blob: e156245394e4767d5d986e353f121ea8a3d25aab [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
645an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000646
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000647Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000648:ref:`Thread Local Storage Model <tls_model>`.
649
Nico Rieck7157bb72014-01-14 15:22:47 +0000650Syntax::
651
Rafael Espindola32483a72016-05-10 18:22:45 +0000652 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000653 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
654 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000655 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000656 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000657 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659For example, the following defines a global in a numbered address space
660with an initializer, section, and alignment:
661
662.. code-block:: llvm
663
664 @G = addrspace(5) constant float 1.0, section "foo", align 4
665
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000666The following example just declares a global variable
667
668.. code-block:: llvm
669
670 @G = external global i32
671
Sean Silvab084af42012-12-07 10:36:55 +0000672The following example defines a thread-local global with the
673``initialexec`` TLS model:
674
675.. code-block:: llvm
676
677 @G = thread_local(initialexec) global i32 0, align 4
678
679.. _functionstructure:
680
681Functions
682---------
683
684LLVM function definitions consist of the "``define``" keyword, an
685optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000686style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
687an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000688an optional ``unnamed_addr`` attribute, a return type, an optional
689:ref:`parameter attribute <paramattrs>` for the return type, a function
690name, a (possibly empty) argument list (each with optional :ref:`parameter
691attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000692an optional section, an optional alignment,
693an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000694an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000695an optional :ref:`prologue <prologuedata>`,
696an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000697an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000698an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000699
700LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000701optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
702<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
703optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
704or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
705attribute <paramattrs>` for the return type, a function name, a possibly
706empty list of arguments, an optional alignment, an optional :ref:`garbage
707collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
708:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000709
Bill Wendling6822ecb2013-10-27 05:09:12 +0000710A function definition contains a list of basic blocks, forming the CFG (Control
711Flow Graph) for the function. Each basic block may optionally start with a label
712(giving the basic block a symbol table entry), contains a list of instructions,
713and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
714function return). If an explicit label is not provided, a block is assigned an
715implicit numbered label, using the next value from the same counter as used for
716unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
717entry block does not have an explicit label, it will be assigned label "%0",
718then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000719
720The first basic block in a function is special in two ways: it is
721immediately executed on entrance to the function, and it is not allowed
722to have predecessor basic blocks (i.e. there can not be any branches to
723the entry block of a function). Because the block can have no
724predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
725
726LLVM allows an explicit section to be specified for functions. If the
727target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000728Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730An explicit alignment may be specified for a function. If not present,
731or if the alignment is set to zero, the alignment of the function is set
732by the target to whatever it feels convenient. If an explicit alignment
733is specified, the function is forced to have at least that much
734alignment. All alignments must be a power of 2.
735
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000736If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000737be significant and two identical functions can be merged.
738
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000739If the ``local_unnamed_addr`` attribute is given, the address is known to
740not be significant within the module.
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Syntax::
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000745 [cconv] [ret attrs]
746 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000747 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
748 [comdat [($name)]] [align N] [gc] [prefix Constant]
749 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000750
Sean Silva706fba52015-08-06 22:56:24 +0000751The argument list is a comma separated sequence of arguments where each
752argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000753
754Syntax::
755
756 <type> [parameter Attrs] [name]
757
758
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000759.. _langref_aliases:
760
Sean Silvab084af42012-12-07 10:36:55 +0000761Aliases
762-------
763
Rafael Espindola64c1e182014-06-03 02:41:57 +0000764Aliases, unlike function or variables, don't create any new data. They
765are just a new symbol and metadata for an existing position.
766
767Aliases have a name and an aliasee that is either a global value or a
768constant expression.
769
Nico Rieck7157bb72014-01-14 15:22:47 +0000770Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000771:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
772<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000773
774Syntax::
775
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000776 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000777
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000778The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000779``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000780might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000781
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000782Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000783the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
784to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000785
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000786If the ``local_unnamed_addr`` attribute is given, the address is known to
787not be significant within the module.
788
Rafael Espindola64c1e182014-06-03 02:41:57 +0000789Since aliases are only a second name, some restrictions apply, of which
790some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000791
Rafael Espindola64c1e182014-06-03 02:41:57 +0000792* The expression defining the aliasee must be computable at assembly
793 time. Since it is just a name, no relocations can be used.
794
795* No alias in the expression can be weak as the possibility of the
796 intermediate alias being overridden cannot be represented in an
797 object file.
798
799* No global value in the expression can be a declaration, since that
800 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000801
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000802.. _langref_ifunc:
803
804IFuncs
805-------
806
807IFuncs, like as aliases, don't create any new data or func. They are just a new
808symbol that dynamic linker resolves at runtime by calling a resolver function.
809
810IFuncs have a name and a resolver that is a function called by dynamic linker
811that returns address of another function associated with the name.
812
813IFunc may have an optional :ref:`linkage type <linkage>` and an optional
814:ref:`visibility style <visibility>`.
815
816Syntax::
817
818 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821.. _langref_comdats:
822
823Comdats
824-------
825
826Comdat IR provides access to COFF and ELF object file COMDAT functionality.
827
Sean Silvaa1190322015-08-06 22:56:48 +0000828Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000829specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000830that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000831aliasee computes to, if any.
832
833Comdats have a selection kind to provide input on how the linker should
834choose between keys in two different object files.
835
836Syntax::
837
838 $<Name> = comdat SelectionKind
839
840The selection kind must be one of the following:
841
842``any``
843 The linker may choose any COMDAT key, the choice is arbitrary.
844``exactmatch``
845 The linker may choose any COMDAT key but the sections must contain the
846 same data.
847``largest``
848 The linker will choose the section containing the largest COMDAT key.
849``noduplicates``
850 The linker requires that only section with this COMDAT key exist.
851``samesize``
852 The linker may choose any COMDAT key but the sections must contain the
853 same amount of data.
854
855Note that the Mach-O platform doesn't support COMDATs and ELF only supports
856``any`` as a selection kind.
857
858Here is an example of a COMDAT group where a function will only be selected if
859the COMDAT key's section is the largest:
860
Renato Golin124f2592016-07-20 12:16:38 +0000861.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000862
863 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000864 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000865
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000867 ret void
868 }
869
Rafael Espindola83a362c2015-01-06 22:55:16 +0000870As a syntactic sugar the ``$name`` can be omitted if the name is the same as
871the global name:
872
Renato Golin124f2592016-07-20 12:16:38 +0000873.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000874
875 $foo = comdat any
876 @foo = global i32 2, comdat
877
878
David Majnemerdad0a642014-06-27 18:19:56 +0000879In a COFF object file, this will create a COMDAT section with selection kind
880``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
881and another COMDAT section with selection kind
882``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000883section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885There are some restrictions on the properties of the global object.
886It, or an alias to it, must have the same name as the COMDAT group when
887targeting COFF.
888The contents and size of this object may be used during link-time to determine
889which COMDAT groups get selected depending on the selection kind.
890Because the name of the object must match the name of the COMDAT group, the
891linkage of the global object must not be local; local symbols can get renamed
892if a collision occurs in the symbol table.
893
894The combined use of COMDATS and section attributes may yield surprising results.
895For example:
896
Renato Golin124f2592016-07-20 12:16:38 +0000897.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000898
899 $foo = comdat any
900 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901 @g1 = global i32 42, section "sec", comdat($foo)
902 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000903
904From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000905with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000906COMDAT groups and COMDATs, at the object file level, are represented by
907sections.
908
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000909Note that certain IR constructs like global variables and functions may
910create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000911COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000912in individual sections (e.g. when `-data-sections` or `-function-sections`
913is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000914
Sean Silvab084af42012-12-07 10:36:55 +0000915.. _namedmetadatastructure:
916
917Named Metadata
918--------------
919
920Named metadata is a collection of metadata. :ref:`Metadata
921nodes <metadata>` (but not metadata strings) are the only valid
922operands for a named metadata.
923
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000924#. Named metadata are represented as a string of characters with the
925 metadata prefix. The rules for metadata names are the same as for
926 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
927 are still valid, which allows any character to be part of a name.
928
Sean Silvab084af42012-12-07 10:36:55 +0000929Syntax::
930
931 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000932 !0 = !{!"zero"}
933 !1 = !{!"one"}
934 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000935 ; A named metadata.
936 !name = !{!0, !1, !2}
937
938.. _paramattrs:
939
940Parameter Attributes
941--------------------
942
943The return type and each parameter of a function type may have a set of
944*parameter attributes* associated with them. Parameter attributes are
945used to communicate additional information about the result or
946parameters of a function. Parameter attributes are considered to be part
947of the function, not of the function type, so functions with different
948parameter attributes can have the same function type.
949
950Parameter attributes are simple keywords that follow the type specified.
951If multiple parameter attributes are needed, they are space separated.
952For example:
953
954.. code-block:: llvm
955
956 declare i32 @printf(i8* noalias nocapture, ...)
957 declare i32 @atoi(i8 zeroext)
958 declare signext i8 @returns_signed_char()
959
960Note that any attributes for the function result (``nounwind``,
961``readonly``) come immediately after the argument list.
962
963Currently, only the following parameter attributes are defined:
964
965``zeroext``
966 This indicates to the code generator that the parameter or return
967 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000968 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000969``signext``
970 This indicates to the code generator that the parameter or return
971 value should be sign-extended to the extent required by the target's
972 ABI (which is usually 32-bits) by the caller (for a parameter) or
973 the callee (for a return value).
974``inreg``
975 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000976 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000977 a function call or return (usually, by putting it in a register as
978 opposed to memory, though some targets use it to distinguish between
979 two different kinds of registers). Use of this attribute is
980 target-specific.
981``byval``
982 This indicates that the pointer parameter should really be passed by
983 value to the function. The attribute implies that a hidden copy of
984 the pointee is made between the caller and the callee, so the callee
985 is unable to modify the value in the caller. This attribute is only
986 valid on LLVM pointer arguments. It is generally used to pass
987 structs and arrays by value, but is also valid on pointers to
988 scalars. The copy is considered to belong to the caller not the
989 callee (for example, ``readonly`` functions should not write to
990 ``byval`` parameters). This is not a valid attribute for return
991 values.
992
993 The byval attribute also supports specifying an alignment with the
994 align attribute. It indicates the alignment of the stack slot to
995 form and the known alignment of the pointer specified to the call
996 site. If the alignment is not specified, then the code generator
997 makes a target-specific assumption.
998
Reid Klecknera534a382013-12-19 02:14:12 +0000999.. _attr_inalloca:
1000
1001``inalloca``
1002
Reid Kleckner60d3a832014-01-16 22:59:24 +00001003 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001004 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001005 be a pointer to stack memory produced by an ``alloca`` instruction.
1006 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001007 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001008 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001009
Reid Kleckner436c42e2014-01-17 23:58:17 +00001010 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001011 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001012 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001013 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001014 ``inalloca`` attribute also disables LLVM's implicit lowering of
1015 large aggregate return values, which means that frontend authors
1016 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001017
Reid Kleckner60d3a832014-01-16 22:59:24 +00001018 When the call site is reached, the argument allocation must have
1019 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001020 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001021 space after an argument allocation and before its call site, but it
1022 must be cleared off with :ref:`llvm.stackrestore
1023 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001024
1025 See :doc:`InAlloca` for more information on how to use this
1026 attribute.
1027
Sean Silvab084af42012-12-07 10:36:55 +00001028``sret``
1029 This indicates that the pointer parameter specifies the address of a
1030 structure that is the return value of the function in the source
1031 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001032 loads and stores to the structure may be assumed by the callee not
1033 to trap and to be properly aligned. This is not a valid attribute
1034 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001035
Hal Finkelccc70902014-07-22 16:58:55 +00001036``align <n>``
1037 This indicates that the pointer value may be assumed by the optimizer to
1038 have the specified alignment.
1039
1040 Note that this attribute has additional semantics when combined with the
1041 ``byval`` attribute.
1042
Sean Silva1703e702014-04-08 21:06:22 +00001043.. _noalias:
1044
Sean Silvab084af42012-12-07 10:36:55 +00001045``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001046 This indicates that objects accessed via pointer values
1047 :ref:`based <pointeraliasing>` on the argument or return value are not also
1048 accessed, during the execution of the function, via pointer values not
1049 *based* on the argument or return value. The attribute on a return value
1050 also has additional semantics described below. The caller shares the
1051 responsibility with the callee for ensuring that these requirements are met.
1052 For further details, please see the discussion of the NoAlias response in
1053 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001054
1055 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001056 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001057
1058 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001059 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1060 attribute on return values are stronger than the semantics of the attribute
1061 when used on function arguments. On function return values, the ``noalias``
1062 attribute indicates that the function acts like a system memory allocation
1063 function, returning a pointer to allocated storage disjoint from the
1064 storage for any other object accessible to the caller.
1065
Sean Silvab084af42012-12-07 10:36:55 +00001066``nocapture``
1067 This indicates that the callee does not make any copies of the
1068 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001069 attribute for return values. Addresses used in volatile operations
1070 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001071
1072.. _nest:
1073
1074``nest``
1075 This indicates that the pointer parameter can be excised using the
1076 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001077 attribute for return values and can only be applied to one parameter.
1078
1079``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001080 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001081 value. This is a hint to the optimizer and code generator used when
1082 generating the caller, allowing value propagation, tail call optimization,
1083 and omission of register saves and restores in some cases; it is not
1084 checked or enforced when generating the callee. The parameter and the
1085 function return type must be valid operands for the
1086 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1087 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001088
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001089``nonnull``
1090 This indicates that the parameter or return pointer is not null. This
1091 attribute may only be applied to pointer typed parameters. This is not
1092 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001093 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001094 is non-null.
1095
Hal Finkelb0407ba2014-07-18 15:51:28 +00001096``dereferenceable(<n>)``
1097 This indicates that the parameter or return pointer is dereferenceable. This
1098 attribute may only be applied to pointer typed parameters. A pointer that
1099 is dereferenceable can be loaded from speculatively without a risk of
1100 trapping. The number of bytes known to be dereferenceable must be provided
1101 in parentheses. It is legal for the number of bytes to be less than the
1102 size of the pointee type. The ``nonnull`` attribute does not imply
1103 dereferenceability (consider a pointer to one element past the end of an
1104 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1105 ``addrspace(0)`` (which is the default address space).
1106
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001107``dereferenceable_or_null(<n>)``
1108 This indicates that the parameter or return value isn't both
1109 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001110 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001111 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1112 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1113 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1114 and in other address spaces ``dereferenceable_or_null(<n>)``
1115 implies that a pointer is at least one of ``dereferenceable(<n>)``
1116 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001117 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001118 pointer typed parameters.
1119
Manman Renf46262e2016-03-29 17:37:21 +00001120``swiftself``
1121 This indicates that the parameter is the self/context parameter. This is not
1122 a valid attribute for return values and can only be applied to one
1123 parameter.
1124
Manman Ren9bfd0d02016-04-01 21:41:15 +00001125``swifterror``
1126 This attribute is motivated to model and optimize Swift error handling. It
1127 can be applied to a parameter with pointer to pointer type or a
1128 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001129 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1130 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1131 the parameter or the alloca) can only be loaded and stored from, or used as
1132 a ``swifterror`` argument. This is not a valid attribute for return values
1133 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001134
1135 These constraints allow the calling convention to optimize access to
1136 ``swifterror`` variables by associating them with a specific register at
1137 call boundaries rather than placing them in memory. Since this does change
1138 the calling convention, a function which uses the ``swifterror`` attribute
1139 on a parameter is not ABI-compatible with one which does not.
1140
1141 These constraints also allow LLVM to assume that a ``swifterror`` argument
1142 does not alias any other memory visible within a function and that a
1143 ``swifterror`` alloca passed as an argument does not escape.
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _gc:
1146
Philip Reamesf80bbff2015-02-25 23:45:20 +00001147Garbage Collector Strategy Names
1148--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001149
Philip Reamesf80bbff2015-02-25 23:45:20 +00001150Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001151string:
1152
1153.. code-block:: llvm
1154
1155 define void @f() gc "name" { ... }
1156
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001157The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001158<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001159strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001160named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001161garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001162which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001163
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001164.. _prefixdata:
1165
1166Prefix Data
1167-----------
1168
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001169Prefix data is data associated with a function which the code
1170generator will emit immediately before the function's entrypoint.
1171The purpose of this feature is to allow frontends to associate
1172language-specific runtime metadata with specific functions and make it
1173available through the function pointer while still allowing the
1174function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001175
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001176To access the data for a given function, a program may bitcast the
1177function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001178index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001179the prefix data. For instance, take the example of a function annotated
1180with a single ``i32``,
1181
1182.. code-block:: llvm
1183
1184 define void @f() prefix i32 123 { ... }
1185
1186The prefix data can be referenced as,
1187
1188.. code-block:: llvm
1189
David Blaikie16a97eb2015-03-04 22:02:58 +00001190 %0 = bitcast void* () @f to i32*
1191 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001192 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001193
1194Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001195of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001196beginning of the prefix data is aligned. This means that if the size
1197of the prefix data is not a multiple of the alignment size, the
1198function's entrypoint will not be aligned. If alignment of the
1199function's entrypoint is desired, padding must be added to the prefix
1200data.
1201
Sean Silvaa1190322015-08-06 22:56:48 +00001202A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001203to the ``available_externally`` linkage in that the data may be used by the
1204optimizers but will not be emitted in the object file.
1205
1206.. _prologuedata:
1207
1208Prologue Data
1209-------------
1210
1211The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1212be inserted prior to the function body. This can be used for enabling
1213function hot-patching and instrumentation.
1214
1215To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001216have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001217bytes which decode to a sequence of machine instructions, valid for the
1218module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001219the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001221definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001222makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001223
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001225which encodes the ``nop`` instruction:
1226
Renato Golin124f2592016-07-20 12:16:38 +00001227.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001228
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001230
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231Generally prologue data can be formed by encoding a relative branch instruction
1232which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001233x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1234
Renato Golin124f2592016-07-20 12:16:38 +00001235.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001236
1237 %0 = type <{ i8, i8, i8* }>
1238
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001239 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001240
Sean Silvaa1190322015-08-06 22:56:48 +00001241A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001242to the ``available_externally`` linkage in that the data may be used by the
1243optimizers but will not be emitted in the object file.
1244
David Majnemer7fddecc2015-06-17 20:52:32 +00001245.. _personalityfn:
1246
1247Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001248--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001249
1250The ``personality`` attribute permits functions to specify what function
1251to use for exception handling.
1252
Bill Wendling63b88192013-02-06 06:52:58 +00001253.. _attrgrp:
1254
1255Attribute Groups
1256----------------
1257
1258Attribute groups are groups of attributes that are referenced by objects within
1259the IR. They are important for keeping ``.ll`` files readable, because a lot of
1260functions will use the same set of attributes. In the degenerative case of a
1261``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1262group will capture the important command line flags used to build that file.
1263
1264An attribute group is a module-level object. To use an attribute group, an
1265object references the attribute group's ID (e.g. ``#37``). An object may refer
1266to more than one attribute group. In that situation, the attributes from the
1267different groups are merged.
1268
1269Here is an example of attribute groups for a function that should always be
1270inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1271
1272.. code-block:: llvm
1273
1274 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001275 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001276
1277 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001278 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001279
1280 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1281 define void @f() #0 #1 { ... }
1282
Sean Silvab084af42012-12-07 10:36:55 +00001283.. _fnattrs:
1284
1285Function Attributes
1286-------------------
1287
1288Function attributes are set to communicate additional information about
1289a function. Function attributes are considered to be part of the
1290function, not of the function type, so functions with different function
1291attributes can have the same function type.
1292
1293Function attributes are simple keywords that follow the type specified.
1294If multiple attributes are needed, they are space separated. For
1295example:
1296
1297.. code-block:: llvm
1298
1299 define void @f() noinline { ... }
1300 define void @f() alwaysinline { ... }
1301 define void @f() alwaysinline optsize { ... }
1302 define void @f() optsize { ... }
1303
Sean Silvab084af42012-12-07 10:36:55 +00001304``alignstack(<n>)``
1305 This attribute indicates that, when emitting the prologue and
1306 epilogue, the backend should forcibly align the stack pointer.
1307 Specify the desired alignment, which must be a power of two, in
1308 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001309``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1310 This attribute indicates that the annotated function will always return at
1311 least a given number of bytes (or null). Its arguments are zero-indexed
1312 parameter numbers; if one argument is provided, then it's assumed that at
1313 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1314 returned pointer. If two are provided, then it's assumed that
1315 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1316 available. The referenced parameters must be integer types. No assumptions
1317 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001318``alwaysinline``
1319 This attribute indicates that the inliner should attempt to inline
1320 this function into callers whenever possible, ignoring any active
1321 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001322``builtin``
1323 This indicates that the callee function at a call site should be
1324 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001325 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001326 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001327 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001328``cold``
1329 This attribute indicates that this function is rarely called. When
1330 computing edge weights, basic blocks post-dominated by a cold
1331 function call are also considered to be cold; and, thus, given low
1332 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001333``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001334 In some parallel execution models, there exist operations that cannot be
1335 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001336 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001337
Justin Lebar58535b12016-02-17 17:46:41 +00001338 The ``convergent`` attribute may appear on functions or call/invoke
1339 instructions. When it appears on a function, it indicates that calls to
1340 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001341 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001342 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001343 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001344
Justin Lebar58535b12016-02-17 17:46:41 +00001345 When it appears on a call/invoke, the ``convergent`` attribute indicates
1346 that we should treat the call as though we're calling a convergent
1347 function. This is particularly useful on indirect calls; without this we
1348 may treat such calls as though the target is non-convergent.
1349
1350 The optimizer may remove the ``convergent`` attribute on functions when it
1351 can prove that the function does not execute any convergent operations.
1352 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1353 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001354``inaccessiblememonly``
1355 This attribute indicates that the function may only access memory that
1356 is not accessible by the module being compiled. This is a weaker form
1357 of ``readnone``.
1358``inaccessiblemem_or_argmemonly``
1359 This attribute indicates that the function may only access memory that is
1360 either not accessible by the module being compiled, or is pointed to
1361 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001362``inlinehint``
1363 This attribute indicates that the source code contained a hint that
1364 inlining this function is desirable (such as the "inline" keyword in
1365 C/C++). It is just a hint; it imposes no requirements on the
1366 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001367``jumptable``
1368 This attribute indicates that the function should be added to a
1369 jump-instruction table at code-generation time, and that all address-taken
1370 references to this function should be replaced with a reference to the
1371 appropriate jump-instruction-table function pointer. Note that this creates
1372 a new pointer for the original function, which means that code that depends
1373 on function-pointer identity can break. So, any function annotated with
1374 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001375``minsize``
1376 This attribute suggests that optimization passes and code generator
1377 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001378 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001379 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001380``naked``
1381 This attribute disables prologue / epilogue emission for the
1382 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001383``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001384 This indicates that the callee function at a call site is not recognized as
1385 a built-in function. LLVM will retain the original call and not replace it
1386 with equivalent code based on the semantics of the built-in function, unless
1387 the call site uses the ``builtin`` attribute. This is valid at call sites
1388 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001389``noduplicate``
1390 This attribute indicates that calls to the function cannot be
1391 duplicated. A call to a ``noduplicate`` function may be moved
1392 within its parent function, but may not be duplicated within
1393 its parent function.
1394
1395 A function containing a ``noduplicate`` call may still
1396 be an inlining candidate, provided that the call is not
1397 duplicated by inlining. That implies that the function has
1398 internal linkage and only has one call site, so the original
1399 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001400``noimplicitfloat``
1401 This attributes disables implicit floating point instructions.
1402``noinline``
1403 This attribute indicates that the inliner should never inline this
1404 function in any situation. This attribute may not be used together
1405 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001406``nonlazybind``
1407 This attribute suppresses lazy symbol binding for the function. This
1408 may make calls to the function faster, at the cost of extra program
1409 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001410``noredzone``
1411 This attribute indicates that the code generator should not use a
1412 red zone, even if the target-specific ABI normally permits it.
1413``noreturn``
1414 This function attribute indicates that the function never returns
1415 normally. This produces undefined behavior at runtime if the
1416 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001417``norecurse``
1418 This function attribute indicates that the function does not call itself
1419 either directly or indirectly down any possible call path. This produces
1420 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001421``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001422 This function attribute indicates that the function never raises an
1423 exception. If the function does raise an exception, its runtime
1424 behavior is undefined. However, functions marked nounwind may still
1425 trap or generate asynchronous exceptions. Exception handling schemes
1426 that are recognized by LLVM to handle asynchronous exceptions, such
1427 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001428``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001429 This function attribute indicates that most optimization passes will skip
1430 this function, with the exception of interprocedural optimization passes.
1431 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001432 This attribute cannot be used together with the ``alwaysinline``
1433 attribute; this attribute is also incompatible
1434 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001435
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001436 This attribute requires the ``noinline`` attribute to be specified on
1437 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001438 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001439 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001440``optsize``
1441 This attribute suggests that optimization passes and code generator
1442 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001443 and otherwise do optimizations specifically to reduce code size as
1444 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001445``"patchable-function"``
1446 This attribute tells the code generator that the code
1447 generated for this function needs to follow certain conventions that
1448 make it possible for a runtime function to patch over it later.
1449 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001450 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001451
1452 * ``"prologue-short-redirect"`` - This style of patchable
1453 function is intended to support patching a function prologue to
1454 redirect control away from the function in a thread safe
1455 manner. It guarantees that the first instruction of the
1456 function will be large enough to accommodate a short jump
1457 instruction, and will be sufficiently aligned to allow being
1458 fully changed via an atomic compare-and-swap instruction.
1459 While the first requirement can be satisfied by inserting large
1460 enough NOP, LLVM can and will try to re-purpose an existing
1461 instruction (i.e. one that would have to be emitted anyway) as
1462 the patchable instruction larger than a short jump.
1463
1464 ``"prologue-short-redirect"`` is currently only supported on
1465 x86-64.
1466
1467 This attribute by itself does not imply restrictions on
1468 inter-procedural optimizations. All of the semantic effects the
1469 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001470``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001471 On a function, this attribute indicates that the function computes its
1472 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001473 without dereferencing any pointer arguments or otherwise accessing
1474 any mutable state (e.g. memory, control registers, etc) visible to
1475 caller functions. It does not write through any pointer arguments
1476 (including ``byval`` arguments) and never changes any state visible
1477 to callers. This means that it cannot unwind exceptions by calling
1478 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001479
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001480 On an argument, this attribute indicates that the function does not
1481 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001482 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001483``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001484 On a function, this attribute indicates that the function does not write
1485 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001486 modify any state (e.g. memory, control registers, etc) visible to
1487 caller functions. It may dereference pointer arguments and read
1488 state that may be set in the caller. A readonly function always
1489 returns the same value (or unwinds an exception identically) when
1490 called with the same set of arguments and global state. It cannot
1491 unwind an exception by calling the ``C++`` exception throwing
1492 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001493
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001494 On an argument, this attribute indicates that the function does not write
1495 through this pointer argument, even though it may write to the memory that
1496 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001497``writeonly``
1498 On a function, this attribute indicates that the function may write to but
1499 does not read from memory.
1500
1501 On an argument, this attribute indicates that the function may write to but
1502 does not read through this pointer argument (even though it may read from
1503 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001504``argmemonly``
1505 This attribute indicates that the only memory accesses inside function are
1506 loads and stores from objects pointed to by its pointer-typed arguments,
1507 with arbitrary offsets. Or in other words, all memory operations in the
1508 function can refer to memory only using pointers based on its function
1509 arguments.
1510 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1511 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001512``returns_twice``
1513 This attribute indicates that this function can return twice. The C
1514 ``setjmp`` is an example of such a function. The compiler disables
1515 some optimizations (like tail calls) in the caller of these
1516 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001517``safestack``
1518 This attribute indicates that
1519 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1520 protection is enabled for this function.
1521
1522 If a function that has a ``safestack`` attribute is inlined into a
1523 function that doesn't have a ``safestack`` attribute or which has an
1524 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1525 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001526``sanitize_address``
1527 This attribute indicates that AddressSanitizer checks
1528 (dynamic address safety analysis) are enabled for this function.
1529``sanitize_memory``
1530 This attribute indicates that MemorySanitizer checks (dynamic detection
1531 of accesses to uninitialized memory) are enabled for this function.
1532``sanitize_thread``
1533 This attribute indicates that ThreadSanitizer checks
1534 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001535``ssp``
1536 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001537 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001538 placed on the stack before the local variables that's checked upon
1539 return from the function to see if it has been overwritten. A
1540 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001541 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001542
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001543 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1544 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1545 - Calls to alloca() with variable sizes or constant sizes greater than
1546 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001547
Josh Magee24c7f062014-02-01 01:36:16 +00001548 Variables that are identified as requiring a protector will be arranged
1549 on the stack such that they are adjacent to the stack protector guard.
1550
Sean Silvab084af42012-12-07 10:36:55 +00001551 If a function that has an ``ssp`` attribute is inlined into a
1552 function that doesn't have an ``ssp`` attribute, then the resulting
1553 function will have an ``ssp`` attribute.
1554``sspreq``
1555 This attribute indicates that the function should *always* emit a
1556 stack smashing protector. This overrides the ``ssp`` function
1557 attribute.
1558
Josh Magee24c7f062014-02-01 01:36:16 +00001559 Variables that are identified as requiring a protector will be arranged
1560 on the stack such that they are adjacent to the stack protector guard.
1561 The specific layout rules are:
1562
1563 #. Large arrays and structures containing large arrays
1564 (``>= ssp-buffer-size``) are closest to the stack protector.
1565 #. Small arrays and structures containing small arrays
1566 (``< ssp-buffer-size``) are 2nd closest to the protector.
1567 #. Variables that have had their address taken are 3rd closest to the
1568 protector.
1569
Sean Silvab084af42012-12-07 10:36:55 +00001570 If a function that has an ``sspreq`` attribute is inlined into a
1571 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001572 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1573 an ``sspreq`` attribute.
1574``sspstrong``
1575 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001576 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001577 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001578 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001579
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001580 - Arrays of any size and type
1581 - Aggregates containing an array of any size and type.
1582 - Calls to alloca().
1583 - Local variables that have had their address taken.
1584
Josh Magee24c7f062014-02-01 01:36:16 +00001585 Variables that are identified as requiring a protector will be arranged
1586 on the stack such that they are adjacent to the stack protector guard.
1587 The specific layout rules are:
1588
1589 #. Large arrays and structures containing large arrays
1590 (``>= ssp-buffer-size``) are closest to the stack protector.
1591 #. Small arrays and structures containing small arrays
1592 (``< ssp-buffer-size``) are 2nd closest to the protector.
1593 #. Variables that have had their address taken are 3rd closest to the
1594 protector.
1595
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001596 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001597
1598 If a function that has an ``sspstrong`` attribute is inlined into a
1599 function that doesn't have an ``sspstrong`` attribute, then the
1600 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001601``"thunk"``
1602 This attribute indicates that the function will delegate to some other
1603 function with a tail call. The prototype of a thunk should not be used for
1604 optimization purposes. The caller is expected to cast the thunk prototype to
1605 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001606``uwtable``
1607 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001608 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001609 show that no exceptions passes by it. This is normally the case for
1610 the ELF x86-64 abi, but it can be disabled for some compilation
1611 units.
Sean Silvab084af42012-12-07 10:36:55 +00001612
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001613
1614.. _opbundles:
1615
1616Operand Bundles
1617---------------
1618
1619Note: operand bundles are a work in progress, and they should be
1620considered experimental at this time.
1621
1622Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001623with certain LLVM instructions (currently only ``call`` s and
1624``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001625incorrect and will change program semantics.
1626
1627Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001628
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001629 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001630 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1631 bundle operand ::= SSA value
1632 tag ::= string constant
1633
1634Operand bundles are **not** part of a function's signature, and a
1635given function may be called from multiple places with different kinds
1636of operand bundles. This reflects the fact that the operand bundles
1637are conceptually a part of the ``call`` (or ``invoke``), not the
1638callee being dispatched to.
1639
1640Operand bundles are a generic mechanism intended to support
1641runtime-introspection-like functionality for managed languages. While
1642the exact semantics of an operand bundle depend on the bundle tag,
1643there are certain limitations to how much the presence of an operand
1644bundle can influence the semantics of a program. These restrictions
1645are described as the semantics of an "unknown" operand bundle. As
1646long as the behavior of an operand bundle is describable within these
1647restrictions, LLVM does not need to have special knowledge of the
1648operand bundle to not miscompile programs containing it.
1649
David Majnemer34cacb42015-10-22 01:46:38 +00001650- The bundle operands for an unknown operand bundle escape in unknown
1651 ways before control is transferred to the callee or invokee.
1652- Calls and invokes with operand bundles have unknown read / write
1653 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001654 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001655 callsite specific attributes.
1656- An operand bundle at a call site cannot change the implementation
1657 of the called function. Inter-procedural optimizations work as
1658 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001659
Sanjoy Dascdafd842015-11-11 21:38:02 +00001660More specific types of operand bundles are described below.
1661
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001662.. _deopt_opbundles:
1663
Sanjoy Dascdafd842015-11-11 21:38:02 +00001664Deoptimization Operand Bundles
1665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1666
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001667Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001668operand bundle tag. These operand bundles represent an alternate
1669"safe" continuation for the call site they're attached to, and can be
1670used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001671specified call site. There can be at most one ``"deopt"`` operand
1672bundle attached to a call site. Exact details of deoptimization is
1673out of scope for the language reference, but it usually involves
1674rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001675
1676From the compiler's perspective, deoptimization operand bundles make
1677the call sites they're attached to at least ``readonly``. They read
1678through all of their pointer typed operands (even if they're not
1679otherwise escaped) and the entire visible heap. Deoptimization
1680operand bundles do not capture their operands except during
1681deoptimization, in which case control will not be returned to the
1682compiled frame.
1683
Sanjoy Das2d161452015-11-18 06:23:38 +00001684The inliner knows how to inline through calls that have deoptimization
1685operand bundles. Just like inlining through a normal call site
1686involves composing the normal and exceptional continuations, inlining
1687through a call site with a deoptimization operand bundle needs to
1688appropriately compose the "safe" deoptimization continuation. The
1689inliner does this by prepending the parent's deoptimization
1690continuation to every deoptimization continuation in the inlined body.
1691E.g. inlining ``@f`` into ``@g`` in the following example
1692
1693.. code-block:: llvm
1694
1695 define void @f() {
1696 call void @x() ;; no deopt state
1697 call void @y() [ "deopt"(i32 10) ]
1698 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1699 ret void
1700 }
1701
1702 define void @g() {
1703 call void @f() [ "deopt"(i32 20) ]
1704 ret void
1705 }
1706
1707will result in
1708
1709.. code-block:: llvm
1710
1711 define void @g() {
1712 call void @x() ;; still no deopt state
1713 call void @y() [ "deopt"(i32 20, i32 10) ]
1714 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1715 ret void
1716 }
1717
1718It is the frontend's responsibility to structure or encode the
1719deoptimization state in a way that syntactically prepending the
1720caller's deoptimization state to the callee's deoptimization state is
1721semantically equivalent to composing the caller's deoptimization
1722continuation after the callee's deoptimization continuation.
1723
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001724.. _ob_funclet:
1725
David Majnemer3bb88c02015-12-15 21:27:27 +00001726Funclet Operand Bundles
1727^^^^^^^^^^^^^^^^^^^^^^^
1728
1729Funclet operand bundles are characterized by the ``"funclet"``
1730operand bundle tag. These operand bundles indicate that a call site
1731is within a particular funclet. There can be at most one
1732``"funclet"`` operand bundle attached to a call site and it must have
1733exactly one bundle operand.
1734
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001735If any funclet EH pads have been "entered" but not "exited" (per the
1736`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1737it is undefined behavior to execute a ``call`` or ``invoke`` which:
1738
1739* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1740 intrinsic, or
1741* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1742 not-yet-exited funclet EH pad.
1743
1744Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1745executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1746
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001747GC Transition Operand Bundles
1748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1749
1750GC transition operand bundles are characterized by the
1751``"gc-transition"`` operand bundle tag. These operand bundles mark a
1752call as a transition between a function with one GC strategy to a
1753function with a different GC strategy. If coordinating the transition
1754between GC strategies requires additional code generation at the call
1755site, these bundles may contain any values that are needed by the
1756generated code. For more details, see :ref:`GC Transitions
1757<gc_transition_args>`.
1758
Sean Silvab084af42012-12-07 10:36:55 +00001759.. _moduleasm:
1760
1761Module-Level Inline Assembly
1762----------------------------
1763
1764Modules may contain "module-level inline asm" blocks, which corresponds
1765to the GCC "file scope inline asm" blocks. These blocks are internally
1766concatenated by LLVM and treated as a single unit, but may be separated
1767in the ``.ll`` file if desired. The syntax is very simple:
1768
1769.. code-block:: llvm
1770
1771 module asm "inline asm code goes here"
1772 module asm "more can go here"
1773
1774The strings can contain any character by escaping non-printable
1775characters. The escape sequence used is simply "\\xx" where "xx" is the
1776two digit hex code for the number.
1777
James Y Knightbc832ed2015-07-08 18:08:36 +00001778Note that the assembly string *must* be parseable by LLVM's integrated assembler
1779(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001780
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001781.. _langref_datalayout:
1782
Sean Silvab084af42012-12-07 10:36:55 +00001783Data Layout
1784-----------
1785
1786A module may specify a target specific data layout string that specifies
1787how data is to be laid out in memory. The syntax for the data layout is
1788simply:
1789
1790.. code-block:: llvm
1791
1792 target datalayout = "layout specification"
1793
1794The *layout specification* consists of a list of specifications
1795separated by the minus sign character ('-'). Each specification starts
1796with a letter and may include other information after the letter to
1797define some aspect of the data layout. The specifications accepted are
1798as follows:
1799
1800``E``
1801 Specifies that the target lays out data in big-endian form. That is,
1802 the bits with the most significance have the lowest address
1803 location.
1804``e``
1805 Specifies that the target lays out data in little-endian form. That
1806 is, the bits with the least significance have the lowest address
1807 location.
1808``S<size>``
1809 Specifies the natural alignment of the stack in bits. Alignment
1810 promotion of stack variables is limited to the natural stack
1811 alignment to avoid dynamic stack realignment. The stack alignment
1812 must be a multiple of 8-bits. If omitted, the natural stack
1813 alignment defaults to "unspecified", which does not prevent any
1814 alignment promotions.
1815``p[n]:<size>:<abi>:<pref>``
1816 This specifies the *size* of a pointer and its ``<abi>`` and
1817 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001818 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001819 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001820 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001821``i<size>:<abi>:<pref>``
1822 This specifies the alignment for an integer type of a given bit
1823 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1824``v<size>:<abi>:<pref>``
1825 This specifies the alignment for a vector type of a given bit
1826 ``<size>``.
1827``f<size>:<abi>:<pref>``
1828 This specifies the alignment for a floating point type of a given bit
1829 ``<size>``. Only values of ``<size>`` that are supported by the target
1830 will work. 32 (float) and 64 (double) are supported on all targets; 80
1831 or 128 (different flavors of long double) are also supported on some
1832 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001833``a:<abi>:<pref>``
1834 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001835``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001836 If present, specifies that llvm names are mangled in the output. The
1837 options are
1838
1839 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1840 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1841 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1842 symbols get a ``_`` prefix.
1843 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1844 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001845 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1846 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001847``n<size1>:<size2>:<size3>...``
1848 This specifies a set of native integer widths for the target CPU in
1849 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1850 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1851 this set are considered to support most general arithmetic operations
1852 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001853``ni:<address space0>:<address space1>:<address space2>...``
1854 This specifies pointer types with the specified address spaces
1855 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1856 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001857
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001858On every specification that takes a ``<abi>:<pref>``, specifying the
1859``<pref>`` alignment is optional. If omitted, the preceding ``:``
1860should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1861
Sean Silvab084af42012-12-07 10:36:55 +00001862When constructing the data layout for a given target, LLVM starts with a
1863default set of specifications which are then (possibly) overridden by
1864the specifications in the ``datalayout`` keyword. The default
1865specifications are given in this list:
1866
1867- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001868- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1869- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1870 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001871- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001872- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1873- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1874- ``i16:16:16`` - i16 is 16-bit aligned
1875- ``i32:32:32`` - i32 is 32-bit aligned
1876- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1877 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001878- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001879- ``f32:32:32`` - float is 32-bit aligned
1880- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001881- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001882- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1883- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001884- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001885
1886When LLVM is determining the alignment for a given type, it uses the
1887following rules:
1888
1889#. If the type sought is an exact match for one of the specifications,
1890 that specification is used.
1891#. If no match is found, and the type sought is an integer type, then
1892 the smallest integer type that is larger than the bitwidth of the
1893 sought type is used. If none of the specifications are larger than
1894 the bitwidth then the largest integer type is used. For example,
1895 given the default specifications above, the i7 type will use the
1896 alignment of i8 (next largest) while both i65 and i256 will use the
1897 alignment of i64 (largest specified).
1898#. If no match is found, and the type sought is a vector type, then the
1899 largest vector type that is smaller than the sought vector type will
1900 be used as a fall back. This happens because <128 x double> can be
1901 implemented in terms of 64 <2 x double>, for example.
1902
1903The function of the data layout string may not be what you expect.
1904Notably, this is not a specification from the frontend of what alignment
1905the code generator should use.
1906
1907Instead, if specified, the target data layout is required to match what
1908the ultimate *code generator* expects. This string is used by the
1909mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001910what the ultimate code generator uses. There is no way to generate IR
1911that does not embed this target-specific detail into the IR. If you
1912don't specify the string, the default specifications will be used to
1913generate a Data Layout and the optimization phases will operate
1914accordingly and introduce target specificity into the IR with respect to
1915these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001916
Bill Wendling5cc90842013-10-18 23:41:25 +00001917.. _langref_triple:
1918
1919Target Triple
1920-------------
1921
1922A module may specify a target triple string that describes the target
1923host. The syntax for the target triple is simply:
1924
1925.. code-block:: llvm
1926
1927 target triple = "x86_64-apple-macosx10.7.0"
1928
1929The *target triple* string consists of a series of identifiers delimited
1930by the minus sign character ('-'). The canonical forms are:
1931
1932::
1933
1934 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1935 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1936
1937This information is passed along to the backend so that it generates
1938code for the proper architecture. It's possible to override this on the
1939command line with the ``-mtriple`` command line option.
1940
Sean Silvab084af42012-12-07 10:36:55 +00001941.. _pointeraliasing:
1942
1943Pointer Aliasing Rules
1944----------------------
1945
1946Any memory access must be done through a pointer value associated with
1947an address range of the memory access, otherwise the behavior is
1948undefined. Pointer values are associated with address ranges according
1949to the following rules:
1950
1951- A pointer value is associated with the addresses associated with any
1952 value it is *based* on.
1953- An address of a global variable is associated with the address range
1954 of the variable's storage.
1955- The result value of an allocation instruction is associated with the
1956 address range of the allocated storage.
1957- A null pointer in the default address-space is associated with no
1958 address.
1959- An integer constant other than zero or a pointer value returned from
1960 a function not defined within LLVM may be associated with address
1961 ranges allocated through mechanisms other than those provided by
1962 LLVM. Such ranges shall not overlap with any ranges of addresses
1963 allocated by mechanisms provided by LLVM.
1964
1965A pointer value is *based* on another pointer value according to the
1966following rules:
1967
1968- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001969 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001970- The result value of a ``bitcast`` is *based* on the operand of the
1971 ``bitcast``.
1972- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1973 values that contribute (directly or indirectly) to the computation of
1974 the pointer's value.
1975- The "*based* on" relationship is transitive.
1976
1977Note that this definition of *"based"* is intentionally similar to the
1978definition of *"based"* in C99, though it is slightly weaker.
1979
1980LLVM IR does not associate types with memory. The result type of a
1981``load`` merely indicates the size and alignment of the memory from
1982which to load, as well as the interpretation of the value. The first
1983operand type of a ``store`` similarly only indicates the size and
1984alignment of the store.
1985
1986Consequently, type-based alias analysis, aka TBAA, aka
1987``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1988:ref:`Metadata <metadata>` may be used to encode additional information
1989which specialized optimization passes may use to implement type-based
1990alias analysis.
1991
1992.. _volatile:
1993
1994Volatile Memory Accesses
1995------------------------
1996
1997Certain memory accesses, such as :ref:`load <i_load>`'s,
1998:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1999marked ``volatile``. The optimizers must not change the number of
2000volatile operations or change their order of execution relative to other
2001volatile operations. The optimizers *may* change the order of volatile
2002operations relative to non-volatile operations. This is not Java's
2003"volatile" and has no cross-thread synchronization behavior.
2004
Andrew Trick89fc5a62013-01-30 21:19:35 +00002005IR-level volatile loads and stores cannot safely be optimized into
2006llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2007flagged volatile. Likewise, the backend should never split or merge
2008target-legal volatile load/store instructions.
2009
Andrew Trick7e6f9282013-01-31 00:49:39 +00002010.. admonition:: Rationale
2011
2012 Platforms may rely on volatile loads and stores of natively supported
2013 data width to be executed as single instruction. For example, in C
2014 this holds for an l-value of volatile primitive type with native
2015 hardware support, but not necessarily for aggregate types. The
2016 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002017 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002018 do not violate the frontend's contract with the language.
2019
Sean Silvab084af42012-12-07 10:36:55 +00002020.. _memmodel:
2021
2022Memory Model for Concurrent Operations
2023--------------------------------------
2024
2025The LLVM IR does not define any way to start parallel threads of
2026execution or to register signal handlers. Nonetheless, there are
2027platform-specific ways to create them, and we define LLVM IR's behavior
2028in their presence. This model is inspired by the C++0x memory model.
2029
2030For a more informal introduction to this model, see the :doc:`Atomics`.
2031
2032We define a *happens-before* partial order as the least partial order
2033that
2034
2035- Is a superset of single-thread program order, and
2036- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2037 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2038 techniques, like pthread locks, thread creation, thread joining,
2039 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2040 Constraints <ordering>`).
2041
2042Note that program order does not introduce *happens-before* edges
2043between a thread and signals executing inside that thread.
2044
2045Every (defined) read operation (load instructions, memcpy, atomic
2046loads/read-modify-writes, etc.) R reads a series of bytes written by
2047(defined) write operations (store instructions, atomic
2048stores/read-modify-writes, memcpy, etc.). For the purposes of this
2049section, initialized globals are considered to have a write of the
2050initializer which is atomic and happens before any other read or write
2051of the memory in question. For each byte of a read R, R\ :sub:`byte`
2052may see any write to the same byte, except:
2053
2054- If write\ :sub:`1` happens before write\ :sub:`2`, and
2055 write\ :sub:`2` happens before R\ :sub:`byte`, then
2056 R\ :sub:`byte` does not see write\ :sub:`1`.
2057- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2058 R\ :sub:`byte` does not see write\ :sub:`3`.
2059
2060Given that definition, R\ :sub:`byte` is defined as follows:
2061
2062- If R is volatile, the result is target-dependent. (Volatile is
2063 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002064 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002065 like normal memory. It does not generally provide cross-thread
2066 synchronization.)
2067- Otherwise, if there is no write to the same byte that happens before
2068 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2069- Otherwise, if R\ :sub:`byte` may see exactly one write,
2070 R\ :sub:`byte` returns the value written by that write.
2071- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2072 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2073 Memory Ordering Constraints <ordering>` section for additional
2074 constraints on how the choice is made.
2075- Otherwise R\ :sub:`byte` returns ``undef``.
2076
2077R returns the value composed of the series of bytes it read. This
2078implies that some bytes within the value may be ``undef`` **without**
2079the entire value being ``undef``. Note that this only defines the
2080semantics of the operation; it doesn't mean that targets will emit more
2081than one instruction to read the series of bytes.
2082
2083Note that in cases where none of the atomic intrinsics are used, this
2084model places only one restriction on IR transformations on top of what
2085is required for single-threaded execution: introducing a store to a byte
2086which might not otherwise be stored is not allowed in general.
2087(Specifically, in the case where another thread might write to and read
2088from an address, introducing a store can change a load that may see
2089exactly one write into a load that may see multiple writes.)
2090
2091.. _ordering:
2092
2093Atomic Memory Ordering Constraints
2094----------------------------------
2095
2096Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2097:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2098:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002099ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002100the same address they *synchronize with*. These semantics are borrowed
2101from Java and C++0x, but are somewhat more colloquial. If these
2102descriptions aren't precise enough, check those specs (see spec
2103references in the :doc:`atomics guide <Atomics>`).
2104:ref:`fence <i_fence>` instructions treat these orderings somewhat
2105differently since they don't take an address. See that instruction's
2106documentation for details.
2107
2108For a simpler introduction to the ordering constraints, see the
2109:doc:`Atomics`.
2110
2111``unordered``
2112 The set of values that can be read is governed by the happens-before
2113 partial order. A value cannot be read unless some operation wrote
2114 it. This is intended to provide a guarantee strong enough to model
2115 Java's non-volatile shared variables. This ordering cannot be
2116 specified for read-modify-write operations; it is not strong enough
2117 to make them atomic in any interesting way.
2118``monotonic``
2119 In addition to the guarantees of ``unordered``, there is a single
2120 total order for modifications by ``monotonic`` operations on each
2121 address. All modification orders must be compatible with the
2122 happens-before order. There is no guarantee that the modification
2123 orders can be combined to a global total order for the whole program
2124 (and this often will not be possible). The read in an atomic
2125 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2126 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2127 order immediately before the value it writes. If one atomic read
2128 happens before another atomic read of the same address, the later
2129 read must see the same value or a later value in the address's
2130 modification order. This disallows reordering of ``monotonic`` (or
2131 stronger) operations on the same address. If an address is written
2132 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2133 read that address repeatedly, the other threads must eventually see
2134 the write. This corresponds to the C++0x/C1x
2135 ``memory_order_relaxed``.
2136``acquire``
2137 In addition to the guarantees of ``monotonic``, a
2138 *synchronizes-with* edge may be formed with a ``release`` operation.
2139 This is intended to model C++'s ``memory_order_acquire``.
2140``release``
2141 In addition to the guarantees of ``monotonic``, if this operation
2142 writes a value which is subsequently read by an ``acquire``
2143 operation, it *synchronizes-with* that operation. (This isn't a
2144 complete description; see the C++0x definition of a release
2145 sequence.) This corresponds to the C++0x/C1x
2146 ``memory_order_release``.
2147``acq_rel`` (acquire+release)
2148 Acts as both an ``acquire`` and ``release`` operation on its
2149 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2150``seq_cst`` (sequentially consistent)
2151 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002152 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002153 writes), there is a global total order on all
2154 sequentially-consistent operations on all addresses, which is
2155 consistent with the *happens-before* partial order and with the
2156 modification orders of all the affected addresses. Each
2157 sequentially-consistent read sees the last preceding write to the
2158 same address in this global order. This corresponds to the C++0x/C1x
2159 ``memory_order_seq_cst`` and Java volatile.
2160
2161.. _singlethread:
2162
2163If an atomic operation is marked ``singlethread``, it only *synchronizes
2164with* or participates in modification and seq\_cst total orderings with
2165other operations running in the same thread (for example, in signal
2166handlers).
2167
2168.. _fastmath:
2169
2170Fast-Math Flags
2171---------------
2172
2173LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2174:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002175:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2176be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002177
2178``nnan``
2179 No NaNs - Allow optimizations to assume the arguments and result are not
2180 NaN. Such optimizations are required to retain defined behavior over
2181 NaNs, but the value of the result is undefined.
2182
2183``ninf``
2184 No Infs - Allow optimizations to assume the arguments and result are not
2185 +/-Inf. Such optimizations are required to retain defined behavior over
2186 +/-Inf, but the value of the result is undefined.
2187
2188``nsz``
2189 No Signed Zeros - Allow optimizations to treat the sign of a zero
2190 argument or result as insignificant.
2191
2192``arcp``
2193 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2194 argument rather than perform division.
2195
2196``fast``
2197 Fast - Allow algebraically equivalent transformations that may
2198 dramatically change results in floating point (e.g. reassociate). This
2199 flag implies all the others.
2200
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002201.. _uselistorder:
2202
2203Use-list Order Directives
2204-------------------------
2205
2206Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002207order to be recreated. ``<order-indexes>`` is a comma-separated list of
2208indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002209value's use-list is immediately sorted by these indexes.
2210
Sean Silvaa1190322015-08-06 22:56:48 +00002211Use-list directives may appear at function scope or global scope. They are not
2212instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002213function scope, they must appear after the terminator of the final basic block.
2214
2215If basic blocks have their address taken via ``blockaddress()`` expressions,
2216``uselistorder_bb`` can be used to reorder their use-lists from outside their
2217function's scope.
2218
2219:Syntax:
2220
2221::
2222
2223 uselistorder <ty> <value>, { <order-indexes> }
2224 uselistorder_bb @function, %block { <order-indexes> }
2225
2226:Examples:
2227
2228::
2229
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002230 define void @foo(i32 %arg1, i32 %arg2) {
2231 entry:
2232 ; ... instructions ...
2233 bb:
2234 ; ... instructions ...
2235
2236 ; At function scope.
2237 uselistorder i32 %arg1, { 1, 0, 2 }
2238 uselistorder label %bb, { 1, 0 }
2239 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002240
2241 ; At global scope.
2242 uselistorder i32* @global, { 1, 2, 0 }
2243 uselistorder i32 7, { 1, 0 }
2244 uselistorder i32 (i32) @bar, { 1, 0 }
2245 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2246
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002247.. _source_filename:
2248
2249Source Filename
2250---------------
2251
2252The *source filename* string is set to the original module identifier,
2253which will be the name of the compiled source file when compiling from
2254source through the clang front end, for example. It is then preserved through
2255the IR and bitcode.
2256
2257This is currently necessary to generate a consistent unique global
2258identifier for local functions used in profile data, which prepends the
2259source file name to the local function name.
2260
2261The syntax for the source file name is simply:
2262
Renato Golin124f2592016-07-20 12:16:38 +00002263.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002264
2265 source_filename = "/path/to/source.c"
2266
Sean Silvab084af42012-12-07 10:36:55 +00002267.. _typesystem:
2268
2269Type System
2270===========
2271
2272The LLVM type system is one of the most important features of the
2273intermediate representation. Being typed enables a number of
2274optimizations to be performed on the intermediate representation
2275directly, without having to do extra analyses on the side before the
2276transformation. A strong type system makes it easier to read the
2277generated code and enables novel analyses and transformations that are
2278not feasible to perform on normal three address code representations.
2279
Rafael Espindola08013342013-12-07 19:34:20 +00002280.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002281
Rafael Espindola08013342013-12-07 19:34:20 +00002282Void Type
2283---------
Sean Silvab084af42012-12-07 10:36:55 +00002284
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002285:Overview:
2286
Rafael Espindola08013342013-12-07 19:34:20 +00002287
2288The void type does not represent any value and has no size.
2289
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002290:Syntax:
2291
Rafael Espindola08013342013-12-07 19:34:20 +00002292
2293::
2294
2295 void
Sean Silvab084af42012-12-07 10:36:55 +00002296
2297
Rafael Espindola08013342013-12-07 19:34:20 +00002298.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002299
Rafael Espindola08013342013-12-07 19:34:20 +00002300Function Type
2301-------------
Sean Silvab084af42012-12-07 10:36:55 +00002302
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002303:Overview:
2304
Sean Silvab084af42012-12-07 10:36:55 +00002305
Rafael Espindola08013342013-12-07 19:34:20 +00002306The function type can be thought of as a function signature. It consists of a
2307return type and a list of formal parameter types. The return type of a function
2308type is a void type or first class type --- except for :ref:`label <t_label>`
2309and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002310
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002311:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002312
Rafael Espindola08013342013-12-07 19:34:20 +00002313::
Sean Silvab084af42012-12-07 10:36:55 +00002314
Rafael Espindola08013342013-12-07 19:34:20 +00002315 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002316
Rafael Espindola08013342013-12-07 19:34:20 +00002317...where '``<parameter list>``' is a comma-separated list of type
2318specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002319indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002320argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002321handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002322except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002323
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002324:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002325
Rafael Espindola08013342013-12-07 19:34:20 +00002326+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2327| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2328+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2329| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2330+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2331| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2332+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2333| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2334+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2335
2336.. _t_firstclass:
2337
2338First Class Types
2339-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002340
2341The :ref:`first class <t_firstclass>` types are perhaps the most important.
2342Values of these types are the only ones which can be produced by
2343instructions.
2344
Rafael Espindola08013342013-12-07 19:34:20 +00002345.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002346
Rafael Espindola08013342013-12-07 19:34:20 +00002347Single Value Types
2348^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002349
Rafael Espindola08013342013-12-07 19:34:20 +00002350These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002351
2352.. _t_integer:
2353
2354Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002355""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002356
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002357:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002358
2359The integer type is a very simple type that simply specifies an
2360arbitrary bit width for the integer type desired. Any bit width from 1
2361bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2362
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002363:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002364
2365::
2366
2367 iN
2368
2369The number of bits the integer will occupy is specified by the ``N``
2370value.
2371
2372Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002373*********
Sean Silvab084af42012-12-07 10:36:55 +00002374
2375+----------------+------------------------------------------------+
2376| ``i1`` | a single-bit integer. |
2377+----------------+------------------------------------------------+
2378| ``i32`` | a 32-bit integer. |
2379+----------------+------------------------------------------------+
2380| ``i1942652`` | a really big integer of over 1 million bits. |
2381+----------------+------------------------------------------------+
2382
2383.. _t_floating:
2384
2385Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002386""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002387
2388.. list-table::
2389 :header-rows: 1
2390
2391 * - Type
2392 - Description
2393
2394 * - ``half``
2395 - 16-bit floating point value
2396
2397 * - ``float``
2398 - 32-bit floating point value
2399
2400 * - ``double``
2401 - 64-bit floating point value
2402
2403 * - ``fp128``
2404 - 128-bit floating point value (112-bit mantissa)
2405
2406 * - ``x86_fp80``
2407 - 80-bit floating point value (X87)
2408
2409 * - ``ppc_fp128``
2410 - 128-bit floating point value (two 64-bits)
2411
Reid Kleckner9a16d082014-03-05 02:41:37 +00002412X86_mmx Type
2413""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002414
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002415:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002416
Reid Kleckner9a16d082014-03-05 02:41:37 +00002417The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002418machine. The operations allowed on it are quite limited: parameters and
2419return values, load and store, and bitcast. User-specified MMX
2420instructions are represented as intrinsic or asm calls with arguments
2421and/or results of this type. There are no arrays, vectors or constants
2422of this type.
2423
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002424:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002425
2426::
2427
Reid Kleckner9a16d082014-03-05 02:41:37 +00002428 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002429
Sean Silvab084af42012-12-07 10:36:55 +00002430
Rafael Espindola08013342013-12-07 19:34:20 +00002431.. _t_pointer:
2432
2433Pointer Type
2434""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002435
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002436:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002437
Rafael Espindola08013342013-12-07 19:34:20 +00002438The pointer type is used to specify memory locations. Pointers are
2439commonly used to reference objects in memory.
2440
2441Pointer types may have an optional address space attribute defining the
2442numbered address space where the pointed-to object resides. The default
2443address space is number zero. The semantics of non-zero address spaces
2444are target-specific.
2445
2446Note that LLVM does not permit pointers to void (``void*``) nor does it
2447permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002448
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002449:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002450
2451::
2452
Rafael Espindola08013342013-12-07 19:34:20 +00002453 <type> *
2454
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002455:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002456
2457+-------------------------+--------------------------------------------------------------------------------------------------------------+
2458| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2459+-------------------------+--------------------------------------------------------------------------------------------------------------+
2460| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2461+-------------------------+--------------------------------------------------------------------------------------------------------------+
2462| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2463+-------------------------+--------------------------------------------------------------------------------------------------------------+
2464
2465.. _t_vector:
2466
2467Vector Type
2468"""""""""""
2469
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002470:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002471
2472A vector type is a simple derived type that represents a vector of
2473elements. Vector types are used when multiple primitive data are
2474operated in parallel using a single instruction (SIMD). A vector type
2475requires a size (number of elements) and an underlying primitive data
2476type. Vector types are considered :ref:`first class <t_firstclass>`.
2477
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002478:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002479
2480::
2481
2482 < <# elements> x <elementtype> >
2483
2484The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002485elementtype may be any integer, floating point or pointer type. Vectors
2486of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002487
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002488:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002489
2490+-------------------+--------------------------------------------------+
2491| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2492+-------------------+--------------------------------------------------+
2493| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2494+-------------------+--------------------------------------------------+
2495| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2496+-------------------+--------------------------------------------------+
2497| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2498+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002499
2500.. _t_label:
2501
2502Label Type
2503^^^^^^^^^^
2504
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002505:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002506
2507The label type represents code labels.
2508
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002509:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002510
2511::
2512
2513 label
2514
David Majnemerb611e3f2015-08-14 05:09:07 +00002515.. _t_token:
2516
2517Token Type
2518^^^^^^^^^^
2519
2520:Overview:
2521
2522The token type is used when a value is associated with an instruction
2523but all uses of the value must not attempt to introspect or obscure it.
2524As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2525:ref:`select <i_select>` of type token.
2526
2527:Syntax:
2528
2529::
2530
2531 token
2532
2533
2534
Sean Silvab084af42012-12-07 10:36:55 +00002535.. _t_metadata:
2536
2537Metadata Type
2538^^^^^^^^^^^^^
2539
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002540:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002541
2542The metadata type represents embedded metadata. No derived types may be
2543created from metadata except for :ref:`function <t_function>` arguments.
2544
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002545:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002546
2547::
2548
2549 metadata
2550
Sean Silvab084af42012-12-07 10:36:55 +00002551.. _t_aggregate:
2552
2553Aggregate Types
2554^^^^^^^^^^^^^^^
2555
2556Aggregate Types are a subset of derived types that can contain multiple
2557member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2558aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2559aggregate types.
2560
2561.. _t_array:
2562
2563Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002564""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002565
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002566:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002567
2568The array type is a very simple derived type that arranges elements
2569sequentially in memory. The array type requires a size (number of
2570elements) and an underlying data type.
2571
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002572:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002573
2574::
2575
2576 [<# elements> x <elementtype>]
2577
2578The number of elements is a constant integer value; ``elementtype`` may
2579be any type with a size.
2580
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002581:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002582
2583+------------------+--------------------------------------+
2584| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2585+------------------+--------------------------------------+
2586| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2587+------------------+--------------------------------------+
2588| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2589+------------------+--------------------------------------+
2590
2591Here are some examples of multidimensional arrays:
2592
2593+-----------------------------+----------------------------------------------------------+
2594| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2595+-----------------------------+----------------------------------------------------------+
2596| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2597+-----------------------------+----------------------------------------------------------+
2598| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2599+-----------------------------+----------------------------------------------------------+
2600
2601There is no restriction on indexing beyond the end of the array implied
2602by a static type (though there are restrictions on indexing beyond the
2603bounds of an allocated object in some cases). This means that
2604single-dimension 'variable sized array' addressing can be implemented in
2605LLVM with a zero length array type. An implementation of 'pascal style
2606arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2607example.
2608
Sean Silvab084af42012-12-07 10:36:55 +00002609.. _t_struct:
2610
2611Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002612""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002613
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002614:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002615
2616The structure type is used to represent a collection of data members
2617together in memory. The elements of a structure may be any type that has
2618a size.
2619
2620Structures in memory are accessed using '``load``' and '``store``' by
2621getting a pointer to a field with the '``getelementptr``' instruction.
2622Structures in registers are accessed using the '``extractvalue``' and
2623'``insertvalue``' instructions.
2624
2625Structures may optionally be "packed" structures, which indicate that
2626the alignment of the struct is one byte, and that there is no padding
2627between the elements. In non-packed structs, padding between field types
2628is inserted as defined by the DataLayout string in the module, which is
2629required to match what the underlying code generator expects.
2630
2631Structures can either be "literal" or "identified". A literal structure
2632is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2633identified types are always defined at the top level with a name.
2634Literal types are uniqued by their contents and can never be recursive
2635or opaque since there is no way to write one. Identified types can be
2636recursive, can be opaqued, and are never uniqued.
2637
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002638:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002639
2640::
2641
2642 %T1 = type { <type list> } ; Identified normal struct type
2643 %T2 = type <{ <type list> }> ; Identified packed struct type
2644
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002645:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002646
2647+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2648| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2649+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002650| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002651+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2652| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2653+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2654
2655.. _t_opaque:
2656
2657Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002658""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002659
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002660:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002661
2662Opaque structure types are used to represent named structure types that
2663do not have a body specified. This corresponds (for example) to the C
2664notion of a forward declared structure.
2665
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002666:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002667
2668::
2669
2670 %X = type opaque
2671 %52 = type opaque
2672
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002673:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002674
2675+--------------+-------------------+
2676| ``opaque`` | An opaque type. |
2677+--------------+-------------------+
2678
Sean Silva1703e702014-04-08 21:06:22 +00002679.. _constants:
2680
Sean Silvab084af42012-12-07 10:36:55 +00002681Constants
2682=========
2683
2684LLVM has several different basic types of constants. This section
2685describes them all and their syntax.
2686
2687Simple Constants
2688----------------
2689
2690**Boolean constants**
2691 The two strings '``true``' and '``false``' are both valid constants
2692 of the ``i1`` type.
2693**Integer constants**
2694 Standard integers (such as '4') are constants of the
2695 :ref:`integer <t_integer>` type. Negative numbers may be used with
2696 integer types.
2697**Floating point constants**
2698 Floating point constants use standard decimal notation (e.g.
2699 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2700 hexadecimal notation (see below). The assembler requires the exact
2701 decimal value of a floating-point constant. For example, the
2702 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2703 decimal in binary. Floating point constants must have a :ref:`floating
2704 point <t_floating>` type.
2705**Null pointer constants**
2706 The identifier '``null``' is recognized as a null pointer constant
2707 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002708**Token constants**
2709 The identifier '``none``' is recognized as an empty token constant
2710 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002711
2712The one non-intuitive notation for constants is the hexadecimal form of
2713floating point constants. For example, the form
2714'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2715than) '``double 4.5e+15``'. The only time hexadecimal floating point
2716constants are required (and the only time that they are generated by the
2717disassembler) is when a floating point constant must be emitted but it
2718cannot be represented as a decimal floating point number in a reasonable
2719number of digits. For example, NaN's, infinities, and other special
2720values are represented in their IEEE hexadecimal format so that assembly
2721and disassembly do not cause any bits to change in the constants.
2722
2723When using the hexadecimal form, constants of types half, float, and
2724double are represented using the 16-digit form shown above (which
2725matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002726must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002727precision, respectively. Hexadecimal format is always used for long
2728double, and there are three forms of long double. The 80-bit format used
2729by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2730128-bit format used by PowerPC (two adjacent doubles) is represented by
2731``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002732represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2733will only work if they match the long double format on your target.
2734The IEEE 16-bit format (half precision) is represented by ``0xH``
2735followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2736(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002737
Reid Kleckner9a16d082014-03-05 02:41:37 +00002738There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002739
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002740.. _complexconstants:
2741
Sean Silvab084af42012-12-07 10:36:55 +00002742Complex Constants
2743-----------------
2744
2745Complex constants are a (potentially recursive) combination of simple
2746constants and smaller complex constants.
2747
2748**Structure constants**
2749 Structure constants are represented with notation similar to
2750 structure type definitions (a comma separated list of elements,
2751 surrounded by braces (``{}``)). For example:
2752 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2753 "``@G = external global i32``". Structure constants must have
2754 :ref:`structure type <t_struct>`, and the number and types of elements
2755 must match those specified by the type.
2756**Array constants**
2757 Array constants are represented with notation similar to array type
2758 definitions (a comma separated list of elements, surrounded by
2759 square brackets (``[]``)). For example:
2760 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2761 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002762 match those specified by the type. As a special case, character array
2763 constants may also be represented as a double-quoted string using the ``c``
2764 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002765**Vector constants**
2766 Vector constants are represented with notation similar to vector
2767 type definitions (a comma separated list of elements, surrounded by
2768 less-than/greater-than's (``<>``)). For example:
2769 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2770 must have :ref:`vector type <t_vector>`, and the number and types of
2771 elements must match those specified by the type.
2772**Zero initialization**
2773 The string '``zeroinitializer``' can be used to zero initialize a
2774 value to zero of *any* type, including scalar and
2775 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2776 having to print large zero initializers (e.g. for large arrays) and
2777 is always exactly equivalent to using explicit zero initializers.
2778**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002779 A metadata node is a constant tuple without types. For example:
2780 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002781 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2782 Unlike other typed constants that are meant to be interpreted as part of
2783 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002784 information such as debug info.
2785
2786Global Variable and Function Addresses
2787--------------------------------------
2788
2789The addresses of :ref:`global variables <globalvars>` and
2790:ref:`functions <functionstructure>` are always implicitly valid
2791(link-time) constants. These constants are explicitly referenced when
2792the :ref:`identifier for the global <identifiers>` is used and always have
2793:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2794file:
2795
2796.. code-block:: llvm
2797
2798 @X = global i32 17
2799 @Y = global i32 42
2800 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2801
2802.. _undefvalues:
2803
2804Undefined Values
2805----------------
2806
2807The string '``undef``' can be used anywhere a constant is expected, and
2808indicates that the user of the value may receive an unspecified
2809bit-pattern. Undefined values may be of any type (other than '``label``'
2810or '``void``') and be used anywhere a constant is permitted.
2811
2812Undefined values are useful because they indicate to the compiler that
2813the program is well defined no matter what value is used. This gives the
2814compiler more freedom to optimize. Here are some examples of
2815(potentially surprising) transformations that are valid (in pseudo IR):
2816
2817.. code-block:: llvm
2818
2819 %A = add %X, undef
2820 %B = sub %X, undef
2821 %C = xor %X, undef
2822 Safe:
2823 %A = undef
2824 %B = undef
2825 %C = undef
2826
2827This is safe because all of the output bits are affected by the undef
2828bits. Any output bit can have a zero or one depending on the input bits.
2829
2830.. code-block:: llvm
2831
2832 %A = or %X, undef
2833 %B = and %X, undef
2834 Safe:
2835 %A = -1
2836 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002837 Safe:
2838 %A = %X ;; By choosing undef as 0
2839 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002840 Unsafe:
2841 %A = undef
2842 %B = undef
2843
2844These logical operations have bits that are not always affected by the
2845input. For example, if ``%X`` has a zero bit, then the output of the
2846'``and``' operation will always be a zero for that bit, no matter what
2847the corresponding bit from the '``undef``' is. As such, it is unsafe to
2848optimize or assume that the result of the '``and``' is '``undef``'.
2849However, it is safe to assume that all bits of the '``undef``' could be
28500, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2851all the bits of the '``undef``' operand to the '``or``' could be set,
2852allowing the '``or``' to be folded to -1.
2853
2854.. code-block:: llvm
2855
2856 %A = select undef, %X, %Y
2857 %B = select undef, 42, %Y
2858 %C = select %X, %Y, undef
2859 Safe:
2860 %A = %X (or %Y)
2861 %B = 42 (or %Y)
2862 %C = %Y
2863 Unsafe:
2864 %A = undef
2865 %B = undef
2866 %C = undef
2867
2868This set of examples shows that undefined '``select``' (and conditional
2869branch) conditions can go *either way*, but they have to come from one
2870of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2871both known to have a clear low bit, then ``%A`` would have to have a
2872cleared low bit. However, in the ``%C`` example, the optimizer is
2873allowed to assume that the '``undef``' operand could be the same as
2874``%Y``, allowing the whole '``select``' to be eliminated.
2875
Renato Golin124f2592016-07-20 12:16:38 +00002876.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002877
2878 %A = xor undef, undef
2879
2880 %B = undef
2881 %C = xor %B, %B
2882
2883 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002884 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002885 %F = icmp gte %D, 4
2886
2887 Safe:
2888 %A = undef
2889 %B = undef
2890 %C = undef
2891 %D = undef
2892 %E = undef
2893 %F = undef
2894
2895This example points out that two '``undef``' operands are not
2896necessarily the same. This can be surprising to people (and also matches
2897C semantics) where they assume that "``X^X``" is always zero, even if
2898``X`` is undefined. This isn't true for a number of reasons, but the
2899short answer is that an '``undef``' "variable" can arbitrarily change
2900its value over its "live range". This is true because the variable
2901doesn't actually *have a live range*. Instead, the value is logically
2902read from arbitrary registers that happen to be around when needed, so
2903the value is not necessarily consistent over time. In fact, ``%A`` and
2904``%C`` need to have the same semantics or the core LLVM "replace all
2905uses with" concept would not hold.
2906
2907.. code-block:: llvm
2908
2909 %A = fdiv undef, %X
2910 %B = fdiv %X, undef
2911 Safe:
2912 %A = undef
2913 b: unreachable
2914
2915These examples show the crucial difference between an *undefined value*
2916and *undefined behavior*. An undefined value (like '``undef``') is
2917allowed to have an arbitrary bit-pattern. This means that the ``%A``
2918operation can be constant folded to '``undef``', because the '``undef``'
2919could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2920However, in the second example, we can make a more aggressive
2921assumption: because the ``undef`` is allowed to be an arbitrary value,
2922we are allowed to assume that it could be zero. Since a divide by zero
2923has *undefined behavior*, we are allowed to assume that the operation
2924does not execute at all. This allows us to delete the divide and all
2925code after it. Because the undefined operation "can't happen", the
2926optimizer can assume that it occurs in dead code.
2927
Renato Golin124f2592016-07-20 12:16:38 +00002928.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002929
2930 a: store undef -> %X
2931 b: store %X -> undef
2932 Safe:
2933 a: <deleted>
2934 b: unreachable
2935
2936These examples reiterate the ``fdiv`` example: a store *of* an undefined
2937value can be assumed to not have any effect; we can assume that the
2938value is overwritten with bits that happen to match what was already
2939there. However, a store *to* an undefined location could clobber
2940arbitrary memory, therefore, it has undefined behavior.
2941
2942.. _poisonvalues:
2943
2944Poison Values
2945-------------
2946
2947Poison values are similar to :ref:`undef values <undefvalues>`, however
2948they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002949that cannot evoke side effects has nevertheless detected a condition
2950that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002951
2952There is currently no way of representing a poison value in the IR; they
2953only exist when produced by operations such as :ref:`add <i_add>` with
2954the ``nsw`` flag.
2955
2956Poison value behavior is defined in terms of value *dependence*:
2957
2958- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2959- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2960 their dynamic predecessor basic block.
2961- Function arguments depend on the corresponding actual argument values
2962 in the dynamic callers of their functions.
2963- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2964 instructions that dynamically transfer control back to them.
2965- :ref:`Invoke <i_invoke>` instructions depend on the
2966 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2967 call instructions that dynamically transfer control back to them.
2968- Non-volatile loads and stores depend on the most recent stores to all
2969 of the referenced memory addresses, following the order in the IR
2970 (including loads and stores implied by intrinsics such as
2971 :ref:`@llvm.memcpy <int_memcpy>`.)
2972- An instruction with externally visible side effects depends on the
2973 most recent preceding instruction with externally visible side
2974 effects, following the order in the IR. (This includes :ref:`volatile
2975 operations <volatile>`.)
2976- An instruction *control-depends* on a :ref:`terminator
2977 instruction <terminators>` if the terminator instruction has
2978 multiple successors and the instruction is always executed when
2979 control transfers to one of the successors, and may not be executed
2980 when control is transferred to another.
2981- Additionally, an instruction also *control-depends* on a terminator
2982 instruction if the set of instructions it otherwise depends on would
2983 be different if the terminator had transferred control to a different
2984 successor.
2985- Dependence is transitive.
2986
Richard Smith32dbdf62014-07-31 04:25:36 +00002987Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2988with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002989on a poison value has undefined behavior.
2990
2991Here are some examples:
2992
2993.. code-block:: llvm
2994
2995 entry:
2996 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2997 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002998 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002999 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3000
3001 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003002 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003003
3004 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3005
3006 %narrowaddr = bitcast i32* @g to i16*
3007 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003008 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3009 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003010
3011 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3012 br i1 %cmp, label %true, label %end ; Branch to either destination.
3013
3014 true:
3015 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3016 ; it has undefined behavior.
3017 br label %end
3018
3019 end:
3020 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3021 ; Both edges into this PHI are
3022 ; control-dependent on %cmp, so this
3023 ; always results in a poison value.
3024
3025 store volatile i32 0, i32* @g ; This would depend on the store in %true
3026 ; if %cmp is true, or the store in %entry
3027 ; otherwise, so this is undefined behavior.
3028
3029 br i1 %cmp, label %second_true, label %second_end
3030 ; The same branch again, but this time the
3031 ; true block doesn't have side effects.
3032
3033 second_true:
3034 ; No side effects!
3035 ret void
3036
3037 second_end:
3038 store volatile i32 0, i32* @g ; This time, the instruction always depends
3039 ; on the store in %end. Also, it is
3040 ; control-equivalent to %end, so this is
3041 ; well-defined (ignoring earlier undefined
3042 ; behavior in this example).
3043
3044.. _blockaddress:
3045
3046Addresses of Basic Blocks
3047-------------------------
3048
3049``blockaddress(@function, %block)``
3050
3051The '``blockaddress``' constant computes the address of the specified
3052basic block in the specified function, and always has an ``i8*`` type.
3053Taking the address of the entry block is illegal.
3054
3055This value only has defined behavior when used as an operand to the
3056':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3057against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003058undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003059no label is equal to the null pointer. This may be passed around as an
3060opaque pointer sized value as long as the bits are not inspected. This
3061allows ``ptrtoint`` and arithmetic to be performed on these values so
3062long as the original value is reconstituted before the ``indirectbr``
3063instruction.
3064
3065Finally, some targets may provide defined semantics when using the value
3066as the operand to an inline assembly, but that is target specific.
3067
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003068.. _constantexprs:
3069
Sean Silvab084af42012-12-07 10:36:55 +00003070Constant Expressions
3071--------------------
3072
3073Constant expressions are used to allow expressions involving other
3074constants to be used as constants. Constant expressions may be of any
3075:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3076that does not have side effects (e.g. load and call are not supported).
3077The following is the syntax for constant expressions:
3078
3079``trunc (CST to TYPE)``
3080 Truncate a constant to another type. The bit size of CST must be
3081 larger than the bit size of TYPE. Both types must be integers.
3082``zext (CST to TYPE)``
3083 Zero extend a constant to another type. The bit size of CST must be
3084 smaller than the bit size of TYPE. Both types must be integers.
3085``sext (CST to TYPE)``
3086 Sign extend a constant to another type. The bit size of CST must be
3087 smaller than the bit size of TYPE. Both types must be integers.
3088``fptrunc (CST to TYPE)``
3089 Truncate a floating point constant to another floating point type.
3090 The size of CST must be larger than the size of TYPE. Both types
3091 must be floating point.
3092``fpext (CST to TYPE)``
3093 Floating point extend a constant to another type. The size of CST
3094 must be smaller or equal to the size of TYPE. Both types must be
3095 floating point.
3096``fptoui (CST to TYPE)``
3097 Convert a floating point constant to the corresponding unsigned
3098 integer constant. TYPE must be a scalar or vector integer type. CST
3099 must be of scalar or vector floating point type. Both CST and TYPE
3100 must be scalars, or vectors of the same number of elements. If the
3101 value won't fit in the integer type, the results are undefined.
3102``fptosi (CST to TYPE)``
3103 Convert a floating point constant to the corresponding signed
3104 integer constant. TYPE must be a scalar or vector integer type. CST
3105 must be of scalar or vector floating point type. Both CST and TYPE
3106 must be scalars, or vectors of the same number of elements. If the
3107 value won't fit in the integer type, the results are undefined.
3108``uitofp (CST to TYPE)``
3109 Convert an unsigned integer constant to the corresponding floating
3110 point constant. TYPE must be a scalar or vector floating point type.
3111 CST must be of scalar or vector integer type. Both CST and TYPE must
3112 be scalars, or vectors of the same number of elements. If the value
3113 won't fit in the floating point type, the results are undefined.
3114``sitofp (CST to TYPE)``
3115 Convert a signed integer constant to the corresponding floating
3116 point constant. TYPE must be a scalar or vector floating point type.
3117 CST must be of scalar or vector integer type. Both CST and TYPE must
3118 be scalars, or vectors of the same number of elements. If the value
3119 won't fit in the floating point type, the results are undefined.
3120``ptrtoint (CST to TYPE)``
3121 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003122 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003123 pointer type. The ``CST`` value is zero extended, truncated, or
3124 unchanged to make it fit in ``TYPE``.
3125``inttoptr (CST to TYPE)``
3126 Convert an integer constant to a pointer constant. TYPE must be a
3127 pointer type. CST must be of integer type. The CST value is zero
3128 extended, truncated, or unchanged to make it fit in a pointer size.
3129 This one is *really* dangerous!
3130``bitcast (CST to TYPE)``
3131 Convert a constant, CST, to another TYPE. The constraints of the
3132 operands are the same as those for the :ref:`bitcast
3133 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003134``addrspacecast (CST to TYPE)``
3135 Convert a constant pointer or constant vector of pointer, CST, to another
3136 TYPE in a different address space. The constraints of the operands are the
3137 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003138``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003139 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3140 constants. As with the :ref:`getelementptr <i_getelementptr>`
3141 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003142 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003143``select (COND, VAL1, VAL2)``
3144 Perform the :ref:`select operation <i_select>` on constants.
3145``icmp COND (VAL1, VAL2)``
3146 Performs the :ref:`icmp operation <i_icmp>` on constants.
3147``fcmp COND (VAL1, VAL2)``
3148 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3149``extractelement (VAL, IDX)``
3150 Perform the :ref:`extractelement operation <i_extractelement>` on
3151 constants.
3152``insertelement (VAL, ELT, IDX)``
3153 Perform the :ref:`insertelement operation <i_insertelement>` on
3154 constants.
3155``shufflevector (VEC1, VEC2, IDXMASK)``
3156 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3157 constants.
3158``extractvalue (VAL, IDX0, IDX1, ...)``
3159 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3160 constants. The index list is interpreted in a similar manner as
3161 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3162 least one index value must be specified.
3163``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3164 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3165 The index list is interpreted in a similar manner as indices in a
3166 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3167 value must be specified.
3168``OPCODE (LHS, RHS)``
3169 Perform the specified operation of the LHS and RHS constants. OPCODE
3170 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3171 binary <bitwiseops>` operations. The constraints on operands are
3172 the same as those for the corresponding instruction (e.g. no bitwise
3173 operations on floating point values are allowed).
3174
3175Other Values
3176============
3177
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003178.. _inlineasmexprs:
3179
Sean Silvab084af42012-12-07 10:36:55 +00003180Inline Assembler Expressions
3181----------------------------
3182
3183LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003184Inline Assembly <moduleasm>`) through the use of a special value. This value
3185represents the inline assembler as a template string (containing the
3186instructions to emit), a list of operand constraints (stored as a string), a
3187flag that indicates whether or not the inline asm expression has side effects,
3188and a flag indicating whether the function containing the asm needs to align its
3189stack conservatively.
3190
3191The template string supports argument substitution of the operands using "``$``"
3192followed by a number, to indicate substitution of the given register/memory
3193location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3194be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3195operand (See :ref:`inline-asm-modifiers`).
3196
3197A literal "``$``" may be included by using "``$$``" in the template. To include
3198other special characters into the output, the usual "``\XX``" escapes may be
3199used, just as in other strings. Note that after template substitution, the
3200resulting assembly string is parsed by LLVM's integrated assembler unless it is
3201disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3202syntax known to LLVM.
3203
3204LLVM's support for inline asm is modeled closely on the requirements of Clang's
3205GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3206modifier codes listed here are similar or identical to those in GCC's inline asm
3207support. However, to be clear, the syntax of the template and constraint strings
3208described here is *not* the same as the syntax accepted by GCC and Clang, and,
3209while most constraint letters are passed through as-is by Clang, some get
3210translated to other codes when converting from the C source to the LLVM
3211assembly.
3212
3213An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003214
3215.. code-block:: llvm
3216
3217 i32 (i32) asm "bswap $0", "=r,r"
3218
3219Inline assembler expressions may **only** be used as the callee operand
3220of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3221Thus, typically we have:
3222
3223.. code-block:: llvm
3224
3225 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3226
3227Inline asms with side effects not visible in the constraint list must be
3228marked as having side effects. This is done through the use of the
3229'``sideeffect``' keyword, like so:
3230
3231.. code-block:: llvm
3232
3233 call void asm sideeffect "eieio", ""()
3234
3235In some cases inline asms will contain code that will not work unless
3236the stack is aligned in some way, such as calls or SSE instructions on
3237x86, yet will not contain code that does that alignment within the asm.
3238The compiler should make conservative assumptions about what the asm
3239might contain and should generate its usual stack alignment code in the
3240prologue if the '``alignstack``' keyword is present:
3241
3242.. code-block:: llvm
3243
3244 call void asm alignstack "eieio", ""()
3245
3246Inline asms also support using non-standard assembly dialects. The
3247assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3248the inline asm is using the Intel dialect. Currently, ATT and Intel are
3249the only supported dialects. An example is:
3250
3251.. code-block:: llvm
3252
3253 call void asm inteldialect "eieio", ""()
3254
3255If multiple keywords appear the '``sideeffect``' keyword must come
3256first, the '``alignstack``' keyword second and the '``inteldialect``'
3257keyword last.
3258
James Y Knightbc832ed2015-07-08 18:08:36 +00003259Inline Asm Constraint String
3260^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3261
3262The constraint list is a comma-separated string, each element containing one or
3263more constraint codes.
3264
3265For each element in the constraint list an appropriate register or memory
3266operand will be chosen, and it will be made available to assembly template
3267string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3268second, etc.
3269
3270There are three different types of constraints, which are distinguished by a
3271prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3272constraints must always be given in that order: outputs first, then inputs, then
3273clobbers. They cannot be intermingled.
3274
3275There are also three different categories of constraint codes:
3276
3277- Register constraint. This is either a register class, or a fixed physical
3278 register. This kind of constraint will allocate a register, and if necessary,
3279 bitcast the argument or result to the appropriate type.
3280- Memory constraint. This kind of constraint is for use with an instruction
3281 taking a memory operand. Different constraints allow for different addressing
3282 modes used by the target.
3283- Immediate value constraint. This kind of constraint is for an integer or other
3284 immediate value which can be rendered directly into an instruction. The
3285 various target-specific constraints allow the selection of a value in the
3286 proper range for the instruction you wish to use it with.
3287
3288Output constraints
3289""""""""""""""""""
3290
3291Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3292indicates that the assembly will write to this operand, and the operand will
3293then be made available as a return value of the ``asm`` expression. Output
3294constraints do not consume an argument from the call instruction. (Except, see
3295below about indirect outputs).
3296
3297Normally, it is expected that no output locations are written to by the assembly
3298expression until *all* of the inputs have been read. As such, LLVM may assign
3299the same register to an output and an input. If this is not safe (e.g. if the
3300assembly contains two instructions, where the first writes to one output, and
3301the second reads an input and writes to a second output), then the "``&``"
3302modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003303"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003304will not use the same register for any inputs (other than an input tied to this
3305output).
3306
3307Input constraints
3308"""""""""""""""""
3309
3310Input constraints do not have a prefix -- just the constraint codes. Each input
3311constraint will consume one argument from the call instruction. It is not
3312permitted for the asm to write to any input register or memory location (unless
3313that input is tied to an output). Note also that multiple inputs may all be
3314assigned to the same register, if LLVM can determine that they necessarily all
3315contain the same value.
3316
3317Instead of providing a Constraint Code, input constraints may also "tie"
3318themselves to an output constraint, by providing an integer as the constraint
3319string. Tied inputs still consume an argument from the call instruction, and
3320take up a position in the asm template numbering as is usual -- they will simply
3321be constrained to always use the same register as the output they've been tied
3322to. For example, a constraint string of "``=r,0``" says to assign a register for
3323output, and use that register as an input as well (it being the 0'th
3324constraint).
3325
3326It is permitted to tie an input to an "early-clobber" output. In that case, no
3327*other* input may share the same register as the input tied to the early-clobber
3328(even when the other input has the same value).
3329
3330You may only tie an input to an output which has a register constraint, not a
3331memory constraint. Only a single input may be tied to an output.
3332
3333There is also an "interesting" feature which deserves a bit of explanation: if a
3334register class constraint allocates a register which is too small for the value
3335type operand provided as input, the input value will be split into multiple
3336registers, and all of them passed to the inline asm.
3337
3338However, this feature is often not as useful as you might think.
3339
3340Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3341architectures that have instructions which operate on multiple consecutive
3342instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3343SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3344hardware then loads into both the named register, and the next register. This
3345feature of inline asm would not be useful to support that.)
3346
3347A few of the targets provide a template string modifier allowing explicit access
3348to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3349``D``). On such an architecture, you can actually access the second allocated
3350register (yet, still, not any subsequent ones). But, in that case, you're still
3351probably better off simply splitting the value into two separate operands, for
3352clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3353despite existing only for use with this feature, is not really a good idea to
3354use)
3355
3356Indirect inputs and outputs
3357"""""""""""""""""""""""""""
3358
3359Indirect output or input constraints can be specified by the "``*``" modifier
3360(which goes after the "``=``" in case of an output). This indicates that the asm
3361will write to or read from the contents of an *address* provided as an input
3362argument. (Note that in this way, indirect outputs act more like an *input* than
3363an output: just like an input, they consume an argument of the call expression,
3364rather than producing a return value. An indirect output constraint is an
3365"output" only in that the asm is expected to write to the contents of the input
3366memory location, instead of just read from it).
3367
3368This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3369address of a variable as a value.
3370
3371It is also possible to use an indirect *register* constraint, but only on output
3372(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3373value normally, and then, separately emit a store to the address provided as
3374input, after the provided inline asm. (It's not clear what value this
3375functionality provides, compared to writing the store explicitly after the asm
3376statement, and it can only produce worse code, since it bypasses many
3377optimization passes. I would recommend not using it.)
3378
3379
3380Clobber constraints
3381"""""""""""""""""""
3382
3383A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3384consume an input operand, nor generate an output. Clobbers cannot use any of the
3385general constraint code letters -- they may use only explicit register
3386constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3387"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3388memory locations -- not only the memory pointed to by a declared indirect
3389output.
3390
Peter Zotov00257232016-08-30 10:48:31 +00003391Note that clobbering named registers that are also present in output
3392constraints is not legal.
3393
James Y Knightbc832ed2015-07-08 18:08:36 +00003394
3395Constraint Codes
3396""""""""""""""""
3397After a potential prefix comes constraint code, or codes.
3398
3399A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3400followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3401(e.g. "``{eax}``").
3402
3403The one and two letter constraint codes are typically chosen to be the same as
3404GCC's constraint codes.
3405
3406A single constraint may include one or more than constraint code in it, leaving
3407it up to LLVM to choose which one to use. This is included mainly for
3408compatibility with the translation of GCC inline asm coming from clang.
3409
3410There are two ways to specify alternatives, and either or both may be used in an
3411inline asm constraint list:
3412
34131) Append the codes to each other, making a constraint code set. E.g. "``im``"
3414 or "``{eax}m``". This means "choose any of the options in the set". The
3415 choice of constraint is made independently for each constraint in the
3416 constraint list.
3417
34182) Use "``|``" between constraint code sets, creating alternatives. Every
3419 constraint in the constraint list must have the same number of alternative
3420 sets. With this syntax, the same alternative in *all* of the items in the
3421 constraint list will be chosen together.
3422
3423Putting those together, you might have a two operand constraint string like
3424``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3425operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3426may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3427
3428However, the use of either of the alternatives features is *NOT* recommended, as
3429LLVM is not able to make an intelligent choice about which one to use. (At the
3430point it currently needs to choose, not enough information is available to do so
3431in a smart way.) Thus, it simply tries to make a choice that's most likely to
3432compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3433always choose to use memory, not registers). And, if given multiple registers,
3434or multiple register classes, it will simply choose the first one. (In fact, it
3435doesn't currently even ensure explicitly specified physical registers are
3436unique, so specifying multiple physical registers as alternatives, like
3437``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3438intended.)
3439
3440Supported Constraint Code List
3441""""""""""""""""""""""""""""""
3442
3443The constraint codes are, in general, expected to behave the same way they do in
3444GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3445inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3446and GCC likely indicates a bug in LLVM.
3447
3448Some constraint codes are typically supported by all targets:
3449
3450- ``r``: A register in the target's general purpose register class.
3451- ``m``: A memory address operand. It is target-specific what addressing modes
3452 are supported, typical examples are register, or register + register offset,
3453 or register + immediate offset (of some target-specific size).
3454- ``i``: An integer constant (of target-specific width). Allows either a simple
3455 immediate, or a relocatable value.
3456- ``n``: An integer constant -- *not* including relocatable values.
3457- ``s``: An integer constant, but allowing *only* relocatable values.
3458- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3459 useful to pass a label for an asm branch or call.
3460
3461 .. FIXME: but that surely isn't actually okay to jump out of an asm
3462 block without telling llvm about the control transfer???)
3463
3464- ``{register-name}``: Requires exactly the named physical register.
3465
3466Other constraints are target-specific:
3467
3468AArch64:
3469
3470- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3471- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3472 i.e. 0 to 4095 with optional shift by 12.
3473- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3474 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3475- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3476 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3477- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3478 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3479- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3480 32-bit register. This is a superset of ``K``: in addition to the bitmask
3481 immediate, also allows immediate integers which can be loaded with a single
3482 ``MOVZ`` or ``MOVL`` instruction.
3483- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3484 64-bit register. This is a superset of ``L``.
3485- ``Q``: Memory address operand must be in a single register (no
3486 offsets). (However, LLVM currently does this for the ``m`` constraint as
3487 well.)
3488- ``r``: A 32 or 64-bit integer register (W* or X*).
3489- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3490- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3491
3492AMDGPU:
3493
3494- ``r``: A 32 or 64-bit integer register.
3495- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3496- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3497
3498
3499All ARM modes:
3500
3501- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3502 operand. Treated the same as operand ``m``, at the moment.
3503
3504ARM and ARM's Thumb2 mode:
3505
3506- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3507- ``I``: An immediate integer valid for a data-processing instruction.
3508- ``J``: An immediate integer between -4095 and 4095.
3509- ``K``: An immediate integer whose bitwise inverse is valid for a
3510 data-processing instruction. (Can be used with template modifier "``B``" to
3511 print the inverted value).
3512- ``L``: An immediate integer whose negation is valid for a data-processing
3513 instruction. (Can be used with template modifier "``n``" to print the negated
3514 value).
3515- ``M``: A power of two or a integer between 0 and 32.
3516- ``N``: Invalid immediate constraint.
3517- ``O``: Invalid immediate constraint.
3518- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3519- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3520 as ``r``.
3521- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3522 invalid.
3523- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3524 ``d0-d31``, or ``q0-q15``.
3525- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3526 ``d0-d7``, or ``q0-q3``.
3527- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3528 ``s0-s31``.
3529
3530ARM's Thumb1 mode:
3531
3532- ``I``: An immediate integer between 0 and 255.
3533- ``J``: An immediate integer between -255 and -1.
3534- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3535 some amount.
3536- ``L``: An immediate integer between -7 and 7.
3537- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3538- ``N``: An immediate integer between 0 and 31.
3539- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3540- ``r``: A low 32-bit GPR register (``r0-r7``).
3541- ``l``: A low 32-bit GPR register (``r0-r7``).
3542- ``h``: A high GPR register (``r0-r7``).
3543- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3544 ``d0-d31``, or ``q0-q15``.
3545- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3546 ``d0-d7``, or ``q0-q3``.
3547- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3548 ``s0-s31``.
3549
3550
3551Hexagon:
3552
3553- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3554 at the moment.
3555- ``r``: A 32 or 64-bit register.
3556
3557MSP430:
3558
3559- ``r``: An 8 or 16-bit register.
3560
3561MIPS:
3562
3563- ``I``: An immediate signed 16-bit integer.
3564- ``J``: An immediate integer zero.
3565- ``K``: An immediate unsigned 16-bit integer.
3566- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3567- ``N``: An immediate integer between -65535 and -1.
3568- ``O``: An immediate signed 15-bit integer.
3569- ``P``: An immediate integer between 1 and 65535.
3570- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3571 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3572- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3573 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3574 ``m``.
3575- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3576 ``sc`` instruction on the given subtarget (details vary).
3577- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3578- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003579 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3580 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003581- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3582 ``25``).
3583- ``l``: The ``lo`` register, 32 or 64-bit.
3584- ``x``: Invalid.
3585
3586NVPTX:
3587
3588- ``b``: A 1-bit integer register.
3589- ``c`` or ``h``: A 16-bit integer register.
3590- ``r``: A 32-bit integer register.
3591- ``l`` or ``N``: A 64-bit integer register.
3592- ``f``: A 32-bit float register.
3593- ``d``: A 64-bit float register.
3594
3595
3596PowerPC:
3597
3598- ``I``: An immediate signed 16-bit integer.
3599- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3600- ``K``: An immediate unsigned 16-bit integer.
3601- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3602- ``M``: An immediate integer greater than 31.
3603- ``N``: An immediate integer that is an exact power of 2.
3604- ``O``: The immediate integer constant 0.
3605- ``P``: An immediate integer constant whose negation is a signed 16-bit
3606 constant.
3607- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3608 treated the same as ``m``.
3609- ``r``: A 32 or 64-bit integer register.
3610- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3611 ``R1-R31``).
3612- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3613 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3614- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3615 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3616 altivec vector register (``V0-V31``).
3617
3618 .. FIXME: is this a bug that v accepts QPX registers? I think this
3619 is supposed to only use the altivec vector registers?
3620
3621- ``y``: Condition register (``CR0-CR7``).
3622- ``wc``: An individual CR bit in a CR register.
3623- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3624 register set (overlapping both the floating-point and vector register files).
3625- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3626 set.
3627
3628Sparc:
3629
3630- ``I``: An immediate 13-bit signed integer.
3631- ``r``: A 32-bit integer register.
3632
3633SystemZ:
3634
3635- ``I``: An immediate unsigned 8-bit integer.
3636- ``J``: An immediate unsigned 12-bit integer.
3637- ``K``: An immediate signed 16-bit integer.
3638- ``L``: An immediate signed 20-bit integer.
3639- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003640- ``Q``: A memory address operand with a base address and a 12-bit immediate
3641 unsigned displacement.
3642- ``R``: A memory address operand with a base address, a 12-bit immediate
3643 unsigned displacement, and an index register.
3644- ``S``: A memory address operand with a base address and a 20-bit immediate
3645 signed displacement.
3646- ``T``: A memory address operand with a base address, a 20-bit immediate
3647 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003648- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3649- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3650 address context evaluates as zero).
3651- ``h``: A 32-bit value in the high part of a 64bit data register
3652 (LLVM-specific)
3653- ``f``: A 32, 64, or 128-bit floating point register.
3654
3655X86:
3656
3657- ``I``: An immediate integer between 0 and 31.
3658- ``J``: An immediate integer between 0 and 64.
3659- ``K``: An immediate signed 8-bit integer.
3660- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3661 0xffffffff.
3662- ``M``: An immediate integer between 0 and 3.
3663- ``N``: An immediate unsigned 8-bit integer.
3664- ``O``: An immediate integer between 0 and 127.
3665- ``e``: An immediate 32-bit signed integer.
3666- ``Z``: An immediate 32-bit unsigned integer.
3667- ``o``, ``v``: Treated the same as ``m``, at the moment.
3668- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3669 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3670 registers, and on X86-64, it is all of the integer registers.
3671- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3672 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3673- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3674- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3675 existed since i386, and can be accessed without the REX prefix.
3676- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3677- ``y``: A 64-bit MMX register, if MMX is enabled.
3678- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3679 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3680 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3681 512-bit vector operand in an AVX512 register, Otherwise, an error.
3682- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3683- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3684 32-bit mode, a 64-bit integer operand will get split into two registers). It
3685 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3686 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3687 you're better off splitting it yourself, before passing it to the asm
3688 statement.
3689
3690XCore:
3691
3692- ``r``: A 32-bit integer register.
3693
3694
3695.. _inline-asm-modifiers:
3696
3697Asm template argument modifiers
3698^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3699
3700In the asm template string, modifiers can be used on the operand reference, like
3701"``${0:n}``".
3702
3703The modifiers are, in general, expected to behave the same way they do in
3704GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3705inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3706and GCC likely indicates a bug in LLVM.
3707
3708Target-independent:
3709
Sean Silvaa1190322015-08-06 22:56:48 +00003710- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003711 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3712- ``n``: Negate and print immediate integer constant unadorned, without the
3713 target-specific immediate punctuation (e.g. no ``$`` prefix).
3714- ``l``: Print as an unadorned label, without the target-specific label
3715 punctuation (e.g. no ``$`` prefix).
3716
3717AArch64:
3718
3719- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3720 instead of ``x30``, print ``w30``.
3721- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3722- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3723 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3724 ``v*``.
3725
3726AMDGPU:
3727
3728- ``r``: No effect.
3729
3730ARM:
3731
3732- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3733 register).
3734- ``P``: No effect.
3735- ``q``: No effect.
3736- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3737 as ``d4[1]`` instead of ``s9``)
3738- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3739 prefix.
3740- ``L``: Print the low 16-bits of an immediate integer constant.
3741- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3742 register operands subsequent to the specified one (!), so use carefully.
3743- ``Q``: Print the low-order register of a register-pair, or the low-order
3744 register of a two-register operand.
3745- ``R``: Print the high-order register of a register-pair, or the high-order
3746 register of a two-register operand.
3747- ``H``: Print the second register of a register-pair. (On a big-endian system,
3748 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3749 to ``R``.)
3750
3751 .. FIXME: H doesn't currently support printing the second register
3752 of a two-register operand.
3753
3754- ``e``: Print the low doubleword register of a NEON quad register.
3755- ``f``: Print the high doubleword register of a NEON quad register.
3756- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3757 adornment.
3758
3759Hexagon:
3760
3761- ``L``: Print the second register of a two-register operand. Requires that it
3762 has been allocated consecutively to the first.
3763
3764 .. FIXME: why is it restricted to consecutive ones? And there's
3765 nothing that ensures that happens, is there?
3766
3767- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3768 nothing. Used to print 'addi' vs 'add' instructions.
3769
3770MSP430:
3771
3772No additional modifiers.
3773
3774MIPS:
3775
3776- ``X``: Print an immediate integer as hexadecimal
3777- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3778- ``d``: Print an immediate integer as decimal.
3779- ``m``: Subtract one and print an immediate integer as decimal.
3780- ``z``: Print $0 if an immediate zero, otherwise print normally.
3781- ``L``: Print the low-order register of a two-register operand, or prints the
3782 address of the low-order word of a double-word memory operand.
3783
3784 .. FIXME: L seems to be missing memory operand support.
3785
3786- ``M``: Print the high-order register of a two-register operand, or prints the
3787 address of the high-order word of a double-word memory operand.
3788
3789 .. FIXME: M seems to be missing memory operand support.
3790
3791- ``D``: Print the second register of a two-register operand, or prints the
3792 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3793 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3794 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003795- ``w``: No effect. Provided for compatibility with GCC which requires this
3796 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3797 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003798
3799NVPTX:
3800
3801- ``r``: No effect.
3802
3803PowerPC:
3804
3805- ``L``: Print the second register of a two-register operand. Requires that it
3806 has been allocated consecutively to the first.
3807
3808 .. FIXME: why is it restricted to consecutive ones? And there's
3809 nothing that ensures that happens, is there?
3810
3811- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3812 nothing. Used to print 'addi' vs 'add' instructions.
3813- ``y``: For a memory operand, prints formatter for a two-register X-form
3814 instruction. (Currently always prints ``r0,OPERAND``).
3815- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3816 otherwise. (NOTE: LLVM does not support update form, so this will currently
3817 always print nothing)
3818- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3819 not support indexed form, so this will currently always print nothing)
3820
3821Sparc:
3822
3823- ``r``: No effect.
3824
3825SystemZ:
3826
3827SystemZ implements only ``n``, and does *not* support any of the other
3828target-independent modifiers.
3829
3830X86:
3831
3832- ``c``: Print an unadorned integer or symbol name. (The latter is
3833 target-specific behavior for this typically target-independent modifier).
3834- ``A``: Print a register name with a '``*``' before it.
3835- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3836 operand.
3837- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3838 memory operand.
3839- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3840 operand.
3841- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3842 operand.
3843- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3844 available, otherwise the 32-bit register name; do nothing on a memory operand.
3845- ``n``: Negate and print an unadorned integer, or, for operands other than an
3846 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3847 the operand. (The behavior for relocatable symbol expressions is a
3848 target-specific behavior for this typically target-independent modifier)
3849- ``H``: Print a memory reference with additional offset +8.
3850- ``P``: Print a memory reference or operand for use as the argument of a call
3851 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3852
3853XCore:
3854
3855No additional modifiers.
3856
3857
Sean Silvab084af42012-12-07 10:36:55 +00003858Inline Asm Metadata
3859^^^^^^^^^^^^^^^^^^^
3860
3861The call instructions that wrap inline asm nodes may have a
3862"``!srcloc``" MDNode attached to it that contains a list of constant
3863integers. If present, the code generator will use the integer as the
3864location cookie value when report errors through the ``LLVMContext``
3865error reporting mechanisms. This allows a front-end to correlate backend
3866errors that occur with inline asm back to the source code that produced
3867it. For example:
3868
3869.. code-block:: llvm
3870
3871 call void asm sideeffect "something bad", ""(), !srcloc !42
3872 ...
3873 !42 = !{ i32 1234567 }
3874
3875It is up to the front-end to make sense of the magic numbers it places
3876in the IR. If the MDNode contains multiple constants, the code generator
3877will use the one that corresponds to the line of the asm that the error
3878occurs on.
3879
3880.. _metadata:
3881
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003882Metadata
3883========
Sean Silvab084af42012-12-07 10:36:55 +00003884
3885LLVM IR allows metadata to be attached to instructions in the program
3886that can convey extra information about the code to the optimizers and
3887code generator. One example application of metadata is source-level
3888debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003889
Sean Silvaa1190322015-08-06 22:56:48 +00003890Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003891``call`` instruction, it uses the ``metadata`` type.
3892
3893All metadata are identified in syntax by a exclamation point ('``!``').
3894
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003895.. _metadata-string:
3896
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003897Metadata Nodes and Metadata Strings
3898-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003899
3900A metadata string is a string surrounded by double quotes. It can
3901contain any character by escaping non-printable characters with
3902"``\xx``" where "``xx``" is the two digit hex code. For example:
3903"``!"test\00"``".
3904
3905Metadata nodes are represented with notation similar to structure
3906constants (a comma separated list of elements, surrounded by braces and
3907preceded by an exclamation point). Metadata nodes can have any values as
3908their operand. For example:
3909
3910.. code-block:: llvm
3911
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003912 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003913
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003914Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3915
Renato Golin124f2592016-07-20 12:16:38 +00003916.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003917
3918 !0 = distinct !{!"test\00", i32 10}
3919
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003920``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003921content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003922when metadata operands change.
3923
Sean Silvab084af42012-12-07 10:36:55 +00003924A :ref:`named metadata <namedmetadatastructure>` is a collection of
3925metadata nodes, which can be looked up in the module symbol table. For
3926example:
3927
3928.. code-block:: llvm
3929
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003930 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003931
3932Metadata can be used as function arguments. Here ``llvm.dbg.value``
3933function is using two metadata arguments:
3934
3935.. code-block:: llvm
3936
3937 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3938
Peter Collingbourne50108682015-11-06 02:41:02 +00003939Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3940to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003941
3942.. code-block:: llvm
3943
3944 %indvar.next = add i64 %indvar, 1, !dbg !21
3945
Peter Collingbourne50108682015-11-06 02:41:02 +00003946Metadata can also be attached to a function definition. Here metadata ``!22``
3947is attached to the ``foo`` function using the ``!dbg`` identifier:
3948
3949.. code-block:: llvm
3950
3951 define void @foo() !dbg !22 {
3952 ret void
3953 }
3954
Sean Silvab084af42012-12-07 10:36:55 +00003955More information about specific metadata nodes recognized by the
3956optimizers and code generator is found below.
3957
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003958.. _specialized-metadata:
3959
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003960Specialized Metadata Nodes
3961^^^^^^^^^^^^^^^^^^^^^^^^^^
3962
3963Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003964to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003965order.
3966
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003967These aren't inherently debug info centric, but currently all the specialized
3968metadata nodes are related to debug info.
3969
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003970.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003971
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003972DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003973"""""""""""""
3974
Sean Silvaa1190322015-08-06 22:56:48 +00003975``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003976``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3977fields are tuples containing the debug info to be emitted along with the compile
3978unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003979references to them from instructions).
3980
Renato Golin124f2592016-07-20 12:16:38 +00003981.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003982
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003983 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003984 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003985 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003986 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003987 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003988
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003989Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003990specific compilation unit. File descriptors are defined using this scope.
3991These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003992keep track of subprograms, global variables, type information, and imported
3993entities (declarations and namespaces).
3994
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003995.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003996
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003997DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003998""""""
3999
Sean Silvaa1190322015-08-06 22:56:48 +00004000``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004001
4002.. code-block:: llvm
4003
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004004 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004005
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004006Files are sometimes used in ``scope:`` fields, and are the only valid target
4007for ``file:`` fields.
4008
Michael Kuperstein605308a2015-05-14 10:58:59 +00004009.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004010
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004011DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004012"""""""""""
4013
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004014``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004015``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004016
Renato Golin124f2592016-07-20 12:16:38 +00004017.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004018
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004019 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004020 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004021 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004022
Sean Silvaa1190322015-08-06 22:56:48 +00004023The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004024following:
4025
Renato Golin124f2592016-07-20 12:16:38 +00004026.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004027
4028 DW_ATE_address = 1
4029 DW_ATE_boolean = 2
4030 DW_ATE_float = 4
4031 DW_ATE_signed = 5
4032 DW_ATE_signed_char = 6
4033 DW_ATE_unsigned = 7
4034 DW_ATE_unsigned_char = 8
4035
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004036.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004037
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004038DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004039""""""""""""""""
4040
Sean Silvaa1190322015-08-06 22:56:48 +00004041``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004042refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004043types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004044represents a function with no return value (such as ``void foo() {}`` in C++).
4045
Renato Golin124f2592016-07-20 12:16:38 +00004046.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004047
4048 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4049 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004050 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004051
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004052.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004053
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004054DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004055"""""""""""""
4056
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004057``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004058qualified types.
4059
Renato Golin124f2592016-07-20 12:16:38 +00004060.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004061
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004062 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004063 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004064 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004065 align: 32)
4066
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004067The following ``tag:`` values are valid:
4068
Renato Golin124f2592016-07-20 12:16:38 +00004069.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004070
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004071 DW_TAG_member = 13
4072 DW_TAG_pointer_type = 15
4073 DW_TAG_reference_type = 16
4074 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004075 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004076 DW_TAG_ptr_to_member_type = 31
4077 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004078 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004079 DW_TAG_volatile_type = 53
4080 DW_TAG_restrict_type = 55
4081
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004082.. _DIDerivedTypeMember:
4083
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004084``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004085<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004086``offset:`` is the member's bit offset. If the composite type has an ODR
4087``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4088uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004089
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004090``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4091field of :ref:`composite types <DICompositeType>` to describe parents and
4092friends.
4093
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004094``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4095
4096``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
4097``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
4098``baseType:``.
4099
4100Note that the ``void *`` type is expressed as a type derived from NULL.
4101
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004102.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004103
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004104DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004105"""""""""""""""
4106
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004107``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004108structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004109
4110If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004111identifier used for type merging between modules. When specified,
4112:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4113derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4114``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004115
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004116For a given ``identifier:``, there should only be a single composite type that
4117does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4118together will unique such definitions at parse time via the ``identifier:``
4119field, even if the nodes are ``distinct``.
4120
Renato Golin124f2592016-07-20 12:16:38 +00004121.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004122
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004123 !0 = !DIEnumerator(name: "SixKind", value: 7)
4124 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4125 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4126 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004127 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4128 elements: !{!0, !1, !2})
4129
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004130The following ``tag:`` values are valid:
4131
Renato Golin124f2592016-07-20 12:16:38 +00004132.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004133
4134 DW_TAG_array_type = 1
4135 DW_TAG_class_type = 2
4136 DW_TAG_enumeration_type = 4
4137 DW_TAG_structure_type = 19
4138 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004139
4140For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004141descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004142level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004143array type is a native packed vector.
4144
4145For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004146descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004147value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004148``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004149
4150For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4151``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004152<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4153``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4154``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004155
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004156.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004157
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004158DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004159""""""""""
4160
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004161``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004162:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004163
4164.. code-block:: llvm
4165
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004166 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4167 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4168 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004169
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004170.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004171
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004172DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004173""""""""""""
4174
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004175``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4176variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004177
4178.. code-block:: llvm
4179
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004180 !0 = !DIEnumerator(name: "SixKind", value: 7)
4181 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4182 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004183
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004184DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004185"""""""""""""""""""""""
4186
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004187``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004188language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004189:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004190
4191.. code-block:: llvm
4192
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004193 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004194
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004195DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004196""""""""""""""""""""""""
4197
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004198``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004199language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004200but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004201``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004202:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004203
4204.. code-block:: llvm
4205
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004206 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004207
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004208DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004209"""""""""""
4210
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004211``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004212
4213.. code-block:: llvm
4214
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004215 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004216
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004217DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004218""""""""""""""""
4219
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004220``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004221
4222.. code-block:: llvm
4223
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004224 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004225 file: !2, line: 7, type: !3, isLocal: true,
4226 isDefinition: false, variable: i32* @foo,
4227 declaration: !4)
4228
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004229All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004230:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004231
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004232.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004233
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004234DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004235""""""""""""
4236
Peter Collingbourne50108682015-11-06 02:41:02 +00004237``DISubprogram`` nodes represent functions from the source language. A
4238``DISubprogram`` may be attached to a function definition using ``!dbg``
4239metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4240that must be retained, even if their IR counterparts are optimized out of
4241the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004242
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004243.. _DISubprogramDeclaration:
4244
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004245When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004246tree as opposed to a definition of a function. If the scope is a composite
4247type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4248then the subprogram declaration is uniqued based only on its ``linkageName:``
4249and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004250
Renato Golin124f2592016-07-20 12:16:38 +00004251.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004252
Peter Collingbourne50108682015-11-06 02:41:02 +00004253 define void @_Z3foov() !dbg !0 {
4254 ...
4255 }
4256
4257 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4258 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004259 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004260 containingType: !4,
4261 virtuality: DW_VIRTUALITY_pure_virtual,
4262 virtualIndex: 10, flags: DIFlagPrototyped,
4263 isOptimized: true, templateParams: !5,
4264 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004265
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004266.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004267
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004268DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269""""""""""""""
4270
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004271``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004272<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004273two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004274fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004275
Renato Golin124f2592016-07-20 12:16:38 +00004276.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004277
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004278 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004279
4280Usually lexical blocks are ``distinct`` to prevent node merging based on
4281operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004282
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004283.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004284
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004285DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004286""""""""""""""""""
4287
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004288``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004289:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004290indicate textual inclusion, or the ``discriminator:`` field can be used to
4291discriminate between control flow within a single block in the source language.
4292
4293.. code-block:: llvm
4294
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004295 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4296 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4297 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004298
Michael Kuperstein605308a2015-05-14 10:58:59 +00004299.. _DILocation:
4300
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004301DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004302""""""""""
4303
Sean Silvaa1190322015-08-06 22:56:48 +00004304``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004305mandatory, and points at an :ref:`DILexicalBlockFile`, an
4306:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004307
4308.. code-block:: llvm
4309
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004310 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004311
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004312.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004313
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004314DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004315"""""""""""""""
4316
Sean Silvaa1190322015-08-06 22:56:48 +00004317``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004318the ``arg:`` field is set to non-zero, then this variable is a subprogram
4319parameter, and it will be included in the ``variables:`` field of its
4320:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004321
Renato Golin124f2592016-07-20 12:16:38 +00004322.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004323
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004324 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4325 type: !3, flags: DIFlagArtificial)
4326 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4327 type: !3)
4328 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004329
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004330DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004331""""""""""""
4332
Sean Silvaa1190322015-08-06 22:56:48 +00004333``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004334:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4335describe how the referenced LLVM variable relates to the source language
4336variable.
4337
4338The current supported vocabulary is limited:
4339
4340- ``DW_OP_deref`` dereferences the working expression.
4341- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4342- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4343 here, respectively) of the variable piece from the working expression.
4344
Renato Golin124f2592016-07-20 12:16:38 +00004345.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004346
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004347 !0 = !DIExpression(DW_OP_deref)
4348 !1 = !DIExpression(DW_OP_plus, 3)
4349 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4350 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004351
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004352DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004353""""""""""""""
4354
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004355``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004356
4357.. code-block:: llvm
4358
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004359 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004360 getter: "getFoo", attributes: 7, type: !2)
4361
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004362DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004363""""""""""""""""
4364
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004365``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004366compile unit.
4367
Renato Golin124f2592016-07-20 12:16:38 +00004368.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004369
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004370 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004371 entity: !1, line: 7)
4372
Amjad Abouda9bcf162015-12-10 12:56:35 +00004373DIMacro
4374"""""""
4375
4376``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4377The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004378defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004379used to expand the macro identifier.
4380
Renato Golin124f2592016-07-20 12:16:38 +00004381.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004382
4383 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4384 value: "((x) + 1)")
4385 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4386
4387DIMacroFile
4388"""""""""""
4389
4390``DIMacroFile`` nodes represent inclusion of source files.
4391The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4392appear in the included source file.
4393
Renato Golin124f2592016-07-20 12:16:38 +00004394.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004395
4396 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4397 nodes: !3)
4398
Sean Silvab084af42012-12-07 10:36:55 +00004399'``tbaa``' Metadata
4400^^^^^^^^^^^^^^^^^^^
4401
4402In LLVM IR, memory does not have types, so LLVM's own type system is not
4403suitable for doing TBAA. Instead, metadata is added to the IR to
4404describe a type system of a higher level language. This can be used to
4405implement typical C/C++ TBAA, but it can also be used to implement
4406custom alias analysis behavior for other languages.
4407
4408The current metadata format is very simple. TBAA metadata nodes have up
4409to three fields, e.g.:
4410
4411.. code-block:: llvm
4412
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004413 !0 = !{ !"an example type tree" }
4414 !1 = !{ !"int", !0 }
4415 !2 = !{ !"float", !0 }
4416 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004417
4418The first field is an identity field. It can be any value, usually a
4419metadata string, which uniquely identifies the type. The most important
4420name in the tree is the name of the root node. Two trees with different
4421root node names are entirely disjoint, even if they have leaves with
4422common names.
4423
4424The second field identifies the type's parent node in the tree, or is
4425null or omitted for a root node. A type is considered to alias all of
4426its descendants and all of its ancestors in the tree. Also, a type is
4427considered to alias all types in other trees, so that bitcode produced
4428from multiple front-ends is handled conservatively.
4429
4430If the third field is present, it's an integer which if equal to 1
4431indicates that the type is "constant" (meaning
4432``pointsToConstantMemory`` should return true; see `other useful
4433AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4434
4435'``tbaa.struct``' Metadata
4436^^^^^^^^^^^^^^^^^^^^^^^^^^
4437
4438The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4439aggregate assignment operations in C and similar languages, however it
4440is defined to copy a contiguous region of memory, which is more than
4441strictly necessary for aggregate types which contain holes due to
4442padding. Also, it doesn't contain any TBAA information about the fields
4443of the aggregate.
4444
4445``!tbaa.struct`` metadata can describe which memory subregions in a
4446memcpy are padding and what the TBAA tags of the struct are.
4447
4448The current metadata format is very simple. ``!tbaa.struct`` metadata
4449nodes are a list of operands which are in conceptual groups of three.
4450For each group of three, the first operand gives the byte offset of a
4451field in bytes, the second gives its size in bytes, and the third gives
4452its tbaa tag. e.g.:
4453
4454.. code-block:: llvm
4455
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004456 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004457
4458This describes a struct with two fields. The first is at offset 0 bytes
4459with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4460and has size 4 bytes and has tbaa tag !2.
4461
4462Note that the fields need not be contiguous. In this example, there is a
44634 byte gap between the two fields. This gap represents padding which
4464does not carry useful data and need not be preserved.
4465
Hal Finkel94146652014-07-24 14:25:39 +00004466'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004468
4469``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4470noalias memory-access sets. This means that some collection of memory access
4471instructions (loads, stores, memory-accessing calls, etc.) that carry
4472``noalias`` metadata can specifically be specified not to alias with some other
4473collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004474Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004475a domain.
4476
4477When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004478of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004479subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004480instruction's ``noalias`` list, then the two memory accesses are assumed not to
4481alias.
Hal Finkel94146652014-07-24 14:25:39 +00004482
Adam Nemet569a5b32016-04-27 00:52:48 +00004483Because scopes in one domain don't affect scopes in other domains, separate
4484domains can be used to compose multiple independent noalias sets. This is
4485used for example during inlining. As the noalias function parameters are
4486turned into noalias scope metadata, a new domain is used every time the
4487function is inlined.
4488
Hal Finkel029cde62014-07-25 15:50:02 +00004489The metadata identifying each domain is itself a list containing one or two
4490entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004491string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004492self-reference can be used to create globally unique domain names. A
4493descriptive string may optionally be provided as a second list entry.
4494
4495The metadata identifying each scope is also itself a list containing two or
4496three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004497is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004498self-reference can be used to create globally unique scope names. A metadata
4499reference to the scope's domain is the second entry. A descriptive string may
4500optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004501
4502For example,
4503
4504.. code-block:: llvm
4505
Hal Finkel029cde62014-07-25 15:50:02 +00004506 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004507 !0 = !{!0}
4508 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004509
Hal Finkel029cde62014-07-25 15:50:02 +00004510 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004511 !2 = !{!2, !0}
4512 !3 = !{!3, !0}
4513 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004514
Hal Finkel029cde62014-07-25 15:50:02 +00004515 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004516 !5 = !{!4} ; A list containing only scope !4
4517 !6 = !{!4, !3, !2}
4518 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004519
4520 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004521 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004522 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004523
Hal Finkel029cde62014-07-25 15:50:02 +00004524 ; These two instructions also don't alias (for domain !1, the set of scopes
4525 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004526 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004527 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004528
Adam Nemet0a8416f2015-05-11 08:30:28 +00004529 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004530 ; the !noalias list is not a superset of, or equal to, the scopes in the
4531 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004532 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004533 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004534
Sean Silvab084af42012-12-07 10:36:55 +00004535'``fpmath``' Metadata
4536^^^^^^^^^^^^^^^^^^^^^
4537
4538``fpmath`` metadata may be attached to any instruction of floating point
4539type. It can be used to express the maximum acceptable error in the
4540result of that instruction, in ULPs, thus potentially allowing the
4541compiler to use a more efficient but less accurate method of computing
4542it. ULP is defined as follows:
4543
4544 If ``x`` is a real number that lies between two finite consecutive
4545 floating-point numbers ``a`` and ``b``, without being equal to one
4546 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4547 distance between the two non-equal finite floating-point numbers
4548 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4549
Matt Arsenault82f41512016-06-27 19:43:15 +00004550The metadata node shall consist of a single positive float type number
4551representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004552
4553.. code-block:: llvm
4554
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004555 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004556
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004557.. _range-metadata:
4558
Sean Silvab084af42012-12-07 10:36:55 +00004559'``range``' Metadata
4560^^^^^^^^^^^^^^^^^^^^
4561
Jingyue Wu37fcb592014-06-19 16:50:16 +00004562``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4563integer types. It expresses the possible ranges the loaded value or the value
4564returned by the called function at this call site is in. The ranges are
4565represented with a flattened list of integers. The loaded value or the value
4566returned is known to be in the union of the ranges defined by each consecutive
4567pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004568
4569- The type must match the type loaded by the instruction.
4570- The pair ``a,b`` represents the range ``[a,b)``.
4571- Both ``a`` and ``b`` are constants.
4572- The range is allowed to wrap.
4573- The range should not represent the full or empty set. That is,
4574 ``a!=b``.
4575
4576In addition, the pairs must be in signed order of the lower bound and
4577they must be non-contiguous.
4578
4579Examples:
4580
4581.. code-block:: llvm
4582
David Blaikiec7aabbb2015-03-04 22:06:14 +00004583 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4584 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004585 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4586 %d = invoke i8 @bar() to label %cont
4587 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004588 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004589 !0 = !{ i8 0, i8 2 }
4590 !1 = !{ i8 255, i8 2 }
4591 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4592 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004593
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004594'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004595^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004596
4597``unpredictable`` metadata may be attached to any branch or switch
4598instruction. It can be used to express the unpredictability of control
4599flow. Similar to the llvm.expect intrinsic, it may be used to alter
4600optimizations related to compare and branch instructions. The metadata
4601is treated as a boolean value; if it exists, it signals that the branch
4602or switch that it is attached to is completely unpredictable.
4603
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004604'``llvm.loop``'
4605^^^^^^^^^^^^^^^
4606
4607It is sometimes useful to attach information to loop constructs. Currently,
4608loop metadata is implemented as metadata attached to the branch instruction
4609in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004610guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004611specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004612
4613The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004614itself to avoid merging it with any other identifier metadata, e.g.,
4615during module linkage or function inlining. That is, each loop should refer
4616to their own identification metadata even if they reside in separate functions.
4617The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004618constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004619
4620.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004621
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004622 !0 = !{!0}
4623 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004624
Mark Heffernan893752a2014-07-18 19:24:51 +00004625The loop identifier metadata can be used to specify additional
4626per-loop metadata. Any operands after the first operand can be treated
4627as user-defined metadata. For example the ``llvm.loop.unroll.count``
4628suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004629
Paul Redmond5fdf8362013-05-28 20:00:34 +00004630.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004631
Paul Redmond5fdf8362013-05-28 20:00:34 +00004632 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4633 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004634 !0 = !{!0, !1}
4635 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004636
Mark Heffernan9d20e422014-07-21 23:11:03 +00004637'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004639
Mark Heffernan9d20e422014-07-21 23:11:03 +00004640Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4641used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004642vectorization width and interleave count. These metadata should be used in
4643conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004644``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4645optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004646it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004647which contains information about loop-carried memory dependencies can be helpful
4648in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004649
Mark Heffernan9d20e422014-07-21 23:11:03 +00004650'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4652
Mark Heffernan9d20e422014-07-21 23:11:03 +00004653This metadata suggests an interleave count to the loop interleaver.
4654The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004655second operand is an integer specifying the interleave count. For
4656example:
4657
4658.. code-block:: llvm
4659
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004660 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004661
Mark Heffernan9d20e422014-07-21 23:11:03 +00004662Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004663multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004664then the interleave count will be determined automatically.
4665
4666'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004667^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004668
4669This metadata selectively enables or disables vectorization for the loop. The
4670first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004671is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000046720 disables vectorization:
4673
4674.. code-block:: llvm
4675
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004676 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4677 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004678
4679'``llvm.loop.vectorize.width``' Metadata
4680^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4681
4682This metadata sets the target width of the vectorizer. The first
4683operand is the string ``llvm.loop.vectorize.width`` and the second
4684operand is an integer specifying the width. For example:
4685
4686.. code-block:: llvm
4687
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004688 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004689
4690Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004691vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000046920 or if the loop does not have this metadata the width will be
4693determined automatically.
4694
4695'``llvm.loop.unroll``'
4696^^^^^^^^^^^^^^^^^^^^^^
4697
4698Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4699optimization hints such as the unroll factor. ``llvm.loop.unroll``
4700metadata should be used in conjunction with ``llvm.loop`` loop
4701identification metadata. The ``llvm.loop.unroll`` metadata are only
4702optimization hints and the unrolling will only be performed if the
4703optimizer believes it is safe to do so.
4704
Mark Heffernan893752a2014-07-18 19:24:51 +00004705'``llvm.loop.unroll.count``' Metadata
4706^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4707
4708This metadata suggests an unroll factor to the loop unroller. The
4709first operand is the string ``llvm.loop.unroll.count`` and the second
4710operand is a positive integer specifying the unroll factor. For
4711example:
4712
4713.. code-block:: llvm
4714
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004715 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004716
4717If the trip count of the loop is less than the unroll count the loop
4718will be partially unrolled.
4719
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004720'``llvm.loop.unroll.disable``' Metadata
4721^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4722
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004723This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004724which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004725
4726.. code-block:: llvm
4727
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004728 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004729
Kevin Qin715b01e2015-03-09 06:14:18 +00004730'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004731^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004732
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004733This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004734operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004735
4736.. code-block:: llvm
4737
4738 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4739
Mark Heffernan89391542015-08-10 17:28:08 +00004740'``llvm.loop.unroll.enable``' Metadata
4741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4742
4743This metadata suggests that the loop should be fully unrolled if the trip count
4744is known at compile time and partially unrolled if the trip count is not known
4745at compile time. The metadata has a single operand which is the string
4746``llvm.loop.unroll.enable``. For example:
4747
4748.. code-block:: llvm
4749
4750 !0 = !{!"llvm.loop.unroll.enable"}
4751
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004752'``llvm.loop.unroll.full``' Metadata
4753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4754
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004755This metadata suggests that the loop should be unrolled fully. The
4756metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004757For example:
4758
4759.. code-block:: llvm
4760
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004761 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004762
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004763'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004764^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004765
4766This metadata indicates that the loop should not be versioned for the purpose
4767of enabling loop-invariant code motion (LICM). The metadata has a single operand
4768which is the string ``llvm.loop.licm_versioning.disable``. For example:
4769
4770.. code-block:: llvm
4771
4772 !0 = !{!"llvm.loop.licm_versioning.disable"}
4773
Adam Nemetd2fa4142016-04-27 05:28:18 +00004774'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004776
4777Loop distribution allows splitting a loop into multiple loops. Currently,
4778this is only performed if the entire loop cannot be vectorized due to unsafe
4779memory dependencies. The transformation will atempt to isolate the unsafe
4780dependencies into their own loop.
4781
4782This metadata can be used to selectively enable or disable distribution of the
4783loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4784second operand is a bit. If the bit operand value is 1 distribution is
4785enabled. A value of 0 disables distribution:
4786
4787.. code-block:: llvm
4788
4789 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4790 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4791
4792This metadata should be used in conjunction with ``llvm.loop`` loop
4793identification metadata.
4794
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004795'``llvm.mem``'
4796^^^^^^^^^^^^^^^
4797
4798Metadata types used to annotate memory accesses with information helpful
4799for optimizations are prefixed with ``llvm.mem``.
4800
4801'``llvm.mem.parallel_loop_access``' Metadata
4802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4803
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004804The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4805or metadata containing a list of loop identifiers for nested loops.
4806The metadata is attached to memory accessing instructions and denotes that
4807no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004808with the same loop identifier. The metadata on memory reads also implies that
4809if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004810
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004811Precisely, given two instructions ``m1`` and ``m2`` that both have the
4812``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4813set of loops associated with that metadata, respectively, then there is no loop
4814carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004815``L2``.
4816
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004817As a special case, if all memory accessing instructions in a loop have
4818``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4819loop has no loop carried memory dependences and is considered to be a parallel
4820loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004821
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004822Note that if not all memory access instructions have such metadata referring to
4823the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004824memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004825safe mechanism, this causes loops that were originally parallel to be considered
4826sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004827insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004828
4829Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004830both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004831metadata types that refer to the same loop identifier metadata.
4832
4833.. code-block:: llvm
4834
4835 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004836 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004837 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004838 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004839 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004840 ...
4841 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004842
4843 for.end:
4844 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004845 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004846
4847It is also possible to have nested parallel loops. In that case the
4848memory accesses refer to a list of loop identifier metadata nodes instead of
4849the loop identifier metadata node directly:
4850
4851.. code-block:: llvm
4852
4853 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004854 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004855 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004856 ...
4857 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004858
4859 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004860 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004861 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004862 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004863 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004864 ...
4865 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004866
4867 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004868 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004869 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004870 ...
4871 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004872
4873 outer.for.end: ; preds = %for.body
4874 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004875 !0 = !{!1, !2} ; a list of loop identifiers
4876 !1 = !{!1} ; an identifier for the inner loop
4877 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004878
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004879'``invariant.group``' Metadata
4880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4881
4882The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4883The existence of the ``invariant.group`` metadata on the instruction tells
4884the optimizer that every ``load`` and ``store`` to the same pointer operand
4885within the same invariant group can be assumed to load or store the same
4886value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4887when two pointers are considered the same).
4888
4889Examples:
4890
4891.. code-block:: llvm
4892
4893 @unknownPtr = external global i8
4894 ...
4895 %ptr = alloca i8
4896 store i8 42, i8* %ptr, !invariant.group !0
4897 call void @foo(i8* %ptr)
4898
4899 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4900 call void @foo(i8* %ptr)
4901 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4902
4903 %newPtr = call i8* @getPointer(i8* %ptr)
4904 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4905
4906 %unknownValue = load i8, i8* @unknownPtr
4907 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4908
4909 call void @foo(i8* %ptr)
4910 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4911 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4912
4913 ...
4914 declare void @foo(i8*)
4915 declare i8* @getPointer(i8*)
4916 declare i8* @llvm.invariant.group.barrier(i8*)
4917
4918 !0 = !{!"magic ptr"}
4919 !1 = !{!"other ptr"}
4920
Peter Collingbournea333db82016-07-26 22:31:30 +00004921'``type``' Metadata
4922^^^^^^^^^^^^^^^^^^^
4923
4924See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004925
4926
Sean Silvab084af42012-12-07 10:36:55 +00004927Module Flags Metadata
4928=====================
4929
4930Information about the module as a whole is difficult to convey to LLVM's
4931subsystems. The LLVM IR isn't sufficient to transmit this information.
4932The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004933this. These flags are in the form of key / value pairs --- much like a
4934dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004935look it up.
4936
4937The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4938Each triplet has the following form:
4939
4940- The first element is a *behavior* flag, which specifies the behavior
4941 when two (or more) modules are merged together, and it encounters two
4942 (or more) metadata with the same ID. The supported behaviors are
4943 described below.
4944- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004945 metadata. Each module may only have one flag entry for each unique ID (not
4946 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004947- The third element is the value of the flag.
4948
4949When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004950``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4951each unique metadata ID string, there will be exactly one entry in the merged
4952modules ``llvm.module.flags`` metadata table, and the value for that entry will
4953be determined by the merge behavior flag, as described below. The only exception
4954is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004955
4956The following behaviors are supported:
4957
4958.. list-table::
4959 :header-rows: 1
4960 :widths: 10 90
4961
4962 * - Value
4963 - Behavior
4964
4965 * - 1
4966 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004967 Emits an error if two values disagree, otherwise the resulting value
4968 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004969
4970 * - 2
4971 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004972 Emits a warning if two values disagree. The result value will be the
4973 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004974
4975 * - 3
4976 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004977 Adds a requirement that another module flag be present and have a
4978 specified value after linking is performed. The value must be a
4979 metadata pair, where the first element of the pair is the ID of the
4980 module flag to be restricted, and the second element of the pair is
4981 the value the module flag should be restricted to. This behavior can
4982 be used to restrict the allowable results (via triggering of an
4983 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004984
4985 * - 4
4986 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004987 Uses the specified value, regardless of the behavior or value of the
4988 other module. If both modules specify **Override**, but the values
4989 differ, an error will be emitted.
4990
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004991 * - 5
4992 - **Append**
4993 Appends the two values, which are required to be metadata nodes.
4994
4995 * - 6
4996 - **AppendUnique**
4997 Appends the two values, which are required to be metadata
4998 nodes. However, duplicate entries in the second list are dropped
4999 during the append operation.
5000
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005001It is an error for a particular unique flag ID to have multiple behaviors,
5002except in the case of **Require** (which adds restrictions on another metadata
5003value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005004
5005An example of module flags:
5006
5007.. code-block:: llvm
5008
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005009 !0 = !{ i32 1, !"foo", i32 1 }
5010 !1 = !{ i32 4, !"bar", i32 37 }
5011 !2 = !{ i32 2, !"qux", i32 42 }
5012 !3 = !{ i32 3, !"qux",
5013 !{
5014 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005015 }
5016 }
5017 !llvm.module.flags = !{ !0, !1, !2, !3 }
5018
5019- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5020 if two or more ``!"foo"`` flags are seen is to emit an error if their
5021 values are not equal.
5022
5023- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5024 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005025 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005026
5027- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5028 behavior if two or more ``!"qux"`` flags are seen is to emit a
5029 warning if their values are not equal.
5030
5031- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5032
5033 ::
5034
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005035 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005036
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005037 The behavior is to emit an error if the ``llvm.module.flags`` does not
5038 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5039 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005040
5041Objective-C Garbage Collection Module Flags Metadata
5042----------------------------------------------------
5043
5044On the Mach-O platform, Objective-C stores metadata about garbage
5045collection in a special section called "image info". The metadata
5046consists of a version number and a bitmask specifying what types of
5047garbage collection are supported (if any) by the file. If two or more
5048modules are linked together their garbage collection metadata needs to
5049be merged rather than appended together.
5050
5051The Objective-C garbage collection module flags metadata consists of the
5052following key-value pairs:
5053
5054.. list-table::
5055 :header-rows: 1
5056 :widths: 30 70
5057
5058 * - Key
5059 - Value
5060
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005061 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005062 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005063
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005064 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005065 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005066 always 0.
5067
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005068 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005069 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005070 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5071 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5072 Objective-C ABI version 2.
5073
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005074 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005075 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005076 not. Valid values are 0, for no garbage collection, and 2, for garbage
5077 collection supported.
5078
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005079 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005080 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005081 If present, its value must be 6. This flag requires that the
5082 ``Objective-C Garbage Collection`` flag have the value 2.
5083
5084Some important flag interactions:
5085
5086- If a module with ``Objective-C Garbage Collection`` set to 0 is
5087 merged with a module with ``Objective-C Garbage Collection`` set to
5088 2, then the resulting module has the
5089 ``Objective-C Garbage Collection`` flag set to 0.
5090- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5091 merged with a module with ``Objective-C GC Only`` set to 6.
5092
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005093Automatic Linker Flags Module Flags Metadata
5094--------------------------------------------
5095
5096Some targets support embedding flags to the linker inside individual object
5097files. Typically this is used in conjunction with language extensions which
5098allow source files to explicitly declare the libraries they depend on, and have
5099these automatically be transmitted to the linker via object files.
5100
5101These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005102using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005103to be ``AppendUnique``, and the value for the key is expected to be a metadata
5104node which should be a list of other metadata nodes, each of which should be a
5105list of metadata strings defining linker options.
5106
5107For example, the following metadata section specifies two separate sets of
5108linker options, presumably to link against ``libz`` and the ``Cocoa``
5109framework::
5110
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005111 !0 = !{ i32 6, !"Linker Options",
5112 !{
5113 !{ !"-lz" },
5114 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005115 !llvm.module.flags = !{ !0 }
5116
5117The metadata encoding as lists of lists of options, as opposed to a collapsed
5118list of options, is chosen so that the IR encoding can use multiple option
5119strings to specify e.g., a single library, while still having that specifier be
5120preserved as an atomic element that can be recognized by a target specific
5121assembly writer or object file emitter.
5122
5123Each individual option is required to be either a valid option for the target's
5124linker, or an option that is reserved by the target specific assembly writer or
5125object file emitter. No other aspect of these options is defined by the IR.
5126
Oliver Stannard5dc29342014-06-20 10:08:11 +00005127C type width Module Flags Metadata
5128----------------------------------
5129
5130The ARM backend emits a section into each generated object file describing the
5131options that it was compiled with (in a compiler-independent way) to prevent
5132linking incompatible objects, and to allow automatic library selection. Some
5133of these options are not visible at the IR level, namely wchar_t width and enum
5134width.
5135
5136To pass this information to the backend, these options are encoded in module
5137flags metadata, using the following key-value pairs:
5138
5139.. list-table::
5140 :header-rows: 1
5141 :widths: 30 70
5142
5143 * - Key
5144 - Value
5145
5146 * - short_wchar
5147 - * 0 --- sizeof(wchar_t) == 4
5148 * 1 --- sizeof(wchar_t) == 2
5149
5150 * - short_enum
5151 - * 0 --- Enums are at least as large as an ``int``.
5152 * 1 --- Enums are stored in the smallest integer type which can
5153 represent all of its values.
5154
5155For example, the following metadata section specifies that the module was
5156compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5157enum is the smallest type which can represent all of its values::
5158
5159 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005160 !0 = !{i32 1, !"short_wchar", i32 1}
5161 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005162
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005163.. _intrinsicglobalvariables:
5164
Sean Silvab084af42012-12-07 10:36:55 +00005165Intrinsic Global Variables
5166==========================
5167
5168LLVM has a number of "magic" global variables that contain data that
5169affect code generation or other IR semantics. These are documented here.
5170All globals of this sort should have a section specified as
5171"``llvm.metadata``". This section and all globals that start with
5172"``llvm.``" are reserved for use by LLVM.
5173
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005174.. _gv_llvmused:
5175
Sean Silvab084af42012-12-07 10:36:55 +00005176The '``llvm.used``' Global Variable
5177-----------------------------------
5178
Rafael Espindola74f2e462013-04-22 14:58:02 +00005179The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005180:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005181pointers to named global variables, functions and aliases which may optionally
5182have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005183use of it is:
5184
5185.. code-block:: llvm
5186
5187 @X = global i8 4
5188 @Y = global i32 123
5189
5190 @llvm.used = appending global [2 x i8*] [
5191 i8* @X,
5192 i8* bitcast (i32* @Y to i8*)
5193 ], section "llvm.metadata"
5194
Rafael Espindola74f2e462013-04-22 14:58:02 +00005195If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5196and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005197symbol that it cannot see (which is why they have to be named). For example, if
5198a variable has internal linkage and no references other than that from the
5199``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5200references from inline asms and other things the compiler cannot "see", and
5201corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005202
5203On some targets, the code generator must emit a directive to the
5204assembler or object file to prevent the assembler and linker from
5205molesting the symbol.
5206
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005207.. _gv_llvmcompilerused:
5208
Sean Silvab084af42012-12-07 10:36:55 +00005209The '``llvm.compiler.used``' Global Variable
5210--------------------------------------------
5211
5212The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5213directive, except that it only prevents the compiler from touching the
5214symbol. On targets that support it, this allows an intelligent linker to
5215optimize references to the symbol without being impeded as it would be
5216by ``@llvm.used``.
5217
5218This is a rare construct that should only be used in rare circumstances,
5219and should not be exposed to source languages.
5220
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005221.. _gv_llvmglobalctors:
5222
Sean Silvab084af42012-12-07 10:36:55 +00005223The '``llvm.global_ctors``' Global Variable
5224-------------------------------------------
5225
5226.. code-block:: llvm
5227
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005228 %0 = type { i32, void ()*, i8* }
5229 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005230
5231The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005232functions, priorities, and an optional associated global or function.
5233The functions referenced by this array will be called in ascending order
5234of priority (i.e. lowest first) when the module is loaded. The order of
5235functions with the same priority is not defined.
5236
5237If the third field is present, non-null, and points to a global variable
5238or function, the initializer function will only run if the associated
5239data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005240
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005241.. _llvmglobaldtors:
5242
Sean Silvab084af42012-12-07 10:36:55 +00005243The '``llvm.global_dtors``' Global Variable
5244-------------------------------------------
5245
5246.. code-block:: llvm
5247
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005248 %0 = type { i32, void ()*, i8* }
5249 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005250
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005251The ``@llvm.global_dtors`` array contains a list of destructor
5252functions, priorities, and an optional associated global or function.
5253The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005254order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005255order of functions with the same priority is not defined.
5256
5257If the third field is present, non-null, and points to a global variable
5258or function, the destructor function will only run if the associated
5259data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005260
5261Instruction Reference
5262=====================
5263
5264The LLVM instruction set consists of several different classifications
5265of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5266instructions <binaryops>`, :ref:`bitwise binary
5267instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5268:ref:`other instructions <otherops>`.
5269
5270.. _terminators:
5271
5272Terminator Instructions
5273-----------------------
5274
5275As mentioned :ref:`previously <functionstructure>`, every basic block in a
5276program ends with a "Terminator" instruction, which indicates which
5277block should be executed after the current block is finished. These
5278terminator instructions typically yield a '``void``' value: they produce
5279control flow, not values (the one exception being the
5280':ref:`invoke <i_invoke>`' instruction).
5281
5282The terminator instructions are: ':ref:`ret <i_ret>`',
5283':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5284':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005285':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005286':ref:`catchret <i_catchret>`',
5287':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005288and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005289
5290.. _i_ret:
5291
5292'``ret``' Instruction
5293^^^^^^^^^^^^^^^^^^^^^
5294
5295Syntax:
5296"""""""
5297
5298::
5299
5300 ret <type> <value> ; Return a value from a non-void function
5301 ret void ; Return from void function
5302
5303Overview:
5304"""""""""
5305
5306The '``ret``' instruction is used to return control flow (and optionally
5307a value) from a function back to the caller.
5308
5309There are two forms of the '``ret``' instruction: one that returns a
5310value and then causes control flow, and one that just causes control
5311flow to occur.
5312
5313Arguments:
5314""""""""""
5315
5316The '``ret``' instruction optionally accepts a single argument, the
5317return value. The type of the return value must be a ':ref:`first
5318class <t_firstclass>`' type.
5319
5320A function is not :ref:`well formed <wellformed>` if it it has a non-void
5321return type and contains a '``ret``' instruction with no return value or
5322a return value with a type that does not match its type, or if it has a
5323void return type and contains a '``ret``' instruction with a return
5324value.
5325
5326Semantics:
5327""""""""""
5328
5329When the '``ret``' instruction is executed, control flow returns back to
5330the calling function's context. If the caller is a
5331":ref:`call <i_call>`" instruction, execution continues at the
5332instruction after the call. If the caller was an
5333":ref:`invoke <i_invoke>`" instruction, execution continues at the
5334beginning of the "normal" destination block. If the instruction returns
5335a value, that value shall set the call or invoke instruction's return
5336value.
5337
5338Example:
5339""""""""
5340
5341.. code-block:: llvm
5342
5343 ret i32 5 ; Return an integer value of 5
5344 ret void ; Return from a void function
5345 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5346
5347.. _i_br:
5348
5349'``br``' Instruction
5350^^^^^^^^^^^^^^^^^^^^
5351
5352Syntax:
5353"""""""
5354
5355::
5356
5357 br i1 <cond>, label <iftrue>, label <iffalse>
5358 br label <dest> ; Unconditional branch
5359
5360Overview:
5361"""""""""
5362
5363The '``br``' instruction is used to cause control flow to transfer to a
5364different basic block in the current function. There are two forms of
5365this instruction, corresponding to a conditional branch and an
5366unconditional branch.
5367
5368Arguments:
5369""""""""""
5370
5371The conditional branch form of the '``br``' instruction takes a single
5372'``i1``' value and two '``label``' values. The unconditional form of the
5373'``br``' instruction takes a single '``label``' value as a target.
5374
5375Semantics:
5376""""""""""
5377
5378Upon execution of a conditional '``br``' instruction, the '``i1``'
5379argument is evaluated. If the value is ``true``, control flows to the
5380'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5381to the '``iffalse``' ``label`` argument.
5382
5383Example:
5384""""""""
5385
5386.. code-block:: llvm
5387
5388 Test:
5389 %cond = icmp eq i32 %a, %b
5390 br i1 %cond, label %IfEqual, label %IfUnequal
5391 IfEqual:
5392 ret i32 1
5393 IfUnequal:
5394 ret i32 0
5395
5396.. _i_switch:
5397
5398'``switch``' Instruction
5399^^^^^^^^^^^^^^^^^^^^^^^^
5400
5401Syntax:
5402"""""""
5403
5404::
5405
5406 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5407
5408Overview:
5409"""""""""
5410
5411The '``switch``' instruction is used to transfer control flow to one of
5412several different places. It is a generalization of the '``br``'
5413instruction, allowing a branch to occur to one of many possible
5414destinations.
5415
5416Arguments:
5417""""""""""
5418
5419The '``switch``' instruction uses three parameters: an integer
5420comparison value '``value``', a default '``label``' destination, and an
5421array of pairs of comparison value constants and '``label``'s. The table
5422is not allowed to contain duplicate constant entries.
5423
5424Semantics:
5425""""""""""
5426
5427The ``switch`` instruction specifies a table of values and destinations.
5428When the '``switch``' instruction is executed, this table is searched
5429for the given value. If the value is found, control flow is transferred
5430to the corresponding destination; otherwise, control flow is transferred
5431to the default destination.
5432
5433Implementation:
5434"""""""""""""""
5435
5436Depending on properties of the target machine and the particular
5437``switch`` instruction, this instruction may be code generated in
5438different ways. For example, it could be generated as a series of
5439chained conditional branches or with a lookup table.
5440
5441Example:
5442""""""""
5443
5444.. code-block:: llvm
5445
5446 ; Emulate a conditional br instruction
5447 %Val = zext i1 %value to i32
5448 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5449
5450 ; Emulate an unconditional br instruction
5451 switch i32 0, label %dest [ ]
5452
5453 ; Implement a jump table:
5454 switch i32 %val, label %otherwise [ i32 0, label %onzero
5455 i32 1, label %onone
5456 i32 2, label %ontwo ]
5457
5458.. _i_indirectbr:
5459
5460'``indirectbr``' Instruction
5461^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5462
5463Syntax:
5464"""""""
5465
5466::
5467
5468 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5469
5470Overview:
5471"""""""""
5472
5473The '``indirectbr``' instruction implements an indirect branch to a
5474label within the current function, whose address is specified by
5475"``address``". Address must be derived from a
5476:ref:`blockaddress <blockaddress>` constant.
5477
5478Arguments:
5479""""""""""
5480
5481The '``address``' argument is the address of the label to jump to. The
5482rest of the arguments indicate the full set of possible destinations
5483that the address may point to. Blocks are allowed to occur multiple
5484times in the destination list, though this isn't particularly useful.
5485
5486This destination list is required so that dataflow analysis has an
5487accurate understanding of the CFG.
5488
5489Semantics:
5490""""""""""
5491
5492Control transfers to the block specified in the address argument. All
5493possible destination blocks must be listed in the label list, otherwise
5494this instruction has undefined behavior. This implies that jumps to
5495labels defined in other functions have undefined behavior as well.
5496
5497Implementation:
5498"""""""""""""""
5499
5500This is typically implemented with a jump through a register.
5501
5502Example:
5503""""""""
5504
5505.. code-block:: llvm
5506
5507 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5508
5509.. _i_invoke:
5510
5511'``invoke``' Instruction
5512^^^^^^^^^^^^^^^^^^^^^^^^
5513
5514Syntax:
5515"""""""
5516
5517::
5518
David Blaikieb83cf102016-07-13 17:21:34 +00005519 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005520 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005521
5522Overview:
5523"""""""""
5524
5525The '``invoke``' instruction causes control to transfer to a specified
5526function, with the possibility of control flow transfer to either the
5527'``normal``' label or the '``exception``' label. If the callee function
5528returns with the "``ret``" instruction, control flow will return to the
5529"normal" label. If the callee (or any indirect callees) returns via the
5530":ref:`resume <i_resume>`" instruction or other exception handling
5531mechanism, control is interrupted and continued at the dynamically
5532nearest "exception" label.
5533
5534The '``exception``' label is a `landing
5535pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5536'``exception``' label is required to have the
5537":ref:`landingpad <i_landingpad>`" instruction, which contains the
5538information about the behavior of the program after unwinding happens,
5539as its first non-PHI instruction. The restrictions on the
5540"``landingpad``" instruction's tightly couples it to the "``invoke``"
5541instruction, so that the important information contained within the
5542"``landingpad``" instruction can't be lost through normal code motion.
5543
5544Arguments:
5545""""""""""
5546
5547This instruction requires several arguments:
5548
5549#. The optional "cconv" marker indicates which :ref:`calling
5550 convention <callingconv>` the call should use. If none is
5551 specified, the call defaults to using C calling conventions.
5552#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5553 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5554 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005555#. '``ty``': the type of the call instruction itself which is also the
5556 type of the return value. Functions that return no value are marked
5557 ``void``.
5558#. '``fnty``': shall be the signature of the function being invoked. The
5559 argument types must match the types implied by this signature. This
5560 type can be omitted if the function is not varargs.
5561#. '``fnptrval``': An LLVM value containing a pointer to a function to
5562 be invoked. In most cases, this is a direct function invocation, but
5563 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5564 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005565#. '``function args``': argument list whose types match the function
5566 signature argument types and parameter attributes. All arguments must
5567 be of :ref:`first class <t_firstclass>` type. If the function signature
5568 indicates the function accepts a variable number of arguments, the
5569 extra arguments can be specified.
5570#. '``normal label``': the label reached when the called function
5571 executes a '``ret``' instruction.
5572#. '``exception label``': the label reached when a callee returns via
5573 the :ref:`resume <i_resume>` instruction or other exception handling
5574 mechanism.
5575#. The optional :ref:`function attributes <fnattrs>` list. Only
5576 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5577 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005578#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005579
5580Semantics:
5581""""""""""
5582
5583This instruction is designed to operate as a standard '``call``'
5584instruction in most regards. The primary difference is that it
5585establishes an association with a label, which is used by the runtime
5586library to unwind the stack.
5587
5588This instruction is used in languages with destructors to ensure that
5589proper cleanup is performed in the case of either a ``longjmp`` or a
5590thrown exception. Additionally, this is important for implementation of
5591'``catch``' clauses in high-level languages that support them.
5592
5593For the purposes of the SSA form, the definition of the value returned
5594by the '``invoke``' instruction is deemed to occur on the edge from the
5595current block to the "normal" label. If the callee unwinds then no
5596return value is available.
5597
5598Example:
5599""""""""
5600
5601.. code-block:: llvm
5602
5603 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005604 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005605 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005606 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005607
5608.. _i_resume:
5609
5610'``resume``' Instruction
5611^^^^^^^^^^^^^^^^^^^^^^^^
5612
5613Syntax:
5614"""""""
5615
5616::
5617
5618 resume <type> <value>
5619
5620Overview:
5621"""""""""
5622
5623The '``resume``' instruction is a terminator instruction that has no
5624successors.
5625
5626Arguments:
5627""""""""""
5628
5629The '``resume``' instruction requires one argument, which must have the
5630same type as the result of any '``landingpad``' instruction in the same
5631function.
5632
5633Semantics:
5634""""""""""
5635
5636The '``resume``' instruction resumes propagation of an existing
5637(in-flight) exception whose unwinding was interrupted with a
5638:ref:`landingpad <i_landingpad>` instruction.
5639
5640Example:
5641""""""""
5642
5643.. code-block:: llvm
5644
5645 resume { i8*, i32 } %exn
5646
David Majnemer8a1c45d2015-12-12 05:38:55 +00005647.. _i_catchswitch:
5648
5649'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005650^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005651
5652Syntax:
5653"""""""
5654
5655::
5656
5657 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5658 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5659
5660Overview:
5661"""""""""
5662
5663The '``catchswitch``' instruction is used by `LLVM's exception handling system
5664<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5665that may be executed by the :ref:`EH personality routine <personalityfn>`.
5666
5667Arguments:
5668""""""""""
5669
5670The ``parent`` argument is the token of the funclet that contains the
5671``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5672this operand may be the token ``none``.
5673
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005674The ``default`` argument is the label of another basic block beginning with
5675either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5676must be a legal target with respect to the ``parent`` links, as described in
5677the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005678
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005679The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005680:ref:`catchpad <i_catchpad>` instruction.
5681
5682Semantics:
5683""""""""""
5684
5685Executing this instruction transfers control to one of the successors in
5686``handlers``, if appropriate, or continues to unwind via the unwind label if
5687present.
5688
5689The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5690it must be both the first non-phi instruction and last instruction in the basic
5691block. Therefore, it must be the only non-phi instruction in the block.
5692
5693Example:
5694""""""""
5695
Renato Golin124f2592016-07-20 12:16:38 +00005696.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005697
5698 dispatch1:
5699 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5700 dispatch2:
5701 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5702
David Majnemer654e1302015-07-31 17:58:14 +00005703.. _i_catchret:
5704
5705'``catchret``' Instruction
5706^^^^^^^^^^^^^^^^^^^^^^^^^^
5707
5708Syntax:
5709"""""""
5710
5711::
5712
David Majnemer8a1c45d2015-12-12 05:38:55 +00005713 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005714
5715Overview:
5716"""""""""
5717
5718The '``catchret``' instruction is a terminator instruction that has a
5719single successor.
5720
5721
5722Arguments:
5723""""""""""
5724
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005725The first argument to a '``catchret``' indicates which ``catchpad`` it
5726exits. It must be a :ref:`catchpad <i_catchpad>`.
5727The second argument to a '``catchret``' specifies where control will
5728transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005729
5730Semantics:
5731""""""""""
5732
David Majnemer8a1c45d2015-12-12 05:38:55 +00005733The '``catchret``' instruction ends an existing (in-flight) exception whose
5734unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5735:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5736code to, for example, destroy the active exception. Control then transfers to
5737``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005738
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005739The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5740If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5741funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5742the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005743
5744Example:
5745""""""""
5746
Renato Golin124f2592016-07-20 12:16:38 +00005747.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005748
David Majnemer8a1c45d2015-12-12 05:38:55 +00005749 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005750
David Majnemer654e1302015-07-31 17:58:14 +00005751.. _i_cleanupret:
5752
5753'``cleanupret``' Instruction
5754^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5755
5756Syntax:
5757"""""""
5758
5759::
5760
David Majnemer8a1c45d2015-12-12 05:38:55 +00005761 cleanupret from <value> unwind label <continue>
5762 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005763
5764Overview:
5765"""""""""
5766
5767The '``cleanupret``' instruction is a terminator instruction that has
5768an optional successor.
5769
5770
5771Arguments:
5772""""""""""
5773
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005774The '``cleanupret``' instruction requires one argument, which indicates
5775which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005776If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5777funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5778the ``cleanupret``'s behavior is undefined.
5779
5780The '``cleanupret``' instruction also has an optional successor, ``continue``,
5781which must be the label of another basic block beginning with either a
5782``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5783be a legal target with respect to the ``parent`` links, as described in the
5784`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005785
5786Semantics:
5787""""""""""
5788
5789The '``cleanupret``' instruction indicates to the
5790:ref:`personality function <personalityfn>` that one
5791:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5792It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005793
David Majnemer654e1302015-07-31 17:58:14 +00005794Example:
5795""""""""
5796
Renato Golin124f2592016-07-20 12:16:38 +00005797.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005798
David Majnemer8a1c45d2015-12-12 05:38:55 +00005799 cleanupret from %cleanup unwind to caller
5800 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005801
Sean Silvab084af42012-12-07 10:36:55 +00005802.. _i_unreachable:
5803
5804'``unreachable``' Instruction
5805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5806
5807Syntax:
5808"""""""
5809
5810::
5811
5812 unreachable
5813
5814Overview:
5815"""""""""
5816
5817The '``unreachable``' instruction has no defined semantics. This
5818instruction is used to inform the optimizer that a particular portion of
5819the code is not reachable. This can be used to indicate that the code
5820after a no-return function cannot be reached, and other facts.
5821
5822Semantics:
5823""""""""""
5824
5825The '``unreachable``' instruction has no defined semantics.
5826
5827.. _binaryops:
5828
5829Binary Operations
5830-----------------
5831
5832Binary operators are used to do most of the computation in a program.
5833They require two operands of the same type, execute an operation on
5834them, and produce a single value. The operands might represent multiple
5835data, as is the case with the :ref:`vector <t_vector>` data type. The
5836result value has the same type as its operands.
5837
5838There are several different binary operators:
5839
5840.. _i_add:
5841
5842'``add``' Instruction
5843^^^^^^^^^^^^^^^^^^^^^
5844
5845Syntax:
5846"""""""
5847
5848::
5849
Tim Northover675a0962014-06-13 14:24:23 +00005850 <result> = add <ty> <op1>, <op2> ; yields ty:result
5851 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5852 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5853 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005854
5855Overview:
5856"""""""""
5857
5858The '``add``' instruction returns the sum of its two operands.
5859
5860Arguments:
5861""""""""""
5862
5863The two arguments to the '``add``' instruction must be
5864:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5865arguments must have identical types.
5866
5867Semantics:
5868""""""""""
5869
5870The value produced is the integer sum of the two operands.
5871
5872If the sum has unsigned overflow, the result returned is the
5873mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5874the result.
5875
5876Because LLVM integers use a two's complement representation, this
5877instruction is appropriate for both signed and unsigned integers.
5878
5879``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5880respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5881result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5882unsigned and/or signed overflow, respectively, occurs.
5883
5884Example:
5885""""""""
5886
Renato Golin124f2592016-07-20 12:16:38 +00005887.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005888
Tim Northover675a0962014-06-13 14:24:23 +00005889 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005890
5891.. _i_fadd:
5892
5893'``fadd``' Instruction
5894^^^^^^^^^^^^^^^^^^^^^^
5895
5896Syntax:
5897"""""""
5898
5899::
5900
Tim Northover675a0962014-06-13 14:24:23 +00005901 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005902
5903Overview:
5904"""""""""
5905
5906The '``fadd``' instruction returns the sum of its two operands.
5907
5908Arguments:
5909""""""""""
5910
5911The two arguments to the '``fadd``' instruction must be :ref:`floating
5912point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5913Both arguments must have identical types.
5914
5915Semantics:
5916""""""""""
5917
5918The value produced is the floating point sum of the two operands. This
5919instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5920which are optimization hints to enable otherwise unsafe floating point
5921optimizations:
5922
5923Example:
5924""""""""
5925
Renato Golin124f2592016-07-20 12:16:38 +00005926.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005927
Tim Northover675a0962014-06-13 14:24:23 +00005928 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005929
5930'``sub``' Instruction
5931^^^^^^^^^^^^^^^^^^^^^
5932
5933Syntax:
5934"""""""
5935
5936::
5937
Tim Northover675a0962014-06-13 14:24:23 +00005938 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5939 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5940 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5941 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005942
5943Overview:
5944"""""""""
5945
5946The '``sub``' instruction returns the difference of its two operands.
5947
5948Note that the '``sub``' instruction is used to represent the '``neg``'
5949instruction present in most other intermediate representations.
5950
5951Arguments:
5952""""""""""
5953
5954The two arguments to the '``sub``' instruction must be
5955:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5956arguments must have identical types.
5957
5958Semantics:
5959""""""""""
5960
5961The value produced is the integer difference of the two operands.
5962
5963If the difference has unsigned overflow, the result returned is the
5964mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5965the result.
5966
5967Because LLVM integers use a two's complement representation, this
5968instruction is appropriate for both signed and unsigned integers.
5969
5970``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5971respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5972result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5973unsigned and/or signed overflow, respectively, occurs.
5974
5975Example:
5976""""""""
5977
Renato Golin124f2592016-07-20 12:16:38 +00005978.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005979
Tim Northover675a0962014-06-13 14:24:23 +00005980 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5981 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005982
5983.. _i_fsub:
5984
5985'``fsub``' Instruction
5986^^^^^^^^^^^^^^^^^^^^^^
5987
5988Syntax:
5989"""""""
5990
5991::
5992
Tim Northover675a0962014-06-13 14:24:23 +00005993 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005994
5995Overview:
5996"""""""""
5997
5998The '``fsub``' instruction returns the difference of its two operands.
5999
6000Note that the '``fsub``' instruction is used to represent the '``fneg``'
6001instruction present in most other intermediate representations.
6002
6003Arguments:
6004""""""""""
6005
6006The two arguments to the '``fsub``' instruction must be :ref:`floating
6007point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6008Both arguments must have identical types.
6009
6010Semantics:
6011""""""""""
6012
6013The value produced is the floating point difference of the two operands.
6014This instruction can also take any number of :ref:`fast-math
6015flags <fastmath>`, which are optimization hints to enable otherwise
6016unsafe floating point optimizations:
6017
6018Example:
6019""""""""
6020
Renato Golin124f2592016-07-20 12:16:38 +00006021.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006022
Tim Northover675a0962014-06-13 14:24:23 +00006023 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6024 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006025
6026'``mul``' Instruction
6027^^^^^^^^^^^^^^^^^^^^^
6028
6029Syntax:
6030"""""""
6031
6032::
6033
Tim Northover675a0962014-06-13 14:24:23 +00006034 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6035 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6036 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6037 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006038
6039Overview:
6040"""""""""
6041
6042The '``mul``' instruction returns the product of its two operands.
6043
6044Arguments:
6045""""""""""
6046
6047The two arguments to the '``mul``' instruction must be
6048:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6049arguments must have identical types.
6050
6051Semantics:
6052""""""""""
6053
6054The value produced is the integer product of the two operands.
6055
6056If the result of the multiplication has unsigned overflow, the result
6057returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6058bit width of the result.
6059
6060Because LLVM integers use a two's complement representation, and the
6061result is the same width as the operands, this instruction returns the
6062correct result for both signed and unsigned integers. If a full product
6063(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6064sign-extended or zero-extended as appropriate to the width of the full
6065product.
6066
6067``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6068respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6069result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6070unsigned and/or signed overflow, respectively, occurs.
6071
6072Example:
6073""""""""
6074
Renato Golin124f2592016-07-20 12:16:38 +00006075.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006076
Tim Northover675a0962014-06-13 14:24:23 +00006077 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006078
6079.. _i_fmul:
6080
6081'``fmul``' Instruction
6082^^^^^^^^^^^^^^^^^^^^^^
6083
6084Syntax:
6085"""""""
6086
6087::
6088
Tim Northover675a0962014-06-13 14:24:23 +00006089 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006090
6091Overview:
6092"""""""""
6093
6094The '``fmul``' instruction returns the product of its two operands.
6095
6096Arguments:
6097""""""""""
6098
6099The two arguments to the '``fmul``' instruction must be :ref:`floating
6100point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6101Both arguments must have identical types.
6102
6103Semantics:
6104""""""""""
6105
6106The value produced is the floating point product of the two operands.
6107This instruction can also take any number of :ref:`fast-math
6108flags <fastmath>`, which are optimization hints to enable otherwise
6109unsafe floating point optimizations:
6110
6111Example:
6112""""""""
6113
Renato Golin124f2592016-07-20 12:16:38 +00006114.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006115
Tim Northover675a0962014-06-13 14:24:23 +00006116 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006117
6118'``udiv``' Instruction
6119^^^^^^^^^^^^^^^^^^^^^^
6120
6121Syntax:
6122"""""""
6123
6124::
6125
Tim Northover675a0962014-06-13 14:24:23 +00006126 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6127 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006128
6129Overview:
6130"""""""""
6131
6132The '``udiv``' instruction returns the quotient of its two operands.
6133
6134Arguments:
6135""""""""""
6136
6137The two arguments to the '``udiv``' instruction must be
6138:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6139arguments must have identical types.
6140
6141Semantics:
6142""""""""""
6143
6144The value produced is the unsigned integer quotient of the two operands.
6145
6146Note that unsigned integer division and signed integer division are
6147distinct operations; for signed integer division, use '``sdiv``'.
6148
6149Division by zero leads to undefined behavior.
6150
6151If the ``exact`` keyword is present, the result value of the ``udiv`` is
6152a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6153such, "((a udiv exact b) mul b) == a").
6154
6155Example:
6156""""""""
6157
Renato Golin124f2592016-07-20 12:16:38 +00006158.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006159
Tim Northover675a0962014-06-13 14:24:23 +00006160 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006161
6162'``sdiv``' Instruction
6163^^^^^^^^^^^^^^^^^^^^^^
6164
6165Syntax:
6166"""""""
6167
6168::
6169
Tim Northover675a0962014-06-13 14:24:23 +00006170 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6171 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006172
6173Overview:
6174"""""""""
6175
6176The '``sdiv``' instruction returns the quotient of its two operands.
6177
6178Arguments:
6179""""""""""
6180
6181The two arguments to the '``sdiv``' instruction must be
6182:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6183arguments must have identical types.
6184
6185Semantics:
6186""""""""""
6187
6188The value produced is the signed integer quotient of the two operands
6189rounded towards zero.
6190
6191Note that signed integer division and unsigned integer division are
6192distinct operations; for unsigned integer division, use '``udiv``'.
6193
6194Division by zero leads to undefined behavior. Overflow also leads to
6195undefined behavior; this is a rare case, but can occur, for example, by
6196doing a 32-bit division of -2147483648 by -1.
6197
6198If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6199a :ref:`poison value <poisonvalues>` if the result would be rounded.
6200
6201Example:
6202""""""""
6203
Renato Golin124f2592016-07-20 12:16:38 +00006204.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006205
Tim Northover675a0962014-06-13 14:24:23 +00006206 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006207
6208.. _i_fdiv:
6209
6210'``fdiv``' Instruction
6211^^^^^^^^^^^^^^^^^^^^^^
6212
6213Syntax:
6214"""""""
6215
6216::
6217
Tim Northover675a0962014-06-13 14:24:23 +00006218 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006219
6220Overview:
6221"""""""""
6222
6223The '``fdiv``' instruction returns the quotient of its two operands.
6224
6225Arguments:
6226""""""""""
6227
6228The two arguments to the '``fdiv``' instruction must be :ref:`floating
6229point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6230Both arguments must have identical types.
6231
6232Semantics:
6233""""""""""
6234
6235The value produced is the floating point quotient of the two operands.
6236This instruction can also take any number of :ref:`fast-math
6237flags <fastmath>`, which are optimization hints to enable otherwise
6238unsafe floating point optimizations:
6239
6240Example:
6241""""""""
6242
Renato Golin124f2592016-07-20 12:16:38 +00006243.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006244
Tim Northover675a0962014-06-13 14:24:23 +00006245 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006246
6247'``urem``' Instruction
6248^^^^^^^^^^^^^^^^^^^^^^
6249
6250Syntax:
6251"""""""
6252
6253::
6254
Tim Northover675a0962014-06-13 14:24:23 +00006255 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006256
6257Overview:
6258"""""""""
6259
6260The '``urem``' instruction returns the remainder from the unsigned
6261division of its two arguments.
6262
6263Arguments:
6264""""""""""
6265
6266The two arguments to the '``urem``' instruction must be
6267:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6268arguments must have identical types.
6269
6270Semantics:
6271""""""""""
6272
6273This instruction returns the unsigned integer *remainder* of a division.
6274This instruction always performs an unsigned division to get the
6275remainder.
6276
6277Note that unsigned integer remainder and signed integer remainder are
6278distinct operations; for signed integer remainder, use '``srem``'.
6279
6280Taking the remainder of a division by zero leads to undefined behavior.
6281
6282Example:
6283""""""""
6284
Renato Golin124f2592016-07-20 12:16:38 +00006285.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006286
Tim Northover675a0962014-06-13 14:24:23 +00006287 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006288
6289'``srem``' Instruction
6290^^^^^^^^^^^^^^^^^^^^^^
6291
6292Syntax:
6293"""""""
6294
6295::
6296
Tim Northover675a0962014-06-13 14:24:23 +00006297 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006298
6299Overview:
6300"""""""""
6301
6302The '``srem``' instruction returns the remainder from the signed
6303division of its two operands. This instruction can also take
6304:ref:`vector <t_vector>` versions of the values in which case the elements
6305must be integers.
6306
6307Arguments:
6308""""""""""
6309
6310The two arguments to the '``srem``' instruction must be
6311:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6312arguments must have identical types.
6313
6314Semantics:
6315""""""""""
6316
6317This instruction returns the *remainder* of a division (where the result
6318is either zero or has the same sign as the dividend, ``op1``), not the
6319*modulo* operator (where the result is either zero or has the same sign
6320as the divisor, ``op2``) of a value. For more information about the
6321difference, see `The Math
6322Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6323table of how this is implemented in various languages, please see
6324`Wikipedia: modulo
6325operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6326
6327Note that signed integer remainder and unsigned integer remainder are
6328distinct operations; for unsigned integer remainder, use '``urem``'.
6329
6330Taking the remainder of a division by zero leads to undefined behavior.
6331Overflow also leads to undefined behavior; this is a rare case, but can
6332occur, for example, by taking the remainder of a 32-bit division of
6333-2147483648 by -1. (The remainder doesn't actually overflow, but this
6334rule lets srem be implemented using instructions that return both the
6335result of the division and the remainder.)
6336
6337Example:
6338""""""""
6339
Renato Golin124f2592016-07-20 12:16:38 +00006340.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006341
Tim Northover675a0962014-06-13 14:24:23 +00006342 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006343
6344.. _i_frem:
6345
6346'``frem``' Instruction
6347^^^^^^^^^^^^^^^^^^^^^^
6348
6349Syntax:
6350"""""""
6351
6352::
6353
Tim Northover675a0962014-06-13 14:24:23 +00006354 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006355
6356Overview:
6357"""""""""
6358
6359The '``frem``' instruction returns the remainder from the division of
6360its two operands.
6361
6362Arguments:
6363""""""""""
6364
6365The two arguments to the '``frem``' instruction must be :ref:`floating
6366point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6367Both arguments must have identical types.
6368
6369Semantics:
6370""""""""""
6371
6372This instruction returns the *remainder* of a division. The remainder
6373has the same sign as the dividend. This instruction can also take any
6374number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6375to enable otherwise unsafe floating point optimizations:
6376
6377Example:
6378""""""""
6379
Renato Golin124f2592016-07-20 12:16:38 +00006380.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006381
Tim Northover675a0962014-06-13 14:24:23 +00006382 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006383
6384.. _bitwiseops:
6385
6386Bitwise Binary Operations
6387-------------------------
6388
6389Bitwise binary operators are used to do various forms of bit-twiddling
6390in a program. They are generally very efficient instructions and can
6391commonly be strength reduced from other instructions. They require two
6392operands of the same type, execute an operation on them, and produce a
6393single value. The resulting value is the same type as its operands.
6394
6395'``shl``' Instruction
6396^^^^^^^^^^^^^^^^^^^^^
6397
6398Syntax:
6399"""""""
6400
6401::
6402
Tim Northover675a0962014-06-13 14:24:23 +00006403 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6404 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6405 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6406 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006407
6408Overview:
6409"""""""""
6410
6411The '``shl``' instruction returns the first operand shifted to the left
6412a specified number of bits.
6413
6414Arguments:
6415""""""""""
6416
6417Both arguments to the '``shl``' instruction must be the same
6418:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6419'``op2``' is treated as an unsigned value.
6420
6421Semantics:
6422""""""""""
6423
6424The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6425where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006426dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006427``op1``, the result is undefined. If the arguments are vectors, each
6428vector element of ``op1`` is shifted by the corresponding shift amount
6429in ``op2``.
6430
6431If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6432value <poisonvalues>` if it shifts out any non-zero bits. If the
6433``nsw`` keyword is present, then the shift produces a :ref:`poison
6434value <poisonvalues>` if it shifts out any bits that disagree with the
6435resultant sign bit. As such, NUW/NSW have the same semantics as they
6436would if the shift were expressed as a mul instruction with the same
6437nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6438
6439Example:
6440""""""""
6441
Renato Golin124f2592016-07-20 12:16:38 +00006442.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006443
Tim Northover675a0962014-06-13 14:24:23 +00006444 <result> = shl i32 4, %var ; yields i32: 4 << %var
6445 <result> = shl i32 4, 2 ; yields i32: 16
6446 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006447 <result> = shl i32 1, 32 ; undefined
6448 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6449
6450'``lshr``' Instruction
6451^^^^^^^^^^^^^^^^^^^^^^
6452
6453Syntax:
6454"""""""
6455
6456::
6457
Tim Northover675a0962014-06-13 14:24:23 +00006458 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6459 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006460
6461Overview:
6462"""""""""
6463
6464The '``lshr``' instruction (logical shift right) returns the first
6465operand shifted to the right a specified number of bits with zero fill.
6466
6467Arguments:
6468""""""""""
6469
6470Both arguments to the '``lshr``' instruction must be the same
6471:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6472'``op2``' is treated as an unsigned value.
6473
6474Semantics:
6475""""""""""
6476
6477This instruction always performs a logical shift right operation. The
6478most significant bits of the result will be filled with zero bits after
6479the shift. If ``op2`` is (statically or dynamically) equal to or larger
6480than the number of bits in ``op1``, the result is undefined. If the
6481arguments are vectors, each vector element of ``op1`` is shifted by the
6482corresponding shift amount in ``op2``.
6483
6484If the ``exact`` keyword is present, the result value of the ``lshr`` is
6485a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6486non-zero.
6487
6488Example:
6489""""""""
6490
Renato Golin124f2592016-07-20 12:16:38 +00006491.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006492
Tim Northover675a0962014-06-13 14:24:23 +00006493 <result> = lshr i32 4, 1 ; yields i32:result = 2
6494 <result> = lshr i32 4, 2 ; yields i32:result = 1
6495 <result> = lshr i8 4, 3 ; yields i8:result = 0
6496 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006497 <result> = lshr i32 1, 32 ; undefined
6498 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6499
6500'``ashr``' Instruction
6501^^^^^^^^^^^^^^^^^^^^^^
6502
6503Syntax:
6504"""""""
6505
6506::
6507
Tim Northover675a0962014-06-13 14:24:23 +00006508 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6509 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006510
6511Overview:
6512"""""""""
6513
6514The '``ashr``' instruction (arithmetic shift right) returns the first
6515operand shifted to the right a specified number of bits with sign
6516extension.
6517
6518Arguments:
6519""""""""""
6520
6521Both arguments to the '``ashr``' instruction must be the same
6522:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6523'``op2``' is treated as an unsigned value.
6524
6525Semantics:
6526""""""""""
6527
6528This instruction always performs an arithmetic shift right operation,
6529The most significant bits of the result will be filled with the sign bit
6530of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6531than the number of bits in ``op1``, the result is undefined. If the
6532arguments are vectors, each vector element of ``op1`` is shifted by the
6533corresponding shift amount in ``op2``.
6534
6535If the ``exact`` keyword is present, the result value of the ``ashr`` is
6536a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6537non-zero.
6538
6539Example:
6540""""""""
6541
Renato Golin124f2592016-07-20 12:16:38 +00006542.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006543
Tim Northover675a0962014-06-13 14:24:23 +00006544 <result> = ashr i32 4, 1 ; yields i32:result = 2
6545 <result> = ashr i32 4, 2 ; yields i32:result = 1
6546 <result> = ashr i8 4, 3 ; yields i8:result = 0
6547 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006548 <result> = ashr i32 1, 32 ; undefined
6549 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6550
6551'``and``' Instruction
6552^^^^^^^^^^^^^^^^^^^^^
6553
6554Syntax:
6555"""""""
6556
6557::
6558
Tim Northover675a0962014-06-13 14:24:23 +00006559 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006560
6561Overview:
6562"""""""""
6563
6564The '``and``' instruction returns the bitwise logical and of its two
6565operands.
6566
6567Arguments:
6568""""""""""
6569
6570The two arguments to the '``and``' instruction must be
6571:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6572arguments must have identical types.
6573
6574Semantics:
6575""""""""""
6576
6577The truth table used for the '``and``' instruction is:
6578
6579+-----+-----+-----+
6580| In0 | In1 | Out |
6581+-----+-----+-----+
6582| 0 | 0 | 0 |
6583+-----+-----+-----+
6584| 0 | 1 | 0 |
6585+-----+-----+-----+
6586| 1 | 0 | 0 |
6587+-----+-----+-----+
6588| 1 | 1 | 1 |
6589+-----+-----+-----+
6590
6591Example:
6592""""""""
6593
Renato Golin124f2592016-07-20 12:16:38 +00006594.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006595
Tim Northover675a0962014-06-13 14:24:23 +00006596 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6597 <result> = and i32 15, 40 ; yields i32:result = 8
6598 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006599
6600'``or``' Instruction
6601^^^^^^^^^^^^^^^^^^^^
6602
6603Syntax:
6604"""""""
6605
6606::
6607
Tim Northover675a0962014-06-13 14:24:23 +00006608 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006609
6610Overview:
6611"""""""""
6612
6613The '``or``' instruction returns the bitwise logical inclusive or of its
6614two operands.
6615
6616Arguments:
6617""""""""""
6618
6619The two arguments to the '``or``' instruction must be
6620:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6621arguments must have identical types.
6622
6623Semantics:
6624""""""""""
6625
6626The truth table used for the '``or``' instruction is:
6627
6628+-----+-----+-----+
6629| In0 | In1 | Out |
6630+-----+-----+-----+
6631| 0 | 0 | 0 |
6632+-----+-----+-----+
6633| 0 | 1 | 1 |
6634+-----+-----+-----+
6635| 1 | 0 | 1 |
6636+-----+-----+-----+
6637| 1 | 1 | 1 |
6638+-----+-----+-----+
6639
6640Example:
6641""""""""
6642
6643::
6644
Tim Northover675a0962014-06-13 14:24:23 +00006645 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6646 <result> = or i32 15, 40 ; yields i32:result = 47
6647 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006648
6649'``xor``' Instruction
6650^^^^^^^^^^^^^^^^^^^^^
6651
6652Syntax:
6653"""""""
6654
6655::
6656
Tim Northover675a0962014-06-13 14:24:23 +00006657 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006658
6659Overview:
6660"""""""""
6661
6662The '``xor``' instruction returns the bitwise logical exclusive or of
6663its two operands. The ``xor`` is used to implement the "one's
6664complement" operation, which is the "~" operator in C.
6665
6666Arguments:
6667""""""""""
6668
6669The two arguments to the '``xor``' instruction must be
6670:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6671arguments must have identical types.
6672
6673Semantics:
6674""""""""""
6675
6676The truth table used for the '``xor``' instruction is:
6677
6678+-----+-----+-----+
6679| In0 | In1 | Out |
6680+-----+-----+-----+
6681| 0 | 0 | 0 |
6682+-----+-----+-----+
6683| 0 | 1 | 1 |
6684+-----+-----+-----+
6685| 1 | 0 | 1 |
6686+-----+-----+-----+
6687| 1 | 1 | 0 |
6688+-----+-----+-----+
6689
6690Example:
6691""""""""
6692
Renato Golin124f2592016-07-20 12:16:38 +00006693.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006694
Tim Northover675a0962014-06-13 14:24:23 +00006695 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6696 <result> = xor i32 15, 40 ; yields i32:result = 39
6697 <result> = xor i32 4, 8 ; yields i32:result = 12
6698 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006699
6700Vector Operations
6701-----------------
6702
6703LLVM supports several instructions to represent vector operations in a
6704target-independent manner. These instructions cover the element-access
6705and vector-specific operations needed to process vectors effectively.
6706While LLVM does directly support these vector operations, many
6707sophisticated algorithms will want to use target-specific intrinsics to
6708take full advantage of a specific target.
6709
6710.. _i_extractelement:
6711
6712'``extractelement``' Instruction
6713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6714
6715Syntax:
6716"""""""
6717
6718::
6719
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006720 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006721
6722Overview:
6723"""""""""
6724
6725The '``extractelement``' instruction extracts a single scalar element
6726from a vector at a specified index.
6727
6728Arguments:
6729""""""""""
6730
6731The first operand of an '``extractelement``' instruction is a value of
6732:ref:`vector <t_vector>` type. The second operand is an index indicating
6733the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006734variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006735
6736Semantics:
6737""""""""""
6738
6739The result is a scalar of the same type as the element type of ``val``.
6740Its value is the value at position ``idx`` of ``val``. If ``idx``
6741exceeds the length of ``val``, the results are undefined.
6742
6743Example:
6744""""""""
6745
Renato Golin124f2592016-07-20 12:16:38 +00006746.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006747
6748 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6749
6750.. _i_insertelement:
6751
6752'``insertelement``' Instruction
6753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6754
6755Syntax:
6756"""""""
6757
6758::
6759
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006760 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006761
6762Overview:
6763"""""""""
6764
6765The '``insertelement``' instruction inserts a scalar element into a
6766vector at a specified index.
6767
6768Arguments:
6769""""""""""
6770
6771The first operand of an '``insertelement``' instruction is a value of
6772:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6773type must equal the element type of the first operand. The third operand
6774is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006775index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006776
6777Semantics:
6778""""""""""
6779
6780The result is a vector of the same type as ``val``. Its element values
6781are those of ``val`` except at position ``idx``, where it gets the value
6782``elt``. If ``idx`` exceeds the length of ``val``, the results are
6783undefined.
6784
6785Example:
6786""""""""
6787
Renato Golin124f2592016-07-20 12:16:38 +00006788.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006789
6790 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6791
6792.. _i_shufflevector:
6793
6794'``shufflevector``' Instruction
6795^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6796
6797Syntax:
6798"""""""
6799
6800::
6801
6802 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6803
6804Overview:
6805"""""""""
6806
6807The '``shufflevector``' instruction constructs a permutation of elements
6808from two input vectors, returning a vector with the same element type as
6809the input and length that is the same as the shuffle mask.
6810
6811Arguments:
6812""""""""""
6813
6814The first two operands of a '``shufflevector``' instruction are vectors
6815with the same type. The third argument is a shuffle mask whose element
6816type is always 'i32'. The result of the instruction is a vector whose
6817length is the same as the shuffle mask and whose element type is the
6818same as the element type of the first two operands.
6819
6820The shuffle mask operand is required to be a constant vector with either
6821constant integer or undef values.
6822
6823Semantics:
6824""""""""""
6825
6826The elements of the two input vectors are numbered from left to right
6827across both of the vectors. The shuffle mask operand specifies, for each
6828element of the result vector, which element of the two input vectors the
6829result element gets. The element selector may be undef (meaning "don't
6830care") and the second operand may be undef if performing a shuffle from
6831only one vector.
6832
6833Example:
6834""""""""
6835
Renato Golin124f2592016-07-20 12:16:38 +00006836.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006837
6838 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6839 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6840 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6841 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6842 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6843 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6844 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6845 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6846
6847Aggregate Operations
6848--------------------
6849
6850LLVM supports several instructions for working with
6851:ref:`aggregate <t_aggregate>` values.
6852
6853.. _i_extractvalue:
6854
6855'``extractvalue``' Instruction
6856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6857
6858Syntax:
6859"""""""
6860
6861::
6862
6863 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6864
6865Overview:
6866"""""""""
6867
6868The '``extractvalue``' instruction extracts the value of a member field
6869from an :ref:`aggregate <t_aggregate>` value.
6870
6871Arguments:
6872""""""""""
6873
6874The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006875:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006876constant indices to specify which value to extract in a similar manner
6877as indices in a '``getelementptr``' instruction.
6878
6879The major differences to ``getelementptr`` indexing are:
6880
6881- Since the value being indexed is not a pointer, the first index is
6882 omitted and assumed to be zero.
6883- At least one index must be specified.
6884- Not only struct indices but also array indices must be in bounds.
6885
6886Semantics:
6887""""""""""
6888
6889The result is the value at the position in the aggregate specified by
6890the index operands.
6891
6892Example:
6893""""""""
6894
Renato Golin124f2592016-07-20 12:16:38 +00006895.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006896
6897 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6898
6899.. _i_insertvalue:
6900
6901'``insertvalue``' Instruction
6902^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6903
6904Syntax:
6905"""""""
6906
6907::
6908
6909 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6910
6911Overview:
6912"""""""""
6913
6914The '``insertvalue``' instruction inserts a value into a member field in
6915an :ref:`aggregate <t_aggregate>` value.
6916
6917Arguments:
6918""""""""""
6919
6920The first operand of an '``insertvalue``' instruction is a value of
6921:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6922a first-class value to insert. The following operands are constant
6923indices indicating the position at which to insert the value in a
6924similar manner as indices in a '``extractvalue``' instruction. The value
6925to insert must have the same type as the value identified by the
6926indices.
6927
6928Semantics:
6929""""""""""
6930
6931The result is an aggregate of the same type as ``val``. Its value is
6932that of ``val`` except that the value at the position specified by the
6933indices is that of ``elt``.
6934
6935Example:
6936""""""""
6937
6938.. code-block:: llvm
6939
6940 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6941 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006942 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006943
6944.. _memoryops:
6945
6946Memory Access and Addressing Operations
6947---------------------------------------
6948
6949A key design point of an SSA-based representation is how it represents
6950memory. In LLVM, no memory locations are in SSA form, which makes things
6951very simple. This section describes how to read, write, and allocate
6952memory in LLVM.
6953
6954.. _i_alloca:
6955
6956'``alloca``' Instruction
6957^^^^^^^^^^^^^^^^^^^^^^^^
6958
6959Syntax:
6960"""""""
6961
6962::
6963
Tim Northover675a0962014-06-13 14:24:23 +00006964 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006965
6966Overview:
6967"""""""""
6968
6969The '``alloca``' instruction allocates memory on the stack frame of the
6970currently executing function, to be automatically released when this
6971function returns to its caller. The object is always allocated in the
6972generic address space (address space zero).
6973
6974Arguments:
6975""""""""""
6976
6977The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6978bytes of memory on the runtime stack, returning a pointer of the
6979appropriate type to the program. If "NumElements" is specified, it is
6980the number of elements allocated, otherwise "NumElements" is defaulted
6981to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006982allocation is guaranteed to be aligned to at least that boundary. The
6983alignment may not be greater than ``1 << 29``. If not specified, or if
6984zero, the target can choose to align the allocation on any convenient
6985boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006986
6987'``type``' may be any sized type.
6988
6989Semantics:
6990""""""""""
6991
6992Memory is allocated; a pointer is returned. The operation is undefined
6993if there is insufficient stack space for the allocation. '``alloca``'d
6994memory is automatically released when the function returns. The
6995'``alloca``' instruction is commonly used to represent automatic
6996variables that must have an address available. When the function returns
6997(either with the ``ret`` or ``resume`` instructions), the memory is
6998reclaimed. Allocating zero bytes is legal, but the result is undefined.
6999The order in which memory is allocated (ie., which way the stack grows)
7000is not specified.
7001
7002Example:
7003""""""""
7004
7005.. code-block:: llvm
7006
Tim Northover675a0962014-06-13 14:24:23 +00007007 %ptr = alloca i32 ; yields i32*:ptr
7008 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7009 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7010 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007011
7012.. _i_load:
7013
7014'``load``' Instruction
7015^^^^^^^^^^^^^^^^^^^^^^
7016
7017Syntax:
7018"""""""
7019
7020::
7021
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007022 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007023 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007024 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007025 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007026 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007027
7028Overview:
7029"""""""""
7030
7031The '``load``' instruction is used to read from memory.
7032
7033Arguments:
7034""""""""""
7035
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007036The argument to the ``load`` instruction specifies the memory address from which
7037to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7038known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7039the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7040modify the number or order of execution of this ``load`` with other
7041:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007042
JF Bastiend1fb5852015-12-17 22:09:19 +00007043If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7044<ordering>` and optional ``singlethread`` argument. The ``release`` and
7045``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7046produce :ref:`defined <memmodel>` results when they may see multiple atomic
7047stores. The type of the pointee must be an integer, pointer, or floating-point
7048type whose bit width is a power of two greater than or equal to eight and less
7049than or equal to a target-specific size limit. ``align`` must be explicitly
7050specified on atomic loads, and the load has undefined behavior if the alignment
7051is not set to a value which is at least the size in bytes of the
7052pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007053
7054The optional constant ``align`` argument specifies the alignment of the
7055operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007056or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007057alignment for the target. It is the responsibility of the code emitter
7058to ensure that the alignment information is correct. Overestimating the
7059alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007060may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007061maximum possible alignment is ``1 << 29``. An alignment value higher
7062than the size of the loaded type implies memory up to the alignment
7063value bytes can be safely loaded without trapping in the default
7064address space. Access of the high bytes can interfere with debugging
7065tools, so should not be accessed if the function has the
7066``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007067
7068The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007069metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007070``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007071metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007072that this load is not expected to be reused in the cache. The code
7073generator may select special instructions to save cache bandwidth, such
7074as the ``MOVNT`` instruction on x86.
7075
7076The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007077metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007078entries. If a load instruction tagged with the ``!invariant.load``
7079metadata is executed, the optimizer may assume the memory location
7080referenced by the load contains the same value at all points in the
7081program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007082
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007083The optional ``!invariant.group`` metadata must reference a single metadata name
7084 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7085
Philip Reamescdb72f32014-10-20 22:40:55 +00007086The optional ``!nonnull`` metadata must reference a single
7087metadata name ``<index>`` corresponding to a metadata node with no
7088entries. The existence of the ``!nonnull`` metadata on the
7089instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007090never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007091on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007092to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007093
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007094The optional ``!dereferenceable`` metadata must reference a single metadata
7095name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007096entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007097tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007098The number of bytes known to be dereferenceable is specified by the integer
7099value in the metadata node. This is analogous to the ''dereferenceable''
7100attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007101to loads of a pointer type.
7102
7103The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007104metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7105``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007106instruction tells the optimizer that the value loaded is known to be either
7107dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007108The number of bytes known to be dereferenceable is specified by the integer
7109value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7110attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007111to loads of a pointer type.
7112
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007113The optional ``!align`` metadata must reference a single metadata name
7114``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7115The existence of the ``!align`` metadata on the instruction tells the
7116optimizer that the value loaded is known to be aligned to a boundary specified
7117by the integer value in the metadata node. The alignment must be a power of 2.
7118This is analogous to the ''align'' attribute on parameters and return values.
7119This metadata can only be applied to loads of a pointer type.
7120
Sean Silvab084af42012-12-07 10:36:55 +00007121Semantics:
7122""""""""""
7123
7124The location of memory pointed to is loaded. If the value being loaded
7125is of scalar type then the number of bytes read does not exceed the
7126minimum number of bytes needed to hold all bits of the type. For
7127example, loading an ``i24`` reads at most three bytes. When loading a
7128value of a type like ``i20`` with a size that is not an integral number
7129of bytes, the result is undefined if the value was not originally
7130written using a store of the same type.
7131
7132Examples:
7133"""""""""
7134
7135.. code-block:: llvm
7136
Tim Northover675a0962014-06-13 14:24:23 +00007137 %ptr = alloca i32 ; yields i32*:ptr
7138 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007139 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007140
7141.. _i_store:
7142
7143'``store``' Instruction
7144^^^^^^^^^^^^^^^^^^^^^^^
7145
7146Syntax:
7147"""""""
7148
7149::
7150
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007151 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7152 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007153
7154Overview:
7155"""""""""
7156
7157The '``store``' instruction is used to write to memory.
7158
7159Arguments:
7160""""""""""
7161
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007162There are two arguments to the ``store`` instruction: a value to store and an
7163address at which to store it. The type of the ``<pointer>`` operand must be a
7164pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7165operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7166allowed to modify the number or order of execution of this ``store`` with other
7167:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7168<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7169structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007170
JF Bastiend1fb5852015-12-17 22:09:19 +00007171If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7172<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7173``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7174produce :ref:`defined <memmodel>` results when they may see multiple atomic
7175stores. The type of the pointee must be an integer, pointer, or floating-point
7176type whose bit width is a power of two greater than or equal to eight and less
7177than or equal to a target-specific size limit. ``align`` must be explicitly
7178specified on atomic stores, and the store has undefined behavior if the
7179alignment is not set to a value which is at least the size in bytes of the
7180pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007181
Eli Benderskyca380842013-04-17 17:17:20 +00007182The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007183operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007184or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007185alignment for the target. It is the responsibility of the code emitter
7186to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007187alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007188alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007189safe. The maximum possible alignment is ``1 << 29``. An alignment
7190value higher than the size of the stored type implies memory up to the
7191alignment value bytes can be stored to without trapping in the default
7192address space. Storing to the higher bytes however may result in data
7193races if another thread can access the same address. Introducing a
7194data race is not allowed. Storing to the extra bytes is not allowed
7195even in situations where a data race is known to not exist if the
7196function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007197
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007198The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007199name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007200value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007201tells the optimizer and code generator that this load is not expected to
7202be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007203instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007204x86.
7205
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007206The optional ``!invariant.group`` metadata must reference a
7207single metadata name ``<index>``. See ``invariant.group`` metadata.
7208
Sean Silvab084af42012-12-07 10:36:55 +00007209Semantics:
7210""""""""""
7211
Eli Benderskyca380842013-04-17 17:17:20 +00007212The contents of memory are updated to contain ``<value>`` at the
7213location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007214of scalar type then the number of bytes written does not exceed the
7215minimum number of bytes needed to hold all bits of the type. For
7216example, storing an ``i24`` writes at most three bytes. When writing a
7217value of a type like ``i20`` with a size that is not an integral number
7218of bytes, it is unspecified what happens to the extra bits that do not
7219belong to the type, but they will typically be overwritten.
7220
7221Example:
7222""""""""
7223
7224.. code-block:: llvm
7225
Tim Northover675a0962014-06-13 14:24:23 +00007226 %ptr = alloca i32 ; yields i32*:ptr
7227 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007228 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007229
7230.. _i_fence:
7231
7232'``fence``' Instruction
7233^^^^^^^^^^^^^^^^^^^^^^^
7234
7235Syntax:
7236"""""""
7237
7238::
7239
Tim Northover675a0962014-06-13 14:24:23 +00007240 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007241
7242Overview:
7243"""""""""
7244
7245The '``fence``' instruction is used to introduce happens-before edges
7246between operations.
7247
7248Arguments:
7249""""""""""
7250
7251'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7252defines what *synchronizes-with* edges they add. They can only be given
7253``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7254
7255Semantics:
7256""""""""""
7257
7258A fence A which has (at least) ``release`` ordering semantics
7259*synchronizes with* a fence B with (at least) ``acquire`` ordering
7260semantics if and only if there exist atomic operations X and Y, both
7261operating on some atomic object M, such that A is sequenced before X, X
7262modifies M (either directly or through some side effect of a sequence
7263headed by X), Y is sequenced before B, and Y observes M. This provides a
7264*happens-before* dependency between A and B. Rather than an explicit
7265``fence``, one (but not both) of the atomic operations X or Y might
7266provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7267still *synchronize-with* the explicit ``fence`` and establish the
7268*happens-before* edge.
7269
7270A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7271``acquire`` and ``release`` semantics specified above, participates in
7272the global program order of other ``seq_cst`` operations and/or fences.
7273
7274The optional ":ref:`singlethread <singlethread>`" argument specifies
7275that the fence only synchronizes with other fences in the same thread.
7276(This is useful for interacting with signal handlers.)
7277
7278Example:
7279""""""""
7280
7281.. code-block:: llvm
7282
Tim Northover675a0962014-06-13 14:24:23 +00007283 fence acquire ; yields void
7284 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007285
7286.. _i_cmpxchg:
7287
7288'``cmpxchg``' Instruction
7289^^^^^^^^^^^^^^^^^^^^^^^^^
7290
7291Syntax:
7292"""""""
7293
7294::
7295
Tim Northover675a0962014-06-13 14:24:23 +00007296 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007297
7298Overview:
7299"""""""""
7300
7301The '``cmpxchg``' instruction is used to atomically modify memory. It
7302loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007303equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007304
7305Arguments:
7306""""""""""
7307
7308There are three arguments to the '``cmpxchg``' instruction: an address
7309to operate on, a value to compare to the value currently be at that
7310address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007311are equal. The type of '<cmp>' must be an integer or pointer type whose
7312bit width is a power of two greater than or equal to eight and less
7313than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7314have the same type, and the type of '<pointer>' must be a pointer to
7315that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7316optimizer is not allowed to modify the number or order of execution of
7317this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007318
Tim Northovere94a5182014-03-11 10:48:52 +00007319The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007320``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7321must be at least ``monotonic``, the ordering constraint on failure must be no
7322stronger than that on success, and the failure ordering cannot be either
7323``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007324
7325The optional "``singlethread``" argument declares that the ``cmpxchg``
7326is only atomic with respect to code (usually signal handlers) running in
7327the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7328respect to all other code in the system.
7329
7330The pointer passed into cmpxchg must have alignment greater than or
7331equal to the size in memory of the operand.
7332
7333Semantics:
7334""""""""""
7335
Tim Northover420a2162014-06-13 14:24:07 +00007336The contents of memory at the location specified by the '``<pointer>``' operand
7337is read and compared to '``<cmp>``'; if the read value is the equal, the
7338'``<new>``' is written. The original value at the location is returned, together
7339with a flag indicating success (true) or failure (false).
7340
7341If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7342permitted: the operation may not write ``<new>`` even if the comparison
7343matched.
7344
7345If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7346if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007347
Tim Northovere94a5182014-03-11 10:48:52 +00007348A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7349identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7350load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007351
7352Example:
7353""""""""
7354
7355.. code-block:: llvm
7356
7357 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007358 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007359 br label %loop
7360
7361 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007362 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007363 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007364 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007365 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7366 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007367 br i1 %success, label %done, label %loop
7368
7369 done:
7370 ...
7371
7372.. _i_atomicrmw:
7373
7374'``atomicrmw``' Instruction
7375^^^^^^^^^^^^^^^^^^^^^^^^^^^
7376
7377Syntax:
7378"""""""
7379
7380::
7381
Tim Northover675a0962014-06-13 14:24:23 +00007382 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007383
7384Overview:
7385"""""""""
7386
7387The '``atomicrmw``' instruction is used to atomically modify memory.
7388
7389Arguments:
7390""""""""""
7391
7392There are three arguments to the '``atomicrmw``' instruction: an
7393operation to apply, an address whose value to modify, an argument to the
7394operation. The operation must be one of the following keywords:
7395
7396- xchg
7397- add
7398- sub
7399- and
7400- nand
7401- or
7402- xor
7403- max
7404- min
7405- umax
7406- umin
7407
7408The type of '<value>' must be an integer type whose bit width is a power
7409of two greater than or equal to eight and less than or equal to a
7410target-specific size limit. The type of the '``<pointer>``' operand must
7411be a pointer to that type. If the ``atomicrmw`` is marked as
7412``volatile``, then the optimizer is not allowed to modify the number or
7413order of execution of this ``atomicrmw`` with other :ref:`volatile
7414operations <volatile>`.
7415
7416Semantics:
7417""""""""""
7418
7419The contents of memory at the location specified by the '``<pointer>``'
7420operand are atomically read, modified, and written back. The original
7421value at the location is returned. The modification is specified by the
7422operation argument:
7423
7424- xchg: ``*ptr = val``
7425- add: ``*ptr = *ptr + val``
7426- sub: ``*ptr = *ptr - val``
7427- and: ``*ptr = *ptr & val``
7428- nand: ``*ptr = ~(*ptr & val)``
7429- or: ``*ptr = *ptr | val``
7430- xor: ``*ptr = *ptr ^ val``
7431- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7432- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7433- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7434 comparison)
7435- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7436 comparison)
7437
7438Example:
7439""""""""
7440
7441.. code-block:: llvm
7442
Tim Northover675a0962014-06-13 14:24:23 +00007443 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007444
7445.. _i_getelementptr:
7446
7447'``getelementptr``' Instruction
7448^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7449
7450Syntax:
7451"""""""
7452
7453::
7454
David Blaikie16a97eb2015-03-04 22:02:58 +00007455 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7456 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7457 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007458
7459Overview:
7460"""""""""
7461
7462The '``getelementptr``' instruction is used to get the address of a
7463subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007464address calculation only and does not access memory. The instruction can also
7465be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007466
7467Arguments:
7468""""""""""
7469
David Blaikie16a97eb2015-03-04 22:02:58 +00007470The first argument is always a type used as the basis for the calculations.
7471The second argument is always a pointer or a vector of pointers, and is the
7472base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007473that indicate which of the elements of the aggregate object are indexed.
7474The interpretation of each index is dependent on the type being indexed
7475into. The first index always indexes the pointer value given as the
7476first argument, the second index indexes a value of the type pointed to
7477(not necessarily the value directly pointed to, since the first index
7478can be non-zero), etc. The first type indexed into must be a pointer
7479value, subsequent types can be arrays, vectors, and structs. Note that
7480subsequent types being indexed into can never be pointers, since that
7481would require loading the pointer before continuing calculation.
7482
7483The type of each index argument depends on the type it is indexing into.
7484When indexing into a (optionally packed) structure, only ``i32`` integer
7485**constants** are allowed (when using a vector of indices they must all
7486be the **same** ``i32`` integer constant). When indexing into an array,
7487pointer or vector, integers of any width are allowed, and they are not
7488required to be constant. These integers are treated as signed values
7489where relevant.
7490
7491For example, let's consider a C code fragment and how it gets compiled
7492to LLVM:
7493
7494.. code-block:: c
7495
7496 struct RT {
7497 char A;
7498 int B[10][20];
7499 char C;
7500 };
7501 struct ST {
7502 int X;
7503 double Y;
7504 struct RT Z;
7505 };
7506
7507 int *foo(struct ST *s) {
7508 return &s[1].Z.B[5][13];
7509 }
7510
7511The LLVM code generated by Clang is:
7512
7513.. code-block:: llvm
7514
7515 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7516 %struct.ST = type { i32, double, %struct.RT }
7517
7518 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7519 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007520 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007521 ret i32* %arrayidx
7522 }
7523
7524Semantics:
7525""""""""""
7526
7527In the example above, the first index is indexing into the
7528'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7529= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7530indexes into the third element of the structure, yielding a
7531'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7532structure. The third index indexes into the second element of the
7533structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7534dimensions of the array are subscripted into, yielding an '``i32``'
7535type. The '``getelementptr``' instruction returns a pointer to this
7536element, thus computing a value of '``i32*``' type.
7537
7538Note that it is perfectly legal to index partially through a structure,
7539returning a pointer to an inner element. Because of this, the LLVM code
7540for the given testcase is equivalent to:
7541
7542.. code-block:: llvm
7543
7544 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007545 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7546 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7547 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7548 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7549 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007550 ret i32* %t5
7551 }
7552
7553If the ``inbounds`` keyword is present, the result value of the
7554``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7555pointer is not an *in bounds* address of an allocated object, or if any
7556of the addresses that would be formed by successive addition of the
7557offsets implied by the indices to the base address with infinitely
7558precise signed arithmetic are not an *in bounds* address of that
7559allocated object. The *in bounds* addresses for an allocated object are
7560all the addresses that point into the object, plus the address one byte
7561past the end. In cases where the base is a vector of pointers the
7562``inbounds`` keyword applies to each of the computations element-wise.
7563
7564If the ``inbounds`` keyword is not present, the offsets are added to the
7565base address with silently-wrapping two's complement arithmetic. If the
7566offsets have a different width from the pointer, they are sign-extended
7567or truncated to the width of the pointer. The result value of the
7568``getelementptr`` may be outside the object pointed to by the base
7569pointer. The result value may not necessarily be used to access memory
7570though, even if it happens to point into allocated storage. See the
7571:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7572information.
7573
7574The getelementptr instruction is often confusing. For some more insight
7575into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7576
7577Example:
7578""""""""
7579
7580.. code-block:: llvm
7581
7582 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007583 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007584 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007585 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007586 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007587 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007588 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007589 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007590
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007591Vector of pointers:
7592"""""""""""""""""""
7593
7594The ``getelementptr`` returns a vector of pointers, instead of a single address,
7595when one or more of its arguments is a vector. In such cases, all vector
7596arguments should have the same number of elements, and every scalar argument
7597will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007598
7599.. code-block:: llvm
7600
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007601 ; All arguments are vectors:
7602 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7603 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007604
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007605 ; Add the same scalar offset to each pointer of a vector:
7606 ; A[i] = ptrs[i] + offset*sizeof(i8)
7607 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007608
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007609 ; Add distinct offsets to the same pointer:
7610 ; A[i] = ptr + offsets[i]*sizeof(i8)
7611 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007612
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007613 ; In all cases described above the type of the result is <4 x i8*>
7614
7615The two following instructions are equivalent:
7616
7617.. code-block:: llvm
7618
7619 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7620 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7621 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7622 <4 x i32> %ind4,
7623 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007624
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007625 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7626 i32 2, i32 1, <4 x i32> %ind4, i64 13
7627
7628Let's look at the C code, where the vector version of ``getelementptr``
7629makes sense:
7630
7631.. code-block:: c
7632
7633 // Let's assume that we vectorize the following loop:
7634 double *A, B; int *C;
7635 for (int i = 0; i < size; ++i) {
7636 A[i] = B[C[i]];
7637 }
7638
7639.. code-block:: llvm
7640
7641 ; get pointers for 8 elements from array B
7642 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7643 ; load 8 elements from array B into A
7644 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7645 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007646
7647Conversion Operations
7648---------------------
7649
7650The instructions in this category are the conversion instructions
7651(casting) which all take a single operand and a type. They perform
7652various bit conversions on the operand.
7653
7654'``trunc .. to``' Instruction
7655^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7656
7657Syntax:
7658"""""""
7659
7660::
7661
7662 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7663
7664Overview:
7665"""""""""
7666
7667The '``trunc``' instruction truncates its operand to the type ``ty2``.
7668
7669Arguments:
7670""""""""""
7671
7672The '``trunc``' instruction takes a value to trunc, and a type to trunc
7673it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7674of the same number of integers. The bit size of the ``value`` must be
7675larger than the bit size of the destination type, ``ty2``. Equal sized
7676types are not allowed.
7677
7678Semantics:
7679""""""""""
7680
7681The '``trunc``' instruction truncates the high order bits in ``value``
7682and converts the remaining bits to ``ty2``. Since the source size must
7683be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7684It will always truncate bits.
7685
7686Example:
7687""""""""
7688
7689.. code-block:: llvm
7690
7691 %X = trunc i32 257 to i8 ; yields i8:1
7692 %Y = trunc i32 123 to i1 ; yields i1:true
7693 %Z = trunc i32 122 to i1 ; yields i1:false
7694 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7695
7696'``zext .. to``' Instruction
7697^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7698
7699Syntax:
7700"""""""
7701
7702::
7703
7704 <result> = zext <ty> <value> to <ty2> ; yields ty2
7705
7706Overview:
7707"""""""""
7708
7709The '``zext``' instruction zero extends its operand to type ``ty2``.
7710
7711Arguments:
7712""""""""""
7713
7714The '``zext``' instruction takes a value to cast, and a type to cast it
7715to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7716the same number of integers. The bit size of the ``value`` must be
7717smaller than the bit size of the destination type, ``ty2``.
7718
7719Semantics:
7720""""""""""
7721
7722The ``zext`` fills the high order bits of the ``value`` with zero bits
7723until it reaches the size of the destination type, ``ty2``.
7724
7725When zero extending from i1, the result will always be either 0 or 1.
7726
7727Example:
7728""""""""
7729
7730.. code-block:: llvm
7731
7732 %X = zext i32 257 to i64 ; yields i64:257
7733 %Y = zext i1 true to i32 ; yields i32:1
7734 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7735
7736'``sext .. to``' Instruction
7737^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7738
7739Syntax:
7740"""""""
7741
7742::
7743
7744 <result> = sext <ty> <value> to <ty2> ; yields ty2
7745
7746Overview:
7747"""""""""
7748
7749The '``sext``' sign extends ``value`` to the type ``ty2``.
7750
7751Arguments:
7752""""""""""
7753
7754The '``sext``' instruction takes a value to cast, and a type to cast it
7755to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7756the same number of integers. The bit size of the ``value`` must be
7757smaller than the bit size of the destination type, ``ty2``.
7758
7759Semantics:
7760""""""""""
7761
7762The '``sext``' instruction performs a sign extension by copying the sign
7763bit (highest order bit) of the ``value`` until it reaches the bit size
7764of the type ``ty2``.
7765
7766When sign extending from i1, the extension always results in -1 or 0.
7767
7768Example:
7769""""""""
7770
7771.. code-block:: llvm
7772
7773 %X = sext i8 -1 to i16 ; yields i16 :65535
7774 %Y = sext i1 true to i32 ; yields i32:-1
7775 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7776
7777'``fptrunc .. to``' Instruction
7778^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7779
7780Syntax:
7781"""""""
7782
7783::
7784
7785 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7786
7787Overview:
7788"""""""""
7789
7790The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7791
7792Arguments:
7793""""""""""
7794
7795The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7796value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7797The size of ``value`` must be larger than the size of ``ty2``. This
7798implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7799
7800Semantics:
7801""""""""""
7802
Dan Liew50456fb2015-09-03 18:43:56 +00007803The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007804:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007805point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7806destination type, ``ty2``, then the results are undefined. If the cast produces
7807an inexact result, how rounding is performed (e.g. truncation, also known as
7808round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007809
7810Example:
7811""""""""
7812
7813.. code-block:: llvm
7814
7815 %X = fptrunc double 123.0 to float ; yields float:123.0
7816 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7817
7818'``fpext .. to``' Instruction
7819^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7820
7821Syntax:
7822"""""""
7823
7824::
7825
7826 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7827
7828Overview:
7829"""""""""
7830
7831The '``fpext``' extends a floating point ``value`` to a larger floating
7832point value.
7833
7834Arguments:
7835""""""""""
7836
7837The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7838``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7839to. The source type must be smaller than the destination type.
7840
7841Semantics:
7842""""""""""
7843
7844The '``fpext``' instruction extends the ``value`` from a smaller
7845:ref:`floating point <t_floating>` type to a larger :ref:`floating
7846point <t_floating>` type. The ``fpext`` cannot be used to make a
7847*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7848*no-op cast* for a floating point cast.
7849
7850Example:
7851""""""""
7852
7853.. code-block:: llvm
7854
7855 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7856 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7857
7858'``fptoui .. to``' Instruction
7859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7860
7861Syntax:
7862"""""""
7863
7864::
7865
7866 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7867
7868Overview:
7869"""""""""
7870
7871The '``fptoui``' converts a floating point ``value`` to its unsigned
7872integer equivalent of type ``ty2``.
7873
7874Arguments:
7875""""""""""
7876
7877The '``fptoui``' instruction takes a value to cast, which must be a
7878scalar or vector :ref:`floating point <t_floating>` value, and a type to
7879cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7880``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7881type with the same number of elements as ``ty``
7882
7883Semantics:
7884""""""""""
7885
7886The '``fptoui``' instruction converts its :ref:`floating
7887point <t_floating>` operand into the nearest (rounding towards zero)
7888unsigned integer value. If the value cannot fit in ``ty2``, the results
7889are undefined.
7890
7891Example:
7892""""""""
7893
7894.. code-block:: llvm
7895
7896 %X = fptoui double 123.0 to i32 ; yields i32:123
7897 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7898 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7899
7900'``fptosi .. to``' Instruction
7901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7902
7903Syntax:
7904"""""""
7905
7906::
7907
7908 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7909
7910Overview:
7911"""""""""
7912
7913The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7914``value`` to type ``ty2``.
7915
7916Arguments:
7917""""""""""
7918
7919The '``fptosi``' instruction takes a value to cast, which must be a
7920scalar or vector :ref:`floating point <t_floating>` value, and a type to
7921cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7922``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7923type with the same number of elements as ``ty``
7924
7925Semantics:
7926""""""""""
7927
7928The '``fptosi``' instruction converts its :ref:`floating
7929point <t_floating>` operand into the nearest (rounding towards zero)
7930signed integer value. If the value cannot fit in ``ty2``, the results
7931are undefined.
7932
7933Example:
7934""""""""
7935
7936.. code-block:: llvm
7937
7938 %X = fptosi double -123.0 to i32 ; yields i32:-123
7939 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7940 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7941
7942'``uitofp .. to``' Instruction
7943^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7944
7945Syntax:
7946"""""""
7947
7948::
7949
7950 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7951
7952Overview:
7953"""""""""
7954
7955The '``uitofp``' instruction regards ``value`` as an unsigned integer
7956and converts that value to the ``ty2`` type.
7957
7958Arguments:
7959""""""""""
7960
7961The '``uitofp``' instruction takes a value to cast, which must be a
7962scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7963``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7964``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7965type with the same number of elements as ``ty``
7966
7967Semantics:
7968""""""""""
7969
7970The '``uitofp``' instruction interprets its operand as an unsigned
7971integer quantity and converts it to the corresponding floating point
7972value. If the value cannot fit in the floating point value, the results
7973are undefined.
7974
7975Example:
7976""""""""
7977
7978.. code-block:: llvm
7979
7980 %X = uitofp i32 257 to float ; yields float:257.0
7981 %Y = uitofp i8 -1 to double ; yields double:255.0
7982
7983'``sitofp .. to``' Instruction
7984^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7985
7986Syntax:
7987"""""""
7988
7989::
7990
7991 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7992
7993Overview:
7994"""""""""
7995
7996The '``sitofp``' instruction regards ``value`` as a signed integer and
7997converts that value to the ``ty2`` type.
7998
7999Arguments:
8000""""""""""
8001
8002The '``sitofp``' instruction takes a value to cast, which must be a
8003scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8004``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8005``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8006type with the same number of elements as ``ty``
8007
8008Semantics:
8009""""""""""
8010
8011The '``sitofp``' instruction interprets its operand as a signed integer
8012quantity and converts it to the corresponding floating point value. If
8013the value cannot fit in the floating point value, the results are
8014undefined.
8015
8016Example:
8017""""""""
8018
8019.. code-block:: llvm
8020
8021 %X = sitofp i32 257 to float ; yields float:257.0
8022 %Y = sitofp i8 -1 to double ; yields double:-1.0
8023
8024.. _i_ptrtoint:
8025
8026'``ptrtoint .. to``' Instruction
8027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8028
8029Syntax:
8030"""""""
8031
8032::
8033
8034 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8035
8036Overview:
8037"""""""""
8038
8039The '``ptrtoint``' instruction converts the pointer or a vector of
8040pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8041
8042Arguments:
8043""""""""""
8044
8045The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008046a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008047type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8048a vector of integers type.
8049
8050Semantics:
8051""""""""""
8052
8053The '``ptrtoint``' instruction converts ``value`` to integer type
8054``ty2`` by interpreting the pointer value as an integer and either
8055truncating or zero extending that value to the size of the integer type.
8056If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8057``value`` is larger than ``ty2`` then a truncation is done. If they are
8058the same size, then nothing is done (*no-op cast*) other than a type
8059change.
8060
8061Example:
8062""""""""
8063
8064.. code-block:: llvm
8065
8066 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8067 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8068 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8069
8070.. _i_inttoptr:
8071
8072'``inttoptr .. to``' Instruction
8073^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8074
8075Syntax:
8076"""""""
8077
8078::
8079
8080 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8081
8082Overview:
8083"""""""""
8084
8085The '``inttoptr``' instruction converts an integer ``value`` to a
8086pointer type, ``ty2``.
8087
8088Arguments:
8089""""""""""
8090
8091The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8092cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8093type.
8094
8095Semantics:
8096""""""""""
8097
8098The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8099applying either a zero extension or a truncation depending on the size
8100of the integer ``value``. If ``value`` is larger than the size of a
8101pointer then a truncation is done. If ``value`` is smaller than the size
8102of a pointer then a zero extension is done. If they are the same size,
8103nothing is done (*no-op cast*).
8104
8105Example:
8106""""""""
8107
8108.. code-block:: llvm
8109
8110 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8111 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8112 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8113 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8114
8115.. _i_bitcast:
8116
8117'``bitcast .. to``' Instruction
8118^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8119
8120Syntax:
8121"""""""
8122
8123::
8124
8125 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8126
8127Overview:
8128"""""""""
8129
8130The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8131changing any bits.
8132
8133Arguments:
8134""""""""""
8135
8136The '``bitcast``' instruction takes a value to cast, which must be a
8137non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008138also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8139bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008140identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008141also be a pointer of the same size. This instruction supports bitwise
8142conversion of vectors to integers and to vectors of other types (as
8143long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008144
8145Semantics:
8146""""""""""
8147
Matt Arsenault24b49c42013-07-31 17:49:08 +00008148The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8149is always a *no-op cast* because no bits change with this
8150conversion. The conversion is done as if the ``value`` had been stored
8151to memory and read back as type ``ty2``. Pointer (or vector of
8152pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008153pointers) types with the same address space through this instruction.
8154To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8155or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008156
8157Example:
8158""""""""
8159
Renato Golin124f2592016-07-20 12:16:38 +00008160.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008161
8162 %X = bitcast i8 255 to i8 ; yields i8 :-1
8163 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8164 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8165 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8166
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008167.. _i_addrspacecast:
8168
8169'``addrspacecast .. to``' Instruction
8170^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8171
8172Syntax:
8173"""""""
8174
8175::
8176
8177 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8178
8179Overview:
8180"""""""""
8181
8182The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8183address space ``n`` to type ``pty2`` in address space ``m``.
8184
8185Arguments:
8186""""""""""
8187
8188The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8189to cast and a pointer type to cast it to, which must have a different
8190address space.
8191
8192Semantics:
8193""""""""""
8194
8195The '``addrspacecast``' instruction converts the pointer value
8196``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008197value modification, depending on the target and the address space
8198pair. Pointer conversions within the same address space must be
8199performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008200conversion is legal then both result and operand refer to the same memory
8201location.
8202
8203Example:
8204""""""""
8205
8206.. code-block:: llvm
8207
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008208 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8209 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8210 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008211
Sean Silvab084af42012-12-07 10:36:55 +00008212.. _otherops:
8213
8214Other Operations
8215----------------
8216
8217The instructions in this category are the "miscellaneous" instructions,
8218which defy better classification.
8219
8220.. _i_icmp:
8221
8222'``icmp``' Instruction
8223^^^^^^^^^^^^^^^^^^^^^^
8224
8225Syntax:
8226"""""""
8227
8228::
8229
Tim Northover675a0962014-06-13 14:24:23 +00008230 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008231
8232Overview:
8233"""""""""
8234
8235The '``icmp``' instruction returns a boolean value or a vector of
8236boolean values based on comparison of its two integer, integer vector,
8237pointer, or pointer vector operands.
8238
8239Arguments:
8240""""""""""
8241
8242The '``icmp``' instruction takes three operands. The first operand is
8243the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008244not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008245
8246#. ``eq``: equal
8247#. ``ne``: not equal
8248#. ``ugt``: unsigned greater than
8249#. ``uge``: unsigned greater or equal
8250#. ``ult``: unsigned less than
8251#. ``ule``: unsigned less or equal
8252#. ``sgt``: signed greater than
8253#. ``sge``: signed greater or equal
8254#. ``slt``: signed less than
8255#. ``sle``: signed less or equal
8256
8257The remaining two arguments must be :ref:`integer <t_integer>` or
8258:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8259must also be identical types.
8260
8261Semantics:
8262""""""""""
8263
8264The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8265code given as ``cond``. The comparison performed always yields either an
8266:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8267
8268#. ``eq``: yields ``true`` if the operands are equal, ``false``
8269 otherwise. No sign interpretation is necessary or performed.
8270#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8271 otherwise. No sign interpretation is necessary or performed.
8272#. ``ugt``: interprets the operands as unsigned values and yields
8273 ``true`` if ``op1`` is greater than ``op2``.
8274#. ``uge``: interprets the operands as unsigned values and yields
8275 ``true`` if ``op1`` is greater than or equal to ``op2``.
8276#. ``ult``: interprets the operands as unsigned values and yields
8277 ``true`` if ``op1`` is less than ``op2``.
8278#. ``ule``: interprets the operands as unsigned values and yields
8279 ``true`` if ``op1`` is less than or equal to ``op2``.
8280#. ``sgt``: interprets the operands as signed values and yields ``true``
8281 if ``op1`` is greater than ``op2``.
8282#. ``sge``: interprets the operands as signed values and yields ``true``
8283 if ``op1`` is greater than or equal to ``op2``.
8284#. ``slt``: interprets the operands as signed values and yields ``true``
8285 if ``op1`` is less than ``op2``.
8286#. ``sle``: interprets the operands as signed values and yields ``true``
8287 if ``op1`` is less than or equal to ``op2``.
8288
8289If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8290are compared as if they were integers.
8291
8292If the operands are integer vectors, then they are compared element by
8293element. The result is an ``i1`` vector with the same number of elements
8294as the values being compared. Otherwise, the result is an ``i1``.
8295
8296Example:
8297""""""""
8298
Renato Golin124f2592016-07-20 12:16:38 +00008299.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008300
8301 <result> = icmp eq i32 4, 5 ; yields: result=false
8302 <result> = icmp ne float* %X, %X ; yields: result=false
8303 <result> = icmp ult i16 4, 5 ; yields: result=true
8304 <result> = icmp sgt i16 4, 5 ; yields: result=false
8305 <result> = icmp ule i16 -4, 5 ; yields: result=false
8306 <result> = icmp sge i16 4, 5 ; yields: result=false
8307
Sean Silvab084af42012-12-07 10:36:55 +00008308.. _i_fcmp:
8309
8310'``fcmp``' Instruction
8311^^^^^^^^^^^^^^^^^^^^^^
8312
8313Syntax:
8314"""""""
8315
8316::
8317
James Molloy88eb5352015-07-10 12:52:00 +00008318 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008319
8320Overview:
8321"""""""""
8322
8323The '``fcmp``' instruction returns a boolean value or vector of boolean
8324values based on comparison of its operands.
8325
8326If the operands are floating point scalars, then the result type is a
8327boolean (:ref:`i1 <t_integer>`).
8328
8329If the operands are floating point vectors, then the result type is a
8330vector of boolean with the same number of elements as the operands being
8331compared.
8332
8333Arguments:
8334""""""""""
8335
8336The '``fcmp``' instruction takes three operands. The first operand is
8337the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008338not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008339
8340#. ``false``: no comparison, always returns false
8341#. ``oeq``: ordered and equal
8342#. ``ogt``: ordered and greater than
8343#. ``oge``: ordered and greater than or equal
8344#. ``olt``: ordered and less than
8345#. ``ole``: ordered and less than or equal
8346#. ``one``: ordered and not equal
8347#. ``ord``: ordered (no nans)
8348#. ``ueq``: unordered or equal
8349#. ``ugt``: unordered or greater than
8350#. ``uge``: unordered or greater than or equal
8351#. ``ult``: unordered or less than
8352#. ``ule``: unordered or less than or equal
8353#. ``une``: unordered or not equal
8354#. ``uno``: unordered (either nans)
8355#. ``true``: no comparison, always returns true
8356
8357*Ordered* means that neither operand is a QNAN while *unordered* means
8358that either operand may be a QNAN.
8359
8360Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8361point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8362type. They must have identical types.
8363
8364Semantics:
8365""""""""""
8366
8367The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8368condition code given as ``cond``. If the operands are vectors, then the
8369vectors are compared element by element. Each comparison performed
8370always yields an :ref:`i1 <t_integer>` result, as follows:
8371
8372#. ``false``: always yields ``false``, regardless of operands.
8373#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8374 is equal to ``op2``.
8375#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8376 is greater than ``op2``.
8377#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8378 is greater than or equal to ``op2``.
8379#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8380 is less than ``op2``.
8381#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8382 is less than or equal to ``op2``.
8383#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8384 is not equal to ``op2``.
8385#. ``ord``: yields ``true`` if both operands are not a QNAN.
8386#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8387 equal to ``op2``.
8388#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8389 greater than ``op2``.
8390#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8391 greater than or equal to ``op2``.
8392#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8393 less than ``op2``.
8394#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8395 less than or equal to ``op2``.
8396#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8397 not equal to ``op2``.
8398#. ``uno``: yields ``true`` if either operand is a QNAN.
8399#. ``true``: always yields ``true``, regardless of operands.
8400
James Molloy88eb5352015-07-10 12:52:00 +00008401The ``fcmp`` instruction can also optionally take any number of
8402:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8403otherwise unsafe floating point optimizations.
8404
8405Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8406only flags that have any effect on its semantics are those that allow
8407assumptions to be made about the values of input arguments; namely
8408``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8409
Sean Silvab084af42012-12-07 10:36:55 +00008410Example:
8411""""""""
8412
Renato Golin124f2592016-07-20 12:16:38 +00008413.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008414
8415 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8416 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8417 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8418 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8419
Sean Silvab084af42012-12-07 10:36:55 +00008420.. _i_phi:
8421
8422'``phi``' Instruction
8423^^^^^^^^^^^^^^^^^^^^^
8424
8425Syntax:
8426"""""""
8427
8428::
8429
8430 <result> = phi <ty> [ <val0>, <label0>], ...
8431
8432Overview:
8433"""""""""
8434
8435The '``phi``' instruction is used to implement the φ node in the SSA
8436graph representing the function.
8437
8438Arguments:
8439""""""""""
8440
8441The type of the incoming values is specified with the first type field.
8442After this, the '``phi``' instruction takes a list of pairs as
8443arguments, with one pair for each predecessor basic block of the current
8444block. Only values of :ref:`first class <t_firstclass>` type may be used as
8445the value arguments to the PHI node. Only labels may be used as the
8446label arguments.
8447
8448There must be no non-phi instructions between the start of a basic block
8449and the PHI instructions: i.e. PHI instructions must be first in a basic
8450block.
8451
8452For the purposes of the SSA form, the use of each incoming value is
8453deemed to occur on the edge from the corresponding predecessor block to
8454the current block (but after any definition of an '``invoke``'
8455instruction's return value on the same edge).
8456
8457Semantics:
8458""""""""""
8459
8460At runtime, the '``phi``' instruction logically takes on the value
8461specified by the pair corresponding to the predecessor basic block that
8462executed just prior to the current block.
8463
8464Example:
8465""""""""
8466
8467.. code-block:: llvm
8468
8469 Loop: ; Infinite loop that counts from 0 on up...
8470 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8471 %nextindvar = add i32 %indvar, 1
8472 br label %Loop
8473
8474.. _i_select:
8475
8476'``select``' Instruction
8477^^^^^^^^^^^^^^^^^^^^^^^^
8478
8479Syntax:
8480"""""""
8481
8482::
8483
8484 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8485
8486 selty is either i1 or {<N x i1>}
8487
8488Overview:
8489"""""""""
8490
8491The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008492condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008493
8494Arguments:
8495""""""""""
8496
8497The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8498values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008499class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008500
8501Semantics:
8502""""""""""
8503
8504If the condition is an i1 and it evaluates to 1, the instruction returns
8505the first value argument; otherwise, it returns the second value
8506argument.
8507
8508If the condition is a vector of i1, then the value arguments must be
8509vectors of the same size, and the selection is done element by element.
8510
David Majnemer40a0b592015-03-03 22:45:47 +00008511If the condition is an i1 and the value arguments are vectors of the
8512same size, then an entire vector is selected.
8513
Sean Silvab084af42012-12-07 10:36:55 +00008514Example:
8515""""""""
8516
8517.. code-block:: llvm
8518
8519 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8520
8521.. _i_call:
8522
8523'``call``' Instruction
8524^^^^^^^^^^^^^^^^^^^^^^
8525
8526Syntax:
8527"""""""
8528
8529::
8530
David Blaikieb83cf102016-07-13 17:21:34 +00008531 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008532 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008533
8534Overview:
8535"""""""""
8536
8537The '``call``' instruction represents a simple function call.
8538
8539Arguments:
8540""""""""""
8541
8542This instruction requires several arguments:
8543
Reid Kleckner5772b772014-04-24 20:14:34 +00008544#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008545 should perform tail call optimization. The ``tail`` marker is a hint that
8546 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008547 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008548 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008549
8550 #. The call will not cause unbounded stack growth if it is part of a
8551 recursive cycle in the call graph.
8552 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8553 forwarded in place.
8554
8555 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008556 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008557 rules:
8558
8559 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8560 or a pointer bitcast followed by a ret instruction.
8561 - The ret instruction must return the (possibly bitcasted) value
8562 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008563 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008564 parameters or return types may differ in pointee type, but not
8565 in address space.
8566 - The calling conventions of the caller and callee must match.
8567 - All ABI-impacting function attributes, such as sret, byval, inreg,
8568 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008569 - The callee must be varargs iff the caller is varargs. Bitcasting a
8570 non-varargs function to the appropriate varargs type is legal so
8571 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008572
8573 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8574 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008575
8576 - Caller and callee both have the calling convention ``fastcc``.
8577 - The call is in tail position (ret immediately follows call and ret
8578 uses value of call or is void).
8579 - Option ``-tailcallopt`` is enabled, or
8580 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008581 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008582 met. <CodeGenerator.html#tailcallopt>`_
8583
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008584#. The optional ``notail`` marker indicates that the optimizers should not add
8585 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8586 call optimization from being performed on the call.
8587
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008588#. The optional ``fast-math flags`` marker indicates that the call has one or more
8589 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8590 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8591 for calls that return a floating-point scalar or vector type.
8592
Sean Silvab084af42012-12-07 10:36:55 +00008593#. The optional "cconv" marker indicates which :ref:`calling
8594 convention <callingconv>` the call should use. If none is
8595 specified, the call defaults to using C calling conventions. The
8596 calling convention of the call must match the calling convention of
8597 the target function, or else the behavior is undefined.
8598#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8599 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8600 are valid here.
8601#. '``ty``': the type of the call instruction itself which is also the
8602 type of the return value. Functions that return no value are marked
8603 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008604#. '``fnty``': shall be the signature of the function being called. The
8605 argument types must match the types implied by this signature. This
8606 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008607#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008608 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008609 indirect ``call``'s are just as possible, calling an arbitrary pointer
8610 to function value.
8611#. '``function args``': argument list whose types match the function
8612 signature argument types and parameter attributes. All arguments must
8613 be of :ref:`first class <t_firstclass>` type. If the function signature
8614 indicates the function accepts a variable number of arguments, the
8615 extra arguments can be specified.
8616#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008617 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8618 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008619#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008620
8621Semantics:
8622""""""""""
8623
8624The '``call``' instruction is used to cause control flow to transfer to
8625a specified function, with its incoming arguments bound to the specified
8626values. Upon a '``ret``' instruction in the called function, control
8627flow continues with the instruction after the function call, and the
8628return value of the function is bound to the result argument.
8629
8630Example:
8631""""""""
8632
8633.. code-block:: llvm
8634
8635 %retval = call i32 @test(i32 %argc)
8636 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8637 %X = tail call i32 @foo() ; yields i32
8638 %Y = tail call fastcc i32 @foo() ; yields i32
8639 call void %foo(i8 97 signext)
8640
8641 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008642 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008643 %gr = extractvalue %struct.A %r, 0 ; yields i32
8644 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8645 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8646 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8647
8648llvm treats calls to some functions with names and arguments that match
8649the standard C99 library as being the C99 library functions, and may
8650perform optimizations or generate code for them under that assumption.
8651This is something we'd like to change in the future to provide better
8652support for freestanding environments and non-C-based languages.
8653
8654.. _i_va_arg:
8655
8656'``va_arg``' Instruction
8657^^^^^^^^^^^^^^^^^^^^^^^^
8658
8659Syntax:
8660"""""""
8661
8662::
8663
8664 <resultval> = va_arg <va_list*> <arglist>, <argty>
8665
8666Overview:
8667"""""""""
8668
8669The '``va_arg``' instruction is used to access arguments passed through
8670the "variable argument" area of a function call. It is used to implement
8671the ``va_arg`` macro in C.
8672
8673Arguments:
8674""""""""""
8675
8676This instruction takes a ``va_list*`` value and the type of the
8677argument. It returns a value of the specified argument type and
8678increments the ``va_list`` to point to the next argument. The actual
8679type of ``va_list`` is target specific.
8680
8681Semantics:
8682""""""""""
8683
8684The '``va_arg``' instruction loads an argument of the specified type
8685from the specified ``va_list`` and causes the ``va_list`` to point to
8686the next argument. For more information, see the variable argument
8687handling :ref:`Intrinsic Functions <int_varargs>`.
8688
8689It is legal for this instruction to be called in a function which does
8690not take a variable number of arguments, for example, the ``vfprintf``
8691function.
8692
8693``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8694function <intrinsics>` because it takes a type as an argument.
8695
8696Example:
8697""""""""
8698
8699See the :ref:`variable argument processing <int_varargs>` section.
8700
8701Note that the code generator does not yet fully support va\_arg on many
8702targets. Also, it does not currently support va\_arg with aggregate
8703types on any target.
8704
8705.. _i_landingpad:
8706
8707'``landingpad``' Instruction
8708^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8709
8710Syntax:
8711"""""""
8712
8713::
8714
David Majnemer7fddecc2015-06-17 20:52:32 +00008715 <resultval> = landingpad <resultty> <clause>+
8716 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008717
8718 <clause> := catch <type> <value>
8719 <clause> := filter <array constant type> <array constant>
8720
8721Overview:
8722"""""""""
8723
8724The '``landingpad``' instruction is used by `LLVM's exception handling
8725system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008726is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008727code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008728defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008729re-entry to the function. The ``resultval`` has the type ``resultty``.
8730
8731Arguments:
8732""""""""""
8733
David Majnemer7fddecc2015-06-17 20:52:32 +00008734The optional
Sean Silvab084af42012-12-07 10:36:55 +00008735``cleanup`` flag indicates that the landing pad block is a cleanup.
8736
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008737A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008738contains the global variable representing the "type" that may be caught
8739or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8740clause takes an array constant as its argument. Use
8741"``[0 x i8**] undef``" for a filter which cannot throw. The
8742'``landingpad``' instruction must contain *at least* one ``clause`` or
8743the ``cleanup`` flag.
8744
8745Semantics:
8746""""""""""
8747
8748The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008749:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008750therefore the "result type" of the ``landingpad`` instruction. As with
8751calling conventions, how the personality function results are
8752represented in LLVM IR is target specific.
8753
8754The clauses are applied in order from top to bottom. If two
8755``landingpad`` instructions are merged together through inlining, the
8756clauses from the calling function are appended to the list of clauses.
8757When the call stack is being unwound due to an exception being thrown,
8758the exception is compared against each ``clause`` in turn. If it doesn't
8759match any of the clauses, and the ``cleanup`` flag is not set, then
8760unwinding continues further up the call stack.
8761
8762The ``landingpad`` instruction has several restrictions:
8763
8764- A landing pad block is a basic block which is the unwind destination
8765 of an '``invoke``' instruction.
8766- A landing pad block must have a '``landingpad``' instruction as its
8767 first non-PHI instruction.
8768- There can be only one '``landingpad``' instruction within the landing
8769 pad block.
8770- A basic block that is not a landing pad block may not include a
8771 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008772
8773Example:
8774""""""""
8775
8776.. code-block:: llvm
8777
8778 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008779 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008780 catch i8** @_ZTIi
8781 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008782 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008783 cleanup
8784 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008785 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008786 catch i8** @_ZTIi
8787 filter [1 x i8**] [@_ZTId]
8788
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008789.. _i_catchpad:
8790
8791'``catchpad``' Instruction
8792^^^^^^^^^^^^^^^^^^^^^^^^^^
8793
8794Syntax:
8795"""""""
8796
8797::
8798
8799 <resultval> = catchpad within <catchswitch> [<args>*]
8800
8801Overview:
8802"""""""""
8803
8804The '``catchpad``' instruction is used by `LLVM's exception handling
8805system <ExceptionHandling.html#overview>`_ to specify that a basic block
8806begins a catch handler --- one where a personality routine attempts to transfer
8807control to catch an exception.
8808
8809Arguments:
8810""""""""""
8811
8812The ``catchswitch`` operand must always be a token produced by a
8813:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8814ensures that each ``catchpad`` has exactly one predecessor block, and it always
8815terminates in a ``catchswitch``.
8816
8817The ``args`` correspond to whatever information the personality routine
8818requires to know if this is an appropriate handler for the exception. Control
8819will transfer to the ``catchpad`` if this is the first appropriate handler for
8820the exception.
8821
8822The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8823``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8824pads.
8825
8826Semantics:
8827""""""""""
8828
8829When the call stack is being unwound due to an exception being thrown, the
8830exception is compared against the ``args``. If it doesn't match, control will
8831not reach the ``catchpad`` instruction. The representation of ``args`` is
8832entirely target and personality function-specific.
8833
8834Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8835instruction must be the first non-phi of its parent basic block.
8836
8837The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8838instructions is described in the
8839`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8840
8841When a ``catchpad`` has been "entered" but not yet "exited" (as
8842described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8843it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8844that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8845
8846Example:
8847""""""""
8848
Renato Golin124f2592016-07-20 12:16:38 +00008849.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008850
8851 dispatch:
8852 %cs = catchswitch within none [label %handler0] unwind to caller
8853 ;; A catch block which can catch an integer.
8854 handler0:
8855 %tok = catchpad within %cs [i8** @_ZTIi]
8856
David Majnemer654e1302015-07-31 17:58:14 +00008857.. _i_cleanuppad:
8858
8859'``cleanuppad``' Instruction
8860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8861
8862Syntax:
8863"""""""
8864
8865::
8866
David Majnemer8a1c45d2015-12-12 05:38:55 +00008867 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008868
8869Overview:
8870"""""""""
8871
8872The '``cleanuppad``' instruction is used by `LLVM's exception handling
8873system <ExceptionHandling.html#overview>`_ to specify that a basic block
8874is a cleanup block --- one where a personality routine attempts to
8875transfer control to run cleanup actions.
8876The ``args`` correspond to whatever additional
8877information the :ref:`personality function <personalityfn>` requires to
8878execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008879The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008880match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8881The ``parent`` argument is the token of the funclet that contains the
8882``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8883this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008884
8885Arguments:
8886""""""""""
8887
8888The instruction takes a list of arbitrary values which are interpreted
8889by the :ref:`personality function <personalityfn>`.
8890
8891Semantics:
8892""""""""""
8893
David Majnemer654e1302015-07-31 17:58:14 +00008894When the call stack is being unwound due to an exception being thrown,
8895the :ref:`personality function <personalityfn>` transfers control to the
8896``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008897As with calling conventions, how the personality function results are
8898represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008899
8900The ``cleanuppad`` instruction has several restrictions:
8901
8902- A cleanup block is a basic block which is the unwind destination of
8903 an exceptional instruction.
8904- A cleanup block must have a '``cleanuppad``' instruction as its
8905 first non-PHI instruction.
8906- There can be only one '``cleanuppad``' instruction within the
8907 cleanup block.
8908- A basic block that is not a cleanup block may not include a
8909 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008910
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008911When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8912described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8913it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8914that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008915
David Majnemer654e1302015-07-31 17:58:14 +00008916Example:
8917""""""""
8918
Renato Golin124f2592016-07-20 12:16:38 +00008919.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00008920
David Majnemer8a1c45d2015-12-12 05:38:55 +00008921 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008922
Sean Silvab084af42012-12-07 10:36:55 +00008923.. _intrinsics:
8924
8925Intrinsic Functions
8926===================
8927
8928LLVM supports the notion of an "intrinsic function". These functions
8929have well known names and semantics and are required to follow certain
8930restrictions. Overall, these intrinsics represent an extension mechanism
8931for the LLVM language that does not require changing all of the
8932transformations in LLVM when adding to the language (or the bitcode
8933reader/writer, the parser, etc...).
8934
8935Intrinsic function names must all start with an "``llvm.``" prefix. This
8936prefix is reserved in LLVM for intrinsic names; thus, function names may
8937not begin with this prefix. Intrinsic functions must always be external
8938functions: you cannot define the body of intrinsic functions. Intrinsic
8939functions may only be used in call or invoke instructions: it is illegal
8940to take the address of an intrinsic function. Additionally, because
8941intrinsic functions are part of the LLVM language, it is required if any
8942are added that they be documented here.
8943
8944Some intrinsic functions can be overloaded, i.e., the intrinsic
8945represents a family of functions that perform the same operation but on
8946different data types. Because LLVM can represent over 8 million
8947different integer types, overloading is used commonly to allow an
8948intrinsic function to operate on any integer type. One or more of the
8949argument types or the result type can be overloaded to accept any
8950integer type. Argument types may also be defined as exactly matching a
8951previous argument's type or the result type. This allows an intrinsic
8952function which accepts multiple arguments, but needs all of them to be
8953of the same type, to only be overloaded with respect to a single
8954argument or the result.
8955
8956Overloaded intrinsics will have the names of its overloaded argument
8957types encoded into its function name, each preceded by a period. Only
8958those types which are overloaded result in a name suffix. Arguments
8959whose type is matched against another type do not. For example, the
8960``llvm.ctpop`` function can take an integer of any width and returns an
8961integer of exactly the same integer width. This leads to a family of
8962functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8963``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8964overloaded, and only one type suffix is required. Because the argument's
8965type is matched against the return type, it does not require its own
8966name suffix.
8967
8968To learn how to add an intrinsic function, please see the `Extending
8969LLVM Guide <ExtendingLLVM.html>`_.
8970
8971.. _int_varargs:
8972
8973Variable Argument Handling Intrinsics
8974-------------------------------------
8975
8976Variable argument support is defined in LLVM with the
8977:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8978functions. These functions are related to the similarly named macros
8979defined in the ``<stdarg.h>`` header file.
8980
8981All of these functions operate on arguments that use a target-specific
8982value type "``va_list``". The LLVM assembly language reference manual
8983does not define what this type is, so all transformations should be
8984prepared to handle these functions regardless of the type used.
8985
8986This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8987variable argument handling intrinsic functions are used.
8988
8989.. code-block:: llvm
8990
Tim Northoverab60bb92014-11-02 01:21:51 +00008991 ; This struct is different for every platform. For most platforms,
8992 ; it is merely an i8*.
8993 %struct.va_list = type { i8* }
8994
8995 ; For Unix x86_64 platforms, va_list is the following struct:
8996 ; %struct.va_list = type { i32, i32, i8*, i8* }
8997
Sean Silvab084af42012-12-07 10:36:55 +00008998 define i32 @test(i32 %X, ...) {
8999 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009000 %ap = alloca %struct.va_list
9001 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009002 call void @llvm.va_start(i8* %ap2)
9003
9004 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009005 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009006
9007 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9008 %aq = alloca i8*
9009 %aq2 = bitcast i8** %aq to i8*
9010 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9011 call void @llvm.va_end(i8* %aq2)
9012
9013 ; Stop processing of arguments.
9014 call void @llvm.va_end(i8* %ap2)
9015 ret i32 %tmp
9016 }
9017
9018 declare void @llvm.va_start(i8*)
9019 declare void @llvm.va_copy(i8*, i8*)
9020 declare void @llvm.va_end(i8*)
9021
9022.. _int_va_start:
9023
9024'``llvm.va_start``' Intrinsic
9025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9026
9027Syntax:
9028"""""""
9029
9030::
9031
Nick Lewycky04f6de02013-09-11 22:04:52 +00009032 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009033
9034Overview:
9035"""""""""
9036
9037The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9038subsequent use by ``va_arg``.
9039
9040Arguments:
9041""""""""""
9042
9043The argument is a pointer to a ``va_list`` element to initialize.
9044
9045Semantics:
9046""""""""""
9047
9048The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9049available in C. In a target-dependent way, it initializes the
9050``va_list`` element to which the argument points, so that the next call
9051to ``va_arg`` will produce the first variable argument passed to the
9052function. Unlike the C ``va_start`` macro, this intrinsic does not need
9053to know the last argument of the function as the compiler can figure
9054that out.
9055
9056'``llvm.va_end``' Intrinsic
9057^^^^^^^^^^^^^^^^^^^^^^^^^^^
9058
9059Syntax:
9060"""""""
9061
9062::
9063
9064 declare void @llvm.va_end(i8* <arglist>)
9065
9066Overview:
9067"""""""""
9068
9069The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9070initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9071
9072Arguments:
9073""""""""""
9074
9075The argument is a pointer to a ``va_list`` to destroy.
9076
9077Semantics:
9078""""""""""
9079
9080The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9081available in C. In a target-dependent way, it destroys the ``va_list``
9082element to which the argument points. Calls to
9083:ref:`llvm.va_start <int_va_start>` and
9084:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9085``llvm.va_end``.
9086
9087.. _int_va_copy:
9088
9089'``llvm.va_copy``' Intrinsic
9090^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9091
9092Syntax:
9093"""""""
9094
9095::
9096
9097 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9098
9099Overview:
9100"""""""""
9101
9102The '``llvm.va_copy``' intrinsic copies the current argument position
9103from the source argument list to the destination argument list.
9104
9105Arguments:
9106""""""""""
9107
9108The first argument is a pointer to a ``va_list`` element to initialize.
9109The second argument is a pointer to a ``va_list`` element to copy from.
9110
9111Semantics:
9112""""""""""
9113
9114The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9115available in C. In a target-dependent way, it copies the source
9116``va_list`` element into the destination ``va_list`` element. This
9117intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9118arbitrarily complex and require, for example, memory allocation.
9119
9120Accurate Garbage Collection Intrinsics
9121--------------------------------------
9122
Philip Reamesc5b0f562015-02-25 23:52:06 +00009123LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009124(GC) requires the frontend to generate code containing appropriate intrinsic
9125calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009126intrinsics in a manner which is appropriate for the target collector.
9127
Sean Silvab084af42012-12-07 10:36:55 +00009128These intrinsics allow identification of :ref:`GC roots on the
9129stack <int_gcroot>`, as well as garbage collector implementations that
9130require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009131Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009132these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009133details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009134
Philip Reamesf80bbff2015-02-25 23:45:20 +00009135Experimental Statepoint Intrinsics
9136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9137
9138LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009139collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009140to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009141:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009142differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009143<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009144described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009145
9146.. _int_gcroot:
9147
9148'``llvm.gcroot``' Intrinsic
9149^^^^^^^^^^^^^^^^^^^^^^^^^^^
9150
9151Syntax:
9152"""""""
9153
9154::
9155
9156 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9157
9158Overview:
9159"""""""""
9160
9161The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9162the code generator, and allows some metadata to be associated with it.
9163
9164Arguments:
9165""""""""""
9166
9167The first argument specifies the address of a stack object that contains
9168the root pointer. The second pointer (which must be either a constant or
9169a global value address) contains the meta-data to be associated with the
9170root.
9171
9172Semantics:
9173""""""""""
9174
9175At runtime, a call to this intrinsic stores a null pointer into the
9176"ptrloc" location. At compile-time, the code generator generates
9177information to allow the runtime to find the pointer at GC safe points.
9178The '``llvm.gcroot``' intrinsic may only be used in a function which
9179:ref:`specifies a GC algorithm <gc>`.
9180
9181.. _int_gcread:
9182
9183'``llvm.gcread``' Intrinsic
9184^^^^^^^^^^^^^^^^^^^^^^^^^^^
9185
9186Syntax:
9187"""""""
9188
9189::
9190
9191 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9192
9193Overview:
9194"""""""""
9195
9196The '``llvm.gcread``' intrinsic identifies reads of references from heap
9197locations, allowing garbage collector implementations that require read
9198barriers.
9199
9200Arguments:
9201""""""""""
9202
9203The second argument is the address to read from, which should be an
9204address allocated from the garbage collector. The first object is a
9205pointer to the start of the referenced object, if needed by the language
9206runtime (otherwise null).
9207
9208Semantics:
9209""""""""""
9210
9211The '``llvm.gcread``' intrinsic has the same semantics as a load
9212instruction, but may be replaced with substantially more complex code by
9213the garbage collector runtime, as needed. The '``llvm.gcread``'
9214intrinsic may only be used in a function which :ref:`specifies a GC
9215algorithm <gc>`.
9216
9217.. _int_gcwrite:
9218
9219'``llvm.gcwrite``' Intrinsic
9220^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9221
9222Syntax:
9223"""""""
9224
9225::
9226
9227 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9228
9229Overview:
9230"""""""""
9231
9232The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9233locations, allowing garbage collector implementations that require write
9234barriers (such as generational or reference counting collectors).
9235
9236Arguments:
9237""""""""""
9238
9239The first argument is the reference to store, the second is the start of
9240the object to store it to, and the third is the address of the field of
9241Obj to store to. If the runtime does not require a pointer to the
9242object, Obj may be null.
9243
9244Semantics:
9245""""""""""
9246
9247The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9248instruction, but may be replaced with substantially more complex code by
9249the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9250intrinsic may only be used in a function which :ref:`specifies a GC
9251algorithm <gc>`.
9252
9253Code Generator Intrinsics
9254-------------------------
9255
9256These intrinsics are provided by LLVM to expose special features that
9257may only be implemented with code generator support.
9258
9259'``llvm.returnaddress``' Intrinsic
9260^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9261
9262Syntax:
9263"""""""
9264
9265::
9266
9267 declare i8 *@llvm.returnaddress(i32 <level>)
9268
9269Overview:
9270"""""""""
9271
9272The '``llvm.returnaddress``' intrinsic attempts to compute a
9273target-specific value indicating the return address of the current
9274function or one of its callers.
9275
9276Arguments:
9277""""""""""
9278
9279The argument to this intrinsic indicates which function to return the
9280address for. Zero indicates the calling function, one indicates its
9281caller, etc. The argument is **required** to be a constant integer
9282value.
9283
9284Semantics:
9285""""""""""
9286
9287The '``llvm.returnaddress``' intrinsic either returns a pointer
9288indicating the return address of the specified call frame, or zero if it
9289cannot be identified. The value returned by this intrinsic is likely to
9290be incorrect or 0 for arguments other than zero, so it should only be
9291used for debugging purposes.
9292
9293Note that calling this intrinsic does not prevent function inlining or
9294other aggressive transformations, so the value returned may not be that
9295of the obvious source-language caller.
9296
9297'``llvm.frameaddress``' Intrinsic
9298^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9299
9300Syntax:
9301"""""""
9302
9303::
9304
9305 declare i8* @llvm.frameaddress(i32 <level>)
9306
9307Overview:
9308"""""""""
9309
9310The '``llvm.frameaddress``' intrinsic attempts to return the
9311target-specific frame pointer value for the specified stack frame.
9312
9313Arguments:
9314""""""""""
9315
9316The argument to this intrinsic indicates which function to return the
9317frame pointer for. Zero indicates the calling function, one indicates
9318its caller, etc. The argument is **required** to be a constant integer
9319value.
9320
9321Semantics:
9322""""""""""
9323
9324The '``llvm.frameaddress``' intrinsic either returns a pointer
9325indicating the frame address of the specified call frame, or zero if it
9326cannot be identified. The value returned by this intrinsic is likely to
9327be incorrect or 0 for arguments other than zero, so it should only be
9328used for debugging purposes.
9329
9330Note that calling this intrinsic does not prevent function inlining or
9331other aggressive transformations, so the value returned may not be that
9332of the obvious source-language caller.
9333
Reid Kleckner60381792015-07-07 22:25:32 +00009334'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009335^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9336
9337Syntax:
9338"""""""
9339
9340::
9341
Reid Kleckner60381792015-07-07 22:25:32 +00009342 declare void @llvm.localescape(...)
9343 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009344
9345Overview:
9346"""""""""
9347
Reid Kleckner60381792015-07-07 22:25:32 +00009348The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9349allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009350live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009351computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009352
9353Arguments:
9354""""""""""
9355
Reid Kleckner60381792015-07-07 22:25:32 +00009356All arguments to '``llvm.localescape``' must be pointers to static allocas or
9357casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009358once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009359
Reid Kleckner60381792015-07-07 22:25:32 +00009360The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009361bitcasted pointer to a function defined in the current module. The code
9362generator cannot determine the frame allocation offset of functions defined in
9363other modules.
9364
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009365The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9366call frame that is currently live. The return value of '``llvm.localaddress``'
9367is one way to produce such a value, but various runtimes also expose a suitable
9368pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009369
Reid Kleckner60381792015-07-07 22:25:32 +00009370The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9371'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009372
Reid Klecknere9b89312015-01-13 00:48:10 +00009373Semantics:
9374""""""""""
9375
Reid Kleckner60381792015-07-07 22:25:32 +00009376These intrinsics allow a group of functions to share access to a set of local
9377stack allocations of a one parent function. The parent function may call the
9378'``llvm.localescape``' intrinsic once from the function entry block, and the
9379child functions can use '``llvm.localrecover``' to access the escaped allocas.
9380The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9381the escaped allocas are allocated, which would break attempts to use
9382'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009383
Renato Golinc7aea402014-05-06 16:51:25 +00009384.. _int_read_register:
9385.. _int_write_register:
9386
9387'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9389
9390Syntax:
9391"""""""
9392
9393::
9394
9395 declare i32 @llvm.read_register.i32(metadata)
9396 declare i64 @llvm.read_register.i64(metadata)
9397 declare void @llvm.write_register.i32(metadata, i32 @value)
9398 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009399 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009400
9401Overview:
9402"""""""""
9403
9404The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9405provides access to the named register. The register must be valid on
9406the architecture being compiled to. The type needs to be compatible
9407with the register being read.
9408
9409Semantics:
9410""""""""""
9411
9412The '``llvm.read_register``' intrinsic returns the current value of the
9413register, where possible. The '``llvm.write_register``' intrinsic sets
9414the current value of the register, where possible.
9415
9416This is useful to implement named register global variables that need
9417to always be mapped to a specific register, as is common practice on
9418bare-metal programs including OS kernels.
9419
9420The compiler doesn't check for register availability or use of the used
9421register in surrounding code, including inline assembly. Because of that,
9422allocatable registers are not supported.
9423
9424Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009425architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009426work is needed to support other registers and even more so, allocatable
9427registers.
9428
Sean Silvab084af42012-12-07 10:36:55 +00009429.. _int_stacksave:
9430
9431'``llvm.stacksave``' Intrinsic
9432^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9433
9434Syntax:
9435"""""""
9436
9437::
9438
9439 declare i8* @llvm.stacksave()
9440
9441Overview:
9442"""""""""
9443
9444The '``llvm.stacksave``' intrinsic is used to remember the current state
9445of the function stack, for use with
9446:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9447implementing language features like scoped automatic variable sized
9448arrays in C99.
9449
9450Semantics:
9451""""""""""
9452
9453This intrinsic returns a opaque pointer value that can be passed to
9454:ref:`llvm.stackrestore <int_stackrestore>`. When an
9455``llvm.stackrestore`` intrinsic is executed with a value saved from
9456``llvm.stacksave``, it effectively restores the state of the stack to
9457the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9458practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9459were allocated after the ``llvm.stacksave`` was executed.
9460
9461.. _int_stackrestore:
9462
9463'``llvm.stackrestore``' Intrinsic
9464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9465
9466Syntax:
9467"""""""
9468
9469::
9470
9471 declare void @llvm.stackrestore(i8* %ptr)
9472
9473Overview:
9474"""""""""
9475
9476The '``llvm.stackrestore``' intrinsic is used to restore the state of
9477the function stack to the state it was in when the corresponding
9478:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9479useful for implementing language features like scoped automatic variable
9480sized arrays in C99.
9481
9482Semantics:
9483""""""""""
9484
9485See the description for :ref:`llvm.stacksave <int_stacksave>`.
9486
Yury Gribovd7dbb662015-12-01 11:40:55 +00009487.. _int_get_dynamic_area_offset:
9488
9489'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009491
9492Syntax:
9493"""""""
9494
9495::
9496
9497 declare i32 @llvm.get.dynamic.area.offset.i32()
9498 declare i64 @llvm.get.dynamic.area.offset.i64()
9499
9500 Overview:
9501 """""""""
9502
9503 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9504 get the offset from native stack pointer to the address of the most
9505 recent dynamic alloca on the caller's stack. These intrinsics are
9506 intendend for use in combination with
9507 :ref:`llvm.stacksave <int_stacksave>` to get a
9508 pointer to the most recent dynamic alloca. This is useful, for example,
9509 for AddressSanitizer's stack unpoisoning routines.
9510
9511Semantics:
9512""""""""""
9513
9514 These intrinsics return a non-negative integer value that can be used to
9515 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9516 on the caller's stack. In particular, for targets where stack grows downwards,
9517 adding this offset to the native stack pointer would get the address of the most
9518 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009519 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009520 one past the end of the most recent dynamic alloca.
9521
9522 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9523 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9524 compile-time-known constant value.
9525
9526 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9527 must match the target's generic address space's (address space 0) pointer type.
9528
Sean Silvab084af42012-12-07 10:36:55 +00009529'``llvm.prefetch``' Intrinsic
9530^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9531
9532Syntax:
9533"""""""
9534
9535::
9536
9537 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9538
9539Overview:
9540"""""""""
9541
9542The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9543insert a prefetch instruction if supported; otherwise, it is a noop.
9544Prefetches have no effect on the behavior of the program but can change
9545its performance characteristics.
9546
9547Arguments:
9548""""""""""
9549
9550``address`` is the address to be prefetched, ``rw`` is the specifier
9551determining if the fetch should be for a read (0) or write (1), and
9552``locality`` is a temporal locality specifier ranging from (0) - no
9553locality, to (3) - extremely local keep in cache. The ``cache type``
9554specifies whether the prefetch is performed on the data (1) or
9555instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9556arguments must be constant integers.
9557
9558Semantics:
9559""""""""""
9560
9561This intrinsic does not modify the behavior of the program. In
9562particular, prefetches cannot trap and do not produce a value. On
9563targets that support this intrinsic, the prefetch can provide hints to
9564the processor cache for better performance.
9565
9566'``llvm.pcmarker``' Intrinsic
9567^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9568
9569Syntax:
9570"""""""
9571
9572::
9573
9574 declare void @llvm.pcmarker(i32 <id>)
9575
9576Overview:
9577"""""""""
9578
9579The '``llvm.pcmarker``' intrinsic is a method to export a Program
9580Counter (PC) in a region of code to simulators and other tools. The
9581method is target specific, but it is expected that the marker will use
9582exported symbols to transmit the PC of the marker. The marker makes no
9583guarantees that it will remain with any specific instruction after
9584optimizations. It is possible that the presence of a marker will inhibit
9585optimizations. The intended use is to be inserted after optimizations to
9586allow correlations of simulation runs.
9587
9588Arguments:
9589""""""""""
9590
9591``id`` is a numerical id identifying the marker.
9592
9593Semantics:
9594""""""""""
9595
9596This intrinsic does not modify the behavior of the program. Backends
9597that do not support this intrinsic may ignore it.
9598
9599'``llvm.readcyclecounter``' Intrinsic
9600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9601
9602Syntax:
9603"""""""
9604
9605::
9606
9607 declare i64 @llvm.readcyclecounter()
9608
9609Overview:
9610"""""""""
9611
9612The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9613counter register (or similar low latency, high accuracy clocks) on those
9614targets that support it. On X86, it should map to RDTSC. On Alpha, it
9615should map to RPCC. As the backing counters overflow quickly (on the
9616order of 9 seconds on alpha), this should only be used for small
9617timings.
9618
9619Semantics:
9620""""""""""
9621
9622When directly supported, reading the cycle counter should not modify any
9623memory. Implementations are allowed to either return a application
9624specific value or a system wide value. On backends without support, this
9625is lowered to a constant 0.
9626
Tim Northoverbc933082013-05-23 19:11:20 +00009627Note that runtime support may be conditional on the privilege-level code is
9628running at and the host platform.
9629
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009630'``llvm.clear_cache``' Intrinsic
9631^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9632
9633Syntax:
9634"""""""
9635
9636::
9637
9638 declare void @llvm.clear_cache(i8*, i8*)
9639
9640Overview:
9641"""""""""
9642
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009643The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9644in the specified range to the execution unit of the processor. On
9645targets with non-unified instruction and data cache, the implementation
9646flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009647
9648Semantics:
9649""""""""""
9650
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009651On platforms with coherent instruction and data caches (e.g. x86), this
9652intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009653cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009654instructions or a system call, if cache flushing requires special
9655privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009656
Sean Silvad02bf3e2014-04-07 22:29:53 +00009657The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009658time library.
Renato Golin93010e62014-03-26 14:01:32 +00009659
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009660This instrinsic does *not* empty the instruction pipeline. Modifications
9661of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009662
Justin Bogner61ba2e32014-12-08 18:02:35 +00009663'``llvm.instrprof_increment``' Intrinsic
9664^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9665
9666Syntax:
9667"""""""
9668
9669::
9670
9671 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9672 i32 <num-counters>, i32 <index>)
9673
9674Overview:
9675"""""""""
9676
9677The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9678frontend for use with instrumentation based profiling. These will be
9679lowered by the ``-instrprof`` pass to generate execution counts of a
9680program at runtime.
9681
9682Arguments:
9683""""""""""
9684
9685The first argument is a pointer to a global variable containing the
9686name of the entity being instrumented. This should generally be the
9687(mangled) function name for a set of counters.
9688
9689The second argument is a hash value that can be used by the consumer
9690of the profile data to detect changes to the instrumented source, and
9691the third is the number of counters associated with ``name``. It is an
9692error if ``hash`` or ``num-counters`` differ between two instances of
9693``instrprof_increment`` that refer to the same name.
9694
9695The last argument refers to which of the counters for ``name`` should
9696be incremented. It should be a value between 0 and ``num-counters``.
9697
9698Semantics:
9699""""""""""
9700
9701This intrinsic represents an increment of a profiling counter. It will
9702cause the ``-instrprof`` pass to generate the appropriate data
9703structures and the code to increment the appropriate value, in a
9704format that can be written out by a compiler runtime and consumed via
9705the ``llvm-profdata`` tool.
9706
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009707'``llvm.instrprof_value_profile``' Intrinsic
9708^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9709
9710Syntax:
9711"""""""
9712
9713::
9714
9715 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9716 i64 <value>, i32 <value_kind>,
9717 i32 <index>)
9718
9719Overview:
9720"""""""""
9721
9722The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9723frontend for use with instrumentation based profiling. This will be
9724lowered by the ``-instrprof`` pass to find out the target values,
9725instrumented expressions take in a program at runtime.
9726
9727Arguments:
9728""""""""""
9729
9730The first argument is a pointer to a global variable containing the
9731name of the entity being instrumented. ``name`` should generally be the
9732(mangled) function name for a set of counters.
9733
9734The second argument is a hash value that can be used by the consumer
9735of the profile data to detect changes to the instrumented source. It
9736is an error if ``hash`` differs between two instances of
9737``llvm.instrprof_*`` that refer to the same name.
9738
9739The third argument is the value of the expression being profiled. The profiled
9740expression's value should be representable as an unsigned 64-bit value. The
9741fourth argument represents the kind of value profiling that is being done. The
9742supported value profiling kinds are enumerated through the
9743``InstrProfValueKind`` type declared in the
9744``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9745index of the instrumented expression within ``name``. It should be >= 0.
9746
9747Semantics:
9748""""""""""
9749
9750This intrinsic represents the point where a call to a runtime routine
9751should be inserted for value profiling of target expressions. ``-instrprof``
9752pass will generate the appropriate data structures and replace the
9753``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9754runtime library with proper arguments.
9755
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009756'``llvm.thread.pointer``' Intrinsic
9757^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9758
9759Syntax:
9760"""""""
9761
9762::
9763
9764 declare i8* @llvm.thread.pointer()
9765
9766Overview:
9767"""""""""
9768
9769The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9770pointer.
9771
9772Semantics:
9773""""""""""
9774
9775The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9776for the current thread. The exact semantics of this value are target
9777specific: it may point to the start of TLS area, to the end, or somewhere
9778in the middle. Depending on the target, this intrinsic may read a register,
9779call a helper function, read from an alternate memory space, or perform
9780other operations necessary to locate the TLS area. Not all targets support
9781this intrinsic.
9782
Sean Silvab084af42012-12-07 10:36:55 +00009783Standard C Library Intrinsics
9784-----------------------------
9785
9786LLVM provides intrinsics for a few important standard C library
9787functions. These intrinsics allow source-language front-ends to pass
9788information about the alignment of the pointer arguments to the code
9789generator, providing opportunity for more efficient code generation.
9790
9791.. _int_memcpy:
9792
9793'``llvm.memcpy``' Intrinsic
9794^^^^^^^^^^^^^^^^^^^^^^^^^^^
9795
9796Syntax:
9797"""""""
9798
9799This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9800integer bit width and for different address spaces. Not all targets
9801support all bit widths however.
9802
9803::
9804
9805 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9806 i32 <len>, i32 <align>, i1 <isvolatile>)
9807 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9808 i64 <len>, i32 <align>, i1 <isvolatile>)
9809
9810Overview:
9811"""""""""
9812
9813The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9814source location to the destination location.
9815
9816Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9817intrinsics do not return a value, takes extra alignment/isvolatile
9818arguments and the pointers can be in specified address spaces.
9819
9820Arguments:
9821""""""""""
9822
9823The first argument is a pointer to the destination, the second is a
9824pointer to the source. The third argument is an integer argument
9825specifying the number of bytes to copy, the fourth argument is the
9826alignment of the source and destination locations, and the fifth is a
9827boolean indicating a volatile access.
9828
9829If the call to this intrinsic has an alignment value that is not 0 or 1,
9830then the caller guarantees that both the source and destination pointers
9831are aligned to that boundary.
9832
9833If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9834a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9835very cleanly specified and it is unwise to depend on it.
9836
9837Semantics:
9838""""""""""
9839
9840The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9841source location to the destination location, which are not allowed to
9842overlap. It copies "len" bytes of memory over. If the argument is known
9843to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009844argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009845
9846'``llvm.memmove``' Intrinsic
9847^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9848
9849Syntax:
9850"""""""
9851
9852This is an overloaded intrinsic. You can use llvm.memmove on any integer
9853bit width and for different address space. Not all targets support all
9854bit widths however.
9855
9856::
9857
9858 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9859 i32 <len>, i32 <align>, i1 <isvolatile>)
9860 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9861 i64 <len>, i32 <align>, i1 <isvolatile>)
9862
9863Overview:
9864"""""""""
9865
9866The '``llvm.memmove.*``' intrinsics move a block of memory from the
9867source location to the destination location. It is similar to the
9868'``llvm.memcpy``' intrinsic but allows the two memory locations to
9869overlap.
9870
9871Note that, unlike the standard libc function, the ``llvm.memmove.*``
9872intrinsics do not return a value, takes extra alignment/isvolatile
9873arguments and the pointers can be in specified address spaces.
9874
9875Arguments:
9876""""""""""
9877
9878The first argument is a pointer to the destination, the second is a
9879pointer to the source. The third argument is an integer argument
9880specifying the number of bytes to copy, the fourth argument is the
9881alignment of the source and destination locations, and the fifth is a
9882boolean indicating a volatile access.
9883
9884If the call to this intrinsic has an alignment value that is not 0 or 1,
9885then the caller guarantees that the source and destination pointers are
9886aligned to that boundary.
9887
9888If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9889is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9890not very cleanly specified and it is unwise to depend on it.
9891
9892Semantics:
9893""""""""""
9894
9895The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9896source location to the destination location, which may overlap. It
9897copies "len" bytes of memory over. If the argument is known to be
9898aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009899otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009900
9901'``llvm.memset.*``' Intrinsics
9902^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9903
9904Syntax:
9905"""""""
9906
9907This is an overloaded intrinsic. You can use llvm.memset on any integer
9908bit width and for different address spaces. However, not all targets
9909support all bit widths.
9910
9911::
9912
9913 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9914 i32 <len>, i32 <align>, i1 <isvolatile>)
9915 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9916 i64 <len>, i32 <align>, i1 <isvolatile>)
9917
9918Overview:
9919"""""""""
9920
9921The '``llvm.memset.*``' intrinsics fill a block of memory with a
9922particular byte value.
9923
9924Note that, unlike the standard libc function, the ``llvm.memset``
9925intrinsic does not return a value and takes extra alignment/volatile
9926arguments. Also, the destination can be in an arbitrary address space.
9927
9928Arguments:
9929""""""""""
9930
9931The first argument is a pointer to the destination to fill, the second
9932is the byte value with which to fill it, the third argument is an
9933integer argument specifying the number of bytes to fill, and the fourth
9934argument is the known alignment of the destination location.
9935
9936If the call to this intrinsic has an alignment value that is not 0 or 1,
9937then the caller guarantees that the destination pointer is aligned to
9938that boundary.
9939
9940If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9941a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9942very cleanly specified and it is unwise to depend on it.
9943
9944Semantics:
9945""""""""""
9946
9947The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9948at the destination location. If the argument is known to be aligned to
9949some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009950it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009951
9952'``llvm.sqrt.*``' Intrinsic
9953^^^^^^^^^^^^^^^^^^^^^^^^^^^
9954
9955Syntax:
9956"""""""
9957
9958This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9959floating point or vector of floating point type. Not all targets support
9960all types however.
9961
9962::
9963
9964 declare float @llvm.sqrt.f32(float %Val)
9965 declare double @llvm.sqrt.f64(double %Val)
9966 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9967 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9968 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9969
9970Overview:
9971"""""""""
9972
9973The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9974returning the same value as the libm '``sqrt``' functions would. Unlike
9975``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9976negative numbers other than -0.0 (which allows for better optimization,
9977because there is no need to worry about errno being set).
9978``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9979
9980Arguments:
9981""""""""""
9982
9983The argument and return value are floating point numbers of the same
9984type.
9985
9986Semantics:
9987""""""""""
9988
9989This function returns the sqrt of the specified operand if it is a
9990nonnegative floating point number.
9991
9992'``llvm.powi.*``' Intrinsic
9993^^^^^^^^^^^^^^^^^^^^^^^^^^^
9994
9995Syntax:
9996"""""""
9997
9998This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9999floating point or vector of floating point type. Not all targets support
10000all types however.
10001
10002::
10003
10004 declare float @llvm.powi.f32(float %Val, i32 %power)
10005 declare double @llvm.powi.f64(double %Val, i32 %power)
10006 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10007 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10008 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10009
10010Overview:
10011"""""""""
10012
10013The '``llvm.powi.*``' intrinsics return the first operand raised to the
10014specified (positive or negative) power. The order of evaluation of
10015multiplications is not defined. When a vector of floating point type is
10016used, the second argument remains a scalar integer value.
10017
10018Arguments:
10019""""""""""
10020
10021The second argument is an integer power, and the first is a value to
10022raise to that power.
10023
10024Semantics:
10025""""""""""
10026
10027This function returns the first value raised to the second power with an
10028unspecified sequence of rounding operations.
10029
10030'``llvm.sin.*``' Intrinsic
10031^^^^^^^^^^^^^^^^^^^^^^^^^^
10032
10033Syntax:
10034"""""""
10035
10036This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10037floating point or vector of floating point type. Not all targets support
10038all types however.
10039
10040::
10041
10042 declare float @llvm.sin.f32(float %Val)
10043 declare double @llvm.sin.f64(double %Val)
10044 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10045 declare fp128 @llvm.sin.f128(fp128 %Val)
10046 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10047
10048Overview:
10049"""""""""
10050
10051The '``llvm.sin.*``' intrinsics return the sine of the operand.
10052
10053Arguments:
10054""""""""""
10055
10056The argument and return value are floating point numbers of the same
10057type.
10058
10059Semantics:
10060""""""""""
10061
10062This function returns the sine of the specified operand, returning the
10063same values as the libm ``sin`` functions would, and handles error
10064conditions in the same way.
10065
10066'``llvm.cos.*``' Intrinsic
10067^^^^^^^^^^^^^^^^^^^^^^^^^^
10068
10069Syntax:
10070"""""""
10071
10072This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10073floating point or vector of floating point type. Not all targets support
10074all types however.
10075
10076::
10077
10078 declare float @llvm.cos.f32(float %Val)
10079 declare double @llvm.cos.f64(double %Val)
10080 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10081 declare fp128 @llvm.cos.f128(fp128 %Val)
10082 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10083
10084Overview:
10085"""""""""
10086
10087The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10088
10089Arguments:
10090""""""""""
10091
10092The argument and return value are floating point numbers of the same
10093type.
10094
10095Semantics:
10096""""""""""
10097
10098This function returns the cosine of the specified operand, returning the
10099same values as the libm ``cos`` functions would, and handles error
10100conditions in the same way.
10101
10102'``llvm.pow.*``' Intrinsic
10103^^^^^^^^^^^^^^^^^^^^^^^^^^
10104
10105Syntax:
10106"""""""
10107
10108This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10109floating point or vector of floating point type. Not all targets support
10110all types however.
10111
10112::
10113
10114 declare float @llvm.pow.f32(float %Val, float %Power)
10115 declare double @llvm.pow.f64(double %Val, double %Power)
10116 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10117 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10118 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10119
10120Overview:
10121"""""""""
10122
10123The '``llvm.pow.*``' intrinsics return the first operand raised to the
10124specified (positive or negative) power.
10125
10126Arguments:
10127""""""""""
10128
10129The second argument is a floating point power, and the first is a value
10130to raise to that power.
10131
10132Semantics:
10133""""""""""
10134
10135This function returns the first value raised to the second power,
10136returning the same values as the libm ``pow`` functions would, and
10137handles error conditions in the same way.
10138
10139'``llvm.exp.*``' Intrinsic
10140^^^^^^^^^^^^^^^^^^^^^^^^^^
10141
10142Syntax:
10143"""""""
10144
10145This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10146floating point or vector of floating point type. Not all targets support
10147all types however.
10148
10149::
10150
10151 declare float @llvm.exp.f32(float %Val)
10152 declare double @llvm.exp.f64(double %Val)
10153 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10154 declare fp128 @llvm.exp.f128(fp128 %Val)
10155 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10156
10157Overview:
10158"""""""""
10159
10160The '``llvm.exp.*``' intrinsics perform the exp function.
10161
10162Arguments:
10163""""""""""
10164
10165The argument and return value are floating point numbers of the same
10166type.
10167
10168Semantics:
10169""""""""""
10170
10171This function returns the same values as the libm ``exp`` functions
10172would, and handles error conditions in the same way.
10173
10174'``llvm.exp2.*``' Intrinsic
10175^^^^^^^^^^^^^^^^^^^^^^^^^^^
10176
10177Syntax:
10178"""""""
10179
10180This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10181floating point or vector of floating point type. Not all targets support
10182all types however.
10183
10184::
10185
10186 declare float @llvm.exp2.f32(float %Val)
10187 declare double @llvm.exp2.f64(double %Val)
10188 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10189 declare fp128 @llvm.exp2.f128(fp128 %Val)
10190 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10191
10192Overview:
10193"""""""""
10194
10195The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10196
10197Arguments:
10198""""""""""
10199
10200The argument and return value are floating point numbers of the same
10201type.
10202
10203Semantics:
10204""""""""""
10205
10206This function returns the same values as the libm ``exp2`` functions
10207would, and handles error conditions in the same way.
10208
10209'``llvm.log.*``' Intrinsic
10210^^^^^^^^^^^^^^^^^^^^^^^^^^
10211
10212Syntax:
10213"""""""
10214
10215This is an overloaded intrinsic. You can use ``llvm.log`` on any
10216floating point or vector of floating point type. Not all targets support
10217all types however.
10218
10219::
10220
10221 declare float @llvm.log.f32(float %Val)
10222 declare double @llvm.log.f64(double %Val)
10223 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10224 declare fp128 @llvm.log.f128(fp128 %Val)
10225 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10226
10227Overview:
10228"""""""""
10229
10230The '``llvm.log.*``' intrinsics perform the log function.
10231
10232Arguments:
10233""""""""""
10234
10235The argument and return value are floating point numbers of the same
10236type.
10237
10238Semantics:
10239""""""""""
10240
10241This function returns the same values as the libm ``log`` functions
10242would, and handles error conditions in the same way.
10243
10244'``llvm.log10.*``' Intrinsic
10245^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10246
10247Syntax:
10248"""""""
10249
10250This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10251floating point or vector of floating point type. Not all targets support
10252all types however.
10253
10254::
10255
10256 declare float @llvm.log10.f32(float %Val)
10257 declare double @llvm.log10.f64(double %Val)
10258 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10259 declare fp128 @llvm.log10.f128(fp128 %Val)
10260 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10261
10262Overview:
10263"""""""""
10264
10265The '``llvm.log10.*``' intrinsics perform the log10 function.
10266
10267Arguments:
10268""""""""""
10269
10270The argument and return value are floating point numbers of the same
10271type.
10272
10273Semantics:
10274""""""""""
10275
10276This function returns the same values as the libm ``log10`` functions
10277would, and handles error conditions in the same way.
10278
10279'``llvm.log2.*``' Intrinsic
10280^^^^^^^^^^^^^^^^^^^^^^^^^^^
10281
10282Syntax:
10283"""""""
10284
10285This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10286floating point or vector of floating point type. Not all targets support
10287all types however.
10288
10289::
10290
10291 declare float @llvm.log2.f32(float %Val)
10292 declare double @llvm.log2.f64(double %Val)
10293 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10294 declare fp128 @llvm.log2.f128(fp128 %Val)
10295 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10296
10297Overview:
10298"""""""""
10299
10300The '``llvm.log2.*``' intrinsics perform the log2 function.
10301
10302Arguments:
10303""""""""""
10304
10305The argument and return value are floating point numbers of the same
10306type.
10307
10308Semantics:
10309""""""""""
10310
10311This function returns the same values as the libm ``log2`` functions
10312would, and handles error conditions in the same way.
10313
10314'``llvm.fma.*``' Intrinsic
10315^^^^^^^^^^^^^^^^^^^^^^^^^^
10316
10317Syntax:
10318"""""""
10319
10320This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10321floating point or vector of floating point type. Not all targets support
10322all types however.
10323
10324::
10325
10326 declare float @llvm.fma.f32(float %a, float %b, float %c)
10327 declare double @llvm.fma.f64(double %a, double %b, double %c)
10328 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10329 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10330 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10331
10332Overview:
10333"""""""""
10334
10335The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10336operation.
10337
10338Arguments:
10339""""""""""
10340
10341The argument and return value are floating point numbers of the same
10342type.
10343
10344Semantics:
10345""""""""""
10346
10347This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010348would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010349
10350'``llvm.fabs.*``' Intrinsic
10351^^^^^^^^^^^^^^^^^^^^^^^^^^^
10352
10353Syntax:
10354"""""""
10355
10356This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10357floating point or vector of floating point type. Not all targets support
10358all types however.
10359
10360::
10361
10362 declare float @llvm.fabs.f32(float %Val)
10363 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010364 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010365 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010366 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010367
10368Overview:
10369"""""""""
10370
10371The '``llvm.fabs.*``' intrinsics return the absolute value of the
10372operand.
10373
10374Arguments:
10375""""""""""
10376
10377The argument and return value are floating point numbers of the same
10378type.
10379
10380Semantics:
10381""""""""""
10382
10383This function returns the same values as the libm ``fabs`` functions
10384would, and handles error conditions in the same way.
10385
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010386'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010387^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010388
10389Syntax:
10390"""""""
10391
10392This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10393floating point or vector of floating point type. Not all targets support
10394all types however.
10395
10396::
10397
Matt Arsenault64313c92014-10-22 18:25:02 +000010398 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10399 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10400 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10401 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10402 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010403
10404Overview:
10405"""""""""
10406
10407The '``llvm.minnum.*``' intrinsics return the minimum of the two
10408arguments.
10409
10410
10411Arguments:
10412""""""""""
10413
10414The arguments and return value are floating point numbers of the same
10415type.
10416
10417Semantics:
10418""""""""""
10419
10420Follows the IEEE-754 semantics for minNum, which also match for libm's
10421fmin.
10422
10423If either operand is a NaN, returns the other non-NaN operand. Returns
10424NaN only if both operands are NaN. If the operands compare equal,
10425returns a value that compares equal to both operands. This means that
10426fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10427
10428'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010430
10431Syntax:
10432"""""""
10433
10434This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10435floating point or vector of floating point type. Not all targets support
10436all types however.
10437
10438::
10439
Matt Arsenault64313c92014-10-22 18:25:02 +000010440 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10441 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10442 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10443 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10444 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010445
10446Overview:
10447"""""""""
10448
10449The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10450arguments.
10451
10452
10453Arguments:
10454""""""""""
10455
10456The arguments and return value are floating point numbers of the same
10457type.
10458
10459Semantics:
10460""""""""""
10461Follows the IEEE-754 semantics for maxNum, which also match for libm's
10462fmax.
10463
10464If either operand is a NaN, returns the other non-NaN operand. Returns
10465NaN only if both operands are NaN. If the operands compare equal,
10466returns a value that compares equal to both operands. This means that
10467fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10468
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010469'``llvm.copysign.*``' Intrinsic
10470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10471
10472Syntax:
10473"""""""
10474
10475This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10476floating point or vector of floating point type. Not all targets support
10477all types however.
10478
10479::
10480
10481 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10482 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10483 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10484 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10485 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10486
10487Overview:
10488"""""""""
10489
10490The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10491first operand and the sign of the second operand.
10492
10493Arguments:
10494""""""""""
10495
10496The arguments and return value are floating point numbers of the same
10497type.
10498
10499Semantics:
10500""""""""""
10501
10502This function returns the same values as the libm ``copysign``
10503functions would, and handles error conditions in the same way.
10504
Sean Silvab084af42012-12-07 10:36:55 +000010505'``llvm.floor.*``' Intrinsic
10506^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10507
10508Syntax:
10509"""""""
10510
10511This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10512floating point or vector of floating point type. Not all targets support
10513all types however.
10514
10515::
10516
10517 declare float @llvm.floor.f32(float %Val)
10518 declare double @llvm.floor.f64(double %Val)
10519 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10520 declare fp128 @llvm.floor.f128(fp128 %Val)
10521 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10522
10523Overview:
10524"""""""""
10525
10526The '``llvm.floor.*``' intrinsics return the floor of the operand.
10527
10528Arguments:
10529""""""""""
10530
10531The argument and return value are floating point numbers of the same
10532type.
10533
10534Semantics:
10535""""""""""
10536
10537This function returns the same values as the libm ``floor`` functions
10538would, and handles error conditions in the same way.
10539
10540'``llvm.ceil.*``' Intrinsic
10541^^^^^^^^^^^^^^^^^^^^^^^^^^^
10542
10543Syntax:
10544"""""""
10545
10546This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10547floating point or vector of floating point type. Not all targets support
10548all types however.
10549
10550::
10551
10552 declare float @llvm.ceil.f32(float %Val)
10553 declare double @llvm.ceil.f64(double %Val)
10554 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10555 declare fp128 @llvm.ceil.f128(fp128 %Val)
10556 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10557
10558Overview:
10559"""""""""
10560
10561The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10562
10563Arguments:
10564""""""""""
10565
10566The argument and return value are floating point numbers of the same
10567type.
10568
10569Semantics:
10570""""""""""
10571
10572This function returns the same values as the libm ``ceil`` functions
10573would, and handles error conditions in the same way.
10574
10575'``llvm.trunc.*``' Intrinsic
10576^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10577
10578Syntax:
10579"""""""
10580
10581This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10582floating point or vector of floating point type. Not all targets support
10583all types however.
10584
10585::
10586
10587 declare float @llvm.trunc.f32(float %Val)
10588 declare double @llvm.trunc.f64(double %Val)
10589 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10590 declare fp128 @llvm.trunc.f128(fp128 %Val)
10591 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10592
10593Overview:
10594"""""""""
10595
10596The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10597nearest integer not larger in magnitude than the operand.
10598
10599Arguments:
10600""""""""""
10601
10602The argument and return value are floating point numbers of the same
10603type.
10604
10605Semantics:
10606""""""""""
10607
10608This function returns the same values as the libm ``trunc`` functions
10609would, and handles error conditions in the same way.
10610
10611'``llvm.rint.*``' Intrinsic
10612^^^^^^^^^^^^^^^^^^^^^^^^^^^
10613
10614Syntax:
10615"""""""
10616
10617This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10618floating point or vector of floating point type. Not all targets support
10619all types however.
10620
10621::
10622
10623 declare float @llvm.rint.f32(float %Val)
10624 declare double @llvm.rint.f64(double %Val)
10625 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10626 declare fp128 @llvm.rint.f128(fp128 %Val)
10627 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10628
10629Overview:
10630"""""""""
10631
10632The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10633nearest integer. It may raise an inexact floating-point exception if the
10634operand isn't an integer.
10635
10636Arguments:
10637""""""""""
10638
10639The argument and return value are floating point numbers of the same
10640type.
10641
10642Semantics:
10643""""""""""
10644
10645This function returns the same values as the libm ``rint`` functions
10646would, and handles error conditions in the same way.
10647
10648'``llvm.nearbyint.*``' Intrinsic
10649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10650
10651Syntax:
10652"""""""
10653
10654This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10655floating point or vector of floating point type. Not all targets support
10656all types however.
10657
10658::
10659
10660 declare float @llvm.nearbyint.f32(float %Val)
10661 declare double @llvm.nearbyint.f64(double %Val)
10662 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10663 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10664 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10665
10666Overview:
10667"""""""""
10668
10669The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10670nearest integer.
10671
10672Arguments:
10673""""""""""
10674
10675The argument and return value are floating point numbers of the same
10676type.
10677
10678Semantics:
10679""""""""""
10680
10681This function returns the same values as the libm ``nearbyint``
10682functions would, and handles error conditions in the same way.
10683
Hal Finkel171817e2013-08-07 22:49:12 +000010684'``llvm.round.*``' Intrinsic
10685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10686
10687Syntax:
10688"""""""
10689
10690This is an overloaded intrinsic. You can use ``llvm.round`` on any
10691floating point or vector of floating point type. Not all targets support
10692all types however.
10693
10694::
10695
10696 declare float @llvm.round.f32(float %Val)
10697 declare double @llvm.round.f64(double %Val)
10698 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10699 declare fp128 @llvm.round.f128(fp128 %Val)
10700 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10701
10702Overview:
10703"""""""""
10704
10705The '``llvm.round.*``' intrinsics returns the operand rounded to the
10706nearest integer.
10707
10708Arguments:
10709""""""""""
10710
10711The argument and return value are floating point numbers of the same
10712type.
10713
10714Semantics:
10715""""""""""
10716
10717This function returns the same values as the libm ``round``
10718functions would, and handles error conditions in the same way.
10719
Sean Silvab084af42012-12-07 10:36:55 +000010720Bit Manipulation Intrinsics
10721---------------------------
10722
10723LLVM provides intrinsics for a few important bit manipulation
10724operations. These allow efficient code generation for some algorithms.
10725
James Molloy90111f72015-11-12 12:29:09 +000010726'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010727^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010728
10729Syntax:
10730"""""""
10731
10732This is an overloaded intrinsic function. You can use bitreverse on any
10733integer type.
10734
10735::
10736
10737 declare i16 @llvm.bitreverse.i16(i16 <id>)
10738 declare i32 @llvm.bitreverse.i32(i32 <id>)
10739 declare i64 @llvm.bitreverse.i64(i64 <id>)
10740
10741Overview:
10742"""""""""
10743
10744The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010745bitpattern of an integer value; for example ``0b10110110`` becomes
10746``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010747
10748Semantics:
10749""""""""""
10750
10751The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10752``M`` in the input moved to bit ``N-M`` in the output.
10753
Sean Silvab084af42012-12-07 10:36:55 +000010754'``llvm.bswap.*``' Intrinsics
10755^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10756
10757Syntax:
10758"""""""
10759
10760This is an overloaded intrinsic function. You can use bswap on any
10761integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10762
10763::
10764
10765 declare i16 @llvm.bswap.i16(i16 <id>)
10766 declare i32 @llvm.bswap.i32(i32 <id>)
10767 declare i64 @llvm.bswap.i64(i64 <id>)
10768
10769Overview:
10770"""""""""
10771
10772The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10773values with an even number of bytes (positive multiple of 16 bits).
10774These are useful for performing operations on data that is not in the
10775target's native byte order.
10776
10777Semantics:
10778""""""""""
10779
10780The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10781and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10782intrinsic returns an i32 value that has the four bytes of the input i32
10783swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10784returned i32 will have its bytes in 3, 2, 1, 0 order. The
10785``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10786concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10787respectively).
10788
10789'``llvm.ctpop.*``' Intrinsic
10790^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10791
10792Syntax:
10793"""""""
10794
10795This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10796bit width, or on any vector with integer elements. Not all targets
10797support all bit widths or vector types, however.
10798
10799::
10800
10801 declare i8 @llvm.ctpop.i8(i8 <src>)
10802 declare i16 @llvm.ctpop.i16(i16 <src>)
10803 declare i32 @llvm.ctpop.i32(i32 <src>)
10804 declare i64 @llvm.ctpop.i64(i64 <src>)
10805 declare i256 @llvm.ctpop.i256(i256 <src>)
10806 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10807
10808Overview:
10809"""""""""
10810
10811The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10812in a value.
10813
10814Arguments:
10815""""""""""
10816
10817The only argument is the value to be counted. The argument may be of any
10818integer type, or a vector with integer elements. The return type must
10819match the argument type.
10820
10821Semantics:
10822""""""""""
10823
10824The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10825each element of a vector.
10826
10827'``llvm.ctlz.*``' Intrinsic
10828^^^^^^^^^^^^^^^^^^^^^^^^^^^
10829
10830Syntax:
10831"""""""
10832
10833This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10834integer bit width, or any vector whose elements are integers. Not all
10835targets support all bit widths or vector types, however.
10836
10837::
10838
10839 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10840 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10841 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10842 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10843 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010844 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010845
10846Overview:
10847"""""""""
10848
10849The '``llvm.ctlz``' family of intrinsic functions counts the number of
10850leading zeros in a variable.
10851
10852Arguments:
10853""""""""""
10854
10855The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010856any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010857type must match the first argument type.
10858
10859The second argument must be a constant and is a flag to indicate whether
10860the intrinsic should ensure that a zero as the first argument produces a
10861defined result. Historically some architectures did not provide a
10862defined result for zero values as efficiently, and many algorithms are
10863now predicated on avoiding zero-value inputs.
10864
10865Semantics:
10866""""""""""
10867
10868The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10869zeros in a variable, or within each element of the vector. If
10870``src == 0`` then the result is the size in bits of the type of ``src``
10871if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10872``llvm.ctlz(i32 2) = 30``.
10873
10874'``llvm.cttz.*``' Intrinsic
10875^^^^^^^^^^^^^^^^^^^^^^^^^^^
10876
10877Syntax:
10878"""""""
10879
10880This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10881integer bit width, or any vector of integer elements. Not all targets
10882support all bit widths or vector types, however.
10883
10884::
10885
10886 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10887 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10888 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10889 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10890 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010891 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010892
10893Overview:
10894"""""""""
10895
10896The '``llvm.cttz``' family of intrinsic functions counts the number of
10897trailing zeros.
10898
10899Arguments:
10900""""""""""
10901
10902The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010903any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010904type must match the first argument type.
10905
10906The second argument must be a constant and is a flag to indicate whether
10907the intrinsic should ensure that a zero as the first argument produces a
10908defined result. Historically some architectures did not provide a
10909defined result for zero values as efficiently, and many algorithms are
10910now predicated on avoiding zero-value inputs.
10911
10912Semantics:
10913""""""""""
10914
10915The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10916zeros in a variable, or within each element of a vector. If ``src == 0``
10917then the result is the size in bits of the type of ``src`` if
10918``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10919``llvm.cttz(2) = 1``.
10920
Philip Reames34843ae2015-03-05 05:55:55 +000010921.. _int_overflow:
10922
Sean Silvab084af42012-12-07 10:36:55 +000010923Arithmetic with Overflow Intrinsics
10924-----------------------------------
10925
John Regehr6a493f22016-05-12 20:55:09 +000010926LLVM provides intrinsics for fast arithmetic overflow checking.
10927
10928Each of these intrinsics returns a two-element struct. The first
10929element of this struct contains the result of the corresponding
10930arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
10931the result. Therefore, for example, the first element of the struct
10932returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
10933result of a 32-bit ``add`` instruction with the same operands, where
10934the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
10935
10936The second element of the result is an ``i1`` that is 1 if the
10937arithmetic operation overflowed and 0 otherwise. An operation
10938overflows if, for any values of its operands ``A`` and ``B`` and for
10939any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
10940not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
10941``sext`` for signed overflow and ``zext`` for unsigned overflow, and
10942``op`` is the underlying arithmetic operation.
10943
10944The behavior of these intrinsics is well-defined for all argument
10945values.
Sean Silvab084af42012-12-07 10:36:55 +000010946
10947'``llvm.sadd.with.overflow.*``' Intrinsics
10948^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10949
10950Syntax:
10951"""""""
10952
10953This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10954on any integer bit width.
10955
10956::
10957
10958 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10959 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10960 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10961
10962Overview:
10963"""""""""
10964
10965The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10966a signed addition of the two arguments, and indicate whether an overflow
10967occurred during the signed summation.
10968
10969Arguments:
10970""""""""""
10971
10972The arguments (%a and %b) and the first element of the result structure
10973may be of integer types of any bit width, but they must have the same
10974bit width. The second element of the result structure must be of type
10975``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10976addition.
10977
10978Semantics:
10979""""""""""
10980
10981The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010982a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010983first element of which is the signed summation, and the second element
10984of which is a bit specifying if the signed summation resulted in an
10985overflow.
10986
10987Examples:
10988"""""""""
10989
10990.. code-block:: llvm
10991
10992 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10993 %sum = extractvalue {i32, i1} %res, 0
10994 %obit = extractvalue {i32, i1} %res, 1
10995 br i1 %obit, label %overflow, label %normal
10996
10997'``llvm.uadd.with.overflow.*``' Intrinsics
10998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10999
11000Syntax:
11001"""""""
11002
11003This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11004on any integer bit width.
11005
11006::
11007
11008 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11009 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11010 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11011
11012Overview:
11013"""""""""
11014
11015The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11016an unsigned addition of the two arguments, and indicate whether a carry
11017occurred during the unsigned summation.
11018
11019Arguments:
11020""""""""""
11021
11022The arguments (%a and %b) and the first element of the result structure
11023may be of integer types of any bit width, but they must have the same
11024bit width. The second element of the result structure must be of type
11025``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11026addition.
11027
11028Semantics:
11029""""""""""
11030
11031The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011032an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011033first element of which is the sum, and the second element of which is a
11034bit specifying if the unsigned summation resulted in a carry.
11035
11036Examples:
11037"""""""""
11038
11039.. code-block:: llvm
11040
11041 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11042 %sum = extractvalue {i32, i1} %res, 0
11043 %obit = extractvalue {i32, i1} %res, 1
11044 br i1 %obit, label %carry, label %normal
11045
11046'``llvm.ssub.with.overflow.*``' Intrinsics
11047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11048
11049Syntax:
11050"""""""
11051
11052This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11053on any integer bit width.
11054
11055::
11056
11057 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11058 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11059 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11060
11061Overview:
11062"""""""""
11063
11064The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11065a signed subtraction of the two arguments, and indicate whether an
11066overflow occurred during the signed subtraction.
11067
11068Arguments:
11069""""""""""
11070
11071The arguments (%a and %b) and the first element of the result structure
11072may be of integer types of any bit width, but they must have the same
11073bit width. The second element of the result structure must be of type
11074``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11075subtraction.
11076
11077Semantics:
11078""""""""""
11079
11080The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011081a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011082first element of which is the subtraction, and the second element of
11083which is a bit specifying if the signed subtraction resulted in an
11084overflow.
11085
11086Examples:
11087"""""""""
11088
11089.. code-block:: llvm
11090
11091 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11092 %sum = extractvalue {i32, i1} %res, 0
11093 %obit = extractvalue {i32, i1} %res, 1
11094 br i1 %obit, label %overflow, label %normal
11095
11096'``llvm.usub.with.overflow.*``' Intrinsics
11097^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11098
11099Syntax:
11100"""""""
11101
11102This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11103on any integer bit width.
11104
11105::
11106
11107 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11108 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11109 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11110
11111Overview:
11112"""""""""
11113
11114The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11115an unsigned subtraction of the two arguments, and indicate whether an
11116overflow occurred during the unsigned subtraction.
11117
11118Arguments:
11119""""""""""
11120
11121The arguments (%a and %b) and the first element of the result structure
11122may be of integer types of any bit width, but they must have the same
11123bit width. The second element of the result structure must be of type
11124``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11125subtraction.
11126
11127Semantics:
11128""""""""""
11129
11130The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011131an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011132the first element of which is the subtraction, and the second element of
11133which is a bit specifying if the unsigned subtraction resulted in an
11134overflow.
11135
11136Examples:
11137"""""""""
11138
11139.. code-block:: llvm
11140
11141 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11142 %sum = extractvalue {i32, i1} %res, 0
11143 %obit = extractvalue {i32, i1} %res, 1
11144 br i1 %obit, label %overflow, label %normal
11145
11146'``llvm.smul.with.overflow.*``' Intrinsics
11147^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11148
11149Syntax:
11150"""""""
11151
11152This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11153on any integer bit width.
11154
11155::
11156
11157 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11158 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11159 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11160
11161Overview:
11162"""""""""
11163
11164The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11165a signed multiplication of the two arguments, and indicate whether an
11166overflow occurred during the signed multiplication.
11167
11168Arguments:
11169""""""""""
11170
11171The arguments (%a and %b) and the first element of the result structure
11172may be of integer types of any bit width, but they must have the same
11173bit width. The second element of the result structure must be of type
11174``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11175multiplication.
11176
11177Semantics:
11178""""""""""
11179
11180The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011181a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011182the first element of which is the multiplication, and the second element
11183of which is a bit specifying if the signed multiplication resulted in an
11184overflow.
11185
11186Examples:
11187"""""""""
11188
11189.. code-block:: llvm
11190
11191 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11192 %sum = extractvalue {i32, i1} %res, 0
11193 %obit = extractvalue {i32, i1} %res, 1
11194 br i1 %obit, label %overflow, label %normal
11195
11196'``llvm.umul.with.overflow.*``' Intrinsics
11197^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11198
11199Syntax:
11200"""""""
11201
11202This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11203on any integer bit width.
11204
11205::
11206
11207 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11208 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11209 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11210
11211Overview:
11212"""""""""
11213
11214The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11215a unsigned multiplication of the two arguments, and indicate whether an
11216overflow occurred during the unsigned multiplication.
11217
11218Arguments:
11219""""""""""
11220
11221The arguments (%a and %b) and the first element of the result structure
11222may be of integer types of any bit width, but they must have the same
11223bit width. The second element of the result structure must be of type
11224``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11225multiplication.
11226
11227Semantics:
11228""""""""""
11229
11230The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011231an unsigned multiplication of the two arguments. They return a structure ---
11232the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011233element of which is a bit specifying if the unsigned multiplication
11234resulted in an overflow.
11235
11236Examples:
11237"""""""""
11238
11239.. code-block:: llvm
11240
11241 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11242 %sum = extractvalue {i32, i1} %res, 0
11243 %obit = extractvalue {i32, i1} %res, 1
11244 br i1 %obit, label %overflow, label %normal
11245
11246Specialised Arithmetic Intrinsics
11247---------------------------------
11248
Owen Anderson1056a922015-07-11 07:01:27 +000011249'``llvm.canonicalize.*``' Intrinsic
11250^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11251
11252Syntax:
11253"""""""
11254
11255::
11256
11257 declare float @llvm.canonicalize.f32(float %a)
11258 declare double @llvm.canonicalize.f64(double %b)
11259
11260Overview:
11261"""""""""
11262
11263The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011264encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011265implementing certain numeric primitives such as frexp. The canonical encoding is
11266defined by IEEE-754-2008 to be:
11267
11268::
11269
11270 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011271 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011272 numbers, infinities, and NaNs, especially in decimal formats.
11273
11274This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011275conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011276according to section 6.2.
11277
11278Examples of non-canonical encodings:
11279
Sean Silvaa1190322015-08-06 22:56:48 +000011280- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011281 converted to a canonical representation per hardware-specific protocol.
11282- Many normal decimal floating point numbers have non-canonical alternative
11283 encodings.
11284- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011285 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011286 a zero of the same sign by this operation.
11287
11288Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11289default exception handling must signal an invalid exception, and produce a
11290quiet NaN result.
11291
11292This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011293that the compiler does not constant fold the operation. Likewise, division by
112941.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011295-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11296
Sean Silvaa1190322015-08-06 22:56:48 +000011297``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011298
11299- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11300- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11301 to ``(x == y)``
11302
11303Additionally, the sign of zero must be conserved:
11304``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11305
11306The payload bits of a NaN must be conserved, with two exceptions.
11307First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011308must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011309usual methods.
11310
11311The canonicalization operation may be optimized away if:
11312
Sean Silvaa1190322015-08-06 22:56:48 +000011313- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011314 floating-point operation that is required by the standard to be canonical.
11315- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011316 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011317
Sean Silvab084af42012-12-07 10:36:55 +000011318'``llvm.fmuladd.*``' Intrinsic
11319^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11320
11321Syntax:
11322"""""""
11323
11324::
11325
11326 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11327 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11328
11329Overview:
11330"""""""""
11331
11332The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011333expressions that can be fused if the code generator determines that (a) the
11334target instruction set has support for a fused operation, and (b) that the
11335fused operation is more efficient than the equivalent, separate pair of mul
11336and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011337
11338Arguments:
11339""""""""""
11340
11341The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11342multiplicands, a and b, and an addend c.
11343
11344Semantics:
11345""""""""""
11346
11347The expression:
11348
11349::
11350
11351 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11352
11353is equivalent to the expression a \* b + c, except that rounding will
11354not be performed between the multiplication and addition steps if the
11355code generator fuses the operations. Fusion is not guaranteed, even if
11356the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011357corresponding llvm.fma.\* intrinsic function should be used
11358instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011359
11360Examples:
11361"""""""""
11362
11363.. code-block:: llvm
11364
Tim Northover675a0962014-06-13 14:24:23 +000011365 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011366
11367Half Precision Floating Point Intrinsics
11368----------------------------------------
11369
11370For most target platforms, half precision floating point is a
11371storage-only format. This means that it is a dense encoding (in memory)
11372but does not support computation in the format.
11373
11374This means that code must first load the half-precision floating point
11375value as an i16, then convert it to float with
11376:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11377then be performed on the float value (including extending to double
11378etc). To store the value back to memory, it is first converted to float
11379if needed, then converted to i16 with
11380:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11381i16 value.
11382
11383.. _int_convert_to_fp16:
11384
11385'``llvm.convert.to.fp16``' Intrinsic
11386^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11387
11388Syntax:
11389"""""""
11390
11391::
11392
Tim Northoverfd7e4242014-07-17 10:51:23 +000011393 declare i16 @llvm.convert.to.fp16.f32(float %a)
11394 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011395
11396Overview:
11397"""""""""
11398
Tim Northoverfd7e4242014-07-17 10:51:23 +000011399The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11400conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011401
11402Arguments:
11403""""""""""
11404
11405The intrinsic function contains single argument - the value to be
11406converted.
11407
11408Semantics:
11409""""""""""
11410
Tim Northoverfd7e4242014-07-17 10:51:23 +000011411The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11412conventional floating point format to half precision floating point format. The
11413return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011414
11415Examples:
11416"""""""""
11417
11418.. code-block:: llvm
11419
Tim Northoverfd7e4242014-07-17 10:51:23 +000011420 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011421 store i16 %res, i16* @x, align 2
11422
11423.. _int_convert_from_fp16:
11424
11425'``llvm.convert.from.fp16``' Intrinsic
11426^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11427
11428Syntax:
11429"""""""
11430
11431::
11432
Tim Northoverfd7e4242014-07-17 10:51:23 +000011433 declare float @llvm.convert.from.fp16.f32(i16 %a)
11434 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011435
11436Overview:
11437"""""""""
11438
11439The '``llvm.convert.from.fp16``' intrinsic function performs a
11440conversion from half precision floating point format to single precision
11441floating point format.
11442
11443Arguments:
11444""""""""""
11445
11446The intrinsic function contains single argument - the value to be
11447converted.
11448
11449Semantics:
11450""""""""""
11451
11452The '``llvm.convert.from.fp16``' intrinsic function performs a
11453conversion from half single precision floating point format to single
11454precision floating point format. The input half-float value is
11455represented by an ``i16`` value.
11456
11457Examples:
11458"""""""""
11459
11460.. code-block:: llvm
11461
David Blaikiec7aabbb2015-03-04 22:06:14 +000011462 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011463 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011464
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011465.. _dbg_intrinsics:
11466
Sean Silvab084af42012-12-07 10:36:55 +000011467Debugger Intrinsics
11468-------------------
11469
11470The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11471prefix), are described in the `LLVM Source Level
11472Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11473document.
11474
11475Exception Handling Intrinsics
11476-----------------------------
11477
11478The LLVM exception handling intrinsics (which all start with
11479``llvm.eh.`` prefix), are described in the `LLVM Exception
11480Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11481
11482.. _int_trampoline:
11483
11484Trampoline Intrinsics
11485---------------------
11486
11487These intrinsics make it possible to excise one parameter, marked with
11488the :ref:`nest <nest>` attribute, from a function. The result is a
11489callable function pointer lacking the nest parameter - the caller does
11490not need to provide a value for it. Instead, the value to use is stored
11491in advance in a "trampoline", a block of memory usually allocated on the
11492stack, which also contains code to splice the nest value into the
11493argument list. This is used to implement the GCC nested function address
11494extension.
11495
11496For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11497then the resulting function pointer has signature ``i32 (i32, i32)*``.
11498It can be created as follows:
11499
11500.. code-block:: llvm
11501
11502 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011503 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011504 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11505 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11506 %fp = bitcast i8* %p to i32 (i32, i32)*
11507
11508The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11509``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11510
11511.. _int_it:
11512
11513'``llvm.init.trampoline``' Intrinsic
11514^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11515
11516Syntax:
11517"""""""
11518
11519::
11520
11521 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11522
11523Overview:
11524"""""""""
11525
11526This fills the memory pointed to by ``tramp`` with executable code,
11527turning it into a trampoline.
11528
11529Arguments:
11530""""""""""
11531
11532The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11533pointers. The ``tramp`` argument must point to a sufficiently large and
11534sufficiently aligned block of memory; this memory is written to by the
11535intrinsic. Note that the size and the alignment are target-specific -
11536LLVM currently provides no portable way of determining them, so a
11537front-end that generates this intrinsic needs to have some
11538target-specific knowledge. The ``func`` argument must hold a function
11539bitcast to an ``i8*``.
11540
11541Semantics:
11542""""""""""
11543
11544The block of memory pointed to by ``tramp`` is filled with target
11545dependent code, turning it into a function. Then ``tramp`` needs to be
11546passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11547be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11548function's signature is the same as that of ``func`` with any arguments
11549marked with the ``nest`` attribute removed. At most one such ``nest``
11550argument is allowed, and it must be of pointer type. Calling the new
11551function is equivalent to calling ``func`` with the same argument list,
11552but with ``nval`` used for the missing ``nest`` argument. If, after
11553calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11554modified, then the effect of any later call to the returned function
11555pointer is undefined.
11556
11557.. _int_at:
11558
11559'``llvm.adjust.trampoline``' Intrinsic
11560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11561
11562Syntax:
11563"""""""
11564
11565::
11566
11567 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11568
11569Overview:
11570"""""""""
11571
11572This performs any required machine-specific adjustment to the address of
11573a trampoline (passed as ``tramp``).
11574
11575Arguments:
11576""""""""""
11577
11578``tramp`` must point to a block of memory which already has trampoline
11579code filled in by a previous call to
11580:ref:`llvm.init.trampoline <int_it>`.
11581
11582Semantics:
11583""""""""""
11584
11585On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011586different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011587intrinsic returns the executable address corresponding to ``tramp``
11588after performing the required machine specific adjustments. The pointer
11589returned can then be :ref:`bitcast and executed <int_trampoline>`.
11590
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011591.. _int_mload_mstore:
11592
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011593Masked Vector Load and Store Intrinsics
11594---------------------------------------
11595
11596LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11597
11598.. _int_mload:
11599
11600'``llvm.masked.load.*``' Intrinsics
11601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11602
11603Syntax:
11604"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011605This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011606
11607::
11608
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011609 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11610 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011611 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011612 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011613 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011614 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011615
11616Overview:
11617"""""""""
11618
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011619Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011620
11621
11622Arguments:
11623""""""""""
11624
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011625The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011626
11627
11628Semantics:
11629""""""""""
11630
11631The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11632The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11633
11634
11635::
11636
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011637 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011638
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011639 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011640 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011641 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011642
11643.. _int_mstore:
11644
11645'``llvm.masked.store.*``' Intrinsics
11646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11647
11648Syntax:
11649"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011650This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011651
11652::
11653
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011654 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11655 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011656 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011657 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011658 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011659 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011660
11661Overview:
11662"""""""""
11663
11664Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11665
11666Arguments:
11667""""""""""
11668
11669The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11670
11671
11672Semantics:
11673""""""""""
11674
11675The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11676The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11677
11678::
11679
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011680 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011681
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011682 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011683 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011684 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11685 store <16 x float> %res, <16 x float>* %ptr, align 4
11686
11687
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011688Masked Vector Gather and Scatter Intrinsics
11689-------------------------------------------
11690
11691LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11692
11693.. _int_mgather:
11694
11695'``llvm.masked.gather.*``' Intrinsics
11696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11697
11698Syntax:
11699"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011700This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011701
11702::
11703
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011704 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11705 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11706 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011707
11708Overview:
11709"""""""""
11710
11711Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11712
11713
11714Arguments:
11715""""""""""
11716
11717The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11718
11719
11720Semantics:
11721""""""""""
11722
11723The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11724The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11725
11726
11727::
11728
11729 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11730
11731 ;; The gather with all-true mask is equivalent to the following instruction sequence
11732 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11733 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11734 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11735 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11736
11737 %val0 = load double, double* %ptr0, align 8
11738 %val1 = load double, double* %ptr1, align 8
11739 %val2 = load double, double* %ptr2, align 8
11740 %val3 = load double, double* %ptr3, align 8
11741
11742 %vec0 = insertelement <4 x double>undef, %val0, 0
11743 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11744 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11745 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11746
11747.. _int_mscatter:
11748
11749'``llvm.masked.scatter.*``' Intrinsics
11750^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11751
11752Syntax:
11753"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011754This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011755
11756::
11757
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011758 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11759 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11760 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011761
11762Overview:
11763"""""""""
11764
11765Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11766
11767Arguments:
11768""""""""""
11769
11770The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11771
11772
11773Semantics:
11774""""""""""
11775
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011776The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011777
11778::
11779
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011780 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011781 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11782
11783 ;; It is equivalent to a list of scalar stores
11784 %val0 = extractelement <8 x i32> %value, i32 0
11785 %val1 = extractelement <8 x i32> %value, i32 1
11786 ..
11787 %val7 = extractelement <8 x i32> %value, i32 7
11788 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11789 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11790 ..
11791 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11792 ;; Note: the order of the following stores is important when they overlap:
11793 store i32 %val0, i32* %ptr0, align 4
11794 store i32 %val1, i32* %ptr1, align 4
11795 ..
11796 store i32 %val7, i32* %ptr7, align 4
11797
11798
Sean Silvab084af42012-12-07 10:36:55 +000011799Memory Use Markers
11800------------------
11801
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011802This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011803memory objects and ranges where variables are immutable.
11804
Reid Klecknera534a382013-12-19 02:14:12 +000011805.. _int_lifestart:
11806
Sean Silvab084af42012-12-07 10:36:55 +000011807'``llvm.lifetime.start``' Intrinsic
11808^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11809
11810Syntax:
11811"""""""
11812
11813::
11814
11815 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11816
11817Overview:
11818"""""""""
11819
11820The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11821object's lifetime.
11822
11823Arguments:
11824""""""""""
11825
11826The first argument is a constant integer representing the size of the
11827object, or -1 if it is variable sized. The second argument is a pointer
11828to the object.
11829
11830Semantics:
11831""""""""""
11832
11833This intrinsic indicates that before this point in the code, the value
11834of the memory pointed to by ``ptr`` is dead. This means that it is known
11835to never be used and has an undefined value. A load from the pointer
11836that precedes this intrinsic can be replaced with ``'undef'``.
11837
Reid Klecknera534a382013-12-19 02:14:12 +000011838.. _int_lifeend:
11839
Sean Silvab084af42012-12-07 10:36:55 +000011840'``llvm.lifetime.end``' Intrinsic
11841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11842
11843Syntax:
11844"""""""
11845
11846::
11847
11848 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11849
11850Overview:
11851"""""""""
11852
11853The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11854object's lifetime.
11855
11856Arguments:
11857""""""""""
11858
11859The first argument is a constant integer representing the size of the
11860object, or -1 if it is variable sized. The second argument is a pointer
11861to the object.
11862
11863Semantics:
11864""""""""""
11865
11866This intrinsic indicates that after this point in the code, the value of
11867the memory pointed to by ``ptr`` is dead. This means that it is known to
11868never be used and has an undefined value. Any stores into the memory
11869object following this intrinsic may be removed as dead.
11870
11871'``llvm.invariant.start``' Intrinsic
11872^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11873
11874Syntax:
11875"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011876This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011877
11878::
11879
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011880 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011881
11882Overview:
11883"""""""""
11884
11885The '``llvm.invariant.start``' intrinsic specifies that the contents of
11886a memory object will not change.
11887
11888Arguments:
11889""""""""""
11890
11891The first argument is a constant integer representing the size of the
11892object, or -1 if it is variable sized. The second argument is a pointer
11893to the object.
11894
11895Semantics:
11896""""""""""
11897
11898This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11899the return value, the referenced memory location is constant and
11900unchanging.
11901
11902'``llvm.invariant.end``' Intrinsic
11903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11904
11905Syntax:
11906"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011907This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011908
11909::
11910
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011911 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011912
11913Overview:
11914"""""""""
11915
11916The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11917memory object are mutable.
11918
11919Arguments:
11920""""""""""
11921
11922The first argument is the matching ``llvm.invariant.start`` intrinsic.
11923The second argument is a constant integer representing the size of the
11924object, or -1 if it is variable sized and the third argument is a
11925pointer to the object.
11926
11927Semantics:
11928""""""""""
11929
11930This intrinsic indicates that the memory is mutable again.
11931
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011932'``llvm.invariant.group.barrier``' Intrinsic
11933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11934
11935Syntax:
11936"""""""
11937
11938::
11939
11940 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11941
11942Overview:
11943"""""""""
11944
11945The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11946established by invariant.group metadata no longer holds, to obtain a new pointer
11947value that does not carry the invariant information.
11948
11949
11950Arguments:
11951""""""""""
11952
11953The ``llvm.invariant.group.barrier`` takes only one argument, which is
11954the pointer to the memory for which the ``invariant.group`` no longer holds.
11955
11956Semantics:
11957""""""""""
11958
11959Returns another pointer that aliases its argument but which is considered different
11960for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11961
Sean Silvab084af42012-12-07 10:36:55 +000011962General Intrinsics
11963------------------
11964
11965This class of intrinsics is designed to be generic and has no specific
11966purpose.
11967
11968'``llvm.var.annotation``' Intrinsic
11969^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11970
11971Syntax:
11972"""""""
11973
11974::
11975
11976 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11977
11978Overview:
11979"""""""""
11980
11981The '``llvm.var.annotation``' intrinsic.
11982
11983Arguments:
11984""""""""""
11985
11986The first argument is a pointer to a value, the second is a pointer to a
11987global string, the third is a pointer to a global string which is the
11988source file name, and the last argument is the line number.
11989
11990Semantics:
11991""""""""""
11992
11993This intrinsic allows annotation of local variables with arbitrary
11994strings. This can be useful for special purpose optimizations that want
11995to look for these annotations. These have no other defined use; they are
11996ignored by code generation and optimization.
11997
Michael Gottesman88d18832013-03-26 00:34:27 +000011998'``llvm.ptr.annotation.*``' Intrinsic
11999^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12000
12001Syntax:
12002"""""""
12003
12004This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12005pointer to an integer of any width. *NOTE* you must specify an address space for
12006the pointer. The identifier for the default address space is the integer
12007'``0``'.
12008
12009::
12010
12011 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12012 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12013 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12014 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12015 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12016
12017Overview:
12018"""""""""
12019
12020The '``llvm.ptr.annotation``' intrinsic.
12021
12022Arguments:
12023""""""""""
12024
12025The first argument is a pointer to an integer value of arbitrary bitwidth
12026(result of some expression), the second is a pointer to a global string, the
12027third is a pointer to a global string which is the source file name, and the
12028last argument is the line number. It returns the value of the first argument.
12029
12030Semantics:
12031""""""""""
12032
12033This intrinsic allows annotation of a pointer to an integer with arbitrary
12034strings. This can be useful for special purpose optimizations that want to look
12035for these annotations. These have no other defined use; they are ignored by code
12036generation and optimization.
12037
Sean Silvab084af42012-12-07 10:36:55 +000012038'``llvm.annotation.*``' Intrinsic
12039^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12040
12041Syntax:
12042"""""""
12043
12044This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12045any integer bit width.
12046
12047::
12048
12049 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12050 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12051 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12052 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12053 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12054
12055Overview:
12056"""""""""
12057
12058The '``llvm.annotation``' intrinsic.
12059
12060Arguments:
12061""""""""""
12062
12063The first argument is an integer value (result of some expression), the
12064second is a pointer to a global string, the third is a pointer to a
12065global string which is the source file name, and the last argument is
12066the line number. It returns the value of the first argument.
12067
12068Semantics:
12069""""""""""
12070
12071This intrinsic allows annotations to be put on arbitrary expressions
12072with arbitrary strings. This can be useful for special purpose
12073optimizations that want to look for these annotations. These have no
12074other defined use; they are ignored by code generation and optimization.
12075
12076'``llvm.trap``' Intrinsic
12077^^^^^^^^^^^^^^^^^^^^^^^^^
12078
12079Syntax:
12080"""""""
12081
12082::
12083
12084 declare void @llvm.trap() noreturn nounwind
12085
12086Overview:
12087"""""""""
12088
12089The '``llvm.trap``' intrinsic.
12090
12091Arguments:
12092""""""""""
12093
12094None.
12095
12096Semantics:
12097""""""""""
12098
12099This intrinsic is lowered to the target dependent trap instruction. If
12100the target does not have a trap instruction, this intrinsic will be
12101lowered to a call of the ``abort()`` function.
12102
12103'``llvm.debugtrap``' Intrinsic
12104^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12105
12106Syntax:
12107"""""""
12108
12109::
12110
12111 declare void @llvm.debugtrap() nounwind
12112
12113Overview:
12114"""""""""
12115
12116The '``llvm.debugtrap``' intrinsic.
12117
12118Arguments:
12119""""""""""
12120
12121None.
12122
12123Semantics:
12124""""""""""
12125
12126This intrinsic is lowered to code which is intended to cause an
12127execution trap with the intention of requesting the attention of a
12128debugger.
12129
12130'``llvm.stackprotector``' Intrinsic
12131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12132
12133Syntax:
12134"""""""
12135
12136::
12137
12138 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12139
12140Overview:
12141"""""""""
12142
12143The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12144onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12145is placed on the stack before local variables.
12146
12147Arguments:
12148""""""""""
12149
12150The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12151The first argument is the value loaded from the stack guard
12152``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12153enough space to hold the value of the guard.
12154
12155Semantics:
12156""""""""""
12157
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012158This intrinsic causes the prologue/epilogue inserter to force the position of
12159the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12160to ensure that if a local variable on the stack is overwritten, it will destroy
12161the value of the guard. When the function exits, the guard on the stack is
12162checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12163different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12164calling the ``__stack_chk_fail()`` function.
12165
Tim Shene885d5e2016-04-19 19:40:37 +000012166'``llvm.stackguard``' Intrinsic
12167^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12168
12169Syntax:
12170"""""""
12171
12172::
12173
12174 declare i8* @llvm.stackguard()
12175
12176Overview:
12177"""""""""
12178
12179The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12180
12181It should not be generated by frontends, since it is only for internal usage.
12182The reason why we create this intrinsic is that we still support IR form Stack
12183Protector in FastISel.
12184
12185Arguments:
12186""""""""""
12187
12188None.
12189
12190Semantics:
12191""""""""""
12192
12193On some platforms, the value returned by this intrinsic remains unchanged
12194between loads in the same thread. On other platforms, it returns the same
12195global variable value, if any, e.g. ``@__stack_chk_guard``.
12196
12197Currently some platforms have IR-level customized stack guard loading (e.g.
12198X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12199in the future.
12200
Sean Silvab084af42012-12-07 10:36:55 +000012201'``llvm.objectsize``' Intrinsic
12202^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12203
12204Syntax:
12205"""""""
12206
12207::
12208
12209 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12210 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12211
12212Overview:
12213"""""""""
12214
12215The ``llvm.objectsize`` intrinsic is designed to provide information to
12216the optimizers to determine at compile time whether a) an operation
12217(like memcpy) will overflow a buffer that corresponds to an object, or
12218b) that a runtime check for overflow isn't necessary. An object in this
12219context means an allocation of a specific class, structure, array, or
12220other object.
12221
12222Arguments:
12223""""""""""
12224
12225The ``llvm.objectsize`` intrinsic takes two arguments. The first
12226argument is a pointer to or into the ``object``. The second argument is
12227a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12228or -1 (if false) when the object size is unknown. The second argument
12229only accepts constants.
12230
12231Semantics:
12232""""""""""
12233
12234The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12235the size of the object concerned. If the size cannot be determined at
12236compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12237on the ``min`` argument).
12238
12239'``llvm.expect``' Intrinsic
12240^^^^^^^^^^^^^^^^^^^^^^^^^^^
12241
12242Syntax:
12243"""""""
12244
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012245This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12246integer bit width.
12247
Sean Silvab084af42012-12-07 10:36:55 +000012248::
12249
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012250 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012251 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12252 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12253
12254Overview:
12255"""""""""
12256
12257The ``llvm.expect`` intrinsic provides information about expected (the
12258most probable) value of ``val``, which can be used by optimizers.
12259
12260Arguments:
12261""""""""""
12262
12263The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12264a value. The second argument is an expected value, this needs to be a
12265constant value, variables are not allowed.
12266
12267Semantics:
12268""""""""""
12269
12270This intrinsic is lowered to the ``val``.
12271
Philip Reamese0e90832015-04-26 22:23:12 +000012272.. _int_assume:
12273
Hal Finkel93046912014-07-25 21:13:35 +000012274'``llvm.assume``' Intrinsic
12275^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12276
12277Syntax:
12278"""""""
12279
12280::
12281
12282 declare void @llvm.assume(i1 %cond)
12283
12284Overview:
12285"""""""""
12286
12287The ``llvm.assume`` allows the optimizer to assume that the provided
12288condition is true. This information can then be used in simplifying other parts
12289of the code.
12290
12291Arguments:
12292""""""""""
12293
12294The condition which the optimizer may assume is always true.
12295
12296Semantics:
12297""""""""""
12298
12299The intrinsic allows the optimizer to assume that the provided condition is
12300always true whenever the control flow reaches the intrinsic call. No code is
12301generated for this intrinsic, and instructions that contribute only to the
12302provided condition are not used for code generation. If the condition is
12303violated during execution, the behavior is undefined.
12304
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012305Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012306used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12307only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012308if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012309sufficient overall improvement in code quality. For this reason,
12310``llvm.assume`` should not be used to document basic mathematical invariants
12311that the optimizer can otherwise deduce or facts that are of little use to the
12312optimizer.
12313
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012314.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012315
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012316'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012317^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12318
12319Syntax:
12320"""""""
12321
12322::
12323
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012324 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012325
12326
12327Arguments:
12328""""""""""
12329
12330The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012331metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012332
12333Overview:
12334"""""""""
12335
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012336The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12337with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012338
Peter Collingbourne0312f612016-06-25 00:23:04 +000012339'``llvm.type.checked.load``' Intrinsic
12340^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12341
12342Syntax:
12343"""""""
12344
12345::
12346
12347 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12348
12349
12350Arguments:
12351""""""""""
12352
12353The first argument is a pointer from which to load a function pointer. The
12354second argument is the byte offset from which to load the function pointer. The
12355third argument is a metadata object representing a :doc:`type identifier
12356<TypeMetadata>`.
12357
12358Overview:
12359"""""""""
12360
12361The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12362virtual table pointer using type metadata. This intrinsic is used to implement
12363control flow integrity in conjunction with virtual call optimization. The
12364virtual call optimization pass will optimize away ``llvm.type.checked.load``
12365intrinsics associated with devirtualized calls, thereby removing the type
12366check in cases where it is not needed to enforce the control flow integrity
12367constraint.
12368
12369If the given pointer is associated with a type metadata identifier, this
12370function returns true as the second element of its return value. (Note that
12371the function may also return true if the given pointer is not associated
12372with a type metadata identifier.) If the function's return value's second
12373element is true, the following rules apply to the first element:
12374
12375- If the given pointer is associated with the given type metadata identifier,
12376 it is the function pointer loaded from the given byte offset from the given
12377 pointer.
12378
12379- If the given pointer is not associated with the given type metadata
12380 identifier, it is one of the following (the choice of which is unspecified):
12381
12382 1. The function pointer that would have been loaded from an arbitrarily chosen
12383 (through an unspecified mechanism) pointer associated with the type
12384 metadata.
12385
12386 2. If the function has a non-void return type, a pointer to a function that
12387 returns an unspecified value without causing side effects.
12388
12389If the function's return value's second element is false, the value of the
12390first element is undefined.
12391
12392
Sean Silvab084af42012-12-07 10:36:55 +000012393'``llvm.donothing``' Intrinsic
12394^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12395
12396Syntax:
12397"""""""
12398
12399::
12400
12401 declare void @llvm.donothing() nounwind readnone
12402
12403Overview:
12404"""""""""
12405
Juergen Ributzkac9161192014-10-23 22:36:13 +000012406The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012407three intrinsics (besides ``llvm.experimental.patchpoint`` and
12408``llvm.experimental.gc.statepoint``) that can be called with an invoke
12409instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012410
12411Arguments:
12412""""""""""
12413
12414None.
12415
12416Semantics:
12417""""""""""
12418
12419This intrinsic does nothing, and it's removed by optimizers and ignored
12420by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012421
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012422'``llvm.experimental.deoptimize``' Intrinsic
12423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12424
12425Syntax:
12426"""""""
12427
12428::
12429
12430 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12431
12432Overview:
12433"""""""""
12434
12435This intrinsic, together with :ref:`deoptimization operand bundles
12436<deopt_opbundles>`, allow frontends to express transfer of control and
12437frame-local state from the currently executing (typically more specialized,
12438hence faster) version of a function into another (typically more generic, hence
12439slower) version.
12440
12441In languages with a fully integrated managed runtime like Java and JavaScript
12442this intrinsic can be used to implement "uncommon trap" or "side exit" like
12443functionality. In unmanaged languages like C and C++, this intrinsic can be
12444used to represent the slow paths of specialized functions.
12445
12446
12447Arguments:
12448""""""""""
12449
12450The intrinsic takes an arbitrary number of arguments, whose meaning is
12451decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12452
12453Semantics:
12454""""""""""
12455
12456The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12457deoptimization continuation (denoted using a :ref:`deoptimization
12458operand bundle <deopt_opbundles>`) and returns the value returned by
12459the deoptimization continuation. Defining the semantic properties of
12460the continuation itself is out of scope of the language reference --
12461as far as LLVM is concerned, the deoptimization continuation can
12462invoke arbitrary side effects, including reading from and writing to
12463the entire heap.
12464
12465Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12466continue execution to the end of the physical frame containing them, so all
12467calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12468
12469 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12470 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12471 - The ``ret`` instruction must return the value produced by the
12472 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12473
12474Note that the above restrictions imply that the return type for a call to
12475``@llvm.experimental.deoptimize`` will match the return type of its immediate
12476caller.
12477
12478The inliner composes the ``"deopt"`` continuations of the caller into the
12479``"deopt"`` continuations present in the inlinee, and also updates calls to this
12480intrinsic to return directly from the frame of the function it inlined into.
12481
Sanjoy Dase0aa4142016-05-12 01:17:38 +000012482All declarations of ``@llvm.experimental.deoptimize`` must share the
12483same calling convention.
12484
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012485.. _deoptimize_lowering:
12486
12487Lowering:
12488"""""""""
12489
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012490Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12491symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12492ensure that this symbol is defined). The call arguments to
12493``@llvm.experimental.deoptimize`` are lowered as if they were formal
12494arguments of the specified types, and not as varargs.
12495
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012496
Sanjoy Das021de052016-03-31 00:18:46 +000012497'``llvm.experimental.guard``' Intrinsic
12498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12499
12500Syntax:
12501"""""""
12502
12503::
12504
12505 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12506
12507Overview:
12508"""""""""
12509
12510This intrinsic, together with :ref:`deoptimization operand bundles
12511<deopt_opbundles>`, allows frontends to express guards or checks on
12512optimistic assumptions made during compilation. The semantics of
12513``@llvm.experimental.guard`` is defined in terms of
12514``@llvm.experimental.deoptimize`` -- its body is defined to be
12515equivalent to:
12516
Renato Golin124f2592016-07-20 12:16:38 +000012517.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000012518
Renato Golin124f2592016-07-20 12:16:38 +000012519 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12520 %realPred = and i1 %pred, undef
12521 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000012522
Renato Golin124f2592016-07-20 12:16:38 +000012523 leave:
12524 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12525 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000012526
Renato Golin124f2592016-07-20 12:16:38 +000012527 continue:
12528 ret void
12529 }
Sanjoy Das021de052016-03-31 00:18:46 +000012530
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012531
12532with the optional ``[, !make.implicit !{}]`` present if and only if it
12533is present on the call site. For more details on ``!make.implicit``,
12534see :doc:`FaultMaps`.
12535
Sanjoy Das021de052016-03-31 00:18:46 +000012536In words, ``@llvm.experimental.guard`` executes the attached
12537``"deopt"`` continuation if (but **not** only if) its first argument
12538is ``false``. Since the optimizer is allowed to replace the ``undef``
12539with an arbitrary value, it can optimize guard to fail "spuriously",
12540i.e. without the original condition being false (hence the "not only
12541if"); and this allows for "check widening" type optimizations.
12542
12543``@llvm.experimental.guard`` cannot be invoked.
12544
12545
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012546'``llvm.load.relative``' Intrinsic
12547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12548
12549Syntax:
12550"""""""
12551
12552::
12553
12554 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12555
12556Overview:
12557"""""""""
12558
12559This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12560adds ``%ptr`` to that value and returns it. The constant folder specifically
12561recognizes the form of this intrinsic and the constant initializers it may
12562load from; if a loaded constant initializer is known to have the form
12563``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12564
12565LLVM provides that the calculation of such a constant initializer will
12566not overflow at link time under the medium code model if ``x`` is an
12567``unnamed_addr`` function. However, it does not provide this guarantee for
12568a constant initializer folded into a function body. This intrinsic can be
12569used to avoid the possibility of overflows when loading from such a constant.
12570
Andrew Trick5e029ce2013-12-24 02:57:25 +000012571Stack Map Intrinsics
12572--------------------
12573
12574LLVM provides experimental intrinsics to support runtime patching
12575mechanisms commonly desired in dynamic language JITs. These intrinsics
12576are described in :doc:`StackMaps`.