-block:: llvm
11415
Tim Northoverfd7e4242014-07-17 10:51:23 +000011416 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011417 store i16 %res, i16* @x, align 2
11418
11419.. _int_convert_from_fp16:
11420
11421'``llvm.convert.from.fp16``' Intrinsic
11422^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11423
11424Syntax:
11425"""""""
11426
11427::
11428
Tim Northoverfd7e4242014-07-17 10:51:23 +000011429 declare float @llvm.convert.from.fp16.f32(i16 %a)
11430 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011431
11432Overview:
11433"""""""""
11434
11435The '``llvm.convert.from.fp16``' intrinsic function performs a
11436conversion from half precision floating point format to single precision
11437floating point format.
11438
11439Arguments:
11440""""""""""
11441
11442The intrinsic function contains single argument - the value to be
11443converted.
11444
11445Semantics:
11446""""""""""
11447
11448The '``llvm.convert.from.fp16``' intrinsic function performs a
11449conversion from half single precision floating point format to single
11450precision floating point format. The input half-float value is
11451represented by an ``i16`` value.
11452
11453Examples:
11454"""""""""
11455
11456.. code-block:: llvm
11457
David Blaikiec7aabbb2015-03-04 22:06:14 +000011458 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011459 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011460
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011461.. _dbg_intrinsics:
11462
Sean Silvab084af42012-12-07 10:36:55 +000011463Debugger Intrinsics
11464-------------------
11465
11466The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11467prefix), are described in the `LLVM Source Level
11468Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11469document.
11470
11471Exception Handling Intrinsics
11472-----------------------------
11473
11474The LLVM exception handling intrinsics (which all start with
11475``llvm.eh.`` prefix), are described in the `LLVM Exception
11476Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11477
11478.. _int_trampoline:
11479
11480Trampoline Intrinsics
11481---------------------
11482
11483These intrinsics make it possible to excise one parameter, marked with
11484the :ref:`nest <nest>` attribute, from a function. The result is a
11485callable function pointer lacking the nest parameter - the caller does
11486not need to provide a value for it. Instead, the value to use is stored
11487in advance in a "trampoline", a block of memory usually allocated on the
11488stack, which also contains code to splice the nest value into the
11489argument list. This is used to implement the GCC nested function address
11490extension.
11491
11492For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11493then the resulting function pointer has signature ``i32 (i32, i32)*``.
11494It can be created as follows:
11495
11496.. code-block:: llvm
11497
11498 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011499 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011500 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11501 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11502 %fp = bitcast i8* %p to i32 (i32, i32)*
11503
11504The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11505``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11506
11507.. _int_it:
11508
11509'``llvm.init.trampoline``' Intrinsic
11510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11511
11512Syntax:
11513"""""""
11514
11515::
11516
11517 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11518
11519Overview:
11520"""""""""
11521
11522This fills the memory pointed to by ``tramp`` with executable code,
11523turning it into a trampoline.
11524
11525Arguments:
11526""""""""""
11527
11528The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11529pointers. The ``tramp`` argument must point to a sufficiently large and
11530sufficiently aligned block of memory; this memory is written to by the
11531intrinsic. Note that the size and the alignment are target-specific -
11532LLVM currently provides no portable way of determining them, so a
11533front-end that generates this intrinsic needs to have some
11534target-specific knowledge. The ``func`` argument must hold a function
11535bitcast to an ``i8*``.
11536
11537Semantics:
11538""""""""""
11539
11540The block of memory pointed to by ``tramp`` is filled with target
11541dependent code, turning it into a function. Then ``tramp`` needs to be
11542passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11543be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11544function's signature is the same as that of ``func`` with any arguments
11545marked with the ``nest`` attribute removed. At most one such ``nest``
11546argument is allowed, and it must be of pointer type. Calling the new
11547function is equivalent to calling ``func`` with the same argument list,
11548but with ``nval`` used for the missing ``nest`` argument. If, after
11549calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11550modified, then the effect of any later call to the returned function
11551pointer is undefined.
11552
11553.. _int_at:
11554
11555'``llvm.adjust.trampoline``' Intrinsic
11556^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11557
11558Syntax:
11559"""""""
11560
11561::
11562
11563 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11564
11565Overview:
11566"""""""""
11567
11568This performs any required machine-specific adjustment to the address of
11569a trampoline (passed as ``tramp``).
11570
11571Arguments:
11572""""""""""
11573
11574``tramp`` must point to a block of memory which already has trampoline
11575code filled in by a previous call to
11576:ref:`llvm.init.trampoline <int_it>`.
11577
11578Semantics:
11579""""""""""
11580
11581On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011582different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011583intrinsic returns the executable address corresponding to ``tramp``
11584after performing the required machine specific adjustments. The pointer
11585returned can then be :ref:`bitcast and executed <int_trampoline>`.
11586
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011587.. _int_mload_mstore:
11588
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011589Masked Vector Load and Store Intrinsics
11590---------------------------------------
11591
11592LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11593
11594.. _int_mload:
11595
11596'``llvm.masked.load.*``' Intrinsics
11597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11598
11599Syntax:
11600"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011601This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011602
11603::
11604
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011605 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11606 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011607 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011608 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011609 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011610 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011611
11612Overview:
11613"""""""""
11614
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011615Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011616
11617
11618Arguments:
11619""""""""""
11620
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011621The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011622
11623
11624Semantics:
11625""""""""""
11626
11627The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11628The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11629
11630
11631::
11632
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011633 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011634
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011635 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011636 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011637 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011638
11639.. _int_mstore:
11640
11641'``llvm.masked.store.*``' Intrinsics
11642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11643
11644Syntax:
11645"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011646This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011647
11648::
11649
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011650 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11651 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011652 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011653 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011654 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011655 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011656
11657Overview:
11658"""""""""
11659
11660Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11661
11662Arguments:
11663""""""""""
11664
11665The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11666
11667
11668Semantics:
11669""""""""""
11670
11671The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11672The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11673
11674::
11675
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011676 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011677
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011678 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011679 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011680 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11681 store <16 x float> %res, <16 x float>* %ptr, align 4
11682
11683
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011684Masked Vector Gather and Scatter Intrinsics
11685-------------------------------------------
11686
11687LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11688
11689.. _int_mgather:
11690
11691'``llvm.masked.gather.*``' Intrinsics
11692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11693
11694Syntax:
11695"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011696This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011697
11698::
11699
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011700 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11701 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11702 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011703
11704Overview:
11705"""""""""
11706
11707Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11708
11709
11710Arguments:
11711""""""""""
11712
11713The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11714
11715
11716Semantics:
11717""""""""""
11718
11719The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11720The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11721
11722
11723::
11724
11725 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11726
11727 ;; The gather with all-true mask is equivalent to the following instruction sequence
11728 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11729 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11730 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11731 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11732
11733 %val0 = load double, double* %ptr0, align 8
11734 %val1 = load double, double* %ptr1, align 8
11735 %val2 = load double, double* %ptr2, align 8
11736 %val3 = load double, double* %ptr3, align 8
11737
11738 %vec0 = insertelement <4 x double>undef, %val0, 0
11739 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11740 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11741 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11742
11743.. _int_mscatter:
11744
11745'``llvm.masked.scatter.*``' Intrinsics
11746^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11747
11748Syntax:
11749"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011750This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011751
11752::
11753
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011754 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11755 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11756 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011757
11758Overview:
11759"""""""""
11760
11761Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11762
11763Arguments:
11764""""""""""
11765
11766The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11767
11768
11769Semantics:
11770""""""""""
11771
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011772The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011773
11774::
11775
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011776 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011777 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11778
11779 ;; It is equivalent to a list of scalar stores
11780 %val0 = extractelement <8 x i32> %value, i32 0
11781 %val1 = extractelement <8 x i32> %value, i32 1
11782 ..
11783 %val7 = extractelement <8 x i32> %value, i32 7
11784 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11785 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11786 ..
11787 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11788 ;; Note: the order of the following stores is important when they overlap:
11789 store i32 %val0, i32* %ptr0, align 4
11790 store i32 %val1, i32* %ptr1, align 4
11791 ..
11792 store i32 %val7, i32* %ptr7, align 4
11793
11794
Sean Silvab084af42012-12-07 10:36:55 +000011795Memory Use Markers
11796------------------
11797
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011798This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011799memory objects and ranges where variables are immutable.
11800
Reid Klecknera534a382013-12-19 02:14:12 +000011801.. _int_lifestart:
11802
Sean Silvab084af42012-12-07 10:36:55 +000011803'``llvm.lifetime.start``' Intrinsic
11804^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11805
11806Syntax:
11807"""""""
11808
11809::
11810
11811 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11812
11813Overview:
11814"""""""""
11815
11816The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11817object's lifetime.
11818
11819Arguments:
11820""""""""""
11821
11822The first argument is a constant integer representing the size of the
11823object, or -1 if it is variable sized. The second argument is a pointer
11824to the object.
11825
11826Semantics:
11827""""""""""
11828
11829This intrinsic indicates that before this point in the code, the value
11830of the memory pointed to by ``ptr`` is dead. This means that it is known
11831to never be used and has an undefined value. A load from the pointer
11832that precedes this intrinsic can be replaced with ``'undef'``.
11833
Reid Klecknera534a382013-12-19 02:14:12 +000011834.. _int_lifeend:
11835
Sean Silvab084af42012-12-07 10:36:55 +000011836'``llvm.lifetime.end``' Intrinsic
11837^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11838
11839Syntax:
11840"""""""
11841
11842::
11843
11844 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11845
11846Overview:
11847"""""""""
11848
11849The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11850object's lifetime.
11851
11852Arguments:
11853""""""""""
11854
11855The first argument is a constant integer representing the size of the
11856object, or -1 if it is variable sized. The second argument is a pointer
11857to the object.
11858
11859Semantics:
11860""""""""""
11861
11862This intrinsic indicates that after this point in the code, the value of
11863the memory pointed to by ``ptr`` is dead. This means that it is known to
11864never be used and has an undefined value. Any stores into the memory
11865object following this intrinsic may be removed as dead.
11866
11867'``llvm.invariant.start``' Intrinsic
11868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11869
11870Syntax:
11871"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011872This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011873
11874::
11875
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011876 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011877
11878Overview:
11879"""""""""
11880
11881The '``llvm.invariant.start``' intrinsic specifies that the contents of
11882a memory object will not change.
11883
11884Arguments:
11885""""""""""
11886
11887The first argument is a constant integer representing the size of the
11888object, or -1 if it is variable sized. The second argument is a pointer
11889to the object.
11890
11891Semantics:
11892""""""""""
11893
11894This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11895the return value, the referenced memory location is constant and
11896unchanging.
11897
11898'``llvm.invariant.end``' Intrinsic
11899^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11900
11901Syntax:
11902"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011903This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011904
11905::
11906
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011907 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011908
11909Overview:
11910"""""""""
11911
11912The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11913memory object are mutable.
11914
11915Arguments:
11916""""""""""
11917
11918The first argument is the matching ``llvm.invariant.start`` intrinsic.
11919The second argument is a constant integer representing the size of the
11920object, or -1 if it is variable sized and the third argument is a
11921pointer to the object.
11922
11923Semantics:
11924""""""""""
11925
11926This intrinsic indicates that the memory is mutable again.
11927
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011928'``llvm.invariant.group.barrier``' Intrinsic
11929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11930
11931Syntax:
11932"""""""
11933
11934::
11935
11936 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11937
11938Overview:
11939"""""""""
11940
11941The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11942established by invariant.group metadata no longer holds, to obtain a new pointer
11943value that does not carry the invariant information.
11944
11945
11946Arguments:
11947""""""""""
11948
11949The ``llvm.invariant.group.barrier`` takes only one argument, which is
11950the pointer to the memory for which the ``invariant.group`` no longer holds.
11951
11952Semantics:
11953""""""""""
11954
11955Returns another pointer that aliases its argument but which is considered different
11956for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11957
Sean Silvab084af42012-12-07 10:36:55 +000011958General Intrinsics
11959------------------
11960
11961This class of intrinsics is designed to be generic and has no specific
11962purpose.
11963
11964'``llvm.var.annotation``' Intrinsic
11965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11966
11967Syntax:
11968"""""""
11969
11970::
11971
11972 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11973
11974Overview:
11975"""""""""
11976
11977The '``llvm.var.annotation``' intrinsic.
11978
11979Arguments:
11980""""""""""
11981
11982The first argument is a pointer to a value, the second is a pointer to a
11983global string, the third is a pointer to a global string which is the
11984source file name, and the last argument is the line number.
11985
11986Semantics:
11987""""""""""
11988
11989This intrinsic allows annotation of local variables with arbitrary
11990strings. This can be useful for special purpose optimizations that want
11991to look for these annotations. These have no other defined use; they are
11992ignored by code generation and optimization.
11993
Michael Gottesman88d18832013-03-26 00:34:27 +000011994'``llvm.ptr.annotation.*``' Intrinsic
11995^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11996
11997Syntax:
11998"""""""
11999
12000This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12001pointer to an integer of any width. *NOTE* you must specify an address space for
12002the pointer. The identifier for the default address space is the integer
12003'``0``'.
12004
12005::
12006
12007 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12008 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12009 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12010 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12011 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12012
12013Overview:
12014"""""""""
12015
12016The '``llvm.ptr.annotation``' intrinsic.
12017
12018Arguments:
12019""""""""""
12020
12021The first argument is a pointer to an integer value of arbitrary bitwidth
12022(result of some expression), the second is a pointer to a global string, the
12023third is a pointer to a global string which is the source file name, and the
12024last argument is the line number. It returns the value of the first argument.
12025
12026Semantics:
12027""""""""""
12028
12029This intrinsic allows annotation of a pointer to an integer with arbitrary
12030strings. This can be useful for special purpose optimizations that want to look
12031for these annotations. These have no other defined use; they are ignored by code
12032generation and optimization.
12033
Sean Silvab084af42012-12-07 10:36:55 +000012034'``llvm.annotation.*``' Intrinsic
12035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12036
12037Syntax:
12038"""""""
12039
12040This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12041any integer bit width.
12042
12043::
12044
12045 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12046 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12047 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12048 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12049 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12050
12051Overview:
12052"""""""""
12053
12054The '``llvm.annotation``' intrinsic.
12055
12056Arguments:
12057""""""""""
12058
12059The first argument is an integer value (result of some expression), the
12060second is a pointer to a global string, the third is a pointer to a
12061global string which is the source file name, and the last argument is
12062the line number. It returns the value of the first argument.
12063
12064Semantics:
12065""""""""""
12066
12067This intrinsic allows annotations to be put on arbitrary expressions
12068with arbitrary strings. This can be useful for special purpose
12069optimizations that want to look for these annotations. These have no
12070other defined use; they are ignored by code generation and optimization.
12071
12072'``llvm.trap``' Intrinsic
12073^^^^^^^^^^^^^^^^^^^^^^^^^
12074
12075Syntax:
12076"""""""
12077
12078::
12079
12080 declare void @llvm.trap() noreturn nounwind
12081
12082Overview:
12083"""""""""
12084
12085The '``llvm.trap``' intrinsic.
12086
12087Arguments:
12088""""""""""
12089
12090None.
12091
12092Semantics:
12093""""""""""
12094
12095This intrinsic is lowered to the target dependent trap instruction. If
12096the target does not have a trap instruction, this intrinsic will be
12097lowered to a call of the ``abort()`` function.
12098
12099'``llvm.debugtrap``' Intrinsic
12100^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12101
12102Syntax:
12103"""""""
12104
12105::
12106
12107 declare void @llvm.debugtrap() nounwind
12108
12109Overview:
12110"""""""""
12111
12112The '``llvm.debugtrap``' intrinsic.
12113
12114Arguments:
12115""""""""""
12116
12117None.
12118
12119Semantics:
12120""""""""""
12121
12122This intrinsic is lowered to code which is intended to cause an
12123execution trap with the intention of requesting the attention of a
12124debugger.
12125
12126'``llvm.stackprotector``' Intrinsic
12127^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12128
12129Syntax:
12130"""""""
12131
12132::
12133
12134 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12135
12136Overview:
12137"""""""""
12138
12139The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12140onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12141is placed on the stack before local variables.
12142
12143Arguments:
12144""""""""""
12145
12146The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12147The first argument is the value loaded from the stack guard
12148``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12149enough space to hold the value of the guard.
12150
12151Semantics:
12152""""""""""
12153
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012154This intrinsic causes the prologue/epilogue inserter to force the position of
12155the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12156to ensure that if a local variable on the stack is overwritten, it will destroy
12157the value of the guard. When the function exits, the guard on the stack is
12158checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12159different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12160calling the ``__stack_chk_fail()`` function.
12161
Tim Shene885d5e2016-04-19 19:40:37 +000012162'``llvm.stackguard``' Intrinsic
12163^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12164
12165Syntax:
12166"""""""
12167
12168::
12169
12170 declare i8* @llvm.stackguard()
12171
12172Overview:
12173"""""""""
12174
12175The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12176
12177It should not be generated by frontends, since it is only for internal usage.
12178The reason why we create this intrinsic is that we still support IR form Stack
12179Protector in FastISel.
12180
12181Arguments:
12182""""""""""
12183
12184None.
12185
12186Semantics:
12187""""""""""
12188
12189On some platforms, the value returned by this intrinsic remains unchanged
12190between loads in the same thread. On other platforms, it returns the same
12191global variable value, if any, e.g. ``@__stack_chk_guard``.
12192
12193Currently some platforms have IR-level customized stack guard loading (e.g.
12194X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12195in the future.
12196
Sean Silvab084af42012-12-07 10:36:55 +000012197'``llvm.objectsize``' Intrinsic
12198^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12199
12200Syntax:
12201"""""""
12202
12203::
12204
12205 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12206 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12207
12208Overview:
12209"""""""""
12210
12211The ``llvm.objectsize`` intrinsic is designed to provide information to
12212the optimizers to determine at compile time whether a) an operation
12213(like memcpy) will overflow a buffer that corresponds to an object, or
12214b) that a runtime check for overflow isn't necessary. An object in this
12215context means an allocation of a specific class, structure, array, or
12216other object.
12217
12218Arguments:
12219""""""""""
12220
12221The ``llvm.objectsize`` intrinsic takes two arguments. The first
12222argument is a pointer to or into the ``object``. The second argument is
12223a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12224or -1 (if false) when the object size is unknown. The second argument
12225only accepts constants.
12226
12227Semantics:
12228""""""""""
12229
12230The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12231the size of the object concerned. If the size cannot be determined at
12232compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12233on the ``min`` argument).
12234
12235'``llvm.expect``' Intrinsic
12236^^^^^^^^^^^^^^^^^^^^^^^^^^^
12237
12238Syntax:
12239"""""""
12240
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012241This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12242integer bit width.
12243
Sean Silvab084af42012-12-07 10:36:55 +000012244::
12245
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012246 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012247 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12248 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12249
12250Overview:
12251"""""""""
12252
12253The ``llvm.expect`` intrinsic provides information about expected (the
12254most probable) value of ``val``, which can be used by optimizers.
12255
12256Arguments:
12257""""""""""
12258
12259The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12260a value. The second argument is an expected value, this needs to be a
12261constant value, variables are not allowed.
12262
12263Semantics:
12264""""""""""
12265
12266This intrinsic is lowered to the ``val``.
12267
Philip Reamese0e90832015-04-26 22:23:12 +000012268.. _int_assume:
12269
Hal Finkel93046912014-07-25 21:13:35 +000012270'``llvm.assume``' Intrinsic
12271^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12272
12273Syntax:
12274"""""""
12275
12276::
12277
12278 declare void @llvm.assume(i1 %cond)
12279
12280Overview:
12281"""""""""
12282
12283The ``llvm.assume`` allows the optimizer to assume that the provided
12284condition is true. This information can then be used in simplifying other parts
12285of the code.
12286
12287Arguments:
12288""""""""""
12289
12290The condition which the optimizer may assume is always true.
12291
12292Semantics:
12293""""""""""
12294
12295The intrinsic allows the optimizer to assume that the provided condition is
12296always true whenever the control flow reaches the intrinsic call. No code is
12297generated for this intrinsic, and instructions that contribute only to the
12298provided condition are not used for code generation. If the condition is
12299violated during execution, the behavior is undefined.
12300
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012301Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012302used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12303only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012304if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012305sufficient overall improvement in code quality. For this reason,
12306``llvm.assume`` should not be used to document basic mathematical invariants
12307that the optimizer can otherwise deduce or facts that are of little use to the
12308optimizer.
12309
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012310.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012311
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012312'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12314
12315Syntax:
12316"""""""
12317
12318::
12319
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012320 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012321
12322
12323Arguments:
12324""""""""""
12325
12326The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012327metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012328
12329Overview:
12330"""""""""
12331
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012332The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12333with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012334
Peter Collingbourne0312f612016-06-25 00:23:04 +000012335'``llvm.type.checked.load``' Intrinsic
12336^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12337
12338Syntax:
12339"""""""
12340
12341::
12342
12343 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12344
12345
12346Arguments:
12347""""""""""
12348
12349The first argument is a pointer from which to load a function pointer. The
12350second argument is the byte offset from which to load the function pointer. The
12351third argument is a metadata object representing a :doc:`type identifier
12352<TypeMetadata>`.
12353
12354Overview:
12355"""""""""
12356
12357The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12358virtual table pointer using type metadata. This intrinsic is used to implement
12359control flow integrity in conjunction with virtual call optimization. The
12360virtual call optimization pass will optimize away ``llvm.type.checked.load``
12361intrinsics associated with devirtualized calls, thereby removing the type
12362check in cases where it is not needed to enforce the control flow integrity
12363constraint.
12364
12365If the given pointer is associated with a type metadata identifier, this
12366function returns true as the second element of its return value. (Note that
12367the function may also return true if the given pointer is not associated
12368with a type metadata identifier.) If the function's return value's second
12369element is true, the following rules apply to the first element:
12370
12371- If the given pointer is associated with the given type metadata identifier,
12372 it is the function pointer loaded from the given byte offset from the given
12373 pointer.
12374
12375- If the given pointer is not associated with the given type metadata
12376 identifier, it is one of the following (the choice of which is unspecified):
12377
12378 1. The function pointer that would have been loaded from an arbitrarily chosen
12379 (through an unspecified mechanism) pointer associated with the type
12380 metadata.
12381
12382 2. If the function has a non-void return type, a pointer to a function that
12383 returns an unspecified value without causing side effects.
12384
12385If the function's return value's second element is false, the value of the
12386first element is undefined.
12387
12388
Sean Silvab084af42012-12-07 10:36:55 +000012389'``llvm.donothing``' Intrinsic
12390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12391
12392Syntax:
12393"""""""
12394
12395::
12396
12397 declare void @llvm.donothing() nounwind readnone
12398
12399Overview:
12400"""""""""
12401
Juergen Ributzkac9161192014-10-23 22:36:13 +000012402The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012403three intrinsics (besides ``llvm.experimental.patchpoint`` and
12404``llvm.experimental.gc.statepoint``) that can be called with an invoke
12405instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012406
12407Arguments:
12408""""""""""
12409
12410None.
12411
12412Semantics:
12413""""""""""
12414
12415This intrinsic does nothing, and it's removed by optimizers and ignored
12416by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012417
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012418'``llvm.experimental.deoptimize``' Intrinsic
12419^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12420
12421Syntax:
12422"""""""
12423
12424::
12425
12426 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12427
12428Overview:
12429"""""""""
12430
12431This intrinsic, together with :ref:`deoptimization operand bundles
12432<deopt_opbundles>`, allow frontends to express transfer of control and
12433frame-local state from the currently executing (typically more specialized,
12434hence faster) version of a function into another (typically more generic, hence
12435slower) version.
12436
12437In languages with a fully integrated managed runtime like Java and JavaScript
12438this intrinsic can be used to implement "uncommon trap" or "side exit" like
12439functionality. In unmanaged languages like C and C++, this intrinsic can be
12440used to represent the slow paths of specialized functions.
12441
12442
12443Arguments:
12444""""""""""
12445
12446The intrinsic takes an arbitrary number of arguments, whose meaning is
12447decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12448
12449Semantics:
12450""""""""""
12451
12452The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12453deoptimization continuation (denoted using a :ref:`deoptimization
12454operand bundle <deopt_opbundles>`) and returns the value returned by
12455the deoptimization continuation. Defining the semantic properties of
12456the continuation itself is out of scope of the language reference --
12457as far as LLVM is concerned, the deoptimization continuation can
12458invoke arbitrary side effects, including reading from and writing to
12459the entire heap.
12460
12461Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12462continue execution to the end of the physical frame containing them, so all
12463calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12464
12465 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12466 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12467 - The ``ret`` instruction must return the value produced by the
12468 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12469
12470Note that the above restrictions imply that the return type for a call to
12471``@llvm.experimental.deoptimize`` will match the return type of its immediate
12472caller.
12473
12474The inliner composes the ``"deopt"`` continuations of the caller into the
12475``"deopt"`` continuations present in the inlinee, and also updates calls to this
12476intrinsic to return directly from the frame of the function it inlined into.
12477
Sanjoy Dase0aa4142016-05-12 01:17:38 +000012478All declarations of ``@llvm.experimental.deoptimize`` must share the
12479same calling convention.
12480
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012481.. _deoptimize_lowering:
12482
12483Lowering:
12484"""""""""
12485
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012486Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12487symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12488ensure that this symbol is defined). The call arguments to
12489``@llvm.experimental.deoptimize`` are lowered as if they were formal
12490arguments of the specified types, and not as varargs.
12491
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012492
Sanjoy Das021de052016-03-31 00:18:46 +000012493'``llvm.experimental.guard``' Intrinsic
12494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12495
12496Syntax:
12497"""""""
12498
12499::
12500
12501 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12502
12503Overview:
12504"""""""""
12505
12506This intrinsic, together with :ref:`deoptimization operand bundles
12507<deopt_opbundles>`, allows frontends to express guards or checks on
12508optimistic assumptions made during compilation. The semantics of
12509``@llvm.experimental.guard`` is defined in terms of
12510``@llvm.experimental.deoptimize`` -- its body is defined to be
12511equivalent to:
12512
Renato Golin124f2592016-07-20 12:16:38 +000012513.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000012514
Renato Golin124f2592016-07-20 12:16:38 +000012515 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12516 %realPred = and i1 %pred, undef
12517 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000012518
Renato Golin124f2592016-07-20 12:16:38 +000012519 leave:
12520 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12521 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000012522
Renato Golin124f2592016-07-20 12:16:38 +000012523 continue:
12524 ret void
12525 }
Sanjoy Das021de052016-03-31 00:18:46 +000012526
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012527
12528with the optional ``[, !make.implicit !{}]`` present if and only if it
12529is present on the call site. For more details on ``!make.implicit``,
12530see :doc:`FaultMaps`.
12531
Sanjoy Das021de052016-03-31 00:18:46 +000012532In words, ``@llvm.experimental.guard`` executes the attached
12533``"deopt"`` continuation if (but **not** only if) its first argument
12534is ``false``. Since the optimizer is allowed to replace the ``undef``
12535with an arbitrary value, it can optimize guard to fail "spuriously",
12536i.e. without the original condition being false (hence the "not only
12537if"); and this allows for "check widening" type optimizations.
12538
12539``@llvm.experimental.guard`` cannot be invoked.
12540
12541
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012542'``llvm.load.relative``' Intrinsic
12543^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12544
12545Syntax:
12546"""""""
12547
12548::
12549
12550 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12551
12552Overview:
12553"""""""""
12554
12555This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12556adds ``%ptr`` to that value and returns it. The constant folder specifically
12557recognizes the form of this intrinsic and the constant initializers it may
12558load from; if a loaded constant initializer is known to have the form
12559``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12560
12561LLVM provides that the calculation of such a constant initializer will
12562not overflow at link time under the medium code model if ``x`` is an
12563``unnamed_addr`` function. However, it does not provide this guarantee for
12564a constant initializer folded into a function body. This intrinsic can be
12565used to avoid the possibility of overflows when loading from such a constant.
12566
Andrew Trick5e029ce2013-12-24 02:57:25 +000012567Stack Map Intrinsics
12568--------------------
12569
12570LLVM provides experimental intrinsics to support runtime patching
12571mechanisms commonly desired in dynamic language JITs. These intrinsics
12572are described in :doc:`StackMaps`.