blob: f20f4385c2fe785a9e1bf21532e92e5ae327d050 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
645an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000646
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000647Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000648:ref:`Thread Local Storage Model <tls_model>`.
649
Nico Rieck7157bb72014-01-14 15:22:47 +0000650Syntax::
651
Rafael Espindola32483a72016-05-10 18:22:45 +0000652 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000653 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
654 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000655 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000656 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000657 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659For example, the following defines a global in a numbered address space
660with an initializer, section, and alignment:
661
662.. code-block:: llvm
663
664 @G = addrspace(5) constant float 1.0, section "foo", align 4
665
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000666The following example just declares a global variable
667
668.. code-block:: llvm
669
670 @G = external global i32
671
Sean Silvab084af42012-12-07 10:36:55 +0000672The following example defines a thread-local global with the
673``initialexec`` TLS model:
674
675.. code-block:: llvm
676
677 @G = thread_local(initialexec) global i32 0, align 4
678
679.. _functionstructure:
680
681Functions
682---------
683
684LLVM function definitions consist of the "``define``" keyword, an
685optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000686style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
687an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000688an optional ``unnamed_addr`` attribute, a return type, an optional
689:ref:`parameter attribute <paramattrs>` for the return type, a function
690name, a (possibly empty) argument list (each with optional :ref:`parameter
691attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000692an optional section, an optional alignment,
693an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000694an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000695an optional :ref:`prologue <prologuedata>`,
696an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000697an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000698an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000699
700LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000701optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
702<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
703optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
704or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
705attribute <paramattrs>` for the return type, a function name, a possibly
706empty list of arguments, an optional alignment, an optional :ref:`garbage
707collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
708:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000709
Bill Wendling6822ecb2013-10-27 05:09:12 +0000710A function definition contains a list of basic blocks, forming the CFG (Control
711Flow Graph) for the function. Each basic block may optionally start with a label
712(giving the basic block a symbol table entry), contains a list of instructions,
713and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
714function return). If an explicit label is not provided, a block is assigned an
715implicit numbered label, using the next value from the same counter as used for
716unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
717entry block does not have an explicit label, it will be assigned label "%0",
718then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000719
720The first basic block in a function is special in two ways: it is
721immediately executed on entrance to the function, and it is not allowed
722to have predecessor basic blocks (i.e. there can not be any branches to
723the entry block of a function). Because the block can have no
724predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
725
726LLVM allows an explicit section to be specified for functions. If the
727target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000728Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730An explicit alignment may be specified for a function. If not present,
731or if the alignment is set to zero, the alignment of the function is set
732by the target to whatever it feels convenient. If an explicit alignment
733is specified, the function is forced to have at least that much
734alignment. All alignments must be a power of 2.
735
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000736If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000737be significant and two identical functions can be merged.
738
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000739If the ``local_unnamed_addr`` attribute is given, the address is known to
740not be significant within the module.
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Syntax::
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000745 [cconv] [ret attrs]
746 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000747 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
748 [comdat [($name)]] [align N] [gc] [prefix Constant]
749 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000750
Sean Silva706fba52015-08-06 22:56:24 +0000751The argument list is a comma separated sequence of arguments where each
752argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000753
754Syntax::
755
756 <type> [parameter Attrs] [name]
757
758
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000759.. _langref_aliases:
760
Sean Silvab084af42012-12-07 10:36:55 +0000761Aliases
762-------
763
Rafael Espindola64c1e182014-06-03 02:41:57 +0000764Aliases, unlike function or variables, don't create any new data. They
765are just a new symbol and metadata for an existing position.
766
767Aliases have a name and an aliasee that is either a global value or a
768constant expression.
769
Nico Rieck7157bb72014-01-14 15:22:47 +0000770Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000771:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
772<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000773
774Syntax::
775
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000776 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000777
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000778The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000779``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000780might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000781
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000782Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000783the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
784to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000785
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000786If the ``local_unnamed_addr`` attribute is given, the address is known to
787not be significant within the module.
788
Rafael Espindola64c1e182014-06-03 02:41:57 +0000789Since aliases are only a second name, some restrictions apply, of which
790some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000791
Rafael Espindola64c1e182014-06-03 02:41:57 +0000792* The expression defining the aliasee must be computable at assembly
793 time. Since it is just a name, no relocations can be used.
794
795* No alias in the expression can be weak as the possibility of the
796 intermediate alias being overridden cannot be represented in an
797 object file.
798
799* No global value in the expression can be a declaration, since that
800 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000801
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000802.. _langref_ifunc:
803
804IFuncs
805-------
806
807IFuncs, like as aliases, don't create any new data or func. They are just a new
808symbol that dynamic linker resolves at runtime by calling a resolver function.
809
810IFuncs have a name and a resolver that is a function called by dynamic linker
811that returns address of another function associated with the name.
812
813IFunc may have an optional :ref:`linkage type <linkage>` and an optional
814:ref:`visibility style <visibility>`.
815
816Syntax::
817
818 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821.. _langref_comdats:
822
823Comdats
824-------
825
826Comdat IR provides access to COFF and ELF object file COMDAT functionality.
827
Sean Silvaa1190322015-08-06 22:56:48 +0000828Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000829specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000830that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000831aliasee computes to, if any.
832
833Comdats have a selection kind to provide input on how the linker should
834choose between keys in two different object files.
835
836Syntax::
837
838 $<Name> = comdat SelectionKind
839
840The selection kind must be one of the following:
841
842``any``
843 The linker may choose any COMDAT key, the choice is arbitrary.
844``exactmatch``
845 The linker may choose any COMDAT key but the sections must contain the
846 same data.
847``largest``
848 The linker will choose the section containing the largest COMDAT key.
849``noduplicates``
850 The linker requires that only section with this COMDAT key exist.
851``samesize``
852 The linker may choose any COMDAT key but the sections must contain the
853 same amount of data.
854
855Note that the Mach-O platform doesn't support COMDATs and ELF only supports
856``any`` as a selection kind.
857
858Here is an example of a COMDAT group where a function will only be selected if
859the COMDAT key's section is the largest:
860
Renato Golin124f2592016-07-20 12:16:38 +0000861.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000862
863 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000864 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000865
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000867 ret void
868 }
869
Rafael Espindola83a362c2015-01-06 22:55:16 +0000870As a syntactic sugar the ``$name`` can be omitted if the name is the same as
871the global name:
872
Renato Golin124f2592016-07-20 12:16:38 +0000873.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000874
875 $foo = comdat any
876 @foo = global i32 2, comdat
877
878
David Majnemerdad0a642014-06-27 18:19:56 +0000879In a COFF object file, this will create a COMDAT section with selection kind
880``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
881and another COMDAT section with selection kind
882``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000883section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885There are some restrictions on the properties of the global object.
886It, or an alias to it, must have the same name as the COMDAT group when
887targeting COFF.
888The contents and size of this object may be used during link-time to determine
889which COMDAT groups get selected depending on the selection kind.
890Because the name of the object must match the name of the COMDAT group, the
891linkage of the global object must not be local; local symbols can get renamed
892if a collision occurs in the symbol table.
893
894The combined use of COMDATS and section attributes may yield surprising results.
895For example:
896
Renato Golin124f2592016-07-20 12:16:38 +0000897.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000898
899 $foo = comdat any
900 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901 @g1 = global i32 42, section "sec", comdat($foo)
902 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000903
904From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000905with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000906COMDAT groups and COMDATs, at the object file level, are represented by
907sections.
908
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000909Note that certain IR constructs like global variables and functions may
910create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000911COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000912in individual sections (e.g. when `-data-sections` or `-function-sections`
913is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000914
Sean Silvab084af42012-12-07 10:36:55 +0000915.. _namedmetadatastructure:
916
917Named Metadata
918--------------
919
920Named metadata is a collection of metadata. :ref:`Metadata
921nodes <metadata>` (but not metadata strings) are the only valid
922operands for a named metadata.
923
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000924#. Named metadata are represented as a string of characters with the
925 metadata prefix. The rules for metadata names are the same as for
926 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
927 are still valid, which allows any character to be part of a name.
928
Sean Silvab084af42012-12-07 10:36:55 +0000929Syntax::
930
931 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000932 !0 = !{!"zero"}
933 !1 = !{!"one"}
934 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000935 ; A named metadata.
936 !name = !{!0, !1, !2}
937
938.. _paramattrs:
939
940Parameter Attributes
941--------------------
942
943The return type and each parameter of a function type may have a set of
944*parameter attributes* associated with them. Parameter attributes are
945used to communicate additional information about the result or
946parameters of a function. Parameter attributes are considered to be part
947of the function, not of the function type, so functions with different
948parameter attributes can have the same function type.
949
950Parameter attributes are simple keywords that follow the type specified.
951If multiple parameter attributes are needed, they are space separated.
952For example:
953
954.. code-block:: llvm
955
956 declare i32 @printf(i8* noalias nocapture, ...)
957 declare i32 @atoi(i8 zeroext)
958 declare signext i8 @returns_signed_char()
959
960Note that any attributes for the function result (``nounwind``,
961``readonly``) come immediately after the argument list.
962
963Currently, only the following parameter attributes are defined:
964
965``zeroext``
966 This indicates to the code generator that the parameter or return
967 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000968 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000969``signext``
970 This indicates to the code generator that the parameter or return
971 value should be sign-extended to the extent required by the target's
972 ABI (which is usually 32-bits) by the caller (for a parameter) or
973 the callee (for a return value).
974``inreg``
975 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000976 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000977 a function call or return (usually, by putting it in a register as
978 opposed to memory, though some targets use it to distinguish between
979 two different kinds of registers). Use of this attribute is
980 target-specific.
981``byval``
982 This indicates that the pointer parameter should really be passed by
983 value to the function. The attribute implies that a hidden copy of
984 the pointee is made between the caller and the callee, so the callee
985 is unable to modify the value in the caller. This attribute is only
986 valid on LLVM pointer arguments. It is generally used to pass
987 structs and arrays by value, but is also valid on pointers to
988 scalars. The copy is considered to belong to the caller not the
989 callee (for example, ``readonly`` functions should not write to
990 ``byval`` parameters). This is not a valid attribute for return
991 values.
992
993 The byval attribute also supports specifying an alignment with the
994 align attribute. It indicates the alignment of the stack slot to
995 form and the known alignment of the pointer specified to the call
996 site. If the alignment is not specified, then the code generator
997 makes a target-specific assumption.
998
Reid Klecknera534a382013-12-19 02:14:12 +0000999.. _attr_inalloca:
1000
1001``inalloca``
1002
Reid Kleckner60d3a832014-01-16 22:59:24 +00001003 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001004 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001005 be a pointer to stack memory produced by an ``alloca`` instruction.
1006 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001007 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001008 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001009
Reid Kleckner436c42e2014-01-17 23:58:17 +00001010 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001011 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001012 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001013 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001014 ``inalloca`` attribute also disables LLVM's implicit lowering of
1015 large aggregate return values, which means that frontend authors
1016 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001017
Reid Kleckner60d3a832014-01-16 22:59:24 +00001018 When the call site is reached, the argument allocation must have
1019 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001020 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001021 space after an argument allocation and before its call site, but it
1022 must be cleared off with :ref:`llvm.stackrestore
1023 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001024
1025 See :doc:`InAlloca` for more information on how to use this
1026 attribute.
1027
Sean Silvab084af42012-12-07 10:36:55 +00001028``sret``
1029 This indicates that the pointer parameter specifies the address of a
1030 structure that is the return value of the function in the source
1031 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001032 loads and stores to the structure may be assumed by the callee not
1033 to trap and to be properly aligned. This is not a valid attribute
1034 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001035
Hal Finkelccc70902014-07-22 16:58:55 +00001036``align <n>``
1037 This indicates that the pointer value may be assumed by the optimizer to
1038 have the specified alignment.
1039
1040 Note that this attribute has additional semantics when combined with the
1041 ``byval`` attribute.
1042
Sean Silva1703e702014-04-08 21:06:22 +00001043.. _noalias:
1044
Sean Silvab084af42012-12-07 10:36:55 +00001045``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001046 This indicates that objects accessed via pointer values
1047 :ref:`based <pointeraliasing>` on the argument or return value are not also
1048 accessed, during the execution of the function, via pointer values not
1049 *based* on the argument or return value. The attribute on a return value
1050 also has additional semantics described below. The caller shares the
1051 responsibility with the callee for ensuring that these requirements are met.
1052 For further details, please see the discussion of the NoAlias response in
1053 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001054
1055 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001056 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001057
1058 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001059 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1060 attribute on return values are stronger than the semantics of the attribute
1061 when used on function arguments. On function return values, the ``noalias``
1062 attribute indicates that the function acts like a system memory allocation
1063 function, returning a pointer to allocated storage disjoint from the
1064 storage for any other object accessible to the caller.
1065
Sean Silvab084af42012-12-07 10:36:55 +00001066``nocapture``
1067 This indicates that the callee does not make any copies of the
1068 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001069 attribute for return values. Addresses used in volatile operations
1070 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001071
1072.. _nest:
1073
1074``nest``
1075 This indicates that the pointer parameter can be excised using the
1076 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001077 attribute for return values and can only be applied to one parameter.
1078
1079``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001080 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001081 value. This is a hint to the optimizer and code generator used when
1082 generating the caller, allowing value propagation, tail call optimization,
1083 and omission of register saves and restores in some cases; it is not
1084 checked or enforced when generating the callee. The parameter and the
1085 function return type must be valid operands for the
1086 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1087 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001088
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001089``nonnull``
1090 This indicates that the parameter or return pointer is not null. This
1091 attribute may only be applied to pointer typed parameters. This is not
1092 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001093 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001094 is non-null.
1095
Hal Finkelb0407ba2014-07-18 15:51:28 +00001096``dereferenceable(<n>)``
1097 This indicates that the parameter or return pointer is dereferenceable. This
1098 attribute may only be applied to pointer typed parameters. A pointer that
1099 is dereferenceable can be loaded from speculatively without a risk of
1100 trapping. The number of bytes known to be dereferenceable must be provided
1101 in parentheses. It is legal for the number of bytes to be less than the
1102 size of the pointee type. The ``nonnull`` attribute does not imply
1103 dereferenceability (consider a pointer to one element past the end of an
1104 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1105 ``addrspace(0)`` (which is the default address space).
1106
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001107``dereferenceable_or_null(<n>)``
1108 This indicates that the parameter or return value isn't both
1109 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001110 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001111 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1112 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1113 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1114 and in other address spaces ``dereferenceable_or_null(<n>)``
1115 implies that a pointer is at least one of ``dereferenceable(<n>)``
1116 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001117 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001118 pointer typed parameters.
1119
Manman Renf46262e2016-03-29 17:37:21 +00001120``swiftself``
1121 This indicates that the parameter is the self/context parameter. This is not
1122 a valid attribute for return values and can only be applied to one
1123 parameter.
1124
Manman Ren9bfd0d02016-04-01 21:41:15 +00001125``swifterror``
1126 This attribute is motivated to model and optimize Swift error handling. It
1127 can be applied to a parameter with pointer to pointer type or a
1128 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001129 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1130 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1131 the parameter or the alloca) can only be loaded and stored from, or used as
1132 a ``swifterror`` argument. This is not a valid attribute for return values
1133 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001134
1135 These constraints allow the calling convention to optimize access to
1136 ``swifterror`` variables by associating them with a specific register at
1137 call boundaries rather than placing them in memory. Since this does change
1138 the calling convention, a function which uses the ``swifterror`` attribute
1139 on a parameter is not ABI-compatible with one which does not.
1140
1141 These constraints also allow LLVM to assume that a ``swifterror`` argument
1142 does not alias any other memory visible within a function and that a
1143 ``swifterror`` alloca passed as an argument does not escape.
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _gc:
1146
Philip Reamesf80bbff2015-02-25 23:45:20 +00001147Garbage Collector Strategy Names
1148--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001149
Philip Reamesf80bbff2015-02-25 23:45:20 +00001150Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001151string:
1152
1153.. code-block:: llvm
1154
1155 define void @f() gc "name" { ... }
1156
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001157The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001158<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001159strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001160named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001161garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001162which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001163
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001164.. _prefixdata:
1165
1166Prefix Data
1167-----------
1168
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001169Prefix data is data associated with a function which the code
1170generator will emit immediately before the function's entrypoint.
1171The purpose of this feature is to allow frontends to associate
1172language-specific runtime metadata with specific functions and make it
1173available through the function pointer while still allowing the
1174function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001175
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001176To access the data for a given function, a program may bitcast the
1177function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001178index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001179the prefix data. For instance, take the example of a function annotated
1180with a single ``i32``,
1181
1182.. code-block:: llvm
1183
1184 define void @f() prefix i32 123 { ... }
1185
1186The prefix data can be referenced as,
1187
1188.. code-block:: llvm
1189
David Blaikie16a97eb2015-03-04 22:02:58 +00001190 %0 = bitcast void* () @f to i32*
1191 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001192 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001193
1194Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001195of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001196beginning of the prefix data is aligned. This means that if the size
1197of the prefix data is not a multiple of the alignment size, the
1198function's entrypoint will not be aligned. If alignment of the
1199function's entrypoint is desired, padding must be added to the prefix
1200data.
1201
Sean Silvaa1190322015-08-06 22:56:48 +00001202A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001203to the ``available_externally`` linkage in that the data may be used by the
1204optimizers but will not be emitted in the object file.
1205
1206.. _prologuedata:
1207
1208Prologue Data
1209-------------
1210
1211The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1212be inserted prior to the function body. This can be used for enabling
1213function hot-patching and instrumentation.
1214
1215To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001216have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001217bytes which decode to a sequence of machine instructions, valid for the
1218module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001219the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001221definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001222makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001223
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001225which encodes the ``nop`` instruction:
1226
Renato Golin124f2592016-07-20 12:16:38 +00001227.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001228
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001230
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231Generally prologue data can be formed by encoding a relative branch instruction
1232which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001233x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1234
Renato Golin124f2592016-07-20 12:16:38 +00001235.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001236
1237 %0 = type <{ i8, i8, i8* }>
1238
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001239 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001240
Sean Silvaa1190322015-08-06 22:56:48 +00001241A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001242to the ``available_externally`` linkage in that the data may be used by the
1243optimizers but will not be emitted in the object file.
1244
David Majnemer7fddecc2015-06-17 20:52:32 +00001245.. _personalityfn:
1246
1247Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001248--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001249
1250The ``personality`` attribute permits functions to specify what function
1251to use for exception handling.
1252
Bill Wendling63b88192013-02-06 06:52:58 +00001253.. _attrgrp:
1254
1255Attribute Groups
1256----------------
1257
1258Attribute groups are groups of attributes that are referenced by objects within
1259the IR. They are important for keeping ``.ll`` files readable, because a lot of
1260functions will use the same set of attributes. In the degenerative case of a
1261``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1262group will capture the important command line flags used to build that file.
1263
1264An attribute group is a module-level object. To use an attribute group, an
1265object references the attribute group's ID (e.g. ``#37``). An object may refer
1266to more than one attribute group. In that situation, the attributes from the
1267different groups are merged.
1268
1269Here is an example of attribute groups for a function that should always be
1270inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1271
1272.. code-block:: llvm
1273
1274 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001275 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001276
1277 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001278 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001279
1280 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1281 define void @f() #0 #1 { ... }
1282
Sean Silvab084af42012-12-07 10:36:55 +00001283.. _fnattrs:
1284
1285Function Attributes
1286-------------------
1287
1288Function attributes are set to communicate additional information about
1289a function. Function attributes are considered to be part of the
1290function, not of the function type, so functions with different function
1291attributes can have the same function type.
1292
1293Function attributes are simple keywords that follow the type specified.
1294If multiple attributes are needed, they are space separated. For
1295example:
1296
1297.. code-block:: llvm
1298
1299 define void @f() noinline { ... }
1300 define void @f() alwaysinline { ... }
1301 define void @f() alwaysinline optsize { ... }
1302 define void @f() optsize { ... }
1303
Sean Silvab084af42012-12-07 10:36:55 +00001304``alignstack(<n>)``
1305 This attribute indicates that, when emitting the prologue and
1306 epilogue, the backend should forcibly align the stack pointer.
1307 Specify the desired alignment, which must be a power of two, in
1308 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001309``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1310 This attribute indicates that the annotated function will always return at
1311 least a given number of bytes (or null). Its arguments are zero-indexed
1312 parameter numbers; if one argument is provided, then it's assumed that at
1313 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1314 returned pointer. If two are provided, then it's assumed that
1315 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1316 available. The referenced parameters must be integer types. No assumptions
1317 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001318``alwaysinline``
1319 This attribute indicates that the inliner should attempt to inline
1320 this function into callers whenever possible, ignoring any active
1321 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001322``builtin``
1323 This indicates that the callee function at a call site should be
1324 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001325 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001326 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001327 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001328``cold``
1329 This attribute indicates that this function is rarely called. When
1330 computing edge weights, basic blocks post-dominated by a cold
1331 function call are also considered to be cold; and, thus, given low
1332 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001333``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001334 In some parallel execution models, there exist operations that cannot be
1335 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001336 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001337
Justin Lebar58535b12016-02-17 17:46:41 +00001338 The ``convergent`` attribute may appear on functions or call/invoke
1339 instructions. When it appears on a function, it indicates that calls to
1340 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001341 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001342 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001343 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001344
Justin Lebar58535b12016-02-17 17:46:41 +00001345 When it appears on a call/invoke, the ``convergent`` attribute indicates
1346 that we should treat the call as though we're calling a convergent
1347 function. This is particularly useful on indirect calls; without this we
1348 may treat such calls as though the target is non-convergent.
1349
1350 The optimizer may remove the ``convergent`` attribute on functions when it
1351 can prove that the function does not execute any convergent operations.
1352 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1353 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001354``inaccessiblememonly``
1355 This attribute indicates that the function may only access memory that
1356 is not accessible by the module being compiled. This is a weaker form
1357 of ``readnone``.
1358``inaccessiblemem_or_argmemonly``
1359 This attribute indicates that the function may only access memory that is
1360 either not accessible by the module being compiled, or is pointed to
1361 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001362``inlinehint``
1363 This attribute indicates that the source code contained a hint that
1364 inlining this function is desirable (such as the "inline" keyword in
1365 C/C++). It is just a hint; it imposes no requirements on the
1366 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001367``jumptable``
1368 This attribute indicates that the function should be added to a
1369 jump-instruction table at code-generation time, and that all address-taken
1370 references to this function should be replaced with a reference to the
1371 appropriate jump-instruction-table function pointer. Note that this creates
1372 a new pointer for the original function, which means that code that depends
1373 on function-pointer identity can break. So, any function annotated with
1374 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001375``minsize``
1376 This attribute suggests that optimization passes and code generator
1377 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001378 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001379 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001380``naked``
1381 This attribute disables prologue / epilogue emission for the
1382 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001383``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001384 This indicates that the callee function at a call site is not recognized as
1385 a built-in function. LLVM will retain the original call and not replace it
1386 with equivalent code based on the semantics of the built-in function, unless
1387 the call site uses the ``builtin`` attribute. This is valid at call sites
1388 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001389``noduplicate``
1390 This attribute indicates that calls to the function cannot be
1391 duplicated. A call to a ``noduplicate`` function may be moved
1392 within its parent function, but may not be duplicated within
1393 its parent function.
1394
1395 A function containing a ``noduplicate`` call may still
1396 be an inlining candidate, provided that the call is not
1397 duplicated by inlining. That implies that the function has
1398 internal linkage and only has one call site, so the original
1399 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001400``noimplicitfloat``
1401 This attributes disables implicit floating point instructions.
1402``noinline``
1403 This attribute indicates that the inliner should never inline this
1404 function in any situation. This attribute may not be used together
1405 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001406``nonlazybind``
1407 This attribute suppresses lazy symbol binding for the function. This
1408 may make calls to the function faster, at the cost of extra program
1409 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001410``noredzone``
1411 This attribute indicates that the code generator should not use a
1412 red zone, even if the target-specific ABI normally permits it.
1413``noreturn``
1414 This function attribute indicates that the function never returns
1415 normally. This produces undefined behavior at runtime if the
1416 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001417``norecurse``
1418 This function attribute indicates that the function does not call itself
1419 either directly or indirectly down any possible call path. This produces
1420 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001421``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001422 This function attribute indicates that the function never raises an
1423 exception. If the function does raise an exception, its runtime
1424 behavior is undefined. However, functions marked nounwind may still
1425 trap or generate asynchronous exceptions. Exception handling schemes
1426 that are recognized by LLVM to handle asynchronous exceptions, such
1427 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001428``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001429 This function attribute indicates that most optimization passes will skip
1430 this function, with the exception of interprocedural optimization passes.
1431 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001432 This attribute cannot be used together with the ``alwaysinline``
1433 attribute; this attribute is also incompatible
1434 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001435
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001436 This attribute requires the ``noinline`` attribute to be specified on
1437 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001438 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001439 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001440``optsize``
1441 This attribute suggests that optimization passes and code generator
1442 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001443 and otherwise do optimizations specifically to reduce code size as
1444 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001445``"patchable-function"``
1446 This attribute tells the code generator that the code
1447 generated for this function needs to follow certain conventions that
1448 make it possible for a runtime function to patch over it later.
1449 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001450 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001451
1452 * ``"prologue-short-redirect"`` - This style of patchable
1453 function is intended to support patching a function prologue to
1454 redirect control away from the function in a thread safe
1455 manner. It guarantees that the first instruction of the
1456 function will be large enough to accommodate a short jump
1457 instruction, and will be sufficiently aligned to allow being
1458 fully changed via an atomic compare-and-swap instruction.
1459 While the first requirement can be satisfied by inserting large
1460 enough NOP, LLVM can and will try to re-purpose an existing
1461 instruction (i.e. one that would have to be emitted anyway) as
1462 the patchable instruction larger than a short jump.
1463
1464 ``"prologue-short-redirect"`` is currently only supported on
1465 x86-64.
1466
1467 This attribute by itself does not imply restrictions on
1468 inter-procedural optimizations. All of the semantic effects the
1469 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001470``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001471 On a function, this attribute indicates that the function computes its
1472 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001473 without dereferencing any pointer arguments or otherwise accessing
1474 any mutable state (e.g. memory, control registers, etc) visible to
1475 caller functions. It does not write through any pointer arguments
1476 (including ``byval`` arguments) and never changes any state visible
1477 to callers. This means that it cannot unwind exceptions by calling
1478 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001479
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001480 On an argument, this attribute indicates that the function does not
1481 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001482 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001483``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001484 On a function, this attribute indicates that the function does not write
1485 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001486 modify any state (e.g. memory, control registers, etc) visible to
1487 caller functions. It may dereference pointer arguments and read
1488 state that may be set in the caller. A readonly function always
1489 returns the same value (or unwinds an exception identically) when
1490 called with the same set of arguments and global state. It cannot
1491 unwind an exception by calling the ``C++`` exception throwing
1492 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001493
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001494 On an argument, this attribute indicates that the function does not write
1495 through this pointer argument, even though it may write to the memory that
1496 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001497``writeonly``
1498 On a function, this attribute indicates that the function may write to but
1499 does not read from memory.
1500
1501 On an argument, this attribute indicates that the function may write to but
1502 does not read through this pointer argument (even though it may read from
1503 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001504``argmemonly``
1505 This attribute indicates that the only memory accesses inside function are
1506 loads and stores from objects pointed to by its pointer-typed arguments,
1507 with arbitrary offsets. Or in other words, all memory operations in the
1508 function can refer to memory only using pointers based on its function
1509 arguments.
1510 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1511 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001512``returns_twice``
1513 This attribute indicates that this function can return twice. The C
1514 ``setjmp`` is an example of such a function. The compiler disables
1515 some optimizations (like tail calls) in the caller of these
1516 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001517``safestack``
1518 This attribute indicates that
1519 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1520 protection is enabled for this function.
1521
1522 If a function that has a ``safestack`` attribute is inlined into a
1523 function that doesn't have a ``safestack`` attribute or which has an
1524 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1525 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001526``sanitize_address``
1527 This attribute indicates that AddressSanitizer checks
1528 (dynamic address safety analysis) are enabled for this function.
1529``sanitize_memory``
1530 This attribute indicates that MemorySanitizer checks (dynamic detection
1531 of accesses to uninitialized memory) are enabled for this function.
1532``sanitize_thread``
1533 This attribute indicates that ThreadSanitizer checks
1534 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001535``ssp``
1536 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001537 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001538 placed on the stack before the local variables that's checked upon
1539 return from the function to see if it has been overwritten. A
1540 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001541 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001542
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001543 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1544 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1545 - Calls to alloca() with variable sizes or constant sizes greater than
1546 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001547
Josh Magee24c7f062014-02-01 01:36:16 +00001548 Variables that are identified as requiring a protector will be arranged
1549 on the stack such that they are adjacent to the stack protector guard.
1550
Sean Silvab084af42012-12-07 10:36:55 +00001551 If a function that has an ``ssp`` attribute is inlined into a
1552 function that doesn't have an ``ssp`` attribute, then the resulting
1553 function will have an ``ssp`` attribute.
1554``sspreq``
1555 This attribute indicates that the function should *always* emit a
1556 stack smashing protector. This overrides the ``ssp`` function
1557 attribute.
1558
Josh Magee24c7f062014-02-01 01:36:16 +00001559 Variables that are identified as requiring a protector will be arranged
1560 on the stack such that they are adjacent to the stack protector guard.
1561 The specific layout rules are:
1562
1563 #. Large arrays and structures containing large arrays
1564 (``>= ssp-buffer-size``) are closest to the stack protector.
1565 #. Small arrays and structures containing small arrays
1566 (``< ssp-buffer-size``) are 2nd closest to the protector.
1567 #. Variables that have had their address taken are 3rd closest to the
1568 protector.
1569
Sean Silvab084af42012-12-07 10:36:55 +00001570 If a function that has an ``sspreq`` attribute is inlined into a
1571 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001572 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1573 an ``sspreq`` attribute.
1574``sspstrong``
1575 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001576 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001577 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001578 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001579
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001580 - Arrays of any size and type
1581 - Aggregates containing an array of any size and type.
1582 - Calls to alloca().
1583 - Local variables that have had their address taken.
1584
Josh Magee24c7f062014-02-01 01:36:16 +00001585 Variables that are identified as requiring a protector will be arranged
1586 on the stack such that they are adjacent to the stack protector guard.
1587 The specific layout rules are:
1588
1589 #. Large arrays and structures containing large arrays
1590 (``>= ssp-buffer-size``) are closest to the stack protector.
1591 #. Small arrays and structures containing small arrays
1592 (``< ssp-buffer-size``) are 2nd closest to the protector.
1593 #. Variables that have had their address taken are 3rd closest to the
1594 protector.
1595
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001596 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001597
1598 If a function that has an ``sspstrong`` attribute is inlined into a
1599 function that doesn't have an ``sspstrong`` attribute, then the
1600 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001601``"thunk"``
1602 This attribute indicates that the function will delegate to some other
1603 function with a tail call. The prototype of a thunk should not be used for
1604 optimization purposes. The caller is expected to cast the thunk prototype to
1605 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001606``uwtable``
1607 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001608 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001609 show that no exceptions passes by it. This is normally the case for
1610 the ELF x86-64 abi, but it can be disabled for some compilation
1611 units.
Sean Silvab084af42012-12-07 10:36:55 +00001612
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001613
1614.. _opbundles:
1615
1616Operand Bundles
1617---------------
1618
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001619Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001620with certain LLVM instructions (currently only ``call`` s and
1621``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001622incorrect and will change program semantics.
1623
1624Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001625
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001626 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001627 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1628 bundle operand ::= SSA value
1629 tag ::= string constant
1630
1631Operand bundles are **not** part of a function's signature, and a
1632given function may be called from multiple places with different kinds
1633of operand bundles. This reflects the fact that the operand bundles
1634are conceptually a part of the ``call`` (or ``invoke``), not the
1635callee being dispatched to.
1636
1637Operand bundles are a generic mechanism intended to support
1638runtime-introspection-like functionality for managed languages. While
1639the exact semantics of an operand bundle depend on the bundle tag,
1640there are certain limitations to how much the presence of an operand
1641bundle can influence the semantics of a program. These restrictions
1642are described as the semantics of an "unknown" operand bundle. As
1643long as the behavior of an operand bundle is describable within these
1644restrictions, LLVM does not need to have special knowledge of the
1645operand bundle to not miscompile programs containing it.
1646
David Majnemer34cacb42015-10-22 01:46:38 +00001647- The bundle operands for an unknown operand bundle escape in unknown
1648 ways before control is transferred to the callee or invokee.
1649- Calls and invokes with operand bundles have unknown read / write
1650 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001651 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001652 callsite specific attributes.
1653- An operand bundle at a call site cannot change the implementation
1654 of the called function. Inter-procedural optimizations work as
1655 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001656
Sanjoy Dascdafd842015-11-11 21:38:02 +00001657More specific types of operand bundles are described below.
1658
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001659.. _deopt_opbundles:
1660
Sanjoy Dascdafd842015-11-11 21:38:02 +00001661Deoptimization Operand Bundles
1662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1663
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001664Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001665operand bundle tag. These operand bundles represent an alternate
1666"safe" continuation for the call site they're attached to, and can be
1667used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001668specified call site. There can be at most one ``"deopt"`` operand
1669bundle attached to a call site. Exact details of deoptimization is
1670out of scope for the language reference, but it usually involves
1671rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001672
1673From the compiler's perspective, deoptimization operand bundles make
1674the call sites they're attached to at least ``readonly``. They read
1675through all of their pointer typed operands (even if they're not
1676otherwise escaped) and the entire visible heap. Deoptimization
1677operand bundles do not capture their operands except during
1678deoptimization, in which case control will not be returned to the
1679compiled frame.
1680
Sanjoy Das2d161452015-11-18 06:23:38 +00001681The inliner knows how to inline through calls that have deoptimization
1682operand bundles. Just like inlining through a normal call site
1683involves composing the normal and exceptional continuations, inlining
1684through a call site with a deoptimization operand bundle needs to
1685appropriately compose the "safe" deoptimization continuation. The
1686inliner does this by prepending the parent's deoptimization
1687continuation to every deoptimization continuation in the inlined body.
1688E.g. inlining ``@f`` into ``@g`` in the following example
1689
1690.. code-block:: llvm
1691
1692 define void @f() {
1693 call void @x() ;; no deopt state
1694 call void @y() [ "deopt"(i32 10) ]
1695 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1696 ret void
1697 }
1698
1699 define void @g() {
1700 call void @f() [ "deopt"(i32 20) ]
1701 ret void
1702 }
1703
1704will result in
1705
1706.. code-block:: llvm
1707
1708 define void @g() {
1709 call void @x() ;; still no deopt state
1710 call void @y() [ "deopt"(i32 20, i32 10) ]
1711 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1712 ret void
1713 }
1714
1715It is the frontend's responsibility to structure or encode the
1716deoptimization state in a way that syntactically prepending the
1717caller's deoptimization state to the callee's deoptimization state is
1718semantically equivalent to composing the caller's deoptimization
1719continuation after the callee's deoptimization continuation.
1720
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001721.. _ob_funclet:
1722
David Majnemer3bb88c02015-12-15 21:27:27 +00001723Funclet Operand Bundles
1724^^^^^^^^^^^^^^^^^^^^^^^
1725
1726Funclet operand bundles are characterized by the ``"funclet"``
1727operand bundle tag. These operand bundles indicate that a call site
1728is within a particular funclet. There can be at most one
1729``"funclet"`` operand bundle attached to a call site and it must have
1730exactly one bundle operand.
1731
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001732If any funclet EH pads have been "entered" but not "exited" (per the
1733`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1734it is undefined behavior to execute a ``call`` or ``invoke`` which:
1735
1736* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1737 intrinsic, or
1738* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1739 not-yet-exited funclet EH pad.
1740
1741Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1742executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1743
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001744GC Transition Operand Bundles
1745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1746
1747GC transition operand bundles are characterized by the
1748``"gc-transition"`` operand bundle tag. These operand bundles mark a
1749call as a transition between a function with one GC strategy to a
1750function with a different GC strategy. If coordinating the transition
1751between GC strategies requires additional code generation at the call
1752site, these bundles may contain any values that are needed by the
1753generated code. For more details, see :ref:`GC Transitions
1754<gc_transition_args>`.
1755
Sean Silvab084af42012-12-07 10:36:55 +00001756.. _moduleasm:
1757
1758Module-Level Inline Assembly
1759----------------------------
1760
1761Modules may contain "module-level inline asm" blocks, which corresponds
1762to the GCC "file scope inline asm" blocks. These blocks are internally
1763concatenated by LLVM and treated as a single unit, but may be separated
1764in the ``.ll`` file if desired. The syntax is very simple:
1765
1766.. code-block:: llvm
1767
1768 module asm "inline asm code goes here"
1769 module asm "more can go here"
1770
1771The strings can contain any character by escaping non-printable
1772characters. The escape sequence used is simply "\\xx" where "xx" is the
1773two digit hex code for the number.
1774
James Y Knightbc832ed2015-07-08 18:08:36 +00001775Note that the assembly string *must* be parseable by LLVM's integrated assembler
1776(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001777
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001778.. _langref_datalayout:
1779
Sean Silvab084af42012-12-07 10:36:55 +00001780Data Layout
1781-----------
1782
1783A module may specify a target specific data layout string that specifies
1784how data is to be laid out in memory. The syntax for the data layout is
1785simply:
1786
1787.. code-block:: llvm
1788
1789 target datalayout = "layout specification"
1790
1791The *layout specification* consists of a list of specifications
1792separated by the minus sign character ('-'). Each specification starts
1793with a letter and may include other information after the letter to
1794define some aspect of the data layout. The specifications accepted are
1795as follows:
1796
1797``E``
1798 Specifies that the target lays out data in big-endian form. That is,
1799 the bits with the most significance have the lowest address
1800 location.
1801``e``
1802 Specifies that the target lays out data in little-endian form. That
1803 is, the bits with the least significance have the lowest address
1804 location.
1805``S<size>``
1806 Specifies the natural alignment of the stack in bits. Alignment
1807 promotion of stack variables is limited to the natural stack
1808 alignment to avoid dynamic stack realignment. The stack alignment
1809 must be a multiple of 8-bits. If omitted, the natural stack
1810 alignment defaults to "unspecified", which does not prevent any
1811 alignment promotions.
1812``p[n]:<size>:<abi>:<pref>``
1813 This specifies the *size* of a pointer and its ``<abi>`` and
1814 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001815 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001816 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001817 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001818``i<size>:<abi>:<pref>``
1819 This specifies the alignment for an integer type of a given bit
1820 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1821``v<size>:<abi>:<pref>``
1822 This specifies the alignment for a vector type of a given bit
1823 ``<size>``.
1824``f<size>:<abi>:<pref>``
1825 This specifies the alignment for a floating point type of a given bit
1826 ``<size>``. Only values of ``<size>`` that are supported by the target
1827 will work. 32 (float) and 64 (double) are supported on all targets; 80
1828 or 128 (different flavors of long double) are also supported on some
1829 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001830``a:<abi>:<pref>``
1831 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001832``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001833 If present, specifies that llvm names are mangled in the output. The
1834 options are
1835
1836 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1837 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1838 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1839 symbols get a ``_`` prefix.
1840 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1841 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001842 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1843 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001844``n<size1>:<size2>:<size3>...``
1845 This specifies a set of native integer widths for the target CPU in
1846 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1847 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1848 this set are considered to support most general arithmetic operations
1849 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001850``ni:<address space0>:<address space1>:<address space2>...``
1851 This specifies pointer types with the specified address spaces
1852 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1853 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001854
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001855On every specification that takes a ``<abi>:<pref>``, specifying the
1856``<pref>`` alignment is optional. If omitted, the preceding ``:``
1857should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1858
Sean Silvab084af42012-12-07 10:36:55 +00001859When constructing the data layout for a given target, LLVM starts with a
1860default set of specifications which are then (possibly) overridden by
1861the specifications in the ``datalayout`` keyword. The default
1862specifications are given in this list:
1863
1864- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001865- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1866- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1867 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001868- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001869- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1870- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1871- ``i16:16:16`` - i16 is 16-bit aligned
1872- ``i32:32:32`` - i32 is 32-bit aligned
1873- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1874 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001875- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001876- ``f32:32:32`` - float is 32-bit aligned
1877- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001878- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001879- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1880- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001881- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001882
1883When LLVM is determining the alignment for a given type, it uses the
1884following rules:
1885
1886#. If the type sought is an exact match for one of the specifications,
1887 that specification is used.
1888#. If no match is found, and the type sought is an integer type, then
1889 the smallest integer type that is larger than the bitwidth of the
1890 sought type is used. If none of the specifications are larger than
1891 the bitwidth then the largest integer type is used. For example,
1892 given the default specifications above, the i7 type will use the
1893 alignment of i8 (next largest) while both i65 and i256 will use the
1894 alignment of i64 (largest specified).
1895#. If no match is found, and the type sought is a vector type, then the
1896 largest vector type that is smaller than the sought vector type will
1897 be used as a fall back. This happens because <128 x double> can be
1898 implemented in terms of 64 <2 x double>, for example.
1899
1900The function of the data layout string may not be what you expect.
1901Notably, this is not a specification from the frontend of what alignment
1902the code generator should use.
1903
1904Instead, if specified, the target data layout is required to match what
1905the ultimate *code generator* expects. This string is used by the
1906mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001907what the ultimate code generator uses. There is no way to generate IR
1908that does not embed this target-specific detail into the IR. If you
1909don't specify the string, the default specifications will be used to
1910generate a Data Layout and the optimization phases will operate
1911accordingly and introduce target specificity into the IR with respect to
1912these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001913
Bill Wendling5cc90842013-10-18 23:41:25 +00001914.. _langref_triple:
1915
1916Target Triple
1917-------------
1918
1919A module may specify a target triple string that describes the target
1920host. The syntax for the target triple is simply:
1921
1922.. code-block:: llvm
1923
1924 target triple = "x86_64-apple-macosx10.7.0"
1925
1926The *target triple* string consists of a series of identifiers delimited
1927by the minus sign character ('-'). The canonical forms are:
1928
1929::
1930
1931 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1932 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1933
1934This information is passed along to the backend so that it generates
1935code for the proper architecture. It's possible to override this on the
1936command line with the ``-mtriple`` command line option.
1937
Sean Silvab084af42012-12-07 10:36:55 +00001938.. _pointeraliasing:
1939
1940Pointer Aliasing Rules
1941----------------------
1942
1943Any memory access must be done through a pointer value associated with
1944an address range of the memory access, otherwise the behavior is
1945undefined. Pointer values are associated with address ranges according
1946to the following rules:
1947
1948- A pointer value is associated with the addresses associated with any
1949 value it is *based* on.
1950- An address of a global variable is associated with the address range
1951 of the variable's storage.
1952- The result value of an allocation instruction is associated with the
1953 address range of the allocated storage.
1954- A null pointer in the default address-space is associated with no
1955 address.
1956- An integer constant other than zero or a pointer value returned from
1957 a function not defined within LLVM may be associated with address
1958 ranges allocated through mechanisms other than those provided by
1959 LLVM. Such ranges shall not overlap with any ranges of addresses
1960 allocated by mechanisms provided by LLVM.
1961
1962A pointer value is *based* on another pointer value according to the
1963following rules:
1964
1965- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001966 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001967- The result value of a ``bitcast`` is *based* on the operand of the
1968 ``bitcast``.
1969- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1970 values that contribute (directly or indirectly) to the computation of
1971 the pointer's value.
1972- The "*based* on" relationship is transitive.
1973
1974Note that this definition of *"based"* is intentionally similar to the
1975definition of *"based"* in C99, though it is slightly weaker.
1976
1977LLVM IR does not associate types with memory. The result type of a
1978``load`` merely indicates the size and alignment of the memory from
1979which to load, as well as the interpretation of the value. The first
1980operand type of a ``store`` similarly only indicates the size and
1981alignment of the store.
1982
1983Consequently, type-based alias analysis, aka TBAA, aka
1984``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1985:ref:`Metadata <metadata>` may be used to encode additional information
1986which specialized optimization passes may use to implement type-based
1987alias analysis.
1988
1989.. _volatile:
1990
1991Volatile Memory Accesses
1992------------------------
1993
1994Certain memory accesses, such as :ref:`load <i_load>`'s,
1995:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1996marked ``volatile``. The optimizers must not change the number of
1997volatile operations or change their order of execution relative to other
1998volatile operations. The optimizers *may* change the order of volatile
1999operations relative to non-volatile operations. This is not Java's
2000"volatile" and has no cross-thread synchronization behavior.
2001
Andrew Trick89fc5a62013-01-30 21:19:35 +00002002IR-level volatile loads and stores cannot safely be optimized into
2003llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2004flagged volatile. Likewise, the backend should never split or merge
2005target-legal volatile load/store instructions.
2006
Andrew Trick7e6f9282013-01-31 00:49:39 +00002007.. admonition:: Rationale
2008
2009 Platforms may rely on volatile loads and stores of natively supported
2010 data width to be executed as single instruction. For example, in C
2011 this holds for an l-value of volatile primitive type with native
2012 hardware support, but not necessarily for aggregate types. The
2013 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002014 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002015 do not violate the frontend's contract with the language.
2016
Sean Silvab084af42012-12-07 10:36:55 +00002017.. _memmodel:
2018
2019Memory Model for Concurrent Operations
2020--------------------------------------
2021
2022The LLVM IR does not define any way to start parallel threads of
2023execution or to register signal handlers. Nonetheless, there are
2024platform-specific ways to create them, and we define LLVM IR's behavior
2025in their presence. This model is inspired by the C++0x memory model.
2026
2027For a more informal introduction to this model, see the :doc:`Atomics`.
2028
2029We define a *happens-before* partial order as the least partial order
2030that
2031
2032- Is a superset of single-thread program order, and
2033- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2034 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2035 techniques, like pthread locks, thread creation, thread joining,
2036 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2037 Constraints <ordering>`).
2038
2039Note that program order does not introduce *happens-before* edges
2040between a thread and signals executing inside that thread.
2041
2042Every (defined) read operation (load instructions, memcpy, atomic
2043loads/read-modify-writes, etc.) R reads a series of bytes written by
2044(defined) write operations (store instructions, atomic
2045stores/read-modify-writes, memcpy, etc.). For the purposes of this
2046section, initialized globals are considered to have a write of the
2047initializer which is atomic and happens before any other read or write
2048of the memory in question. For each byte of a read R, R\ :sub:`byte`
2049may see any write to the same byte, except:
2050
2051- If write\ :sub:`1` happens before write\ :sub:`2`, and
2052 write\ :sub:`2` happens before R\ :sub:`byte`, then
2053 R\ :sub:`byte` does not see write\ :sub:`1`.
2054- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2055 R\ :sub:`byte` does not see write\ :sub:`3`.
2056
2057Given that definition, R\ :sub:`byte` is defined as follows:
2058
2059- If R is volatile, the result is target-dependent. (Volatile is
2060 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002061 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002062 like normal memory. It does not generally provide cross-thread
2063 synchronization.)
2064- Otherwise, if there is no write to the same byte that happens before
2065 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2066- Otherwise, if R\ :sub:`byte` may see exactly one write,
2067 R\ :sub:`byte` returns the value written by that write.
2068- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2069 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2070 Memory Ordering Constraints <ordering>` section for additional
2071 constraints on how the choice is made.
2072- Otherwise R\ :sub:`byte` returns ``undef``.
2073
2074R returns the value composed of the series of bytes it read. This
2075implies that some bytes within the value may be ``undef`` **without**
2076the entire value being ``undef``. Note that this only defines the
2077semantics of the operation; it doesn't mean that targets will emit more
2078than one instruction to read the series of bytes.
2079
2080Note that in cases where none of the atomic intrinsics are used, this
2081model places only one restriction on IR transformations on top of what
2082is required for single-threaded execution: introducing a store to a byte
2083which might not otherwise be stored is not allowed in general.
2084(Specifically, in the case where another thread might write to and read
2085from an address, introducing a store can change a load that may see
2086exactly one write into a load that may see multiple writes.)
2087
2088.. _ordering:
2089
2090Atomic Memory Ordering Constraints
2091----------------------------------
2092
2093Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2094:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2095:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002096ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002097the same address they *synchronize with*. These semantics are borrowed
2098from Java and C++0x, but are somewhat more colloquial. If these
2099descriptions aren't precise enough, check those specs (see spec
2100references in the :doc:`atomics guide <Atomics>`).
2101:ref:`fence <i_fence>` instructions treat these orderings somewhat
2102differently since they don't take an address. See that instruction's
2103documentation for details.
2104
2105For a simpler introduction to the ordering constraints, see the
2106:doc:`Atomics`.
2107
2108``unordered``
2109 The set of values that can be read is governed by the happens-before
2110 partial order. A value cannot be read unless some operation wrote
2111 it. This is intended to provide a guarantee strong enough to model
2112 Java's non-volatile shared variables. This ordering cannot be
2113 specified for read-modify-write operations; it is not strong enough
2114 to make them atomic in any interesting way.
2115``monotonic``
2116 In addition to the guarantees of ``unordered``, there is a single
2117 total order for modifications by ``monotonic`` operations on each
2118 address. All modification orders must be compatible with the
2119 happens-before order. There is no guarantee that the modification
2120 orders can be combined to a global total order for the whole program
2121 (and this often will not be possible). The read in an atomic
2122 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2123 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2124 order immediately before the value it writes. If one atomic read
2125 happens before another atomic read of the same address, the later
2126 read must see the same value or a later value in the address's
2127 modification order. This disallows reordering of ``monotonic`` (or
2128 stronger) operations on the same address. If an address is written
2129 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2130 read that address repeatedly, the other threads must eventually see
2131 the write. This corresponds to the C++0x/C1x
2132 ``memory_order_relaxed``.
2133``acquire``
2134 In addition to the guarantees of ``monotonic``, a
2135 *synchronizes-with* edge may be formed with a ``release`` operation.
2136 This is intended to model C++'s ``memory_order_acquire``.
2137``release``
2138 In addition to the guarantees of ``monotonic``, if this operation
2139 writes a value which is subsequently read by an ``acquire``
2140 operation, it *synchronizes-with* that operation. (This isn't a
2141 complete description; see the C++0x definition of a release
2142 sequence.) This corresponds to the C++0x/C1x
2143 ``memory_order_release``.
2144``acq_rel`` (acquire+release)
2145 Acts as both an ``acquire`` and ``release`` operation on its
2146 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2147``seq_cst`` (sequentially consistent)
2148 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002149 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002150 writes), there is a global total order on all
2151 sequentially-consistent operations on all addresses, which is
2152 consistent with the *happens-before* partial order and with the
2153 modification orders of all the affected addresses. Each
2154 sequentially-consistent read sees the last preceding write to the
2155 same address in this global order. This corresponds to the C++0x/C1x
2156 ``memory_order_seq_cst`` and Java volatile.
2157
2158.. _singlethread:
2159
2160If an atomic operation is marked ``singlethread``, it only *synchronizes
2161with* or participates in modification and seq\_cst total orderings with
2162other operations running in the same thread (for example, in signal
2163handlers).
2164
2165.. _fastmath:
2166
2167Fast-Math Flags
2168---------------
2169
2170LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2171:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002172:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2173be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002174
2175``nnan``
2176 No NaNs - Allow optimizations to assume the arguments and result are not
2177 NaN. Such optimizations are required to retain defined behavior over
2178 NaNs, but the value of the result is undefined.
2179
2180``ninf``
2181 No Infs - Allow optimizations to assume the arguments and result are not
2182 +/-Inf. Such optimizations are required to retain defined behavior over
2183 +/-Inf, but the value of the result is undefined.
2184
2185``nsz``
2186 No Signed Zeros - Allow optimizations to treat the sign of a zero
2187 argument or result as insignificant.
2188
2189``arcp``
2190 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2191 argument rather than perform division.
2192
2193``fast``
2194 Fast - Allow algebraically equivalent transformations that may
2195 dramatically change results in floating point (e.g. reassociate). This
2196 flag implies all the others.
2197
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002198.. _uselistorder:
2199
2200Use-list Order Directives
2201-------------------------
2202
2203Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002204order to be recreated. ``<order-indexes>`` is a comma-separated list of
2205indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002206value's use-list is immediately sorted by these indexes.
2207
Sean Silvaa1190322015-08-06 22:56:48 +00002208Use-list directives may appear at function scope or global scope. They are not
2209instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002210function scope, they must appear after the terminator of the final basic block.
2211
2212If basic blocks have their address taken via ``blockaddress()`` expressions,
2213``uselistorder_bb`` can be used to reorder their use-lists from outside their
2214function's scope.
2215
2216:Syntax:
2217
2218::
2219
2220 uselistorder <ty> <value>, { <order-indexes> }
2221 uselistorder_bb @function, %block { <order-indexes> }
2222
2223:Examples:
2224
2225::
2226
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002227 define void @foo(i32 %arg1, i32 %arg2) {
2228 entry:
2229 ; ... instructions ...
2230 bb:
2231 ; ... instructions ...
2232
2233 ; At function scope.
2234 uselistorder i32 %arg1, { 1, 0, 2 }
2235 uselistorder label %bb, { 1, 0 }
2236 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002237
2238 ; At global scope.
2239 uselistorder i32* @global, { 1, 2, 0 }
2240 uselistorder i32 7, { 1, 0 }
2241 uselistorder i32 (i32) @bar, { 1, 0 }
2242 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2243
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002244.. _source_filename:
2245
2246Source Filename
2247---------------
2248
2249The *source filename* string is set to the original module identifier,
2250which will be the name of the compiled source file when compiling from
2251source through the clang front end, for example. It is then preserved through
2252the IR and bitcode.
2253
2254This is currently necessary to generate a consistent unique global
2255identifier for local functions used in profile data, which prepends the
2256source file name to the local function name.
2257
2258The syntax for the source file name is simply:
2259
Renato Golin124f2592016-07-20 12:16:38 +00002260.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002261
2262 source_filename = "/path/to/source.c"
2263
Sean Silvab084af42012-12-07 10:36:55 +00002264.. _typesystem:
2265
2266Type System
2267===========
2268
2269The LLVM type system is one of the most important features of the
2270intermediate representation. Being typed enables a number of
2271optimizations to be performed on the intermediate representation
2272directly, without having to do extra analyses on the side before the
2273transformation. A strong type system makes it easier to read the
2274generated code and enables novel analyses and transformations that are
2275not feasible to perform on normal three address code representations.
2276
Rafael Espindola08013342013-12-07 19:34:20 +00002277.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002278
Rafael Espindola08013342013-12-07 19:34:20 +00002279Void Type
2280---------
Sean Silvab084af42012-12-07 10:36:55 +00002281
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002282:Overview:
2283
Rafael Espindola08013342013-12-07 19:34:20 +00002284
2285The void type does not represent any value and has no size.
2286
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002287:Syntax:
2288
Rafael Espindola08013342013-12-07 19:34:20 +00002289
2290::
2291
2292 void
Sean Silvab084af42012-12-07 10:36:55 +00002293
2294
Rafael Espindola08013342013-12-07 19:34:20 +00002295.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002296
Rafael Espindola08013342013-12-07 19:34:20 +00002297Function Type
2298-------------
Sean Silvab084af42012-12-07 10:36:55 +00002299
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002300:Overview:
2301
Sean Silvab084af42012-12-07 10:36:55 +00002302
Rafael Espindola08013342013-12-07 19:34:20 +00002303The function type can be thought of as a function signature. It consists of a
2304return type and a list of formal parameter types. The return type of a function
2305type is a void type or first class type --- except for :ref:`label <t_label>`
2306and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002307
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002308:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002309
Rafael Espindola08013342013-12-07 19:34:20 +00002310::
Sean Silvab084af42012-12-07 10:36:55 +00002311
Rafael Espindola08013342013-12-07 19:34:20 +00002312 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002313
Rafael Espindola08013342013-12-07 19:34:20 +00002314...where '``<parameter list>``' is a comma-separated list of type
2315specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002316indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002317argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002318handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002319except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002320
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002321:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002322
Rafael Espindola08013342013-12-07 19:34:20 +00002323+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2324| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2325+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2326| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2327+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2328| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2329+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2330| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2331+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2332
2333.. _t_firstclass:
2334
2335First Class Types
2336-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002337
2338The :ref:`first class <t_firstclass>` types are perhaps the most important.
2339Values of these types are the only ones which can be produced by
2340instructions.
2341
Rafael Espindola08013342013-12-07 19:34:20 +00002342.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002343
Rafael Espindola08013342013-12-07 19:34:20 +00002344Single Value Types
2345^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002346
Rafael Espindola08013342013-12-07 19:34:20 +00002347These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002348
2349.. _t_integer:
2350
2351Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002352""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002353
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002354:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002355
2356The integer type is a very simple type that simply specifies an
2357arbitrary bit width for the integer type desired. Any bit width from 1
2358bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2359
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002360:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002361
2362::
2363
2364 iN
2365
2366The number of bits the integer will occupy is specified by the ``N``
2367value.
2368
2369Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002370*********
Sean Silvab084af42012-12-07 10:36:55 +00002371
2372+----------------+------------------------------------------------+
2373| ``i1`` | a single-bit integer. |
2374+----------------+------------------------------------------------+
2375| ``i32`` | a 32-bit integer. |
2376+----------------+------------------------------------------------+
2377| ``i1942652`` | a really big integer of over 1 million bits. |
2378+----------------+------------------------------------------------+
2379
2380.. _t_floating:
2381
2382Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002383""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002384
2385.. list-table::
2386 :header-rows: 1
2387
2388 * - Type
2389 - Description
2390
2391 * - ``half``
2392 - 16-bit floating point value
2393
2394 * - ``float``
2395 - 32-bit floating point value
2396
2397 * - ``double``
2398 - 64-bit floating point value
2399
2400 * - ``fp128``
2401 - 128-bit floating point value (112-bit mantissa)
2402
2403 * - ``x86_fp80``
2404 - 80-bit floating point value (X87)
2405
2406 * - ``ppc_fp128``
2407 - 128-bit floating point value (two 64-bits)
2408
Reid Kleckner9a16d082014-03-05 02:41:37 +00002409X86_mmx Type
2410""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002411
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002412:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002413
Reid Kleckner9a16d082014-03-05 02:41:37 +00002414The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002415machine. The operations allowed on it are quite limited: parameters and
2416return values, load and store, and bitcast. User-specified MMX
2417instructions are represented as intrinsic or asm calls with arguments
2418and/or results of this type. There are no arrays, vectors or constants
2419of this type.
2420
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002421:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002422
2423::
2424
Reid Kleckner9a16d082014-03-05 02:41:37 +00002425 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002426
Sean Silvab084af42012-12-07 10:36:55 +00002427
Rafael Espindola08013342013-12-07 19:34:20 +00002428.. _t_pointer:
2429
2430Pointer Type
2431""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002432
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002433:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002434
Rafael Espindola08013342013-12-07 19:34:20 +00002435The pointer type is used to specify memory locations. Pointers are
2436commonly used to reference objects in memory.
2437
2438Pointer types may have an optional address space attribute defining the
2439numbered address space where the pointed-to object resides. The default
2440address space is number zero. The semantics of non-zero address spaces
2441are target-specific.
2442
2443Note that LLVM does not permit pointers to void (``void*``) nor does it
2444permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002445
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002446:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002447
2448::
2449
Rafael Espindola08013342013-12-07 19:34:20 +00002450 <type> *
2451
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002452:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002453
2454+-------------------------+--------------------------------------------------------------------------------------------------------------+
2455| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2456+-------------------------+--------------------------------------------------------------------------------------------------------------+
2457| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2458+-------------------------+--------------------------------------------------------------------------------------------------------------+
2459| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2460+-------------------------+--------------------------------------------------------------------------------------------------------------+
2461
2462.. _t_vector:
2463
2464Vector Type
2465"""""""""""
2466
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002467:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002468
2469A vector type is a simple derived type that represents a vector of
2470elements. Vector types are used when multiple primitive data are
2471operated in parallel using a single instruction (SIMD). A vector type
2472requires a size (number of elements) and an underlying primitive data
2473type. Vector types are considered :ref:`first class <t_firstclass>`.
2474
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002475:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002476
2477::
2478
2479 < <# elements> x <elementtype> >
2480
2481The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002482elementtype may be any integer, floating point or pointer type. Vectors
2483of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002484
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002485:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002486
2487+-------------------+--------------------------------------------------+
2488| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2489+-------------------+--------------------------------------------------+
2490| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2491+-------------------+--------------------------------------------------+
2492| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2493+-------------------+--------------------------------------------------+
2494| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2495+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002496
2497.. _t_label:
2498
2499Label Type
2500^^^^^^^^^^
2501
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002502:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002503
2504The label type represents code labels.
2505
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002506:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002507
2508::
2509
2510 label
2511
David Majnemerb611e3f2015-08-14 05:09:07 +00002512.. _t_token:
2513
2514Token Type
2515^^^^^^^^^^
2516
2517:Overview:
2518
2519The token type is used when a value is associated with an instruction
2520but all uses of the value must not attempt to introspect or obscure it.
2521As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2522:ref:`select <i_select>` of type token.
2523
2524:Syntax:
2525
2526::
2527
2528 token
2529
2530
2531
Sean Silvab084af42012-12-07 10:36:55 +00002532.. _t_metadata:
2533
2534Metadata Type
2535^^^^^^^^^^^^^
2536
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002537:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002538
2539The metadata type represents embedded metadata. No derived types may be
2540created from metadata except for :ref:`function <t_function>` arguments.
2541
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002542:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002543
2544::
2545
2546 metadata
2547
Sean Silvab084af42012-12-07 10:36:55 +00002548.. _t_aggregate:
2549
2550Aggregate Types
2551^^^^^^^^^^^^^^^
2552
2553Aggregate Types are a subset of derived types that can contain multiple
2554member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2555aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2556aggregate types.
2557
2558.. _t_array:
2559
2560Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002561""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002562
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002563:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002564
2565The array type is a very simple derived type that arranges elements
2566sequentially in memory. The array type requires a size (number of
2567elements) and an underlying data type.
2568
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002569:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002570
2571::
2572
2573 [<# elements> x <elementtype>]
2574
2575The number of elements is a constant integer value; ``elementtype`` may
2576be any type with a size.
2577
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002578:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002579
2580+------------------+--------------------------------------+
2581| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2582+------------------+--------------------------------------+
2583| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2584+------------------+--------------------------------------+
2585| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2586+------------------+--------------------------------------+
2587
2588Here are some examples of multidimensional arrays:
2589
2590+-----------------------------+----------------------------------------------------------+
2591| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2592+-----------------------------+----------------------------------------------------------+
2593| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2594+-----------------------------+----------------------------------------------------------+
2595| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2596+-----------------------------+----------------------------------------------------------+
2597
2598There is no restriction on indexing beyond the end of the array implied
2599by a static type (though there are restrictions on indexing beyond the
2600bounds of an allocated object in some cases). This means that
2601single-dimension 'variable sized array' addressing can be implemented in
2602LLVM with a zero length array type. An implementation of 'pascal style
2603arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2604example.
2605
Sean Silvab084af42012-12-07 10:36:55 +00002606.. _t_struct:
2607
2608Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002609""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002610
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002611:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002612
2613The structure type is used to represent a collection of data members
2614together in memory. The elements of a structure may be any type that has
2615a size.
2616
2617Structures in memory are accessed using '``load``' and '``store``' by
2618getting a pointer to a field with the '``getelementptr``' instruction.
2619Structures in registers are accessed using the '``extractvalue``' and
2620'``insertvalue``' instructions.
2621
2622Structures may optionally be "packed" structures, which indicate that
2623the alignment of the struct is one byte, and that there is no padding
2624between the elements. In non-packed structs, padding between field types
2625is inserted as defined by the DataLayout string in the module, which is
2626required to match what the underlying code generator expects.
2627
2628Structures can either be "literal" or "identified". A literal structure
2629is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2630identified types are always defined at the top level with a name.
2631Literal types are uniqued by their contents and can never be recursive
2632or opaque since there is no way to write one. Identified types can be
2633recursive, can be opaqued, and are never uniqued.
2634
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002635:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002636
2637::
2638
2639 %T1 = type { <type list> } ; Identified normal struct type
2640 %T2 = type <{ <type list> }> ; Identified packed struct type
2641
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002642:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002643
2644+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2645| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2646+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002647| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002648+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2649| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2650+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2651
2652.. _t_opaque:
2653
2654Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002655""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002656
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002657:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002658
2659Opaque structure types are used to represent named structure types that
2660do not have a body specified. This corresponds (for example) to the C
2661notion of a forward declared structure.
2662
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002663:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002664
2665::
2666
2667 %X = type opaque
2668 %52 = type opaque
2669
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002670:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002671
2672+--------------+-------------------+
2673| ``opaque`` | An opaque type. |
2674+--------------+-------------------+
2675
Sean Silva1703e702014-04-08 21:06:22 +00002676.. _constants:
2677
Sean Silvab084af42012-12-07 10:36:55 +00002678Constants
2679=========
2680
2681LLVM has several different basic types of constants. This section
2682describes them all and their syntax.
2683
2684Simple Constants
2685----------------
2686
2687**Boolean constants**
2688 The two strings '``true``' and '``false``' are both valid constants
2689 of the ``i1`` type.
2690**Integer constants**
2691 Standard integers (such as '4') are constants of the
2692 :ref:`integer <t_integer>` type. Negative numbers may be used with
2693 integer types.
2694**Floating point constants**
2695 Floating point constants use standard decimal notation (e.g.
2696 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2697 hexadecimal notation (see below). The assembler requires the exact
2698 decimal value of a floating-point constant. For example, the
2699 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2700 decimal in binary. Floating point constants must have a :ref:`floating
2701 point <t_floating>` type.
2702**Null pointer constants**
2703 The identifier '``null``' is recognized as a null pointer constant
2704 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002705**Token constants**
2706 The identifier '``none``' is recognized as an empty token constant
2707 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002708
2709The one non-intuitive notation for constants is the hexadecimal form of
2710floating point constants. For example, the form
2711'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2712than) '``double 4.5e+15``'. The only time hexadecimal floating point
2713constants are required (and the only time that they are generated by the
2714disassembler) is when a floating point constant must be emitted but it
2715cannot be represented as a decimal floating point number in a reasonable
2716number of digits. For example, NaN's, infinities, and other special
2717values are represented in their IEEE hexadecimal format so that assembly
2718and disassembly do not cause any bits to change in the constants.
2719
2720When using the hexadecimal form, constants of types half, float, and
2721double are represented using the 16-digit form shown above (which
2722matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002723must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002724precision, respectively. Hexadecimal format is always used for long
2725double, and there are three forms of long double. The 80-bit format used
2726by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2727128-bit format used by PowerPC (two adjacent doubles) is represented by
2728``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002729represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2730will only work if they match the long double format on your target.
2731The IEEE 16-bit format (half precision) is represented by ``0xH``
2732followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2733(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002734
Reid Kleckner9a16d082014-03-05 02:41:37 +00002735There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002736
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002737.. _complexconstants:
2738
Sean Silvab084af42012-12-07 10:36:55 +00002739Complex Constants
2740-----------------
2741
2742Complex constants are a (potentially recursive) combination of simple
2743constants and smaller complex constants.
2744
2745**Structure constants**
2746 Structure constants are represented with notation similar to
2747 structure type definitions (a comma separated list of elements,
2748 surrounded by braces (``{}``)). For example:
2749 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2750 "``@G = external global i32``". Structure constants must have
2751 :ref:`structure type <t_struct>`, and the number and types of elements
2752 must match those specified by the type.
2753**Array constants**
2754 Array constants are represented with notation similar to array type
2755 definitions (a comma separated list of elements, surrounded by
2756 square brackets (``[]``)). For example:
2757 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2758 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002759 match those specified by the type. As a special case, character array
2760 constants may also be represented as a double-quoted string using the ``c``
2761 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002762**Vector constants**
2763 Vector constants are represented with notation similar to vector
2764 type definitions (a comma separated list of elements, surrounded by
2765 less-than/greater-than's (``<>``)). For example:
2766 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2767 must have :ref:`vector type <t_vector>`, and the number and types of
2768 elements must match those specified by the type.
2769**Zero initialization**
2770 The string '``zeroinitializer``' can be used to zero initialize a
2771 value to zero of *any* type, including scalar and
2772 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2773 having to print large zero initializers (e.g. for large arrays) and
2774 is always exactly equivalent to using explicit zero initializers.
2775**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002776 A metadata node is a constant tuple without types. For example:
2777 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002778 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2779 Unlike other typed constants that are meant to be interpreted as part of
2780 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002781 information such as debug info.
2782
2783Global Variable and Function Addresses
2784--------------------------------------
2785
2786The addresses of :ref:`global variables <globalvars>` and
2787:ref:`functions <functionstructure>` are always implicitly valid
2788(link-time) constants. These constants are explicitly referenced when
2789the :ref:`identifier for the global <identifiers>` is used and always have
2790:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2791file:
2792
2793.. code-block:: llvm
2794
2795 @X = global i32 17
2796 @Y = global i32 42
2797 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2798
2799.. _undefvalues:
2800
2801Undefined Values
2802----------------
2803
2804The string '``undef``' can be used anywhere a constant is expected, and
2805indicates that the user of the value may receive an unspecified
2806bit-pattern. Undefined values may be of any type (other than '``label``'
2807or '``void``') and be used anywhere a constant is permitted.
2808
2809Undefined values are useful because they indicate to the compiler that
2810the program is well defined no matter what value is used. This gives the
2811compiler more freedom to optimize. Here are some examples of
2812(potentially surprising) transformations that are valid (in pseudo IR):
2813
2814.. code-block:: llvm
2815
2816 %A = add %X, undef
2817 %B = sub %X, undef
2818 %C = xor %X, undef
2819 Safe:
2820 %A = undef
2821 %B = undef
2822 %C = undef
2823
2824This is safe because all of the output bits are affected by the undef
2825bits. Any output bit can have a zero or one depending on the input bits.
2826
2827.. code-block:: llvm
2828
2829 %A = or %X, undef
2830 %B = and %X, undef
2831 Safe:
2832 %A = -1
2833 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002834 Safe:
2835 %A = %X ;; By choosing undef as 0
2836 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002837 Unsafe:
2838 %A = undef
2839 %B = undef
2840
2841These logical operations have bits that are not always affected by the
2842input. For example, if ``%X`` has a zero bit, then the output of the
2843'``and``' operation will always be a zero for that bit, no matter what
2844the corresponding bit from the '``undef``' is. As such, it is unsafe to
2845optimize or assume that the result of the '``and``' is '``undef``'.
2846However, it is safe to assume that all bits of the '``undef``' could be
28470, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2848all the bits of the '``undef``' operand to the '``or``' could be set,
2849allowing the '``or``' to be folded to -1.
2850
2851.. code-block:: llvm
2852
2853 %A = select undef, %X, %Y
2854 %B = select undef, 42, %Y
2855 %C = select %X, %Y, undef
2856 Safe:
2857 %A = %X (or %Y)
2858 %B = 42 (or %Y)
2859 %C = %Y
2860 Unsafe:
2861 %A = undef
2862 %B = undef
2863 %C = undef
2864
2865This set of examples shows that undefined '``select``' (and conditional
2866branch) conditions can go *either way*, but they have to come from one
2867of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2868both known to have a clear low bit, then ``%A`` would have to have a
2869cleared low bit. However, in the ``%C`` example, the optimizer is
2870allowed to assume that the '``undef``' operand could be the same as
2871``%Y``, allowing the whole '``select``' to be eliminated.
2872
Renato Golin124f2592016-07-20 12:16:38 +00002873.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002874
2875 %A = xor undef, undef
2876
2877 %B = undef
2878 %C = xor %B, %B
2879
2880 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002881 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002882 %F = icmp gte %D, 4
2883
2884 Safe:
2885 %A = undef
2886 %B = undef
2887 %C = undef
2888 %D = undef
2889 %E = undef
2890 %F = undef
2891
2892This example points out that two '``undef``' operands are not
2893necessarily the same. This can be surprising to people (and also matches
2894C semantics) where they assume that "``X^X``" is always zero, even if
2895``X`` is undefined. This isn't true for a number of reasons, but the
2896short answer is that an '``undef``' "variable" can arbitrarily change
2897its value over its "live range". This is true because the variable
2898doesn't actually *have a live range*. Instead, the value is logically
2899read from arbitrary registers that happen to be around when needed, so
2900the value is not necessarily consistent over time. In fact, ``%A`` and
2901``%C`` need to have the same semantics or the core LLVM "replace all
2902uses with" concept would not hold.
2903
2904.. code-block:: llvm
2905
2906 %A = fdiv undef, %X
2907 %B = fdiv %X, undef
2908 Safe:
2909 %A = undef
2910 b: unreachable
2911
2912These examples show the crucial difference between an *undefined value*
2913and *undefined behavior*. An undefined value (like '``undef``') is
2914allowed to have an arbitrary bit-pattern. This means that the ``%A``
2915operation can be constant folded to '``undef``', because the '``undef``'
2916could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2917However, in the second example, we can make a more aggressive
2918assumption: because the ``undef`` is allowed to be an arbitrary value,
2919we are allowed to assume that it could be zero. Since a divide by zero
2920has *undefined behavior*, we are allowed to assume that the operation
2921does not execute at all. This allows us to delete the divide and all
2922code after it. Because the undefined operation "can't happen", the
2923optimizer can assume that it occurs in dead code.
2924
Renato Golin124f2592016-07-20 12:16:38 +00002925.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002926
2927 a: store undef -> %X
2928 b: store %X -> undef
2929 Safe:
2930 a: <deleted>
2931 b: unreachable
2932
2933These examples reiterate the ``fdiv`` example: a store *of* an undefined
2934value can be assumed to not have any effect; we can assume that the
2935value is overwritten with bits that happen to match what was already
2936there. However, a store *to* an undefined location could clobber
2937arbitrary memory, therefore, it has undefined behavior.
2938
2939.. _poisonvalues:
2940
2941Poison Values
2942-------------
2943
2944Poison values are similar to :ref:`undef values <undefvalues>`, however
2945they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002946that cannot evoke side effects has nevertheless detected a condition
2947that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002948
2949There is currently no way of representing a poison value in the IR; they
2950only exist when produced by operations such as :ref:`add <i_add>` with
2951the ``nsw`` flag.
2952
2953Poison value behavior is defined in terms of value *dependence*:
2954
2955- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2956- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2957 their dynamic predecessor basic block.
2958- Function arguments depend on the corresponding actual argument values
2959 in the dynamic callers of their functions.
2960- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2961 instructions that dynamically transfer control back to them.
2962- :ref:`Invoke <i_invoke>` instructions depend on the
2963 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2964 call instructions that dynamically transfer control back to them.
2965- Non-volatile loads and stores depend on the most recent stores to all
2966 of the referenced memory addresses, following the order in the IR
2967 (including loads and stores implied by intrinsics such as
2968 :ref:`@llvm.memcpy <int_memcpy>`.)
2969- An instruction with externally visible side effects depends on the
2970 most recent preceding instruction with externally visible side
2971 effects, following the order in the IR. (This includes :ref:`volatile
2972 operations <volatile>`.)
2973- An instruction *control-depends* on a :ref:`terminator
2974 instruction <terminators>` if the terminator instruction has
2975 multiple successors and the instruction is always executed when
2976 control transfers to one of the successors, and may not be executed
2977 when control is transferred to another.
2978- Additionally, an instruction also *control-depends* on a terminator
2979 instruction if the set of instructions it otherwise depends on would
2980 be different if the terminator had transferred control to a different
2981 successor.
2982- Dependence is transitive.
2983
Richard Smith32dbdf62014-07-31 04:25:36 +00002984Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2985with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002986on a poison value has undefined behavior.
2987
2988Here are some examples:
2989
2990.. code-block:: llvm
2991
2992 entry:
2993 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2994 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002995 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002996 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2997
2998 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002999 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003000
3001 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3002
3003 %narrowaddr = bitcast i32* @g to i16*
3004 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003005 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3006 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003007
3008 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3009 br i1 %cmp, label %true, label %end ; Branch to either destination.
3010
3011 true:
3012 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3013 ; it has undefined behavior.
3014 br label %end
3015
3016 end:
3017 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3018 ; Both edges into this PHI are
3019 ; control-dependent on %cmp, so this
3020 ; always results in a poison value.
3021
3022 store volatile i32 0, i32* @g ; This would depend on the store in %true
3023 ; if %cmp is true, or the store in %entry
3024 ; otherwise, so this is undefined behavior.
3025
3026 br i1 %cmp, label %second_true, label %second_end
3027 ; The same branch again, but this time the
3028 ; true block doesn't have side effects.
3029
3030 second_true:
3031 ; No side effects!
3032 ret void
3033
3034 second_end:
3035 store volatile i32 0, i32* @g ; This time, the instruction always depends
3036 ; on the store in %end. Also, it is
3037 ; control-equivalent to %end, so this is
3038 ; well-defined (ignoring earlier undefined
3039 ; behavior in this example).
3040
3041.. _blockaddress:
3042
3043Addresses of Basic Blocks
3044-------------------------
3045
3046``blockaddress(@function, %block)``
3047
3048The '``blockaddress``' constant computes the address of the specified
3049basic block in the specified function, and always has an ``i8*`` type.
3050Taking the address of the entry block is illegal.
3051
3052This value only has defined behavior when used as an operand to the
3053':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3054against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003055undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003056no label is equal to the null pointer. This may be passed around as an
3057opaque pointer sized value as long as the bits are not inspected. This
3058allows ``ptrtoint`` and arithmetic to be performed on these values so
3059long as the original value is reconstituted before the ``indirectbr``
3060instruction.
3061
3062Finally, some targets may provide defined semantics when using the value
3063as the operand to an inline assembly, but that is target specific.
3064
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003065.. _constantexprs:
3066
Sean Silvab084af42012-12-07 10:36:55 +00003067Constant Expressions
3068--------------------
3069
3070Constant expressions are used to allow expressions involving other
3071constants to be used as constants. Constant expressions may be of any
3072:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3073that does not have side effects (e.g. load and call are not supported).
3074The following is the syntax for constant expressions:
3075
3076``trunc (CST to TYPE)``
3077 Truncate a constant to another type. The bit size of CST must be
3078 larger than the bit size of TYPE. Both types must be integers.
3079``zext (CST to TYPE)``
3080 Zero extend a constant to another type. The bit size of CST must be
3081 smaller than the bit size of TYPE. Both types must be integers.
3082``sext (CST to TYPE)``
3083 Sign extend a constant to another type. The bit size of CST must be
3084 smaller than the bit size of TYPE. Both types must be integers.
3085``fptrunc (CST to TYPE)``
3086 Truncate a floating point constant to another floating point type.
3087 The size of CST must be larger than the size of TYPE. Both types
3088 must be floating point.
3089``fpext (CST to TYPE)``
3090 Floating point extend a constant to another type. The size of CST
3091 must be smaller or equal to the size of TYPE. Both types must be
3092 floating point.
3093``fptoui (CST to TYPE)``
3094 Convert a floating point constant to the corresponding unsigned
3095 integer constant. TYPE must be a scalar or vector integer type. CST
3096 must be of scalar or vector floating point type. Both CST and TYPE
3097 must be scalars, or vectors of the same number of elements. If the
3098 value won't fit in the integer type, the results are undefined.
3099``fptosi (CST to TYPE)``
3100 Convert a floating point constant to the corresponding signed
3101 integer constant. TYPE must be a scalar or vector integer type. CST
3102 must be of scalar or vector floating point type. Both CST and TYPE
3103 must be scalars, or vectors of the same number of elements. If the
3104 value won't fit in the integer type, the results are undefined.
3105``uitofp (CST to TYPE)``
3106 Convert an unsigned integer constant to the corresponding floating
3107 point constant. TYPE must be a scalar or vector floating point type.
3108 CST must be of scalar or vector integer type. Both CST and TYPE must
3109 be scalars, or vectors of the same number of elements. If the value
3110 won't fit in the floating point type, the results are undefined.
3111``sitofp (CST to TYPE)``
3112 Convert a signed integer constant to the corresponding floating
3113 point constant. TYPE must be a scalar or vector floating point type.
3114 CST must be of scalar or vector integer type. Both CST and TYPE must
3115 be scalars, or vectors of the same number of elements. If the value
3116 won't fit in the floating point type, the results are undefined.
3117``ptrtoint (CST to TYPE)``
3118 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003119 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003120 pointer type. The ``CST`` value is zero extended, truncated, or
3121 unchanged to make it fit in ``TYPE``.
3122``inttoptr (CST to TYPE)``
3123 Convert an integer constant to a pointer constant. TYPE must be a
3124 pointer type. CST must be of integer type. The CST value is zero
3125 extended, truncated, or unchanged to make it fit in a pointer size.
3126 This one is *really* dangerous!
3127``bitcast (CST to TYPE)``
3128 Convert a constant, CST, to another TYPE. The constraints of the
3129 operands are the same as those for the :ref:`bitcast
3130 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003131``addrspacecast (CST to TYPE)``
3132 Convert a constant pointer or constant vector of pointer, CST, to another
3133 TYPE in a different address space. The constraints of the operands are the
3134 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003135``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003136 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3137 constants. As with the :ref:`getelementptr <i_getelementptr>`
3138 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003139 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003140``select (COND, VAL1, VAL2)``
3141 Perform the :ref:`select operation <i_select>` on constants.
3142``icmp COND (VAL1, VAL2)``
3143 Performs the :ref:`icmp operation <i_icmp>` on constants.
3144``fcmp COND (VAL1, VAL2)``
3145 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3146``extractelement (VAL, IDX)``
3147 Perform the :ref:`extractelement operation <i_extractelement>` on
3148 constants.
3149``insertelement (VAL, ELT, IDX)``
3150 Perform the :ref:`insertelement operation <i_insertelement>` on
3151 constants.
3152``shufflevector (VEC1, VEC2, IDXMASK)``
3153 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3154 constants.
3155``extractvalue (VAL, IDX0, IDX1, ...)``
3156 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3157 constants. The index list is interpreted in a similar manner as
3158 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3159 least one index value must be specified.
3160``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3161 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3162 The index list is interpreted in a similar manner as indices in a
3163 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3164 value must be specified.
3165``OPCODE (LHS, RHS)``
3166 Perform the specified operation of the LHS and RHS constants. OPCODE
3167 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3168 binary <bitwiseops>` operations. The constraints on operands are
3169 the same as those for the corresponding instruction (e.g. no bitwise
3170 operations on floating point values are allowed).
3171
3172Other Values
3173============
3174
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003175.. _inlineasmexprs:
3176
Sean Silvab084af42012-12-07 10:36:55 +00003177Inline Assembler Expressions
3178----------------------------
3179
3180LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003181Inline Assembly <moduleasm>`) through the use of a special value. This value
3182represents the inline assembler as a template string (containing the
3183instructions to emit), a list of operand constraints (stored as a string), a
3184flag that indicates whether or not the inline asm expression has side effects,
3185and a flag indicating whether the function containing the asm needs to align its
3186stack conservatively.
3187
3188The template string supports argument substitution of the operands using "``$``"
3189followed by a number, to indicate substitution of the given register/memory
3190location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3191be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3192operand (See :ref:`inline-asm-modifiers`).
3193
3194A literal "``$``" may be included by using "``$$``" in the template. To include
3195other special characters into the output, the usual "``\XX``" escapes may be
3196used, just as in other strings. Note that after template substitution, the
3197resulting assembly string is parsed by LLVM's integrated assembler unless it is
3198disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3199syntax known to LLVM.
3200
3201LLVM's support for inline asm is modeled closely on the requirements of Clang's
3202GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3203modifier codes listed here are similar or identical to those in GCC's inline asm
3204support. However, to be clear, the syntax of the template and constraint strings
3205described here is *not* the same as the syntax accepted by GCC and Clang, and,
3206while most constraint letters are passed through as-is by Clang, some get
3207translated to other codes when converting from the C source to the LLVM
3208assembly.
3209
3210An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003211
3212.. code-block:: llvm
3213
3214 i32 (i32) asm "bswap $0", "=r,r"
3215
3216Inline assembler expressions may **only** be used as the callee operand
3217of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3218Thus, typically we have:
3219
3220.. code-block:: llvm
3221
3222 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3223
3224Inline asms with side effects not visible in the constraint list must be
3225marked as having side effects. This is done through the use of the
3226'``sideeffect``' keyword, like so:
3227
3228.. code-block:: llvm
3229
3230 call void asm sideeffect "eieio", ""()
3231
3232In some cases inline asms will contain code that will not work unless
3233the stack is aligned in some way, such as calls or SSE instructions on
3234x86, yet will not contain code that does that alignment within the asm.
3235The compiler should make conservative assumptions about what the asm
3236might contain and should generate its usual stack alignment code in the
3237prologue if the '``alignstack``' keyword is present:
3238
3239.. code-block:: llvm
3240
3241 call void asm alignstack "eieio", ""()
3242
3243Inline asms also support using non-standard assembly dialects. The
3244assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3245the inline asm is using the Intel dialect. Currently, ATT and Intel are
3246the only supported dialects. An example is:
3247
3248.. code-block:: llvm
3249
3250 call void asm inteldialect "eieio", ""()
3251
3252If multiple keywords appear the '``sideeffect``' keyword must come
3253first, the '``alignstack``' keyword second and the '``inteldialect``'
3254keyword last.
3255
James Y Knightbc832ed2015-07-08 18:08:36 +00003256Inline Asm Constraint String
3257^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3258
3259The constraint list is a comma-separated string, each element containing one or
3260more constraint codes.
3261
3262For each element in the constraint list an appropriate register or memory
3263operand will be chosen, and it will be made available to assembly template
3264string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3265second, etc.
3266
3267There are three different types of constraints, which are distinguished by a
3268prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3269constraints must always be given in that order: outputs first, then inputs, then
3270clobbers. They cannot be intermingled.
3271
3272There are also three different categories of constraint codes:
3273
3274- Register constraint. This is either a register class, or a fixed physical
3275 register. This kind of constraint will allocate a register, and if necessary,
3276 bitcast the argument or result to the appropriate type.
3277- Memory constraint. This kind of constraint is for use with an instruction
3278 taking a memory operand. Different constraints allow for different addressing
3279 modes used by the target.
3280- Immediate value constraint. This kind of constraint is for an integer or other
3281 immediate value which can be rendered directly into an instruction. The
3282 various target-specific constraints allow the selection of a value in the
3283 proper range for the instruction you wish to use it with.
3284
3285Output constraints
3286""""""""""""""""""
3287
3288Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3289indicates that the assembly will write to this operand, and the operand will
3290then be made available as a return value of the ``asm`` expression. Output
3291constraints do not consume an argument from the call instruction. (Except, see
3292below about indirect outputs).
3293
3294Normally, it is expected that no output locations are written to by the assembly
3295expression until *all* of the inputs have been read. As such, LLVM may assign
3296the same register to an output and an input. If this is not safe (e.g. if the
3297assembly contains two instructions, where the first writes to one output, and
3298the second reads an input and writes to a second output), then the "``&``"
3299modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003300"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003301will not use the same register for any inputs (other than an input tied to this
3302output).
3303
3304Input constraints
3305"""""""""""""""""
3306
3307Input constraints do not have a prefix -- just the constraint codes. Each input
3308constraint will consume one argument from the call instruction. It is not
3309permitted for the asm to write to any input register or memory location (unless
3310that input is tied to an output). Note also that multiple inputs may all be
3311assigned to the same register, if LLVM can determine that they necessarily all
3312contain the same value.
3313
3314Instead of providing a Constraint Code, input constraints may also "tie"
3315themselves to an output constraint, by providing an integer as the constraint
3316string. Tied inputs still consume an argument from the call instruction, and
3317take up a position in the asm template numbering as is usual -- they will simply
3318be constrained to always use the same register as the output they've been tied
3319to. For example, a constraint string of "``=r,0``" says to assign a register for
3320output, and use that register as an input as well (it being the 0'th
3321constraint).
3322
3323It is permitted to tie an input to an "early-clobber" output. In that case, no
3324*other* input may share the same register as the input tied to the early-clobber
3325(even when the other input has the same value).
3326
3327You may only tie an input to an output which has a register constraint, not a
3328memory constraint. Only a single input may be tied to an output.
3329
3330There is also an "interesting" feature which deserves a bit of explanation: if a
3331register class constraint allocates a register which is too small for the value
3332type operand provided as input, the input value will be split into multiple
3333registers, and all of them passed to the inline asm.
3334
3335However, this feature is often not as useful as you might think.
3336
3337Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3338architectures that have instructions which operate on multiple consecutive
3339instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3340SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3341hardware then loads into both the named register, and the next register. This
3342feature of inline asm would not be useful to support that.)
3343
3344A few of the targets provide a template string modifier allowing explicit access
3345to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3346``D``). On such an architecture, you can actually access the second allocated
3347register (yet, still, not any subsequent ones). But, in that case, you're still
3348probably better off simply splitting the value into two separate operands, for
3349clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3350despite existing only for use with this feature, is not really a good idea to
3351use)
3352
3353Indirect inputs and outputs
3354"""""""""""""""""""""""""""
3355
3356Indirect output or input constraints can be specified by the "``*``" modifier
3357(which goes after the "``=``" in case of an output). This indicates that the asm
3358will write to or read from the contents of an *address* provided as an input
3359argument. (Note that in this way, indirect outputs act more like an *input* than
3360an output: just like an input, they consume an argument of the call expression,
3361rather than producing a return value. An indirect output constraint is an
3362"output" only in that the asm is expected to write to the contents of the input
3363memory location, instead of just read from it).
3364
3365This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3366address of a variable as a value.
3367
3368It is also possible to use an indirect *register* constraint, but only on output
3369(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3370value normally, and then, separately emit a store to the address provided as
3371input, after the provided inline asm. (It's not clear what value this
3372functionality provides, compared to writing the store explicitly after the asm
3373statement, and it can only produce worse code, since it bypasses many
3374optimization passes. I would recommend not using it.)
3375
3376
3377Clobber constraints
3378"""""""""""""""""""
3379
3380A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3381consume an input operand, nor generate an output. Clobbers cannot use any of the
3382general constraint code letters -- they may use only explicit register
3383constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3384"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3385memory locations -- not only the memory pointed to by a declared indirect
3386output.
3387
Peter Zotov00257232016-08-30 10:48:31 +00003388Note that clobbering named registers that are also present in output
3389constraints is not legal.
3390
James Y Knightbc832ed2015-07-08 18:08:36 +00003391
3392Constraint Codes
3393""""""""""""""""
3394After a potential prefix comes constraint code, or codes.
3395
3396A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3397followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3398(e.g. "``{eax}``").
3399
3400The one and two letter constraint codes are typically chosen to be the same as
3401GCC's constraint codes.
3402
3403A single constraint may include one or more than constraint code in it, leaving
3404it up to LLVM to choose which one to use. This is included mainly for
3405compatibility with the translation of GCC inline asm coming from clang.
3406
3407There are two ways to specify alternatives, and either or both may be used in an
3408inline asm constraint list:
3409
34101) Append the codes to each other, making a constraint code set. E.g. "``im``"
3411 or "``{eax}m``". This means "choose any of the options in the set". The
3412 choice of constraint is made independently for each constraint in the
3413 constraint list.
3414
34152) Use "``|``" between constraint code sets, creating alternatives. Every
3416 constraint in the constraint list must have the same number of alternative
3417 sets. With this syntax, the same alternative in *all* of the items in the
3418 constraint list will be chosen together.
3419
3420Putting those together, you might have a two operand constraint string like
3421``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3422operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3423may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3424
3425However, the use of either of the alternatives features is *NOT* recommended, as
3426LLVM is not able to make an intelligent choice about which one to use. (At the
3427point it currently needs to choose, not enough information is available to do so
3428in a smart way.) Thus, it simply tries to make a choice that's most likely to
3429compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3430always choose to use memory, not registers). And, if given multiple registers,
3431or multiple register classes, it will simply choose the first one. (In fact, it
3432doesn't currently even ensure explicitly specified physical registers are
3433unique, so specifying multiple physical registers as alternatives, like
3434``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3435intended.)
3436
3437Supported Constraint Code List
3438""""""""""""""""""""""""""""""
3439
3440The constraint codes are, in general, expected to behave the same way they do in
3441GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3442inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3443and GCC likely indicates a bug in LLVM.
3444
3445Some constraint codes are typically supported by all targets:
3446
3447- ``r``: A register in the target's general purpose register class.
3448- ``m``: A memory address operand. It is target-specific what addressing modes
3449 are supported, typical examples are register, or register + register offset,
3450 or register + immediate offset (of some target-specific size).
3451- ``i``: An integer constant (of target-specific width). Allows either a simple
3452 immediate, or a relocatable value.
3453- ``n``: An integer constant -- *not* including relocatable values.
3454- ``s``: An integer constant, but allowing *only* relocatable values.
3455- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3456 useful to pass a label for an asm branch or call.
3457
3458 .. FIXME: but that surely isn't actually okay to jump out of an asm
3459 block without telling llvm about the control transfer???)
3460
3461- ``{register-name}``: Requires exactly the named physical register.
3462
3463Other constraints are target-specific:
3464
3465AArch64:
3466
3467- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3468- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3469 i.e. 0 to 4095 with optional shift by 12.
3470- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3471 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3472- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3473 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3474- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3475 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3476- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3477 32-bit register. This is a superset of ``K``: in addition to the bitmask
3478 immediate, also allows immediate integers which can be loaded with a single
3479 ``MOVZ`` or ``MOVL`` instruction.
3480- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3481 64-bit register. This is a superset of ``L``.
3482- ``Q``: Memory address operand must be in a single register (no
3483 offsets). (However, LLVM currently does this for the ``m`` constraint as
3484 well.)
3485- ``r``: A 32 or 64-bit integer register (W* or X*).
3486- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3487- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3488
3489AMDGPU:
3490
3491- ``r``: A 32 or 64-bit integer register.
3492- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3493- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3494
3495
3496All ARM modes:
3497
3498- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3499 operand. Treated the same as operand ``m``, at the moment.
3500
3501ARM and ARM's Thumb2 mode:
3502
3503- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3504- ``I``: An immediate integer valid for a data-processing instruction.
3505- ``J``: An immediate integer between -4095 and 4095.
3506- ``K``: An immediate integer whose bitwise inverse is valid for a
3507 data-processing instruction. (Can be used with template modifier "``B``" to
3508 print the inverted value).
3509- ``L``: An immediate integer whose negation is valid for a data-processing
3510 instruction. (Can be used with template modifier "``n``" to print the negated
3511 value).
3512- ``M``: A power of two or a integer between 0 and 32.
3513- ``N``: Invalid immediate constraint.
3514- ``O``: Invalid immediate constraint.
3515- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3516- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3517 as ``r``.
3518- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3519 invalid.
3520- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3521 ``d0-d31``, or ``q0-q15``.
3522- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3523 ``d0-d7``, or ``q0-q3``.
3524- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3525 ``s0-s31``.
3526
3527ARM's Thumb1 mode:
3528
3529- ``I``: An immediate integer between 0 and 255.
3530- ``J``: An immediate integer between -255 and -1.
3531- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3532 some amount.
3533- ``L``: An immediate integer between -7 and 7.
3534- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3535- ``N``: An immediate integer between 0 and 31.
3536- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3537- ``r``: A low 32-bit GPR register (``r0-r7``).
3538- ``l``: A low 32-bit GPR register (``r0-r7``).
3539- ``h``: A high GPR register (``r0-r7``).
3540- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3541 ``d0-d31``, or ``q0-q15``.
3542- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3543 ``d0-d7``, or ``q0-q3``.
3544- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3545 ``s0-s31``.
3546
3547
3548Hexagon:
3549
3550- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3551 at the moment.
3552- ``r``: A 32 or 64-bit register.
3553
3554MSP430:
3555
3556- ``r``: An 8 or 16-bit register.
3557
3558MIPS:
3559
3560- ``I``: An immediate signed 16-bit integer.
3561- ``J``: An immediate integer zero.
3562- ``K``: An immediate unsigned 16-bit integer.
3563- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3564- ``N``: An immediate integer between -65535 and -1.
3565- ``O``: An immediate signed 15-bit integer.
3566- ``P``: An immediate integer between 1 and 65535.
3567- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3568 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3569- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3570 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3571 ``m``.
3572- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3573 ``sc`` instruction on the given subtarget (details vary).
3574- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3575- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003576 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3577 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003578- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3579 ``25``).
3580- ``l``: The ``lo`` register, 32 or 64-bit.
3581- ``x``: Invalid.
3582
3583NVPTX:
3584
3585- ``b``: A 1-bit integer register.
3586- ``c`` or ``h``: A 16-bit integer register.
3587- ``r``: A 32-bit integer register.
3588- ``l`` or ``N``: A 64-bit integer register.
3589- ``f``: A 32-bit float register.
3590- ``d``: A 64-bit float register.
3591
3592
3593PowerPC:
3594
3595- ``I``: An immediate signed 16-bit integer.
3596- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3597- ``K``: An immediate unsigned 16-bit integer.
3598- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3599- ``M``: An immediate integer greater than 31.
3600- ``N``: An immediate integer that is an exact power of 2.
3601- ``O``: The immediate integer constant 0.
3602- ``P``: An immediate integer constant whose negation is a signed 16-bit
3603 constant.
3604- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3605 treated the same as ``m``.
3606- ``r``: A 32 or 64-bit integer register.
3607- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3608 ``R1-R31``).
3609- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3610 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3611- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3612 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3613 altivec vector register (``V0-V31``).
3614
3615 .. FIXME: is this a bug that v accepts QPX registers? I think this
3616 is supposed to only use the altivec vector registers?
3617
3618- ``y``: Condition register (``CR0-CR7``).
3619- ``wc``: An individual CR bit in a CR register.
3620- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3621 register set (overlapping both the floating-point and vector register files).
3622- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3623 set.
3624
3625Sparc:
3626
3627- ``I``: An immediate 13-bit signed integer.
3628- ``r``: A 32-bit integer register.
3629
3630SystemZ:
3631
3632- ``I``: An immediate unsigned 8-bit integer.
3633- ``J``: An immediate unsigned 12-bit integer.
3634- ``K``: An immediate signed 16-bit integer.
3635- ``L``: An immediate signed 20-bit integer.
3636- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003637- ``Q``: A memory address operand with a base address and a 12-bit immediate
3638 unsigned displacement.
3639- ``R``: A memory address operand with a base address, a 12-bit immediate
3640 unsigned displacement, and an index register.
3641- ``S``: A memory address operand with a base address and a 20-bit immediate
3642 signed displacement.
3643- ``T``: A memory address operand with a base address, a 20-bit immediate
3644 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003645- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3646- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3647 address context evaluates as zero).
3648- ``h``: A 32-bit value in the high part of a 64bit data register
3649 (LLVM-specific)
3650- ``f``: A 32, 64, or 128-bit floating point register.
3651
3652X86:
3653
3654- ``I``: An immediate integer between 0 and 31.
3655- ``J``: An immediate integer between 0 and 64.
3656- ``K``: An immediate signed 8-bit integer.
3657- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3658 0xffffffff.
3659- ``M``: An immediate integer between 0 and 3.
3660- ``N``: An immediate unsigned 8-bit integer.
3661- ``O``: An immediate integer between 0 and 127.
3662- ``e``: An immediate 32-bit signed integer.
3663- ``Z``: An immediate 32-bit unsigned integer.
3664- ``o``, ``v``: Treated the same as ``m``, at the moment.
3665- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3666 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3667 registers, and on X86-64, it is all of the integer registers.
3668- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3669 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3670- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3671- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3672 existed since i386, and can be accessed without the REX prefix.
3673- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3674- ``y``: A 64-bit MMX register, if MMX is enabled.
3675- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3676 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3677 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3678 512-bit vector operand in an AVX512 register, Otherwise, an error.
3679- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3680- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3681 32-bit mode, a 64-bit integer operand will get split into two registers). It
3682 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3683 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3684 you're better off splitting it yourself, before passing it to the asm
3685 statement.
3686
3687XCore:
3688
3689- ``r``: A 32-bit integer register.
3690
3691
3692.. _inline-asm-modifiers:
3693
3694Asm template argument modifiers
3695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3696
3697In the asm template string, modifiers can be used on the operand reference, like
3698"``${0:n}``".
3699
3700The modifiers are, in general, expected to behave the same way they do in
3701GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3702inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3703and GCC likely indicates a bug in LLVM.
3704
3705Target-independent:
3706
Sean Silvaa1190322015-08-06 22:56:48 +00003707- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003708 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3709- ``n``: Negate and print immediate integer constant unadorned, without the
3710 target-specific immediate punctuation (e.g. no ``$`` prefix).
3711- ``l``: Print as an unadorned label, without the target-specific label
3712 punctuation (e.g. no ``$`` prefix).
3713
3714AArch64:
3715
3716- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3717 instead of ``x30``, print ``w30``.
3718- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3719- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3720 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3721 ``v*``.
3722
3723AMDGPU:
3724
3725- ``r``: No effect.
3726
3727ARM:
3728
3729- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3730 register).
3731- ``P``: No effect.
3732- ``q``: No effect.
3733- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3734 as ``d4[1]`` instead of ``s9``)
3735- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3736 prefix.
3737- ``L``: Print the low 16-bits of an immediate integer constant.
3738- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3739 register operands subsequent to the specified one (!), so use carefully.
3740- ``Q``: Print the low-order register of a register-pair, or the low-order
3741 register of a two-register operand.
3742- ``R``: Print the high-order register of a register-pair, or the high-order
3743 register of a two-register operand.
3744- ``H``: Print the second register of a register-pair. (On a big-endian system,
3745 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3746 to ``R``.)
3747
3748 .. FIXME: H doesn't currently support printing the second register
3749 of a two-register operand.
3750
3751- ``e``: Print the low doubleword register of a NEON quad register.
3752- ``f``: Print the high doubleword register of a NEON quad register.
3753- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3754 adornment.
3755
3756Hexagon:
3757
3758- ``L``: Print the second register of a two-register operand. Requires that it
3759 has been allocated consecutively to the first.
3760
3761 .. FIXME: why is it restricted to consecutive ones? And there's
3762 nothing that ensures that happens, is there?
3763
3764- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3765 nothing. Used to print 'addi' vs 'add' instructions.
3766
3767MSP430:
3768
3769No additional modifiers.
3770
3771MIPS:
3772
3773- ``X``: Print an immediate integer as hexadecimal
3774- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3775- ``d``: Print an immediate integer as decimal.
3776- ``m``: Subtract one and print an immediate integer as decimal.
3777- ``z``: Print $0 if an immediate zero, otherwise print normally.
3778- ``L``: Print the low-order register of a two-register operand, or prints the
3779 address of the low-order word of a double-word memory operand.
3780
3781 .. FIXME: L seems to be missing memory operand support.
3782
3783- ``M``: Print the high-order register of a two-register operand, or prints the
3784 address of the high-order word of a double-word memory operand.
3785
3786 .. FIXME: M seems to be missing memory operand support.
3787
3788- ``D``: Print the second register of a two-register operand, or prints the
3789 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3790 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3791 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003792- ``w``: No effect. Provided for compatibility with GCC which requires this
3793 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3794 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003795
3796NVPTX:
3797
3798- ``r``: No effect.
3799
3800PowerPC:
3801
3802- ``L``: Print the second register of a two-register operand. Requires that it
3803 has been allocated consecutively to the first.
3804
3805 .. FIXME: why is it restricted to consecutive ones? And there's
3806 nothing that ensures that happens, is there?
3807
3808- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3809 nothing. Used to print 'addi' vs 'add' instructions.
3810- ``y``: For a memory operand, prints formatter for a two-register X-form
3811 instruction. (Currently always prints ``r0,OPERAND``).
3812- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3813 otherwise. (NOTE: LLVM does not support update form, so this will currently
3814 always print nothing)
3815- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3816 not support indexed form, so this will currently always print nothing)
3817
3818Sparc:
3819
3820- ``r``: No effect.
3821
3822SystemZ:
3823
3824SystemZ implements only ``n``, and does *not* support any of the other
3825target-independent modifiers.
3826
3827X86:
3828
3829- ``c``: Print an unadorned integer or symbol name. (The latter is
3830 target-specific behavior for this typically target-independent modifier).
3831- ``A``: Print a register name with a '``*``' before it.
3832- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3833 operand.
3834- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3835 memory operand.
3836- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3837 operand.
3838- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3839 operand.
3840- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3841 available, otherwise the 32-bit register name; do nothing on a memory operand.
3842- ``n``: Negate and print an unadorned integer, or, for operands other than an
3843 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3844 the operand. (The behavior for relocatable symbol expressions is a
3845 target-specific behavior for this typically target-independent modifier)
3846- ``H``: Print a memory reference with additional offset +8.
3847- ``P``: Print a memory reference or operand for use as the argument of a call
3848 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3849
3850XCore:
3851
3852No additional modifiers.
3853
3854
Sean Silvab084af42012-12-07 10:36:55 +00003855Inline Asm Metadata
3856^^^^^^^^^^^^^^^^^^^
3857
3858The call instructions that wrap inline asm nodes may have a
3859"``!srcloc``" MDNode attached to it that contains a list of constant
3860integers. If present, the code generator will use the integer as the
3861location cookie value when report errors through the ``LLVMContext``
3862error reporting mechanisms. This allows a front-end to correlate backend
3863errors that occur with inline asm back to the source code that produced
3864it. For example:
3865
3866.. code-block:: llvm
3867
3868 call void asm sideeffect "something bad", ""(), !srcloc !42
3869 ...
3870 !42 = !{ i32 1234567 }
3871
3872It is up to the front-end to make sense of the magic numbers it places
3873in the IR. If the MDNode contains multiple constants, the code generator
3874will use the one that corresponds to the line of the asm that the error
3875occurs on.
3876
3877.. _metadata:
3878
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003879Metadata
3880========
Sean Silvab084af42012-12-07 10:36:55 +00003881
3882LLVM IR allows metadata to be attached to instructions in the program
3883that can convey extra information about the code to the optimizers and
3884code generator. One example application of metadata is source-level
3885debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003886
Sean Silvaa1190322015-08-06 22:56:48 +00003887Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003888``call`` instruction, it uses the ``metadata`` type.
3889
3890All metadata are identified in syntax by a exclamation point ('``!``').
3891
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003892.. _metadata-string:
3893
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003894Metadata Nodes and Metadata Strings
3895-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003896
3897A metadata string is a string surrounded by double quotes. It can
3898contain any character by escaping non-printable characters with
3899"``\xx``" where "``xx``" is the two digit hex code. For example:
3900"``!"test\00"``".
3901
3902Metadata nodes are represented with notation similar to structure
3903constants (a comma separated list of elements, surrounded by braces and
3904preceded by an exclamation point). Metadata nodes can have any values as
3905their operand. For example:
3906
3907.. code-block:: llvm
3908
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003909 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003910
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003911Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3912
Renato Golin124f2592016-07-20 12:16:38 +00003913.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003914
3915 !0 = distinct !{!"test\00", i32 10}
3916
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003917``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003918content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003919when metadata operands change.
3920
Sean Silvab084af42012-12-07 10:36:55 +00003921A :ref:`named metadata <namedmetadatastructure>` is a collection of
3922metadata nodes, which can be looked up in the module symbol table. For
3923example:
3924
3925.. code-block:: llvm
3926
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003927 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003928
3929Metadata can be used as function arguments. Here ``llvm.dbg.value``
3930function is using two metadata arguments:
3931
3932.. code-block:: llvm
3933
3934 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3935
Peter Collingbourne50108682015-11-06 02:41:02 +00003936Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3937to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003938
3939.. code-block:: llvm
3940
3941 %indvar.next = add i64 %indvar, 1, !dbg !21
3942
Peter Collingbourne50108682015-11-06 02:41:02 +00003943Metadata can also be attached to a function definition. Here metadata ``!22``
3944is attached to the ``foo`` function using the ``!dbg`` identifier:
3945
3946.. code-block:: llvm
3947
3948 define void @foo() !dbg !22 {
3949 ret void
3950 }
3951
Sean Silvab084af42012-12-07 10:36:55 +00003952More information about specific metadata nodes recognized by the
3953optimizers and code generator is found below.
3954
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003955.. _specialized-metadata:
3956
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003957Specialized Metadata Nodes
3958^^^^^^^^^^^^^^^^^^^^^^^^^^
3959
3960Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003961to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003962order.
3963
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003964These aren't inherently debug info centric, but currently all the specialized
3965metadata nodes are related to debug info.
3966
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003967.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003968
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003969DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003970"""""""""""""
3971
Sean Silvaa1190322015-08-06 22:56:48 +00003972``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003973``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3974fields are tuples containing the debug info to be emitted along with the compile
3975unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003976references to them from instructions).
3977
Renato Golin124f2592016-07-20 12:16:38 +00003978.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003979
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003980 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003981 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003982 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003983 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003984 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003985
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003986Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003987specific compilation unit. File descriptors are defined using this scope.
3988These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003989keep track of subprograms, global variables, type information, and imported
3990entities (declarations and namespaces).
3991
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003992.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003993
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003994DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003995""""""
3996
Sean Silvaa1190322015-08-06 22:56:48 +00003997``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003998
3999.. code-block:: llvm
4000
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004001 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004002
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004003Files are sometimes used in ``scope:`` fields, and are the only valid target
4004for ``file:`` fields.
4005
Michael Kuperstein605308a2015-05-14 10:58:59 +00004006.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004007
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004008DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004009"""""""""""
4010
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004011``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004012``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004013
Renato Golin124f2592016-07-20 12:16:38 +00004014.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004015
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004016 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004017 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004018 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004019
Sean Silvaa1190322015-08-06 22:56:48 +00004020The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004021following:
4022
Renato Golin124f2592016-07-20 12:16:38 +00004023.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004024
4025 DW_ATE_address = 1
4026 DW_ATE_boolean = 2
4027 DW_ATE_float = 4
4028 DW_ATE_signed = 5
4029 DW_ATE_signed_char = 6
4030 DW_ATE_unsigned = 7
4031 DW_ATE_unsigned_char = 8
4032
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004033.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004034
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004035DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004036""""""""""""""""
4037
Sean Silvaa1190322015-08-06 22:56:48 +00004038``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004039refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004040types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004041represents a function with no return value (such as ``void foo() {}`` in C++).
4042
Renato Golin124f2592016-07-20 12:16:38 +00004043.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004044
4045 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4046 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004047 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004049.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004050
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004051DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004052"""""""""""""
4053
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004054``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004055qualified types.
4056
Renato Golin124f2592016-07-20 12:16:38 +00004057.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004058
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004059 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004060 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004061 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004062 align: 32)
4063
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004064The following ``tag:`` values are valid:
4065
Renato Golin124f2592016-07-20 12:16:38 +00004066.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004067
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004068 DW_TAG_member = 13
4069 DW_TAG_pointer_type = 15
4070 DW_TAG_reference_type = 16
4071 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004072 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004073 DW_TAG_ptr_to_member_type = 31
4074 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004075 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004076 DW_TAG_volatile_type = 53
4077 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004078 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004079
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004080.. _DIDerivedTypeMember:
4081
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004082``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004083<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004084``offset:`` is the member's bit offset. If the composite type has an ODR
4085``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4086uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004087
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004088``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4089field of :ref:`composite types <DICompositeType>` to describe parents and
4090friends.
4091
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004092``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4093
4094``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004095``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4096are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004097
4098Note that the ``void *`` type is expressed as a type derived from NULL.
4099
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004100.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004101
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004102DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004103"""""""""""""""
4104
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004105``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004106structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004107
4108If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004109identifier used for type merging between modules. When specified,
4110:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4111derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4112``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004113
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004114For a given ``identifier:``, there should only be a single composite type that
4115does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4116together will unique such definitions at parse time via the ``identifier:``
4117field, even if the nodes are ``distinct``.
4118
Renato Golin124f2592016-07-20 12:16:38 +00004119.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004120
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004121 !0 = !DIEnumerator(name: "SixKind", value: 7)
4122 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4123 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4124 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004125 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4126 elements: !{!0, !1, !2})
4127
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004128The following ``tag:`` values are valid:
4129
Renato Golin124f2592016-07-20 12:16:38 +00004130.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004131
4132 DW_TAG_array_type = 1
4133 DW_TAG_class_type = 2
4134 DW_TAG_enumeration_type = 4
4135 DW_TAG_structure_type = 19
4136 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004137
4138For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004139descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004140level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004141array type is a native packed vector.
4142
4143For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004144descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004145value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004146``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004147
4148For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4149``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004150<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4151``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4152``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004153
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004154.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004155
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004156DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004157""""""""""
4158
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004159``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004160:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004161
4162.. code-block:: llvm
4163
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004164 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4165 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4166 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004167
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004168.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004169
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004170DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004171""""""""""""
4172
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004173``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4174variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004175
4176.. code-block:: llvm
4177
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004178 !0 = !DIEnumerator(name: "SixKind", value: 7)
4179 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4180 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004181
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004182DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004183"""""""""""""""""""""""
4184
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004185``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004186language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004187:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004188
4189.. code-block:: llvm
4190
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004191 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004192
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004193DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004194""""""""""""""""""""""""
4195
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004196``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004197language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004198but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004199``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004200:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004201
4202.. code-block:: llvm
4203
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004204 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004205
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004206DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004207"""""""""""
4208
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004209``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004210
4211.. code-block:: llvm
4212
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004213 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004214
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004215DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004216""""""""""""""""
4217
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004218``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004219
4220.. code-block:: llvm
4221
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004222 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004223 file: !2, line: 7, type: !3, isLocal: true,
4224 isDefinition: false, variable: i32* @foo,
4225 declaration: !4)
4226
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004227All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004228:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004229
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004230.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004231
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004232DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004233""""""""""""
4234
Peter Collingbourne50108682015-11-06 02:41:02 +00004235``DISubprogram`` nodes represent functions from the source language. A
4236``DISubprogram`` may be attached to a function definition using ``!dbg``
4237metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4238that must be retained, even if their IR counterparts are optimized out of
4239the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004240
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004241.. _DISubprogramDeclaration:
4242
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004243When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004244tree as opposed to a definition of a function. If the scope is a composite
4245type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4246then the subprogram declaration is uniqued based only on its ``linkageName:``
4247and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004248
Renato Golin124f2592016-07-20 12:16:38 +00004249.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004250
Peter Collingbourne50108682015-11-06 02:41:02 +00004251 define void @_Z3foov() !dbg !0 {
4252 ...
4253 }
4254
4255 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4256 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004257 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004258 containingType: !4,
4259 virtuality: DW_VIRTUALITY_pure_virtual,
4260 virtualIndex: 10, flags: DIFlagPrototyped,
4261 isOptimized: true, templateParams: !5,
4262 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004263
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004264.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004265
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004266DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004267""""""""""""""
4268
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004269``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004270<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004271two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004272fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004273
Renato Golin124f2592016-07-20 12:16:38 +00004274.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004275
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004276 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004277
4278Usually lexical blocks are ``distinct`` to prevent node merging based on
4279operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004280
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004281.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004282
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004283DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004284""""""""""""""""""
4285
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004286``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004287:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004288indicate textual inclusion, or the ``discriminator:`` field can be used to
4289discriminate between control flow within a single block in the source language.
4290
4291.. code-block:: llvm
4292
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004293 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4294 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4295 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004296
Michael Kuperstein605308a2015-05-14 10:58:59 +00004297.. _DILocation:
4298
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004299DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004300""""""""""
4301
Sean Silvaa1190322015-08-06 22:56:48 +00004302``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004303mandatory, and points at an :ref:`DILexicalBlockFile`, an
4304:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004305
4306.. code-block:: llvm
4307
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004308 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004309
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004310.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004311
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004312DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004313"""""""""""""""
4314
Sean Silvaa1190322015-08-06 22:56:48 +00004315``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004316the ``arg:`` field is set to non-zero, then this variable is a subprogram
4317parameter, and it will be included in the ``variables:`` field of its
4318:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004319
Renato Golin124f2592016-07-20 12:16:38 +00004320.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004321
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004322 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4323 type: !3, flags: DIFlagArtificial)
4324 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4325 type: !3)
4326 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004327
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004328DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004329""""""""""""
4330
Sean Silvaa1190322015-08-06 22:56:48 +00004331``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004332:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4333describe how the referenced LLVM variable relates to the source language
4334variable.
4335
4336The current supported vocabulary is limited:
4337
4338- ``DW_OP_deref`` dereferences the working expression.
4339- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4340- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4341 here, respectively) of the variable piece from the working expression.
4342
Renato Golin124f2592016-07-20 12:16:38 +00004343.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004344
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004345 !0 = !DIExpression(DW_OP_deref)
4346 !1 = !DIExpression(DW_OP_plus, 3)
4347 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4348 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004349
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004350DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004351""""""""""""""
4352
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004353``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004354
4355.. code-block:: llvm
4356
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004357 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004358 getter: "getFoo", attributes: 7, type: !2)
4359
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004360DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004361""""""""""""""""
4362
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004363``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004364compile unit.
4365
Renato Golin124f2592016-07-20 12:16:38 +00004366.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004367
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004368 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004369 entity: !1, line: 7)
4370
Amjad Abouda9bcf162015-12-10 12:56:35 +00004371DIMacro
4372"""""""
4373
4374``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4375The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004376defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004377used to expand the macro identifier.
4378
Renato Golin124f2592016-07-20 12:16:38 +00004379.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004380
4381 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4382 value: "((x) + 1)")
4383 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4384
4385DIMacroFile
4386"""""""""""
4387
4388``DIMacroFile`` nodes represent inclusion of source files.
4389The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4390appear in the included source file.
4391
Renato Golin124f2592016-07-20 12:16:38 +00004392.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004393
4394 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4395 nodes: !3)
4396
Sean Silvab084af42012-12-07 10:36:55 +00004397'``tbaa``' Metadata
4398^^^^^^^^^^^^^^^^^^^
4399
4400In LLVM IR, memory does not have types, so LLVM's own type system is not
4401suitable for doing TBAA. Instead, metadata is added to the IR to
4402describe a type system of a higher level language. This can be used to
4403implement typical C/C++ TBAA, but it can also be used to implement
4404custom alias analysis behavior for other languages.
4405
4406The current metadata format is very simple. TBAA metadata nodes have up
4407to three fields, e.g.:
4408
4409.. code-block:: llvm
4410
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004411 !0 = !{ !"an example type tree" }
4412 !1 = !{ !"int", !0 }
4413 !2 = !{ !"float", !0 }
4414 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004415
4416The first field is an identity field. It can be any value, usually a
4417metadata string, which uniquely identifies the type. The most important
4418name in the tree is the name of the root node. Two trees with different
4419root node names are entirely disjoint, even if they have leaves with
4420common names.
4421
4422The second field identifies the type's parent node in the tree, or is
4423null or omitted for a root node. A type is considered to alias all of
4424its descendants and all of its ancestors in the tree. Also, a type is
4425considered to alias all types in other trees, so that bitcode produced
4426from multiple front-ends is handled conservatively.
4427
4428If the third field is present, it's an integer which if equal to 1
4429indicates that the type is "constant" (meaning
4430``pointsToConstantMemory`` should return true; see `other useful
4431AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4432
4433'``tbaa.struct``' Metadata
4434^^^^^^^^^^^^^^^^^^^^^^^^^^
4435
4436The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4437aggregate assignment operations in C and similar languages, however it
4438is defined to copy a contiguous region of memory, which is more than
4439strictly necessary for aggregate types which contain holes due to
4440padding. Also, it doesn't contain any TBAA information about the fields
4441of the aggregate.
4442
4443``!tbaa.struct`` metadata can describe which memory subregions in a
4444memcpy are padding and what the TBAA tags of the struct are.
4445
4446The current metadata format is very simple. ``!tbaa.struct`` metadata
4447nodes are a list of operands which are in conceptual groups of three.
4448For each group of three, the first operand gives the byte offset of a
4449field in bytes, the second gives its size in bytes, and the third gives
4450its tbaa tag. e.g.:
4451
4452.. code-block:: llvm
4453
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004454 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004455
4456This describes a struct with two fields. The first is at offset 0 bytes
4457with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4458and has size 4 bytes and has tbaa tag !2.
4459
4460Note that the fields need not be contiguous. In this example, there is a
44614 byte gap between the two fields. This gap represents padding which
4462does not carry useful data and need not be preserved.
4463
Hal Finkel94146652014-07-24 14:25:39 +00004464'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004466
4467``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4468noalias memory-access sets. This means that some collection of memory access
4469instructions (loads, stores, memory-accessing calls, etc.) that carry
4470``noalias`` metadata can specifically be specified not to alias with some other
4471collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004472Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004473a domain.
4474
4475When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004476of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004477subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004478instruction's ``noalias`` list, then the two memory accesses are assumed not to
4479alias.
Hal Finkel94146652014-07-24 14:25:39 +00004480
Adam Nemet569a5b32016-04-27 00:52:48 +00004481Because scopes in one domain don't affect scopes in other domains, separate
4482domains can be used to compose multiple independent noalias sets. This is
4483used for example during inlining. As the noalias function parameters are
4484turned into noalias scope metadata, a new domain is used every time the
4485function is inlined.
4486
Hal Finkel029cde62014-07-25 15:50:02 +00004487The metadata identifying each domain is itself a list containing one or two
4488entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004489string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004490self-reference can be used to create globally unique domain names. A
4491descriptive string may optionally be provided as a second list entry.
4492
4493The metadata identifying each scope is also itself a list containing two or
4494three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004495is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004496self-reference can be used to create globally unique scope names. A metadata
4497reference to the scope's domain is the second entry. A descriptive string may
4498optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004499
4500For example,
4501
4502.. code-block:: llvm
4503
Hal Finkel029cde62014-07-25 15:50:02 +00004504 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004505 !0 = !{!0}
4506 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004507
Hal Finkel029cde62014-07-25 15:50:02 +00004508 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004509 !2 = !{!2, !0}
4510 !3 = !{!3, !0}
4511 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004512
Hal Finkel029cde62014-07-25 15:50:02 +00004513 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004514 !5 = !{!4} ; A list containing only scope !4
4515 !6 = !{!4, !3, !2}
4516 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004517
4518 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004519 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004520 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004521
Hal Finkel029cde62014-07-25 15:50:02 +00004522 ; These two instructions also don't alias (for domain !1, the set of scopes
4523 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004524 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004525 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004526
Adam Nemet0a8416f2015-05-11 08:30:28 +00004527 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004528 ; the !noalias list is not a superset of, or equal to, the scopes in the
4529 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004530 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004531 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004532
Sean Silvab084af42012-12-07 10:36:55 +00004533'``fpmath``' Metadata
4534^^^^^^^^^^^^^^^^^^^^^
4535
4536``fpmath`` metadata may be attached to any instruction of floating point
4537type. It can be used to express the maximum acceptable error in the
4538result of that instruction, in ULPs, thus potentially allowing the
4539compiler to use a more efficient but less accurate method of computing
4540it. ULP is defined as follows:
4541
4542 If ``x`` is a real number that lies between two finite consecutive
4543 floating-point numbers ``a`` and ``b``, without being equal to one
4544 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4545 distance between the two non-equal finite floating-point numbers
4546 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4547
Matt Arsenault82f41512016-06-27 19:43:15 +00004548The metadata node shall consist of a single positive float type number
4549representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004550
4551.. code-block:: llvm
4552
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004553 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004554
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004555.. _range-metadata:
4556
Sean Silvab084af42012-12-07 10:36:55 +00004557'``range``' Metadata
4558^^^^^^^^^^^^^^^^^^^^
4559
Jingyue Wu37fcb592014-06-19 16:50:16 +00004560``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4561integer types. It expresses the possible ranges the loaded value or the value
4562returned by the called function at this call site is in. The ranges are
4563represented with a flattened list of integers. The loaded value or the value
4564returned is known to be in the union of the ranges defined by each consecutive
4565pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004566
4567- The type must match the type loaded by the instruction.
4568- The pair ``a,b`` represents the range ``[a,b)``.
4569- Both ``a`` and ``b`` are constants.
4570- The range is allowed to wrap.
4571- The range should not represent the full or empty set. That is,
4572 ``a!=b``.
4573
4574In addition, the pairs must be in signed order of the lower bound and
4575they must be non-contiguous.
4576
4577Examples:
4578
4579.. code-block:: llvm
4580
David Blaikiec7aabbb2015-03-04 22:06:14 +00004581 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4582 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004583 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4584 %d = invoke i8 @bar() to label %cont
4585 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004586 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004587 !0 = !{ i8 0, i8 2 }
4588 !1 = !{ i8 255, i8 2 }
4589 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4590 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004591
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004592'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004593^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004594
4595``unpredictable`` metadata may be attached to any branch or switch
4596instruction. It can be used to express the unpredictability of control
4597flow. Similar to the llvm.expect intrinsic, it may be used to alter
4598optimizations related to compare and branch instructions. The metadata
4599is treated as a boolean value; if it exists, it signals that the branch
4600or switch that it is attached to is completely unpredictable.
4601
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004602'``llvm.loop``'
4603^^^^^^^^^^^^^^^
4604
4605It is sometimes useful to attach information to loop constructs. Currently,
4606loop metadata is implemented as metadata attached to the branch instruction
4607in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004608guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004609specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004610
4611The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004612itself to avoid merging it with any other identifier metadata, e.g.,
4613during module linkage or function inlining. That is, each loop should refer
4614to their own identification metadata even if they reside in separate functions.
4615The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004616constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004617
4618.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004619
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004620 !0 = !{!0}
4621 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004622
Mark Heffernan893752a2014-07-18 19:24:51 +00004623The loop identifier metadata can be used to specify additional
4624per-loop metadata. Any operands after the first operand can be treated
4625as user-defined metadata. For example the ``llvm.loop.unroll.count``
4626suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004627
Paul Redmond5fdf8362013-05-28 20:00:34 +00004628.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004629
Paul Redmond5fdf8362013-05-28 20:00:34 +00004630 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4631 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004632 !0 = !{!0, !1}
4633 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004634
Mark Heffernan9d20e422014-07-21 23:11:03 +00004635'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4636^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004637
Mark Heffernan9d20e422014-07-21 23:11:03 +00004638Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4639used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004640vectorization width and interleave count. These metadata should be used in
4641conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004642``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4643optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004644it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004645which contains information about loop-carried memory dependencies can be helpful
4646in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004647
Mark Heffernan9d20e422014-07-21 23:11:03 +00004648'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4650
Mark Heffernan9d20e422014-07-21 23:11:03 +00004651This metadata suggests an interleave count to the loop interleaver.
4652The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004653second operand is an integer specifying the interleave count. For
4654example:
4655
4656.. code-block:: llvm
4657
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004658 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004659
Mark Heffernan9d20e422014-07-21 23:11:03 +00004660Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004661multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004662then the interleave count will be determined automatically.
4663
4664'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004666
4667This metadata selectively enables or disables vectorization for the loop. The
4668first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004669is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000046700 disables vectorization:
4671
4672.. code-block:: llvm
4673
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004674 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4675 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004676
4677'``llvm.loop.vectorize.width``' Metadata
4678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4679
4680This metadata sets the target width of the vectorizer. The first
4681operand is the string ``llvm.loop.vectorize.width`` and the second
4682operand is an integer specifying the width. For example:
4683
4684.. code-block:: llvm
4685
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004686 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004687
4688Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004689vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000046900 or if the loop does not have this metadata the width will be
4691determined automatically.
4692
4693'``llvm.loop.unroll``'
4694^^^^^^^^^^^^^^^^^^^^^^
4695
4696Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4697optimization hints such as the unroll factor. ``llvm.loop.unroll``
4698metadata should be used in conjunction with ``llvm.loop`` loop
4699identification metadata. The ``llvm.loop.unroll`` metadata are only
4700optimization hints and the unrolling will only be performed if the
4701optimizer believes it is safe to do so.
4702
Mark Heffernan893752a2014-07-18 19:24:51 +00004703'``llvm.loop.unroll.count``' Metadata
4704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4705
4706This metadata suggests an unroll factor to the loop unroller. The
4707first operand is the string ``llvm.loop.unroll.count`` and the second
4708operand is a positive integer specifying the unroll factor. For
4709example:
4710
4711.. code-block:: llvm
4712
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004713 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004714
4715If the trip count of the loop is less than the unroll count the loop
4716will be partially unrolled.
4717
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004718'``llvm.loop.unroll.disable``' Metadata
4719^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4720
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004721This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004722which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004723
4724.. code-block:: llvm
4725
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004726 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004727
Kevin Qin715b01e2015-03-09 06:14:18 +00004728'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004729^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004730
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004731This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004732operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004733
4734.. code-block:: llvm
4735
4736 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4737
Mark Heffernan89391542015-08-10 17:28:08 +00004738'``llvm.loop.unroll.enable``' Metadata
4739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4740
4741This metadata suggests that the loop should be fully unrolled if the trip count
4742is known at compile time and partially unrolled if the trip count is not known
4743at compile time. The metadata has a single operand which is the string
4744``llvm.loop.unroll.enable``. For example:
4745
4746.. code-block:: llvm
4747
4748 !0 = !{!"llvm.loop.unroll.enable"}
4749
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004750'``llvm.loop.unroll.full``' Metadata
4751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4752
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004753This metadata suggests that the loop should be unrolled fully. The
4754metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004755For example:
4756
4757.. code-block:: llvm
4758
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004759 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004760
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004761'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004762^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004763
4764This metadata indicates that the loop should not be versioned for the purpose
4765of enabling loop-invariant code motion (LICM). The metadata has a single operand
4766which is the string ``llvm.loop.licm_versioning.disable``. For example:
4767
4768.. code-block:: llvm
4769
4770 !0 = !{!"llvm.loop.licm_versioning.disable"}
4771
Adam Nemetd2fa4142016-04-27 05:28:18 +00004772'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004773^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004774
4775Loop distribution allows splitting a loop into multiple loops. Currently,
4776this is only performed if the entire loop cannot be vectorized due to unsafe
4777memory dependencies. The transformation will atempt to isolate the unsafe
4778dependencies into their own loop.
4779
4780This metadata can be used to selectively enable or disable distribution of the
4781loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4782second operand is a bit. If the bit operand value is 1 distribution is
4783enabled. A value of 0 disables distribution:
4784
4785.. code-block:: llvm
4786
4787 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4788 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4789
4790This metadata should be used in conjunction with ``llvm.loop`` loop
4791identification metadata.
4792
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004793'``llvm.mem``'
4794^^^^^^^^^^^^^^^
4795
4796Metadata types used to annotate memory accesses with information helpful
4797for optimizations are prefixed with ``llvm.mem``.
4798
4799'``llvm.mem.parallel_loop_access``' Metadata
4800^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4801
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004802The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4803or metadata containing a list of loop identifiers for nested loops.
4804The metadata is attached to memory accessing instructions and denotes that
4805no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004806with the same loop identifier. The metadata on memory reads also implies that
4807if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004808
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004809Precisely, given two instructions ``m1`` and ``m2`` that both have the
4810``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4811set of loops associated with that metadata, respectively, then there is no loop
4812carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004813``L2``.
4814
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004815As a special case, if all memory accessing instructions in a loop have
4816``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4817loop has no loop carried memory dependences and is considered to be a parallel
4818loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004819
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004820Note that if not all memory access instructions have such metadata referring to
4821the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004822memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004823safe mechanism, this causes loops that were originally parallel to be considered
4824sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004825insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004826
4827Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004828both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004829metadata types that refer to the same loop identifier metadata.
4830
4831.. code-block:: llvm
4832
4833 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004834 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004835 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004836 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004837 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004838 ...
4839 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004840
4841 for.end:
4842 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004843 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004844
4845It is also possible to have nested parallel loops. In that case the
4846memory accesses refer to a list of loop identifier metadata nodes instead of
4847the loop identifier metadata node directly:
4848
4849.. code-block:: llvm
4850
4851 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004852 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004853 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004854 ...
4855 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004856
4857 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004858 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004859 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004860 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004861 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004862 ...
4863 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004864
4865 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004866 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004867 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004868 ...
4869 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004870
4871 outer.for.end: ; preds = %for.body
4872 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004873 !0 = !{!1, !2} ; a list of loop identifiers
4874 !1 = !{!1} ; an identifier for the inner loop
4875 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004876
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004877'``invariant.group``' Metadata
4878^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4879
4880The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4881The existence of the ``invariant.group`` metadata on the instruction tells
4882the optimizer that every ``load`` and ``store`` to the same pointer operand
4883within the same invariant group can be assumed to load or store the same
4884value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4885when two pointers are considered the same).
4886
4887Examples:
4888
4889.. code-block:: llvm
4890
4891 @unknownPtr = external global i8
4892 ...
4893 %ptr = alloca i8
4894 store i8 42, i8* %ptr, !invariant.group !0
4895 call void @foo(i8* %ptr)
4896
4897 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4898 call void @foo(i8* %ptr)
4899 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4900
4901 %newPtr = call i8* @getPointer(i8* %ptr)
4902 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4903
4904 %unknownValue = load i8, i8* @unknownPtr
4905 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4906
4907 call void @foo(i8* %ptr)
4908 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4909 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4910
4911 ...
4912 declare void @foo(i8*)
4913 declare i8* @getPointer(i8*)
4914 declare i8* @llvm.invariant.group.barrier(i8*)
4915
4916 !0 = !{!"magic ptr"}
4917 !1 = !{!"other ptr"}
4918
Peter Collingbournea333db82016-07-26 22:31:30 +00004919'``type``' Metadata
4920^^^^^^^^^^^^^^^^^^^
4921
4922See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004923
4924
Sean Silvab084af42012-12-07 10:36:55 +00004925Module Flags Metadata
4926=====================
4927
4928Information about the module as a whole is difficult to convey to LLVM's
4929subsystems. The LLVM IR isn't sufficient to transmit this information.
4930The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004931this. These flags are in the form of key / value pairs --- much like a
4932dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004933look it up.
4934
4935The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4936Each triplet has the following form:
4937
4938- The first element is a *behavior* flag, which specifies the behavior
4939 when two (or more) modules are merged together, and it encounters two
4940 (or more) metadata with the same ID. The supported behaviors are
4941 described below.
4942- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004943 metadata. Each module may only have one flag entry for each unique ID (not
4944 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004945- The third element is the value of the flag.
4946
4947When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004948``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4949each unique metadata ID string, there will be exactly one entry in the merged
4950modules ``llvm.module.flags`` metadata table, and the value for that entry will
4951be determined by the merge behavior flag, as described below. The only exception
4952is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004953
4954The following behaviors are supported:
4955
4956.. list-table::
4957 :header-rows: 1
4958 :widths: 10 90
4959
4960 * - Value
4961 - Behavior
4962
4963 * - 1
4964 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004965 Emits an error if two values disagree, otherwise the resulting value
4966 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004967
4968 * - 2
4969 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004970 Emits a warning if two values disagree. The result value will be the
4971 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004972
4973 * - 3
4974 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004975 Adds a requirement that another module flag be present and have a
4976 specified value after linking is performed. The value must be a
4977 metadata pair, where the first element of the pair is the ID of the
4978 module flag to be restricted, and the second element of the pair is
4979 the value the module flag should be restricted to. This behavior can
4980 be used to restrict the allowable results (via triggering of an
4981 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004982
4983 * - 4
4984 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004985 Uses the specified value, regardless of the behavior or value of the
4986 other module. If both modules specify **Override**, but the values
4987 differ, an error will be emitted.
4988
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004989 * - 5
4990 - **Append**
4991 Appends the two values, which are required to be metadata nodes.
4992
4993 * - 6
4994 - **AppendUnique**
4995 Appends the two values, which are required to be metadata
4996 nodes. However, duplicate entries in the second list are dropped
4997 during the append operation.
4998
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004999It is an error for a particular unique flag ID to have multiple behaviors,
5000except in the case of **Require** (which adds restrictions on another metadata
5001value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005002
5003An example of module flags:
5004
5005.. code-block:: llvm
5006
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005007 !0 = !{ i32 1, !"foo", i32 1 }
5008 !1 = !{ i32 4, !"bar", i32 37 }
5009 !2 = !{ i32 2, !"qux", i32 42 }
5010 !3 = !{ i32 3, !"qux",
5011 !{
5012 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005013 }
5014 }
5015 !llvm.module.flags = !{ !0, !1, !2, !3 }
5016
5017- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5018 if two or more ``!"foo"`` flags are seen is to emit an error if their
5019 values are not equal.
5020
5021- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5022 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005023 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005024
5025- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5026 behavior if two or more ``!"qux"`` flags are seen is to emit a
5027 warning if their values are not equal.
5028
5029- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5030
5031 ::
5032
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005033 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005034
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005035 The behavior is to emit an error if the ``llvm.module.flags`` does not
5036 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5037 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005038
5039Objective-C Garbage Collection Module Flags Metadata
5040----------------------------------------------------
5041
5042On the Mach-O platform, Objective-C stores metadata about garbage
5043collection in a special section called "image info". The metadata
5044consists of a version number and a bitmask specifying what types of
5045garbage collection are supported (if any) by the file. If two or more
5046modules are linked together their garbage collection metadata needs to
5047be merged rather than appended together.
5048
5049The Objective-C garbage collection module flags metadata consists of the
5050following key-value pairs:
5051
5052.. list-table::
5053 :header-rows: 1
5054 :widths: 30 70
5055
5056 * - Key
5057 - Value
5058
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005059 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005060 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005061
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005062 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005063 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005064 always 0.
5065
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005066 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005067 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005068 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5069 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5070 Objective-C ABI version 2.
5071
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005072 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005073 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005074 not. Valid values are 0, for no garbage collection, and 2, for garbage
5075 collection supported.
5076
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005077 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005078 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005079 If present, its value must be 6. This flag requires that the
5080 ``Objective-C Garbage Collection`` flag have the value 2.
5081
5082Some important flag interactions:
5083
5084- If a module with ``Objective-C Garbage Collection`` set to 0 is
5085 merged with a module with ``Objective-C Garbage Collection`` set to
5086 2, then the resulting module has the
5087 ``Objective-C Garbage Collection`` flag set to 0.
5088- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5089 merged with a module with ``Objective-C GC Only`` set to 6.
5090
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005091Automatic Linker Flags Module Flags Metadata
5092--------------------------------------------
5093
5094Some targets support embedding flags to the linker inside individual object
5095files. Typically this is used in conjunction with language extensions which
5096allow source files to explicitly declare the libraries they depend on, and have
5097these automatically be transmitted to the linker via object files.
5098
5099These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005100using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005101to be ``AppendUnique``, and the value for the key is expected to be a metadata
5102node which should be a list of other metadata nodes, each of which should be a
5103list of metadata strings defining linker options.
5104
5105For example, the following metadata section specifies two separate sets of
5106linker options, presumably to link against ``libz`` and the ``Cocoa``
5107framework::
5108
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005109 !0 = !{ i32 6, !"Linker Options",
5110 !{
5111 !{ !"-lz" },
5112 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005113 !llvm.module.flags = !{ !0 }
5114
5115The metadata encoding as lists of lists of options, as opposed to a collapsed
5116list of options, is chosen so that the IR encoding can use multiple option
5117strings to specify e.g., a single library, while still having that specifier be
5118preserved as an atomic element that can be recognized by a target specific
5119assembly writer or object file emitter.
5120
5121Each individual option is required to be either a valid option for the target's
5122linker, or an option that is reserved by the target specific assembly writer or
5123object file emitter. No other aspect of these options is defined by the IR.
5124
Oliver Stannard5dc29342014-06-20 10:08:11 +00005125C type width Module Flags Metadata
5126----------------------------------
5127
5128The ARM backend emits a section into each generated object file describing the
5129options that it was compiled with (in a compiler-independent way) to prevent
5130linking incompatible objects, and to allow automatic library selection. Some
5131of these options are not visible at the IR level, namely wchar_t width and enum
5132width.
5133
5134To pass this information to the backend, these options are encoded in module
5135flags metadata, using the following key-value pairs:
5136
5137.. list-table::
5138 :header-rows: 1
5139 :widths: 30 70
5140
5141 * - Key
5142 - Value
5143
5144 * - short_wchar
5145 - * 0 --- sizeof(wchar_t) == 4
5146 * 1 --- sizeof(wchar_t) == 2
5147
5148 * - short_enum
5149 - * 0 --- Enums are at least as large as an ``int``.
5150 * 1 --- Enums are stored in the smallest integer type which can
5151 represent all of its values.
5152
5153For example, the following metadata section specifies that the module was
5154compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5155enum is the smallest type which can represent all of its values::
5156
5157 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005158 !0 = !{i32 1, !"short_wchar", i32 1}
5159 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005160
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005161.. _intrinsicglobalvariables:
5162
Sean Silvab084af42012-12-07 10:36:55 +00005163Intrinsic Global Variables
5164==========================
5165
5166LLVM has a number of "magic" global variables that contain data that
5167affect code generation or other IR semantics. These are documented here.
5168All globals of this sort should have a section specified as
5169"``llvm.metadata``". This section and all globals that start with
5170"``llvm.``" are reserved for use by LLVM.
5171
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005172.. _gv_llvmused:
5173
Sean Silvab084af42012-12-07 10:36:55 +00005174The '``llvm.used``' Global Variable
5175-----------------------------------
5176
Rafael Espindola74f2e462013-04-22 14:58:02 +00005177The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005178:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005179pointers to named global variables, functions and aliases which may optionally
5180have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005181use of it is:
5182
5183.. code-block:: llvm
5184
5185 @X = global i8 4
5186 @Y = global i32 123
5187
5188 @llvm.used = appending global [2 x i8*] [
5189 i8* @X,
5190 i8* bitcast (i32* @Y to i8*)
5191 ], section "llvm.metadata"
5192
Rafael Espindola74f2e462013-04-22 14:58:02 +00005193If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5194and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005195symbol that it cannot see (which is why they have to be named). For example, if
5196a variable has internal linkage and no references other than that from the
5197``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5198references from inline asms and other things the compiler cannot "see", and
5199corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005200
5201On some targets, the code generator must emit a directive to the
5202assembler or object file to prevent the assembler and linker from
5203molesting the symbol.
5204
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005205.. _gv_llvmcompilerused:
5206
Sean Silvab084af42012-12-07 10:36:55 +00005207The '``llvm.compiler.used``' Global Variable
5208--------------------------------------------
5209
5210The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5211directive, except that it only prevents the compiler from touching the
5212symbol. On targets that support it, this allows an intelligent linker to
5213optimize references to the symbol without being impeded as it would be
5214by ``@llvm.used``.
5215
5216This is a rare construct that should only be used in rare circumstances,
5217and should not be exposed to source languages.
5218
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005219.. _gv_llvmglobalctors:
5220
Sean Silvab084af42012-12-07 10:36:55 +00005221The '``llvm.global_ctors``' Global Variable
5222-------------------------------------------
5223
5224.. code-block:: llvm
5225
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005226 %0 = type { i32, void ()*, i8* }
5227 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005228
5229The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005230functions, priorities, and an optional associated global or function.
5231The functions referenced by this array will be called in ascending order
5232of priority (i.e. lowest first) when the module is loaded. The order of
5233functions with the same priority is not defined.
5234
5235If the third field is present, non-null, and points to a global variable
5236or function, the initializer function will only run if the associated
5237data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005238
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005239.. _llvmglobaldtors:
5240
Sean Silvab084af42012-12-07 10:36:55 +00005241The '``llvm.global_dtors``' Global Variable
5242-------------------------------------------
5243
5244.. code-block:: llvm
5245
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005246 %0 = type { i32, void ()*, i8* }
5247 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005248
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005249The ``@llvm.global_dtors`` array contains a list of destructor
5250functions, priorities, and an optional associated global or function.
5251The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005252order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005253order of functions with the same priority is not defined.
5254
5255If the third field is present, non-null, and points to a global variable
5256or function, the destructor function will only run if the associated
5257data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005258
5259Instruction Reference
5260=====================
5261
5262The LLVM instruction set consists of several different classifications
5263of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5264instructions <binaryops>`, :ref:`bitwise binary
5265instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5266:ref:`other instructions <otherops>`.
5267
5268.. _terminators:
5269
5270Terminator Instructions
5271-----------------------
5272
5273As mentioned :ref:`previously <functionstructure>`, every basic block in a
5274program ends with a "Terminator" instruction, which indicates which
5275block should be executed after the current block is finished. These
5276terminator instructions typically yield a '``void``' value: they produce
5277control flow, not values (the one exception being the
5278':ref:`invoke <i_invoke>`' instruction).
5279
5280The terminator instructions are: ':ref:`ret <i_ret>`',
5281':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5282':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005283':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005284':ref:`catchret <i_catchret>`',
5285':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005286and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005287
5288.. _i_ret:
5289
5290'``ret``' Instruction
5291^^^^^^^^^^^^^^^^^^^^^
5292
5293Syntax:
5294"""""""
5295
5296::
5297
5298 ret <type> <value> ; Return a value from a non-void function
5299 ret void ; Return from void function
5300
5301Overview:
5302"""""""""
5303
5304The '``ret``' instruction is used to return control flow (and optionally
5305a value) from a function back to the caller.
5306
5307There are two forms of the '``ret``' instruction: one that returns a
5308value and then causes control flow, and one that just causes control
5309flow to occur.
5310
5311Arguments:
5312""""""""""
5313
5314The '``ret``' instruction optionally accepts a single argument, the
5315return value. The type of the return value must be a ':ref:`first
5316class <t_firstclass>`' type.
5317
5318A function is not :ref:`well formed <wellformed>` if it it has a non-void
5319return type and contains a '``ret``' instruction with no return value or
5320a return value with a type that does not match its type, or if it has a
5321void return type and contains a '``ret``' instruction with a return
5322value.
5323
5324Semantics:
5325""""""""""
5326
5327When the '``ret``' instruction is executed, control flow returns back to
5328the calling function's context. If the caller is a
5329":ref:`call <i_call>`" instruction, execution continues at the
5330instruction after the call. If the caller was an
5331":ref:`invoke <i_invoke>`" instruction, execution continues at the
5332beginning of the "normal" destination block. If the instruction returns
5333a value, that value shall set the call or invoke instruction's return
5334value.
5335
5336Example:
5337""""""""
5338
5339.. code-block:: llvm
5340
5341 ret i32 5 ; Return an integer value of 5
5342 ret void ; Return from a void function
5343 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5344
5345.. _i_br:
5346
5347'``br``' Instruction
5348^^^^^^^^^^^^^^^^^^^^
5349
5350Syntax:
5351"""""""
5352
5353::
5354
5355 br i1 <cond>, label <iftrue>, label <iffalse>
5356 br label <dest> ; Unconditional branch
5357
5358Overview:
5359"""""""""
5360
5361The '``br``' instruction is used to cause control flow to transfer to a
5362different basic block in the current function. There are two forms of
5363this instruction, corresponding to a conditional branch and an
5364unconditional branch.
5365
5366Arguments:
5367""""""""""
5368
5369The conditional branch form of the '``br``' instruction takes a single
5370'``i1``' value and two '``label``' values. The unconditional form of the
5371'``br``' instruction takes a single '``label``' value as a target.
5372
5373Semantics:
5374""""""""""
5375
5376Upon execution of a conditional '``br``' instruction, the '``i1``'
5377argument is evaluated. If the value is ``true``, control flows to the
5378'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5379to the '``iffalse``' ``label`` argument.
5380
5381Example:
5382""""""""
5383
5384.. code-block:: llvm
5385
5386 Test:
5387 %cond = icmp eq i32 %a, %b
5388 br i1 %cond, label %IfEqual, label %IfUnequal
5389 IfEqual:
5390 ret i32 1
5391 IfUnequal:
5392 ret i32 0
5393
5394.. _i_switch:
5395
5396'``switch``' Instruction
5397^^^^^^^^^^^^^^^^^^^^^^^^
5398
5399Syntax:
5400"""""""
5401
5402::
5403
5404 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5405
5406Overview:
5407"""""""""
5408
5409The '``switch``' instruction is used to transfer control flow to one of
5410several different places. It is a generalization of the '``br``'
5411instruction, allowing a branch to occur to one of many possible
5412destinations.
5413
5414Arguments:
5415""""""""""
5416
5417The '``switch``' instruction uses three parameters: an integer
5418comparison value '``value``', a default '``label``' destination, and an
5419array of pairs of comparison value constants and '``label``'s. The table
5420is not allowed to contain duplicate constant entries.
5421
5422Semantics:
5423""""""""""
5424
5425The ``switch`` instruction specifies a table of values and destinations.
5426When the '``switch``' instruction is executed, this table is searched
5427for the given value. If the value is found, control flow is transferred
5428to the corresponding destination; otherwise, control flow is transferred
5429to the default destination.
5430
5431Implementation:
5432"""""""""""""""
5433
5434Depending on properties of the target machine and the particular
5435``switch`` instruction, this instruction may be code generated in
5436different ways. For example, it could be generated as a series of
5437chained conditional branches or with a lookup table.
5438
5439Example:
5440""""""""
5441
5442.. code-block:: llvm
5443
5444 ; Emulate a conditional br instruction
5445 %Val = zext i1 %value to i32
5446 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5447
5448 ; Emulate an unconditional br instruction
5449 switch i32 0, label %dest [ ]
5450
5451 ; Implement a jump table:
5452 switch i32 %val, label %otherwise [ i32 0, label %onzero
5453 i32 1, label %onone
5454 i32 2, label %ontwo ]
5455
5456.. _i_indirectbr:
5457
5458'``indirectbr``' Instruction
5459^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5460
5461Syntax:
5462"""""""
5463
5464::
5465
5466 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5467
5468Overview:
5469"""""""""
5470
5471The '``indirectbr``' instruction implements an indirect branch to a
5472label within the current function, whose address is specified by
5473"``address``". Address must be derived from a
5474:ref:`blockaddress <blockaddress>` constant.
5475
5476Arguments:
5477""""""""""
5478
5479The '``address``' argument is the address of the label to jump to. The
5480rest of the arguments indicate the full set of possible destinations
5481that the address may point to. Blocks are allowed to occur multiple
5482times in the destination list, though this isn't particularly useful.
5483
5484This destination list is required so that dataflow analysis has an
5485accurate understanding of the CFG.
5486
5487Semantics:
5488""""""""""
5489
5490Control transfers to the block specified in the address argument. All
5491possible destination blocks must be listed in the label list, otherwise
5492this instruction has undefined behavior. This implies that jumps to
5493labels defined in other functions have undefined behavior as well.
5494
5495Implementation:
5496"""""""""""""""
5497
5498This is typically implemented with a jump through a register.
5499
5500Example:
5501""""""""
5502
5503.. code-block:: llvm
5504
5505 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5506
5507.. _i_invoke:
5508
5509'``invoke``' Instruction
5510^^^^^^^^^^^^^^^^^^^^^^^^
5511
5512Syntax:
5513"""""""
5514
5515::
5516
David Blaikieb83cf102016-07-13 17:21:34 +00005517 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005518 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005519
5520Overview:
5521"""""""""
5522
5523The '``invoke``' instruction causes control to transfer to a specified
5524function, with the possibility of control flow transfer to either the
5525'``normal``' label or the '``exception``' label. If the callee function
5526returns with the "``ret``" instruction, control flow will return to the
5527"normal" label. If the callee (or any indirect callees) returns via the
5528":ref:`resume <i_resume>`" instruction or other exception handling
5529mechanism, control is interrupted and continued at the dynamically
5530nearest "exception" label.
5531
5532The '``exception``' label is a `landing
5533pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5534'``exception``' label is required to have the
5535":ref:`landingpad <i_landingpad>`" instruction, which contains the
5536information about the behavior of the program after unwinding happens,
5537as its first non-PHI instruction. The restrictions on the
5538"``landingpad``" instruction's tightly couples it to the "``invoke``"
5539instruction, so that the important information contained within the
5540"``landingpad``" instruction can't be lost through normal code motion.
5541
5542Arguments:
5543""""""""""
5544
5545This instruction requires several arguments:
5546
5547#. The optional "cconv" marker indicates which :ref:`calling
5548 convention <callingconv>` the call should use. If none is
5549 specified, the call defaults to using C calling conventions.
5550#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5551 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5552 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005553#. '``ty``': the type of the call instruction itself which is also the
5554 type of the return value. Functions that return no value are marked
5555 ``void``.
5556#. '``fnty``': shall be the signature of the function being invoked. The
5557 argument types must match the types implied by this signature. This
5558 type can be omitted if the function is not varargs.
5559#. '``fnptrval``': An LLVM value containing a pointer to a function to
5560 be invoked. In most cases, this is a direct function invocation, but
5561 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5562 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005563#. '``function args``': argument list whose types match the function
5564 signature argument types and parameter attributes. All arguments must
5565 be of :ref:`first class <t_firstclass>` type. If the function signature
5566 indicates the function accepts a variable number of arguments, the
5567 extra arguments can be specified.
5568#. '``normal label``': the label reached when the called function
5569 executes a '``ret``' instruction.
5570#. '``exception label``': the label reached when a callee returns via
5571 the :ref:`resume <i_resume>` instruction or other exception handling
5572 mechanism.
5573#. The optional :ref:`function attributes <fnattrs>` list. Only
5574 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5575 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005576#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005577
5578Semantics:
5579""""""""""
5580
5581This instruction is designed to operate as a standard '``call``'
5582instruction in most regards. The primary difference is that it
5583establishes an association with a label, which is used by the runtime
5584library to unwind the stack.
5585
5586This instruction is used in languages with destructors to ensure that
5587proper cleanup is performed in the case of either a ``longjmp`` or a
5588thrown exception. Additionally, this is important for implementation of
5589'``catch``' clauses in high-level languages that support them.
5590
5591For the purposes of the SSA form, the definition of the value returned
5592by the '``invoke``' instruction is deemed to occur on the edge from the
5593current block to the "normal" label. If the callee unwinds then no
5594return value is available.
5595
5596Example:
5597""""""""
5598
5599.. code-block:: llvm
5600
5601 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005602 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005603 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005604 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005605
5606.. _i_resume:
5607
5608'``resume``' Instruction
5609^^^^^^^^^^^^^^^^^^^^^^^^
5610
5611Syntax:
5612"""""""
5613
5614::
5615
5616 resume <type> <value>
5617
5618Overview:
5619"""""""""
5620
5621The '``resume``' instruction is a terminator instruction that has no
5622successors.
5623
5624Arguments:
5625""""""""""
5626
5627The '``resume``' instruction requires one argument, which must have the
5628same type as the result of any '``landingpad``' instruction in the same
5629function.
5630
5631Semantics:
5632""""""""""
5633
5634The '``resume``' instruction resumes propagation of an existing
5635(in-flight) exception whose unwinding was interrupted with a
5636:ref:`landingpad <i_landingpad>` instruction.
5637
5638Example:
5639""""""""
5640
5641.. code-block:: llvm
5642
5643 resume { i8*, i32 } %exn
5644
David Majnemer8a1c45d2015-12-12 05:38:55 +00005645.. _i_catchswitch:
5646
5647'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005649
5650Syntax:
5651"""""""
5652
5653::
5654
5655 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5656 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5657
5658Overview:
5659"""""""""
5660
5661The '``catchswitch``' instruction is used by `LLVM's exception handling system
5662<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5663that may be executed by the :ref:`EH personality routine <personalityfn>`.
5664
5665Arguments:
5666""""""""""
5667
5668The ``parent`` argument is the token of the funclet that contains the
5669``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5670this operand may be the token ``none``.
5671
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005672The ``default`` argument is the label of another basic block beginning with
5673either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5674must be a legal target with respect to the ``parent`` links, as described in
5675the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005676
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005677The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005678:ref:`catchpad <i_catchpad>` instruction.
5679
5680Semantics:
5681""""""""""
5682
5683Executing this instruction transfers control to one of the successors in
5684``handlers``, if appropriate, or continues to unwind via the unwind label if
5685present.
5686
5687The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5688it must be both the first non-phi instruction and last instruction in the basic
5689block. Therefore, it must be the only non-phi instruction in the block.
5690
5691Example:
5692""""""""
5693
Renato Golin124f2592016-07-20 12:16:38 +00005694.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005695
5696 dispatch1:
5697 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5698 dispatch2:
5699 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5700
David Majnemer654e1302015-07-31 17:58:14 +00005701.. _i_catchret:
5702
5703'``catchret``' Instruction
5704^^^^^^^^^^^^^^^^^^^^^^^^^^
5705
5706Syntax:
5707"""""""
5708
5709::
5710
David Majnemer8a1c45d2015-12-12 05:38:55 +00005711 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005712
5713Overview:
5714"""""""""
5715
5716The '``catchret``' instruction is a terminator instruction that has a
5717single successor.
5718
5719
5720Arguments:
5721""""""""""
5722
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005723The first argument to a '``catchret``' indicates which ``catchpad`` it
5724exits. It must be a :ref:`catchpad <i_catchpad>`.
5725The second argument to a '``catchret``' specifies where control will
5726transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005727
5728Semantics:
5729""""""""""
5730
David Majnemer8a1c45d2015-12-12 05:38:55 +00005731The '``catchret``' instruction ends an existing (in-flight) exception whose
5732unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5733:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5734code to, for example, destroy the active exception. Control then transfers to
5735``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005736
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005737The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5738If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5739funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5740the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005741
5742Example:
5743""""""""
5744
Renato Golin124f2592016-07-20 12:16:38 +00005745.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005746
David Majnemer8a1c45d2015-12-12 05:38:55 +00005747 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005748
David Majnemer654e1302015-07-31 17:58:14 +00005749.. _i_cleanupret:
5750
5751'``cleanupret``' Instruction
5752^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5753
5754Syntax:
5755"""""""
5756
5757::
5758
David Majnemer8a1c45d2015-12-12 05:38:55 +00005759 cleanupret from <value> unwind label <continue>
5760 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005761
5762Overview:
5763"""""""""
5764
5765The '``cleanupret``' instruction is a terminator instruction that has
5766an optional successor.
5767
5768
5769Arguments:
5770""""""""""
5771
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005772The '``cleanupret``' instruction requires one argument, which indicates
5773which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005774If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5775funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5776the ``cleanupret``'s behavior is undefined.
5777
5778The '``cleanupret``' instruction also has an optional successor, ``continue``,
5779which must be the label of another basic block beginning with either a
5780``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5781be a legal target with respect to the ``parent`` links, as described in the
5782`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005783
5784Semantics:
5785""""""""""
5786
5787The '``cleanupret``' instruction indicates to the
5788:ref:`personality function <personalityfn>` that one
5789:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5790It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005791
David Majnemer654e1302015-07-31 17:58:14 +00005792Example:
5793""""""""
5794
Renato Golin124f2592016-07-20 12:16:38 +00005795.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005796
David Majnemer8a1c45d2015-12-12 05:38:55 +00005797 cleanupret from %cleanup unwind to caller
5798 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005799
Sean Silvab084af42012-12-07 10:36:55 +00005800.. _i_unreachable:
5801
5802'``unreachable``' Instruction
5803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5804
5805Syntax:
5806"""""""
5807
5808::
5809
5810 unreachable
5811
5812Overview:
5813"""""""""
5814
5815The '``unreachable``' instruction has no defined semantics. This
5816instruction is used to inform the optimizer that a particular portion of
5817the code is not reachable. This can be used to indicate that the code
5818after a no-return function cannot be reached, and other facts.
5819
5820Semantics:
5821""""""""""
5822
5823The '``unreachable``' instruction has no defined semantics.
5824
5825.. _binaryops:
5826
5827Binary Operations
5828-----------------
5829
5830Binary operators are used to do most of the computation in a program.
5831They require two operands of the same type, execute an operation on
5832them, and produce a single value. The operands might represent multiple
5833data, as is the case with the :ref:`vector <t_vector>` data type. The
5834result value has the same type as its operands.
5835
5836There are several different binary operators:
5837
5838.. _i_add:
5839
5840'``add``' Instruction
5841^^^^^^^^^^^^^^^^^^^^^
5842
5843Syntax:
5844"""""""
5845
5846::
5847
Tim Northover675a0962014-06-13 14:24:23 +00005848 <result> = add <ty> <op1>, <op2> ; yields ty:result
5849 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5850 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5851 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005852
5853Overview:
5854"""""""""
5855
5856The '``add``' instruction returns the sum of its two operands.
5857
5858Arguments:
5859""""""""""
5860
5861The two arguments to the '``add``' instruction must be
5862:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5863arguments must have identical types.
5864
5865Semantics:
5866""""""""""
5867
5868The value produced is the integer sum of the two operands.
5869
5870If the sum has unsigned overflow, the result returned is the
5871mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5872the result.
5873
5874Because LLVM integers use a two's complement representation, this
5875instruction is appropriate for both signed and unsigned integers.
5876
5877``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5878respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5879result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5880unsigned and/or signed overflow, respectively, occurs.
5881
5882Example:
5883""""""""
5884
Renato Golin124f2592016-07-20 12:16:38 +00005885.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005886
Tim Northover675a0962014-06-13 14:24:23 +00005887 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005888
5889.. _i_fadd:
5890
5891'``fadd``' Instruction
5892^^^^^^^^^^^^^^^^^^^^^^
5893
5894Syntax:
5895"""""""
5896
5897::
5898
Tim Northover675a0962014-06-13 14:24:23 +00005899 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005900
5901Overview:
5902"""""""""
5903
5904The '``fadd``' instruction returns the sum of its two operands.
5905
5906Arguments:
5907""""""""""
5908
5909The two arguments to the '``fadd``' instruction must be :ref:`floating
5910point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5911Both arguments must have identical types.
5912
5913Semantics:
5914""""""""""
5915
5916The value produced is the floating point sum of the two operands. This
5917instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5918which are optimization hints to enable otherwise unsafe floating point
5919optimizations:
5920
5921Example:
5922""""""""
5923
Renato Golin124f2592016-07-20 12:16:38 +00005924.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005925
Tim Northover675a0962014-06-13 14:24:23 +00005926 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005927
5928'``sub``' Instruction
5929^^^^^^^^^^^^^^^^^^^^^
5930
5931Syntax:
5932"""""""
5933
5934::
5935
Tim Northover675a0962014-06-13 14:24:23 +00005936 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5937 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5938 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5939 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005940
5941Overview:
5942"""""""""
5943
5944The '``sub``' instruction returns the difference of its two operands.
5945
5946Note that the '``sub``' instruction is used to represent the '``neg``'
5947instruction present in most other intermediate representations.
5948
5949Arguments:
5950""""""""""
5951
5952The two arguments to the '``sub``' instruction must be
5953:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5954arguments must have identical types.
5955
5956Semantics:
5957""""""""""
5958
5959The value produced is the integer difference of the two operands.
5960
5961If the difference has unsigned overflow, the result returned is the
5962mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5963the result.
5964
5965Because LLVM integers use a two's complement representation, this
5966instruction is appropriate for both signed and unsigned integers.
5967
5968``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5969respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5970result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5971unsigned and/or signed overflow, respectively, occurs.
5972
5973Example:
5974""""""""
5975
Renato Golin124f2592016-07-20 12:16:38 +00005976.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005977
Tim Northover675a0962014-06-13 14:24:23 +00005978 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5979 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005980
5981.. _i_fsub:
5982
5983'``fsub``' Instruction
5984^^^^^^^^^^^^^^^^^^^^^^
5985
5986Syntax:
5987"""""""
5988
5989::
5990
Tim Northover675a0962014-06-13 14:24:23 +00005991 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005992
5993Overview:
5994"""""""""
5995
5996The '``fsub``' instruction returns the difference of its two operands.
5997
5998Note that the '``fsub``' instruction is used to represent the '``fneg``'
5999instruction present in most other intermediate representations.
6000
6001Arguments:
6002""""""""""
6003
6004The two arguments to the '``fsub``' instruction must be :ref:`floating
6005point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6006Both arguments must have identical types.
6007
6008Semantics:
6009""""""""""
6010
6011The value produced is the floating point difference of the two operands.
6012This instruction can also take any number of :ref:`fast-math
6013flags <fastmath>`, which are optimization hints to enable otherwise
6014unsafe floating point optimizations:
6015
6016Example:
6017""""""""
6018
Renato Golin124f2592016-07-20 12:16:38 +00006019.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006020
Tim Northover675a0962014-06-13 14:24:23 +00006021 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6022 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006023
6024'``mul``' Instruction
6025^^^^^^^^^^^^^^^^^^^^^
6026
6027Syntax:
6028"""""""
6029
6030::
6031
Tim Northover675a0962014-06-13 14:24:23 +00006032 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6033 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6034 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6035 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006036
6037Overview:
6038"""""""""
6039
6040The '``mul``' instruction returns the product of its two operands.
6041
6042Arguments:
6043""""""""""
6044
6045The two arguments to the '``mul``' instruction must be
6046:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6047arguments must have identical types.
6048
6049Semantics:
6050""""""""""
6051
6052The value produced is the integer product of the two operands.
6053
6054If the result of the multiplication has unsigned overflow, the result
6055returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6056bit width of the result.
6057
6058Because LLVM integers use a two's complement representation, and the
6059result is the same width as the operands, this instruction returns the
6060correct result for both signed and unsigned integers. If a full product
6061(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6062sign-extended or zero-extended as appropriate to the width of the full
6063product.
6064
6065``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6066respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6067result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6068unsigned and/or signed overflow, respectively, occurs.
6069
6070Example:
6071""""""""
6072
Renato Golin124f2592016-07-20 12:16:38 +00006073.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006074
Tim Northover675a0962014-06-13 14:24:23 +00006075 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006076
6077.. _i_fmul:
6078
6079'``fmul``' Instruction
6080^^^^^^^^^^^^^^^^^^^^^^
6081
6082Syntax:
6083"""""""
6084
6085::
6086
Tim Northover675a0962014-06-13 14:24:23 +00006087 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006088
6089Overview:
6090"""""""""
6091
6092The '``fmul``' instruction returns the product of its two operands.
6093
6094Arguments:
6095""""""""""
6096
6097The two arguments to the '``fmul``' instruction must be :ref:`floating
6098point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6099Both arguments must have identical types.
6100
6101Semantics:
6102""""""""""
6103
6104The value produced is the floating point product of the two operands.
6105This instruction can also take any number of :ref:`fast-math
6106flags <fastmath>`, which are optimization hints to enable otherwise
6107unsafe floating point optimizations:
6108
6109Example:
6110""""""""
6111
Renato Golin124f2592016-07-20 12:16:38 +00006112.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006113
Tim Northover675a0962014-06-13 14:24:23 +00006114 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006115
6116'``udiv``' Instruction
6117^^^^^^^^^^^^^^^^^^^^^^
6118
6119Syntax:
6120"""""""
6121
6122::
6123
Tim Northover675a0962014-06-13 14:24:23 +00006124 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6125 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006126
6127Overview:
6128"""""""""
6129
6130The '``udiv``' instruction returns the quotient of its two operands.
6131
6132Arguments:
6133""""""""""
6134
6135The two arguments to the '``udiv``' instruction must be
6136:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6137arguments must have identical types.
6138
6139Semantics:
6140""""""""""
6141
6142The value produced is the unsigned integer quotient of the two operands.
6143
6144Note that unsigned integer division and signed integer division are
6145distinct operations; for signed integer division, use '``sdiv``'.
6146
6147Division by zero leads to undefined behavior.
6148
6149If the ``exact`` keyword is present, the result value of the ``udiv`` is
6150a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6151such, "((a udiv exact b) mul b) == a").
6152
6153Example:
6154""""""""
6155
Renato Golin124f2592016-07-20 12:16:38 +00006156.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006157
Tim Northover675a0962014-06-13 14:24:23 +00006158 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006159
6160'``sdiv``' Instruction
6161^^^^^^^^^^^^^^^^^^^^^^
6162
6163Syntax:
6164"""""""
6165
6166::
6167
Tim Northover675a0962014-06-13 14:24:23 +00006168 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6169 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006170
6171Overview:
6172"""""""""
6173
6174The '``sdiv``' instruction returns the quotient of its two operands.
6175
6176Arguments:
6177""""""""""
6178
6179The two arguments to the '``sdiv``' instruction must be
6180:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6181arguments must have identical types.
6182
6183Semantics:
6184""""""""""
6185
6186The value produced is the signed integer quotient of the two operands
6187rounded towards zero.
6188
6189Note that signed integer division and unsigned integer division are
6190distinct operations; for unsigned integer division, use '``udiv``'.
6191
6192Division by zero leads to undefined behavior. Overflow also leads to
6193undefined behavior; this is a rare case, but can occur, for example, by
6194doing a 32-bit division of -2147483648 by -1.
6195
6196If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6197a :ref:`poison value <poisonvalues>` if the result would be rounded.
6198
6199Example:
6200""""""""
6201
Renato Golin124f2592016-07-20 12:16:38 +00006202.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006203
Tim Northover675a0962014-06-13 14:24:23 +00006204 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006205
6206.. _i_fdiv:
6207
6208'``fdiv``' Instruction
6209^^^^^^^^^^^^^^^^^^^^^^
6210
6211Syntax:
6212"""""""
6213
6214::
6215
Tim Northover675a0962014-06-13 14:24:23 +00006216 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006217
6218Overview:
6219"""""""""
6220
6221The '``fdiv``' instruction returns the quotient of its two operands.
6222
6223Arguments:
6224""""""""""
6225
6226The two arguments to the '``fdiv``' instruction must be :ref:`floating
6227point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6228Both arguments must have identical types.
6229
6230Semantics:
6231""""""""""
6232
6233The value produced is the floating point quotient of the two operands.
6234This instruction can also take any number of :ref:`fast-math
6235flags <fastmath>`, which are optimization hints to enable otherwise
6236unsafe floating point optimizations:
6237
6238Example:
6239""""""""
6240
Renato Golin124f2592016-07-20 12:16:38 +00006241.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006242
Tim Northover675a0962014-06-13 14:24:23 +00006243 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006244
6245'``urem``' Instruction
6246^^^^^^^^^^^^^^^^^^^^^^
6247
6248Syntax:
6249"""""""
6250
6251::
6252
Tim Northover675a0962014-06-13 14:24:23 +00006253 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006254
6255Overview:
6256"""""""""
6257
6258The '``urem``' instruction returns the remainder from the unsigned
6259division of its two arguments.
6260
6261Arguments:
6262""""""""""
6263
6264The two arguments to the '``urem``' instruction must be
6265:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6266arguments must have identical types.
6267
6268Semantics:
6269""""""""""
6270
6271This instruction returns the unsigned integer *remainder* of a division.
6272This instruction always performs an unsigned division to get the
6273remainder.
6274
6275Note that unsigned integer remainder and signed integer remainder are
6276distinct operations; for signed integer remainder, use '``srem``'.
6277
6278Taking the remainder of a division by zero leads to undefined behavior.
6279
6280Example:
6281""""""""
6282
Renato Golin124f2592016-07-20 12:16:38 +00006283.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006284
Tim Northover675a0962014-06-13 14:24:23 +00006285 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006286
6287'``srem``' Instruction
6288^^^^^^^^^^^^^^^^^^^^^^
6289
6290Syntax:
6291"""""""
6292
6293::
6294
Tim Northover675a0962014-06-13 14:24:23 +00006295 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006296
6297Overview:
6298"""""""""
6299
6300The '``srem``' instruction returns the remainder from the signed
6301division of its two operands. This instruction can also take
6302:ref:`vector <t_vector>` versions of the values in which case the elements
6303must be integers.
6304
6305Arguments:
6306""""""""""
6307
6308The two arguments to the '``srem``' instruction must be
6309:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6310arguments must have identical types.
6311
6312Semantics:
6313""""""""""
6314
6315This instruction returns the *remainder* of a division (where the result
6316is either zero or has the same sign as the dividend, ``op1``), not the
6317*modulo* operator (where the result is either zero or has the same sign
6318as the divisor, ``op2``) of a value. For more information about the
6319difference, see `The Math
6320Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6321table of how this is implemented in various languages, please see
6322`Wikipedia: modulo
6323operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6324
6325Note that signed integer remainder and unsigned integer remainder are
6326distinct operations; for unsigned integer remainder, use '``urem``'.
6327
6328Taking the remainder of a division by zero leads to undefined behavior.
6329Overflow also leads to undefined behavior; this is a rare case, but can
6330occur, for example, by taking the remainder of a 32-bit division of
6331-2147483648 by -1. (The remainder doesn't actually overflow, but this
6332rule lets srem be implemented using instructions that return both the
6333result of the division and the remainder.)
6334
6335Example:
6336""""""""
6337
Renato Golin124f2592016-07-20 12:16:38 +00006338.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006339
Tim Northover675a0962014-06-13 14:24:23 +00006340 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006341
6342.. _i_frem:
6343
6344'``frem``' Instruction
6345^^^^^^^^^^^^^^^^^^^^^^
6346
6347Syntax:
6348"""""""
6349
6350::
6351
Tim Northover675a0962014-06-13 14:24:23 +00006352 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006353
6354Overview:
6355"""""""""
6356
6357The '``frem``' instruction returns the remainder from the division of
6358its two operands.
6359
6360Arguments:
6361""""""""""
6362
6363The two arguments to the '``frem``' instruction must be :ref:`floating
6364point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6365Both arguments must have identical types.
6366
6367Semantics:
6368""""""""""
6369
6370This instruction returns the *remainder* of a division. The remainder
6371has the same sign as the dividend. This instruction can also take any
6372number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6373to enable otherwise unsafe floating point optimizations:
6374
6375Example:
6376""""""""
6377
Renato Golin124f2592016-07-20 12:16:38 +00006378.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006379
Tim Northover675a0962014-06-13 14:24:23 +00006380 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006381
6382.. _bitwiseops:
6383
6384Bitwise Binary Operations
6385-------------------------
6386
6387Bitwise binary operators are used to do various forms of bit-twiddling
6388in a program. They are generally very efficient instructions and can
6389commonly be strength reduced from other instructions. They require two
6390operands of the same type, execute an operation on them, and produce a
6391single value. The resulting value is the same type as its operands.
6392
6393'``shl``' Instruction
6394^^^^^^^^^^^^^^^^^^^^^
6395
6396Syntax:
6397"""""""
6398
6399::
6400
Tim Northover675a0962014-06-13 14:24:23 +00006401 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6402 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6403 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6404 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006405
6406Overview:
6407"""""""""
6408
6409The '``shl``' instruction returns the first operand shifted to the left
6410a specified number of bits.
6411
6412Arguments:
6413""""""""""
6414
6415Both arguments to the '``shl``' instruction must be the same
6416:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6417'``op2``' is treated as an unsigned value.
6418
6419Semantics:
6420""""""""""
6421
6422The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6423where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006424dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006425``op1``, the result is undefined. If the arguments are vectors, each
6426vector element of ``op1`` is shifted by the corresponding shift amount
6427in ``op2``.
6428
6429If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6430value <poisonvalues>` if it shifts out any non-zero bits. If the
6431``nsw`` keyword is present, then the shift produces a :ref:`poison
6432value <poisonvalues>` if it shifts out any bits that disagree with the
6433resultant sign bit. As such, NUW/NSW have the same semantics as they
6434would if the shift were expressed as a mul instruction with the same
6435nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6436
6437Example:
6438""""""""
6439
Renato Golin124f2592016-07-20 12:16:38 +00006440.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006441
Tim Northover675a0962014-06-13 14:24:23 +00006442 <result> = shl i32 4, %var ; yields i32: 4 << %var
6443 <result> = shl i32 4, 2 ; yields i32: 16
6444 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006445 <result> = shl i32 1, 32 ; undefined
6446 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6447
6448'``lshr``' Instruction
6449^^^^^^^^^^^^^^^^^^^^^^
6450
6451Syntax:
6452"""""""
6453
6454::
6455
Tim Northover675a0962014-06-13 14:24:23 +00006456 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6457 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006458
6459Overview:
6460"""""""""
6461
6462The '``lshr``' instruction (logical shift right) returns the first
6463operand shifted to the right a specified number of bits with zero fill.
6464
6465Arguments:
6466""""""""""
6467
6468Both arguments to the '``lshr``' instruction must be the same
6469:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6470'``op2``' is treated as an unsigned value.
6471
6472Semantics:
6473""""""""""
6474
6475This instruction always performs a logical shift right operation. The
6476most significant bits of the result will be filled with zero bits after
6477the shift. If ``op2`` is (statically or dynamically) equal to or larger
6478than the number of bits in ``op1``, the result is undefined. If the
6479arguments are vectors, each vector element of ``op1`` is shifted by the
6480corresponding shift amount in ``op2``.
6481
6482If the ``exact`` keyword is present, the result value of the ``lshr`` is
6483a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6484non-zero.
6485
6486Example:
6487""""""""
6488
Renato Golin124f2592016-07-20 12:16:38 +00006489.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006490
Tim Northover675a0962014-06-13 14:24:23 +00006491 <result> = lshr i32 4, 1 ; yields i32:result = 2
6492 <result> = lshr i32 4, 2 ; yields i32:result = 1
6493 <result> = lshr i8 4, 3 ; yields i8:result = 0
6494 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006495 <result> = lshr i32 1, 32 ; undefined
6496 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6497
6498'``ashr``' Instruction
6499^^^^^^^^^^^^^^^^^^^^^^
6500
6501Syntax:
6502"""""""
6503
6504::
6505
Tim Northover675a0962014-06-13 14:24:23 +00006506 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6507 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006508
6509Overview:
6510"""""""""
6511
6512The '``ashr``' instruction (arithmetic shift right) returns the first
6513operand shifted to the right a specified number of bits with sign
6514extension.
6515
6516Arguments:
6517""""""""""
6518
6519Both arguments to the '``ashr``' instruction must be the same
6520:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6521'``op2``' is treated as an unsigned value.
6522
6523Semantics:
6524""""""""""
6525
6526This instruction always performs an arithmetic shift right operation,
6527The most significant bits of the result will be filled with the sign bit
6528of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6529than the number of bits in ``op1``, the result is undefined. If the
6530arguments are vectors, each vector element of ``op1`` is shifted by the
6531corresponding shift amount in ``op2``.
6532
6533If the ``exact`` keyword is present, the result value of the ``ashr`` is
6534a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6535non-zero.
6536
6537Example:
6538""""""""
6539
Renato Golin124f2592016-07-20 12:16:38 +00006540.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006541
Tim Northover675a0962014-06-13 14:24:23 +00006542 <result> = ashr i32 4, 1 ; yields i32:result = 2
6543 <result> = ashr i32 4, 2 ; yields i32:result = 1
6544 <result> = ashr i8 4, 3 ; yields i8:result = 0
6545 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006546 <result> = ashr i32 1, 32 ; undefined
6547 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6548
6549'``and``' Instruction
6550^^^^^^^^^^^^^^^^^^^^^
6551
6552Syntax:
6553"""""""
6554
6555::
6556
Tim Northover675a0962014-06-13 14:24:23 +00006557 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006558
6559Overview:
6560"""""""""
6561
6562The '``and``' instruction returns the bitwise logical and of its two
6563operands.
6564
6565Arguments:
6566""""""""""
6567
6568The two arguments to the '``and``' instruction must be
6569:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6570arguments must have identical types.
6571
6572Semantics:
6573""""""""""
6574
6575The truth table used for the '``and``' instruction is:
6576
6577+-----+-----+-----+
6578| In0 | In1 | Out |
6579+-----+-----+-----+
6580| 0 | 0 | 0 |
6581+-----+-----+-----+
6582| 0 | 1 | 0 |
6583+-----+-----+-----+
6584| 1 | 0 | 0 |
6585+-----+-----+-----+
6586| 1 | 1 | 1 |
6587+-----+-----+-----+
6588
6589Example:
6590""""""""
6591
Renato Golin124f2592016-07-20 12:16:38 +00006592.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006593
Tim Northover675a0962014-06-13 14:24:23 +00006594 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6595 <result> = and i32 15, 40 ; yields i32:result = 8
6596 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006597
6598'``or``' Instruction
6599^^^^^^^^^^^^^^^^^^^^
6600
6601Syntax:
6602"""""""
6603
6604::
6605
Tim Northover675a0962014-06-13 14:24:23 +00006606 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006607
6608Overview:
6609"""""""""
6610
6611The '``or``' instruction returns the bitwise logical inclusive or of its
6612two operands.
6613
6614Arguments:
6615""""""""""
6616
6617The two arguments to the '``or``' instruction must be
6618:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6619arguments must have identical types.
6620
6621Semantics:
6622""""""""""
6623
6624The truth table used for the '``or``' instruction is:
6625
6626+-----+-----+-----+
6627| In0 | In1 | Out |
6628+-----+-----+-----+
6629| 0 | 0 | 0 |
6630+-----+-----+-----+
6631| 0 | 1 | 1 |
6632+-----+-----+-----+
6633| 1 | 0 | 1 |
6634+-----+-----+-----+
6635| 1 | 1 | 1 |
6636+-----+-----+-----+
6637
6638Example:
6639""""""""
6640
6641::
6642
Tim Northover675a0962014-06-13 14:24:23 +00006643 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6644 <result> = or i32 15, 40 ; yields i32:result = 47
6645 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006646
6647'``xor``' Instruction
6648^^^^^^^^^^^^^^^^^^^^^
6649
6650Syntax:
6651"""""""
6652
6653::
6654
Tim Northover675a0962014-06-13 14:24:23 +00006655 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006656
6657Overview:
6658"""""""""
6659
6660The '``xor``' instruction returns the bitwise logical exclusive or of
6661its two operands. The ``xor`` is used to implement the "one's
6662complement" operation, which is the "~" operator in C.
6663
6664Arguments:
6665""""""""""
6666
6667The two arguments to the '``xor``' instruction must be
6668:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6669arguments must have identical types.
6670
6671Semantics:
6672""""""""""
6673
6674The truth table used for the '``xor``' instruction is:
6675
6676+-----+-----+-----+
6677| In0 | In1 | Out |
6678+-----+-----+-----+
6679| 0 | 0 | 0 |
6680+-----+-----+-----+
6681| 0 | 1 | 1 |
6682+-----+-----+-----+
6683| 1 | 0 | 1 |
6684+-----+-----+-----+
6685| 1 | 1 | 0 |
6686+-----+-----+-----+
6687
6688Example:
6689""""""""
6690
Renato Golin124f2592016-07-20 12:16:38 +00006691.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006692
Tim Northover675a0962014-06-13 14:24:23 +00006693 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6694 <result> = xor i32 15, 40 ; yields i32:result = 39
6695 <result> = xor i32 4, 8 ; yields i32:result = 12
6696 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006697
6698Vector Operations
6699-----------------
6700
6701LLVM supports several instructions to represent vector operations in a
6702target-independent manner. These instructions cover the element-access
6703and vector-specific operations needed to process vectors effectively.
6704While LLVM does directly support these vector operations, many
6705sophisticated algorithms will want to use target-specific intrinsics to
6706take full advantage of a specific target.
6707
6708.. _i_extractelement:
6709
6710'``extractelement``' Instruction
6711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6712
6713Syntax:
6714"""""""
6715
6716::
6717
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006718 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006719
6720Overview:
6721"""""""""
6722
6723The '``extractelement``' instruction extracts a single scalar element
6724from a vector at a specified index.
6725
6726Arguments:
6727""""""""""
6728
6729The first operand of an '``extractelement``' instruction is a value of
6730:ref:`vector <t_vector>` type. The second operand is an index indicating
6731the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006732variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006733
6734Semantics:
6735""""""""""
6736
6737The result is a scalar of the same type as the element type of ``val``.
6738Its value is the value at position ``idx`` of ``val``. If ``idx``
6739exceeds the length of ``val``, the results are undefined.
6740
6741Example:
6742""""""""
6743
Renato Golin124f2592016-07-20 12:16:38 +00006744.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006745
6746 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6747
6748.. _i_insertelement:
6749
6750'``insertelement``' Instruction
6751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6752
6753Syntax:
6754"""""""
6755
6756::
6757
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006758 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006759
6760Overview:
6761"""""""""
6762
6763The '``insertelement``' instruction inserts a scalar element into a
6764vector at a specified index.
6765
6766Arguments:
6767""""""""""
6768
6769The first operand of an '``insertelement``' instruction is a value of
6770:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6771type must equal the element type of the first operand. The third operand
6772is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006773index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006774
6775Semantics:
6776""""""""""
6777
6778The result is a vector of the same type as ``val``. Its element values
6779are those of ``val`` except at position ``idx``, where it gets the value
6780``elt``. If ``idx`` exceeds the length of ``val``, the results are
6781undefined.
6782
6783Example:
6784""""""""
6785
Renato Golin124f2592016-07-20 12:16:38 +00006786.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006787
6788 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6789
6790.. _i_shufflevector:
6791
6792'``shufflevector``' Instruction
6793^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6794
6795Syntax:
6796"""""""
6797
6798::
6799
6800 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6801
6802Overview:
6803"""""""""
6804
6805The '``shufflevector``' instruction constructs a permutation of elements
6806from two input vectors, returning a vector with the same element type as
6807the input and length that is the same as the shuffle mask.
6808
6809Arguments:
6810""""""""""
6811
6812The first two operands of a '``shufflevector``' instruction are vectors
6813with the same type. The third argument is a shuffle mask whose element
6814type is always 'i32'. The result of the instruction is a vector whose
6815length is the same as the shuffle mask and whose element type is the
6816same as the element type of the first two operands.
6817
6818The shuffle mask operand is required to be a constant vector with either
6819constant integer or undef values.
6820
6821Semantics:
6822""""""""""
6823
6824The elements of the two input vectors are numbered from left to right
6825across both of the vectors. The shuffle mask operand specifies, for each
6826element of the result vector, which element of the two input vectors the
6827result element gets. The element selector may be undef (meaning "don't
6828care") and the second operand may be undef if performing a shuffle from
6829only one vector.
6830
6831Example:
6832""""""""
6833
Renato Golin124f2592016-07-20 12:16:38 +00006834.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006835
6836 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6837 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6838 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6839 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6840 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6841 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6842 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6843 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6844
6845Aggregate Operations
6846--------------------
6847
6848LLVM supports several instructions for working with
6849:ref:`aggregate <t_aggregate>` values.
6850
6851.. _i_extractvalue:
6852
6853'``extractvalue``' Instruction
6854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6855
6856Syntax:
6857"""""""
6858
6859::
6860
6861 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6862
6863Overview:
6864"""""""""
6865
6866The '``extractvalue``' instruction extracts the value of a member field
6867from an :ref:`aggregate <t_aggregate>` value.
6868
6869Arguments:
6870""""""""""
6871
6872The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006873:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006874constant indices to specify which value to extract in a similar manner
6875as indices in a '``getelementptr``' instruction.
6876
6877The major differences to ``getelementptr`` indexing are:
6878
6879- Since the value being indexed is not a pointer, the first index is
6880 omitted and assumed to be zero.
6881- At least one index must be specified.
6882- Not only struct indices but also array indices must be in bounds.
6883
6884Semantics:
6885""""""""""
6886
6887The result is the value at the position in the aggregate specified by
6888the index operands.
6889
6890Example:
6891""""""""
6892
Renato Golin124f2592016-07-20 12:16:38 +00006893.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006894
6895 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6896
6897.. _i_insertvalue:
6898
6899'``insertvalue``' Instruction
6900^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6901
6902Syntax:
6903"""""""
6904
6905::
6906
6907 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6908
6909Overview:
6910"""""""""
6911
6912The '``insertvalue``' instruction inserts a value into a member field in
6913an :ref:`aggregate <t_aggregate>` value.
6914
6915Arguments:
6916""""""""""
6917
6918The first operand of an '``insertvalue``' instruction is a value of
6919:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6920a first-class value to insert. The following operands are constant
6921indices indicating the position at which to insert the value in a
6922similar manner as indices in a '``extractvalue``' instruction. The value
6923to insert must have the same type as the value identified by the
6924indices.
6925
6926Semantics:
6927""""""""""
6928
6929The result is an aggregate of the same type as ``val``. Its value is
6930that of ``val`` except that the value at the position specified by the
6931indices is that of ``elt``.
6932
6933Example:
6934""""""""
6935
6936.. code-block:: llvm
6937
6938 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6939 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006940 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006941
6942.. _memoryops:
6943
6944Memory Access and Addressing Operations
6945---------------------------------------
6946
6947A key design point of an SSA-based representation is how it represents
6948memory. In LLVM, no memory locations are in SSA form, which makes things
6949very simple. This section describes how to read, write, and allocate
6950memory in LLVM.
6951
6952.. _i_alloca:
6953
6954'``alloca``' Instruction
6955^^^^^^^^^^^^^^^^^^^^^^^^
6956
6957Syntax:
6958"""""""
6959
6960::
6961
Tim Northover675a0962014-06-13 14:24:23 +00006962 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006963
6964Overview:
6965"""""""""
6966
6967The '``alloca``' instruction allocates memory on the stack frame of the
6968currently executing function, to be automatically released when this
6969function returns to its caller. The object is always allocated in the
6970generic address space (address space zero).
6971
6972Arguments:
6973""""""""""
6974
6975The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6976bytes of memory on the runtime stack, returning a pointer of the
6977appropriate type to the program. If "NumElements" is specified, it is
6978the number of elements allocated, otherwise "NumElements" is defaulted
6979to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006980allocation is guaranteed to be aligned to at least that boundary. The
6981alignment may not be greater than ``1 << 29``. If not specified, or if
6982zero, the target can choose to align the allocation on any convenient
6983boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006984
6985'``type``' may be any sized type.
6986
6987Semantics:
6988""""""""""
6989
6990Memory is allocated; a pointer is returned. The operation is undefined
6991if there is insufficient stack space for the allocation. '``alloca``'d
6992memory is automatically released when the function returns. The
6993'``alloca``' instruction is commonly used to represent automatic
6994variables that must have an address available. When the function returns
6995(either with the ``ret`` or ``resume`` instructions), the memory is
6996reclaimed. Allocating zero bytes is legal, but the result is undefined.
6997The order in which memory is allocated (ie., which way the stack grows)
6998is not specified.
6999
7000Example:
7001""""""""
7002
7003.. code-block:: llvm
7004
Tim Northover675a0962014-06-13 14:24:23 +00007005 %ptr = alloca i32 ; yields i32*:ptr
7006 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7007 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7008 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007009
7010.. _i_load:
7011
7012'``load``' Instruction
7013^^^^^^^^^^^^^^^^^^^^^^
7014
7015Syntax:
7016"""""""
7017
7018::
7019
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007020 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007021 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007022 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007023 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007024 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007025
7026Overview:
7027"""""""""
7028
7029The '``load``' instruction is used to read from memory.
7030
7031Arguments:
7032""""""""""
7033
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007034The argument to the ``load`` instruction specifies the memory address from which
7035to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7036known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7037the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7038modify the number or order of execution of this ``load`` with other
7039:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007040
JF Bastiend1fb5852015-12-17 22:09:19 +00007041If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7042<ordering>` and optional ``singlethread`` argument. The ``release`` and
7043``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7044produce :ref:`defined <memmodel>` results when they may see multiple atomic
7045stores. The type of the pointee must be an integer, pointer, or floating-point
7046type whose bit width is a power of two greater than or equal to eight and less
7047than or equal to a target-specific size limit. ``align`` must be explicitly
7048specified on atomic loads, and the load has undefined behavior if the alignment
7049is not set to a value which is at least the size in bytes of the
7050pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007051
7052The optional constant ``align`` argument specifies the alignment of the
7053operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007054or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007055alignment for the target. It is the responsibility of the code emitter
7056to ensure that the alignment information is correct. Overestimating the
7057alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007058may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007059maximum possible alignment is ``1 << 29``. An alignment value higher
7060than the size of the loaded type implies memory up to the alignment
7061value bytes can be safely loaded without trapping in the default
7062address space. Access of the high bytes can interfere with debugging
7063tools, so should not be accessed if the function has the
7064``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007065
7066The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007067metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007068``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007069metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007070that this load is not expected to be reused in the cache. The code
7071generator may select special instructions to save cache bandwidth, such
7072as the ``MOVNT`` instruction on x86.
7073
7074The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007075metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007076entries. If a load instruction tagged with the ``!invariant.load``
7077metadata is executed, the optimizer may assume the memory location
7078referenced by the load contains the same value at all points in the
7079program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007080
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007081The optional ``!invariant.group`` metadata must reference a single metadata name
7082 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7083
Philip Reamescdb72f32014-10-20 22:40:55 +00007084The optional ``!nonnull`` metadata must reference a single
7085metadata name ``<index>`` corresponding to a metadata node with no
7086entries. The existence of the ``!nonnull`` metadata on the
7087instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007088never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007089on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007090to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007091
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007092The optional ``!dereferenceable`` metadata must reference a single metadata
7093name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007094entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007095tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007096The number of bytes known to be dereferenceable is specified by the integer
7097value in the metadata node. This is analogous to the ''dereferenceable''
7098attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007099to loads of a pointer type.
7100
7101The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007102metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7103``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007104instruction tells the optimizer that the value loaded is known to be either
7105dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007106The number of bytes known to be dereferenceable is specified by the integer
7107value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7108attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007109to loads of a pointer type.
7110
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007111The optional ``!align`` metadata must reference a single metadata name
7112``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7113The existence of the ``!align`` metadata on the instruction tells the
7114optimizer that the value loaded is known to be aligned to a boundary specified
7115by the integer value in the metadata node. The alignment must be a power of 2.
7116This is analogous to the ''align'' attribute on parameters and return values.
7117This metadata can only be applied to loads of a pointer type.
7118
Sean Silvab084af42012-12-07 10:36:55 +00007119Semantics:
7120""""""""""
7121
7122The location of memory pointed to is loaded. If the value being loaded
7123is of scalar type then the number of bytes read does not exceed the
7124minimum number of bytes needed to hold all bits of the type. For
7125example, loading an ``i24`` reads at most three bytes. When loading a
7126value of a type like ``i20`` with a size that is not an integral number
7127of bytes, the result is undefined if the value was not originally
7128written using a store of the same type.
7129
7130Examples:
7131"""""""""
7132
7133.. code-block:: llvm
7134
Tim Northover675a0962014-06-13 14:24:23 +00007135 %ptr = alloca i32 ; yields i32*:ptr
7136 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007137 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007138
7139.. _i_store:
7140
7141'``store``' Instruction
7142^^^^^^^^^^^^^^^^^^^^^^^
7143
7144Syntax:
7145"""""""
7146
7147::
7148
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007149 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7150 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007151
7152Overview:
7153"""""""""
7154
7155The '``store``' instruction is used to write to memory.
7156
7157Arguments:
7158""""""""""
7159
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007160There are two arguments to the ``store`` instruction: a value to store and an
7161address at which to store it. The type of the ``<pointer>`` operand must be a
7162pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7163operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7164allowed to modify the number or order of execution of this ``store`` with other
7165:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7166<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7167structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007168
JF Bastiend1fb5852015-12-17 22:09:19 +00007169If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7170<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7171``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7172produce :ref:`defined <memmodel>` results when they may see multiple atomic
7173stores. The type of the pointee must be an integer, pointer, or floating-point
7174type whose bit width is a power of two greater than or equal to eight and less
7175than or equal to a target-specific size limit. ``align`` must be explicitly
7176specified on atomic stores, and the store has undefined behavior if the
7177alignment is not set to a value which is at least the size in bytes of the
7178pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007179
Eli Benderskyca380842013-04-17 17:17:20 +00007180The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007181operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007182or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007183alignment for the target. It is the responsibility of the code emitter
7184to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007185alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007186alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007187safe. The maximum possible alignment is ``1 << 29``. An alignment
7188value higher than the size of the stored type implies memory up to the
7189alignment value bytes can be stored to without trapping in the default
7190address space. Storing to the higher bytes however may result in data
7191races if another thread can access the same address. Introducing a
7192data race is not allowed. Storing to the extra bytes is not allowed
7193even in situations where a data race is known to not exist if the
7194function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007195
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007196The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007197name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007198value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007199tells the optimizer and code generator that this load is not expected to
7200be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007201instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007202x86.
7203
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007204The optional ``!invariant.group`` metadata must reference a
7205single metadata name ``<index>``. See ``invariant.group`` metadata.
7206
Sean Silvab084af42012-12-07 10:36:55 +00007207Semantics:
7208""""""""""
7209
Eli Benderskyca380842013-04-17 17:17:20 +00007210The contents of memory are updated to contain ``<value>`` at the
7211location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007212of scalar type then the number of bytes written does not exceed the
7213minimum number of bytes needed to hold all bits of the type. For
7214example, storing an ``i24`` writes at most three bytes. When writing a
7215value of a type like ``i20`` with a size that is not an integral number
7216of bytes, it is unspecified what happens to the extra bits that do not
7217belong to the type, but they will typically be overwritten.
7218
7219Example:
7220""""""""
7221
7222.. code-block:: llvm
7223
Tim Northover675a0962014-06-13 14:24:23 +00007224 %ptr = alloca i32 ; yields i32*:ptr
7225 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007226 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007227
7228.. _i_fence:
7229
7230'``fence``' Instruction
7231^^^^^^^^^^^^^^^^^^^^^^^
7232
7233Syntax:
7234"""""""
7235
7236::
7237
Tim Northover675a0962014-06-13 14:24:23 +00007238 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007239
7240Overview:
7241"""""""""
7242
7243The '``fence``' instruction is used to introduce happens-before edges
7244between operations.
7245
7246Arguments:
7247""""""""""
7248
7249'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7250defines what *synchronizes-with* edges they add. They can only be given
7251``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7252
7253Semantics:
7254""""""""""
7255
7256A fence A which has (at least) ``release`` ordering semantics
7257*synchronizes with* a fence B with (at least) ``acquire`` ordering
7258semantics if and only if there exist atomic operations X and Y, both
7259operating on some atomic object M, such that A is sequenced before X, X
7260modifies M (either directly or through some side effect of a sequence
7261headed by X), Y is sequenced before B, and Y observes M. This provides a
7262*happens-before* dependency between A and B. Rather than an explicit
7263``fence``, one (but not both) of the atomic operations X or Y might
7264provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7265still *synchronize-with* the explicit ``fence`` and establish the
7266*happens-before* edge.
7267
7268A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7269``acquire`` and ``release`` semantics specified above, participates in
7270the global program order of other ``seq_cst`` operations and/or fences.
7271
7272The optional ":ref:`singlethread <singlethread>`" argument specifies
7273that the fence only synchronizes with other fences in the same thread.
7274(This is useful for interacting with signal handlers.)
7275
7276Example:
7277""""""""
7278
7279.. code-block:: llvm
7280
Tim Northover675a0962014-06-13 14:24:23 +00007281 fence acquire ; yields void
7282 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007283
7284.. _i_cmpxchg:
7285
7286'``cmpxchg``' Instruction
7287^^^^^^^^^^^^^^^^^^^^^^^^^
7288
7289Syntax:
7290"""""""
7291
7292::
7293
Tim Northover675a0962014-06-13 14:24:23 +00007294 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007295
7296Overview:
7297"""""""""
7298
7299The '``cmpxchg``' instruction is used to atomically modify memory. It
7300loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007301equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007302
7303Arguments:
7304""""""""""
7305
7306There are three arguments to the '``cmpxchg``' instruction: an address
7307to operate on, a value to compare to the value currently be at that
7308address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007309are equal. The type of '<cmp>' must be an integer or pointer type whose
7310bit width is a power of two greater than or equal to eight and less
7311than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7312have the same type, and the type of '<pointer>' must be a pointer to
7313that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7314optimizer is not allowed to modify the number or order of execution of
7315this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007316
Tim Northovere94a5182014-03-11 10:48:52 +00007317The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007318``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7319must be at least ``monotonic``, the ordering constraint on failure must be no
7320stronger than that on success, and the failure ordering cannot be either
7321``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007322
7323The optional "``singlethread``" argument declares that the ``cmpxchg``
7324is only atomic with respect to code (usually signal handlers) running in
7325the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7326respect to all other code in the system.
7327
7328The pointer passed into cmpxchg must have alignment greater than or
7329equal to the size in memory of the operand.
7330
7331Semantics:
7332""""""""""
7333
Tim Northover420a2162014-06-13 14:24:07 +00007334The contents of memory at the location specified by the '``<pointer>``' operand
7335is read and compared to '``<cmp>``'; if the read value is the equal, the
7336'``<new>``' is written. The original value at the location is returned, together
7337with a flag indicating success (true) or failure (false).
7338
7339If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7340permitted: the operation may not write ``<new>`` even if the comparison
7341matched.
7342
7343If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7344if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007345
Tim Northovere94a5182014-03-11 10:48:52 +00007346A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7347identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7348load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007349
7350Example:
7351""""""""
7352
7353.. code-block:: llvm
7354
7355 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007356 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007357 br label %loop
7358
7359 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007360 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007361 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007362 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007363 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7364 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007365 br i1 %success, label %done, label %loop
7366
7367 done:
7368 ...
7369
7370.. _i_atomicrmw:
7371
7372'``atomicrmw``' Instruction
7373^^^^^^^^^^^^^^^^^^^^^^^^^^^
7374
7375Syntax:
7376"""""""
7377
7378::
7379
Tim Northover675a0962014-06-13 14:24:23 +00007380 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007381
7382Overview:
7383"""""""""
7384
7385The '``atomicrmw``' instruction is used to atomically modify memory.
7386
7387Arguments:
7388""""""""""
7389
7390There are three arguments to the '``atomicrmw``' instruction: an
7391operation to apply, an address whose value to modify, an argument to the
7392operation. The operation must be one of the following keywords:
7393
7394- xchg
7395- add
7396- sub
7397- and
7398- nand
7399- or
7400- xor
7401- max
7402- min
7403- umax
7404- umin
7405
7406The type of '<value>' must be an integer type whose bit width is a power
7407of two greater than or equal to eight and less than or equal to a
7408target-specific size limit. The type of the '``<pointer>``' operand must
7409be a pointer to that type. If the ``atomicrmw`` is marked as
7410``volatile``, then the optimizer is not allowed to modify the number or
7411order of execution of this ``atomicrmw`` with other :ref:`volatile
7412operations <volatile>`.
7413
7414Semantics:
7415""""""""""
7416
7417The contents of memory at the location specified by the '``<pointer>``'
7418operand are atomically read, modified, and written back. The original
7419value at the location is returned. The modification is specified by the
7420operation argument:
7421
7422- xchg: ``*ptr = val``
7423- add: ``*ptr = *ptr + val``
7424- sub: ``*ptr = *ptr - val``
7425- and: ``*ptr = *ptr & val``
7426- nand: ``*ptr = ~(*ptr & val)``
7427- or: ``*ptr = *ptr | val``
7428- xor: ``*ptr = *ptr ^ val``
7429- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7430- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7431- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7432 comparison)
7433- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7434 comparison)
7435
7436Example:
7437""""""""
7438
7439.. code-block:: llvm
7440
Tim Northover675a0962014-06-13 14:24:23 +00007441 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007442
7443.. _i_getelementptr:
7444
7445'``getelementptr``' Instruction
7446^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7447
7448Syntax:
7449"""""""
7450
7451::
7452
Peter Collingbourned93620b2016-11-10 22:34:55 +00007453 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7454 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7455 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007456
7457Overview:
7458"""""""""
7459
7460The '``getelementptr``' instruction is used to get the address of a
7461subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007462address calculation only and does not access memory. The instruction can also
7463be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007464
7465Arguments:
7466""""""""""
7467
David Blaikie16a97eb2015-03-04 22:02:58 +00007468The first argument is always a type used as the basis for the calculations.
7469The second argument is always a pointer or a vector of pointers, and is the
7470base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007471that indicate which of the elements of the aggregate object are indexed.
7472The interpretation of each index is dependent on the type being indexed
7473into. The first index always indexes the pointer value given as the
7474first argument, the second index indexes a value of the type pointed to
7475(not necessarily the value directly pointed to, since the first index
7476can be non-zero), etc. The first type indexed into must be a pointer
7477value, subsequent types can be arrays, vectors, and structs. Note that
7478subsequent types being indexed into can never be pointers, since that
7479would require loading the pointer before continuing calculation.
7480
7481The type of each index argument depends on the type it is indexing into.
7482When indexing into a (optionally packed) structure, only ``i32`` integer
7483**constants** are allowed (when using a vector of indices they must all
7484be the **same** ``i32`` integer constant). When indexing into an array,
7485pointer or vector, integers of any width are allowed, and they are not
7486required to be constant. These integers are treated as signed values
7487where relevant.
7488
7489For example, let's consider a C code fragment and how it gets compiled
7490to LLVM:
7491
7492.. code-block:: c
7493
7494 struct RT {
7495 char A;
7496 int B[10][20];
7497 char C;
7498 };
7499 struct ST {
7500 int X;
7501 double Y;
7502 struct RT Z;
7503 };
7504
7505 int *foo(struct ST *s) {
7506 return &s[1].Z.B[5][13];
7507 }
7508
7509The LLVM code generated by Clang is:
7510
7511.. code-block:: llvm
7512
7513 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7514 %struct.ST = type { i32, double, %struct.RT }
7515
7516 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7517 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007518 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007519 ret i32* %arrayidx
7520 }
7521
7522Semantics:
7523""""""""""
7524
7525In the example above, the first index is indexing into the
7526'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7527= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7528indexes into the third element of the structure, yielding a
7529'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7530structure. The third index indexes into the second element of the
7531structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7532dimensions of the array are subscripted into, yielding an '``i32``'
7533type. The '``getelementptr``' instruction returns a pointer to this
7534element, thus computing a value of '``i32*``' type.
7535
7536Note that it is perfectly legal to index partially through a structure,
7537returning a pointer to an inner element. Because of this, the LLVM code
7538for the given testcase is equivalent to:
7539
7540.. code-block:: llvm
7541
7542 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007543 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7544 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7545 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7546 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7547 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007548 ret i32* %t5
7549 }
7550
7551If the ``inbounds`` keyword is present, the result value of the
7552``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7553pointer is not an *in bounds* address of an allocated object, or if any
7554of the addresses that would be formed by successive addition of the
7555offsets implied by the indices to the base address with infinitely
7556precise signed arithmetic are not an *in bounds* address of that
7557allocated object. The *in bounds* addresses for an allocated object are
7558all the addresses that point into the object, plus the address one byte
7559past the end. In cases where the base is a vector of pointers the
7560``inbounds`` keyword applies to each of the computations element-wise.
7561
7562If the ``inbounds`` keyword is not present, the offsets are added to the
7563base address with silently-wrapping two's complement arithmetic. If the
7564offsets have a different width from the pointer, they are sign-extended
7565or truncated to the width of the pointer. The result value of the
7566``getelementptr`` may be outside the object pointed to by the base
7567pointer. The result value may not necessarily be used to access memory
7568though, even if it happens to point into allocated storage. See the
7569:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7570information.
7571
Peter Collingbourned93620b2016-11-10 22:34:55 +00007572If the ``inrange`` keyword is present before any index, loading from or
7573storing to any pointer derived from the ``getelementptr`` has undefined
7574behavior if the load or store would access memory outside of the bounds of
7575the element selected by the index marked as ``inrange``. The result of a
7576pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7577involving memory) involving a pointer derived from a ``getelementptr`` with
7578the ``inrange`` keyword is undefined, with the exception of comparisons
7579in the case where both operands are in the range of the element selected
7580by the ``inrange`` keyword, inclusive of the address one past the end of
7581that element. Note that the ``inrange`` keyword is currently only allowed
7582in constant ``getelementptr`` expressions.
7583
Sean Silvab084af42012-12-07 10:36:55 +00007584The getelementptr instruction is often confusing. For some more insight
7585into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7586
7587Example:
7588""""""""
7589
7590.. code-block:: llvm
7591
7592 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007593 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007594 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007595 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007596 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007597 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007598 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007599 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007600
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007601Vector of pointers:
7602"""""""""""""""""""
7603
7604The ``getelementptr`` returns a vector of pointers, instead of a single address,
7605when one or more of its arguments is a vector. In such cases, all vector
7606arguments should have the same number of elements, and every scalar argument
7607will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007608
7609.. code-block:: llvm
7610
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007611 ; All arguments are vectors:
7612 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7613 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007614
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007615 ; Add the same scalar offset to each pointer of a vector:
7616 ; A[i] = ptrs[i] + offset*sizeof(i8)
7617 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007618
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007619 ; Add distinct offsets to the same pointer:
7620 ; A[i] = ptr + offsets[i]*sizeof(i8)
7621 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007622
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007623 ; In all cases described above the type of the result is <4 x i8*>
7624
7625The two following instructions are equivalent:
7626
7627.. code-block:: llvm
7628
7629 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7630 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7631 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7632 <4 x i32> %ind4,
7633 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007634
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007635 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7636 i32 2, i32 1, <4 x i32> %ind4, i64 13
7637
7638Let's look at the C code, where the vector version of ``getelementptr``
7639makes sense:
7640
7641.. code-block:: c
7642
7643 // Let's assume that we vectorize the following loop:
7644 double *A, B; int *C;
7645 for (int i = 0; i < size; ++i) {
7646 A[i] = B[C[i]];
7647 }
7648
7649.. code-block:: llvm
7650
7651 ; get pointers for 8 elements from array B
7652 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7653 ; load 8 elements from array B into A
7654 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7655 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007656
7657Conversion Operations
7658---------------------
7659
7660The instructions in this category are the conversion instructions
7661(casting) which all take a single operand and a type. They perform
7662various bit conversions on the operand.
7663
7664'``trunc .. to``' Instruction
7665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7666
7667Syntax:
7668"""""""
7669
7670::
7671
7672 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7673
7674Overview:
7675"""""""""
7676
7677The '``trunc``' instruction truncates its operand to the type ``ty2``.
7678
7679Arguments:
7680""""""""""
7681
7682The '``trunc``' instruction takes a value to trunc, and a type to trunc
7683it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7684of the same number of integers. The bit size of the ``value`` must be
7685larger than the bit size of the destination type, ``ty2``. Equal sized
7686types are not allowed.
7687
7688Semantics:
7689""""""""""
7690
7691The '``trunc``' instruction truncates the high order bits in ``value``
7692and converts the remaining bits to ``ty2``. Since the source size must
7693be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7694It will always truncate bits.
7695
7696Example:
7697""""""""
7698
7699.. code-block:: llvm
7700
7701 %X = trunc i32 257 to i8 ; yields i8:1
7702 %Y = trunc i32 123 to i1 ; yields i1:true
7703 %Z = trunc i32 122 to i1 ; yields i1:false
7704 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7705
7706'``zext .. to``' Instruction
7707^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7708
7709Syntax:
7710"""""""
7711
7712::
7713
7714 <result> = zext <ty> <value> to <ty2> ; yields ty2
7715
7716Overview:
7717"""""""""
7718
7719The '``zext``' instruction zero extends its operand to type ``ty2``.
7720
7721Arguments:
7722""""""""""
7723
7724The '``zext``' instruction takes a value to cast, and a type to cast it
7725to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7726the same number of integers. The bit size of the ``value`` must be
7727smaller than the bit size of the destination type, ``ty2``.
7728
7729Semantics:
7730""""""""""
7731
7732The ``zext`` fills the high order bits of the ``value`` with zero bits
7733until it reaches the size of the destination type, ``ty2``.
7734
7735When zero extending from i1, the result will always be either 0 or 1.
7736
7737Example:
7738""""""""
7739
7740.. code-block:: llvm
7741
7742 %X = zext i32 257 to i64 ; yields i64:257
7743 %Y = zext i1 true to i32 ; yields i32:1
7744 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7745
7746'``sext .. to``' Instruction
7747^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7748
7749Syntax:
7750"""""""
7751
7752::
7753
7754 <result> = sext <ty> <value> to <ty2> ; yields ty2
7755
7756Overview:
7757"""""""""
7758
7759The '``sext``' sign extends ``value`` to the type ``ty2``.
7760
7761Arguments:
7762""""""""""
7763
7764The '``sext``' instruction takes a value to cast, and a type to cast it
7765to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7766the same number of integers. The bit size of the ``value`` must be
7767smaller than the bit size of the destination type, ``ty2``.
7768
7769Semantics:
7770""""""""""
7771
7772The '``sext``' instruction performs a sign extension by copying the sign
7773bit (highest order bit) of the ``value`` until it reaches the bit size
7774of the type ``ty2``.
7775
7776When sign extending from i1, the extension always results in -1 or 0.
7777
7778Example:
7779""""""""
7780
7781.. code-block:: llvm
7782
7783 %X = sext i8 -1 to i16 ; yields i16 :65535
7784 %Y = sext i1 true to i32 ; yields i32:-1
7785 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7786
7787'``fptrunc .. to``' Instruction
7788^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7789
7790Syntax:
7791"""""""
7792
7793::
7794
7795 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7796
7797Overview:
7798"""""""""
7799
7800The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7801
7802Arguments:
7803""""""""""
7804
7805The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7806value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7807The size of ``value`` must be larger than the size of ``ty2``. This
7808implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7809
7810Semantics:
7811""""""""""
7812
Dan Liew50456fb2015-09-03 18:43:56 +00007813The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007814:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007815point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7816destination type, ``ty2``, then the results are undefined. If the cast produces
7817an inexact result, how rounding is performed (e.g. truncation, also known as
7818round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007819
7820Example:
7821""""""""
7822
7823.. code-block:: llvm
7824
7825 %X = fptrunc double 123.0 to float ; yields float:123.0
7826 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7827
7828'``fpext .. to``' Instruction
7829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7830
7831Syntax:
7832"""""""
7833
7834::
7835
7836 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7837
7838Overview:
7839"""""""""
7840
7841The '``fpext``' extends a floating point ``value`` to a larger floating
7842point value.
7843
7844Arguments:
7845""""""""""
7846
7847The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7848``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7849to. The source type must be smaller than the destination type.
7850
7851Semantics:
7852""""""""""
7853
7854The '``fpext``' instruction extends the ``value`` from a smaller
7855:ref:`floating point <t_floating>` type to a larger :ref:`floating
7856point <t_floating>` type. The ``fpext`` cannot be used to make a
7857*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7858*no-op cast* for a floating point cast.
7859
7860Example:
7861""""""""
7862
7863.. code-block:: llvm
7864
7865 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7866 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7867
7868'``fptoui .. to``' Instruction
7869^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7870
7871Syntax:
7872"""""""
7873
7874::
7875
7876 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7877
7878Overview:
7879"""""""""
7880
7881The '``fptoui``' converts a floating point ``value`` to its unsigned
7882integer equivalent of type ``ty2``.
7883
7884Arguments:
7885""""""""""
7886
7887The '``fptoui``' instruction takes a value to cast, which must be a
7888scalar or vector :ref:`floating point <t_floating>` value, and a type to
7889cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7890``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7891type with the same number of elements as ``ty``
7892
7893Semantics:
7894""""""""""
7895
7896The '``fptoui``' instruction converts its :ref:`floating
7897point <t_floating>` operand into the nearest (rounding towards zero)
7898unsigned integer value. If the value cannot fit in ``ty2``, the results
7899are undefined.
7900
7901Example:
7902""""""""
7903
7904.. code-block:: llvm
7905
7906 %X = fptoui double 123.0 to i32 ; yields i32:123
7907 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7908 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7909
7910'``fptosi .. to``' Instruction
7911^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7912
7913Syntax:
7914"""""""
7915
7916::
7917
7918 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7919
7920Overview:
7921"""""""""
7922
7923The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7924``value`` to type ``ty2``.
7925
7926Arguments:
7927""""""""""
7928
7929The '``fptosi``' instruction takes a value to cast, which must be a
7930scalar or vector :ref:`floating point <t_floating>` value, and a type to
7931cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7932``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7933type with the same number of elements as ``ty``
7934
7935Semantics:
7936""""""""""
7937
7938The '``fptosi``' instruction converts its :ref:`floating
7939point <t_floating>` operand into the nearest (rounding towards zero)
7940signed integer value. If the value cannot fit in ``ty2``, the results
7941are undefined.
7942
7943Example:
7944""""""""
7945
7946.. code-block:: llvm
7947
7948 %X = fptosi double -123.0 to i32 ; yields i32:-123
7949 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7950 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7951
7952'``uitofp .. to``' Instruction
7953^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7954
7955Syntax:
7956"""""""
7957
7958::
7959
7960 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7961
7962Overview:
7963"""""""""
7964
7965The '``uitofp``' instruction regards ``value`` as an unsigned integer
7966and converts that value to the ``ty2`` type.
7967
7968Arguments:
7969""""""""""
7970
7971The '``uitofp``' instruction takes a value to cast, which must be a
7972scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7973``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7974``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7975type with the same number of elements as ``ty``
7976
7977Semantics:
7978""""""""""
7979
7980The '``uitofp``' instruction interprets its operand as an unsigned
7981integer quantity and converts it to the corresponding floating point
7982value. If the value cannot fit in the floating point value, the results
7983are undefined.
7984
7985Example:
7986""""""""
7987
7988.. code-block:: llvm
7989
7990 %X = uitofp i32 257 to float ; yields float:257.0
7991 %Y = uitofp i8 -1 to double ; yields double:255.0
7992
7993'``sitofp .. to``' Instruction
7994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7995
7996Syntax:
7997"""""""
7998
7999::
8000
8001 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8002
8003Overview:
8004"""""""""
8005
8006The '``sitofp``' instruction regards ``value`` as a signed integer and
8007converts that value to the ``ty2`` type.
8008
8009Arguments:
8010""""""""""
8011
8012The '``sitofp``' instruction takes a value to cast, which must be a
8013scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8014``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8015``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8016type with the same number of elements as ``ty``
8017
8018Semantics:
8019""""""""""
8020
8021The '``sitofp``' instruction interprets its operand as a signed integer
8022quantity and converts it to the corresponding floating point value. If
8023the value cannot fit in the floating point value, the results are
8024undefined.
8025
8026Example:
8027""""""""
8028
8029.. code-block:: llvm
8030
8031 %X = sitofp i32 257 to float ; yields float:257.0
8032 %Y = sitofp i8 -1 to double ; yields double:-1.0
8033
8034.. _i_ptrtoint:
8035
8036'``ptrtoint .. to``' Instruction
8037^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8038
8039Syntax:
8040"""""""
8041
8042::
8043
8044 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8045
8046Overview:
8047"""""""""
8048
8049The '``ptrtoint``' instruction converts the pointer or a vector of
8050pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8051
8052Arguments:
8053""""""""""
8054
8055The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008056a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008057type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8058a vector of integers type.
8059
8060Semantics:
8061""""""""""
8062
8063The '``ptrtoint``' instruction converts ``value`` to integer type
8064``ty2`` by interpreting the pointer value as an integer and either
8065truncating or zero extending that value to the size of the integer type.
8066If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8067``value`` is larger than ``ty2`` then a truncation is done. If they are
8068the same size, then nothing is done (*no-op cast*) other than a type
8069change.
8070
8071Example:
8072""""""""
8073
8074.. code-block:: llvm
8075
8076 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8077 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8078 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8079
8080.. _i_inttoptr:
8081
8082'``inttoptr .. to``' Instruction
8083^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8084
8085Syntax:
8086"""""""
8087
8088::
8089
8090 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8091
8092Overview:
8093"""""""""
8094
8095The '``inttoptr``' instruction converts an integer ``value`` to a
8096pointer type, ``ty2``.
8097
8098Arguments:
8099""""""""""
8100
8101The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8102cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8103type.
8104
8105Semantics:
8106""""""""""
8107
8108The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8109applying either a zero extension or a truncation depending on the size
8110of the integer ``value``. If ``value`` is larger than the size of a
8111pointer then a truncation is done. If ``value`` is smaller than the size
8112of a pointer then a zero extension is done. If they are the same size,
8113nothing is done (*no-op cast*).
8114
8115Example:
8116""""""""
8117
8118.. code-block:: llvm
8119
8120 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8121 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8122 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8123 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8124
8125.. _i_bitcast:
8126
8127'``bitcast .. to``' Instruction
8128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8129
8130Syntax:
8131"""""""
8132
8133::
8134
8135 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8136
8137Overview:
8138"""""""""
8139
8140The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8141changing any bits.
8142
8143Arguments:
8144""""""""""
8145
8146The '``bitcast``' instruction takes a value to cast, which must be a
8147non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008148also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8149bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008150identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008151also be a pointer of the same size. This instruction supports bitwise
8152conversion of vectors to integers and to vectors of other types (as
8153long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008154
8155Semantics:
8156""""""""""
8157
Matt Arsenault24b49c42013-07-31 17:49:08 +00008158The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8159is always a *no-op cast* because no bits change with this
8160conversion. The conversion is done as if the ``value`` had been stored
8161to memory and read back as type ``ty2``. Pointer (or vector of
8162pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008163pointers) types with the same address space through this instruction.
8164To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8165or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008166
8167Example:
8168""""""""
8169
Renato Golin124f2592016-07-20 12:16:38 +00008170.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008171
8172 %X = bitcast i8 255 to i8 ; yields i8 :-1
8173 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8174 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8175 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8176
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008177.. _i_addrspacecast:
8178
8179'``addrspacecast .. to``' Instruction
8180^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8181
8182Syntax:
8183"""""""
8184
8185::
8186
8187 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8188
8189Overview:
8190"""""""""
8191
8192The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8193address space ``n`` to type ``pty2`` in address space ``m``.
8194
8195Arguments:
8196""""""""""
8197
8198The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8199to cast and a pointer type to cast it to, which must have a different
8200address space.
8201
8202Semantics:
8203""""""""""
8204
8205The '``addrspacecast``' instruction converts the pointer value
8206``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008207value modification, depending on the target and the address space
8208pair. Pointer conversions within the same address space must be
8209performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008210conversion is legal then both result and operand refer to the same memory
8211location.
8212
8213Example:
8214""""""""
8215
8216.. code-block:: llvm
8217
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008218 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8219 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8220 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008221
Sean Silvab084af42012-12-07 10:36:55 +00008222.. _otherops:
8223
8224Other Operations
8225----------------
8226
8227The instructions in this category are the "miscellaneous" instructions,
8228which defy better classification.
8229
8230.. _i_icmp:
8231
8232'``icmp``' Instruction
8233^^^^^^^^^^^^^^^^^^^^^^
8234
8235Syntax:
8236"""""""
8237
8238::
8239
Tim Northover675a0962014-06-13 14:24:23 +00008240 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008241
8242Overview:
8243"""""""""
8244
8245The '``icmp``' instruction returns a boolean value or a vector of
8246boolean values based on comparison of its two integer, integer vector,
8247pointer, or pointer vector operands.
8248
8249Arguments:
8250""""""""""
8251
8252The '``icmp``' instruction takes three operands. The first operand is
8253the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008254not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008255
8256#. ``eq``: equal
8257#. ``ne``: not equal
8258#. ``ugt``: unsigned greater than
8259#. ``uge``: unsigned greater or equal
8260#. ``ult``: unsigned less than
8261#. ``ule``: unsigned less or equal
8262#. ``sgt``: signed greater than
8263#. ``sge``: signed greater or equal
8264#. ``slt``: signed less than
8265#. ``sle``: signed less or equal
8266
8267The remaining two arguments must be :ref:`integer <t_integer>` or
8268:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8269must also be identical types.
8270
8271Semantics:
8272""""""""""
8273
8274The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8275code given as ``cond``. The comparison performed always yields either an
8276:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8277
8278#. ``eq``: yields ``true`` if the operands are equal, ``false``
8279 otherwise. No sign interpretation is necessary or performed.
8280#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8281 otherwise. No sign interpretation is necessary or performed.
8282#. ``ugt``: interprets the operands as unsigned values and yields
8283 ``true`` if ``op1`` is greater than ``op2``.
8284#. ``uge``: interprets the operands as unsigned values and yields
8285 ``true`` if ``op1`` is greater than or equal to ``op2``.
8286#. ``ult``: interprets the operands as unsigned values and yields
8287 ``true`` if ``op1`` is less than ``op2``.
8288#. ``ule``: interprets the operands as unsigned values and yields
8289 ``true`` if ``op1`` is less than or equal to ``op2``.
8290#. ``sgt``: interprets the operands as signed values and yields ``true``
8291 if ``op1`` is greater than ``op2``.
8292#. ``sge``: interprets the operands as signed values and yields ``true``
8293 if ``op1`` is greater than or equal to ``op2``.
8294#. ``slt``: interprets the operands as signed values and yields ``true``
8295 if ``op1`` is less than ``op2``.
8296#. ``sle``: interprets the operands as signed values and yields ``true``
8297 if ``op1`` is less than or equal to ``op2``.
8298
8299If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8300are compared as if they were integers.
8301
8302If the operands are integer vectors, then they are compared element by
8303element. The result is an ``i1`` vector with the same number of elements
8304as the values being compared. Otherwise, the result is an ``i1``.
8305
8306Example:
8307""""""""
8308
Renato Golin124f2592016-07-20 12:16:38 +00008309.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008310
8311 <result> = icmp eq i32 4, 5 ; yields: result=false
8312 <result> = icmp ne float* %X, %X ; yields: result=false
8313 <result> = icmp ult i16 4, 5 ; yields: result=true
8314 <result> = icmp sgt i16 4, 5 ; yields: result=false
8315 <result> = icmp ule i16 -4, 5 ; yields: result=false
8316 <result> = icmp sge i16 4, 5 ; yields: result=false
8317
Sean Silvab084af42012-12-07 10:36:55 +00008318.. _i_fcmp:
8319
8320'``fcmp``' Instruction
8321^^^^^^^^^^^^^^^^^^^^^^
8322
8323Syntax:
8324"""""""
8325
8326::
8327
James Molloy88eb5352015-07-10 12:52:00 +00008328 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008329
8330Overview:
8331"""""""""
8332
8333The '``fcmp``' instruction returns a boolean value or vector of boolean
8334values based on comparison of its operands.
8335
8336If the operands are floating point scalars, then the result type is a
8337boolean (:ref:`i1 <t_integer>`).
8338
8339If the operands are floating point vectors, then the result type is a
8340vector of boolean with the same number of elements as the operands being
8341compared.
8342
8343Arguments:
8344""""""""""
8345
8346The '``fcmp``' instruction takes three operands. The first operand is
8347the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008348not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008349
8350#. ``false``: no comparison, always returns false
8351#. ``oeq``: ordered and equal
8352#. ``ogt``: ordered and greater than
8353#. ``oge``: ordered and greater than or equal
8354#. ``olt``: ordered and less than
8355#. ``ole``: ordered and less than or equal
8356#. ``one``: ordered and not equal
8357#. ``ord``: ordered (no nans)
8358#. ``ueq``: unordered or equal
8359#. ``ugt``: unordered or greater than
8360#. ``uge``: unordered or greater than or equal
8361#. ``ult``: unordered or less than
8362#. ``ule``: unordered or less than or equal
8363#. ``une``: unordered or not equal
8364#. ``uno``: unordered (either nans)
8365#. ``true``: no comparison, always returns true
8366
8367*Ordered* means that neither operand is a QNAN while *unordered* means
8368that either operand may be a QNAN.
8369
8370Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8371point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8372type. They must have identical types.
8373
8374Semantics:
8375""""""""""
8376
8377The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8378condition code given as ``cond``. If the operands are vectors, then the
8379vectors are compared element by element. Each comparison performed
8380always yields an :ref:`i1 <t_integer>` result, as follows:
8381
8382#. ``false``: always yields ``false``, regardless of operands.
8383#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8384 is equal to ``op2``.
8385#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8386 is greater than ``op2``.
8387#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8388 is greater than or equal to ``op2``.
8389#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8390 is less than ``op2``.
8391#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8392 is less than or equal to ``op2``.
8393#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8394 is not equal to ``op2``.
8395#. ``ord``: yields ``true`` if both operands are not a QNAN.
8396#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8397 equal to ``op2``.
8398#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8399 greater than ``op2``.
8400#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8401 greater than or equal to ``op2``.
8402#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8403 less than ``op2``.
8404#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8405 less than or equal to ``op2``.
8406#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8407 not equal to ``op2``.
8408#. ``uno``: yields ``true`` if either operand is a QNAN.
8409#. ``true``: always yields ``true``, regardless of operands.
8410
James Molloy88eb5352015-07-10 12:52:00 +00008411The ``fcmp`` instruction can also optionally take any number of
8412:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8413otherwise unsafe floating point optimizations.
8414
8415Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8416only flags that have any effect on its semantics are those that allow
8417assumptions to be made about the values of input arguments; namely
8418``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8419
Sean Silvab084af42012-12-07 10:36:55 +00008420Example:
8421""""""""
8422
Renato Golin124f2592016-07-20 12:16:38 +00008423.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008424
8425 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8426 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8427 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8428 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8429
Sean Silvab084af42012-12-07 10:36:55 +00008430.. _i_phi:
8431
8432'``phi``' Instruction
8433^^^^^^^^^^^^^^^^^^^^^
8434
8435Syntax:
8436"""""""
8437
8438::
8439
8440 <result> = phi <ty> [ <val0>, <label0>], ...
8441
8442Overview:
8443"""""""""
8444
8445The '``phi``' instruction is used to implement the φ node in the SSA
8446graph representing the function.
8447
8448Arguments:
8449""""""""""
8450
8451The type of the incoming values is specified with the first type field.
8452After this, the '``phi``' instruction takes a list of pairs as
8453arguments, with one pair for each predecessor basic block of the current
8454block. Only values of :ref:`first class <t_firstclass>` type may be used as
8455the value arguments to the PHI node. Only labels may be used as the
8456label arguments.
8457
8458There must be no non-phi instructions between the start of a basic block
8459and the PHI instructions: i.e. PHI instructions must be first in a basic
8460block.
8461
8462For the purposes of the SSA form, the use of each incoming value is
8463deemed to occur on the edge from the corresponding predecessor block to
8464the current block (but after any definition of an '``invoke``'
8465instruction's return value on the same edge).
8466
8467Semantics:
8468""""""""""
8469
8470At runtime, the '``phi``' instruction logically takes on the value
8471specified by the pair corresponding to the predecessor basic block that
8472executed just prior to the current block.
8473
8474Example:
8475""""""""
8476
8477.. code-block:: llvm
8478
8479 Loop: ; Infinite loop that counts from 0 on up...
8480 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8481 %nextindvar = add i32 %indvar, 1
8482 br label %Loop
8483
8484.. _i_select:
8485
8486'``select``' Instruction
8487^^^^^^^^^^^^^^^^^^^^^^^^
8488
8489Syntax:
8490"""""""
8491
8492::
8493
8494 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8495
8496 selty is either i1 or {<N x i1>}
8497
8498Overview:
8499"""""""""
8500
8501The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008502condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008503
8504Arguments:
8505""""""""""
8506
8507The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8508values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008509class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008510
8511Semantics:
8512""""""""""
8513
8514If the condition is an i1 and it evaluates to 1, the instruction returns
8515the first value argument; otherwise, it returns the second value
8516argument.
8517
8518If the condition is a vector of i1, then the value arguments must be
8519vectors of the same size, and the selection is done element by element.
8520
David Majnemer40a0b592015-03-03 22:45:47 +00008521If the condition is an i1 and the value arguments are vectors of the
8522same size, then an entire vector is selected.
8523
Sean Silvab084af42012-12-07 10:36:55 +00008524Example:
8525""""""""
8526
8527.. code-block:: llvm
8528
8529 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8530
8531.. _i_call:
8532
8533'``call``' Instruction
8534^^^^^^^^^^^^^^^^^^^^^^
8535
8536Syntax:
8537"""""""
8538
8539::
8540
David Blaikieb83cf102016-07-13 17:21:34 +00008541 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008542 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008543
8544Overview:
8545"""""""""
8546
8547The '``call``' instruction represents a simple function call.
8548
8549Arguments:
8550""""""""""
8551
8552This instruction requires several arguments:
8553
Reid Kleckner5772b772014-04-24 20:14:34 +00008554#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008555 should perform tail call optimization. The ``tail`` marker is a hint that
8556 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008557 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008558 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008559
8560 #. The call will not cause unbounded stack growth if it is part of a
8561 recursive cycle in the call graph.
8562 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8563 forwarded in place.
8564
8565 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008566 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008567 rules:
8568
8569 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8570 or a pointer bitcast followed by a ret instruction.
8571 - The ret instruction must return the (possibly bitcasted) value
8572 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008573 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008574 parameters or return types may differ in pointee type, but not
8575 in address space.
8576 - The calling conventions of the caller and callee must match.
8577 - All ABI-impacting function attributes, such as sret, byval, inreg,
8578 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008579 - The callee must be varargs iff the caller is varargs. Bitcasting a
8580 non-varargs function to the appropriate varargs type is legal so
8581 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008582
8583 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8584 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008585
8586 - Caller and callee both have the calling convention ``fastcc``.
8587 - The call is in tail position (ret immediately follows call and ret
8588 uses value of call or is void).
8589 - Option ``-tailcallopt`` is enabled, or
8590 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008591 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008592 met. <CodeGenerator.html#tailcallopt>`_
8593
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008594#. The optional ``notail`` marker indicates that the optimizers should not add
8595 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8596 call optimization from being performed on the call.
8597
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008598#. The optional ``fast-math flags`` marker indicates that the call has one or more
8599 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8600 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8601 for calls that return a floating-point scalar or vector type.
8602
Sean Silvab084af42012-12-07 10:36:55 +00008603#. The optional "cconv" marker indicates which :ref:`calling
8604 convention <callingconv>` the call should use. If none is
8605 specified, the call defaults to using C calling conventions. The
8606 calling convention of the call must match the calling convention of
8607 the target function, or else the behavior is undefined.
8608#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8609 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8610 are valid here.
8611#. '``ty``': the type of the call instruction itself which is also the
8612 type of the return value. Functions that return no value are marked
8613 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008614#. '``fnty``': shall be the signature of the function being called. The
8615 argument types must match the types implied by this signature. This
8616 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008617#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008618 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008619 indirect ``call``'s are just as possible, calling an arbitrary pointer
8620 to function value.
8621#. '``function args``': argument list whose types match the function
8622 signature argument types and parameter attributes. All arguments must
8623 be of :ref:`first class <t_firstclass>` type. If the function signature
8624 indicates the function accepts a variable number of arguments, the
8625 extra arguments can be specified.
8626#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008627 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8628 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008629#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008630
8631Semantics:
8632""""""""""
8633
8634The '``call``' instruction is used to cause control flow to transfer to
8635a specified function, with its incoming arguments bound to the specified
8636values. Upon a '``ret``' instruction in the called function, control
8637flow continues with the instruction after the function call, and the
8638return value of the function is bound to the result argument.
8639
8640Example:
8641""""""""
8642
8643.. code-block:: llvm
8644
8645 %retval = call i32 @test(i32 %argc)
8646 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8647 %X = tail call i32 @foo() ; yields i32
8648 %Y = tail call fastcc i32 @foo() ; yields i32
8649 call void %foo(i8 97 signext)
8650
8651 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008652 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008653 %gr = extractvalue %struct.A %r, 0 ; yields i32
8654 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8655 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8656 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8657
8658llvm treats calls to some functions with names and arguments that match
8659the standard C99 library as being the C99 library functions, and may
8660perform optimizations or generate code for them under that assumption.
8661This is something we'd like to change in the future to provide better
8662support for freestanding environments and non-C-based languages.
8663
8664.. _i_va_arg:
8665
8666'``va_arg``' Instruction
8667^^^^^^^^^^^^^^^^^^^^^^^^
8668
8669Syntax:
8670"""""""
8671
8672::
8673
8674 <resultval> = va_arg <va_list*> <arglist>, <argty>
8675
8676Overview:
8677"""""""""
8678
8679The '``va_arg``' instruction is used to access arguments passed through
8680the "variable argument" area of a function call. It is used to implement
8681the ``va_arg`` macro in C.
8682
8683Arguments:
8684""""""""""
8685
8686This instruction takes a ``va_list*`` value and the type of the
8687argument. It returns a value of the specified argument type and
8688increments the ``va_list`` to point to the next argument. The actual
8689type of ``va_list`` is target specific.
8690
8691Semantics:
8692""""""""""
8693
8694The '``va_arg``' instruction loads an argument of the specified type
8695from the specified ``va_list`` and causes the ``va_list`` to point to
8696the next argument. For more information, see the variable argument
8697handling :ref:`Intrinsic Functions <int_varargs>`.
8698
8699It is legal for this instruction to be called in a function which does
8700not take a variable number of arguments, for example, the ``vfprintf``
8701function.
8702
8703``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8704function <intrinsics>` because it takes a type as an argument.
8705
8706Example:
8707""""""""
8708
8709See the :ref:`variable argument processing <int_varargs>` section.
8710
8711Note that the code generator does not yet fully support va\_arg on many
8712targets. Also, it does not currently support va\_arg with aggregate
8713types on any target.
8714
8715.. _i_landingpad:
8716
8717'``landingpad``' Instruction
8718^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8719
8720Syntax:
8721"""""""
8722
8723::
8724
David Majnemer7fddecc2015-06-17 20:52:32 +00008725 <resultval> = landingpad <resultty> <clause>+
8726 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008727
8728 <clause> := catch <type> <value>
8729 <clause> := filter <array constant type> <array constant>
8730
8731Overview:
8732"""""""""
8733
8734The '``landingpad``' instruction is used by `LLVM's exception handling
8735system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008736is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008737code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008738defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008739re-entry to the function. The ``resultval`` has the type ``resultty``.
8740
8741Arguments:
8742""""""""""
8743
David Majnemer7fddecc2015-06-17 20:52:32 +00008744The optional
Sean Silvab084af42012-12-07 10:36:55 +00008745``cleanup`` flag indicates that the landing pad block is a cleanup.
8746
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008747A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008748contains the global variable representing the "type" that may be caught
8749or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8750clause takes an array constant as its argument. Use
8751"``[0 x i8**] undef``" for a filter which cannot throw. The
8752'``landingpad``' instruction must contain *at least* one ``clause`` or
8753the ``cleanup`` flag.
8754
8755Semantics:
8756""""""""""
8757
8758The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008759:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008760therefore the "result type" of the ``landingpad`` instruction. As with
8761calling conventions, how the personality function results are
8762represented in LLVM IR is target specific.
8763
8764The clauses are applied in order from top to bottom. If two
8765``landingpad`` instructions are merged together through inlining, the
8766clauses from the calling function are appended to the list of clauses.
8767When the call stack is being unwound due to an exception being thrown,
8768the exception is compared against each ``clause`` in turn. If it doesn't
8769match any of the clauses, and the ``cleanup`` flag is not set, then
8770unwinding continues further up the call stack.
8771
8772The ``landingpad`` instruction has several restrictions:
8773
8774- A landing pad block is a basic block which is the unwind destination
8775 of an '``invoke``' instruction.
8776- A landing pad block must have a '``landingpad``' instruction as its
8777 first non-PHI instruction.
8778- There can be only one '``landingpad``' instruction within the landing
8779 pad block.
8780- A basic block that is not a landing pad block may not include a
8781 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008782
8783Example:
8784""""""""
8785
8786.. code-block:: llvm
8787
8788 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008789 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008790 catch i8** @_ZTIi
8791 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008792 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008793 cleanup
8794 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008795 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008796 catch i8** @_ZTIi
8797 filter [1 x i8**] [@_ZTId]
8798
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008799.. _i_catchpad:
8800
8801'``catchpad``' Instruction
8802^^^^^^^^^^^^^^^^^^^^^^^^^^
8803
8804Syntax:
8805"""""""
8806
8807::
8808
8809 <resultval> = catchpad within <catchswitch> [<args>*]
8810
8811Overview:
8812"""""""""
8813
8814The '``catchpad``' instruction is used by `LLVM's exception handling
8815system <ExceptionHandling.html#overview>`_ to specify that a basic block
8816begins a catch handler --- one where a personality routine attempts to transfer
8817control to catch an exception.
8818
8819Arguments:
8820""""""""""
8821
8822The ``catchswitch`` operand must always be a token produced by a
8823:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8824ensures that each ``catchpad`` has exactly one predecessor block, and it always
8825terminates in a ``catchswitch``.
8826
8827The ``args`` correspond to whatever information the personality routine
8828requires to know if this is an appropriate handler for the exception. Control
8829will transfer to the ``catchpad`` if this is the first appropriate handler for
8830the exception.
8831
8832The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8833``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8834pads.
8835
8836Semantics:
8837""""""""""
8838
8839When the call stack is being unwound due to an exception being thrown, the
8840exception is compared against the ``args``. If it doesn't match, control will
8841not reach the ``catchpad`` instruction. The representation of ``args`` is
8842entirely target and personality function-specific.
8843
8844Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8845instruction must be the first non-phi of its parent basic block.
8846
8847The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8848instructions is described in the
8849`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8850
8851When a ``catchpad`` has been "entered" but not yet "exited" (as
8852described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8853it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8854that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8855
8856Example:
8857""""""""
8858
Renato Golin124f2592016-07-20 12:16:38 +00008859.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008860
8861 dispatch:
8862 %cs = catchswitch within none [label %handler0] unwind to caller
8863 ;; A catch block which can catch an integer.
8864 handler0:
8865 %tok = catchpad within %cs [i8** @_ZTIi]
8866
David Majnemer654e1302015-07-31 17:58:14 +00008867.. _i_cleanuppad:
8868
8869'``cleanuppad``' Instruction
8870^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8871
8872Syntax:
8873"""""""
8874
8875::
8876
David Majnemer8a1c45d2015-12-12 05:38:55 +00008877 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008878
8879Overview:
8880"""""""""
8881
8882The '``cleanuppad``' instruction is used by `LLVM's exception handling
8883system <ExceptionHandling.html#overview>`_ to specify that a basic block
8884is a cleanup block --- one where a personality routine attempts to
8885transfer control to run cleanup actions.
8886The ``args`` correspond to whatever additional
8887information the :ref:`personality function <personalityfn>` requires to
8888execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008889The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008890match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8891The ``parent`` argument is the token of the funclet that contains the
8892``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8893this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008894
8895Arguments:
8896""""""""""
8897
8898The instruction takes a list of arbitrary values which are interpreted
8899by the :ref:`personality function <personalityfn>`.
8900
8901Semantics:
8902""""""""""
8903
David Majnemer654e1302015-07-31 17:58:14 +00008904When the call stack is being unwound due to an exception being thrown,
8905the :ref:`personality function <personalityfn>` transfers control to the
8906``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008907As with calling conventions, how the personality function results are
8908represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008909
8910The ``cleanuppad`` instruction has several restrictions:
8911
8912- A cleanup block is a basic block which is the unwind destination of
8913 an exceptional instruction.
8914- A cleanup block must have a '``cleanuppad``' instruction as its
8915 first non-PHI instruction.
8916- There can be only one '``cleanuppad``' instruction within the
8917 cleanup block.
8918- A basic block that is not a cleanup block may not include a
8919 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008920
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008921When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8922described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8923it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8924that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008925
David Majnemer654e1302015-07-31 17:58:14 +00008926Example:
8927""""""""
8928
Renato Golin124f2592016-07-20 12:16:38 +00008929.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00008930
David Majnemer8a1c45d2015-12-12 05:38:55 +00008931 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008932
Sean Silvab084af42012-12-07 10:36:55 +00008933.. _intrinsics:
8934
8935Intrinsic Functions
8936===================
8937
8938LLVM supports the notion of an "intrinsic function". These functions
8939have well known names and semantics and are required to follow certain
8940restrictions. Overall, these intrinsics represent an extension mechanism
8941for the LLVM language that does not require changing all of the
8942transformations in LLVM when adding to the language (or the bitcode
8943reader/writer, the parser, etc...).
8944
8945Intrinsic function names must all start with an "``llvm.``" prefix. This
8946prefix is reserved in LLVM for intrinsic names; thus, function names may
8947not begin with this prefix. Intrinsic functions must always be external
8948functions: you cannot define the body of intrinsic functions. Intrinsic
8949functions may only be used in call or invoke instructions: it is illegal
8950to take the address of an intrinsic function. Additionally, because
8951intrinsic functions are part of the LLVM language, it is required if any
8952are added that they be documented here.
8953
8954Some intrinsic functions can be overloaded, i.e., the intrinsic
8955represents a family of functions that perform the same operation but on
8956different data types. Because LLVM can represent over 8 million
8957different integer types, overloading is used commonly to allow an
8958intrinsic function to operate on any integer type. One or more of the
8959argument types or the result type can be overloaded to accept any
8960integer type. Argument types may also be defined as exactly matching a
8961previous argument's type or the result type. This allows an intrinsic
8962function which accepts multiple arguments, but needs all of them to be
8963of the same type, to only be overloaded with respect to a single
8964argument or the result.
8965
8966Overloaded intrinsics will have the names of its overloaded argument
8967types encoded into its function name, each preceded by a period. Only
8968those types which are overloaded result in a name suffix. Arguments
8969whose type is matched against another type do not. For example, the
8970``llvm.ctpop`` function can take an integer of any width and returns an
8971integer of exactly the same integer width. This leads to a family of
8972functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8973``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8974overloaded, and only one type suffix is required. Because the argument's
8975type is matched against the return type, it does not require its own
8976name suffix.
8977
8978To learn how to add an intrinsic function, please see the `Extending
8979LLVM Guide <ExtendingLLVM.html>`_.
8980
8981.. _int_varargs:
8982
8983Variable Argument Handling Intrinsics
8984-------------------------------------
8985
8986Variable argument support is defined in LLVM with the
8987:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8988functions. These functions are related to the similarly named macros
8989defined in the ``<stdarg.h>`` header file.
8990
8991All of these functions operate on arguments that use a target-specific
8992value type "``va_list``". The LLVM assembly language reference manual
8993does not define what this type is, so all transformations should be
8994prepared to handle these functions regardless of the type used.
8995
8996This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8997variable argument handling intrinsic functions are used.
8998
8999.. code-block:: llvm
9000
Tim Northoverab60bb92014-11-02 01:21:51 +00009001 ; This struct is different for every platform. For most platforms,
9002 ; it is merely an i8*.
9003 %struct.va_list = type { i8* }
9004
9005 ; For Unix x86_64 platforms, va_list is the following struct:
9006 ; %struct.va_list = type { i32, i32, i8*, i8* }
9007
Sean Silvab084af42012-12-07 10:36:55 +00009008 define i32 @test(i32 %X, ...) {
9009 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009010 %ap = alloca %struct.va_list
9011 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009012 call void @llvm.va_start(i8* %ap2)
9013
9014 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009015 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009016
9017 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9018 %aq = alloca i8*
9019 %aq2 = bitcast i8** %aq to i8*
9020 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9021 call void @llvm.va_end(i8* %aq2)
9022
9023 ; Stop processing of arguments.
9024 call void @llvm.va_end(i8* %ap2)
9025 ret i32 %tmp
9026 }
9027
9028 declare void @llvm.va_start(i8*)
9029 declare void @llvm.va_copy(i8*, i8*)
9030 declare void @llvm.va_end(i8*)
9031
9032.. _int_va_start:
9033
9034'``llvm.va_start``' Intrinsic
9035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9036
9037Syntax:
9038"""""""
9039
9040::
9041
Nick Lewycky04f6de02013-09-11 22:04:52 +00009042 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009043
9044Overview:
9045"""""""""
9046
9047The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9048subsequent use by ``va_arg``.
9049
9050Arguments:
9051""""""""""
9052
9053The argument is a pointer to a ``va_list`` element to initialize.
9054
9055Semantics:
9056""""""""""
9057
9058The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9059available in C. In a target-dependent way, it initializes the
9060``va_list`` element to which the argument points, so that the next call
9061to ``va_arg`` will produce the first variable argument passed to the
9062function. Unlike the C ``va_start`` macro, this intrinsic does not need
9063to know the last argument of the function as the compiler can figure
9064that out.
9065
9066'``llvm.va_end``' Intrinsic
9067^^^^^^^^^^^^^^^^^^^^^^^^^^^
9068
9069Syntax:
9070"""""""
9071
9072::
9073
9074 declare void @llvm.va_end(i8* <arglist>)
9075
9076Overview:
9077"""""""""
9078
9079The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9080initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9081
9082Arguments:
9083""""""""""
9084
9085The argument is a pointer to a ``va_list`` to destroy.
9086
9087Semantics:
9088""""""""""
9089
9090The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9091available in C. In a target-dependent way, it destroys the ``va_list``
9092element to which the argument points. Calls to
9093:ref:`llvm.va_start <int_va_start>` and
9094:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9095``llvm.va_end``.
9096
9097.. _int_va_copy:
9098
9099'``llvm.va_copy``' Intrinsic
9100^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9101
9102Syntax:
9103"""""""
9104
9105::
9106
9107 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9108
9109Overview:
9110"""""""""
9111
9112The '``llvm.va_copy``' intrinsic copies the current argument position
9113from the source argument list to the destination argument list.
9114
9115Arguments:
9116""""""""""
9117
9118The first argument is a pointer to a ``va_list`` element to initialize.
9119The second argument is a pointer to a ``va_list`` element to copy from.
9120
9121Semantics:
9122""""""""""
9123
9124The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9125available in C. In a target-dependent way, it copies the source
9126``va_list`` element into the destination ``va_list`` element. This
9127intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9128arbitrarily complex and require, for example, memory allocation.
9129
9130Accurate Garbage Collection Intrinsics
9131--------------------------------------
9132
Philip Reamesc5b0f562015-02-25 23:52:06 +00009133LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009134(GC) requires the frontend to generate code containing appropriate intrinsic
9135calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009136intrinsics in a manner which is appropriate for the target collector.
9137
Sean Silvab084af42012-12-07 10:36:55 +00009138These intrinsics allow identification of :ref:`GC roots on the
9139stack <int_gcroot>`, as well as garbage collector implementations that
9140require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009141Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009142these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009143details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009144
Philip Reamesf80bbff2015-02-25 23:45:20 +00009145Experimental Statepoint Intrinsics
9146^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9147
9148LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009149collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009150to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009151:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009152differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009153<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009154described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009155
9156.. _int_gcroot:
9157
9158'``llvm.gcroot``' Intrinsic
9159^^^^^^^^^^^^^^^^^^^^^^^^^^^
9160
9161Syntax:
9162"""""""
9163
9164::
9165
9166 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9167
9168Overview:
9169"""""""""
9170
9171The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9172the code generator, and allows some metadata to be associated with it.
9173
9174Arguments:
9175""""""""""
9176
9177The first argument specifies the address of a stack object that contains
9178the root pointer. The second pointer (which must be either a constant or
9179a global value address) contains the meta-data to be associated with the
9180root.
9181
9182Semantics:
9183""""""""""
9184
9185At runtime, a call to this intrinsic stores a null pointer into the
9186"ptrloc" location. At compile-time, the code generator generates
9187information to allow the runtime to find the pointer at GC safe points.
9188The '``llvm.gcroot``' intrinsic may only be used in a function which
9189:ref:`specifies a GC algorithm <gc>`.
9190
9191.. _int_gcread:
9192
9193'``llvm.gcread``' Intrinsic
9194^^^^^^^^^^^^^^^^^^^^^^^^^^^
9195
9196Syntax:
9197"""""""
9198
9199::
9200
9201 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9202
9203Overview:
9204"""""""""
9205
9206The '``llvm.gcread``' intrinsic identifies reads of references from heap
9207locations, allowing garbage collector implementations that require read
9208barriers.
9209
9210Arguments:
9211""""""""""
9212
9213The second argument is the address to read from, which should be an
9214address allocated from the garbage collector. The first object is a
9215pointer to the start of the referenced object, if needed by the language
9216runtime (otherwise null).
9217
9218Semantics:
9219""""""""""
9220
9221The '``llvm.gcread``' intrinsic has the same semantics as a load
9222instruction, but may be replaced with substantially more complex code by
9223the garbage collector runtime, as needed. The '``llvm.gcread``'
9224intrinsic may only be used in a function which :ref:`specifies a GC
9225algorithm <gc>`.
9226
9227.. _int_gcwrite:
9228
9229'``llvm.gcwrite``' Intrinsic
9230^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9231
9232Syntax:
9233"""""""
9234
9235::
9236
9237 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9238
9239Overview:
9240"""""""""
9241
9242The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9243locations, allowing garbage collector implementations that require write
9244barriers (such as generational or reference counting collectors).
9245
9246Arguments:
9247""""""""""
9248
9249The first argument is the reference to store, the second is the start of
9250the object to store it to, and the third is the address of the field of
9251Obj to store to. If the runtime does not require a pointer to the
9252object, Obj may be null.
9253
9254Semantics:
9255""""""""""
9256
9257The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9258instruction, but may be replaced with substantially more complex code by
9259the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9260intrinsic may only be used in a function which :ref:`specifies a GC
9261algorithm <gc>`.
9262
9263Code Generator Intrinsics
9264-------------------------
9265
9266These intrinsics are provided by LLVM to expose special features that
9267may only be implemented with code generator support.
9268
9269'``llvm.returnaddress``' Intrinsic
9270^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9271
9272Syntax:
9273"""""""
9274
9275::
9276
9277 declare i8 *@llvm.returnaddress(i32 <level>)
9278
9279Overview:
9280"""""""""
9281
9282The '``llvm.returnaddress``' intrinsic attempts to compute a
9283target-specific value indicating the return address of the current
9284function or one of its callers.
9285
9286Arguments:
9287""""""""""
9288
9289The argument to this intrinsic indicates which function to return the
9290address for. Zero indicates the calling function, one indicates its
9291caller, etc. The argument is **required** to be a constant integer
9292value.
9293
9294Semantics:
9295""""""""""
9296
9297The '``llvm.returnaddress``' intrinsic either returns a pointer
9298indicating the return address of the specified call frame, or zero if it
9299cannot be identified. The value returned by this intrinsic is likely to
9300be incorrect or 0 for arguments other than zero, so it should only be
9301used for debugging purposes.
9302
9303Note that calling this intrinsic does not prevent function inlining or
9304other aggressive transformations, so the value returned may not be that
9305of the obvious source-language caller.
9306
Albert Gutowski795d7d62016-10-12 22:13:19 +00009307'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009309
9310Syntax:
9311"""""""
9312
9313::
9314
9315 declare i8 *@llvm.addressofreturnaddress()
9316
9317Overview:
9318"""""""""
9319
9320The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9321pointer to the place in the stack frame where the return address of the
9322current function is stored.
9323
9324Semantics:
9325""""""""""
9326
9327Note that calling this intrinsic does not prevent function inlining or
9328other aggressive transformations, so the value returned may not be that
9329of the obvious source-language caller.
9330
9331This intrinsic is only implemented for x86.
9332
Sean Silvab084af42012-12-07 10:36:55 +00009333'``llvm.frameaddress``' Intrinsic
9334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9335
9336Syntax:
9337"""""""
9338
9339::
9340
9341 declare i8* @llvm.frameaddress(i32 <level>)
9342
9343Overview:
9344"""""""""
9345
9346The '``llvm.frameaddress``' intrinsic attempts to return the
9347target-specific frame pointer value for the specified stack frame.
9348
9349Arguments:
9350""""""""""
9351
9352The argument to this intrinsic indicates which function to return the
9353frame pointer for. Zero indicates the calling function, one indicates
9354its caller, etc. The argument is **required** to be a constant integer
9355value.
9356
9357Semantics:
9358""""""""""
9359
9360The '``llvm.frameaddress``' intrinsic either returns a pointer
9361indicating the frame address of the specified call frame, or zero if it
9362cannot be identified. The value returned by this intrinsic is likely to
9363be incorrect or 0 for arguments other than zero, so it should only be
9364used for debugging purposes.
9365
9366Note that calling this intrinsic does not prevent function inlining or
9367other aggressive transformations, so the value returned may not be that
9368of the obvious source-language caller.
9369
Reid Kleckner60381792015-07-07 22:25:32 +00009370'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009371^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9372
9373Syntax:
9374"""""""
9375
9376::
9377
Reid Kleckner60381792015-07-07 22:25:32 +00009378 declare void @llvm.localescape(...)
9379 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009380
9381Overview:
9382"""""""""
9383
Reid Kleckner60381792015-07-07 22:25:32 +00009384The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9385allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009386live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009387computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009388
9389Arguments:
9390""""""""""
9391
Reid Kleckner60381792015-07-07 22:25:32 +00009392All arguments to '``llvm.localescape``' must be pointers to static allocas or
9393casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009394once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009395
Reid Kleckner60381792015-07-07 22:25:32 +00009396The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009397bitcasted pointer to a function defined in the current module. The code
9398generator cannot determine the frame allocation offset of functions defined in
9399other modules.
9400
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009401The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9402call frame that is currently live. The return value of '``llvm.localaddress``'
9403is one way to produce such a value, but various runtimes also expose a suitable
9404pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009405
Reid Kleckner60381792015-07-07 22:25:32 +00009406The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9407'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009408
Reid Klecknere9b89312015-01-13 00:48:10 +00009409Semantics:
9410""""""""""
9411
Reid Kleckner60381792015-07-07 22:25:32 +00009412These intrinsics allow a group of functions to share access to a set of local
9413stack allocations of a one parent function. The parent function may call the
9414'``llvm.localescape``' intrinsic once from the function entry block, and the
9415child functions can use '``llvm.localrecover``' to access the escaped allocas.
9416The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9417the escaped allocas are allocated, which would break attempts to use
9418'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009419
Renato Golinc7aea402014-05-06 16:51:25 +00009420.. _int_read_register:
9421.. _int_write_register:
9422
9423'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9424^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9425
9426Syntax:
9427"""""""
9428
9429::
9430
9431 declare i32 @llvm.read_register.i32(metadata)
9432 declare i64 @llvm.read_register.i64(metadata)
9433 declare void @llvm.write_register.i32(metadata, i32 @value)
9434 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009435 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009436
9437Overview:
9438"""""""""
9439
9440The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9441provides access to the named register. The register must be valid on
9442the architecture being compiled to. The type needs to be compatible
9443with the register being read.
9444
9445Semantics:
9446""""""""""
9447
9448The '``llvm.read_register``' intrinsic returns the current value of the
9449register, where possible. The '``llvm.write_register``' intrinsic sets
9450the current value of the register, where possible.
9451
9452This is useful to implement named register global variables that need
9453to always be mapped to a specific register, as is common practice on
9454bare-metal programs including OS kernels.
9455
9456The compiler doesn't check for register availability or use of the used
9457register in surrounding code, including inline assembly. Because of that,
9458allocatable registers are not supported.
9459
9460Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009461architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009462work is needed to support other registers and even more so, allocatable
9463registers.
9464
Sean Silvab084af42012-12-07 10:36:55 +00009465.. _int_stacksave:
9466
9467'``llvm.stacksave``' Intrinsic
9468^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9469
9470Syntax:
9471"""""""
9472
9473::
9474
9475 declare i8* @llvm.stacksave()
9476
9477Overview:
9478"""""""""
9479
9480The '``llvm.stacksave``' intrinsic is used to remember the current state
9481of the function stack, for use with
9482:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9483implementing language features like scoped automatic variable sized
9484arrays in C99.
9485
9486Semantics:
9487""""""""""
9488
9489This intrinsic returns a opaque pointer value that can be passed to
9490:ref:`llvm.stackrestore <int_stackrestore>`. When an
9491``llvm.stackrestore`` intrinsic is executed with a value saved from
9492``llvm.stacksave``, it effectively restores the state of the stack to
9493the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9494practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9495were allocated after the ``llvm.stacksave`` was executed.
9496
9497.. _int_stackrestore:
9498
9499'``llvm.stackrestore``' Intrinsic
9500^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9501
9502Syntax:
9503"""""""
9504
9505::
9506
9507 declare void @llvm.stackrestore(i8* %ptr)
9508
9509Overview:
9510"""""""""
9511
9512The '``llvm.stackrestore``' intrinsic is used to restore the state of
9513the function stack to the state it was in when the corresponding
9514:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9515useful for implementing language features like scoped automatic variable
9516sized arrays in C99.
9517
9518Semantics:
9519""""""""""
9520
9521See the description for :ref:`llvm.stacksave <int_stacksave>`.
9522
Yury Gribovd7dbb662015-12-01 11:40:55 +00009523.. _int_get_dynamic_area_offset:
9524
9525'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009527
9528Syntax:
9529"""""""
9530
9531::
9532
9533 declare i32 @llvm.get.dynamic.area.offset.i32()
9534 declare i64 @llvm.get.dynamic.area.offset.i64()
9535
Lang Hames10239932016-10-08 00:20:42 +00009536Overview:
9537"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009538
9539 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9540 get the offset from native stack pointer to the address of the most
9541 recent dynamic alloca on the caller's stack. These intrinsics are
9542 intendend for use in combination with
9543 :ref:`llvm.stacksave <int_stacksave>` to get a
9544 pointer to the most recent dynamic alloca. This is useful, for example,
9545 for AddressSanitizer's stack unpoisoning routines.
9546
9547Semantics:
9548""""""""""
9549
9550 These intrinsics return a non-negative integer value that can be used to
9551 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9552 on the caller's stack. In particular, for targets where stack grows downwards,
9553 adding this offset to the native stack pointer would get the address of the most
9554 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009555 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009556 one past the end of the most recent dynamic alloca.
9557
9558 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9559 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9560 compile-time-known constant value.
9561
9562 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9563 must match the target's generic address space's (address space 0) pointer type.
9564
Sean Silvab084af42012-12-07 10:36:55 +00009565'``llvm.prefetch``' Intrinsic
9566^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9567
9568Syntax:
9569"""""""
9570
9571::
9572
9573 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9574
9575Overview:
9576"""""""""
9577
9578The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9579insert a prefetch instruction if supported; otherwise, it is a noop.
9580Prefetches have no effect on the behavior of the program but can change
9581its performance characteristics.
9582
9583Arguments:
9584""""""""""
9585
9586``address`` is the address to be prefetched, ``rw`` is the specifier
9587determining if the fetch should be for a read (0) or write (1), and
9588``locality`` is a temporal locality specifier ranging from (0) - no
9589locality, to (3) - extremely local keep in cache. The ``cache type``
9590specifies whether the prefetch is performed on the data (1) or
9591instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9592arguments must be constant integers.
9593
9594Semantics:
9595""""""""""
9596
9597This intrinsic does not modify the behavior of the program. In
9598particular, prefetches cannot trap and do not produce a value. On
9599targets that support this intrinsic, the prefetch can provide hints to
9600the processor cache for better performance.
9601
9602'``llvm.pcmarker``' Intrinsic
9603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9604
9605Syntax:
9606"""""""
9607
9608::
9609
9610 declare void @llvm.pcmarker(i32 <id>)
9611
9612Overview:
9613"""""""""
9614
9615The '``llvm.pcmarker``' intrinsic is a method to export a Program
9616Counter (PC) in a region of code to simulators and other tools. The
9617method is target specific, but it is expected that the marker will use
9618exported symbols to transmit the PC of the marker. The marker makes no
9619guarantees that it will remain with any specific instruction after
9620optimizations. It is possible that the presence of a marker will inhibit
9621optimizations. The intended use is to be inserted after optimizations to
9622allow correlations of simulation runs.
9623
9624Arguments:
9625""""""""""
9626
9627``id`` is a numerical id identifying the marker.
9628
9629Semantics:
9630""""""""""
9631
9632This intrinsic does not modify the behavior of the program. Backends
9633that do not support this intrinsic may ignore it.
9634
9635'``llvm.readcyclecounter``' Intrinsic
9636^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9637
9638Syntax:
9639"""""""
9640
9641::
9642
9643 declare i64 @llvm.readcyclecounter()
9644
9645Overview:
9646"""""""""
9647
9648The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9649counter register (or similar low latency, high accuracy clocks) on those
9650targets that support it. On X86, it should map to RDTSC. On Alpha, it
9651should map to RPCC. As the backing counters overflow quickly (on the
9652order of 9 seconds on alpha), this should only be used for small
9653timings.
9654
9655Semantics:
9656""""""""""
9657
9658When directly supported, reading the cycle counter should not modify any
9659memory. Implementations are allowed to either return a application
9660specific value or a system wide value. On backends without support, this
9661is lowered to a constant 0.
9662
Tim Northoverbc933082013-05-23 19:11:20 +00009663Note that runtime support may be conditional on the privilege-level code is
9664running at and the host platform.
9665
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009666'``llvm.clear_cache``' Intrinsic
9667^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9668
9669Syntax:
9670"""""""
9671
9672::
9673
9674 declare void @llvm.clear_cache(i8*, i8*)
9675
9676Overview:
9677"""""""""
9678
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009679The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9680in the specified range to the execution unit of the processor. On
9681targets with non-unified instruction and data cache, the implementation
9682flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009683
9684Semantics:
9685""""""""""
9686
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009687On platforms with coherent instruction and data caches (e.g. x86), this
9688intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009689cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009690instructions or a system call, if cache flushing requires special
9691privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009692
Sean Silvad02bf3e2014-04-07 22:29:53 +00009693The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009694time library.
Renato Golin93010e62014-03-26 14:01:32 +00009695
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009696This instrinsic does *not* empty the instruction pipeline. Modifications
9697of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009698
Justin Bogner61ba2e32014-12-08 18:02:35 +00009699'``llvm.instrprof_increment``' Intrinsic
9700^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9701
9702Syntax:
9703"""""""
9704
9705::
9706
9707 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9708 i32 <num-counters>, i32 <index>)
9709
9710Overview:
9711"""""""""
9712
9713The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9714frontend for use with instrumentation based profiling. These will be
9715lowered by the ``-instrprof`` pass to generate execution counts of a
9716program at runtime.
9717
9718Arguments:
9719""""""""""
9720
9721The first argument is a pointer to a global variable containing the
9722name of the entity being instrumented. This should generally be the
9723(mangled) function name for a set of counters.
9724
9725The second argument is a hash value that can be used by the consumer
9726of the profile data to detect changes to the instrumented source, and
9727the third is the number of counters associated with ``name``. It is an
9728error if ``hash`` or ``num-counters`` differ between two instances of
9729``instrprof_increment`` that refer to the same name.
9730
9731The last argument refers to which of the counters for ``name`` should
9732be incremented. It should be a value between 0 and ``num-counters``.
9733
9734Semantics:
9735""""""""""
9736
9737This intrinsic represents an increment of a profiling counter. It will
9738cause the ``-instrprof`` pass to generate the appropriate data
9739structures and the code to increment the appropriate value, in a
9740format that can be written out by a compiler runtime and consumed via
9741the ``llvm-profdata`` tool.
9742
Xinliang David Li4ca17332016-09-18 18:34:07 +00009743'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +00009744^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +00009745
9746Syntax:
9747"""""""
9748
9749::
9750
9751 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
9752 i32 <num-counters>,
9753 i32 <index>, i64 <step>)
9754
9755Overview:
9756"""""""""
9757
9758The '``llvm.instrprof_increment_step``' intrinsic is an extension to
9759the '``llvm.instrprof_increment``' intrinsic with an additional fifth
9760argument to specify the step of the increment.
9761
9762Arguments:
9763""""""""""
9764The first four arguments are the same as '``llvm.instrprof_increment``'
9765instrinsic.
9766
9767The last argument specifies the value of the increment of the counter variable.
9768
9769Semantics:
9770""""""""""
9771See description of '``llvm.instrprof_increment``' instrinsic.
9772
9773
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009774'``llvm.instrprof_value_profile``' Intrinsic
9775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9776
9777Syntax:
9778"""""""
9779
9780::
9781
9782 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9783 i64 <value>, i32 <value_kind>,
9784 i32 <index>)
9785
9786Overview:
9787"""""""""
9788
9789The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9790frontend for use with instrumentation based profiling. This will be
9791lowered by the ``-instrprof`` pass to find out the target values,
9792instrumented expressions take in a program at runtime.
9793
9794Arguments:
9795""""""""""
9796
9797The first argument is a pointer to a global variable containing the
9798name of the entity being instrumented. ``name`` should generally be the
9799(mangled) function name for a set of counters.
9800
9801The second argument is a hash value that can be used by the consumer
9802of the profile data to detect changes to the instrumented source. It
9803is an error if ``hash`` differs between two instances of
9804``llvm.instrprof_*`` that refer to the same name.
9805
9806The third argument is the value of the expression being profiled. The profiled
9807expression's value should be representable as an unsigned 64-bit value. The
9808fourth argument represents the kind of value profiling that is being done. The
9809supported value profiling kinds are enumerated through the
9810``InstrProfValueKind`` type declared in the
9811``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9812index of the instrumented expression within ``name``. It should be >= 0.
9813
9814Semantics:
9815""""""""""
9816
9817This intrinsic represents the point where a call to a runtime routine
9818should be inserted for value profiling of target expressions. ``-instrprof``
9819pass will generate the appropriate data structures and replace the
9820``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9821runtime library with proper arguments.
9822
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009823'``llvm.thread.pointer``' Intrinsic
9824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9825
9826Syntax:
9827"""""""
9828
9829::
9830
9831 declare i8* @llvm.thread.pointer()
9832
9833Overview:
9834"""""""""
9835
9836The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9837pointer.
9838
9839Semantics:
9840""""""""""
9841
9842The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9843for the current thread. The exact semantics of this value are target
9844specific: it may point to the start of TLS area, to the end, or somewhere
9845in the middle. Depending on the target, this intrinsic may read a register,
9846call a helper function, read from an alternate memory space, or perform
9847other operations necessary to locate the TLS area. Not all targets support
9848this intrinsic.
9849
Sean Silvab084af42012-12-07 10:36:55 +00009850Standard C Library Intrinsics
9851-----------------------------
9852
9853LLVM provides intrinsics for a few important standard C library
9854functions. These intrinsics allow source-language front-ends to pass
9855information about the alignment of the pointer arguments to the code
9856generator, providing opportunity for more efficient code generation.
9857
9858.. _int_memcpy:
9859
9860'``llvm.memcpy``' Intrinsic
9861^^^^^^^^^^^^^^^^^^^^^^^^^^^
9862
9863Syntax:
9864"""""""
9865
9866This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9867integer bit width and for different address spaces. Not all targets
9868support all bit widths however.
9869
9870::
9871
9872 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9873 i32 <len>, i32 <align>, i1 <isvolatile>)
9874 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9875 i64 <len>, i32 <align>, i1 <isvolatile>)
9876
9877Overview:
9878"""""""""
9879
9880The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9881source location to the destination location.
9882
9883Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9884intrinsics do not return a value, takes extra alignment/isvolatile
9885arguments and the pointers can be in specified address spaces.
9886
9887Arguments:
9888""""""""""
9889
9890The first argument is a pointer to the destination, the second is a
9891pointer to the source. The third argument is an integer argument
9892specifying the number of bytes to copy, the fourth argument is the
9893alignment of the source and destination locations, and the fifth is a
9894boolean indicating a volatile access.
9895
9896If the call to this intrinsic has an alignment value that is not 0 or 1,
9897then the caller guarantees that both the source and destination pointers
9898are aligned to that boundary.
9899
9900If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9901a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9902very cleanly specified and it is unwise to depend on it.
9903
9904Semantics:
9905""""""""""
9906
9907The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9908source location to the destination location, which are not allowed to
9909overlap. It copies "len" bytes of memory over. If the argument is known
9910to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009911argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009912
9913'``llvm.memmove``' Intrinsic
9914^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9915
9916Syntax:
9917"""""""
9918
9919This is an overloaded intrinsic. You can use llvm.memmove on any integer
9920bit width and for different address space. Not all targets support all
9921bit widths however.
9922
9923::
9924
9925 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9926 i32 <len>, i32 <align>, i1 <isvolatile>)
9927 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9928 i64 <len>, i32 <align>, i1 <isvolatile>)
9929
9930Overview:
9931"""""""""
9932
9933The '``llvm.memmove.*``' intrinsics move a block of memory from the
9934source location to the destination location. It is similar to the
9935'``llvm.memcpy``' intrinsic but allows the two memory locations to
9936overlap.
9937
9938Note that, unlike the standard libc function, the ``llvm.memmove.*``
9939intrinsics do not return a value, takes extra alignment/isvolatile
9940arguments and the pointers can be in specified address spaces.
9941
9942Arguments:
9943""""""""""
9944
9945The first argument is a pointer to the destination, the second is a
9946pointer to the source. The third argument is an integer argument
9947specifying the number of bytes to copy, the fourth argument is the
9948alignment of the source and destination locations, and the fifth is a
9949boolean indicating a volatile access.
9950
9951If the call to this intrinsic has an alignment value that is not 0 or 1,
9952then the caller guarantees that the source and destination pointers are
9953aligned to that boundary.
9954
9955If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9956is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9957not very cleanly specified and it is unwise to depend on it.
9958
9959Semantics:
9960""""""""""
9961
9962The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9963source location to the destination location, which may overlap. It
9964copies "len" bytes of memory over. If the argument is known to be
9965aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009966otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009967
9968'``llvm.memset.*``' Intrinsics
9969^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9970
9971Syntax:
9972"""""""
9973
9974This is an overloaded intrinsic. You can use llvm.memset on any integer
9975bit width and for different address spaces. However, not all targets
9976support all bit widths.
9977
9978::
9979
9980 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9981 i32 <len>, i32 <align>, i1 <isvolatile>)
9982 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9983 i64 <len>, i32 <align>, i1 <isvolatile>)
9984
9985Overview:
9986"""""""""
9987
9988The '``llvm.memset.*``' intrinsics fill a block of memory with a
9989particular byte value.
9990
9991Note that, unlike the standard libc function, the ``llvm.memset``
9992intrinsic does not return a value and takes extra alignment/volatile
9993arguments. Also, the destination can be in an arbitrary address space.
9994
9995Arguments:
9996""""""""""
9997
9998The first argument is a pointer to the destination to fill, the second
9999is the byte value with which to fill it, the third argument is an
10000integer argument specifying the number of bytes to fill, and the fourth
10001argument is the known alignment of the destination location.
10002
10003If the call to this intrinsic has an alignment value that is not 0 or 1,
10004then the caller guarantees that the destination pointer is aligned to
10005that boundary.
10006
10007If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10008a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10009very cleanly specified and it is unwise to depend on it.
10010
10011Semantics:
10012""""""""""
10013
10014The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10015at the destination location. If the argument is known to be aligned to
10016some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010017it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010018
10019'``llvm.sqrt.*``' Intrinsic
10020^^^^^^^^^^^^^^^^^^^^^^^^^^^
10021
10022Syntax:
10023"""""""
10024
10025This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10026floating point or vector of floating point type. Not all targets support
10027all types however.
10028
10029::
10030
10031 declare float @llvm.sqrt.f32(float %Val)
10032 declare double @llvm.sqrt.f64(double %Val)
10033 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10034 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10035 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10036
10037Overview:
10038"""""""""
10039
10040The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
10041returning the same value as the libm '``sqrt``' functions would. Unlike
10042``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
10043negative numbers other than -0.0 (which allows for better optimization,
10044because there is no need to worry about errno being set).
10045``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
10046
10047Arguments:
10048""""""""""
10049
10050The argument and return value are floating point numbers of the same
10051type.
10052
10053Semantics:
10054""""""""""
10055
10056This function returns the sqrt of the specified operand if it is a
10057nonnegative floating point number.
10058
10059'``llvm.powi.*``' Intrinsic
10060^^^^^^^^^^^^^^^^^^^^^^^^^^^
10061
10062Syntax:
10063"""""""
10064
10065This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10066floating point or vector of floating point type. Not all targets support
10067all types however.
10068
10069::
10070
10071 declare float @llvm.powi.f32(float %Val, i32 %power)
10072 declare double @llvm.powi.f64(double %Val, i32 %power)
10073 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10074 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10075 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10076
10077Overview:
10078"""""""""
10079
10080The '``llvm.powi.*``' intrinsics return the first operand raised to the
10081specified (positive or negative) power. The order of evaluation of
10082multiplications is not defined. When a vector of floating point type is
10083used, the second argument remains a scalar integer value.
10084
10085Arguments:
10086""""""""""
10087
10088The second argument is an integer power, and the first is a value to
10089raise to that power.
10090
10091Semantics:
10092""""""""""
10093
10094This function returns the first value raised to the second power with an
10095unspecified sequence of rounding operations.
10096
10097'``llvm.sin.*``' Intrinsic
10098^^^^^^^^^^^^^^^^^^^^^^^^^^
10099
10100Syntax:
10101"""""""
10102
10103This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10104floating point or vector of floating point type. Not all targets support
10105all types however.
10106
10107::
10108
10109 declare float @llvm.sin.f32(float %Val)
10110 declare double @llvm.sin.f64(double %Val)
10111 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10112 declare fp128 @llvm.sin.f128(fp128 %Val)
10113 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10114
10115Overview:
10116"""""""""
10117
10118The '``llvm.sin.*``' intrinsics return the sine of the operand.
10119
10120Arguments:
10121""""""""""
10122
10123The argument and return value are floating point numbers of the same
10124type.
10125
10126Semantics:
10127""""""""""
10128
10129This function returns the sine of the specified operand, returning the
10130same values as the libm ``sin`` functions would, and handles error
10131conditions in the same way.
10132
10133'``llvm.cos.*``' Intrinsic
10134^^^^^^^^^^^^^^^^^^^^^^^^^^
10135
10136Syntax:
10137"""""""
10138
10139This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10140floating point or vector of floating point type. Not all targets support
10141all types however.
10142
10143::
10144
10145 declare float @llvm.cos.f32(float %Val)
10146 declare double @llvm.cos.f64(double %Val)
10147 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10148 declare fp128 @llvm.cos.f128(fp128 %Val)
10149 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10150
10151Overview:
10152"""""""""
10153
10154The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10155
10156Arguments:
10157""""""""""
10158
10159The argument and return value are floating point numbers of the same
10160type.
10161
10162Semantics:
10163""""""""""
10164
10165This function returns the cosine of the specified operand, returning the
10166same values as the libm ``cos`` functions would, and handles error
10167conditions in the same way.
10168
10169'``llvm.pow.*``' Intrinsic
10170^^^^^^^^^^^^^^^^^^^^^^^^^^
10171
10172Syntax:
10173"""""""
10174
10175This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10176floating point or vector of floating point type. Not all targets support
10177all types however.
10178
10179::
10180
10181 declare float @llvm.pow.f32(float %Val, float %Power)
10182 declare double @llvm.pow.f64(double %Val, double %Power)
10183 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10184 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10185 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10186
10187Overview:
10188"""""""""
10189
10190The '``llvm.pow.*``' intrinsics return the first operand raised to the
10191specified (positive or negative) power.
10192
10193Arguments:
10194""""""""""
10195
10196The second argument is a floating point power, and the first is a value
10197to raise to that power.
10198
10199Semantics:
10200""""""""""
10201
10202This function returns the first value raised to the second power,
10203returning the same values as the libm ``pow`` functions would, and
10204handles error conditions in the same way.
10205
10206'``llvm.exp.*``' Intrinsic
10207^^^^^^^^^^^^^^^^^^^^^^^^^^
10208
10209Syntax:
10210"""""""
10211
10212This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10213floating point or vector of floating point type. Not all targets support
10214all types however.
10215
10216::
10217
10218 declare float @llvm.exp.f32(float %Val)
10219 declare double @llvm.exp.f64(double %Val)
10220 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10221 declare fp128 @llvm.exp.f128(fp128 %Val)
10222 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10223
10224Overview:
10225"""""""""
10226
10227The '``llvm.exp.*``' intrinsics perform the exp function.
10228
10229Arguments:
10230""""""""""
10231
10232The argument and return value are floating point numbers of the same
10233type.
10234
10235Semantics:
10236""""""""""
10237
10238This function returns the same values as the libm ``exp`` functions
10239would, and handles error conditions in the same way.
10240
10241'``llvm.exp2.*``' Intrinsic
10242^^^^^^^^^^^^^^^^^^^^^^^^^^^
10243
10244Syntax:
10245"""""""
10246
10247This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10248floating point or vector of floating point type. Not all targets support
10249all types however.
10250
10251::
10252
10253 declare float @llvm.exp2.f32(float %Val)
10254 declare double @llvm.exp2.f64(double %Val)
10255 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10256 declare fp128 @llvm.exp2.f128(fp128 %Val)
10257 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10258
10259Overview:
10260"""""""""
10261
10262The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10263
10264Arguments:
10265""""""""""
10266
10267The argument and return value are floating point numbers of the same
10268type.
10269
10270Semantics:
10271""""""""""
10272
10273This function returns the same values as the libm ``exp2`` functions
10274would, and handles error conditions in the same way.
10275
10276'``llvm.log.*``' Intrinsic
10277^^^^^^^^^^^^^^^^^^^^^^^^^^
10278
10279Syntax:
10280"""""""
10281
10282This is an overloaded intrinsic. You can use ``llvm.log`` on any
10283floating point or vector of floating point type. Not all targets support
10284all types however.
10285
10286::
10287
10288 declare float @llvm.log.f32(float %Val)
10289 declare double @llvm.log.f64(double %Val)
10290 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10291 declare fp128 @llvm.log.f128(fp128 %Val)
10292 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10293
10294Overview:
10295"""""""""
10296
10297The '``llvm.log.*``' intrinsics perform the log function.
10298
10299Arguments:
10300""""""""""
10301
10302The argument and return value are floating point numbers of the same
10303type.
10304
10305Semantics:
10306""""""""""
10307
10308This function returns the same values as the libm ``log`` functions
10309would, and handles error conditions in the same way.
10310
10311'``llvm.log10.*``' Intrinsic
10312^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10313
10314Syntax:
10315"""""""
10316
10317This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10318floating point or vector of floating point type. Not all targets support
10319all types however.
10320
10321::
10322
10323 declare float @llvm.log10.f32(float %Val)
10324 declare double @llvm.log10.f64(double %Val)
10325 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10326 declare fp128 @llvm.log10.f128(fp128 %Val)
10327 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10328
10329Overview:
10330"""""""""
10331
10332The '``llvm.log10.*``' intrinsics perform the log10 function.
10333
10334Arguments:
10335""""""""""
10336
10337The argument and return value are floating point numbers of the same
10338type.
10339
10340Semantics:
10341""""""""""
10342
10343This function returns the same values as the libm ``log10`` functions
10344would, and handles error conditions in the same way.
10345
10346'``llvm.log2.*``' Intrinsic
10347^^^^^^^^^^^^^^^^^^^^^^^^^^^
10348
10349Syntax:
10350"""""""
10351
10352This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10353floating point or vector of floating point type. Not all targets support
10354all types however.
10355
10356::
10357
10358 declare float @llvm.log2.f32(float %Val)
10359 declare double @llvm.log2.f64(double %Val)
10360 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10361 declare fp128 @llvm.log2.f128(fp128 %Val)
10362 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10363
10364Overview:
10365"""""""""
10366
10367The '``llvm.log2.*``' intrinsics perform the log2 function.
10368
10369Arguments:
10370""""""""""
10371
10372The argument and return value are floating point numbers of the same
10373type.
10374
10375Semantics:
10376""""""""""
10377
10378This function returns the same values as the libm ``log2`` functions
10379would, and handles error conditions in the same way.
10380
10381'``llvm.fma.*``' Intrinsic
10382^^^^^^^^^^^^^^^^^^^^^^^^^^
10383
10384Syntax:
10385"""""""
10386
10387This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10388floating point or vector of floating point type. Not all targets support
10389all types however.
10390
10391::
10392
10393 declare float @llvm.fma.f32(float %a, float %b, float %c)
10394 declare double @llvm.fma.f64(double %a, double %b, double %c)
10395 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10396 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10397 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10398
10399Overview:
10400"""""""""
10401
10402The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10403operation.
10404
10405Arguments:
10406""""""""""
10407
10408The argument and return value are floating point numbers of the same
10409type.
10410
10411Semantics:
10412""""""""""
10413
10414This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010415would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010416
10417'``llvm.fabs.*``' Intrinsic
10418^^^^^^^^^^^^^^^^^^^^^^^^^^^
10419
10420Syntax:
10421"""""""
10422
10423This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10424floating point or vector of floating point type. Not all targets support
10425all types however.
10426
10427::
10428
10429 declare float @llvm.fabs.f32(float %Val)
10430 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010431 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010432 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010433 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010434
10435Overview:
10436"""""""""
10437
10438The '``llvm.fabs.*``' intrinsics return the absolute value of the
10439operand.
10440
10441Arguments:
10442""""""""""
10443
10444The argument and return value are floating point numbers of the same
10445type.
10446
10447Semantics:
10448""""""""""
10449
10450This function returns the same values as the libm ``fabs`` functions
10451would, and handles error conditions in the same way.
10452
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010453'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010455
10456Syntax:
10457"""""""
10458
10459This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10460floating point or vector of floating point type. Not all targets support
10461all types however.
10462
10463::
10464
Matt Arsenault64313c92014-10-22 18:25:02 +000010465 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10466 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10467 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10468 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10469 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010470
10471Overview:
10472"""""""""
10473
10474The '``llvm.minnum.*``' intrinsics return the minimum of the two
10475arguments.
10476
10477
10478Arguments:
10479""""""""""
10480
10481The arguments and return value are floating point numbers of the same
10482type.
10483
10484Semantics:
10485""""""""""
10486
10487Follows the IEEE-754 semantics for minNum, which also match for libm's
10488fmin.
10489
10490If either operand is a NaN, returns the other non-NaN operand. Returns
10491NaN only if both operands are NaN. If the operands compare equal,
10492returns a value that compares equal to both operands. This means that
10493fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10494
10495'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010497
10498Syntax:
10499"""""""
10500
10501This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10502floating point or vector of floating point type. Not all targets support
10503all types however.
10504
10505::
10506
Matt Arsenault64313c92014-10-22 18:25:02 +000010507 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10508 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10509 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10510 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10511 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010512
10513Overview:
10514"""""""""
10515
10516The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10517arguments.
10518
10519
10520Arguments:
10521""""""""""
10522
10523The arguments and return value are floating point numbers of the same
10524type.
10525
10526Semantics:
10527""""""""""
10528Follows the IEEE-754 semantics for maxNum, which also match for libm's
10529fmax.
10530
10531If either operand is a NaN, returns the other non-NaN operand. Returns
10532NaN only if both operands are NaN. If the operands compare equal,
10533returns a value that compares equal to both operands. This means that
10534fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10535
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010536'``llvm.copysign.*``' Intrinsic
10537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10538
10539Syntax:
10540"""""""
10541
10542This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10543floating point or vector of floating point type. Not all targets support
10544all types however.
10545
10546::
10547
10548 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10549 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10550 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10551 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10552 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10553
10554Overview:
10555"""""""""
10556
10557The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10558first operand and the sign of the second operand.
10559
10560Arguments:
10561""""""""""
10562
10563The arguments and return value are floating point numbers of the same
10564type.
10565
10566Semantics:
10567""""""""""
10568
10569This function returns the same values as the libm ``copysign``
10570functions would, and handles error conditions in the same way.
10571
Sean Silvab084af42012-12-07 10:36:55 +000010572'``llvm.floor.*``' Intrinsic
10573^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10574
10575Syntax:
10576"""""""
10577
10578This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10579floating point or vector of floating point type. Not all targets support
10580all types however.
10581
10582::
10583
10584 declare float @llvm.floor.f32(float %Val)
10585 declare double @llvm.floor.f64(double %Val)
10586 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10587 declare fp128 @llvm.floor.f128(fp128 %Val)
10588 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10589
10590Overview:
10591"""""""""
10592
10593The '``llvm.floor.*``' intrinsics return the floor of the operand.
10594
10595Arguments:
10596""""""""""
10597
10598The argument and return value are floating point numbers of the same
10599type.
10600
10601Semantics:
10602""""""""""
10603
10604This function returns the same values as the libm ``floor`` functions
10605would, and handles error conditions in the same way.
10606
10607'``llvm.ceil.*``' Intrinsic
10608^^^^^^^^^^^^^^^^^^^^^^^^^^^
10609
10610Syntax:
10611"""""""
10612
10613This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10614floating point or vector of floating point type. Not all targets support
10615all types however.
10616
10617::
10618
10619 declare float @llvm.ceil.f32(float %Val)
10620 declare double @llvm.ceil.f64(double %Val)
10621 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10622 declare fp128 @llvm.ceil.f128(fp128 %Val)
10623 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10624
10625Overview:
10626"""""""""
10627
10628The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10629
10630Arguments:
10631""""""""""
10632
10633The argument and return value are floating point numbers of the same
10634type.
10635
10636Semantics:
10637""""""""""
10638
10639This function returns the same values as the libm ``ceil`` functions
10640would, and handles error conditions in the same way.
10641
10642'``llvm.trunc.*``' Intrinsic
10643^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10644
10645Syntax:
10646"""""""
10647
10648This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10649floating point or vector of floating point type. Not all targets support
10650all types however.
10651
10652::
10653
10654 declare float @llvm.trunc.f32(float %Val)
10655 declare double @llvm.trunc.f64(double %Val)
10656 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10657 declare fp128 @llvm.trunc.f128(fp128 %Val)
10658 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10659
10660Overview:
10661"""""""""
10662
10663The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10664nearest integer not larger in magnitude than the operand.
10665
10666Arguments:
10667""""""""""
10668
10669The argument and return value are floating point numbers of the same
10670type.
10671
10672Semantics:
10673""""""""""
10674
10675This function returns the same values as the libm ``trunc`` functions
10676would, and handles error conditions in the same way.
10677
10678'``llvm.rint.*``' Intrinsic
10679^^^^^^^^^^^^^^^^^^^^^^^^^^^
10680
10681Syntax:
10682"""""""
10683
10684This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10685floating point or vector of floating point type. Not all targets support
10686all types however.
10687
10688::
10689
10690 declare float @llvm.rint.f32(float %Val)
10691 declare double @llvm.rint.f64(double %Val)
10692 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10693 declare fp128 @llvm.rint.f128(fp128 %Val)
10694 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10695
10696Overview:
10697"""""""""
10698
10699The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10700nearest integer. It may raise an inexact floating-point exception if the
10701operand isn't an integer.
10702
10703Arguments:
10704""""""""""
10705
10706The argument and return value are floating point numbers of the same
10707type.
10708
10709Semantics:
10710""""""""""
10711
10712This function returns the same values as the libm ``rint`` functions
10713would, and handles error conditions in the same way.
10714
10715'``llvm.nearbyint.*``' Intrinsic
10716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10717
10718Syntax:
10719"""""""
10720
10721This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10722floating point or vector of floating point type. Not all targets support
10723all types however.
10724
10725::
10726
10727 declare float @llvm.nearbyint.f32(float %Val)
10728 declare double @llvm.nearbyint.f64(double %Val)
10729 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10730 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10731 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10732
10733Overview:
10734"""""""""
10735
10736The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10737nearest integer.
10738
10739Arguments:
10740""""""""""
10741
10742The argument and return value are floating point numbers of the same
10743type.
10744
10745Semantics:
10746""""""""""
10747
10748This function returns the same values as the libm ``nearbyint``
10749functions would, and handles error conditions in the same way.
10750
Hal Finkel171817e2013-08-07 22:49:12 +000010751'``llvm.round.*``' Intrinsic
10752^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10753
10754Syntax:
10755"""""""
10756
10757This is an overloaded intrinsic. You can use ``llvm.round`` on any
10758floating point or vector of floating point type. Not all targets support
10759all types however.
10760
10761::
10762
10763 declare float @llvm.round.f32(float %Val)
10764 declare double @llvm.round.f64(double %Val)
10765 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10766 declare fp128 @llvm.round.f128(fp128 %Val)
10767 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10768
10769Overview:
10770"""""""""
10771
10772The '``llvm.round.*``' intrinsics returns the operand rounded to the
10773nearest integer.
10774
10775Arguments:
10776""""""""""
10777
10778The argument and return value are floating point numbers of the same
10779type.
10780
10781Semantics:
10782""""""""""
10783
10784This function returns the same values as the libm ``round``
10785functions would, and handles error conditions in the same way.
10786
Sean Silvab084af42012-12-07 10:36:55 +000010787Bit Manipulation Intrinsics
10788---------------------------
10789
10790LLVM provides intrinsics for a few important bit manipulation
10791operations. These allow efficient code generation for some algorithms.
10792
James Molloy90111f72015-11-12 12:29:09 +000010793'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010794^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010795
10796Syntax:
10797"""""""
10798
10799This is an overloaded intrinsic function. You can use bitreverse on any
10800integer type.
10801
10802::
10803
10804 declare i16 @llvm.bitreverse.i16(i16 <id>)
10805 declare i32 @llvm.bitreverse.i32(i32 <id>)
10806 declare i64 @llvm.bitreverse.i64(i64 <id>)
10807
10808Overview:
10809"""""""""
10810
10811The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010812bitpattern of an integer value; for example ``0b10110110`` becomes
10813``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010814
10815Semantics:
10816""""""""""
10817
10818The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10819``M`` in the input moved to bit ``N-M`` in the output.
10820
Sean Silvab084af42012-12-07 10:36:55 +000010821'``llvm.bswap.*``' Intrinsics
10822^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10823
10824Syntax:
10825"""""""
10826
10827This is an overloaded intrinsic function. You can use bswap on any
10828integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10829
10830::
10831
10832 declare i16 @llvm.bswap.i16(i16 <id>)
10833 declare i32 @llvm.bswap.i32(i32 <id>)
10834 declare i64 @llvm.bswap.i64(i64 <id>)
10835
10836Overview:
10837"""""""""
10838
10839The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10840values with an even number of bytes (positive multiple of 16 bits).
10841These are useful for performing operations on data that is not in the
10842target's native byte order.
10843
10844Semantics:
10845""""""""""
10846
10847The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10848and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10849intrinsic returns an i32 value that has the four bytes of the input i32
10850swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10851returned i32 will have its bytes in 3, 2, 1, 0 order. The
10852``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10853concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10854respectively).
10855
10856'``llvm.ctpop.*``' Intrinsic
10857^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10858
10859Syntax:
10860"""""""
10861
10862This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10863bit width, or on any vector with integer elements. Not all targets
10864support all bit widths or vector types, however.
10865
10866::
10867
10868 declare i8 @llvm.ctpop.i8(i8 <src>)
10869 declare i16 @llvm.ctpop.i16(i16 <src>)
10870 declare i32 @llvm.ctpop.i32(i32 <src>)
10871 declare i64 @llvm.ctpop.i64(i64 <src>)
10872 declare i256 @llvm.ctpop.i256(i256 <src>)
10873 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10874
10875Overview:
10876"""""""""
10877
10878The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10879in a value.
10880
10881Arguments:
10882""""""""""
10883
10884The only argument is the value to be counted. The argument may be of any
10885integer type, or a vector with integer elements. The return type must
10886match the argument type.
10887
10888Semantics:
10889""""""""""
10890
10891The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10892each element of a vector.
10893
10894'``llvm.ctlz.*``' Intrinsic
10895^^^^^^^^^^^^^^^^^^^^^^^^^^^
10896
10897Syntax:
10898"""""""
10899
10900This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10901integer bit width, or any vector whose elements are integers. Not all
10902targets support all bit widths or vector types, however.
10903
10904::
10905
10906 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10907 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10908 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10909 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10910 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010911 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010912
10913Overview:
10914"""""""""
10915
10916The '``llvm.ctlz``' family of intrinsic functions counts the number of
10917leading zeros in a variable.
10918
10919Arguments:
10920""""""""""
10921
10922The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010923any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010924type must match the first argument type.
10925
10926The second argument must be a constant and is a flag to indicate whether
10927the intrinsic should ensure that a zero as the first argument produces a
10928defined result. Historically some architectures did not provide a
10929defined result for zero values as efficiently, and many algorithms are
10930now predicated on avoiding zero-value inputs.
10931
10932Semantics:
10933""""""""""
10934
10935The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10936zeros in a variable, or within each element of the vector. If
10937``src == 0`` then the result is the size in bits of the type of ``src``
10938if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10939``llvm.ctlz(i32 2) = 30``.
10940
10941'``llvm.cttz.*``' Intrinsic
10942^^^^^^^^^^^^^^^^^^^^^^^^^^^
10943
10944Syntax:
10945"""""""
10946
10947This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10948integer bit width, or any vector of integer elements. Not all targets
10949support all bit widths or vector types, however.
10950
10951::
10952
10953 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10954 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10955 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10956 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10957 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010958 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010959
10960Overview:
10961"""""""""
10962
10963The '``llvm.cttz``' family of intrinsic functions counts the number of
10964trailing zeros.
10965
10966Arguments:
10967""""""""""
10968
10969The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010970any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010971type must match the first argument type.
10972
10973The second argument must be a constant and is a flag to indicate whether
10974the intrinsic should ensure that a zero as the first argument produces a
10975defined result. Historically some architectures did not provide a
10976defined result for zero values as efficiently, and many algorithms are
10977now predicated on avoiding zero-value inputs.
10978
10979Semantics:
10980""""""""""
10981
10982The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10983zeros in a variable, or within each element of a vector. If ``src == 0``
10984then the result is the size in bits of the type of ``src`` if
10985``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10986``llvm.cttz(2) = 1``.
10987
Philip Reames34843ae2015-03-05 05:55:55 +000010988.. _int_overflow:
10989
Sean Silvab084af42012-12-07 10:36:55 +000010990Arithmetic with Overflow Intrinsics
10991-----------------------------------
10992
John Regehr6a493f22016-05-12 20:55:09 +000010993LLVM provides intrinsics for fast arithmetic overflow checking.
10994
10995Each of these intrinsics returns a two-element struct. The first
10996element of this struct contains the result of the corresponding
10997arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
10998the result. Therefore, for example, the first element of the struct
10999returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11000result of a 32-bit ``add`` instruction with the same operands, where
11001the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11002
11003The second element of the result is an ``i1`` that is 1 if the
11004arithmetic operation overflowed and 0 otherwise. An operation
11005overflows if, for any values of its operands ``A`` and ``B`` and for
11006any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11007not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11008``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11009``op`` is the underlying arithmetic operation.
11010
11011The behavior of these intrinsics is well-defined for all argument
11012values.
Sean Silvab084af42012-12-07 10:36:55 +000011013
11014'``llvm.sadd.with.overflow.*``' Intrinsics
11015^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11016
11017Syntax:
11018"""""""
11019
11020This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11021on any integer bit width.
11022
11023::
11024
11025 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11026 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11027 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11028
11029Overview:
11030"""""""""
11031
11032The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11033a signed addition of the two arguments, and indicate whether an overflow
11034occurred during the signed summation.
11035
11036Arguments:
11037""""""""""
11038
11039The arguments (%a and %b) and the first element of the result structure
11040may be of integer types of any bit width, but they must have the same
11041bit width. The second element of the result structure must be of type
11042``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11043addition.
11044
11045Semantics:
11046""""""""""
11047
11048The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011049a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011050first element of which is the signed summation, and the second element
11051of which is a bit specifying if the signed summation resulted in an
11052overflow.
11053
11054Examples:
11055"""""""""
11056
11057.. code-block:: llvm
11058
11059 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11060 %sum = extractvalue {i32, i1} %res, 0
11061 %obit = extractvalue {i32, i1} %res, 1
11062 br i1 %obit, label %overflow, label %normal
11063
11064'``llvm.uadd.with.overflow.*``' Intrinsics
11065^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11066
11067Syntax:
11068"""""""
11069
11070This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11071on any integer bit width.
11072
11073::
11074
11075 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11076 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11077 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11078
11079Overview:
11080"""""""""
11081
11082The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11083an unsigned addition of the two arguments, and indicate whether a carry
11084occurred during the unsigned summation.
11085
11086Arguments:
11087""""""""""
11088
11089The arguments (%a and %b) and the first element of the result structure
11090may be of integer types of any bit width, but they must have the same
11091bit width. The second element of the result structure must be of type
11092``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11093addition.
11094
11095Semantics:
11096""""""""""
11097
11098The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011099an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011100first element of which is the sum, and the second element of which is a
11101bit specifying if the unsigned summation resulted in a carry.
11102
11103Examples:
11104"""""""""
11105
11106.. code-block:: llvm
11107
11108 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11109 %sum = extractvalue {i32, i1} %res, 0
11110 %obit = extractvalue {i32, i1} %res, 1
11111 br i1 %obit, label %carry, label %normal
11112
11113'``llvm.ssub.with.overflow.*``' Intrinsics
11114^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11115
11116Syntax:
11117"""""""
11118
11119This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11120on any integer bit width.
11121
11122::
11123
11124 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11125 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11126 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11127
11128Overview:
11129"""""""""
11130
11131The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11132a signed subtraction of the two arguments, and indicate whether an
11133overflow occurred during the signed subtraction.
11134
11135Arguments:
11136""""""""""
11137
11138The arguments (%a and %b) and the first element of the result structure
11139may be of integer types of any bit width, but they must have the same
11140bit width. The second element of the result structure must be of type
11141``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11142subtraction.
11143
11144Semantics:
11145""""""""""
11146
11147The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011148a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011149first element of which is the subtraction, and the second element of
11150which is a bit specifying if the signed subtraction resulted in an
11151overflow.
11152
11153Examples:
11154"""""""""
11155
11156.. code-block:: llvm
11157
11158 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11159 %sum = extractvalue {i32, i1} %res, 0
11160 %obit = extractvalue {i32, i1} %res, 1
11161 br i1 %obit, label %overflow, label %normal
11162
11163'``llvm.usub.with.overflow.*``' Intrinsics
11164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11165
11166Syntax:
11167"""""""
11168
11169This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11170on any integer bit width.
11171
11172::
11173
11174 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11175 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11176 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11177
11178Overview:
11179"""""""""
11180
11181The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11182an unsigned subtraction of the two arguments, and indicate whether an
11183overflow occurred during the unsigned subtraction.
11184
11185Arguments:
11186""""""""""
11187
11188The arguments (%a and %b) and the first element of the result structure
11189may be of integer types of any bit width, but they must have the same
11190bit width. The second element of the result structure must be of type
11191``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11192subtraction.
11193
11194Semantics:
11195""""""""""
11196
11197The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011198an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011199the first element of which is the subtraction, and the second element of
11200which is a bit specifying if the unsigned subtraction resulted in an
11201overflow.
11202
11203Examples:
11204"""""""""
11205
11206.. code-block:: llvm
11207
11208 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11209 %sum = extractvalue {i32, i1} %res, 0
11210 %obit = extractvalue {i32, i1} %res, 1
11211 br i1 %obit, label %overflow, label %normal
11212
11213'``llvm.smul.with.overflow.*``' Intrinsics
11214^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11215
11216Syntax:
11217"""""""
11218
11219This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11220on any integer bit width.
11221
11222::
11223
11224 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11225 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11226 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11227
11228Overview:
11229"""""""""
11230
11231The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11232a signed multiplication of the two arguments, and indicate whether an
11233overflow occurred during the signed multiplication.
11234
11235Arguments:
11236""""""""""
11237
11238The arguments (%a and %b) and the first element of the result structure
11239may be of integer types of any bit width, but they must have the same
11240bit width. The second element of the result structure must be of type
11241``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11242multiplication.
11243
11244Semantics:
11245""""""""""
11246
11247The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011248a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011249the first element of which is the multiplication, and the second element
11250of which is a bit specifying if the signed multiplication resulted in an
11251overflow.
11252
11253Examples:
11254"""""""""
11255
11256.. code-block:: llvm
11257
11258 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11259 %sum = extractvalue {i32, i1} %res, 0
11260 %obit = extractvalue {i32, i1} %res, 1
11261 br i1 %obit, label %overflow, label %normal
11262
11263'``llvm.umul.with.overflow.*``' Intrinsics
11264^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11265
11266Syntax:
11267"""""""
11268
11269This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11270on any integer bit width.
11271
11272::
11273
11274 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11275 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11276 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11277
11278Overview:
11279"""""""""
11280
11281The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11282a unsigned multiplication of the two arguments, and indicate whether an
11283overflow occurred during the unsigned multiplication.
11284
11285Arguments:
11286""""""""""
11287
11288The arguments (%a and %b) and the first element of the result structure
11289may be of integer types of any bit width, but they must have the same
11290bit width. The second element of the result structure must be of type
11291``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11292multiplication.
11293
11294Semantics:
11295""""""""""
11296
11297The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011298an unsigned multiplication of the two arguments. They return a structure ---
11299the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011300element of which is a bit specifying if the unsigned multiplication
11301resulted in an overflow.
11302
11303Examples:
11304"""""""""
11305
11306.. code-block:: llvm
11307
11308 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11309 %sum = extractvalue {i32, i1} %res, 0
11310 %obit = extractvalue {i32, i1} %res, 1
11311 br i1 %obit, label %overflow, label %normal
11312
11313Specialised Arithmetic Intrinsics
11314---------------------------------
11315
Owen Anderson1056a922015-07-11 07:01:27 +000011316'``llvm.canonicalize.*``' Intrinsic
11317^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11318
11319Syntax:
11320"""""""
11321
11322::
11323
11324 declare float @llvm.canonicalize.f32(float %a)
11325 declare double @llvm.canonicalize.f64(double %b)
11326
11327Overview:
11328"""""""""
11329
11330The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011331encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011332implementing certain numeric primitives such as frexp. The canonical encoding is
11333defined by IEEE-754-2008 to be:
11334
11335::
11336
11337 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011338 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011339 numbers, infinities, and NaNs, especially in decimal formats.
11340
11341This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011342conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011343according to section 6.2.
11344
11345Examples of non-canonical encodings:
11346
Sean Silvaa1190322015-08-06 22:56:48 +000011347- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011348 converted to a canonical representation per hardware-specific protocol.
11349- Many normal decimal floating point numbers have non-canonical alternative
11350 encodings.
11351- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011352 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011353 a zero of the same sign by this operation.
11354
11355Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11356default exception handling must signal an invalid exception, and produce a
11357quiet NaN result.
11358
11359This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011360that the compiler does not constant fold the operation. Likewise, division by
113611.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011362-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11363
Sean Silvaa1190322015-08-06 22:56:48 +000011364``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011365
11366- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11367- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11368 to ``(x == y)``
11369
11370Additionally, the sign of zero must be conserved:
11371``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11372
11373The payload bits of a NaN must be conserved, with two exceptions.
11374First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011375must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011376usual methods.
11377
11378The canonicalization operation may be optimized away if:
11379
Sean Silvaa1190322015-08-06 22:56:48 +000011380- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011381 floating-point operation that is required by the standard to be canonical.
11382- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011383 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011384
Sean Silvab084af42012-12-07 10:36:55 +000011385'``llvm.fmuladd.*``' Intrinsic
11386^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11387
11388Syntax:
11389"""""""
11390
11391::
11392
11393 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11394 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11395
11396Overview:
11397"""""""""
11398
11399The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011400expressions that can be fused if the code generator determines that (a) the
11401target instruction set has support for a fused operation, and (b) that the
11402fused operation is more efficient than the equivalent, separate pair of mul
11403and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011404
11405Arguments:
11406""""""""""
11407
11408The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11409multiplicands, a and b, and an addend c.
11410
11411Semantics:
11412""""""""""
11413
11414The expression:
11415
11416::
11417
11418 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11419
11420is equivalent to the expression a \* b + c, except that rounding will
11421not be performed between the multiplication and addition steps if the
11422code generator fuses the operations. Fusion is not guaranteed, even if
11423the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011424corresponding llvm.fma.\* intrinsic function should be used
11425instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011426
11427Examples:
11428"""""""""
11429
11430.. code-block:: llvm
11431
Tim Northover675a0962014-06-13 14:24:23 +000011432 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011433
11434Half Precision Floating Point Intrinsics
11435----------------------------------------
11436
11437For most target platforms, half precision floating point is a
11438storage-only format. This means that it is a dense encoding (in memory)
11439but does not support computation in the format.
11440
11441This means that code must first load the half-precision floating point
11442value as an i16, then convert it to float with
11443:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11444then be performed on the float value (including extending to double
11445etc). To store the value back to memory, it is first converted to float
11446if needed, then converted to i16 with
11447:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11448i16 value.
11449
11450.. _int_convert_to_fp16:
11451
11452'``llvm.convert.to.fp16``' Intrinsic
11453^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11454
11455Syntax:
11456"""""""
11457
11458::
11459
Tim Northoverfd7e4242014-07-17 10:51:23 +000011460 declare i16 @llvm.convert.to.fp16.f32(float %a)
11461 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011462
11463Overview:
11464"""""""""
11465
Tim Northoverfd7e4242014-07-17 10:51:23 +000011466The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11467conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011468
11469Arguments:
11470""""""""""
11471
11472The intrinsic function contains single argument - the value to be
11473converted.
11474
11475Semantics:
11476""""""""""
11477
Tim Northoverfd7e4242014-07-17 10:51:23 +000011478The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11479conventional floating point format to half precision floating point format. The
11480return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011481
11482Examples:
11483"""""""""
11484
11485.. code-block:: llvm
11486
Tim Northoverfd7e4242014-07-17 10:51:23 +000011487 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011488 store i16 %res, i16* @x, align 2
11489
11490.. _int_convert_from_fp16:
11491
11492'``llvm.convert.from.fp16``' Intrinsic
11493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11494
11495Syntax:
11496"""""""
11497
11498::
11499
Tim Northoverfd7e4242014-07-17 10:51:23 +000011500 declare float @llvm.convert.from.fp16.f32(i16 %a)
11501 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011502
11503Overview:
11504"""""""""
11505
11506The '``llvm.convert.from.fp16``' intrinsic function performs a
11507conversion from half precision floating point format to single precision
11508floating point format.
11509
11510Arguments:
11511""""""""""
11512
11513The intrinsic function contains single argument - the value to be
11514converted.
11515
11516Semantics:
11517""""""""""
11518
11519The '``llvm.convert.from.fp16``' intrinsic function performs a
11520conversion from half single precision floating point format to single
11521precision floating point format. The input half-float value is
11522represented by an ``i16`` value.
11523
11524Examples:
11525"""""""""
11526
11527.. code-block:: llvm
11528
David Blaikiec7aabbb2015-03-04 22:06:14 +000011529 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011530 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011531
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011532.. _dbg_intrinsics:
11533
Sean Silvab084af42012-12-07 10:36:55 +000011534Debugger Intrinsics
11535-------------------
11536
11537The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11538prefix), are described in the `LLVM Source Level
11539Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11540document.
11541
11542Exception Handling Intrinsics
11543-----------------------------
11544
11545The LLVM exception handling intrinsics (which all start with
11546``llvm.eh.`` prefix), are described in the `LLVM Exception
11547Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11548
11549.. _int_trampoline:
11550
11551Trampoline Intrinsics
11552---------------------
11553
11554These intrinsics make it possible to excise one parameter, marked with
11555the :ref:`nest <nest>` attribute, from a function. The result is a
11556callable function pointer lacking the nest parameter - the caller does
11557not need to provide a value for it. Instead, the value to use is stored
11558in advance in a "trampoline", a block of memory usually allocated on the
11559stack, which also contains code to splice the nest value into the
11560argument list. This is used to implement the GCC nested function address
11561extension.
11562
11563For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11564then the resulting function pointer has signature ``i32 (i32, i32)*``.
11565It can be created as follows:
11566
11567.. code-block:: llvm
11568
11569 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011570 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011571 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11572 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11573 %fp = bitcast i8* %p to i32 (i32, i32)*
11574
11575The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11576``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11577
11578.. _int_it:
11579
11580'``llvm.init.trampoline``' Intrinsic
11581^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11582
11583Syntax:
11584"""""""
11585
11586::
11587
11588 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11589
11590Overview:
11591"""""""""
11592
11593This fills the memory pointed to by ``tramp`` with executable code,
11594turning it into a trampoline.
11595
11596Arguments:
11597""""""""""
11598
11599The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11600pointers. The ``tramp`` argument must point to a sufficiently large and
11601sufficiently aligned block of memory; this memory is written to by the
11602intrinsic. Note that the size and the alignment are target-specific -
11603LLVM currently provides no portable way of determining them, so a
11604front-end that generates this intrinsic needs to have some
11605target-specific knowledge. The ``func`` argument must hold a function
11606bitcast to an ``i8*``.
11607
11608Semantics:
11609""""""""""
11610
11611The block of memory pointed to by ``tramp`` is filled with target
11612dependent code, turning it into a function. Then ``tramp`` needs to be
11613passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11614be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11615function's signature is the same as that of ``func`` with any arguments
11616marked with the ``nest`` attribute removed. At most one such ``nest``
11617argument is allowed, and it must be of pointer type. Calling the new
11618function is equivalent to calling ``func`` with the same argument list,
11619but with ``nval`` used for the missing ``nest`` argument. If, after
11620calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11621modified, then the effect of any later call to the returned function
11622pointer is undefined.
11623
11624.. _int_at:
11625
11626'``llvm.adjust.trampoline``' Intrinsic
11627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11628
11629Syntax:
11630"""""""
11631
11632::
11633
11634 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11635
11636Overview:
11637"""""""""
11638
11639This performs any required machine-specific adjustment to the address of
11640a trampoline (passed as ``tramp``).
11641
11642Arguments:
11643""""""""""
11644
11645``tramp`` must point to a block of memory which already has trampoline
11646code filled in by a previous call to
11647:ref:`llvm.init.trampoline <int_it>`.
11648
11649Semantics:
11650""""""""""
11651
11652On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011653different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011654intrinsic returns the executable address corresponding to ``tramp``
11655after performing the required machine specific adjustments. The pointer
11656returned can then be :ref:`bitcast and executed <int_trampoline>`.
11657
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011658.. _int_mload_mstore:
11659
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011660Masked Vector Load and Store Intrinsics
11661---------------------------------------
11662
11663LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11664
11665.. _int_mload:
11666
11667'``llvm.masked.load.*``' Intrinsics
11668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11669
11670Syntax:
11671"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011672This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011673
11674::
11675
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011676 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11677 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011678 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011679 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011680 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011681 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011682
11683Overview:
11684"""""""""
11685
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011686Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011687
11688
11689Arguments:
11690""""""""""
11691
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011692The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011693
11694
11695Semantics:
11696""""""""""
11697
11698The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11699The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11700
11701
11702::
11703
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011704 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011705
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011706 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011707 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011708 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011709
11710.. _int_mstore:
11711
11712'``llvm.masked.store.*``' Intrinsics
11713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11714
11715Syntax:
11716"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011717This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011718
11719::
11720
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011721 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11722 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011723 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011724 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011725 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011726 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011727
11728Overview:
11729"""""""""
11730
11731Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11732
11733Arguments:
11734""""""""""
11735
11736The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11737
11738
11739Semantics:
11740""""""""""
11741
11742The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11743The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11744
11745::
11746
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011747 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011748
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011749 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011750 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011751 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11752 store <16 x float> %res, <16 x float>* %ptr, align 4
11753
11754
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011755Masked Vector Gather and Scatter Intrinsics
11756-------------------------------------------
11757
11758LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11759
11760.. _int_mgather:
11761
11762'``llvm.masked.gather.*``' Intrinsics
11763^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11764
11765Syntax:
11766"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011767This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011768
11769::
11770
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011771 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11772 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11773 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011774
11775Overview:
11776"""""""""
11777
11778Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11779
11780
11781Arguments:
11782""""""""""
11783
11784The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11785
11786
11787Semantics:
11788""""""""""
11789
11790The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11791The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11792
11793
11794::
11795
11796 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11797
11798 ;; The gather with all-true mask is equivalent to the following instruction sequence
11799 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11800 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11801 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11802 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11803
11804 %val0 = load double, double* %ptr0, align 8
11805 %val1 = load double, double* %ptr1, align 8
11806 %val2 = load double, double* %ptr2, align 8
11807 %val3 = load double, double* %ptr3, align 8
11808
11809 %vec0 = insertelement <4 x double>undef, %val0, 0
11810 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11811 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11812 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11813
11814.. _int_mscatter:
11815
11816'``llvm.masked.scatter.*``' Intrinsics
11817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11818
11819Syntax:
11820"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011821This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011822
11823::
11824
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011825 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11826 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11827 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011828
11829Overview:
11830"""""""""
11831
11832Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11833
11834Arguments:
11835""""""""""
11836
11837The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11838
11839
11840Semantics:
11841""""""""""
11842
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011843The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011844
11845::
11846
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011847 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011848 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11849
11850 ;; It is equivalent to a list of scalar stores
11851 %val0 = extractelement <8 x i32> %value, i32 0
11852 %val1 = extractelement <8 x i32> %value, i32 1
11853 ..
11854 %val7 = extractelement <8 x i32> %value, i32 7
11855 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11856 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11857 ..
11858 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11859 ;; Note: the order of the following stores is important when they overlap:
11860 store i32 %val0, i32* %ptr0, align 4
11861 store i32 %val1, i32* %ptr1, align 4
11862 ..
11863 store i32 %val7, i32* %ptr7, align 4
11864
11865
Sean Silvab084af42012-12-07 10:36:55 +000011866Memory Use Markers
11867------------------
11868
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011869This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011870memory objects and ranges where variables are immutable.
11871
Reid Klecknera534a382013-12-19 02:14:12 +000011872.. _int_lifestart:
11873
Sean Silvab084af42012-12-07 10:36:55 +000011874'``llvm.lifetime.start``' Intrinsic
11875^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11876
11877Syntax:
11878"""""""
11879
11880::
11881
11882 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11883
11884Overview:
11885"""""""""
11886
11887The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11888object's lifetime.
11889
11890Arguments:
11891""""""""""
11892
11893The first argument is a constant integer representing the size of the
11894object, or -1 if it is variable sized. The second argument is a pointer
11895to the object.
11896
11897Semantics:
11898""""""""""
11899
11900This intrinsic indicates that before this point in the code, the value
11901of the memory pointed to by ``ptr`` is dead. This means that it is known
11902to never be used and has an undefined value. A load from the pointer
11903that precedes this intrinsic can be replaced with ``'undef'``.
11904
Reid Klecknera534a382013-12-19 02:14:12 +000011905.. _int_lifeend:
11906
Sean Silvab084af42012-12-07 10:36:55 +000011907'``llvm.lifetime.end``' Intrinsic
11908^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11909
11910Syntax:
11911"""""""
11912
11913::
11914
11915 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11916
11917Overview:
11918"""""""""
11919
11920The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11921object's lifetime.
11922
11923Arguments:
11924""""""""""
11925
11926The first argument is a constant integer representing the size of the
11927object, or -1 if it is variable sized. The second argument is a pointer
11928to the object.
11929
11930Semantics:
11931""""""""""
11932
11933This intrinsic indicates that after this point in the code, the value of
11934the memory pointed to by ``ptr`` is dead. This means that it is known to
11935never be used and has an undefined value. Any stores into the memory
11936object following this intrinsic may be removed as dead.
11937
11938'``llvm.invariant.start``' Intrinsic
11939^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11940
11941Syntax:
11942"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011943This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011944
11945::
11946
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011947 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011948
11949Overview:
11950"""""""""
11951
11952The '``llvm.invariant.start``' intrinsic specifies that the contents of
11953a memory object will not change.
11954
11955Arguments:
11956""""""""""
11957
11958The first argument is a constant integer representing the size of the
11959object, or -1 if it is variable sized. The second argument is a pointer
11960to the object.
11961
11962Semantics:
11963""""""""""
11964
11965This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11966the return value, the referenced memory location is constant and
11967unchanging.
11968
11969'``llvm.invariant.end``' Intrinsic
11970^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11971
11972Syntax:
11973"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011974This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011975
11976::
11977
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011978 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011979
11980Overview:
11981"""""""""
11982
11983The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11984memory object are mutable.
11985
11986Arguments:
11987""""""""""
11988
11989The first argument is the matching ``llvm.invariant.start`` intrinsic.
11990The second argument is a constant integer representing the size of the
11991object, or -1 if it is variable sized and the third argument is a
11992pointer to the object.
11993
11994Semantics:
11995""""""""""
11996
11997This intrinsic indicates that the memory is mutable again.
11998
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011999'``llvm.invariant.group.barrier``' Intrinsic
12000^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12001
12002Syntax:
12003"""""""
12004
12005::
12006
12007 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12008
12009Overview:
12010"""""""""
12011
12012The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12013established by invariant.group metadata no longer holds, to obtain a new pointer
12014value that does not carry the invariant information.
12015
12016
12017Arguments:
12018""""""""""
12019
12020The ``llvm.invariant.group.barrier`` takes only one argument, which is
12021the pointer to the memory for which the ``invariant.group`` no longer holds.
12022
12023Semantics:
12024""""""""""
12025
12026Returns another pointer that aliases its argument but which is considered different
12027for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12028
Sean Silvab084af42012-12-07 10:36:55 +000012029General Intrinsics
12030------------------
12031
12032This class of intrinsics is designed to be generic and has no specific
12033purpose.
12034
12035'``llvm.var.annotation``' Intrinsic
12036^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12037
12038Syntax:
12039"""""""
12040
12041::
12042
12043 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12044
12045Overview:
12046"""""""""
12047
12048The '``llvm.var.annotation``' intrinsic.
12049
12050Arguments:
12051""""""""""
12052
12053The first argument is a pointer to a value, the second is a pointer to a
12054global string, the third is a pointer to a global string which is the
12055source file name, and the last argument is the line number.
12056
12057Semantics:
12058""""""""""
12059
12060This intrinsic allows annotation of local variables with arbitrary
12061strings. This can be useful for special purpose optimizations that want
12062to look for these annotations. These have no other defined use; they are
12063ignored by code generation and optimization.
12064
Michael Gottesman88d18832013-03-26 00:34:27 +000012065'``llvm.ptr.annotation.*``' Intrinsic
12066^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12067
12068Syntax:
12069"""""""
12070
12071This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12072pointer to an integer of any width. *NOTE* you must specify an address space for
12073the pointer. The identifier for the default address space is the integer
12074'``0``'.
12075
12076::
12077
12078 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12079 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12080 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12081 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12082 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12083
12084Overview:
12085"""""""""
12086
12087The '``llvm.ptr.annotation``' intrinsic.
12088
12089Arguments:
12090""""""""""
12091
12092The first argument is a pointer to an integer value of arbitrary bitwidth
12093(result of some expression), the second is a pointer to a global string, the
12094third is a pointer to a global string which is the source file name, and the
12095last argument is the line number. It returns the value of the first argument.
12096
12097Semantics:
12098""""""""""
12099
12100This intrinsic allows annotation of a pointer to an integer with arbitrary
12101strings. This can be useful for special purpose optimizations that want to look
12102for these annotations. These have no other defined use; they are ignored by code
12103generation and optimization.
12104
Sean Silvab084af42012-12-07 10:36:55 +000012105'``llvm.annotation.*``' Intrinsic
12106^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12107
12108Syntax:
12109"""""""
12110
12111This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12112any integer bit width.
12113
12114::
12115
12116 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12117 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12118 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12119 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12120 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12121
12122Overview:
12123"""""""""
12124
12125The '``llvm.annotation``' intrinsic.
12126
12127Arguments:
12128""""""""""
12129
12130The first argument is an integer value (result of some expression), the
12131second is a pointer to a global string, the third is a pointer to a
12132global string which is the source file name, and the last argument is
12133the line number. It returns the value of the first argument.
12134
12135Semantics:
12136""""""""""
12137
12138This intrinsic allows annotations to be put on arbitrary expressions
12139with arbitrary strings. This can be useful for special purpose
12140optimizations that want to look for these annotations. These have no
12141other defined use; they are ignored by code generation and optimization.
12142
12143'``llvm.trap``' Intrinsic
12144^^^^^^^^^^^^^^^^^^^^^^^^^
12145
12146Syntax:
12147"""""""
12148
12149::
12150
12151 declare void @llvm.trap() noreturn nounwind
12152
12153Overview:
12154"""""""""
12155
12156The '``llvm.trap``' intrinsic.
12157
12158Arguments:
12159""""""""""
12160
12161None.
12162
12163Semantics:
12164""""""""""
12165
12166This intrinsic is lowered to the target dependent trap instruction. If
12167the target does not have a trap instruction, this intrinsic will be
12168lowered to a call of the ``abort()`` function.
12169
12170'``llvm.debugtrap``' Intrinsic
12171^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12172
12173Syntax:
12174"""""""
12175
12176::
12177
12178 declare void @llvm.debugtrap() nounwind
12179
12180Overview:
12181"""""""""
12182
12183The '``llvm.debugtrap``' intrinsic.
12184
12185Arguments:
12186""""""""""
12187
12188None.
12189
12190Semantics:
12191""""""""""
12192
12193This intrinsic is lowered to code which is intended to cause an
12194execution trap with the intention of requesting the attention of a
12195debugger.
12196
12197'``llvm.stackprotector``' Intrinsic
12198^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12199
12200Syntax:
12201"""""""
12202
12203::
12204
12205 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12206
12207Overview:
12208"""""""""
12209
12210The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12211onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12212is placed on the stack before local variables.
12213
12214Arguments:
12215""""""""""
12216
12217The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12218The first argument is the value loaded from the stack guard
12219``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12220enough space to hold the value of the guard.
12221
12222Semantics:
12223""""""""""
12224
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012225This intrinsic causes the prologue/epilogue inserter to force the position of
12226the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12227to ensure that if a local variable on the stack is overwritten, it will destroy
12228the value of the guard. When the function exits, the guard on the stack is
12229checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12230different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12231calling the ``__stack_chk_fail()`` function.
12232
Tim Shene885d5e2016-04-19 19:40:37 +000012233'``llvm.stackguard``' Intrinsic
12234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12235
12236Syntax:
12237"""""""
12238
12239::
12240
12241 declare i8* @llvm.stackguard()
12242
12243Overview:
12244"""""""""
12245
12246The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12247
12248It should not be generated by frontends, since it is only for internal usage.
12249The reason why we create this intrinsic is that we still support IR form Stack
12250Protector in FastISel.
12251
12252Arguments:
12253""""""""""
12254
12255None.
12256
12257Semantics:
12258""""""""""
12259
12260On some platforms, the value returned by this intrinsic remains unchanged
12261between loads in the same thread. On other platforms, it returns the same
12262global variable value, if any, e.g. ``@__stack_chk_guard``.
12263
12264Currently some platforms have IR-level customized stack guard loading (e.g.
12265X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12266in the future.
12267
Sean Silvab084af42012-12-07 10:36:55 +000012268'``llvm.objectsize``' Intrinsic
12269^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12270
12271Syntax:
12272"""""""
12273
12274::
12275
12276 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12277 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12278
12279Overview:
12280"""""""""
12281
12282The ``llvm.objectsize`` intrinsic is designed to provide information to
12283the optimizers to determine at compile time whether a) an operation
12284(like memcpy) will overflow a buffer that corresponds to an object, or
12285b) that a runtime check for overflow isn't necessary. An object in this
12286context means an allocation of a specific class, structure, array, or
12287other object.
12288
12289Arguments:
12290""""""""""
12291
12292The ``llvm.objectsize`` intrinsic takes two arguments. The first
12293argument is a pointer to or into the ``object``. The second argument is
12294a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12295or -1 (if false) when the object size is unknown. The second argument
12296only accepts constants.
12297
12298Semantics:
12299""""""""""
12300
12301The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12302the size of the object concerned. If the size cannot be determined at
12303compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12304on the ``min`` argument).
12305
12306'``llvm.expect``' Intrinsic
12307^^^^^^^^^^^^^^^^^^^^^^^^^^^
12308
12309Syntax:
12310"""""""
12311
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012312This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12313integer bit width.
12314
Sean Silvab084af42012-12-07 10:36:55 +000012315::
12316
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012317 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012318 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12319 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12320
12321Overview:
12322"""""""""
12323
12324The ``llvm.expect`` intrinsic provides information about expected (the
12325most probable) value of ``val``, which can be used by optimizers.
12326
12327Arguments:
12328""""""""""
12329
12330The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12331a value. The second argument is an expected value, this needs to be a
12332constant value, variables are not allowed.
12333
12334Semantics:
12335""""""""""
12336
12337This intrinsic is lowered to the ``val``.
12338
Philip Reamese0e90832015-04-26 22:23:12 +000012339.. _int_assume:
12340
Hal Finkel93046912014-07-25 21:13:35 +000012341'``llvm.assume``' Intrinsic
12342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12343
12344Syntax:
12345"""""""
12346
12347::
12348
12349 declare void @llvm.assume(i1 %cond)
12350
12351Overview:
12352"""""""""
12353
12354The ``llvm.assume`` allows the optimizer to assume that the provided
12355condition is true. This information can then be used in simplifying other parts
12356of the code.
12357
12358Arguments:
12359""""""""""
12360
12361The condition which the optimizer may assume is always true.
12362
12363Semantics:
12364""""""""""
12365
12366The intrinsic allows the optimizer to assume that the provided condition is
12367always true whenever the control flow reaches the intrinsic call. No code is
12368generated for this intrinsic, and instructions that contribute only to the
12369provided condition are not used for code generation. If the condition is
12370violated during execution, the behavior is undefined.
12371
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012372Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012373used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12374only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012375if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012376sufficient overall improvement in code quality. For this reason,
12377``llvm.assume`` should not be used to document basic mathematical invariants
12378that the optimizer can otherwise deduce or facts that are of little use to the
12379optimizer.
12380
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012381.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012382
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012383'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012384^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12385
12386Syntax:
12387"""""""
12388
12389::
12390
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012391 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012392
12393
12394Arguments:
12395""""""""""
12396
12397The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012398metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012399
12400Overview:
12401"""""""""
12402
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012403The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12404with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012405
Peter Collingbourne0312f612016-06-25 00:23:04 +000012406'``llvm.type.checked.load``' Intrinsic
12407^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12408
12409Syntax:
12410"""""""
12411
12412::
12413
12414 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12415
12416
12417Arguments:
12418""""""""""
12419
12420The first argument is a pointer from which to load a function pointer. The
12421second argument is the byte offset from which to load the function pointer. The
12422third argument is a metadata object representing a :doc:`type identifier
12423<TypeMetadata>`.
12424
12425Overview:
12426"""""""""
12427
12428The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12429virtual table pointer using type metadata. This intrinsic is used to implement
12430control flow integrity in conjunction with virtual call optimization. The
12431virtual call optimization pass will optimize away ``llvm.type.checked.load``
12432intrinsics associated with devirtualized calls, thereby removing the type
12433check in cases where it is not needed to enforce the control flow integrity
12434constraint.
12435
12436If the given pointer is associated with a type metadata identifier, this
12437function returns true as the second element of its return value. (Note that
12438the function may also return true if the given pointer is not associated
12439with a type metadata identifier.) If the function's return value's second
12440element is true, the following rules apply to the first element:
12441
12442- If the given pointer is associated with the given type metadata identifier,
12443 it is the function pointer loaded from the given byte offset from the given
12444 pointer.
12445
12446- If the given pointer is not associated with the given type metadata
12447 identifier, it is one of the following (the choice of which is unspecified):
12448
12449 1. The function pointer that would have been loaded from an arbitrarily chosen
12450 (through an unspecified mechanism) pointer associated with the type
12451 metadata.
12452
12453 2. If the function has a non-void return type, a pointer to a function that
12454 returns an unspecified value without causing side effects.
12455
12456If the function's return value's second element is false, the value of the
12457first element is undefined.
12458
12459
Sean Silvab084af42012-12-07 10:36:55 +000012460'``llvm.donothing``' Intrinsic
12461^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12462
12463Syntax:
12464"""""""
12465
12466::
12467
12468 declare void @llvm.donothing() nounwind readnone
12469
12470Overview:
12471"""""""""
12472
Juergen Ributzkac9161192014-10-23 22:36:13 +000012473The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012474three intrinsics (besides ``llvm.experimental.patchpoint`` and
12475``llvm.experimental.gc.statepoint``) that can be called with an invoke
12476instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012477
12478Arguments:
12479""""""""""
12480
12481None.
12482
12483Semantics:
12484""""""""""
12485
12486This intrinsic does nothing, and it's removed by optimizers and ignored
12487by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012488
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012489'``llvm.experimental.deoptimize``' Intrinsic
12490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12491
12492Syntax:
12493"""""""
12494
12495::
12496
12497 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12498
12499Overview:
12500"""""""""
12501
12502This intrinsic, together with :ref:`deoptimization operand bundles
12503<deopt_opbundles>`, allow frontends to express transfer of control and
12504frame-local state from the currently executing (typically more specialized,
12505hence faster) version of a function into another (typically more generic, hence
12506slower) version.
12507
12508In languages with a fully integrated managed runtime like Java and JavaScript
12509this intrinsic can be used to implement "uncommon trap" or "side exit" like
12510functionality. In unmanaged languages like C and C++, this intrinsic can be
12511used to represent the slow paths of specialized functions.
12512
12513
12514Arguments:
12515""""""""""
12516
12517The intrinsic takes an arbitrary number of arguments, whose meaning is
12518decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12519
12520Semantics:
12521""""""""""
12522
12523The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12524deoptimization continuation (denoted using a :ref:`deoptimization
12525operand bundle <deopt_opbundles>`) and returns the value returned by
12526the deoptimization continuation. Defining the semantic properties of
12527the continuation itself is out of scope of the language reference --
12528as far as LLVM is concerned, the deoptimization continuation can
12529invoke arbitrary side effects, including reading from and writing to
12530the entire heap.
12531
12532Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12533continue execution to the end of the physical frame containing them, so all
12534calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12535
12536 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12537 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12538 - The ``ret`` instruction must return the value produced by the
12539 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12540
12541Note that the above restrictions imply that the return type for a call to
12542``@llvm.experimental.deoptimize`` will match the return type of its immediate
12543caller.
12544
12545The inliner composes the ``"deopt"`` continuations of the caller into the
12546``"deopt"`` continuations present in the inlinee, and also updates calls to this
12547intrinsic to return directly from the frame of the function it inlined into.
12548
Sanjoy Dase0aa4142016-05-12 01:17:38 +000012549All declarations of ``@llvm.experimental.deoptimize`` must share the
12550same calling convention.
12551
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012552.. _deoptimize_lowering:
12553
12554Lowering:
12555"""""""""
12556
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012557Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12558symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12559ensure that this symbol is defined). The call arguments to
12560``@llvm.experimental.deoptimize`` are lowered as if they were formal
12561arguments of the specified types, and not as varargs.
12562
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012563
Sanjoy Das021de052016-03-31 00:18:46 +000012564'``llvm.experimental.guard``' Intrinsic
12565^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12566
12567Syntax:
12568"""""""
12569
12570::
12571
12572 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12573
12574Overview:
12575"""""""""
12576
12577This intrinsic, together with :ref:`deoptimization operand bundles
12578<deopt_opbundles>`, allows frontends to express guards or checks on
12579optimistic assumptions made during compilation. The semantics of
12580``@llvm.experimental.guard`` is defined in terms of
12581``@llvm.experimental.deoptimize`` -- its body is defined to be
12582equivalent to:
12583
Renato Golin124f2592016-07-20 12:16:38 +000012584.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000012585
Renato Golin124f2592016-07-20 12:16:38 +000012586 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12587 %realPred = and i1 %pred, undef
12588 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000012589
Renato Golin124f2592016-07-20 12:16:38 +000012590 leave:
12591 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12592 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000012593
Renato Golin124f2592016-07-20 12:16:38 +000012594 continue:
12595 ret void
12596 }
Sanjoy Das021de052016-03-31 00:18:46 +000012597
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012598
12599with the optional ``[, !make.implicit !{}]`` present if and only if it
12600is present on the call site. For more details on ``!make.implicit``,
12601see :doc:`FaultMaps`.
12602
Sanjoy Das021de052016-03-31 00:18:46 +000012603In words, ``@llvm.experimental.guard`` executes the attached
12604``"deopt"`` continuation if (but **not** only if) its first argument
12605is ``false``. Since the optimizer is allowed to replace the ``undef``
12606with an arbitrary value, it can optimize guard to fail "spuriously",
12607i.e. without the original condition being false (hence the "not only
12608if"); and this allows for "check widening" type optimizations.
12609
12610``@llvm.experimental.guard`` cannot be invoked.
12611
12612
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012613'``llvm.load.relative``' Intrinsic
12614^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12615
12616Syntax:
12617"""""""
12618
12619::
12620
12621 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12622
12623Overview:
12624"""""""""
12625
12626This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12627adds ``%ptr`` to that value and returns it. The constant folder specifically
12628recognizes the form of this intrinsic and the constant initializers it may
12629load from; if a loaded constant initializer is known to have the form
12630``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12631
12632LLVM provides that the calculation of such a constant initializer will
12633not overflow at link time under the medium code model if ``x`` is an
12634``unnamed_addr`` function. However, it does not provide this guarantee for
12635a constant initializer folded into a function body. This intrinsic can be
12636used to avoid the possibility of overflows when loading from such a constant.
12637
Andrew Trick5e029ce2013-12-24 02:57:25 +000012638Stack Map Intrinsics
12639--------------------
12640
12641LLVM provides experimental intrinsics to support runtime patching
12642mechanisms commonly desired in dynamic language JITs. These intrinsics
12643are described in :doc:`StackMaps`.