blob: 5bcbb22481230d341d4881d4eeacb0944e473361 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
645an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000646
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000647Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000648:ref:`Thread Local Storage Model <tls_model>`.
649
Nico Rieck7157bb72014-01-14 15:22:47 +0000650Syntax::
651
Rafael Espindola32483a72016-05-10 18:22:45 +0000652 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000653 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
654 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000655 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000656 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000657 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659For example, the following defines a global in a numbered address space
660with an initializer, section, and alignment:
661
662.. code-block:: llvm
663
664 @G = addrspace(5) constant float 1.0, section "foo", align 4
665
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000666The following example just declares a global variable
667
668.. code-block:: llvm
669
670 @G = external global i32
671
Sean Silvab084af42012-12-07 10:36:55 +0000672The following example defines a thread-local global with the
673``initialexec`` TLS model:
674
675.. code-block:: llvm
676
677 @G = thread_local(initialexec) global i32 0, align 4
678
679.. _functionstructure:
680
681Functions
682---------
683
684LLVM function definitions consist of the "``define``" keyword, an
685optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000686style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
687an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000688an optional ``unnamed_addr`` attribute, a return type, an optional
689:ref:`parameter attribute <paramattrs>` for the return type, a function
690name, a (possibly empty) argument list (each with optional :ref:`parameter
691attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000692an optional section, an optional alignment,
693an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000694an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000695an optional :ref:`prologue <prologuedata>`,
696an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000697an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000698an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000699
700LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000701optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
702<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
703optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
704or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
705attribute <paramattrs>` for the return type, a function name, a possibly
706empty list of arguments, an optional alignment, an optional :ref:`garbage
707collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
708:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000709
Bill Wendling6822ecb2013-10-27 05:09:12 +0000710A function definition contains a list of basic blocks, forming the CFG (Control
711Flow Graph) for the function. Each basic block may optionally start with a label
712(giving the basic block a symbol table entry), contains a list of instructions,
713and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
714function return). If an explicit label is not provided, a block is assigned an
715implicit numbered label, using the next value from the same counter as used for
716unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
717entry block does not have an explicit label, it will be assigned label "%0",
718then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000719
720The first basic block in a function is special in two ways: it is
721immediately executed on entrance to the function, and it is not allowed
722to have predecessor basic blocks (i.e. there can not be any branches to
723the entry block of a function). Because the block can have no
724predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
725
726LLVM allows an explicit section to be specified for functions. If the
727target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000728Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730An explicit alignment may be specified for a function. If not present,
731or if the alignment is set to zero, the alignment of the function is set
732by the target to whatever it feels convenient. If an explicit alignment
733is specified, the function is forced to have at least that much
734alignment. All alignments must be a power of 2.
735
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000736If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000737be significant and two identical functions can be merged.
738
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000739If the ``local_unnamed_addr`` attribute is given, the address is known to
740not be significant within the module.
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Syntax::
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000745 [cconv] [ret attrs]
746 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000747 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
748 [comdat [($name)]] [align N] [gc] [prefix Constant]
749 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000750
Sean Silva706fba52015-08-06 22:56:24 +0000751The argument list is a comma separated sequence of arguments where each
752argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000753
754Syntax::
755
756 <type> [parameter Attrs] [name]
757
758
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000759.. _langref_aliases:
760
Sean Silvab084af42012-12-07 10:36:55 +0000761Aliases
762-------
763
Rafael Espindola64c1e182014-06-03 02:41:57 +0000764Aliases, unlike function or variables, don't create any new data. They
765are just a new symbol and metadata for an existing position.
766
767Aliases have a name and an aliasee that is either a global value or a
768constant expression.
769
Nico Rieck7157bb72014-01-14 15:22:47 +0000770Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000771:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
772<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000773
774Syntax::
775
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000776 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000777
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000778The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000779``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000780might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000781
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000782Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000783the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
784to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000785
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000786If the ``local_unnamed_addr`` attribute is given, the address is known to
787not be significant within the module.
788
Rafael Espindola64c1e182014-06-03 02:41:57 +0000789Since aliases are only a second name, some restrictions apply, of which
790some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000791
Rafael Espindola64c1e182014-06-03 02:41:57 +0000792* The expression defining the aliasee must be computable at assembly
793 time. Since it is just a name, no relocations can be used.
794
795* No alias in the expression can be weak as the possibility of the
796 intermediate alias being overridden cannot be represented in an
797 object file.
798
799* No global value in the expression can be a declaration, since that
800 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000801
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000802.. _langref_ifunc:
803
804IFuncs
805-------
806
807IFuncs, like as aliases, don't create any new data or func. They are just a new
808symbol that dynamic linker resolves at runtime by calling a resolver function.
809
810IFuncs have a name and a resolver that is a function called by dynamic linker
811that returns address of another function associated with the name.
812
813IFunc may have an optional :ref:`linkage type <linkage>` and an optional
814:ref:`visibility style <visibility>`.
815
816Syntax::
817
818 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821.. _langref_comdats:
822
823Comdats
824-------
825
826Comdat IR provides access to COFF and ELF object file COMDAT functionality.
827
Sean Silvaa1190322015-08-06 22:56:48 +0000828Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000829specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000830that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000831aliasee computes to, if any.
832
833Comdats have a selection kind to provide input on how the linker should
834choose between keys in two different object files.
835
836Syntax::
837
838 $<Name> = comdat SelectionKind
839
840The selection kind must be one of the following:
841
842``any``
843 The linker may choose any COMDAT key, the choice is arbitrary.
844``exactmatch``
845 The linker may choose any COMDAT key but the sections must contain the
846 same data.
847``largest``
848 The linker will choose the section containing the largest COMDAT key.
849``noduplicates``
850 The linker requires that only section with this COMDAT key exist.
851``samesize``
852 The linker may choose any COMDAT key but the sections must contain the
853 same amount of data.
854
855Note that the Mach-O platform doesn't support COMDATs and ELF only supports
856``any`` as a selection kind.
857
858Here is an example of a COMDAT group where a function will only be selected if
859the COMDAT key's section is the largest:
860
Renato Golin124f2592016-07-20 12:16:38 +0000861.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000862
863 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000864 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000865
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000867 ret void
868 }
869
Rafael Espindola83a362c2015-01-06 22:55:16 +0000870As a syntactic sugar the ``$name`` can be omitted if the name is the same as
871the global name:
872
Renato Golin124f2592016-07-20 12:16:38 +0000873.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000874
875 $foo = comdat any
876 @foo = global i32 2, comdat
877
878
David Majnemerdad0a642014-06-27 18:19:56 +0000879In a COFF object file, this will create a COMDAT section with selection kind
880``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
881and another COMDAT section with selection kind
882``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000883section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885There are some restrictions on the properties of the global object.
886It, or an alias to it, must have the same name as the COMDAT group when
887targeting COFF.
888The contents and size of this object may be used during link-time to determine
889which COMDAT groups get selected depending on the selection kind.
890Because the name of the object must match the name of the COMDAT group, the
891linkage of the global object must not be local; local symbols can get renamed
892if a collision occurs in the symbol table.
893
894The combined use of COMDATS and section attributes may yield surprising results.
895For example:
896
Renato Golin124f2592016-07-20 12:16:38 +0000897.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000898
899 $foo = comdat any
900 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901 @g1 = global i32 42, section "sec", comdat($foo)
902 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000903
904From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000905with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000906COMDAT groups and COMDATs, at the object file level, are represented by
907sections.
908
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000909Note that certain IR constructs like global variables and functions may
910create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000911COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000912in individual sections (e.g. when `-data-sections` or `-function-sections`
913is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000914
Sean Silvab084af42012-12-07 10:36:55 +0000915.. _namedmetadatastructure:
916
917Named Metadata
918--------------
919
920Named metadata is a collection of metadata. :ref:`Metadata
921nodes <metadata>` (but not metadata strings) are the only valid
922operands for a named metadata.
923
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000924#. Named metadata are represented as a string of characters with the
925 metadata prefix. The rules for metadata names are the same as for
926 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
927 are still valid, which allows any character to be part of a name.
928
Sean Silvab084af42012-12-07 10:36:55 +0000929Syntax::
930
931 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000932 !0 = !{!"zero"}
933 !1 = !{!"one"}
934 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000935 ; A named metadata.
936 !name = !{!0, !1, !2}
937
938.. _paramattrs:
939
940Parameter Attributes
941--------------------
942
943The return type and each parameter of a function type may have a set of
944*parameter attributes* associated with them. Parameter attributes are
945used to communicate additional information about the result or
946parameters of a function. Parameter attributes are considered to be part
947of the function, not of the function type, so functions with different
948parameter attributes can have the same function type.
949
950Parameter attributes are simple keywords that follow the type specified.
951If multiple parameter attributes are needed, they are space separated.
952For example:
953
954.. code-block:: llvm
955
956 declare i32 @printf(i8* noalias nocapture, ...)
957 declare i32 @atoi(i8 zeroext)
958 declare signext i8 @returns_signed_char()
959
960Note that any attributes for the function result (``nounwind``,
961``readonly``) come immediately after the argument list.
962
963Currently, only the following parameter attributes are defined:
964
965``zeroext``
966 This indicates to the code generator that the parameter or return
967 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000968 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000969``signext``
970 This indicates to the code generator that the parameter or return
971 value should be sign-extended to the extent required by the target's
972 ABI (which is usually 32-bits) by the caller (for a parameter) or
973 the callee (for a return value).
974``inreg``
975 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000976 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000977 a function call or return (usually, by putting it in a register as
978 opposed to memory, though some targets use it to distinguish between
979 two different kinds of registers). Use of this attribute is
980 target-specific.
981``byval``
982 This indicates that the pointer parameter should really be passed by
983 value to the function. The attribute implies that a hidden copy of
984 the pointee is made between the caller and the callee, so the callee
985 is unable to modify the value in the caller. This attribute is only
986 valid on LLVM pointer arguments. It is generally used to pass
987 structs and arrays by value, but is also valid on pointers to
988 scalars. The copy is considered to belong to the caller not the
989 callee (for example, ``readonly`` functions should not write to
990 ``byval`` parameters). This is not a valid attribute for return
991 values.
992
993 The byval attribute also supports specifying an alignment with the
994 align attribute. It indicates the alignment of the stack slot to
995 form and the known alignment of the pointer specified to the call
996 site. If the alignment is not specified, then the code generator
997 makes a target-specific assumption.
998
Reid Klecknera534a382013-12-19 02:14:12 +0000999.. _attr_inalloca:
1000
1001``inalloca``
1002
Reid Kleckner60d3a832014-01-16 22:59:24 +00001003 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001004 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001005 be a pointer to stack memory produced by an ``alloca`` instruction.
1006 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001007 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001008 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001009
Reid Kleckner436c42e2014-01-17 23:58:17 +00001010 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001011 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001012 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001013 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001014 ``inalloca`` attribute also disables LLVM's implicit lowering of
1015 large aggregate return values, which means that frontend authors
1016 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001017
Reid Kleckner60d3a832014-01-16 22:59:24 +00001018 When the call site is reached, the argument allocation must have
1019 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001020 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001021 space after an argument allocation and before its call site, but it
1022 must be cleared off with :ref:`llvm.stackrestore
1023 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001024
1025 See :doc:`InAlloca` for more information on how to use this
1026 attribute.
1027
Sean Silvab084af42012-12-07 10:36:55 +00001028``sret``
1029 This indicates that the pointer parameter specifies the address of a
1030 structure that is the return value of the function in the source
1031 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001032 loads and stores to the structure may be assumed by the callee not
1033 to trap and to be properly aligned. This is not a valid attribute
1034 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001035
Hal Finkelccc70902014-07-22 16:58:55 +00001036``align <n>``
1037 This indicates that the pointer value may be assumed by the optimizer to
1038 have the specified alignment.
1039
1040 Note that this attribute has additional semantics when combined with the
1041 ``byval`` attribute.
1042
Sean Silva1703e702014-04-08 21:06:22 +00001043.. _noalias:
1044
Sean Silvab084af42012-12-07 10:36:55 +00001045``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001046 This indicates that objects accessed via pointer values
1047 :ref:`based <pointeraliasing>` on the argument or return value are not also
1048 accessed, during the execution of the function, via pointer values not
1049 *based* on the argument or return value. The attribute on a return value
1050 also has additional semantics described below. The caller shares the
1051 responsibility with the callee for ensuring that these requirements are met.
1052 For further details, please see the discussion of the NoAlias response in
1053 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001054
1055 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001056 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001057
1058 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001059 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1060 attribute on return values are stronger than the semantics of the attribute
1061 when used on function arguments. On function return values, the ``noalias``
1062 attribute indicates that the function acts like a system memory allocation
1063 function, returning a pointer to allocated storage disjoint from the
1064 storage for any other object accessible to the caller.
1065
Sean Silvab084af42012-12-07 10:36:55 +00001066``nocapture``
1067 This indicates that the callee does not make any copies of the
1068 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001069 attribute for return values. Addresses used in volatile operations
1070 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001071
1072.. _nest:
1073
1074``nest``
1075 This indicates that the pointer parameter can be excised using the
1076 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001077 attribute for return values and can only be applied to one parameter.
1078
1079``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001080 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001081 value. This is a hint to the optimizer and code generator used when
1082 generating the caller, allowing value propagation, tail call optimization,
1083 and omission of register saves and restores in some cases; it is not
1084 checked or enforced when generating the callee. The parameter and the
1085 function return type must be valid operands for the
1086 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1087 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001088
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001089``nonnull``
1090 This indicates that the parameter or return pointer is not null. This
1091 attribute may only be applied to pointer typed parameters. This is not
1092 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001093 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001094 is non-null.
1095
Hal Finkelb0407ba2014-07-18 15:51:28 +00001096``dereferenceable(<n>)``
1097 This indicates that the parameter or return pointer is dereferenceable. This
1098 attribute may only be applied to pointer typed parameters. A pointer that
1099 is dereferenceable can be loaded from speculatively without a risk of
1100 trapping. The number of bytes known to be dereferenceable must be provided
1101 in parentheses. It is legal for the number of bytes to be less than the
1102 size of the pointee type. The ``nonnull`` attribute does not imply
1103 dereferenceability (consider a pointer to one element past the end of an
1104 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1105 ``addrspace(0)`` (which is the default address space).
1106
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001107``dereferenceable_or_null(<n>)``
1108 This indicates that the parameter or return value isn't both
1109 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001110 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001111 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1112 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1113 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1114 and in other address spaces ``dereferenceable_or_null(<n>)``
1115 implies that a pointer is at least one of ``dereferenceable(<n>)``
1116 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001117 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001118 pointer typed parameters.
1119
Manman Renf46262e2016-03-29 17:37:21 +00001120``swiftself``
1121 This indicates that the parameter is the self/context parameter. This is not
1122 a valid attribute for return values and can only be applied to one
1123 parameter.
1124
Manman Ren9bfd0d02016-04-01 21:41:15 +00001125``swifterror``
1126 This attribute is motivated to model and optimize Swift error handling. It
1127 can be applied to a parameter with pointer to pointer type or a
1128 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001129 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1130 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1131 the parameter or the alloca) can only be loaded and stored from, or used as
1132 a ``swifterror`` argument. This is not a valid attribute for return values
1133 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001134
1135 These constraints allow the calling convention to optimize access to
1136 ``swifterror`` variables by associating them with a specific register at
1137 call boundaries rather than placing them in memory. Since this does change
1138 the calling convention, a function which uses the ``swifterror`` attribute
1139 on a parameter is not ABI-compatible with one which does not.
1140
1141 These constraints also allow LLVM to assume that a ``swifterror`` argument
1142 does not alias any other memory visible within a function and that a
1143 ``swifterror`` alloca passed as an argument does not escape.
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _gc:
1146
Philip Reamesf80bbff2015-02-25 23:45:20 +00001147Garbage Collector Strategy Names
1148--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001149
Philip Reamesf80bbff2015-02-25 23:45:20 +00001150Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001151string:
1152
1153.. code-block:: llvm
1154
1155 define void @f() gc "name" { ... }
1156
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001157The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001158<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001159strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001160named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001161garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001162which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001163
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001164.. _prefixdata:
1165
1166Prefix Data
1167-----------
1168
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001169Prefix data is data associated with a function which the code
1170generator will emit immediately before the function's entrypoint.
1171The purpose of this feature is to allow frontends to associate
1172language-specific runtime metadata with specific functions and make it
1173available through the function pointer while still allowing the
1174function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001175
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001176To access the data for a given function, a program may bitcast the
1177function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001178index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001179the prefix data. For instance, take the example of a function annotated
1180with a single ``i32``,
1181
1182.. code-block:: llvm
1183
1184 define void @f() prefix i32 123 { ... }
1185
1186The prefix data can be referenced as,
1187
1188.. code-block:: llvm
1189
David Blaikie16a97eb2015-03-04 22:02:58 +00001190 %0 = bitcast void* () @f to i32*
1191 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001192 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001193
1194Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001195of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001196beginning of the prefix data is aligned. This means that if the size
1197of the prefix data is not a multiple of the alignment size, the
1198function's entrypoint will not be aligned. If alignment of the
1199function's entrypoint is desired, padding must be added to the prefix
1200data.
1201
Sean Silvaa1190322015-08-06 22:56:48 +00001202A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001203to the ``available_externally`` linkage in that the data may be used by the
1204optimizers but will not be emitted in the object file.
1205
1206.. _prologuedata:
1207
1208Prologue Data
1209-------------
1210
1211The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1212be inserted prior to the function body. This can be used for enabling
1213function hot-patching and instrumentation.
1214
1215To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001216have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001217bytes which decode to a sequence of machine instructions, valid for the
1218module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001219the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001221definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001222makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001223
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001225which encodes the ``nop`` instruction:
1226
Renato Golin124f2592016-07-20 12:16:38 +00001227.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001228
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001230
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231Generally prologue data can be formed by encoding a relative branch instruction
1232which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001233x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1234
Renato Golin124f2592016-07-20 12:16:38 +00001235.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001236
1237 %0 = type <{ i8, i8, i8* }>
1238
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001239 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001240
Sean Silvaa1190322015-08-06 22:56:48 +00001241A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001242to the ``available_externally`` linkage in that the data may be used by the
1243optimizers but will not be emitted in the object file.
1244
David Majnemer7fddecc2015-06-17 20:52:32 +00001245.. _personalityfn:
1246
1247Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001248--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001249
1250The ``personality`` attribute permits functions to specify what function
1251to use for exception handling.
1252
Bill Wendling63b88192013-02-06 06:52:58 +00001253.. _attrgrp:
1254
1255Attribute Groups
1256----------------
1257
1258Attribute groups are groups of attributes that are referenced by objects within
1259the IR. They are important for keeping ``.ll`` files readable, because a lot of
1260functions will use the same set of attributes. In the degenerative case of a
1261``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1262group will capture the important command line flags used to build that file.
1263
1264An attribute group is a module-level object. To use an attribute group, an
1265object references the attribute group's ID (e.g. ``#37``). An object may refer
1266to more than one attribute group. In that situation, the attributes from the
1267different groups are merged.
1268
1269Here is an example of attribute groups for a function that should always be
1270inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1271
1272.. code-block:: llvm
1273
1274 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001275 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001276
1277 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001278 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001279
1280 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1281 define void @f() #0 #1 { ... }
1282
Sean Silvab084af42012-12-07 10:36:55 +00001283.. _fnattrs:
1284
1285Function Attributes
1286-------------------
1287
1288Function attributes are set to communicate additional information about
1289a function. Function attributes are considered to be part of the
1290function, not of the function type, so functions with different function
1291attributes can have the same function type.
1292
1293Function attributes are simple keywords that follow the type specified.
1294If multiple attributes are needed, they are space separated. For
1295example:
1296
1297.. code-block:: llvm
1298
1299 define void @f() noinline { ... }
1300 define void @f() alwaysinline { ... }
1301 define void @f() alwaysinline optsize { ... }
1302 define void @f() optsize { ... }
1303
Sean Silvab084af42012-12-07 10:36:55 +00001304``alignstack(<n>)``
1305 This attribute indicates that, when emitting the prologue and
1306 epilogue, the backend should forcibly align the stack pointer.
1307 Specify the desired alignment, which must be a power of two, in
1308 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001309``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1310 This attribute indicates that the annotated function will always return at
1311 least a given number of bytes (or null). Its arguments are zero-indexed
1312 parameter numbers; if one argument is provided, then it's assumed that at
1313 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1314 returned pointer. If two are provided, then it's assumed that
1315 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1316 available. The referenced parameters must be integer types. No assumptions
1317 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001318``alwaysinline``
1319 This attribute indicates that the inliner should attempt to inline
1320 this function into callers whenever possible, ignoring any active
1321 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001322``builtin``
1323 This indicates that the callee function at a call site should be
1324 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001325 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001326 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001327 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001328``cold``
1329 This attribute indicates that this function is rarely called. When
1330 computing edge weights, basic blocks post-dominated by a cold
1331 function call are also considered to be cold; and, thus, given low
1332 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001333``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001334 In some parallel execution models, there exist operations that cannot be
1335 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001336 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001337
Justin Lebar58535b12016-02-17 17:46:41 +00001338 The ``convergent`` attribute may appear on functions or call/invoke
1339 instructions. When it appears on a function, it indicates that calls to
1340 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001341 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001342 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001343 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001344
Justin Lebar58535b12016-02-17 17:46:41 +00001345 When it appears on a call/invoke, the ``convergent`` attribute indicates
1346 that we should treat the call as though we're calling a convergent
1347 function. This is particularly useful on indirect calls; without this we
1348 may treat such calls as though the target is non-convergent.
1349
1350 The optimizer may remove the ``convergent`` attribute on functions when it
1351 can prove that the function does not execute any convergent operations.
1352 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1353 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001354``inaccessiblememonly``
1355 This attribute indicates that the function may only access memory that
1356 is not accessible by the module being compiled. This is a weaker form
1357 of ``readnone``.
1358``inaccessiblemem_or_argmemonly``
1359 This attribute indicates that the function may only access memory that is
1360 either not accessible by the module being compiled, or is pointed to
1361 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001362``inlinehint``
1363 This attribute indicates that the source code contained a hint that
1364 inlining this function is desirable (such as the "inline" keyword in
1365 C/C++). It is just a hint; it imposes no requirements on the
1366 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001367``jumptable``
1368 This attribute indicates that the function should be added to a
1369 jump-instruction table at code-generation time, and that all address-taken
1370 references to this function should be replaced with a reference to the
1371 appropriate jump-instruction-table function pointer. Note that this creates
1372 a new pointer for the original function, which means that code that depends
1373 on function-pointer identity can break. So, any function annotated with
1374 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001375``minsize``
1376 This attribute suggests that optimization passes and code generator
1377 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001378 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001379 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001380``naked``
1381 This attribute disables prologue / epilogue emission for the
1382 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001383``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001384 This indicates that the callee function at a call site is not recognized as
1385 a built-in function. LLVM will retain the original call and not replace it
1386 with equivalent code based on the semantics of the built-in function, unless
1387 the call site uses the ``builtin`` attribute. This is valid at call sites
1388 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001389``noduplicate``
1390 This attribute indicates that calls to the function cannot be
1391 duplicated. A call to a ``noduplicate`` function may be moved
1392 within its parent function, but may not be duplicated within
1393 its parent function.
1394
1395 A function containing a ``noduplicate`` call may still
1396 be an inlining candidate, provided that the call is not
1397 duplicated by inlining. That implies that the function has
1398 internal linkage and only has one call site, so the original
1399 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001400``noimplicitfloat``
1401 This attributes disables implicit floating point instructions.
1402``noinline``
1403 This attribute indicates that the inliner should never inline this
1404 function in any situation. This attribute may not be used together
1405 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001406``nonlazybind``
1407 This attribute suppresses lazy symbol binding for the function. This
1408 may make calls to the function faster, at the cost of extra program
1409 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001410``noredzone``
1411 This attribute indicates that the code generator should not use a
1412 red zone, even if the target-specific ABI normally permits it.
1413``noreturn``
1414 This function attribute indicates that the function never returns
1415 normally. This produces undefined behavior at runtime if the
1416 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001417``norecurse``
1418 This function attribute indicates that the function does not call itself
1419 either directly or indirectly down any possible call path. This produces
1420 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001421``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001422 This function attribute indicates that the function never raises an
1423 exception. If the function does raise an exception, its runtime
1424 behavior is undefined. However, functions marked nounwind may still
1425 trap or generate asynchronous exceptions. Exception handling schemes
1426 that are recognized by LLVM to handle asynchronous exceptions, such
1427 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001428``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001429 This function attribute indicates that most optimization passes will skip
1430 this function, with the exception of interprocedural optimization passes.
1431 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001432 This attribute cannot be used together with the ``alwaysinline``
1433 attribute; this attribute is also incompatible
1434 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001435
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001436 This attribute requires the ``noinline`` attribute to be specified on
1437 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001438 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001439 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001440``optsize``
1441 This attribute suggests that optimization passes and code generator
1442 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001443 and otherwise do optimizations specifically to reduce code size as
1444 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001445``"patchable-function"``
1446 This attribute tells the code generator that the code
1447 generated for this function needs to follow certain conventions that
1448 make it possible for a runtime function to patch over it later.
1449 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001450 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001451
1452 * ``"prologue-short-redirect"`` - This style of patchable
1453 function is intended to support patching a function prologue to
1454 redirect control away from the function in a thread safe
1455 manner. It guarantees that the first instruction of the
1456 function will be large enough to accommodate a short jump
1457 instruction, and will be sufficiently aligned to allow being
1458 fully changed via an atomic compare-and-swap instruction.
1459 While the first requirement can be satisfied by inserting large
1460 enough NOP, LLVM can and will try to re-purpose an existing
1461 instruction (i.e. one that would have to be emitted anyway) as
1462 the patchable instruction larger than a short jump.
1463
1464 ``"prologue-short-redirect"`` is currently only supported on
1465 x86-64.
1466
1467 This attribute by itself does not imply restrictions on
1468 inter-procedural optimizations. All of the semantic effects the
1469 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001470``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001471 On a function, this attribute indicates that the function computes its
1472 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001473 without dereferencing any pointer arguments or otherwise accessing
1474 any mutable state (e.g. memory, control registers, etc) visible to
1475 caller functions. It does not write through any pointer arguments
1476 (including ``byval`` arguments) and never changes any state visible
1477 to callers. This means that it cannot unwind exceptions by calling
1478 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001479
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001480 On an argument, this attribute indicates that the function does not
1481 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001482 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001483``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001484 On a function, this attribute indicates that the function does not write
1485 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001486 modify any state (e.g. memory, control registers, etc) visible to
1487 caller functions. It may dereference pointer arguments and read
1488 state that may be set in the caller. A readonly function always
1489 returns the same value (or unwinds an exception identically) when
1490 called with the same set of arguments and global state. It cannot
1491 unwind an exception by calling the ``C++`` exception throwing
1492 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001493
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001494 On an argument, this attribute indicates that the function does not write
1495 through this pointer argument, even though it may write to the memory that
1496 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001497``writeonly``
1498 On a function, this attribute indicates that the function may write to but
1499 does not read from memory.
1500
1501 On an argument, this attribute indicates that the function may write to but
1502 does not read through this pointer argument (even though it may read from
1503 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001504``argmemonly``
1505 This attribute indicates that the only memory accesses inside function are
1506 loads and stores from objects pointed to by its pointer-typed arguments,
1507 with arbitrary offsets. Or in other words, all memory operations in the
1508 function can refer to memory only using pointers based on its function
1509 arguments.
1510 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1511 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001512``returns_twice``
1513 This attribute indicates that this function can return twice. The C
1514 ``setjmp`` is an example of such a function. The compiler disables
1515 some optimizations (like tail calls) in the caller of these
1516 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001517``safestack``
1518 This attribute indicates that
1519 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1520 protection is enabled for this function.
1521
1522 If a function that has a ``safestack`` attribute is inlined into a
1523 function that doesn't have a ``safestack`` attribute or which has an
1524 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1525 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001526``sanitize_address``
1527 This attribute indicates that AddressSanitizer checks
1528 (dynamic address safety analysis) are enabled for this function.
1529``sanitize_memory``
1530 This attribute indicates that MemorySanitizer checks (dynamic detection
1531 of accesses to uninitialized memory) are enabled for this function.
1532``sanitize_thread``
1533 This attribute indicates that ThreadSanitizer checks
1534 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001535``ssp``
1536 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001537 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001538 placed on the stack before the local variables that's checked upon
1539 return from the function to see if it has been overwritten. A
1540 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001541 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001542
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001543 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1544 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1545 - Calls to alloca() with variable sizes or constant sizes greater than
1546 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001547
Josh Magee24c7f062014-02-01 01:36:16 +00001548 Variables that are identified as requiring a protector will be arranged
1549 on the stack such that they are adjacent to the stack protector guard.
1550
Sean Silvab084af42012-12-07 10:36:55 +00001551 If a function that has an ``ssp`` attribute is inlined into a
1552 function that doesn't have an ``ssp`` attribute, then the resulting
1553 function will have an ``ssp`` attribute.
1554``sspreq``
1555 This attribute indicates that the function should *always* emit a
1556 stack smashing protector. This overrides the ``ssp`` function
1557 attribute.
1558
Josh Magee24c7f062014-02-01 01:36:16 +00001559 Variables that are identified as requiring a protector will be arranged
1560 on the stack such that they are adjacent to the stack protector guard.
1561 The specific layout rules are:
1562
1563 #. Large arrays and structures containing large arrays
1564 (``>= ssp-buffer-size``) are closest to the stack protector.
1565 #. Small arrays and structures containing small arrays
1566 (``< ssp-buffer-size``) are 2nd closest to the protector.
1567 #. Variables that have had their address taken are 3rd closest to the
1568 protector.
1569
Sean Silvab084af42012-12-07 10:36:55 +00001570 If a function that has an ``sspreq`` attribute is inlined into a
1571 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001572 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1573 an ``sspreq`` attribute.
1574``sspstrong``
1575 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001576 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001577 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001578 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001579
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001580 - Arrays of any size and type
1581 - Aggregates containing an array of any size and type.
1582 - Calls to alloca().
1583 - Local variables that have had their address taken.
1584
Josh Magee24c7f062014-02-01 01:36:16 +00001585 Variables that are identified as requiring a protector will be arranged
1586 on the stack such that they are adjacent to the stack protector guard.
1587 The specific layout rules are:
1588
1589 #. Large arrays and structures containing large arrays
1590 (``>= ssp-buffer-size``) are closest to the stack protector.
1591 #. Small arrays and structures containing small arrays
1592 (``< ssp-buffer-size``) are 2nd closest to the protector.
1593 #. Variables that have had their address taken are 3rd closest to the
1594 protector.
1595
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001596 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001597
1598 If a function that has an ``sspstrong`` attribute is inlined into a
1599 function that doesn't have an ``sspstrong`` attribute, then the
1600 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001601``"thunk"``
1602 This attribute indicates that the function will delegate to some other
1603 function with a tail call. The prototype of a thunk should not be used for
1604 optimization purposes. The caller is expected to cast the thunk prototype to
1605 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001606``uwtable``
1607 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001608 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001609 show that no exceptions passes by it. This is normally the case for
1610 the ELF x86-64 abi, but it can be disabled for some compilation
1611 units.
Sean Silvab084af42012-12-07 10:36:55 +00001612
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001613
1614.. _opbundles:
1615
1616Operand Bundles
1617---------------
1618
1619Note: operand bundles are a work in progress, and they should be
1620considered experimental at this time.
1621
1622Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001623with certain LLVM instructions (currently only ``call`` s and
1624``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001625incorrect and will change program semantics.
1626
1627Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001628
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001629 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001630 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1631 bundle operand ::= SSA value
1632 tag ::= string constant
1633
1634Operand bundles are **not** part of a function's signature, and a
1635given function may be called from multiple places with different kinds
1636of operand bundles. This reflects the fact that the operand bundles
1637are conceptually a part of the ``call`` (or ``invoke``), not the
1638callee being dispatched to.
1639
1640Operand bundles are a generic mechanism intended to support
1641runtime-introspection-like functionality for managed languages. While
1642the exact semantics of an operand bundle depend on the bundle tag,
1643there are certain limitations to how much the presence of an operand
1644bundle can influence the semantics of a program. These restrictions
1645are described as the semantics of an "unknown" operand bundle. As
1646long as the behavior of an operand bundle is describable within these
1647restrictions, LLVM does not need to have special knowledge of the
1648operand bundle to not miscompile programs containing it.
1649
David Majnemer34cacb42015-10-22 01:46:38 +00001650- The bundle operands for an unknown operand bundle escape in unknown
1651 ways before control is transferred to the callee or invokee.
1652- Calls and invokes with operand bundles have unknown read / write
1653 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001654 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001655 callsite specific attributes.
1656- An operand bundle at a call site cannot change the implementation
1657 of the called function. Inter-procedural optimizations work as
1658 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001659
Sanjoy Dascdafd842015-11-11 21:38:02 +00001660More specific types of operand bundles are described below.
1661
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001662.. _deopt_opbundles:
1663
Sanjoy Dascdafd842015-11-11 21:38:02 +00001664Deoptimization Operand Bundles
1665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1666
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001667Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001668operand bundle tag. These operand bundles represent an alternate
1669"safe" continuation for the call site they're attached to, and can be
1670used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001671specified call site. There can be at most one ``"deopt"`` operand
1672bundle attached to a call site. Exact details of deoptimization is
1673out of scope for the language reference, but it usually involves
1674rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001675
1676From the compiler's perspective, deoptimization operand bundles make
1677the call sites they're attached to at least ``readonly``. They read
1678through all of their pointer typed operands (even if they're not
1679otherwise escaped) and the entire visible heap. Deoptimization
1680operand bundles do not capture their operands except during
1681deoptimization, in which case control will not be returned to the
1682compiled frame.
1683
Sanjoy Das2d161452015-11-18 06:23:38 +00001684The inliner knows how to inline through calls that have deoptimization
1685operand bundles. Just like inlining through a normal call site
1686involves composing the normal and exceptional continuations, inlining
1687through a call site with a deoptimization operand bundle needs to
1688appropriately compose the "safe" deoptimization continuation. The
1689inliner does this by prepending the parent's deoptimization
1690continuation to every deoptimization continuation in the inlined body.
1691E.g. inlining ``@f`` into ``@g`` in the following example
1692
1693.. code-block:: llvm
1694
1695 define void @f() {
1696 call void @x() ;; no deopt state
1697 call void @y() [ "deopt"(i32 10) ]
1698 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1699 ret void
1700 }
1701
1702 define void @g() {
1703 call void @f() [ "deopt"(i32 20) ]
1704 ret void
1705 }
1706
1707will result in
1708
1709.. code-block:: llvm
1710
1711 define void @g() {
1712 call void @x() ;; still no deopt state
1713 call void @y() [ "deopt"(i32 20, i32 10) ]
1714 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1715 ret void
1716 }
1717
1718It is the frontend's responsibility to structure or encode the
1719deoptimization state in a way that syntactically prepending the
1720caller's deoptimization state to the callee's deoptimization state is
1721semantically equivalent to composing the caller's deoptimization
1722continuation after the callee's deoptimization continuation.
1723
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001724.. _ob_funclet:
1725
David Majnemer3bb88c02015-12-15 21:27:27 +00001726Funclet Operand Bundles
1727^^^^^^^^^^^^^^^^^^^^^^^
1728
1729Funclet operand bundles are characterized by the ``"funclet"``
1730operand bundle tag. These operand bundles indicate that a call site
1731is within a particular funclet. There can be at most one
1732``"funclet"`` operand bundle attached to a call site and it must have
1733exactly one bundle operand.
1734
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001735If any funclet EH pads have been "entered" but not "exited" (per the
1736`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1737it is undefined behavior to execute a ``call`` or ``invoke`` which:
1738
1739* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1740 intrinsic, or
1741* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1742 not-yet-exited funclet EH pad.
1743
1744Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1745executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1746
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001747GC Transition Operand Bundles
1748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1749
1750GC transition operand bundles are characterized by the
1751``"gc-transition"`` operand bundle tag. These operand bundles mark a
1752call as a transition between a function with one GC strategy to a
1753function with a different GC strategy. If coordinating the transition
1754between GC strategies requires additional code generation at the call
1755site, these bundles may contain any values that are needed by the
1756generated code. For more details, see :ref:`GC Transitions
1757<gc_transition_args>`.
1758
Sean Silvab084af42012-12-07 10:36:55 +00001759.. _moduleasm:
1760
1761Module-Level Inline Assembly
1762----------------------------
1763
1764Modules may contain "module-level inline asm" blocks, which corresponds
1765to the GCC "file scope inline asm" blocks. These blocks are internally
1766concatenated by LLVM and treated as a single unit, but may be separated
1767in the ``.ll`` file if desired. The syntax is very simple:
1768
1769.. code-block:: llvm
1770
1771 module asm "inline asm code goes here"
1772 module asm "more can go here"
1773
1774The strings can contain any character by escaping non-printable
1775characters. The escape sequence used is simply "\\xx" where "xx" is the
1776two digit hex code for the number.
1777
James Y Knightbc832ed2015-07-08 18:08:36 +00001778Note that the assembly string *must* be parseable by LLVM's integrated assembler
1779(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001780
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001781.. _langref_datalayout:
1782
Sean Silvab084af42012-12-07 10:36:55 +00001783Data Layout
1784-----------
1785
1786A module may specify a target specific data layout string that specifies
1787how data is to be laid out in memory. The syntax for the data layout is
1788simply:
1789
1790.. code-block:: llvm
1791
1792 target datalayout = "layout specification"
1793
1794The *layout specification* consists of a list of specifications
1795separated by the minus sign character ('-'). Each specification starts
1796with a letter and may include other information after the letter to
1797define some aspect of the data layout. The specifications accepted are
1798as follows:
1799
1800``E``
1801 Specifies that the target lays out data in big-endian form. That is,
1802 the bits with the most significance have the lowest address
1803 location.
1804``e``
1805 Specifies that the target lays out data in little-endian form. That
1806 is, the bits with the least significance have the lowest address
1807 location.
1808``S<size>``
1809 Specifies the natural alignment of the stack in bits. Alignment
1810 promotion of stack variables is limited to the natural stack
1811 alignment to avoid dynamic stack realignment. The stack alignment
1812 must be a multiple of 8-bits. If omitted, the natural stack
1813 alignment defaults to "unspecified", which does not prevent any
1814 alignment promotions.
1815``p[n]:<size>:<abi>:<pref>``
1816 This specifies the *size* of a pointer and its ``<abi>`` and
1817 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001818 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001819 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001820 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001821``i<size>:<abi>:<pref>``
1822 This specifies the alignment for an integer type of a given bit
1823 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1824``v<size>:<abi>:<pref>``
1825 This specifies the alignment for a vector type of a given bit
1826 ``<size>``.
1827``f<size>:<abi>:<pref>``
1828 This specifies the alignment for a floating point type of a given bit
1829 ``<size>``. Only values of ``<size>`` that are supported by the target
1830 will work. 32 (float) and 64 (double) are supported on all targets; 80
1831 or 128 (different flavors of long double) are also supported on some
1832 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001833``a:<abi>:<pref>``
1834 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001835``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001836 If present, specifies that llvm names are mangled in the output. The
1837 options are
1838
1839 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1840 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1841 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1842 symbols get a ``_`` prefix.
1843 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1844 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001845 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1846 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001847``n<size1>:<size2>:<size3>...``
1848 This specifies a set of native integer widths for the target CPU in
1849 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1850 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1851 this set are considered to support most general arithmetic operations
1852 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001853``ni:<address space0>:<address space1>:<address space2>...``
1854 This specifies pointer types with the specified address spaces
1855 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1856 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001857
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001858On every specification that takes a ``<abi>:<pref>``, specifying the
1859``<pref>`` alignment is optional. If omitted, the preceding ``:``
1860should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1861
Sean Silvab084af42012-12-07 10:36:55 +00001862When constructing the data layout for a given target, LLVM starts with a
1863default set of specifications which are then (possibly) overridden by
1864the specifications in the ``datalayout`` keyword. The default
1865specifications are given in this list:
1866
1867- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001868- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1869- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1870 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001871- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001872- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1873- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1874- ``i16:16:16`` - i16 is 16-bit aligned
1875- ``i32:32:32`` - i32 is 32-bit aligned
1876- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1877 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001878- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001879- ``f32:32:32`` - float is 32-bit aligned
1880- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001881- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001882- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1883- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001884- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001885
1886When LLVM is determining the alignment for a given type, it uses the
1887following rules:
1888
1889#. If the type sought is an exact match for one of the specifications,
1890 that specification is used.
1891#. If no match is found, and the type sought is an integer type, then
1892 the smallest integer type that is larger than the bitwidth of the
1893 sought type is used. If none of the specifications are larger than
1894 the bitwidth then the largest integer type is used. For example,
1895 given the default specifications above, the i7 type will use the
1896 alignment of i8 (next largest) while both i65 and i256 will use the
1897 alignment of i64 (largest specified).
1898#. If no match is found, and the type sought is a vector type, then the
1899 largest vector type that is smaller than the sought vector type will
1900 be used as a fall back. This happens because <128 x double> can be
1901 implemented in terms of 64 <2 x double>, for example.
1902
1903The function of the data layout string may not be what you expect.
1904Notably, this is not a specification from the frontend of what alignment
1905the code generator should use.
1906
1907Instead, if specified, the target data layout is required to match what
1908the ultimate *code generator* expects. This string is used by the
1909mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001910what the ultimate code generator uses. There is no way to generate IR
1911that does not embed this target-specific detail into the IR. If you
1912don't specify the string, the default specifications will be used to
1913generate a Data Layout and the optimization phases will operate
1914accordingly and introduce target specificity into the IR with respect to
1915these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001916
Bill Wendling5cc90842013-10-18 23:41:25 +00001917.. _langref_triple:
1918
1919Target Triple
1920-------------
1921
1922A module may specify a target triple string that describes the target
1923host. The syntax for the target triple is simply:
1924
1925.. code-block:: llvm
1926
1927 target triple = "x86_64-apple-macosx10.7.0"
1928
1929The *target triple* string consists of a series of identifiers delimited
1930by the minus sign character ('-'). The canonical forms are:
1931
1932::
1933
1934 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1935 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1936
1937This information is passed along to the backend so that it generates
1938code for the proper architecture. It's possible to override this on the
1939command line with the ``-mtriple`` command line option.
1940
Sean Silvab084af42012-12-07 10:36:55 +00001941.. _pointeraliasing:
1942
1943Pointer Aliasing Rules
1944----------------------
1945
1946Any memory access must be done through a pointer value associated with
1947an address range of the memory access, otherwise the behavior is
1948undefined. Pointer values are associated with address ranges according
1949to the following rules:
1950
1951- A pointer value is associated with the addresses associated with any
1952 value it is *based* on.
1953- An address of a global variable is associated with the address range
1954 of the variable's storage.
1955- The result value of an allocation instruction is associated with the
1956 address range of the allocated storage.
1957- A null pointer in the default address-space is associated with no
1958 address.
1959- An integer constant other than zero or a pointer value returned from
1960 a function not defined within LLVM may be associated with address
1961 ranges allocated through mechanisms other than those provided by
1962 LLVM. Such ranges shall not overlap with any ranges of addresses
1963 allocated by mechanisms provided by LLVM.
1964
1965A pointer value is *based* on another pointer value according to the
1966following rules:
1967
1968- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001969 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001970- The result value of a ``bitcast`` is *based* on the operand of the
1971 ``bitcast``.
1972- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1973 values that contribute (directly or indirectly) to the computation of
1974 the pointer's value.
1975- The "*based* on" relationship is transitive.
1976
1977Note that this definition of *"based"* is intentionally similar to the
1978definition of *"based"* in C99, though it is slightly weaker.
1979
1980LLVM IR does not associate types with memory. The result type of a
1981``load`` merely indicates the size and alignment of the memory from
1982which to load, as well as the interpretation of the value. The first
1983operand type of a ``store`` similarly only indicates the size and
1984alignment of the store.
1985
1986Consequently, type-based alias analysis, aka TBAA, aka
1987``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1988:ref:`Metadata <metadata>` may be used to encode additional information
1989which specialized optimization passes may use to implement type-based
1990alias analysis.
1991
1992.. _volatile:
1993
1994Volatile Memory Accesses
1995------------------------
1996
1997Certain memory accesses, such as :ref:`load <i_load>`'s,
1998:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1999marked ``volatile``. The optimizers must not change the number of
2000volatile operations or change their order of execution relative to other
2001volatile operations. The optimizers *may* change the order of volatile
2002operations relative to non-volatile operations. This is not Java's
2003"volatile" and has no cross-thread synchronization behavior.
2004
Andrew Trick89fc5a62013-01-30 21:19:35 +00002005IR-level volatile loads and stores cannot safely be optimized into
2006llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2007flagged volatile. Likewise, the backend should never split or merge
2008target-legal volatile load/store instructions.
2009
Andrew Trick7e6f9282013-01-31 00:49:39 +00002010.. admonition:: Rationale
2011
2012 Platforms may rely on volatile loads and stores of natively supported
2013 data width to be executed as single instruction. For example, in C
2014 this holds for an l-value of volatile primitive type with native
2015 hardware support, but not necessarily for aggregate types. The
2016 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002017 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002018 do not violate the frontend's contract with the language.
2019
Sean Silvab084af42012-12-07 10:36:55 +00002020.. _memmodel:
2021
2022Memory Model for Concurrent Operations
2023--------------------------------------
2024
2025The LLVM IR does not define any way to start parallel threads of
2026execution or to register signal handlers. Nonetheless, there are
2027platform-specific ways to create them, and we define LLVM IR's behavior
2028in their presence. This model is inspired by the C++0x memory model.
2029
2030For a more informal introduction to this model, see the :doc:`Atomics`.
2031
2032We define a *happens-before* partial order as the least partial order
2033that
2034
2035- Is a superset of single-thread program order, and
2036- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2037 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2038 techniques, like pthread locks, thread creation, thread joining,
2039 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2040 Constraints <ordering>`).
2041
2042Note that program order does not introduce *happens-before* edges
2043between a thread and signals executing inside that thread.
2044
2045Every (defined) read operation (load instructions, memcpy, atomic
2046loads/read-modify-writes, etc.) R reads a series of bytes written by
2047(defined) write operations (store instructions, atomic
2048stores/read-modify-writes, memcpy, etc.). For the purposes of this
2049section, initialized globals are considered to have a write of the
2050initializer which is atomic and happens before any other read or write
2051of the memory in question. For each byte of a read R, R\ :sub:`byte`
2052may see any write to the same byte, except:
2053
2054- If write\ :sub:`1` happens before write\ :sub:`2`, and
2055 write\ :sub:`2` happens before R\ :sub:`byte`, then
2056 R\ :sub:`byte` does not see write\ :sub:`1`.
2057- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2058 R\ :sub:`byte` does not see write\ :sub:`3`.
2059
2060Given that definition, R\ :sub:`byte` is defined as follows:
2061
2062- If R is volatile, the result is target-dependent. (Volatile is
2063 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002064 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002065 like normal memory. It does not generally provide cross-thread
2066 synchronization.)
2067- Otherwise, if there is no write to the same byte that happens before
2068 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2069- Otherwise, if R\ :sub:`byte` may see exactly one write,
2070 R\ :sub:`byte` returns the value written by that write.
2071- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2072 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2073 Memory Ordering Constraints <ordering>` section for additional
2074 constraints on how the choice is made.
2075- Otherwise R\ :sub:`byte` returns ``undef``.
2076
2077R returns the value composed of the series of bytes it read. This
2078implies that some bytes within the value may be ``undef`` **without**
2079the entire value being ``undef``. Note that this only defines the
2080semantics of the operation; it doesn't mean that targets will emit more
2081than one instruction to read the series of bytes.
2082
2083Note that in cases where none of the atomic intrinsics are used, this
2084model places only one restriction on IR transformations on top of what
2085is required for single-threaded execution: introducing a store to a byte
2086which might not otherwise be stored is not allowed in general.
2087(Specifically, in the case where another thread might write to and read
2088from an address, introducing a store can change a load that may see
2089exactly one write into a load that may see multiple writes.)
2090
2091.. _ordering:
2092
2093Atomic Memory Ordering Constraints
2094----------------------------------
2095
2096Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2097:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2098:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002099ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002100the same address they *synchronize with*. These semantics are borrowed
2101from Java and C++0x, but are somewhat more colloquial. If these
2102descriptions aren't precise enough, check those specs (see spec
2103references in the :doc:`atomics guide <Atomics>`).
2104:ref:`fence <i_fence>` instructions treat these orderings somewhat
2105differently since they don't take an address. See that instruction's
2106documentation for details.
2107
2108For a simpler introduction to the ordering constraints, see the
2109:doc:`Atomics`.
2110
2111``unordered``
2112 The set of values that can be read is governed by the happens-before
2113 partial order. A value cannot be read unless some operation wrote
2114 it. This is intended to provide a guarantee strong enough to model
2115 Java's non-volatile shared variables. This ordering cannot be
2116 specified for read-modify-write operations; it is not strong enough
2117 to make them atomic in any interesting way.
2118``monotonic``
2119 In addition to the guarantees of ``unordered``, there is a single
2120 total order for modifications by ``monotonic`` operations on each
2121 address. All modification orders must be compatible with the
2122 happens-before order. There is no guarantee that the modification
2123 orders can be combined to a global total order for the whole program
2124 (and this often will not be possible). The read in an atomic
2125 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2126 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2127 order immediately before the value it writes. If one atomic read
2128 happens before another atomic read of the same address, the later
2129 read must see the same value or a later value in the address's
2130 modification order. This disallows reordering of ``monotonic`` (or
2131 stronger) operations on the same address. If an address is written
2132 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2133 read that address repeatedly, the other threads must eventually see
2134 the write. This corresponds to the C++0x/C1x
2135 ``memory_order_relaxed``.
2136``acquire``
2137 In addition to the guarantees of ``monotonic``, a
2138 *synchronizes-with* edge may be formed with a ``release`` operation.
2139 This is intended to model C++'s ``memory_order_acquire``.
2140``release``
2141 In addition to the guarantees of ``monotonic``, if this operation
2142 writes a value which is subsequently read by an ``acquire``
2143 operation, it *synchronizes-with* that operation. (This isn't a
2144 complete description; see the C++0x definition of a release
2145 sequence.) This corresponds to the C++0x/C1x
2146 ``memory_order_release``.
2147``acq_rel`` (acquire+release)
2148 Acts as both an ``acquire`` and ``release`` operation on its
2149 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2150``seq_cst`` (sequentially consistent)
2151 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002152 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002153 writes), there is a global total order on all
2154 sequentially-consistent operations on all addresses, which is
2155 consistent with the *happens-before* partial order and with the
2156 modification orders of all the affected addresses. Each
2157 sequentially-consistent read sees the last preceding write to the
2158 same address in this global order. This corresponds to the C++0x/C1x
2159 ``memory_order_seq_cst`` and Java volatile.
2160
2161.. _singlethread:
2162
2163If an atomic operation is marked ``singlethread``, it only *synchronizes
2164with* or participates in modification and seq\_cst total orderings with
2165other operations running in the same thread (for example, in signal
2166handlers).
2167
2168.. _fastmath:
2169
2170Fast-Math Flags
2171---------------
2172
2173LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2174:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002175:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2176be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002177
2178``nnan``
2179 No NaNs - Allow optimizations to assume the arguments and result are not
2180 NaN. Such optimizations are required to retain defined behavior over
2181 NaNs, but the value of the result is undefined.
2182
2183``ninf``
2184 No Infs - Allow optimizations to assume the arguments and result are not
2185 +/-Inf. Such optimizations are required to retain defined behavior over
2186 +/-Inf, but the value of the result is undefined.
2187
2188``nsz``
2189 No Signed Zeros - Allow optimizations to treat the sign of a zero
2190 argument or result as insignificant.
2191
2192``arcp``
2193 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2194 argument rather than perform division.
2195
2196``fast``
2197 Fast - Allow algebraically equivalent transformations that may
2198 dramatically change results in floating point (e.g. reassociate). This
2199 flag implies all the others.
2200
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002201.. _uselistorder:
2202
2203Use-list Order Directives
2204-------------------------
2205
2206Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002207order to be recreated. ``<order-indexes>`` is a comma-separated list of
2208indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002209value's use-list is immediately sorted by these indexes.
2210
Sean Silvaa1190322015-08-06 22:56:48 +00002211Use-list directives may appear at function scope or global scope. They are not
2212instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002213function scope, they must appear after the terminator of the final basic block.
2214
2215If basic blocks have their address taken via ``blockaddress()`` expressions,
2216``uselistorder_bb`` can be used to reorder their use-lists from outside their
2217function's scope.
2218
2219:Syntax:
2220
2221::
2222
2223 uselistorder <ty> <value>, { <order-indexes> }
2224 uselistorder_bb @function, %block { <order-indexes> }
2225
2226:Examples:
2227
2228::
2229
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002230 define void @foo(i32 %arg1, i32 %arg2) {
2231 entry:
2232 ; ... instructions ...
2233 bb:
2234 ; ... instructions ...
2235
2236 ; At function scope.
2237 uselistorder i32 %arg1, { 1, 0, 2 }
2238 uselistorder label %bb, { 1, 0 }
2239 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002240
2241 ; At global scope.
2242 uselistorder i32* @global, { 1, 2, 0 }
2243 uselistorder i32 7, { 1, 0 }
2244 uselistorder i32 (i32) @bar, { 1, 0 }
2245 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2246
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002247.. _source_filename:
2248
2249Source Filename
2250---------------
2251
2252The *source filename* string is set to the original module identifier,
2253which will be the name of the compiled source file when compiling from
2254source through the clang front end, for example. It is then preserved through
2255the IR and bitcode.
2256
2257This is currently necessary to generate a consistent unique global
2258identifier for local functions used in profile data, which prepends the
2259source file name to the local function name.
2260
2261The syntax for the source file name is simply:
2262
Renato Golin124f2592016-07-20 12:16:38 +00002263.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002264
2265 source_filename = "/path/to/source.c"
2266
Sean Silvab084af42012-12-07 10:36:55 +00002267.. _typesystem:
2268
2269Type System
2270===========
2271
2272The LLVM type system is one of the most important features of the
2273intermediate representation. Being typed enables a number of
2274optimizations to be performed on the intermediate representation
2275directly, without having to do extra analyses on the side before the
2276transformation. A strong type system makes it easier to read the
2277generated code and enables novel analyses and transformations that are
2278not feasible to perform on normal three address code representations.
2279
Rafael Espindola08013342013-12-07 19:34:20 +00002280.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002281
Rafael Espindola08013342013-12-07 19:34:20 +00002282Void Type
2283---------
Sean Silvab084af42012-12-07 10:36:55 +00002284
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002285:Overview:
2286
Rafael Espindola08013342013-12-07 19:34:20 +00002287
2288The void type does not represent any value and has no size.
2289
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002290:Syntax:
2291
Rafael Espindola08013342013-12-07 19:34:20 +00002292
2293::
2294
2295 void
Sean Silvab084af42012-12-07 10:36:55 +00002296
2297
Rafael Espindola08013342013-12-07 19:34:20 +00002298.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002299
Rafael Espindola08013342013-12-07 19:34:20 +00002300Function Type
2301-------------
Sean Silvab084af42012-12-07 10:36:55 +00002302
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002303:Overview:
2304
Sean Silvab084af42012-12-07 10:36:55 +00002305
Rafael Espindola08013342013-12-07 19:34:20 +00002306The function type can be thought of as a function signature. It consists of a
2307return type and a list of formal parameter types. The return type of a function
2308type is a void type or first class type --- except for :ref:`label <t_label>`
2309and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002310
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002311:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002312
Rafael Espindola08013342013-12-07 19:34:20 +00002313::
Sean Silvab084af42012-12-07 10:36:55 +00002314
Rafael Espindola08013342013-12-07 19:34:20 +00002315 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002316
Rafael Espindola08013342013-12-07 19:34:20 +00002317...where '``<parameter list>``' is a comma-separated list of type
2318specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002319indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002320argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002321handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002322except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002323
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002324:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002325
Rafael Espindola08013342013-12-07 19:34:20 +00002326+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2327| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2328+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2329| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2330+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2331| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2332+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2333| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2334+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2335
2336.. _t_firstclass:
2337
2338First Class Types
2339-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002340
2341The :ref:`first class <t_firstclass>` types are perhaps the most important.
2342Values of these types are the only ones which can be produced by
2343instructions.
2344
Rafael Espindola08013342013-12-07 19:34:20 +00002345.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002346
Rafael Espindola08013342013-12-07 19:34:20 +00002347Single Value Types
2348^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002349
Rafael Espindola08013342013-12-07 19:34:20 +00002350These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002351
2352.. _t_integer:
2353
2354Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002355""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002356
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002357:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002358
2359The integer type is a very simple type that simply specifies an
2360arbitrary bit width for the integer type desired. Any bit width from 1
2361bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2362
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002363:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002364
2365::
2366
2367 iN
2368
2369The number of bits the integer will occupy is specified by the ``N``
2370value.
2371
2372Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002373*********
Sean Silvab084af42012-12-07 10:36:55 +00002374
2375+----------------+------------------------------------------------+
2376| ``i1`` | a single-bit integer. |
2377+----------------+------------------------------------------------+
2378| ``i32`` | a 32-bit integer. |
2379+----------------+------------------------------------------------+
2380| ``i1942652`` | a really big integer of over 1 million bits. |
2381+----------------+------------------------------------------------+
2382
2383.. _t_floating:
2384
2385Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002386""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002387
2388.. list-table::
2389 :header-rows: 1
2390
2391 * - Type
2392 - Description
2393
2394 * - ``half``
2395 - 16-bit floating point value
2396
2397 * - ``float``
2398 - 32-bit floating point value
2399
2400 * - ``double``
2401 - 64-bit floating point value
2402
2403 * - ``fp128``
2404 - 128-bit floating point value (112-bit mantissa)
2405
2406 * - ``x86_fp80``
2407 - 80-bit floating point value (X87)
2408
2409 * - ``ppc_fp128``
2410 - 128-bit floating point value (two 64-bits)
2411
Reid Kleckner9a16d082014-03-05 02:41:37 +00002412X86_mmx Type
2413""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002414
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002415:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002416
Reid Kleckner9a16d082014-03-05 02:41:37 +00002417The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002418machine. The operations allowed on it are quite limited: parameters and
2419return values, load and store, and bitcast. User-specified MMX
2420instructions are represented as intrinsic or asm calls with arguments
2421and/or results of this type. There are no arrays, vectors or constants
2422of this type.
2423
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002424:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002425
2426::
2427
Reid Kleckner9a16d082014-03-05 02:41:37 +00002428 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002429
Sean Silvab084af42012-12-07 10:36:55 +00002430
Rafael Espindola08013342013-12-07 19:34:20 +00002431.. _t_pointer:
2432
2433Pointer Type
2434""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002435
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002436:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002437
Rafael Espindola08013342013-12-07 19:34:20 +00002438The pointer type is used to specify memory locations. Pointers are
2439commonly used to reference objects in memory.
2440
2441Pointer types may have an optional address space attribute defining the
2442numbered address space where the pointed-to object resides. The default
2443address space is number zero. The semantics of non-zero address spaces
2444are target-specific.
2445
2446Note that LLVM does not permit pointers to void (``void*``) nor does it
2447permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002448
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002449:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002450
2451::
2452
Rafael Espindola08013342013-12-07 19:34:20 +00002453 <type> *
2454
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002455:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002456
2457+-------------------------+--------------------------------------------------------------------------------------------------------------+
2458| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2459+-------------------------+--------------------------------------------------------------------------------------------------------------+
2460| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2461+-------------------------+--------------------------------------------------------------------------------------------------------------+
2462| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2463+-------------------------+--------------------------------------------------------------------------------------------------------------+
2464
2465.. _t_vector:
2466
2467Vector Type
2468"""""""""""
2469
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002470:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002471
2472A vector type is a simple derived type that represents a vector of
2473elements. Vector types are used when multiple primitive data are
2474operated in parallel using a single instruction (SIMD). A vector type
2475requires a size (number of elements) and an underlying primitive data
2476type. Vector types are considered :ref:`first class <t_firstclass>`.
2477
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002478:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002479
2480::
2481
2482 < <# elements> x <elementtype> >
2483
2484The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002485elementtype may be any integer, floating point or pointer type. Vectors
2486of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002487
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002488:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002489
2490+-------------------+--------------------------------------------------+
2491| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2492+-------------------+--------------------------------------------------+
2493| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2494+-------------------+--------------------------------------------------+
2495| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2496+-------------------+--------------------------------------------------+
2497| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2498+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002499
2500.. _t_label:
2501
2502Label Type
2503^^^^^^^^^^
2504
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002505:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002506
2507The label type represents code labels.
2508
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002509:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002510
2511::
2512
2513 label
2514
David Majnemerb611e3f2015-08-14 05:09:07 +00002515.. _t_token:
2516
2517Token Type
2518^^^^^^^^^^
2519
2520:Overview:
2521
2522The token type is used when a value is associated with an instruction
2523but all uses of the value must not attempt to introspect or obscure it.
2524As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2525:ref:`select <i_select>` of type token.
2526
2527:Syntax:
2528
2529::
2530
2531 token
2532
2533
2534
Sean Silvab084af42012-12-07 10:36:55 +00002535.. _t_metadata:
2536
2537Metadata Type
2538^^^^^^^^^^^^^
2539
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002540:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002541
2542The metadata type represents embedded metadata. No derived types may be
2543created from metadata except for :ref:`function <t_function>` arguments.
2544
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002545:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002546
2547::
2548
2549 metadata
2550
Sean Silvab084af42012-12-07 10:36:55 +00002551.. _t_aggregate:
2552
2553Aggregate Types
2554^^^^^^^^^^^^^^^
2555
2556Aggregate Types are a subset of derived types that can contain multiple
2557member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2558aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2559aggregate types.
2560
2561.. _t_array:
2562
2563Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002564""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002565
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002566:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002567
2568The array type is a very simple derived type that arranges elements
2569sequentially in memory. The array type requires a size (number of
2570elements) and an underlying data type.
2571
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002572:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002573
2574::
2575
2576 [<# elements> x <elementtype>]
2577
2578The number of elements is a constant integer value; ``elementtype`` may
2579be any type with a size.
2580
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002581:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002582
2583+------------------+--------------------------------------+
2584| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2585+------------------+--------------------------------------+
2586| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2587+------------------+--------------------------------------+
2588| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2589+------------------+--------------------------------------+
2590
2591Here are some examples of multidimensional arrays:
2592
2593+-----------------------------+----------------------------------------------------------+
2594| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2595+-----------------------------+----------------------------------------------------------+
2596| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2597+-----------------------------+----------------------------------------------------------+
2598| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2599+-----------------------------+----------------------------------------------------------+
2600
2601There is no restriction on indexing beyond the end of the array implied
2602by a static type (though there are restrictions on indexing beyond the
2603bounds of an allocated object in some cases). This means that
2604single-dimension 'variable sized array' addressing can be implemented in
2605LLVM with a zero length array type. An implementation of 'pascal style
2606arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2607example.
2608
Sean Silvab084af42012-12-07 10:36:55 +00002609.. _t_struct:
2610
2611Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002612""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002613
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002614:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002615
2616The structure type is used to represent a collection of data members
2617together in memory. The elements of a structure may be any type that has
2618a size.
2619
2620Structures in memory are accessed using '``load``' and '``store``' by
2621getting a pointer to a field with the '``getelementptr``' instruction.
2622Structures in registers are accessed using the '``extractvalue``' and
2623'``insertvalue``' instructions.
2624
2625Structures may optionally be "packed" structures, which indicate that
2626the alignment of the struct is one byte, and that there is no padding
2627between the elements. In non-packed structs, padding between field types
2628is inserted as defined by the DataLayout string in the module, which is
2629required to match what the underlying code generator expects.
2630
2631Structures can either be "literal" or "identified". A literal structure
2632is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2633identified types are always defined at the top level with a name.
2634Literal types are uniqued by their contents and can never be recursive
2635or opaque since there is no way to write one. Identified types can be
2636recursive, can be opaqued, and are never uniqued.
2637
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002638:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002639
2640::
2641
2642 %T1 = type { <type list> } ; Identified normal struct type
2643 %T2 = type <{ <type list> }> ; Identified packed struct type
2644
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002645:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002646
2647+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2648| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2649+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002650| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002651+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2652| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2653+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2654
2655.. _t_opaque:
2656
2657Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002658""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002659
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002660:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002661
2662Opaque structure types are used to represent named structure types that
2663do not have a body specified. This corresponds (for example) to the C
2664notion of a forward declared structure.
2665
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002666:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002667
2668::
2669
2670 %X = type opaque
2671 %52 = type opaque
2672
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002673:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002674
2675+--------------+-------------------+
2676| ``opaque`` | An opaque type. |
2677+--------------+-------------------+
2678
Sean Silva1703e702014-04-08 21:06:22 +00002679.. _constants:
2680
Sean Silvab084af42012-12-07 10:36:55 +00002681Constants
2682=========
2683
2684LLVM has several different basic types of constants. This section
2685describes them all and their syntax.
2686
2687Simple Constants
2688----------------
2689
2690**Boolean constants**
2691 The two strings '``true``' and '``false``' are both valid constants
2692 of the ``i1`` type.
2693**Integer constants**
2694 Standard integers (such as '4') are constants of the
2695 :ref:`integer <t_integer>` type. Negative numbers may be used with
2696 integer types.
2697**Floating point constants**
2698 Floating point constants use standard decimal notation (e.g.
2699 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2700 hexadecimal notation (see below). The assembler requires the exact
2701 decimal value of a floating-point constant. For example, the
2702 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2703 decimal in binary. Floating point constants must have a :ref:`floating
2704 point <t_floating>` type.
2705**Null pointer constants**
2706 The identifier '``null``' is recognized as a null pointer constant
2707 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002708**Token constants**
2709 The identifier '``none``' is recognized as an empty token constant
2710 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002711
2712The one non-intuitive notation for constants is the hexadecimal form of
2713floating point constants. For example, the form
2714'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2715than) '``double 4.5e+15``'. The only time hexadecimal floating point
2716constants are required (and the only time that they are generated by the
2717disassembler) is when a floating point constant must be emitted but it
2718cannot be represented as a decimal floating point number in a reasonable
2719number of digits. For example, NaN's, infinities, and other special
2720values are represented in their IEEE hexadecimal format so that assembly
2721and disassembly do not cause any bits to change in the constants.
2722
2723When using the hexadecimal form, constants of types half, float, and
2724double are represented using the 16-digit form shown above (which
2725matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002726must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002727precision, respectively. Hexadecimal format is always used for long
2728double, and there are three forms of long double. The 80-bit format used
2729by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2730128-bit format used by PowerPC (two adjacent doubles) is represented by
2731``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002732represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2733will only work if they match the long double format on your target.
2734The IEEE 16-bit format (half precision) is represented by ``0xH``
2735followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2736(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002737
Reid Kleckner9a16d082014-03-05 02:41:37 +00002738There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002739
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002740.. _complexconstants:
2741
Sean Silvab084af42012-12-07 10:36:55 +00002742Complex Constants
2743-----------------
2744
2745Complex constants are a (potentially recursive) combination of simple
2746constants and smaller complex constants.
2747
2748**Structure constants**
2749 Structure constants are represented with notation similar to
2750 structure type definitions (a comma separated list of elements,
2751 surrounded by braces (``{}``)). For example:
2752 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2753 "``@G = external global i32``". Structure constants must have
2754 :ref:`structure type <t_struct>`, and the number and types of elements
2755 must match those specified by the type.
2756**Array constants**
2757 Array constants are represented with notation similar to array type
2758 definitions (a comma separated list of elements, surrounded by
2759 square brackets (``[]``)). For example:
2760 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2761 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002762 match those specified by the type. As a special case, character array
2763 constants may also be represented as a double-quoted string using the ``c``
2764 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002765**Vector constants**
2766 Vector constants are represented with notation similar to vector
2767 type definitions (a comma separated list of elements, surrounded by
2768 less-than/greater-than's (``<>``)). For example:
2769 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2770 must have :ref:`vector type <t_vector>`, and the number and types of
2771 elements must match those specified by the type.
2772**Zero initialization**
2773 The string '``zeroinitializer``' can be used to zero initialize a
2774 value to zero of *any* type, including scalar and
2775 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2776 having to print large zero initializers (e.g. for large arrays) and
2777 is always exactly equivalent to using explicit zero initializers.
2778**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002779 A metadata node is a constant tuple without types. For example:
2780 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002781 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2782 Unlike other typed constants that are meant to be interpreted as part of
2783 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002784 information such as debug info.
2785
2786Global Variable and Function Addresses
2787--------------------------------------
2788
2789The addresses of :ref:`global variables <globalvars>` and
2790:ref:`functions <functionstructure>` are always implicitly valid
2791(link-time) constants. These constants are explicitly referenced when
2792the :ref:`identifier for the global <identifiers>` is used and always have
2793:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2794file:
2795
2796.. code-block:: llvm
2797
2798 @X = global i32 17
2799 @Y = global i32 42
2800 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2801
2802.. _undefvalues:
2803
2804Undefined Values
2805----------------
2806
2807The string '``undef``' can be used anywhere a constant is expected, and
2808indicates that the user of the value may receive an unspecified
2809bit-pattern. Undefined values may be of any type (other than '``label``'
2810or '``void``') and be used anywhere a constant is permitted.
2811
2812Undefined values are useful because they indicate to the compiler that
2813the program is well defined no matter what value is used. This gives the
2814compiler more freedom to optimize. Here are some examples of
2815(potentially surprising) transformations that are valid (in pseudo IR):
2816
2817.. code-block:: llvm
2818
2819 %A = add %X, undef
2820 %B = sub %X, undef
2821 %C = xor %X, undef
2822 Safe:
2823 %A = undef
2824 %B = undef
2825 %C = undef
2826
2827This is safe because all of the output bits are affected by the undef
2828bits. Any output bit can have a zero or one depending on the input bits.
2829
2830.. code-block:: llvm
2831
2832 %A = or %X, undef
2833 %B = and %X, undef
2834 Safe:
2835 %A = -1
2836 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002837 Safe:
2838 %A = %X ;; By choosing undef as 0
2839 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002840 Unsafe:
2841 %A = undef
2842 %B = undef
2843
2844These logical operations have bits that are not always affected by the
2845input. For example, if ``%X`` has a zero bit, then the output of the
2846'``and``' operation will always be a zero for that bit, no matter what
2847the corresponding bit from the '``undef``' is. As such, it is unsafe to
2848optimize or assume that the result of the '``and``' is '``undef``'.
2849However, it is safe to assume that all bits of the '``undef``' could be
28500, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2851all the bits of the '``undef``' operand to the '``or``' could be set,
2852allowing the '``or``' to be folded to -1.
2853
2854.. code-block:: llvm
2855
2856 %A = select undef, %X, %Y
2857 %B = select undef, 42, %Y
2858 %C = select %X, %Y, undef
2859 Safe:
2860 %A = %X (or %Y)
2861 %B = 42 (or %Y)
2862 %C = %Y
2863 Unsafe:
2864 %A = undef
2865 %B = undef
2866 %C = undef
2867
2868This set of examples shows that undefined '``select``' (and conditional
2869branch) conditions can go *either way*, but they have to come from one
2870of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2871both known to have a clear low bit, then ``%A`` would have to have a
2872cleared low bit. However, in the ``%C`` example, the optimizer is
2873allowed to assume that the '``undef``' operand could be the same as
2874``%Y``, allowing the whole '``select``' to be eliminated.
2875
Renato Golin124f2592016-07-20 12:16:38 +00002876.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002877
2878 %A = xor undef, undef
2879
2880 %B = undef
2881 %C = xor %B, %B
2882
2883 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002884 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002885 %F = icmp gte %D, 4
2886
2887 Safe:
2888 %A = undef
2889 %B = undef
2890 %C = undef
2891 %D = undef
2892 %E = undef
2893 %F = undef
2894
2895This example points out that two '``undef``' operands are not
2896necessarily the same. This can be surprising to people (and also matches
2897C semantics) where they assume that "``X^X``" is always zero, even if
2898``X`` is undefined. This isn't true for a number of reasons, but the
2899short answer is that an '``undef``' "variable" can arbitrarily change
2900its value over its "live range". This is true because the variable
2901doesn't actually *have a live range*. Instead, the value is logically
2902read from arbitrary registers that happen to be around when needed, so
2903the value is not necessarily consistent over time. In fact, ``%A`` and
2904``%C`` need to have the same semantics or the core LLVM "replace all
2905uses with" concept would not hold.
2906
2907.. code-block:: llvm
2908
2909 %A = fdiv undef, %X
2910 %B = fdiv %X, undef
2911 Safe:
2912 %A = undef
2913 b: unreachable
2914
2915These examples show the crucial difference between an *undefined value*
2916and *undefined behavior*. An undefined value (like '``undef``') is
2917allowed to have an arbitrary bit-pattern. This means that the ``%A``
2918operation can be constant folded to '``undef``', because the '``undef``'
2919could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2920However, in the second example, we can make a more aggressive
2921assumption: because the ``undef`` is allowed to be an arbitrary value,
2922we are allowed to assume that it could be zero. Since a divide by zero
2923has *undefined behavior*, we are allowed to assume that the operation
2924does not execute at all. This allows us to delete the divide and all
2925code after it. Because the undefined operation "can't happen", the
2926optimizer can assume that it occurs in dead code.
2927
Renato Golin124f2592016-07-20 12:16:38 +00002928.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002929
2930 a: store undef -> %X
2931 b: store %X -> undef
2932 Safe:
2933 a: <deleted>
2934 b: unreachable
2935
2936These examples reiterate the ``fdiv`` example: a store *of* an undefined
2937value can be assumed to not have any effect; we can assume that the
2938value is overwritten with bits that happen to match what was already
2939there. However, a store *to* an undefined location could clobber
2940arbitrary memory, therefore, it has undefined behavior.
2941
2942.. _poisonvalues:
2943
2944Poison Values
2945-------------
2946
2947Poison values are similar to :ref:`undef values <undefvalues>`, however
2948they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002949that cannot evoke side effects has nevertheless detected a condition
2950that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002951
2952There is currently no way of representing a poison value in the IR; they
2953only exist when produced by operations such as :ref:`add <i_add>` with
2954the ``nsw`` flag.
2955
2956Poison value behavior is defined in terms of value *dependence*:
2957
2958- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2959- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2960 their dynamic predecessor basic block.
2961- Function arguments depend on the corresponding actual argument values
2962 in the dynamic callers of their functions.
2963- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2964 instructions that dynamically transfer control back to them.
2965- :ref:`Invoke <i_invoke>` instructions depend on the
2966 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2967 call instructions that dynamically transfer control back to them.
2968- Non-volatile loads and stores depend on the most recent stores to all
2969 of the referenced memory addresses, following the order in the IR
2970 (including loads and stores implied by intrinsics such as
2971 :ref:`@llvm.memcpy <int_memcpy>`.)
2972- An instruction with externally visible side effects depends on the
2973 most recent preceding instruction with externally visible side
2974 effects, following the order in the IR. (This includes :ref:`volatile
2975 operations <volatile>`.)
2976- An instruction *control-depends* on a :ref:`terminator
2977 instruction <terminators>` if the terminator instruction has
2978 multiple successors and the instruction is always executed when
2979 control transfers to one of the successors, and may not be executed
2980 when control is transferred to another.
2981- Additionally, an instruction also *control-depends* on a terminator
2982 instruction if the set of instructions it otherwise depends on would
2983 be different if the terminator had transferred control to a different
2984 successor.
2985- Dependence is transitive.
2986
Richard Smith32dbdf62014-07-31 04:25:36 +00002987Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2988with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002989on a poison value has undefined behavior.
2990
2991Here are some examples:
2992
2993.. code-block:: llvm
2994
2995 entry:
2996 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2997 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002998 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002999 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3000
3001 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003002 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003003
3004 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3005
3006 %narrowaddr = bitcast i32* @g to i16*
3007 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003008 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3009 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003010
3011 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3012 br i1 %cmp, label %true, label %end ; Branch to either destination.
3013
3014 true:
3015 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3016 ; it has undefined behavior.
3017 br label %end
3018
3019 end:
3020 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3021 ; Both edges into this PHI are
3022 ; control-dependent on %cmp, so this
3023 ; always results in a poison value.
3024
3025 store volatile i32 0, i32* @g ; This would depend on the store in %true
3026 ; if %cmp is true, or the store in %entry
3027 ; otherwise, so this is undefined behavior.
3028
3029 br i1 %cmp, label %second_true, label %second_end
3030 ; The same branch again, but this time the
3031 ; true block doesn't have side effects.
3032
3033 second_true:
3034 ; No side effects!
3035 ret void
3036
3037 second_end:
3038 store volatile i32 0, i32* @g ; This time, the instruction always depends
3039 ; on the store in %end. Also, it is
3040 ; control-equivalent to %end, so this is
3041 ; well-defined (ignoring earlier undefined
3042 ; behavior in this example).
3043
3044.. _blockaddress:
3045
3046Addresses of Basic Blocks
3047-------------------------
3048
3049``blockaddress(@function, %block)``
3050
3051The '``blockaddress``' constant computes the address of the specified
3052basic block in the specified function, and always has an ``i8*`` type.
3053Taking the address of the entry block is illegal.
3054
3055This value only has defined behavior when used as an operand to the
3056':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3057against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003058undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003059no label is equal to the null pointer. This may be passed around as an
3060opaque pointer sized value as long as the bits are not inspected. This
3061allows ``ptrtoint`` and arithmetic to be performed on these values so
3062long as the original value is reconstituted before the ``indirectbr``
3063instruction.
3064
3065Finally, some targets may provide defined semantics when using the value
3066as the operand to an inline assembly, but that is target specific.
3067
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003068.. _constantexprs:
3069
Sean Silvab084af42012-12-07 10:36:55 +00003070Constant Expressions
3071--------------------
3072
3073Constant expressions are used to allow expressions involving other
3074constants to be used as constants. Constant expressions may be of any
3075:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3076that does not have side effects (e.g. load and call are not supported).
3077The following is the syntax for constant expressions:
3078
3079``trunc (CST to TYPE)``
3080 Truncate a constant to another type. The bit size of CST must be
3081 larger than the bit size of TYPE. Both types must be integers.
3082``zext (CST to TYPE)``
3083 Zero extend a constant to another type. The bit size of CST must be
3084 smaller than the bit size of TYPE. Both types must be integers.
3085``sext (CST to TYPE)``
3086 Sign extend a constant to another type. The bit size of CST must be
3087 smaller than the bit size of TYPE. Both types must be integers.
3088``fptrunc (CST to TYPE)``
3089 Truncate a floating point constant to another floating point type.
3090 The size of CST must be larger than the size of TYPE. Both types
3091 must be floating point.
3092``fpext (CST to TYPE)``
3093 Floating point extend a constant to another type. The size of CST
3094 must be smaller or equal to the size of TYPE. Both types must be
3095 floating point.
3096``fptoui (CST to TYPE)``
3097 Convert a floating point constant to the corresponding unsigned
3098 integer constant. TYPE must be a scalar or vector integer type. CST
3099 must be of scalar or vector floating point type. Both CST and TYPE
3100 must be scalars, or vectors of the same number of elements. If the
3101 value won't fit in the integer type, the results are undefined.
3102``fptosi (CST to TYPE)``
3103 Convert a floating point constant to the corresponding signed
3104 integer constant. TYPE must be a scalar or vector integer type. CST
3105 must be of scalar or vector floating point type. Both CST and TYPE
3106 must be scalars, or vectors of the same number of elements. If the
3107 value won't fit in the integer type, the results are undefined.
3108``uitofp (CST to TYPE)``
3109 Convert an unsigned integer constant to the corresponding floating
3110 point constant. TYPE must be a scalar or vector floating point type.
3111 CST must be of scalar or vector integer type. Both CST and TYPE must
3112 be scalars, or vectors of the same number of elements. If the value
3113 won't fit in the floating point type, the results are undefined.
3114``sitofp (CST to TYPE)``
3115 Convert a signed integer constant to the corresponding floating
3116 point constant. TYPE must be a scalar or vector floating point type.
3117 CST must be of scalar or vector integer type. Both CST and TYPE must
3118 be scalars, or vectors of the same number of elements. If the value
3119 won't fit in the floating point type, the results are undefined.
3120``ptrtoint (CST to TYPE)``
3121 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003122 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003123 pointer type. The ``CST`` value is zero extended, truncated, or
3124 unchanged to make it fit in ``TYPE``.
3125``inttoptr (CST to TYPE)``
3126 Convert an integer constant to a pointer constant. TYPE must be a
3127 pointer type. CST must be of integer type. The CST value is zero
3128 extended, truncated, or unchanged to make it fit in a pointer size.
3129 This one is *really* dangerous!
3130``bitcast (CST to TYPE)``
3131 Convert a constant, CST, to another TYPE. The constraints of the
3132 operands are the same as those for the :ref:`bitcast
3133 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003134``addrspacecast (CST to TYPE)``
3135 Convert a constant pointer or constant vector of pointer, CST, to another
3136 TYPE in a different address space. The constraints of the operands are the
3137 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003138``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003139 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3140 constants. As with the :ref:`getelementptr <i_getelementptr>`
3141 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003142 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003143``select (COND, VAL1, VAL2)``
3144 Perform the :ref:`select operation <i_select>` on constants.
3145``icmp COND (VAL1, VAL2)``
3146 Performs the :ref:`icmp operation <i_icmp>` on constants.
3147``fcmp COND (VAL1, VAL2)``
3148 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3149``extractelement (VAL, IDX)``
3150 Perform the :ref:`extractelement operation <i_extractelement>` on
3151 constants.
3152``insertelement (VAL, ELT, IDX)``
3153 Perform the :ref:`insertelement operation <i_insertelement>` on
3154 constants.
3155``shufflevector (VEC1, VEC2, IDXMASK)``
3156 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3157 constants.
3158``extractvalue (VAL, IDX0, IDX1, ...)``
3159 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3160 constants. The index list is interpreted in a similar manner as
3161 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3162 least one index value must be specified.
3163``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3164 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3165 The index list is interpreted in a similar manner as indices in a
3166 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3167 value must be specified.
3168``OPCODE (LHS, RHS)``
3169 Perform the specified operation of the LHS and RHS constants. OPCODE
3170 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3171 binary <bitwiseops>` operations. The constraints on operands are
3172 the same as those for the corresponding instruction (e.g. no bitwise
3173 operations on floating point values are allowed).
3174
3175Other Values
3176============
3177
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003178.. _inlineasmexprs:
3179
Sean Silvab084af42012-12-07 10:36:55 +00003180Inline Assembler Expressions
3181----------------------------
3182
3183LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003184Inline Assembly <moduleasm>`) through the use of a special value. This value
3185represents the inline assembler as a template string (containing the
3186instructions to emit), a list of operand constraints (stored as a string), a
3187flag that indicates whether or not the inline asm expression has side effects,
3188and a flag indicating whether the function containing the asm needs to align its
3189stack conservatively.
3190
3191The template string supports argument substitution of the operands using "``$``"
3192followed by a number, to indicate substitution of the given register/memory
3193location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3194be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3195operand (See :ref:`inline-asm-modifiers`).
3196
3197A literal "``$``" may be included by using "``$$``" in the template. To include
3198other special characters into the output, the usual "``\XX``" escapes may be
3199used, just as in other strings. Note that after template substitution, the
3200resulting assembly string is parsed by LLVM's integrated assembler unless it is
3201disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3202syntax known to LLVM.
3203
3204LLVM's support for inline asm is modeled closely on the requirements of Clang's
3205GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3206modifier codes listed here are similar or identical to those in GCC's inline asm
3207support. However, to be clear, the syntax of the template and constraint strings
3208described here is *not* the same as the syntax accepted by GCC and Clang, and,
3209while most constraint letters are passed through as-is by Clang, some get
3210translated to other codes when converting from the C source to the LLVM
3211assembly.
3212
3213An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003214
3215.. code-block:: llvm
3216
3217 i32 (i32) asm "bswap $0", "=r,r"
3218
3219Inline assembler expressions may **only** be used as the callee operand
3220of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3221Thus, typically we have:
3222
3223.. code-block:: llvm
3224
3225 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3226
3227Inline asms with side effects not visible in the constraint list must be
3228marked as having side effects. This is done through the use of the
3229'``sideeffect``' keyword, like so:
3230
3231.. code-block:: llvm
3232
3233 call void asm sideeffect "eieio", ""()
3234
3235In some cases inline asms will contain code that will not work unless
3236the stack is aligned in some way, such as calls or SSE instructions on
3237x86, yet will not contain code that does that alignment within the asm.
3238The compiler should make conservative assumptions about what the asm
3239might contain and should generate its usual stack alignment code in the
3240prologue if the '``alignstack``' keyword is present:
3241
3242.. code-block:: llvm
3243
3244 call void asm alignstack "eieio", ""()
3245
3246Inline asms also support using non-standard assembly dialects. The
3247assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3248the inline asm is using the Intel dialect. Currently, ATT and Intel are
3249the only supported dialects. An example is:
3250
3251.. code-block:: llvm
3252
3253 call void asm inteldialect "eieio", ""()
3254
3255If multiple keywords appear the '``sideeffect``' keyword must come
3256first, the '``alignstack``' keyword second and the '``inteldialect``'
3257keyword last.
3258
James Y Knightbc832ed2015-07-08 18:08:36 +00003259Inline Asm Constraint String
3260^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3261
3262The constraint list is a comma-separated string, each element containing one or
3263more constraint codes.
3264
3265For each element in the constraint list an appropriate register or memory
3266operand will be chosen, and it will be made available to assembly template
3267string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3268second, etc.
3269
3270There are three different types of constraints, which are distinguished by a
3271prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3272constraints must always be given in that order: outputs first, then inputs, then
3273clobbers. They cannot be intermingled.
3274
3275There are also three different categories of constraint codes:
3276
3277- Register constraint. This is either a register class, or a fixed physical
3278 register. This kind of constraint will allocate a register, and if necessary,
3279 bitcast the argument or result to the appropriate type.
3280- Memory constraint. This kind of constraint is for use with an instruction
3281 taking a memory operand. Different constraints allow for different addressing
3282 modes used by the target.
3283- Immediate value constraint. This kind of constraint is for an integer or other
3284 immediate value which can be rendered directly into an instruction. The
3285 various target-specific constraints allow the selection of a value in the
3286 proper range for the instruction you wish to use it with.
3287
3288Output constraints
3289""""""""""""""""""
3290
3291Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3292indicates that the assembly will write to this operand, and the operand will
3293then be made available as a return value of the ``asm`` expression. Output
3294constraints do not consume an argument from the call instruction. (Except, see
3295below about indirect outputs).
3296
3297Normally, it is expected that no output locations are written to by the assembly
3298expression until *all* of the inputs have been read. As such, LLVM may assign
3299the same register to an output and an input. If this is not safe (e.g. if the
3300assembly contains two instructions, where the first writes to one output, and
3301the second reads an input and writes to a second output), then the "``&``"
3302modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003303"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003304will not use the same register for any inputs (other than an input tied to this
3305output).
3306
3307Input constraints
3308"""""""""""""""""
3309
3310Input constraints do not have a prefix -- just the constraint codes. Each input
3311constraint will consume one argument from the call instruction. It is not
3312permitted for the asm to write to any input register or memory location (unless
3313that input is tied to an output). Note also that multiple inputs may all be
3314assigned to the same register, if LLVM can determine that they necessarily all
3315contain the same value.
3316
3317Instead of providing a Constraint Code, input constraints may also "tie"
3318themselves to an output constraint, by providing an integer as the constraint
3319string. Tied inputs still consume an argument from the call instruction, and
3320take up a position in the asm template numbering as is usual -- they will simply
3321be constrained to always use the same register as the output they've been tied
3322to. For example, a constraint string of "``=r,0``" says to assign a register for
3323output, and use that register as an input as well (it being the 0'th
3324constraint).
3325
3326It is permitted to tie an input to an "early-clobber" output. In that case, no
3327*other* input may share the same register as the input tied to the early-clobber
3328(even when the other input has the same value).
3329
3330You may only tie an input to an output which has a register constraint, not a
3331memory constraint. Only a single input may be tied to an output.
3332
3333There is also an "interesting" feature which deserves a bit of explanation: if a
3334register class constraint allocates a register which is too small for the value
3335type operand provided as input, the input value will be split into multiple
3336registers, and all of them passed to the inline asm.
3337
3338However, this feature is often not as useful as you might think.
3339
3340Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3341architectures that have instructions which operate on multiple consecutive
3342instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3343SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3344hardware then loads into both the named register, and the next register. This
3345feature of inline asm would not be useful to support that.)
3346
3347A few of the targets provide a template string modifier allowing explicit access
3348to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3349``D``). On such an architecture, you can actually access the second allocated
3350register (yet, still, not any subsequent ones). But, in that case, you're still
3351probably better off simply splitting the value into two separate operands, for
3352clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3353despite existing only for use with this feature, is not really a good idea to
3354use)
3355
3356Indirect inputs and outputs
3357"""""""""""""""""""""""""""
3358
3359Indirect output or input constraints can be specified by the "``*``" modifier
3360(which goes after the "``=``" in case of an output). This indicates that the asm
3361will write to or read from the contents of an *address* provided as an input
3362argument. (Note that in this way, indirect outputs act more like an *input* than
3363an output: just like an input, they consume an argument of the call expression,
3364rather than producing a return value. An indirect output constraint is an
3365"output" only in that the asm is expected to write to the contents of the input
3366memory location, instead of just read from it).
3367
3368This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3369address of a variable as a value.
3370
3371It is also possible to use an indirect *register* constraint, but only on output
3372(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3373value normally, and then, separately emit a store to the address provided as
3374input, after the provided inline asm. (It's not clear what value this
3375functionality provides, compared to writing the store explicitly after the asm
3376statement, and it can only produce worse code, since it bypasses many
3377optimization passes. I would recommend not using it.)
3378
3379
3380Clobber constraints
3381"""""""""""""""""""
3382
3383A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3384consume an input operand, nor generate an output. Clobbers cannot use any of the
3385general constraint code letters -- they may use only explicit register
3386constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3387"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3388memory locations -- not only the memory pointed to by a declared indirect
3389output.
3390
Peter Zotov00257232016-08-30 10:48:31 +00003391Note that clobbering named registers that are also present in output
3392constraints is not legal.
3393
James Y Knightbc832ed2015-07-08 18:08:36 +00003394
3395Constraint Codes
3396""""""""""""""""
3397After a potential prefix comes constraint code, or codes.
3398
3399A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3400followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3401(e.g. "``{eax}``").
3402
3403The one and two letter constraint codes are typically chosen to be the same as
3404GCC's constraint codes.
3405
3406A single constraint may include one or more than constraint code in it, leaving
3407it up to LLVM to choose which one to use. This is included mainly for
3408compatibility with the translation of GCC inline asm coming from clang.
3409
3410There are two ways to specify alternatives, and either or both may be used in an
3411inline asm constraint list:
3412
34131) Append the codes to each other, making a constraint code set. E.g. "``im``"
3414 or "``{eax}m``". This means "choose any of the options in the set". The
3415 choice of constraint is made independently for each constraint in the
3416 constraint list.
3417
34182) Use "``|``" between constraint code sets, creating alternatives. Every
3419 constraint in the constraint list must have the same number of alternative
3420 sets. With this syntax, the same alternative in *all* of the items in the
3421 constraint list will be chosen together.
3422
3423Putting those together, you might have a two operand constraint string like
3424``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3425operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3426may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3427
3428However, the use of either of the alternatives features is *NOT* recommended, as
3429LLVM is not able to make an intelligent choice about which one to use. (At the
3430point it currently needs to choose, not enough information is available to do so
3431in a smart way.) Thus, it simply tries to make a choice that's most likely to
3432compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3433always choose to use memory, not registers). And, if given multiple registers,
3434or multiple register classes, it will simply choose the first one. (In fact, it
3435doesn't currently even ensure explicitly specified physical registers are
3436unique, so specifying multiple physical registers as alternatives, like
3437``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3438intended.)
3439
3440Supported Constraint Code List
3441""""""""""""""""""""""""""""""
3442
3443The constraint codes are, in general, expected to behave the same way they do in
3444GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3445inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3446and GCC likely indicates a bug in LLVM.
3447
3448Some constraint codes are typically supported by all targets:
3449
3450- ``r``: A register in the target's general purpose register class.
3451- ``m``: A memory address operand. It is target-specific what addressing modes
3452 are supported, typical examples are register, or register + register offset,
3453 or register + immediate offset (of some target-specific size).
3454- ``i``: An integer constant (of target-specific width). Allows either a simple
3455 immediate, or a relocatable value.
3456- ``n``: An integer constant -- *not* including relocatable values.
3457- ``s``: An integer constant, but allowing *only* relocatable values.
3458- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3459 useful to pass a label for an asm branch or call.
3460
3461 .. FIXME: but that surely isn't actually okay to jump out of an asm
3462 block without telling llvm about the control transfer???)
3463
3464- ``{register-name}``: Requires exactly the named physical register.
3465
3466Other constraints are target-specific:
3467
3468AArch64:
3469
3470- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3471- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3472 i.e. 0 to 4095 with optional shift by 12.
3473- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3474 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3475- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3476 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3477- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3478 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3479- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3480 32-bit register. This is a superset of ``K``: in addition to the bitmask
3481 immediate, also allows immediate integers which can be loaded with a single
3482 ``MOVZ`` or ``MOVL`` instruction.
3483- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3484 64-bit register. This is a superset of ``L``.
3485- ``Q``: Memory address operand must be in a single register (no
3486 offsets). (However, LLVM currently does this for the ``m`` constraint as
3487 well.)
3488- ``r``: A 32 or 64-bit integer register (W* or X*).
3489- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3490- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3491
3492AMDGPU:
3493
3494- ``r``: A 32 or 64-bit integer register.
3495- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3496- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3497
3498
3499All ARM modes:
3500
3501- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3502 operand. Treated the same as operand ``m``, at the moment.
3503
3504ARM and ARM's Thumb2 mode:
3505
3506- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3507- ``I``: An immediate integer valid for a data-processing instruction.
3508- ``J``: An immediate integer between -4095 and 4095.
3509- ``K``: An immediate integer whose bitwise inverse is valid for a
3510 data-processing instruction. (Can be used with template modifier "``B``" to
3511 print the inverted value).
3512- ``L``: An immediate integer whose negation is valid for a data-processing
3513 instruction. (Can be used with template modifier "``n``" to print the negated
3514 value).
3515- ``M``: A power of two or a integer between 0 and 32.
3516- ``N``: Invalid immediate constraint.
3517- ``O``: Invalid immediate constraint.
3518- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3519- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3520 as ``r``.
3521- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3522 invalid.
3523- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3524 ``d0-d31``, or ``q0-q15``.
3525- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3526 ``d0-d7``, or ``q0-q3``.
3527- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3528 ``s0-s31``.
3529
3530ARM's Thumb1 mode:
3531
3532- ``I``: An immediate integer between 0 and 255.
3533- ``J``: An immediate integer between -255 and -1.
3534- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3535 some amount.
3536- ``L``: An immediate integer between -7 and 7.
3537- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3538- ``N``: An immediate integer between 0 and 31.
3539- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3540- ``r``: A low 32-bit GPR register (``r0-r7``).
3541- ``l``: A low 32-bit GPR register (``r0-r7``).
3542- ``h``: A high GPR register (``r0-r7``).
3543- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3544 ``d0-d31``, or ``q0-q15``.
3545- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3546 ``d0-d7``, or ``q0-q3``.
3547- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3548 ``s0-s31``.
3549
3550
3551Hexagon:
3552
3553- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3554 at the moment.
3555- ``r``: A 32 or 64-bit register.
3556
3557MSP430:
3558
3559- ``r``: An 8 or 16-bit register.
3560
3561MIPS:
3562
3563- ``I``: An immediate signed 16-bit integer.
3564- ``J``: An immediate integer zero.
3565- ``K``: An immediate unsigned 16-bit integer.
3566- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3567- ``N``: An immediate integer between -65535 and -1.
3568- ``O``: An immediate signed 15-bit integer.
3569- ``P``: An immediate integer between 1 and 65535.
3570- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3571 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3572- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3573 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3574 ``m``.
3575- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3576 ``sc`` instruction on the given subtarget (details vary).
3577- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3578- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003579 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3580 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003581- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3582 ``25``).
3583- ``l``: The ``lo`` register, 32 or 64-bit.
3584- ``x``: Invalid.
3585
3586NVPTX:
3587
3588- ``b``: A 1-bit integer register.
3589- ``c`` or ``h``: A 16-bit integer register.
3590- ``r``: A 32-bit integer register.
3591- ``l`` or ``N``: A 64-bit integer register.
3592- ``f``: A 32-bit float register.
3593- ``d``: A 64-bit float register.
3594
3595
3596PowerPC:
3597
3598- ``I``: An immediate signed 16-bit integer.
3599- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3600- ``K``: An immediate unsigned 16-bit integer.
3601- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3602- ``M``: An immediate integer greater than 31.
3603- ``N``: An immediate integer that is an exact power of 2.
3604- ``O``: The immediate integer constant 0.
3605- ``P``: An immediate integer constant whose negation is a signed 16-bit
3606 constant.
3607- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3608 treated the same as ``m``.
3609- ``r``: A 32 or 64-bit integer register.
3610- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3611 ``R1-R31``).
3612- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3613 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3614- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3615 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3616 altivec vector register (``V0-V31``).
3617
3618 .. FIXME: is this a bug that v accepts QPX registers? I think this
3619 is supposed to only use the altivec vector registers?
3620
3621- ``y``: Condition register (``CR0-CR7``).
3622- ``wc``: An individual CR bit in a CR register.
3623- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3624 register set (overlapping both the floating-point and vector register files).
3625- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3626 set.
3627
3628Sparc:
3629
3630- ``I``: An immediate 13-bit signed integer.
3631- ``r``: A 32-bit integer register.
3632
3633SystemZ:
3634
3635- ``I``: An immediate unsigned 8-bit integer.
3636- ``J``: An immediate unsigned 12-bit integer.
3637- ``K``: An immediate signed 16-bit integer.
3638- ``L``: An immediate signed 20-bit integer.
3639- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003640- ``Q``: A memory address operand with a base address and a 12-bit immediate
3641 unsigned displacement.
3642- ``R``: A memory address operand with a base address, a 12-bit immediate
3643 unsigned displacement, and an index register.
3644- ``S``: A memory address operand with a base address and a 20-bit immediate
3645 signed displacement.
3646- ``T``: A memory address operand with a base address, a 20-bit immediate
3647 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003648- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3649- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3650 address context evaluates as zero).
3651- ``h``: A 32-bit value in the high part of a 64bit data register
3652 (LLVM-specific)
3653- ``f``: A 32, 64, or 128-bit floating point register.
3654
3655X86:
3656
3657- ``I``: An immediate integer between 0 and 31.
3658- ``J``: An immediate integer between 0 and 64.
3659- ``K``: An immediate signed 8-bit integer.
3660- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3661 0xffffffff.
3662- ``M``: An immediate integer between 0 and 3.
3663- ``N``: An immediate unsigned 8-bit integer.
3664- ``O``: An immediate integer between 0 and 127.
3665- ``e``: An immediate 32-bit signed integer.
3666- ``Z``: An immediate 32-bit unsigned integer.
3667- ``o``, ``v``: Treated the same as ``m``, at the moment.
3668- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3669 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3670 registers, and on X86-64, it is all of the integer registers.
3671- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3672 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3673- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3674- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3675 existed since i386, and can be accessed without the REX prefix.
3676- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3677- ``y``: A 64-bit MMX register, if MMX is enabled.
3678- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3679 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3680 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3681 512-bit vector operand in an AVX512 register, Otherwise, an error.
3682- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3683- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3684 32-bit mode, a 64-bit integer operand will get split into two registers). It
3685 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3686 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3687 you're better off splitting it yourself, before passing it to the asm
3688 statement.
3689
3690XCore:
3691
3692- ``r``: A 32-bit integer register.
3693
3694
3695.. _inline-asm-modifiers:
3696
3697Asm template argument modifiers
3698^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3699
3700In the asm template string, modifiers can be used on the operand reference, like
3701"``${0:n}``".
3702
3703The modifiers are, in general, expected to behave the same way they do in
3704GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3705inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3706and GCC likely indicates a bug in LLVM.
3707
3708Target-independent:
3709
Sean Silvaa1190322015-08-06 22:56:48 +00003710- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003711 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3712- ``n``: Negate and print immediate integer constant unadorned, without the
3713 target-specific immediate punctuation (e.g. no ``$`` prefix).
3714- ``l``: Print as an unadorned label, without the target-specific label
3715 punctuation (e.g. no ``$`` prefix).
3716
3717AArch64:
3718
3719- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3720 instead of ``x30``, print ``w30``.
3721- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3722- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3723 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3724 ``v*``.
3725
3726AMDGPU:
3727
3728- ``r``: No effect.
3729
3730ARM:
3731
3732- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3733 register).
3734- ``P``: No effect.
3735- ``q``: No effect.
3736- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3737 as ``d4[1]`` instead of ``s9``)
3738- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3739 prefix.
3740- ``L``: Print the low 16-bits of an immediate integer constant.
3741- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3742 register operands subsequent to the specified one (!), so use carefully.
3743- ``Q``: Print the low-order register of a register-pair, or the low-order
3744 register of a two-register operand.
3745- ``R``: Print the high-order register of a register-pair, or the high-order
3746 register of a two-register operand.
3747- ``H``: Print the second register of a register-pair. (On a big-endian system,
3748 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3749 to ``R``.)
3750
3751 .. FIXME: H doesn't currently support printing the second register
3752 of a two-register operand.
3753
3754- ``e``: Print the low doubleword register of a NEON quad register.
3755- ``f``: Print the high doubleword register of a NEON quad register.
3756- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3757 adornment.
3758
3759Hexagon:
3760
3761- ``L``: Print the second register of a two-register operand. Requires that it
3762 has been allocated consecutively to the first.
3763
3764 .. FIXME: why is it restricted to consecutive ones? And there's
3765 nothing that ensures that happens, is there?
3766
3767- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3768 nothing. Used to print 'addi' vs 'add' instructions.
3769
3770MSP430:
3771
3772No additional modifiers.
3773
3774MIPS:
3775
3776- ``X``: Print an immediate integer as hexadecimal
3777- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3778- ``d``: Print an immediate integer as decimal.
3779- ``m``: Subtract one and print an immediate integer as decimal.
3780- ``z``: Print $0 if an immediate zero, otherwise print normally.
3781- ``L``: Print the low-order register of a two-register operand, or prints the
3782 address of the low-order word of a double-word memory operand.
3783
3784 .. FIXME: L seems to be missing memory operand support.
3785
3786- ``M``: Print the high-order register of a two-register operand, or prints the
3787 address of the high-order word of a double-word memory operand.
3788
3789 .. FIXME: M seems to be missing memory operand support.
3790
3791- ``D``: Print the second register of a two-register operand, or prints the
3792 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3793 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3794 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003795- ``w``: No effect. Provided for compatibility with GCC which requires this
3796 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3797 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003798
3799NVPTX:
3800
3801- ``r``: No effect.
3802
3803PowerPC:
3804
3805- ``L``: Print the second register of a two-register operand. Requires that it
3806 has been allocated consecutively to the first.
3807
3808 .. FIXME: why is it restricted to consecutive ones? And there's
3809 nothing that ensures that happens, is there?
3810
3811- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3812 nothing. Used to print 'addi' vs 'add' instructions.
3813- ``y``: For a memory operand, prints formatter for a two-register X-form
3814 instruction. (Currently always prints ``r0,OPERAND``).
3815- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3816 otherwise. (NOTE: LLVM does not support update form, so this will currently
3817 always print nothing)
3818- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3819 not support indexed form, so this will currently always print nothing)
3820
3821Sparc:
3822
3823- ``r``: No effect.
3824
3825SystemZ:
3826
3827SystemZ implements only ``n``, and does *not* support any of the other
3828target-independent modifiers.
3829
3830X86:
3831
3832- ``c``: Print an unadorned integer or symbol name. (The latter is
3833 target-specific behavior for this typically target-independent modifier).
3834- ``A``: Print a register name with a '``*``' before it.
3835- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3836 operand.
3837- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3838 memory operand.
3839- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3840 operand.
3841- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3842 operand.
3843- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3844 available, otherwise the 32-bit register name; do nothing on a memory operand.
3845- ``n``: Negate and print an unadorned integer, or, for operands other than an
3846 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3847 the operand. (The behavior for relocatable symbol expressions is a
3848 target-specific behavior for this typically target-independent modifier)
3849- ``H``: Print a memory reference with additional offset +8.
3850- ``P``: Print a memory reference or operand for use as the argument of a call
3851 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3852
3853XCore:
3854
3855No additional modifiers.
3856
3857
Sean Silvab084af42012-12-07 10:36:55 +00003858Inline Asm Metadata
3859^^^^^^^^^^^^^^^^^^^
3860
3861The call instructions that wrap inline asm nodes may have a
3862"``!srcloc``" MDNode attached to it that contains a list of constant
3863integers. If present, the code generator will use the integer as the
3864location cookie value when report errors through the ``LLVMContext``
3865error reporting mechanisms. This allows a front-end to correlate backend
3866errors that occur with inline asm back to the source code that produced
3867it. For example:
3868
3869.. code-block:: llvm
3870
3871 call void asm sideeffect "something bad", ""(), !srcloc !42
3872 ...
3873 !42 = !{ i32 1234567 }
3874
3875It is up to the front-end to make sense of the magic numbers it places
3876in the IR. If the MDNode contains multiple constants, the code generator
3877will use the one that corresponds to the line of the asm that the error
3878occurs on.
3879
3880.. _metadata:
3881
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003882Metadata
3883========
Sean Silvab084af42012-12-07 10:36:55 +00003884
3885LLVM IR allows metadata to be attached to instructions in the program
3886that can convey extra information about the code to the optimizers and
3887code generator. One example application of metadata is source-level
3888debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003889
Sean Silvaa1190322015-08-06 22:56:48 +00003890Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003891``call`` instruction, it uses the ``metadata`` type.
3892
3893All metadata are identified in syntax by a exclamation point ('``!``').
3894
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003895.. _metadata-string:
3896
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003897Metadata Nodes and Metadata Strings
3898-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003899
3900A metadata string is a string surrounded by double quotes. It can
3901contain any character by escaping non-printable characters with
3902"``\xx``" where "``xx``" is the two digit hex code. For example:
3903"``!"test\00"``".
3904
3905Metadata nodes are represented with notation similar to structure
3906constants (a comma separated list of elements, surrounded by braces and
3907preceded by an exclamation point). Metadata nodes can have any values as
3908their operand. For example:
3909
3910.. code-block:: llvm
3911
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003912 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003913
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003914Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3915
Renato Golin124f2592016-07-20 12:16:38 +00003916.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003917
3918 !0 = distinct !{!"test\00", i32 10}
3919
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003920``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003921content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003922when metadata operands change.
3923
Sean Silvab084af42012-12-07 10:36:55 +00003924A :ref:`named metadata <namedmetadatastructure>` is a collection of
3925metadata nodes, which can be looked up in the module symbol table. For
3926example:
3927
3928.. code-block:: llvm
3929
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003930 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003931
3932Metadata can be used as function arguments. Here ``llvm.dbg.value``
3933function is using two metadata arguments:
3934
3935.. code-block:: llvm
3936
3937 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3938
Peter Collingbourne50108682015-11-06 02:41:02 +00003939Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3940to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003941
3942.. code-block:: llvm
3943
3944 %indvar.next = add i64 %indvar, 1, !dbg !21
3945
Peter Collingbourne50108682015-11-06 02:41:02 +00003946Metadata can also be attached to a function definition. Here metadata ``!22``
3947is attached to the ``foo`` function using the ``!dbg`` identifier:
3948
3949.. code-block:: llvm
3950
3951 define void @foo() !dbg !22 {
3952 ret void
3953 }
3954
Sean Silvab084af42012-12-07 10:36:55 +00003955More information about specific metadata nodes recognized by the
3956optimizers and code generator is found below.
3957
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003958.. _specialized-metadata:
3959
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003960Specialized Metadata Nodes
3961^^^^^^^^^^^^^^^^^^^^^^^^^^
3962
3963Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003964to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003965order.
3966
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003967These aren't inherently debug info centric, but currently all the specialized
3968metadata nodes are related to debug info.
3969
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003970.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003971
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003972DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003973"""""""""""""
3974
Sean Silvaa1190322015-08-06 22:56:48 +00003975``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003976``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3977fields are tuples containing the debug info to be emitted along with the compile
3978unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003979references to them from instructions).
3980
Renato Golin124f2592016-07-20 12:16:38 +00003981.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003982
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003983 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003984 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003985 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003986 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003987 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003988
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003989Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003990specific compilation unit. File descriptors are defined using this scope.
3991These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003992keep track of subprograms, global variables, type information, and imported
3993entities (declarations and namespaces).
3994
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003995.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003996
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003997DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003998""""""
3999
Sean Silvaa1190322015-08-06 22:56:48 +00004000``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004001
4002.. code-block:: llvm
4003
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004004 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004005
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004006Files are sometimes used in ``scope:`` fields, and are the only valid target
4007for ``file:`` fields.
4008
Michael Kuperstein605308a2015-05-14 10:58:59 +00004009.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004010
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004011DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004012"""""""""""
4013
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004014``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004015``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004016
Renato Golin124f2592016-07-20 12:16:38 +00004017.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004018
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004019 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004020 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004021 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004022
Sean Silvaa1190322015-08-06 22:56:48 +00004023The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004024following:
4025
Renato Golin124f2592016-07-20 12:16:38 +00004026.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004027
4028 DW_ATE_address = 1
4029 DW_ATE_boolean = 2
4030 DW_ATE_float = 4
4031 DW_ATE_signed = 5
4032 DW_ATE_signed_char = 6
4033 DW_ATE_unsigned = 7
4034 DW_ATE_unsigned_char = 8
4035
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004036.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004037
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004038DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004039""""""""""""""""
4040
Sean Silvaa1190322015-08-06 22:56:48 +00004041``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004042refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004043types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004044represents a function with no return value (such as ``void foo() {}`` in C++).
4045
Renato Golin124f2592016-07-20 12:16:38 +00004046.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004047
4048 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4049 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004050 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004051
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004052.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004053
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004054DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004055"""""""""""""
4056
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004057``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004058qualified types.
4059
Renato Golin124f2592016-07-20 12:16:38 +00004060.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004061
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004062 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004063 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004064 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004065 align: 32)
4066
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004067The following ``tag:`` values are valid:
4068
Renato Golin124f2592016-07-20 12:16:38 +00004069.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004070
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004071 DW_TAG_member = 13
4072 DW_TAG_pointer_type = 15
4073 DW_TAG_reference_type = 16
4074 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004075 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004076 DW_TAG_ptr_to_member_type = 31
4077 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004078 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004079 DW_TAG_volatile_type = 53
4080 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004081 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004082
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004083.. _DIDerivedTypeMember:
4084
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004085``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004086<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004087``offset:`` is the member's bit offset. If the composite type has an ODR
4088``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4089uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004090
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004091``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4092field of :ref:`composite types <DICompositeType>` to describe parents and
4093friends.
4094
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004095``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4096
4097``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004098``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4099are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004100
4101Note that the ``void *`` type is expressed as a type derived from NULL.
4102
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004103.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004104
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004105DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004106"""""""""""""""
4107
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004108``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004109structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004110
4111If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004112identifier used for type merging between modules. When specified,
4113:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4114derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4115``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004116
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004117For a given ``identifier:``, there should only be a single composite type that
4118does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4119together will unique such definitions at parse time via the ``identifier:``
4120field, even if the nodes are ``distinct``.
4121
Renato Golin124f2592016-07-20 12:16:38 +00004122.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004123
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004124 !0 = !DIEnumerator(name: "SixKind", value: 7)
4125 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4126 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4127 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004128 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4129 elements: !{!0, !1, !2})
4130
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004131The following ``tag:`` values are valid:
4132
Renato Golin124f2592016-07-20 12:16:38 +00004133.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004134
4135 DW_TAG_array_type = 1
4136 DW_TAG_class_type = 2
4137 DW_TAG_enumeration_type = 4
4138 DW_TAG_structure_type = 19
4139 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004140
4141For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004142descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004143level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004144array type is a native packed vector.
4145
4146For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004147descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004148value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004149``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004150
4151For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4152``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004153<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4154``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4155``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004156
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004157.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004158
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004159DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004160""""""""""
4161
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004162``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004163:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004164
4165.. code-block:: llvm
4166
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004167 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4168 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4169 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004170
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004171.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004172
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004173DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004174""""""""""""
4175
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004176``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4177variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004178
4179.. code-block:: llvm
4180
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004181 !0 = !DIEnumerator(name: "SixKind", value: 7)
4182 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4183 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004184
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004185DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004186"""""""""""""""""""""""
4187
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004188``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004189language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004190:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004191
4192.. code-block:: llvm
4193
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004194 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004195
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004196DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004197""""""""""""""""""""""""
4198
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004199``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004200language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004201but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004202``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004203:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004204
4205.. code-block:: llvm
4206
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004207 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004208
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004209DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004210"""""""""""
4211
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004212``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004213
4214.. code-block:: llvm
4215
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004216 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004217
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004218DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004219""""""""""""""""
4220
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004221``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004222
4223.. code-block:: llvm
4224
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004225 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004226 file: !2, line: 7, type: !3, isLocal: true,
4227 isDefinition: false, variable: i32* @foo,
4228 declaration: !4)
4229
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004230All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004231:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004232
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004233.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004234
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004235DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004236""""""""""""
4237
Peter Collingbourne50108682015-11-06 02:41:02 +00004238``DISubprogram`` nodes represent functions from the source language. A
4239``DISubprogram`` may be attached to a function definition using ``!dbg``
4240metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4241that must be retained, even if their IR counterparts are optimized out of
4242the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004243
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004244.. _DISubprogramDeclaration:
4245
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004246When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004247tree as opposed to a definition of a function. If the scope is a composite
4248type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4249then the subprogram declaration is uniqued based only on its ``linkageName:``
4250and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004251
Renato Golin124f2592016-07-20 12:16:38 +00004252.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004253
Peter Collingbourne50108682015-11-06 02:41:02 +00004254 define void @_Z3foov() !dbg !0 {
4255 ...
4256 }
4257
4258 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4259 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004260 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004261 containingType: !4,
4262 virtuality: DW_VIRTUALITY_pure_virtual,
4263 virtualIndex: 10, flags: DIFlagPrototyped,
4264 isOptimized: true, templateParams: !5,
4265 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004266
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004267.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004268
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004269DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004270""""""""""""""
4271
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004272``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004273<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004274two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004275fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004276
Renato Golin124f2592016-07-20 12:16:38 +00004277.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004278
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004279 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004280
4281Usually lexical blocks are ``distinct`` to prevent node merging based on
4282operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004283
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004284.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004285
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004286DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004287""""""""""""""""""
4288
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004289``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004290:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004291indicate textual inclusion, or the ``discriminator:`` field can be used to
4292discriminate between control flow within a single block in the source language.
4293
4294.. code-block:: llvm
4295
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004296 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4297 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4298 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004299
Michael Kuperstein605308a2015-05-14 10:58:59 +00004300.. _DILocation:
4301
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004302DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004303""""""""""
4304
Sean Silvaa1190322015-08-06 22:56:48 +00004305``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004306mandatory, and points at an :ref:`DILexicalBlockFile`, an
4307:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004308
4309.. code-block:: llvm
4310
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004311 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004312
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004313.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004314
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004315DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004316"""""""""""""""
4317
Sean Silvaa1190322015-08-06 22:56:48 +00004318``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004319the ``arg:`` field is set to non-zero, then this variable is a subprogram
4320parameter, and it will be included in the ``variables:`` field of its
4321:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004322
Renato Golin124f2592016-07-20 12:16:38 +00004323.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004324
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004325 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4326 type: !3, flags: DIFlagArtificial)
4327 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4328 type: !3)
4329 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004330
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004331DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004332""""""""""""
4333
Sean Silvaa1190322015-08-06 22:56:48 +00004334``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004335:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4336describe how the referenced LLVM variable relates to the source language
4337variable.
4338
4339The current supported vocabulary is limited:
4340
4341- ``DW_OP_deref`` dereferences the working expression.
4342- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4343- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4344 here, respectively) of the variable piece from the working expression.
4345
Renato Golin124f2592016-07-20 12:16:38 +00004346.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004347
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004348 !0 = !DIExpression(DW_OP_deref)
4349 !1 = !DIExpression(DW_OP_plus, 3)
4350 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4351 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004352
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004353DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004354""""""""""""""
4355
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004356``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004357
4358.. code-block:: llvm
4359
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004360 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004361 getter: "getFoo", attributes: 7, type: !2)
4362
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004363DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004364""""""""""""""""
4365
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004366``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004367compile unit.
4368
Renato Golin124f2592016-07-20 12:16:38 +00004369.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004370
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004371 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004372 entity: !1, line: 7)
4373
Amjad Abouda9bcf162015-12-10 12:56:35 +00004374DIMacro
4375"""""""
4376
4377``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4378The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004379defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004380used to expand the macro identifier.
4381
Renato Golin124f2592016-07-20 12:16:38 +00004382.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004383
4384 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4385 value: "((x) + 1)")
4386 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4387
4388DIMacroFile
4389"""""""""""
4390
4391``DIMacroFile`` nodes represent inclusion of source files.
4392The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4393appear in the included source file.
4394
Renato Golin124f2592016-07-20 12:16:38 +00004395.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004396
4397 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4398 nodes: !3)
4399
Sean Silvab084af42012-12-07 10:36:55 +00004400'``tbaa``' Metadata
4401^^^^^^^^^^^^^^^^^^^
4402
4403In LLVM IR, memory does not have types, so LLVM's own type system is not
4404suitable for doing TBAA. Instead, metadata is added to the IR to
4405describe a type system of a higher level language. This can be used to
4406implement typical C/C++ TBAA, but it can also be used to implement
4407custom alias analysis behavior for other languages.
4408
4409The current metadata format is very simple. TBAA metadata nodes have up
4410to three fields, e.g.:
4411
4412.. code-block:: llvm
4413
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004414 !0 = !{ !"an example type tree" }
4415 !1 = !{ !"int", !0 }
4416 !2 = !{ !"float", !0 }
4417 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004418
4419The first field is an identity field. It can be any value, usually a
4420metadata string, which uniquely identifies the type. The most important
4421name in the tree is the name of the root node. Two trees with different
4422root node names are entirely disjoint, even if they have leaves with
4423common names.
4424
4425The second field identifies the type's parent node in the tree, or is
4426null or omitted for a root node. A type is considered to alias all of
4427its descendants and all of its ancestors in the tree. Also, a type is
4428considered to alias all types in other trees, so that bitcode produced
4429from multiple front-ends is handled conservatively.
4430
4431If the third field is present, it's an integer which if equal to 1
4432indicates that the type is "constant" (meaning
4433``pointsToConstantMemory`` should return true; see `other useful
4434AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4435
4436'``tbaa.struct``' Metadata
4437^^^^^^^^^^^^^^^^^^^^^^^^^^
4438
4439The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4440aggregate assignment operations in C and similar languages, however it
4441is defined to copy a contiguous region of memory, which is more than
4442strictly necessary for aggregate types which contain holes due to
4443padding. Also, it doesn't contain any TBAA information about the fields
4444of the aggregate.
4445
4446``!tbaa.struct`` metadata can describe which memory subregions in a
4447memcpy are padding and what the TBAA tags of the struct are.
4448
4449The current metadata format is very simple. ``!tbaa.struct`` metadata
4450nodes are a list of operands which are in conceptual groups of three.
4451For each group of three, the first operand gives the byte offset of a
4452field in bytes, the second gives its size in bytes, and the third gives
4453its tbaa tag. e.g.:
4454
4455.. code-block:: llvm
4456
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004457 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004458
4459This describes a struct with two fields. The first is at offset 0 bytes
4460with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4461and has size 4 bytes and has tbaa tag !2.
4462
4463Note that the fields need not be contiguous. In this example, there is a
44644 byte gap between the two fields. This gap represents padding which
4465does not carry useful data and need not be preserved.
4466
Hal Finkel94146652014-07-24 14:25:39 +00004467'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004468^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004469
4470``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4471noalias memory-access sets. This means that some collection of memory access
4472instructions (loads, stores, memory-accessing calls, etc.) that carry
4473``noalias`` metadata can specifically be specified not to alias with some other
4474collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004475Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004476a domain.
4477
4478When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004479of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004480subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004481instruction's ``noalias`` list, then the two memory accesses are assumed not to
4482alias.
Hal Finkel94146652014-07-24 14:25:39 +00004483
Adam Nemet569a5b32016-04-27 00:52:48 +00004484Because scopes in one domain don't affect scopes in other domains, separate
4485domains can be used to compose multiple independent noalias sets. This is
4486used for example during inlining. As the noalias function parameters are
4487turned into noalias scope metadata, a new domain is used every time the
4488function is inlined.
4489
Hal Finkel029cde62014-07-25 15:50:02 +00004490The metadata identifying each domain is itself a list containing one or two
4491entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004492string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004493self-reference can be used to create globally unique domain names. A
4494descriptive string may optionally be provided as a second list entry.
4495
4496The metadata identifying each scope is also itself a list containing two or
4497three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004498is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004499self-reference can be used to create globally unique scope names. A metadata
4500reference to the scope's domain is the second entry. A descriptive string may
4501optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004502
4503For example,
4504
4505.. code-block:: llvm
4506
Hal Finkel029cde62014-07-25 15:50:02 +00004507 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004508 !0 = !{!0}
4509 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004510
Hal Finkel029cde62014-07-25 15:50:02 +00004511 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004512 !2 = !{!2, !0}
4513 !3 = !{!3, !0}
4514 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004515
Hal Finkel029cde62014-07-25 15:50:02 +00004516 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004517 !5 = !{!4} ; A list containing only scope !4
4518 !6 = !{!4, !3, !2}
4519 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004520
4521 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004522 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004523 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004524
Hal Finkel029cde62014-07-25 15:50:02 +00004525 ; These two instructions also don't alias (for domain !1, the set of scopes
4526 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004527 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004528 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004529
Adam Nemet0a8416f2015-05-11 08:30:28 +00004530 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004531 ; the !noalias list is not a superset of, or equal to, the scopes in the
4532 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004533 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004534 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004535
Sean Silvab084af42012-12-07 10:36:55 +00004536'``fpmath``' Metadata
4537^^^^^^^^^^^^^^^^^^^^^
4538
4539``fpmath`` metadata may be attached to any instruction of floating point
4540type. It can be used to express the maximum acceptable error in the
4541result of that instruction, in ULPs, thus potentially allowing the
4542compiler to use a more efficient but less accurate method of computing
4543it. ULP is defined as follows:
4544
4545 If ``x`` is a real number that lies between two finite consecutive
4546 floating-point numbers ``a`` and ``b``, without being equal to one
4547 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4548 distance between the two non-equal finite floating-point numbers
4549 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4550
Matt Arsenault82f41512016-06-27 19:43:15 +00004551The metadata node shall consist of a single positive float type number
4552representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004553
4554.. code-block:: llvm
4555
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004556 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004557
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004558.. _range-metadata:
4559
Sean Silvab084af42012-12-07 10:36:55 +00004560'``range``' Metadata
4561^^^^^^^^^^^^^^^^^^^^
4562
Jingyue Wu37fcb592014-06-19 16:50:16 +00004563``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4564integer types. It expresses the possible ranges the loaded value or the value
4565returned by the called function at this call site is in. The ranges are
4566represented with a flattened list of integers. The loaded value or the value
4567returned is known to be in the union of the ranges defined by each consecutive
4568pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004569
4570- The type must match the type loaded by the instruction.
4571- The pair ``a,b`` represents the range ``[a,b)``.
4572- Both ``a`` and ``b`` are constants.
4573- The range is allowed to wrap.
4574- The range should not represent the full or empty set. That is,
4575 ``a!=b``.
4576
4577In addition, the pairs must be in signed order of the lower bound and
4578they must be non-contiguous.
4579
4580Examples:
4581
4582.. code-block:: llvm
4583
David Blaikiec7aabbb2015-03-04 22:06:14 +00004584 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4585 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004586 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4587 %d = invoke i8 @bar() to label %cont
4588 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004589 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004590 !0 = !{ i8 0, i8 2 }
4591 !1 = !{ i8 255, i8 2 }
4592 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4593 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004594
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004595'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004596^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004597
4598``unpredictable`` metadata may be attached to any branch or switch
4599instruction. It can be used to express the unpredictability of control
4600flow. Similar to the llvm.expect intrinsic, it may be used to alter
4601optimizations related to compare and branch instructions. The metadata
4602is treated as a boolean value; if it exists, it signals that the branch
4603or switch that it is attached to is completely unpredictable.
4604
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004605'``llvm.loop``'
4606^^^^^^^^^^^^^^^
4607
4608It is sometimes useful to attach information to loop constructs. Currently,
4609loop metadata is implemented as metadata attached to the branch instruction
4610in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004611guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004612specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004613
4614The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004615itself to avoid merging it with any other identifier metadata, e.g.,
4616during module linkage or function inlining. That is, each loop should refer
4617to their own identification metadata even if they reside in separate functions.
4618The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004619constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004620
4621.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004622
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004623 !0 = !{!0}
4624 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004625
Mark Heffernan893752a2014-07-18 19:24:51 +00004626The loop identifier metadata can be used to specify additional
4627per-loop metadata. Any operands after the first operand can be treated
4628as user-defined metadata. For example the ``llvm.loop.unroll.count``
4629suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004630
Paul Redmond5fdf8362013-05-28 20:00:34 +00004631.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004632
Paul Redmond5fdf8362013-05-28 20:00:34 +00004633 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4634 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004635 !0 = !{!0, !1}
4636 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004637
Mark Heffernan9d20e422014-07-21 23:11:03 +00004638'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004640
Mark Heffernan9d20e422014-07-21 23:11:03 +00004641Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4642used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004643vectorization width and interleave count. These metadata should be used in
4644conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004645``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4646optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004647it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004648which contains information about loop-carried memory dependencies can be helpful
4649in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004650
Mark Heffernan9d20e422014-07-21 23:11:03 +00004651'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4653
Mark Heffernan9d20e422014-07-21 23:11:03 +00004654This metadata suggests an interleave count to the loop interleaver.
4655The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004656second operand is an integer specifying the interleave count. For
4657example:
4658
4659.. code-block:: llvm
4660
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004661 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004662
Mark Heffernan9d20e422014-07-21 23:11:03 +00004663Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004664multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004665then the interleave count will be determined automatically.
4666
4667'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004669
4670This metadata selectively enables or disables vectorization for the loop. The
4671first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004672is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000046730 disables vectorization:
4674
4675.. code-block:: llvm
4676
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004677 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4678 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004679
4680'``llvm.loop.vectorize.width``' Metadata
4681^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4682
4683This metadata sets the target width of the vectorizer. The first
4684operand is the string ``llvm.loop.vectorize.width`` and the second
4685operand is an integer specifying the width. For example:
4686
4687.. code-block:: llvm
4688
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004689 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004690
4691Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004692vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000046930 or if the loop does not have this metadata the width will be
4694determined automatically.
4695
4696'``llvm.loop.unroll``'
4697^^^^^^^^^^^^^^^^^^^^^^
4698
4699Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4700optimization hints such as the unroll factor. ``llvm.loop.unroll``
4701metadata should be used in conjunction with ``llvm.loop`` loop
4702identification metadata. The ``llvm.loop.unroll`` metadata are only
4703optimization hints and the unrolling will only be performed if the
4704optimizer believes it is safe to do so.
4705
Mark Heffernan893752a2014-07-18 19:24:51 +00004706'``llvm.loop.unroll.count``' Metadata
4707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4708
4709This metadata suggests an unroll factor to the loop unroller. The
4710first operand is the string ``llvm.loop.unroll.count`` and the second
4711operand is a positive integer specifying the unroll factor. For
4712example:
4713
4714.. code-block:: llvm
4715
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004716 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004717
4718If the trip count of the loop is less than the unroll count the loop
4719will be partially unrolled.
4720
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004721'``llvm.loop.unroll.disable``' Metadata
4722^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4723
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004724This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004725which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004726
4727.. code-block:: llvm
4728
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004729 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004730
Kevin Qin715b01e2015-03-09 06:14:18 +00004731'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004732^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004733
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004734This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004735operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004736
4737.. code-block:: llvm
4738
4739 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4740
Mark Heffernan89391542015-08-10 17:28:08 +00004741'``llvm.loop.unroll.enable``' Metadata
4742^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4743
4744This metadata suggests that the loop should be fully unrolled if the trip count
4745is known at compile time and partially unrolled if the trip count is not known
4746at compile time. The metadata has a single operand which is the string
4747``llvm.loop.unroll.enable``. For example:
4748
4749.. code-block:: llvm
4750
4751 !0 = !{!"llvm.loop.unroll.enable"}
4752
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004753'``llvm.loop.unroll.full``' Metadata
4754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4755
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004756This metadata suggests that the loop should be unrolled fully. The
4757metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004758For example:
4759
4760.. code-block:: llvm
4761
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004762 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004763
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004764'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004766
4767This metadata indicates that the loop should not be versioned for the purpose
4768of enabling loop-invariant code motion (LICM). The metadata has a single operand
4769which is the string ``llvm.loop.licm_versioning.disable``. For example:
4770
4771.. code-block:: llvm
4772
4773 !0 = !{!"llvm.loop.licm_versioning.disable"}
4774
Adam Nemetd2fa4142016-04-27 05:28:18 +00004775'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004776^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004777
4778Loop distribution allows splitting a loop into multiple loops. Currently,
4779this is only performed if the entire loop cannot be vectorized due to unsafe
4780memory dependencies. The transformation will atempt to isolate the unsafe
4781dependencies into their own loop.
4782
4783This metadata can be used to selectively enable or disable distribution of the
4784loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4785second operand is a bit. If the bit operand value is 1 distribution is
4786enabled. A value of 0 disables distribution:
4787
4788.. code-block:: llvm
4789
4790 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4791 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4792
4793This metadata should be used in conjunction with ``llvm.loop`` loop
4794identification metadata.
4795
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004796'``llvm.mem``'
4797^^^^^^^^^^^^^^^
4798
4799Metadata types used to annotate memory accesses with information helpful
4800for optimizations are prefixed with ``llvm.mem``.
4801
4802'``llvm.mem.parallel_loop_access``' Metadata
4803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4804
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004805The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4806or metadata containing a list of loop identifiers for nested loops.
4807The metadata is attached to memory accessing instructions and denotes that
4808no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004809with the same loop identifier. The metadata on memory reads also implies that
4810if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004811
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004812Precisely, given two instructions ``m1`` and ``m2`` that both have the
4813``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4814set of loops associated with that metadata, respectively, then there is no loop
4815carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004816``L2``.
4817
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004818As a special case, if all memory accessing instructions in a loop have
4819``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4820loop has no loop carried memory dependences and is considered to be a parallel
4821loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004822
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004823Note that if not all memory access instructions have such metadata referring to
4824the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004825memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004826safe mechanism, this causes loops that were originally parallel to be considered
4827sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004828insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004829
4830Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004831both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004832metadata types that refer to the same loop identifier metadata.
4833
4834.. code-block:: llvm
4835
4836 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004837 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004838 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004839 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004840 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004841 ...
4842 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004843
4844 for.end:
4845 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004846 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004847
4848It is also possible to have nested parallel loops. In that case the
4849memory accesses refer to a list of loop identifier metadata nodes instead of
4850the loop identifier metadata node directly:
4851
4852.. code-block:: llvm
4853
4854 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004855 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004856 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004857 ...
4858 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004859
4860 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004861 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004862 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004863 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004864 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004865 ...
4866 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004867
4868 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004869 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004870 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004871 ...
4872 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004873
4874 outer.for.end: ; preds = %for.body
4875 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004876 !0 = !{!1, !2} ; a list of loop identifiers
4877 !1 = !{!1} ; an identifier for the inner loop
4878 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004879
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004880'``invariant.group``' Metadata
4881^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4882
4883The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4884The existence of the ``invariant.group`` metadata on the instruction tells
4885the optimizer that every ``load`` and ``store`` to the same pointer operand
4886within the same invariant group can be assumed to load or store the same
4887value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4888when two pointers are considered the same).
4889
4890Examples:
4891
4892.. code-block:: llvm
4893
4894 @unknownPtr = external global i8
4895 ...
4896 %ptr = alloca i8
4897 store i8 42, i8* %ptr, !invariant.group !0
4898 call void @foo(i8* %ptr)
4899
4900 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4901 call void @foo(i8* %ptr)
4902 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4903
4904 %newPtr = call i8* @getPointer(i8* %ptr)
4905 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4906
4907 %unknownValue = load i8, i8* @unknownPtr
4908 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4909
4910 call void @foo(i8* %ptr)
4911 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4912 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4913
4914 ...
4915 declare void @foo(i8*)
4916 declare i8* @getPointer(i8*)
4917 declare i8* @llvm.invariant.group.barrier(i8*)
4918
4919 !0 = !{!"magic ptr"}
4920 !1 = !{!"other ptr"}
4921
Peter Collingbournea333db82016-07-26 22:31:30 +00004922'``type``' Metadata
4923^^^^^^^^^^^^^^^^^^^
4924
4925See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004926
4927
Sean Silvab084af42012-12-07 10:36:55 +00004928Module Flags Metadata
4929=====================
4930
4931Information about the module as a whole is difficult to convey to LLVM's
4932subsystems. The LLVM IR isn't sufficient to transmit this information.
4933The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004934this. These flags are in the form of key / value pairs --- much like a
4935dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004936look it up.
4937
4938The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4939Each triplet has the following form:
4940
4941- The first element is a *behavior* flag, which specifies the behavior
4942 when two (or more) modules are merged together, and it encounters two
4943 (or more) metadata with the same ID. The supported behaviors are
4944 described below.
4945- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004946 metadata. Each module may only have one flag entry for each unique ID (not
4947 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004948- The third element is the value of the flag.
4949
4950When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004951``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4952each unique metadata ID string, there will be exactly one entry in the merged
4953modules ``llvm.module.flags`` metadata table, and the value for that entry will
4954be determined by the merge behavior flag, as described below. The only exception
4955is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004956
4957The following behaviors are supported:
4958
4959.. list-table::
4960 :header-rows: 1
4961 :widths: 10 90
4962
4963 * - Value
4964 - Behavior
4965
4966 * - 1
4967 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004968 Emits an error if two values disagree, otherwise the resulting value
4969 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004970
4971 * - 2
4972 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004973 Emits a warning if two values disagree. The result value will be the
4974 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004975
4976 * - 3
4977 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004978 Adds a requirement that another module flag be present and have a
4979 specified value after linking is performed. The value must be a
4980 metadata pair, where the first element of the pair is the ID of the
4981 module flag to be restricted, and the second element of the pair is
4982 the value the module flag should be restricted to. This behavior can
4983 be used to restrict the allowable results (via triggering of an
4984 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004985
4986 * - 4
4987 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004988 Uses the specified value, regardless of the behavior or value of the
4989 other module. If both modules specify **Override**, but the values
4990 differ, an error will be emitted.
4991
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004992 * - 5
4993 - **Append**
4994 Appends the two values, which are required to be metadata nodes.
4995
4996 * - 6
4997 - **AppendUnique**
4998 Appends the two values, which are required to be metadata
4999 nodes. However, duplicate entries in the second list are dropped
5000 during the append operation.
5001
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005002It is an error for a particular unique flag ID to have multiple behaviors,
5003except in the case of **Require** (which adds restrictions on another metadata
5004value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005005
5006An example of module flags:
5007
5008.. code-block:: llvm
5009
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005010 !0 = !{ i32 1, !"foo", i32 1 }
5011 !1 = !{ i32 4, !"bar", i32 37 }
5012 !2 = !{ i32 2, !"qux", i32 42 }
5013 !3 = !{ i32 3, !"qux",
5014 !{
5015 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005016 }
5017 }
5018 !llvm.module.flags = !{ !0, !1, !2, !3 }
5019
5020- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5021 if two or more ``!"foo"`` flags are seen is to emit an error if their
5022 values are not equal.
5023
5024- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5025 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005026 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005027
5028- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5029 behavior if two or more ``!"qux"`` flags are seen is to emit a
5030 warning if their values are not equal.
5031
5032- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5033
5034 ::
5035
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005036 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005037
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005038 The behavior is to emit an error if the ``llvm.module.flags`` does not
5039 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5040 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005041
5042Objective-C Garbage Collection Module Flags Metadata
5043----------------------------------------------------
5044
5045On the Mach-O platform, Objective-C stores metadata about garbage
5046collection in a special section called "image info". The metadata
5047consists of a version number and a bitmask specifying what types of
5048garbage collection are supported (if any) by the file. If two or more
5049modules are linked together their garbage collection metadata needs to
5050be merged rather than appended together.
5051
5052The Objective-C garbage collection module flags metadata consists of the
5053following key-value pairs:
5054
5055.. list-table::
5056 :header-rows: 1
5057 :widths: 30 70
5058
5059 * - Key
5060 - Value
5061
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005062 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005063 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005064
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005065 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005066 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005067 always 0.
5068
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005069 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005070 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005071 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5072 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5073 Objective-C ABI version 2.
5074
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005075 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005076 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005077 not. Valid values are 0, for no garbage collection, and 2, for garbage
5078 collection supported.
5079
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005080 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005081 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005082 If present, its value must be 6. This flag requires that the
5083 ``Objective-C Garbage Collection`` flag have the value 2.
5084
5085Some important flag interactions:
5086
5087- If a module with ``Objective-C Garbage Collection`` set to 0 is
5088 merged with a module with ``Objective-C Garbage Collection`` set to
5089 2, then the resulting module has the
5090 ``Objective-C Garbage Collection`` flag set to 0.
5091- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5092 merged with a module with ``Objective-C GC Only`` set to 6.
5093
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005094Automatic Linker Flags Module Flags Metadata
5095--------------------------------------------
5096
5097Some targets support embedding flags to the linker inside individual object
5098files. Typically this is used in conjunction with language extensions which
5099allow source files to explicitly declare the libraries they depend on, and have
5100these automatically be transmitted to the linker via object files.
5101
5102These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005103using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005104to be ``AppendUnique``, and the value for the key is expected to be a metadata
5105node which should be a list of other metadata nodes, each of which should be a
5106list of metadata strings defining linker options.
5107
5108For example, the following metadata section specifies two separate sets of
5109linker options, presumably to link against ``libz`` and the ``Cocoa``
5110framework::
5111
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005112 !0 = !{ i32 6, !"Linker Options",
5113 !{
5114 !{ !"-lz" },
5115 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005116 !llvm.module.flags = !{ !0 }
5117
5118The metadata encoding as lists of lists of options, as opposed to a collapsed
5119list of options, is chosen so that the IR encoding can use multiple option
5120strings to specify e.g., a single library, while still having that specifier be
5121preserved as an atomic element that can be recognized by a target specific
5122assembly writer or object file emitter.
5123
5124Each individual option is required to be either a valid option for the target's
5125linker, or an option that is reserved by the target specific assembly writer or
5126object file emitter. No other aspect of these options is defined by the IR.
5127
Oliver Stannard5dc29342014-06-20 10:08:11 +00005128C type width Module Flags Metadata
5129----------------------------------
5130
5131The ARM backend emits a section into each generated object file describing the
5132options that it was compiled with (in a compiler-independent way) to prevent
5133linking incompatible objects, and to allow automatic library selection. Some
5134of these options are not visible at the IR level, namely wchar_t width and enum
5135width.
5136
5137To pass this information to the backend, these options are encoded in module
5138flags metadata, using the following key-value pairs:
5139
5140.. list-table::
5141 :header-rows: 1
5142 :widths: 30 70
5143
5144 * - Key
5145 - Value
5146
5147 * - short_wchar
5148 - * 0 --- sizeof(wchar_t) == 4
5149 * 1 --- sizeof(wchar_t) == 2
5150
5151 * - short_enum
5152 - * 0 --- Enums are at least as large as an ``int``.
5153 * 1 --- Enums are stored in the smallest integer type which can
5154 represent all of its values.
5155
5156For example, the following metadata section specifies that the module was
5157compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5158enum is the smallest type which can represent all of its values::
5159
5160 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005161 !0 = !{i32 1, !"short_wchar", i32 1}
5162 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005163
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005164.. _intrinsicglobalvariables:
5165
Sean Silvab084af42012-12-07 10:36:55 +00005166Intrinsic Global Variables
5167==========================
5168
5169LLVM has a number of "magic" global variables that contain data that
5170affect code generation or other IR semantics. These are documented here.
5171All globals of this sort should have a section specified as
5172"``llvm.metadata``". This section and all globals that start with
5173"``llvm.``" are reserved for use by LLVM.
5174
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005175.. _gv_llvmused:
5176
Sean Silvab084af42012-12-07 10:36:55 +00005177The '``llvm.used``' Global Variable
5178-----------------------------------
5179
Rafael Espindola74f2e462013-04-22 14:58:02 +00005180The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005181:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005182pointers to named global variables, functions and aliases which may optionally
5183have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005184use of it is:
5185
5186.. code-block:: llvm
5187
5188 @X = global i8 4
5189 @Y = global i32 123
5190
5191 @llvm.used = appending global [2 x i8*] [
5192 i8* @X,
5193 i8* bitcast (i32* @Y to i8*)
5194 ], section "llvm.metadata"
5195
Rafael Espindola74f2e462013-04-22 14:58:02 +00005196If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5197and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005198symbol that it cannot see (which is why they have to be named). For example, if
5199a variable has internal linkage and no references other than that from the
5200``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5201references from inline asms and other things the compiler cannot "see", and
5202corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005203
5204On some targets, the code generator must emit a directive to the
5205assembler or object file to prevent the assembler and linker from
5206molesting the symbol.
5207
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005208.. _gv_llvmcompilerused:
5209
Sean Silvab084af42012-12-07 10:36:55 +00005210The '``llvm.compiler.used``' Global Variable
5211--------------------------------------------
5212
5213The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5214directive, except that it only prevents the compiler from touching the
5215symbol. On targets that support it, this allows an intelligent linker to
5216optimize references to the symbol without being impeded as it would be
5217by ``@llvm.used``.
5218
5219This is a rare construct that should only be used in rare circumstances,
5220and should not be exposed to source languages.
5221
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005222.. _gv_llvmglobalctors:
5223
Sean Silvab084af42012-12-07 10:36:55 +00005224The '``llvm.global_ctors``' Global Variable
5225-------------------------------------------
5226
5227.. code-block:: llvm
5228
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005229 %0 = type { i32, void ()*, i8* }
5230 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005231
5232The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005233functions, priorities, and an optional associated global or function.
5234The functions referenced by this array will be called in ascending order
5235of priority (i.e. lowest first) when the module is loaded. The order of
5236functions with the same priority is not defined.
5237
5238If the third field is present, non-null, and points to a global variable
5239or function, the initializer function will only run if the associated
5240data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005241
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005242.. _llvmglobaldtors:
5243
Sean Silvab084af42012-12-07 10:36:55 +00005244The '``llvm.global_dtors``' Global Variable
5245-------------------------------------------
5246
5247.. code-block:: llvm
5248
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005249 %0 = type { i32, void ()*, i8* }
5250 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005251
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005252The ``@llvm.global_dtors`` array contains a list of destructor
5253functions, priorities, and an optional associated global or function.
5254The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005255order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005256order of functions with the same priority is not defined.
5257
5258If the third field is present, non-null, and points to a global variable
5259or function, the destructor function will only run if the associated
5260data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005261
5262Instruction Reference
5263=====================
5264
5265The LLVM instruction set consists of several different classifications
5266of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5267instructions <binaryops>`, :ref:`bitwise binary
5268instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5269:ref:`other instructions <otherops>`.
5270
5271.. _terminators:
5272
5273Terminator Instructions
5274-----------------------
5275
5276As mentioned :ref:`previously <functionstructure>`, every basic block in a
5277program ends with a "Terminator" instruction, which indicates which
5278block should be executed after the current block is finished. These
5279terminator instructions typically yield a '``void``' value: they produce
5280control flow, not values (the one exception being the
5281':ref:`invoke <i_invoke>`' instruction).
5282
5283The terminator instructions are: ':ref:`ret <i_ret>`',
5284':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5285':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005286':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005287':ref:`catchret <i_catchret>`',
5288':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005289and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005290
5291.. _i_ret:
5292
5293'``ret``' Instruction
5294^^^^^^^^^^^^^^^^^^^^^
5295
5296Syntax:
5297"""""""
5298
5299::
5300
5301 ret <type> <value> ; Return a value from a non-void function
5302 ret void ; Return from void function
5303
5304Overview:
5305"""""""""
5306
5307The '``ret``' instruction is used to return control flow (and optionally
5308a value) from a function back to the caller.
5309
5310There are two forms of the '``ret``' instruction: one that returns a
5311value and then causes control flow, and one that just causes control
5312flow to occur.
5313
5314Arguments:
5315""""""""""
5316
5317The '``ret``' instruction optionally accepts a single argument, the
5318return value. The type of the return value must be a ':ref:`first
5319class <t_firstclass>`' type.
5320
5321A function is not :ref:`well formed <wellformed>` if it it has a non-void
5322return type and contains a '``ret``' instruction with no return value or
5323a return value with a type that does not match its type, or if it has a
5324void return type and contains a '``ret``' instruction with a return
5325value.
5326
5327Semantics:
5328""""""""""
5329
5330When the '``ret``' instruction is executed, control flow returns back to
5331the calling function's context. If the caller is a
5332":ref:`call <i_call>`" instruction, execution continues at the
5333instruction after the call. If the caller was an
5334":ref:`invoke <i_invoke>`" instruction, execution continues at the
5335beginning of the "normal" destination block. If the instruction returns
5336a value, that value shall set the call or invoke instruction's return
5337value.
5338
5339Example:
5340""""""""
5341
5342.. code-block:: llvm
5343
5344 ret i32 5 ; Return an integer value of 5
5345 ret void ; Return from a void function
5346 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5347
5348.. _i_br:
5349
5350'``br``' Instruction
5351^^^^^^^^^^^^^^^^^^^^
5352
5353Syntax:
5354"""""""
5355
5356::
5357
5358 br i1 <cond>, label <iftrue>, label <iffalse>
5359 br label <dest> ; Unconditional branch
5360
5361Overview:
5362"""""""""
5363
5364The '``br``' instruction is used to cause control flow to transfer to a
5365different basic block in the current function. There are two forms of
5366this instruction, corresponding to a conditional branch and an
5367unconditional branch.
5368
5369Arguments:
5370""""""""""
5371
5372The conditional branch form of the '``br``' instruction takes a single
5373'``i1``' value and two '``label``' values. The unconditional form of the
5374'``br``' instruction takes a single '``label``' value as a target.
5375
5376Semantics:
5377""""""""""
5378
5379Upon execution of a conditional '``br``' instruction, the '``i1``'
5380argument is evaluated. If the value is ``true``, control flows to the
5381'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5382to the '``iffalse``' ``label`` argument.
5383
5384Example:
5385""""""""
5386
5387.. code-block:: llvm
5388
5389 Test:
5390 %cond = icmp eq i32 %a, %b
5391 br i1 %cond, label %IfEqual, label %IfUnequal
5392 IfEqual:
5393 ret i32 1
5394 IfUnequal:
5395 ret i32 0
5396
5397.. _i_switch:
5398
5399'``switch``' Instruction
5400^^^^^^^^^^^^^^^^^^^^^^^^
5401
5402Syntax:
5403"""""""
5404
5405::
5406
5407 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5408
5409Overview:
5410"""""""""
5411
5412The '``switch``' instruction is used to transfer control flow to one of
5413several different places. It is a generalization of the '``br``'
5414instruction, allowing a branch to occur to one of many possible
5415destinations.
5416
5417Arguments:
5418""""""""""
5419
5420The '``switch``' instruction uses three parameters: an integer
5421comparison value '``value``', a default '``label``' destination, and an
5422array of pairs of comparison value constants and '``label``'s. The table
5423is not allowed to contain duplicate constant entries.
5424
5425Semantics:
5426""""""""""
5427
5428The ``switch`` instruction specifies a table of values and destinations.
5429When the '``switch``' instruction is executed, this table is searched
5430for the given value. If the value is found, control flow is transferred
5431to the corresponding destination; otherwise, control flow is transferred
5432to the default destination.
5433
5434Implementation:
5435"""""""""""""""
5436
5437Depending on properties of the target machine and the particular
5438``switch`` instruction, this instruction may be code generated in
5439different ways. For example, it could be generated as a series of
5440chained conditional branches or with a lookup table.
5441
5442Example:
5443""""""""
5444
5445.. code-block:: llvm
5446
5447 ; Emulate a conditional br instruction
5448 %Val = zext i1 %value to i32
5449 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5450
5451 ; Emulate an unconditional br instruction
5452 switch i32 0, label %dest [ ]
5453
5454 ; Implement a jump table:
5455 switch i32 %val, label %otherwise [ i32 0, label %onzero
5456 i32 1, label %onone
5457 i32 2, label %ontwo ]
5458
5459.. _i_indirectbr:
5460
5461'``indirectbr``' Instruction
5462^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5463
5464Syntax:
5465"""""""
5466
5467::
5468
5469 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5470
5471Overview:
5472"""""""""
5473
5474The '``indirectbr``' instruction implements an indirect branch to a
5475label within the current function, whose address is specified by
5476"``address``". Address must be derived from a
5477:ref:`blockaddress <blockaddress>` constant.
5478
5479Arguments:
5480""""""""""
5481
5482The '``address``' argument is the address of the label to jump to. The
5483rest of the arguments indicate the full set of possible destinations
5484that the address may point to. Blocks are allowed to occur multiple
5485times in the destination list, though this isn't particularly useful.
5486
5487This destination list is required so that dataflow analysis has an
5488accurate understanding of the CFG.
5489
5490Semantics:
5491""""""""""
5492
5493Control transfers to the block specified in the address argument. All
5494possible destination blocks must be listed in the label list, otherwise
5495this instruction has undefined behavior. This implies that jumps to
5496labels defined in other functions have undefined behavior as well.
5497
5498Implementation:
5499"""""""""""""""
5500
5501This is typically implemented with a jump through a register.
5502
5503Example:
5504""""""""
5505
5506.. code-block:: llvm
5507
5508 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5509
5510.. _i_invoke:
5511
5512'``invoke``' Instruction
5513^^^^^^^^^^^^^^^^^^^^^^^^
5514
5515Syntax:
5516"""""""
5517
5518::
5519
David Blaikieb83cf102016-07-13 17:21:34 +00005520 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005521 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005522
5523Overview:
5524"""""""""
5525
5526The '``invoke``' instruction causes control to transfer to a specified
5527function, with the possibility of control flow transfer to either the
5528'``normal``' label or the '``exception``' label. If the callee function
5529returns with the "``ret``" instruction, control flow will return to the
5530"normal" label. If the callee (or any indirect callees) returns via the
5531":ref:`resume <i_resume>`" instruction or other exception handling
5532mechanism, control is interrupted and continued at the dynamically
5533nearest "exception" label.
5534
5535The '``exception``' label is a `landing
5536pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5537'``exception``' label is required to have the
5538":ref:`landingpad <i_landingpad>`" instruction, which contains the
5539information about the behavior of the program after unwinding happens,
5540as its first non-PHI instruction. The restrictions on the
5541"``landingpad``" instruction's tightly couples it to the "``invoke``"
5542instruction, so that the important information contained within the
5543"``landingpad``" instruction can't be lost through normal code motion.
5544
5545Arguments:
5546""""""""""
5547
5548This instruction requires several arguments:
5549
5550#. The optional "cconv" marker indicates which :ref:`calling
5551 convention <callingconv>` the call should use. If none is
5552 specified, the call defaults to using C calling conventions.
5553#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5554 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5555 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005556#. '``ty``': the type of the call instruction itself which is also the
5557 type of the return value. Functions that return no value are marked
5558 ``void``.
5559#. '``fnty``': shall be the signature of the function being invoked. The
5560 argument types must match the types implied by this signature. This
5561 type can be omitted if the function is not varargs.
5562#. '``fnptrval``': An LLVM value containing a pointer to a function to
5563 be invoked. In most cases, this is a direct function invocation, but
5564 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5565 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005566#. '``function args``': argument list whose types match the function
5567 signature argument types and parameter attributes. All arguments must
5568 be of :ref:`first class <t_firstclass>` type. If the function signature
5569 indicates the function accepts a variable number of arguments, the
5570 extra arguments can be specified.
5571#. '``normal label``': the label reached when the called function
5572 executes a '``ret``' instruction.
5573#. '``exception label``': the label reached when a callee returns via
5574 the :ref:`resume <i_resume>` instruction or other exception handling
5575 mechanism.
5576#. The optional :ref:`function attributes <fnattrs>` list. Only
5577 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5578 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005579#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005580
5581Semantics:
5582""""""""""
5583
5584This instruction is designed to operate as a standard '``call``'
5585instruction in most regards. The primary difference is that it
5586establishes an association with a label, which is used by the runtime
5587library to unwind the stack.
5588
5589This instruction is used in languages with destructors to ensure that
5590proper cleanup is performed in the case of either a ``longjmp`` or a
5591thrown exception. Additionally, this is important for implementation of
5592'``catch``' clauses in high-level languages that support them.
5593
5594For the purposes of the SSA form, the definition of the value returned
5595by the '``invoke``' instruction is deemed to occur on the edge from the
5596current block to the "normal" label. If the callee unwinds then no
5597return value is available.
5598
5599Example:
5600""""""""
5601
5602.. code-block:: llvm
5603
5604 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005605 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005606 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005607 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005608
5609.. _i_resume:
5610
5611'``resume``' Instruction
5612^^^^^^^^^^^^^^^^^^^^^^^^
5613
5614Syntax:
5615"""""""
5616
5617::
5618
5619 resume <type> <value>
5620
5621Overview:
5622"""""""""
5623
5624The '``resume``' instruction is a terminator instruction that has no
5625successors.
5626
5627Arguments:
5628""""""""""
5629
5630The '``resume``' instruction requires one argument, which must have the
5631same type as the result of any '``landingpad``' instruction in the same
5632function.
5633
5634Semantics:
5635""""""""""
5636
5637The '``resume``' instruction resumes propagation of an existing
5638(in-flight) exception whose unwinding was interrupted with a
5639:ref:`landingpad <i_landingpad>` instruction.
5640
5641Example:
5642""""""""
5643
5644.. code-block:: llvm
5645
5646 resume { i8*, i32 } %exn
5647
David Majnemer8a1c45d2015-12-12 05:38:55 +00005648.. _i_catchswitch:
5649
5650'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005652
5653Syntax:
5654"""""""
5655
5656::
5657
5658 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5659 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5660
5661Overview:
5662"""""""""
5663
5664The '``catchswitch``' instruction is used by `LLVM's exception handling system
5665<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5666that may be executed by the :ref:`EH personality routine <personalityfn>`.
5667
5668Arguments:
5669""""""""""
5670
5671The ``parent`` argument is the token of the funclet that contains the
5672``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5673this operand may be the token ``none``.
5674
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005675The ``default`` argument is the label of another basic block beginning with
5676either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5677must be a legal target with respect to the ``parent`` links, as described in
5678the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005679
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005680The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005681:ref:`catchpad <i_catchpad>` instruction.
5682
5683Semantics:
5684""""""""""
5685
5686Executing this instruction transfers control to one of the successors in
5687``handlers``, if appropriate, or continues to unwind via the unwind label if
5688present.
5689
5690The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5691it must be both the first non-phi instruction and last instruction in the basic
5692block. Therefore, it must be the only non-phi instruction in the block.
5693
5694Example:
5695""""""""
5696
Renato Golin124f2592016-07-20 12:16:38 +00005697.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005698
5699 dispatch1:
5700 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5701 dispatch2:
5702 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5703
David Majnemer654e1302015-07-31 17:58:14 +00005704.. _i_catchret:
5705
5706'``catchret``' Instruction
5707^^^^^^^^^^^^^^^^^^^^^^^^^^
5708
5709Syntax:
5710"""""""
5711
5712::
5713
David Majnemer8a1c45d2015-12-12 05:38:55 +00005714 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005715
5716Overview:
5717"""""""""
5718
5719The '``catchret``' instruction is a terminator instruction that has a
5720single successor.
5721
5722
5723Arguments:
5724""""""""""
5725
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005726The first argument to a '``catchret``' indicates which ``catchpad`` it
5727exits. It must be a :ref:`catchpad <i_catchpad>`.
5728The second argument to a '``catchret``' specifies where control will
5729transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005730
5731Semantics:
5732""""""""""
5733
David Majnemer8a1c45d2015-12-12 05:38:55 +00005734The '``catchret``' instruction ends an existing (in-flight) exception whose
5735unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5736:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5737code to, for example, destroy the active exception. Control then transfers to
5738``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005739
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005740The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5741If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5742funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5743the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005744
5745Example:
5746""""""""
5747
Renato Golin124f2592016-07-20 12:16:38 +00005748.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005749
David Majnemer8a1c45d2015-12-12 05:38:55 +00005750 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005751
David Majnemer654e1302015-07-31 17:58:14 +00005752.. _i_cleanupret:
5753
5754'``cleanupret``' Instruction
5755^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5756
5757Syntax:
5758"""""""
5759
5760::
5761
David Majnemer8a1c45d2015-12-12 05:38:55 +00005762 cleanupret from <value> unwind label <continue>
5763 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005764
5765Overview:
5766"""""""""
5767
5768The '``cleanupret``' instruction is a terminator instruction that has
5769an optional successor.
5770
5771
5772Arguments:
5773""""""""""
5774
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005775The '``cleanupret``' instruction requires one argument, which indicates
5776which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005777If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5778funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5779the ``cleanupret``'s behavior is undefined.
5780
5781The '``cleanupret``' instruction also has an optional successor, ``continue``,
5782which must be the label of another basic block beginning with either a
5783``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5784be a legal target with respect to the ``parent`` links, as described in the
5785`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005786
5787Semantics:
5788""""""""""
5789
5790The '``cleanupret``' instruction indicates to the
5791:ref:`personality function <personalityfn>` that one
5792:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5793It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005794
David Majnemer654e1302015-07-31 17:58:14 +00005795Example:
5796""""""""
5797
Renato Golin124f2592016-07-20 12:16:38 +00005798.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005799
David Majnemer8a1c45d2015-12-12 05:38:55 +00005800 cleanupret from %cleanup unwind to caller
5801 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005802
Sean Silvab084af42012-12-07 10:36:55 +00005803.. _i_unreachable:
5804
5805'``unreachable``' Instruction
5806^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5807
5808Syntax:
5809"""""""
5810
5811::
5812
5813 unreachable
5814
5815Overview:
5816"""""""""
5817
5818The '``unreachable``' instruction has no defined semantics. This
5819instruction is used to inform the optimizer that a particular portion of
5820the code is not reachable. This can be used to indicate that the code
5821after a no-return function cannot be reached, and other facts.
5822
5823Semantics:
5824""""""""""
5825
5826The '``unreachable``' instruction has no defined semantics.
5827
5828.. _binaryops:
5829
5830Binary Operations
5831-----------------
5832
5833Binary operators are used to do most of the computation in a program.
5834They require two operands of the same type, execute an operation on
5835them, and produce a single value. The operands might represent multiple
5836data, as is the case with the :ref:`vector <t_vector>` data type. The
5837result value has the same type as its operands.
5838
5839There are several different binary operators:
5840
5841.. _i_add:
5842
5843'``add``' Instruction
5844^^^^^^^^^^^^^^^^^^^^^
5845
5846Syntax:
5847"""""""
5848
5849::
5850
Tim Northover675a0962014-06-13 14:24:23 +00005851 <result> = add <ty> <op1>, <op2> ; yields ty:result
5852 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5853 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5854 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005855
5856Overview:
5857"""""""""
5858
5859The '``add``' instruction returns the sum of its two operands.
5860
5861Arguments:
5862""""""""""
5863
5864The two arguments to the '``add``' instruction must be
5865:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5866arguments must have identical types.
5867
5868Semantics:
5869""""""""""
5870
5871The value produced is the integer sum of the two operands.
5872
5873If the sum has unsigned overflow, the result returned is the
5874mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5875the result.
5876
5877Because LLVM integers use a two's complement representation, this
5878instruction is appropriate for both signed and unsigned integers.
5879
5880``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5881respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5882result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5883unsigned and/or signed overflow, respectively, occurs.
5884
5885Example:
5886""""""""
5887
Renato Golin124f2592016-07-20 12:16:38 +00005888.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005889
Tim Northover675a0962014-06-13 14:24:23 +00005890 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005891
5892.. _i_fadd:
5893
5894'``fadd``' Instruction
5895^^^^^^^^^^^^^^^^^^^^^^
5896
5897Syntax:
5898"""""""
5899
5900::
5901
Tim Northover675a0962014-06-13 14:24:23 +00005902 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005903
5904Overview:
5905"""""""""
5906
5907The '``fadd``' instruction returns the sum of its two operands.
5908
5909Arguments:
5910""""""""""
5911
5912The two arguments to the '``fadd``' instruction must be :ref:`floating
5913point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5914Both arguments must have identical types.
5915
5916Semantics:
5917""""""""""
5918
5919The value produced is the floating point sum of the two operands. This
5920instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5921which are optimization hints to enable otherwise unsafe floating point
5922optimizations:
5923
5924Example:
5925""""""""
5926
Renato Golin124f2592016-07-20 12:16:38 +00005927.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005928
Tim Northover675a0962014-06-13 14:24:23 +00005929 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005930
5931'``sub``' Instruction
5932^^^^^^^^^^^^^^^^^^^^^
5933
5934Syntax:
5935"""""""
5936
5937::
5938
Tim Northover675a0962014-06-13 14:24:23 +00005939 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5940 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5941 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5942 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005943
5944Overview:
5945"""""""""
5946
5947The '``sub``' instruction returns the difference of its two operands.
5948
5949Note that the '``sub``' instruction is used to represent the '``neg``'
5950instruction present in most other intermediate representations.
5951
5952Arguments:
5953""""""""""
5954
5955The two arguments to the '``sub``' instruction must be
5956:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5957arguments must have identical types.
5958
5959Semantics:
5960""""""""""
5961
5962The value produced is the integer difference of the two operands.
5963
5964If the difference has unsigned overflow, the result returned is the
5965mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5966the result.
5967
5968Because LLVM integers use a two's complement representation, this
5969instruction is appropriate for both signed and unsigned integers.
5970
5971``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5972respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5973result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5974unsigned and/or signed overflow, respectively, occurs.
5975
5976Example:
5977""""""""
5978
Renato Golin124f2592016-07-20 12:16:38 +00005979.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005980
Tim Northover675a0962014-06-13 14:24:23 +00005981 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5982 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005983
5984.. _i_fsub:
5985
5986'``fsub``' Instruction
5987^^^^^^^^^^^^^^^^^^^^^^
5988
5989Syntax:
5990"""""""
5991
5992::
5993
Tim Northover675a0962014-06-13 14:24:23 +00005994 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005995
5996Overview:
5997"""""""""
5998
5999The '``fsub``' instruction returns the difference of its two operands.
6000
6001Note that the '``fsub``' instruction is used to represent the '``fneg``'
6002instruction present in most other intermediate representations.
6003
6004Arguments:
6005""""""""""
6006
6007The two arguments to the '``fsub``' instruction must be :ref:`floating
6008point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6009Both arguments must have identical types.
6010
6011Semantics:
6012""""""""""
6013
6014The value produced is the floating point difference of the two operands.
6015This instruction can also take any number of :ref:`fast-math
6016flags <fastmath>`, which are optimization hints to enable otherwise
6017unsafe floating point optimizations:
6018
6019Example:
6020""""""""
6021
Renato Golin124f2592016-07-20 12:16:38 +00006022.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006023
Tim Northover675a0962014-06-13 14:24:23 +00006024 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6025 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006026
6027'``mul``' Instruction
6028^^^^^^^^^^^^^^^^^^^^^
6029
6030Syntax:
6031"""""""
6032
6033::
6034
Tim Northover675a0962014-06-13 14:24:23 +00006035 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6036 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6037 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6038 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006039
6040Overview:
6041"""""""""
6042
6043The '``mul``' instruction returns the product of its two operands.
6044
6045Arguments:
6046""""""""""
6047
6048The two arguments to the '``mul``' instruction must be
6049:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6050arguments must have identical types.
6051
6052Semantics:
6053""""""""""
6054
6055The value produced is the integer product of the two operands.
6056
6057If the result of the multiplication has unsigned overflow, the result
6058returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6059bit width of the result.
6060
6061Because LLVM integers use a two's complement representation, and the
6062result is the same width as the operands, this instruction returns the
6063correct result for both signed and unsigned integers. If a full product
6064(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6065sign-extended or zero-extended as appropriate to the width of the full
6066product.
6067
6068``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6069respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6070result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6071unsigned and/or signed overflow, respectively, occurs.
6072
6073Example:
6074""""""""
6075
Renato Golin124f2592016-07-20 12:16:38 +00006076.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006077
Tim Northover675a0962014-06-13 14:24:23 +00006078 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006079
6080.. _i_fmul:
6081
6082'``fmul``' Instruction
6083^^^^^^^^^^^^^^^^^^^^^^
6084
6085Syntax:
6086"""""""
6087
6088::
6089
Tim Northover675a0962014-06-13 14:24:23 +00006090 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006091
6092Overview:
6093"""""""""
6094
6095The '``fmul``' instruction returns the product of its two operands.
6096
6097Arguments:
6098""""""""""
6099
6100The two arguments to the '``fmul``' instruction must be :ref:`floating
6101point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6102Both arguments must have identical types.
6103
6104Semantics:
6105""""""""""
6106
6107The value produced is the floating point product of the two operands.
6108This instruction can also take any number of :ref:`fast-math
6109flags <fastmath>`, which are optimization hints to enable otherwise
6110unsafe floating point optimizations:
6111
6112Example:
6113""""""""
6114
Renato Golin124f2592016-07-20 12:16:38 +00006115.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006116
Tim Northover675a0962014-06-13 14:24:23 +00006117 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006118
6119'``udiv``' Instruction
6120^^^^^^^^^^^^^^^^^^^^^^
6121
6122Syntax:
6123"""""""
6124
6125::
6126
Tim Northover675a0962014-06-13 14:24:23 +00006127 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6128 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006129
6130Overview:
6131"""""""""
6132
6133The '``udiv``' instruction returns the quotient of its two operands.
6134
6135Arguments:
6136""""""""""
6137
6138The two arguments to the '``udiv``' instruction must be
6139:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6140arguments must have identical types.
6141
6142Semantics:
6143""""""""""
6144
6145The value produced is the unsigned integer quotient of the two operands.
6146
6147Note that unsigned integer division and signed integer division are
6148distinct operations; for signed integer division, use '``sdiv``'.
6149
6150Division by zero leads to undefined behavior.
6151
6152If the ``exact`` keyword is present, the result value of the ``udiv`` is
6153a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6154such, "((a udiv exact b) mul b) == a").
6155
6156Example:
6157""""""""
6158
Renato Golin124f2592016-07-20 12:16:38 +00006159.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006160
Tim Northover675a0962014-06-13 14:24:23 +00006161 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006162
6163'``sdiv``' Instruction
6164^^^^^^^^^^^^^^^^^^^^^^
6165
6166Syntax:
6167"""""""
6168
6169::
6170
Tim Northover675a0962014-06-13 14:24:23 +00006171 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6172 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006173
6174Overview:
6175"""""""""
6176
6177The '``sdiv``' instruction returns the quotient of its two operands.
6178
6179Arguments:
6180""""""""""
6181
6182The two arguments to the '``sdiv``' instruction must be
6183:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6184arguments must have identical types.
6185
6186Semantics:
6187""""""""""
6188
6189The value produced is the signed integer quotient of the two operands
6190rounded towards zero.
6191
6192Note that signed integer division and unsigned integer division are
6193distinct operations; for unsigned integer division, use '``udiv``'.
6194
6195Division by zero leads to undefined behavior. Overflow also leads to
6196undefined behavior; this is a rare case, but can occur, for example, by
6197doing a 32-bit division of -2147483648 by -1.
6198
6199If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6200a :ref:`poison value <poisonvalues>` if the result would be rounded.
6201
6202Example:
6203""""""""
6204
Renato Golin124f2592016-07-20 12:16:38 +00006205.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006206
Tim Northover675a0962014-06-13 14:24:23 +00006207 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006208
6209.. _i_fdiv:
6210
6211'``fdiv``' Instruction
6212^^^^^^^^^^^^^^^^^^^^^^
6213
6214Syntax:
6215"""""""
6216
6217::
6218
Tim Northover675a0962014-06-13 14:24:23 +00006219 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006220
6221Overview:
6222"""""""""
6223
6224The '``fdiv``' instruction returns the quotient of its two operands.
6225
6226Arguments:
6227""""""""""
6228
6229The two arguments to the '``fdiv``' instruction must be :ref:`floating
6230point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6231Both arguments must have identical types.
6232
6233Semantics:
6234""""""""""
6235
6236The value produced is the floating point quotient of the two operands.
6237This instruction can also take any number of :ref:`fast-math
6238flags <fastmath>`, which are optimization hints to enable otherwise
6239unsafe floating point optimizations:
6240
6241Example:
6242""""""""
6243
Renato Golin124f2592016-07-20 12:16:38 +00006244.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006245
Tim Northover675a0962014-06-13 14:24:23 +00006246 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006247
6248'``urem``' Instruction
6249^^^^^^^^^^^^^^^^^^^^^^
6250
6251Syntax:
6252"""""""
6253
6254::
6255
Tim Northover675a0962014-06-13 14:24:23 +00006256 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006257
6258Overview:
6259"""""""""
6260
6261The '``urem``' instruction returns the remainder from the unsigned
6262division of its two arguments.
6263
6264Arguments:
6265""""""""""
6266
6267The two arguments to the '``urem``' instruction must be
6268:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6269arguments must have identical types.
6270
6271Semantics:
6272""""""""""
6273
6274This instruction returns the unsigned integer *remainder* of a division.
6275This instruction always performs an unsigned division to get the
6276remainder.
6277
6278Note that unsigned integer remainder and signed integer remainder are
6279distinct operations; for signed integer remainder, use '``srem``'.
6280
6281Taking the remainder of a division by zero leads to undefined behavior.
6282
6283Example:
6284""""""""
6285
Renato Golin124f2592016-07-20 12:16:38 +00006286.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006287
Tim Northover675a0962014-06-13 14:24:23 +00006288 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006289
6290'``srem``' Instruction
6291^^^^^^^^^^^^^^^^^^^^^^
6292
6293Syntax:
6294"""""""
6295
6296::
6297
Tim Northover675a0962014-06-13 14:24:23 +00006298 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006299
6300Overview:
6301"""""""""
6302
6303The '``srem``' instruction returns the remainder from the signed
6304division of its two operands. This instruction can also take
6305:ref:`vector <t_vector>` versions of the values in which case the elements
6306must be integers.
6307
6308Arguments:
6309""""""""""
6310
6311The two arguments to the '``srem``' instruction must be
6312:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6313arguments must have identical types.
6314
6315Semantics:
6316""""""""""
6317
6318This instruction returns the *remainder* of a division (where the result
6319is either zero or has the same sign as the dividend, ``op1``), not the
6320*modulo* operator (where the result is either zero or has the same sign
6321as the divisor, ``op2``) of a value. For more information about the
6322difference, see `The Math
6323Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6324table of how this is implemented in various languages, please see
6325`Wikipedia: modulo
6326operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6327
6328Note that signed integer remainder and unsigned integer remainder are
6329distinct operations; for unsigned integer remainder, use '``urem``'.
6330
6331Taking the remainder of a division by zero leads to undefined behavior.
6332Overflow also leads to undefined behavior; this is a rare case, but can
6333occur, for example, by taking the remainder of a 32-bit division of
6334-2147483648 by -1. (The remainder doesn't actually overflow, but this
6335rule lets srem be implemented using instructions that return both the
6336result of the division and the remainder.)
6337
6338Example:
6339""""""""
6340
Renato Golin124f2592016-07-20 12:16:38 +00006341.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006342
Tim Northover675a0962014-06-13 14:24:23 +00006343 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006344
6345.. _i_frem:
6346
6347'``frem``' Instruction
6348^^^^^^^^^^^^^^^^^^^^^^
6349
6350Syntax:
6351"""""""
6352
6353::
6354
Tim Northover675a0962014-06-13 14:24:23 +00006355 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006356
6357Overview:
6358"""""""""
6359
6360The '``frem``' instruction returns the remainder from the division of
6361its two operands.
6362
6363Arguments:
6364""""""""""
6365
6366The two arguments to the '``frem``' instruction must be :ref:`floating
6367point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6368Both arguments must have identical types.
6369
6370Semantics:
6371""""""""""
6372
6373This instruction returns the *remainder* of a division. The remainder
6374has the same sign as the dividend. This instruction can also take any
6375number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6376to enable otherwise unsafe floating point optimizations:
6377
6378Example:
6379""""""""
6380
Renato Golin124f2592016-07-20 12:16:38 +00006381.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006382
Tim Northover675a0962014-06-13 14:24:23 +00006383 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006384
6385.. _bitwiseops:
6386
6387Bitwise Binary Operations
6388-------------------------
6389
6390Bitwise binary operators are used to do various forms of bit-twiddling
6391in a program. They are generally very efficient instructions and can
6392commonly be strength reduced from other instructions. They require two
6393operands of the same type, execute an operation on them, and produce a
6394single value. The resulting value is the same type as its operands.
6395
6396'``shl``' Instruction
6397^^^^^^^^^^^^^^^^^^^^^
6398
6399Syntax:
6400"""""""
6401
6402::
6403
Tim Northover675a0962014-06-13 14:24:23 +00006404 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6405 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6406 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6407 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006408
6409Overview:
6410"""""""""
6411
6412The '``shl``' instruction returns the first operand shifted to the left
6413a specified number of bits.
6414
6415Arguments:
6416""""""""""
6417
6418Both arguments to the '``shl``' instruction must be the same
6419:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6420'``op2``' is treated as an unsigned value.
6421
6422Semantics:
6423""""""""""
6424
6425The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6426where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006427dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006428``op1``, the result is undefined. If the arguments are vectors, each
6429vector element of ``op1`` is shifted by the corresponding shift amount
6430in ``op2``.
6431
6432If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6433value <poisonvalues>` if it shifts out any non-zero bits. If the
6434``nsw`` keyword is present, then the shift produces a :ref:`poison
6435value <poisonvalues>` if it shifts out any bits that disagree with the
6436resultant sign bit. As such, NUW/NSW have the same semantics as they
6437would if the shift were expressed as a mul instruction with the same
6438nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6439
6440Example:
6441""""""""
6442
Renato Golin124f2592016-07-20 12:16:38 +00006443.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006444
Tim Northover675a0962014-06-13 14:24:23 +00006445 <result> = shl i32 4, %var ; yields i32: 4 << %var
6446 <result> = shl i32 4, 2 ; yields i32: 16
6447 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006448 <result> = shl i32 1, 32 ; undefined
6449 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6450
6451'``lshr``' Instruction
6452^^^^^^^^^^^^^^^^^^^^^^
6453
6454Syntax:
6455"""""""
6456
6457::
6458
Tim Northover675a0962014-06-13 14:24:23 +00006459 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6460 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006461
6462Overview:
6463"""""""""
6464
6465The '``lshr``' instruction (logical shift right) returns the first
6466operand shifted to the right a specified number of bits with zero fill.
6467
6468Arguments:
6469""""""""""
6470
6471Both arguments to the '``lshr``' instruction must be the same
6472:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6473'``op2``' is treated as an unsigned value.
6474
6475Semantics:
6476""""""""""
6477
6478This instruction always performs a logical shift right operation. The
6479most significant bits of the result will be filled with zero bits after
6480the shift. If ``op2`` is (statically or dynamically) equal to or larger
6481than the number of bits in ``op1``, the result is undefined. If the
6482arguments are vectors, each vector element of ``op1`` is shifted by the
6483corresponding shift amount in ``op2``.
6484
6485If the ``exact`` keyword is present, the result value of the ``lshr`` is
6486a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6487non-zero.
6488
6489Example:
6490""""""""
6491
Renato Golin124f2592016-07-20 12:16:38 +00006492.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006493
Tim Northover675a0962014-06-13 14:24:23 +00006494 <result> = lshr i32 4, 1 ; yields i32:result = 2
6495 <result> = lshr i32 4, 2 ; yields i32:result = 1
6496 <result> = lshr i8 4, 3 ; yields i8:result = 0
6497 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006498 <result> = lshr i32 1, 32 ; undefined
6499 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6500
6501'``ashr``' Instruction
6502^^^^^^^^^^^^^^^^^^^^^^
6503
6504Syntax:
6505"""""""
6506
6507::
6508
Tim Northover675a0962014-06-13 14:24:23 +00006509 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6510 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006511
6512Overview:
6513"""""""""
6514
6515The '``ashr``' instruction (arithmetic shift right) returns the first
6516operand shifted to the right a specified number of bits with sign
6517extension.
6518
6519Arguments:
6520""""""""""
6521
6522Both arguments to the '``ashr``' instruction must be the same
6523:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6524'``op2``' is treated as an unsigned value.
6525
6526Semantics:
6527""""""""""
6528
6529This instruction always performs an arithmetic shift right operation,
6530The most significant bits of the result will be filled with the sign bit
6531of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6532than the number of bits in ``op1``, the result is undefined. If the
6533arguments are vectors, each vector element of ``op1`` is shifted by the
6534corresponding shift amount in ``op2``.
6535
6536If the ``exact`` keyword is present, the result value of the ``ashr`` is
6537a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6538non-zero.
6539
6540Example:
6541""""""""
6542
Renato Golin124f2592016-07-20 12:16:38 +00006543.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006544
Tim Northover675a0962014-06-13 14:24:23 +00006545 <result> = ashr i32 4, 1 ; yields i32:result = 2
6546 <result> = ashr i32 4, 2 ; yields i32:result = 1
6547 <result> = ashr i8 4, 3 ; yields i8:result = 0
6548 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006549 <result> = ashr i32 1, 32 ; undefined
6550 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6551
6552'``and``' Instruction
6553^^^^^^^^^^^^^^^^^^^^^
6554
6555Syntax:
6556"""""""
6557
6558::
6559
Tim Northover675a0962014-06-13 14:24:23 +00006560 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006561
6562Overview:
6563"""""""""
6564
6565The '``and``' instruction returns the bitwise logical and of its two
6566operands.
6567
6568Arguments:
6569""""""""""
6570
6571The two arguments to the '``and``' instruction must be
6572:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6573arguments must have identical types.
6574
6575Semantics:
6576""""""""""
6577
6578The truth table used for the '``and``' instruction is:
6579
6580+-----+-----+-----+
6581| In0 | In1 | Out |
6582+-----+-----+-----+
6583| 0 | 0 | 0 |
6584+-----+-----+-----+
6585| 0 | 1 | 0 |
6586+-----+-----+-----+
6587| 1 | 0 | 0 |
6588+-----+-----+-----+
6589| 1 | 1 | 1 |
6590+-----+-----+-----+
6591
6592Example:
6593""""""""
6594
Renato Golin124f2592016-07-20 12:16:38 +00006595.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006596
Tim Northover675a0962014-06-13 14:24:23 +00006597 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6598 <result> = and i32 15, 40 ; yields i32:result = 8
6599 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006600
6601'``or``' Instruction
6602^^^^^^^^^^^^^^^^^^^^
6603
6604Syntax:
6605"""""""
6606
6607::
6608
Tim Northover675a0962014-06-13 14:24:23 +00006609 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006610
6611Overview:
6612"""""""""
6613
6614The '``or``' instruction returns the bitwise logical inclusive or of its
6615two operands.
6616
6617Arguments:
6618""""""""""
6619
6620The two arguments to the '``or``' instruction must be
6621:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6622arguments must have identical types.
6623
6624Semantics:
6625""""""""""
6626
6627The truth table used for the '``or``' instruction is:
6628
6629+-----+-----+-----+
6630| In0 | In1 | Out |
6631+-----+-----+-----+
6632| 0 | 0 | 0 |
6633+-----+-----+-----+
6634| 0 | 1 | 1 |
6635+-----+-----+-----+
6636| 1 | 0 | 1 |
6637+-----+-----+-----+
6638| 1 | 1 | 1 |
6639+-----+-----+-----+
6640
6641Example:
6642""""""""
6643
6644::
6645
Tim Northover675a0962014-06-13 14:24:23 +00006646 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6647 <result> = or i32 15, 40 ; yields i32:result = 47
6648 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006649
6650'``xor``' Instruction
6651^^^^^^^^^^^^^^^^^^^^^
6652
6653Syntax:
6654"""""""
6655
6656::
6657
Tim Northover675a0962014-06-13 14:24:23 +00006658 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006659
6660Overview:
6661"""""""""
6662
6663The '``xor``' instruction returns the bitwise logical exclusive or of
6664its two operands. The ``xor`` is used to implement the "one's
6665complement" operation, which is the "~" operator in C.
6666
6667Arguments:
6668""""""""""
6669
6670The two arguments to the '``xor``' instruction must be
6671:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6672arguments must have identical types.
6673
6674Semantics:
6675""""""""""
6676
6677The truth table used for the '``xor``' instruction is:
6678
6679+-----+-----+-----+
6680| In0 | In1 | Out |
6681+-----+-----+-----+
6682| 0 | 0 | 0 |
6683+-----+-----+-----+
6684| 0 | 1 | 1 |
6685+-----+-----+-----+
6686| 1 | 0 | 1 |
6687+-----+-----+-----+
6688| 1 | 1 | 0 |
6689+-----+-----+-----+
6690
6691Example:
6692""""""""
6693
Renato Golin124f2592016-07-20 12:16:38 +00006694.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006695
Tim Northover675a0962014-06-13 14:24:23 +00006696 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6697 <result> = xor i32 15, 40 ; yields i32:result = 39
6698 <result> = xor i32 4, 8 ; yields i32:result = 12
6699 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006700
6701Vector Operations
6702-----------------
6703
6704LLVM supports several instructions to represent vector operations in a
6705target-independent manner. These instructions cover the element-access
6706and vector-specific operations needed to process vectors effectively.
6707While LLVM does directly support these vector operations, many
6708sophisticated algorithms will want to use target-specific intrinsics to
6709take full advantage of a specific target.
6710
6711.. _i_extractelement:
6712
6713'``extractelement``' Instruction
6714^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6715
6716Syntax:
6717"""""""
6718
6719::
6720
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006721 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006722
6723Overview:
6724"""""""""
6725
6726The '``extractelement``' instruction extracts a single scalar element
6727from a vector at a specified index.
6728
6729Arguments:
6730""""""""""
6731
6732The first operand of an '``extractelement``' instruction is a value of
6733:ref:`vector <t_vector>` type. The second operand is an index indicating
6734the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006735variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006736
6737Semantics:
6738""""""""""
6739
6740The result is a scalar of the same type as the element type of ``val``.
6741Its value is the value at position ``idx`` of ``val``. If ``idx``
6742exceeds the length of ``val``, the results are undefined.
6743
6744Example:
6745""""""""
6746
Renato Golin124f2592016-07-20 12:16:38 +00006747.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006748
6749 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6750
6751.. _i_insertelement:
6752
6753'``insertelement``' Instruction
6754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6755
6756Syntax:
6757"""""""
6758
6759::
6760
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006761 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006762
6763Overview:
6764"""""""""
6765
6766The '``insertelement``' instruction inserts a scalar element into a
6767vector at a specified index.
6768
6769Arguments:
6770""""""""""
6771
6772The first operand of an '``insertelement``' instruction is a value of
6773:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6774type must equal the element type of the first operand. The third operand
6775is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006776index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006777
6778Semantics:
6779""""""""""
6780
6781The result is a vector of the same type as ``val``. Its element values
6782are those of ``val`` except at position ``idx``, where it gets the value
6783``elt``. If ``idx`` exceeds the length of ``val``, the results are
6784undefined.
6785
6786Example:
6787""""""""
6788
Renato Golin124f2592016-07-20 12:16:38 +00006789.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006790
6791 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6792
6793.. _i_shufflevector:
6794
6795'``shufflevector``' Instruction
6796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6797
6798Syntax:
6799"""""""
6800
6801::
6802
6803 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6804
6805Overview:
6806"""""""""
6807
6808The '``shufflevector``' instruction constructs a permutation of elements
6809from two input vectors, returning a vector with the same element type as
6810the input and length that is the same as the shuffle mask.
6811
6812Arguments:
6813""""""""""
6814
6815The first two operands of a '``shufflevector``' instruction are vectors
6816with the same type. The third argument is a shuffle mask whose element
6817type is always 'i32'. The result of the instruction is a vector whose
6818length is the same as the shuffle mask and whose element type is the
6819same as the element type of the first two operands.
6820
6821The shuffle mask operand is required to be a constant vector with either
6822constant integer or undef values.
6823
6824Semantics:
6825""""""""""
6826
6827The elements of the two input vectors are numbered from left to right
6828across both of the vectors. The shuffle mask operand specifies, for each
6829element of the result vector, which element of the two input vectors the
6830result element gets. The element selector may be undef (meaning "don't
6831care") and the second operand may be undef if performing a shuffle from
6832only one vector.
6833
6834Example:
6835""""""""
6836
Renato Golin124f2592016-07-20 12:16:38 +00006837.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006838
6839 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6840 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6841 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6842 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6843 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6844 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6845 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6846 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6847
6848Aggregate Operations
6849--------------------
6850
6851LLVM supports several instructions for working with
6852:ref:`aggregate <t_aggregate>` values.
6853
6854.. _i_extractvalue:
6855
6856'``extractvalue``' Instruction
6857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6858
6859Syntax:
6860"""""""
6861
6862::
6863
6864 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6865
6866Overview:
6867"""""""""
6868
6869The '``extractvalue``' instruction extracts the value of a member field
6870from an :ref:`aggregate <t_aggregate>` value.
6871
6872Arguments:
6873""""""""""
6874
6875The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006876:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006877constant indices to specify which value to extract in a similar manner
6878as indices in a '``getelementptr``' instruction.
6879
6880The major differences to ``getelementptr`` indexing are:
6881
6882- Since the value being indexed is not a pointer, the first index is
6883 omitted and assumed to be zero.
6884- At least one index must be specified.
6885- Not only struct indices but also array indices must be in bounds.
6886
6887Semantics:
6888""""""""""
6889
6890The result is the value at the position in the aggregate specified by
6891the index operands.
6892
6893Example:
6894""""""""
6895
Renato Golin124f2592016-07-20 12:16:38 +00006896.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006897
6898 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6899
6900.. _i_insertvalue:
6901
6902'``insertvalue``' Instruction
6903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6904
6905Syntax:
6906"""""""
6907
6908::
6909
6910 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6911
6912Overview:
6913"""""""""
6914
6915The '``insertvalue``' instruction inserts a value into a member field in
6916an :ref:`aggregate <t_aggregate>` value.
6917
6918Arguments:
6919""""""""""
6920
6921The first operand of an '``insertvalue``' instruction is a value of
6922:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6923a first-class value to insert. The following operands are constant
6924indices indicating the position at which to insert the value in a
6925similar manner as indices in a '``extractvalue``' instruction. The value
6926to insert must have the same type as the value identified by the
6927indices.
6928
6929Semantics:
6930""""""""""
6931
6932The result is an aggregate of the same type as ``val``. Its value is
6933that of ``val`` except that the value at the position specified by the
6934indices is that of ``elt``.
6935
6936Example:
6937""""""""
6938
6939.. code-block:: llvm
6940
6941 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6942 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006943 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006944
6945.. _memoryops:
6946
6947Memory Access and Addressing Operations
6948---------------------------------------
6949
6950A key design point of an SSA-based representation is how it represents
6951memory. In LLVM, no memory locations are in SSA form, which makes things
6952very simple. This section describes how to read, write, and allocate
6953memory in LLVM.
6954
6955.. _i_alloca:
6956
6957'``alloca``' Instruction
6958^^^^^^^^^^^^^^^^^^^^^^^^
6959
6960Syntax:
6961"""""""
6962
6963::
6964
Tim Northover675a0962014-06-13 14:24:23 +00006965 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006966
6967Overview:
6968"""""""""
6969
6970The '``alloca``' instruction allocates memory on the stack frame of the
6971currently executing function, to be automatically released when this
6972function returns to its caller. The object is always allocated in the
6973generic address space (address space zero).
6974
6975Arguments:
6976""""""""""
6977
6978The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6979bytes of memory on the runtime stack, returning a pointer of the
6980appropriate type to the program. If "NumElements" is specified, it is
6981the number of elements allocated, otherwise "NumElements" is defaulted
6982to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006983allocation is guaranteed to be aligned to at least that boundary. The
6984alignment may not be greater than ``1 << 29``. If not specified, or if
6985zero, the target can choose to align the allocation on any convenient
6986boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006987
6988'``type``' may be any sized type.
6989
6990Semantics:
6991""""""""""
6992
6993Memory is allocated; a pointer is returned. The operation is undefined
6994if there is insufficient stack space for the allocation. '``alloca``'d
6995memory is automatically released when the function returns. The
6996'``alloca``' instruction is commonly used to represent automatic
6997variables that must have an address available. When the function returns
6998(either with the ``ret`` or ``resume`` instructions), the memory is
6999reclaimed. Allocating zero bytes is legal, but the result is undefined.
7000The order in which memory is allocated (ie., which way the stack grows)
7001is not specified.
7002
7003Example:
7004""""""""
7005
7006.. code-block:: llvm
7007
Tim Northover675a0962014-06-13 14:24:23 +00007008 %ptr = alloca i32 ; yields i32*:ptr
7009 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7010 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7011 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007012
7013.. _i_load:
7014
7015'``load``' Instruction
7016^^^^^^^^^^^^^^^^^^^^^^
7017
7018Syntax:
7019"""""""
7020
7021::
7022
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007023 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007024 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007025 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007026 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007027 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007028
7029Overview:
7030"""""""""
7031
7032The '``load``' instruction is used to read from memory.
7033
7034Arguments:
7035""""""""""
7036
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007037The argument to the ``load`` instruction specifies the memory address from which
7038to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7039known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7040the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7041modify the number or order of execution of this ``load`` with other
7042:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007043
JF Bastiend1fb5852015-12-17 22:09:19 +00007044If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7045<ordering>` and optional ``singlethread`` argument. The ``release`` and
7046``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7047produce :ref:`defined <memmodel>` results when they may see multiple atomic
7048stores. The type of the pointee must be an integer, pointer, or floating-point
7049type whose bit width is a power of two greater than or equal to eight and less
7050than or equal to a target-specific size limit. ``align`` must be explicitly
7051specified on atomic loads, and the load has undefined behavior if the alignment
7052is not set to a value which is at least the size in bytes of the
7053pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007054
7055The optional constant ``align`` argument specifies the alignment of the
7056operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007057or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007058alignment for the target. It is the responsibility of the code emitter
7059to ensure that the alignment information is correct. Overestimating the
7060alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007061may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007062maximum possible alignment is ``1 << 29``. An alignment value higher
7063than the size of the loaded type implies memory up to the alignment
7064value bytes can be safely loaded without trapping in the default
7065address space. Access of the high bytes can interfere with debugging
7066tools, so should not be accessed if the function has the
7067``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007068
7069The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007070metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007071``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007072metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007073that this load is not expected to be reused in the cache. The code
7074generator may select special instructions to save cache bandwidth, such
7075as the ``MOVNT`` instruction on x86.
7076
7077The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007078metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007079entries. If a load instruction tagged with the ``!invariant.load``
7080metadata is executed, the optimizer may assume the memory location
7081referenced by the load contains the same value at all points in the
7082program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007083
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007084The optional ``!invariant.group`` metadata must reference a single metadata name
7085 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7086
Philip Reamescdb72f32014-10-20 22:40:55 +00007087The optional ``!nonnull`` metadata must reference a single
7088metadata name ``<index>`` corresponding to a metadata node with no
7089entries. The existence of the ``!nonnull`` metadata on the
7090instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007091never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007092on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007093to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007094
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007095The optional ``!dereferenceable`` metadata must reference a single metadata
7096name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007097entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007098tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007099The number of bytes known to be dereferenceable is specified by the integer
7100value in the metadata node. This is analogous to the ''dereferenceable''
7101attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007102to loads of a pointer type.
7103
7104The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007105metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7106``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007107instruction tells the optimizer that the value loaded is known to be either
7108dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007109The number of bytes known to be dereferenceable is specified by the integer
7110value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7111attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007112to loads of a pointer type.
7113
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007114The optional ``!align`` metadata must reference a single metadata name
7115``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7116The existence of the ``!align`` metadata on the instruction tells the
7117optimizer that the value loaded is known to be aligned to a boundary specified
7118by the integer value in the metadata node. The alignment must be a power of 2.
7119This is analogous to the ''align'' attribute on parameters and return values.
7120This metadata can only be applied to loads of a pointer type.
7121
Sean Silvab084af42012-12-07 10:36:55 +00007122Semantics:
7123""""""""""
7124
7125The location of memory pointed to is loaded. If the value being loaded
7126is of scalar type then the number of bytes read does not exceed the
7127minimum number of bytes needed to hold all bits of the type. For
7128example, loading an ``i24`` reads at most three bytes. When loading a
7129value of a type like ``i20`` with a size that is not an integral number
7130of bytes, the result is undefined if the value was not originally
7131written using a store of the same type.
7132
7133Examples:
7134"""""""""
7135
7136.. code-block:: llvm
7137
Tim Northover675a0962014-06-13 14:24:23 +00007138 %ptr = alloca i32 ; yields i32*:ptr
7139 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007140 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007141
7142.. _i_store:
7143
7144'``store``' Instruction
7145^^^^^^^^^^^^^^^^^^^^^^^
7146
7147Syntax:
7148"""""""
7149
7150::
7151
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007152 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7153 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007154
7155Overview:
7156"""""""""
7157
7158The '``store``' instruction is used to write to memory.
7159
7160Arguments:
7161""""""""""
7162
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007163There are two arguments to the ``store`` instruction: a value to store and an
7164address at which to store it. The type of the ``<pointer>`` operand must be a
7165pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7166operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7167allowed to modify the number or order of execution of this ``store`` with other
7168:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7169<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7170structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007171
JF Bastiend1fb5852015-12-17 22:09:19 +00007172If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7173<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7174``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7175produce :ref:`defined <memmodel>` results when they may see multiple atomic
7176stores. The type of the pointee must be an integer, pointer, or floating-point
7177type whose bit width is a power of two greater than or equal to eight and less
7178than or equal to a target-specific size limit. ``align`` must be explicitly
7179specified on atomic stores, and the store has undefined behavior if the
7180alignment is not set to a value which is at least the size in bytes of the
7181pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007182
Eli Benderskyca380842013-04-17 17:17:20 +00007183The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007184operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007185or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007186alignment for the target. It is the responsibility of the code emitter
7187to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007188alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007189alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007190safe. The maximum possible alignment is ``1 << 29``. An alignment
7191value higher than the size of the stored type implies memory up to the
7192alignment value bytes can be stored to without trapping in the default
7193address space. Storing to the higher bytes however may result in data
7194races if another thread can access the same address. Introducing a
7195data race is not allowed. Storing to the extra bytes is not allowed
7196even in situations where a data race is known to not exist if the
7197function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007198
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007199The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007200name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007201value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007202tells the optimizer and code generator that this load is not expected to
7203be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007204instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007205x86.
7206
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007207The optional ``!invariant.group`` metadata must reference a
7208single metadata name ``<index>``. See ``invariant.group`` metadata.
7209
Sean Silvab084af42012-12-07 10:36:55 +00007210Semantics:
7211""""""""""
7212
Eli Benderskyca380842013-04-17 17:17:20 +00007213The contents of memory are updated to contain ``<value>`` at the
7214location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007215of scalar type then the number of bytes written does not exceed the
7216minimum number of bytes needed to hold all bits of the type. For
7217example, storing an ``i24`` writes at most three bytes. When writing a
7218value of a type like ``i20`` with a size that is not an integral number
7219of bytes, it is unspecified what happens to the extra bits that do not
7220belong to the type, but they will typically be overwritten.
7221
7222Example:
7223""""""""
7224
7225.. code-block:: llvm
7226
Tim Northover675a0962014-06-13 14:24:23 +00007227 %ptr = alloca i32 ; yields i32*:ptr
7228 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007229 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007230
7231.. _i_fence:
7232
7233'``fence``' Instruction
7234^^^^^^^^^^^^^^^^^^^^^^^
7235
7236Syntax:
7237"""""""
7238
7239::
7240
Tim Northover675a0962014-06-13 14:24:23 +00007241 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007242
7243Overview:
7244"""""""""
7245
7246The '``fence``' instruction is used to introduce happens-before edges
7247between operations.
7248
7249Arguments:
7250""""""""""
7251
7252'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7253defines what *synchronizes-with* edges they add. They can only be given
7254``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7255
7256Semantics:
7257""""""""""
7258
7259A fence A which has (at least) ``release`` ordering semantics
7260*synchronizes with* a fence B with (at least) ``acquire`` ordering
7261semantics if and only if there exist atomic operations X and Y, both
7262operating on some atomic object M, such that A is sequenced before X, X
7263modifies M (either directly or through some side effect of a sequence
7264headed by X), Y is sequenced before B, and Y observes M. This provides a
7265*happens-before* dependency between A and B. Rather than an explicit
7266``fence``, one (but not both) of the atomic operations X or Y might
7267provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7268still *synchronize-with* the explicit ``fence`` and establish the
7269*happens-before* edge.
7270
7271A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7272``acquire`` and ``release`` semantics specified above, participates in
7273the global program order of other ``seq_cst`` operations and/or fences.
7274
7275The optional ":ref:`singlethread <singlethread>`" argument specifies
7276that the fence only synchronizes with other fences in the same thread.
7277(This is useful for interacting with signal handlers.)
7278
7279Example:
7280""""""""
7281
7282.. code-block:: llvm
7283
Tim Northover675a0962014-06-13 14:24:23 +00007284 fence acquire ; yields void
7285 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007286
7287.. _i_cmpxchg:
7288
7289'``cmpxchg``' Instruction
7290^^^^^^^^^^^^^^^^^^^^^^^^^
7291
7292Syntax:
7293"""""""
7294
7295::
7296
Tim Northover675a0962014-06-13 14:24:23 +00007297 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007298
7299Overview:
7300"""""""""
7301
7302The '``cmpxchg``' instruction is used to atomically modify memory. It
7303loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007304equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007305
7306Arguments:
7307""""""""""
7308
7309There are three arguments to the '``cmpxchg``' instruction: an address
7310to operate on, a value to compare to the value currently be at that
7311address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007312are equal. The type of '<cmp>' must be an integer or pointer type whose
7313bit width is a power of two greater than or equal to eight and less
7314than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7315have the same type, and the type of '<pointer>' must be a pointer to
7316that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7317optimizer is not allowed to modify the number or order of execution of
7318this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007319
Tim Northovere94a5182014-03-11 10:48:52 +00007320The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007321``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7322must be at least ``monotonic``, the ordering constraint on failure must be no
7323stronger than that on success, and the failure ordering cannot be either
7324``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007325
7326The optional "``singlethread``" argument declares that the ``cmpxchg``
7327is only atomic with respect to code (usually signal handlers) running in
7328the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7329respect to all other code in the system.
7330
7331The pointer passed into cmpxchg must have alignment greater than or
7332equal to the size in memory of the operand.
7333
7334Semantics:
7335""""""""""
7336
Tim Northover420a2162014-06-13 14:24:07 +00007337The contents of memory at the location specified by the '``<pointer>``' operand
7338is read and compared to '``<cmp>``'; if the read value is the equal, the
7339'``<new>``' is written. The original value at the location is returned, together
7340with a flag indicating success (true) or failure (false).
7341
7342If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7343permitted: the operation may not write ``<new>`` even if the comparison
7344matched.
7345
7346If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7347if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007348
Tim Northovere94a5182014-03-11 10:48:52 +00007349A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7350identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7351load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007352
7353Example:
7354""""""""
7355
7356.. code-block:: llvm
7357
7358 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007359 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007360 br label %loop
7361
7362 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007363 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007364 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007365 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007366 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7367 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007368 br i1 %success, label %done, label %loop
7369
7370 done:
7371 ...
7372
7373.. _i_atomicrmw:
7374
7375'``atomicrmw``' Instruction
7376^^^^^^^^^^^^^^^^^^^^^^^^^^^
7377
7378Syntax:
7379"""""""
7380
7381::
7382
Tim Northover675a0962014-06-13 14:24:23 +00007383 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007384
7385Overview:
7386"""""""""
7387
7388The '``atomicrmw``' instruction is used to atomically modify memory.
7389
7390Arguments:
7391""""""""""
7392
7393There are three arguments to the '``atomicrmw``' instruction: an
7394operation to apply, an address whose value to modify, an argument to the
7395operation. The operation must be one of the following keywords:
7396
7397- xchg
7398- add
7399- sub
7400- and
7401- nand
7402- or
7403- xor
7404- max
7405- min
7406- umax
7407- umin
7408
7409The type of '<value>' must be an integer type whose bit width is a power
7410of two greater than or equal to eight and less than or equal to a
7411target-specific size limit. The type of the '``<pointer>``' operand must
7412be a pointer to that type. If the ``atomicrmw`` is marked as
7413``volatile``, then the optimizer is not allowed to modify the number or
7414order of execution of this ``atomicrmw`` with other :ref:`volatile
7415operations <volatile>`.
7416
7417Semantics:
7418""""""""""
7419
7420The contents of memory at the location specified by the '``<pointer>``'
7421operand are atomically read, modified, and written back. The original
7422value at the location is returned. The modification is specified by the
7423operation argument:
7424
7425- xchg: ``*ptr = val``
7426- add: ``*ptr = *ptr + val``
7427- sub: ``*ptr = *ptr - val``
7428- and: ``*ptr = *ptr & val``
7429- nand: ``*ptr = ~(*ptr & val)``
7430- or: ``*ptr = *ptr | val``
7431- xor: ``*ptr = *ptr ^ val``
7432- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7433- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7434- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7435 comparison)
7436- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7437 comparison)
7438
7439Example:
7440""""""""
7441
7442.. code-block:: llvm
7443
Tim Northover675a0962014-06-13 14:24:23 +00007444 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007445
7446.. _i_getelementptr:
7447
7448'``getelementptr``' Instruction
7449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7450
7451Syntax:
7452"""""""
7453
7454::
7455
David Blaikie16a97eb2015-03-04 22:02:58 +00007456 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7457 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7458 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007459
7460Overview:
7461"""""""""
7462
7463The '``getelementptr``' instruction is used to get the address of a
7464subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007465address calculation only and does not access memory. The instruction can also
7466be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007467
7468Arguments:
7469""""""""""
7470
David Blaikie16a97eb2015-03-04 22:02:58 +00007471The first argument is always a type used as the basis for the calculations.
7472The second argument is always a pointer or a vector of pointers, and is the
7473base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007474that indicate which of the elements of the aggregate object are indexed.
7475The interpretation of each index is dependent on the type being indexed
7476into. The first index always indexes the pointer value given as the
7477first argument, the second index indexes a value of the type pointed to
7478(not necessarily the value directly pointed to, since the first index
7479can be non-zero), etc. The first type indexed into must be a pointer
7480value, subsequent types can be arrays, vectors, and structs. Note that
7481subsequent types being indexed into can never be pointers, since that
7482would require loading the pointer before continuing calculation.
7483
7484The type of each index argument depends on the type it is indexing into.
7485When indexing into a (optionally packed) structure, only ``i32`` integer
7486**constants** are allowed (when using a vector of indices they must all
7487be the **same** ``i32`` integer constant). When indexing into an array,
7488pointer or vector, integers of any width are allowed, and they are not
7489required to be constant. These integers are treated as signed values
7490where relevant.
7491
7492For example, let's consider a C code fragment and how it gets compiled
7493to LLVM:
7494
7495.. code-block:: c
7496
7497 struct RT {
7498 char A;
7499 int B[10][20];
7500 char C;
7501 };
7502 struct ST {
7503 int X;
7504 double Y;
7505 struct RT Z;
7506 };
7507
7508 int *foo(struct ST *s) {
7509 return &s[1].Z.B[5][13];
7510 }
7511
7512The LLVM code generated by Clang is:
7513
7514.. code-block:: llvm
7515
7516 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7517 %struct.ST = type { i32, double, %struct.RT }
7518
7519 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7520 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007521 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007522 ret i32* %arrayidx
7523 }
7524
7525Semantics:
7526""""""""""
7527
7528In the example above, the first index is indexing into the
7529'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7530= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7531indexes into the third element of the structure, yielding a
7532'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7533structure. The third index indexes into the second element of the
7534structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7535dimensions of the array are subscripted into, yielding an '``i32``'
7536type. The '``getelementptr``' instruction returns a pointer to this
7537element, thus computing a value of '``i32*``' type.
7538
7539Note that it is perfectly legal to index partially through a structure,
7540returning a pointer to an inner element. Because of this, the LLVM code
7541for the given testcase is equivalent to:
7542
7543.. code-block:: llvm
7544
7545 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007546 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7547 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7548 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7549 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7550 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007551 ret i32* %t5
7552 }
7553
7554If the ``inbounds`` keyword is present, the result value of the
7555``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7556pointer is not an *in bounds* address of an allocated object, or if any
7557of the addresses that would be formed by successive addition of the
7558offsets implied by the indices to the base address with infinitely
7559precise signed arithmetic are not an *in bounds* address of that
7560allocated object. The *in bounds* addresses for an allocated object are
7561all the addresses that point into the object, plus the address one byte
7562past the end. In cases where the base is a vector of pointers the
7563``inbounds`` keyword applies to each of the computations element-wise.
7564
7565If the ``inbounds`` keyword is not present, the offsets are added to the
7566base address with silently-wrapping two's complement arithmetic. If the
7567offsets have a different width from the pointer, they are sign-extended
7568or truncated to the width of the pointer. The result value of the
7569``getelementptr`` may be outside the object pointed to by the base
7570pointer. The result value may not necessarily be used to access memory
7571though, even if it happens to point into allocated storage. See the
7572:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7573information.
7574
7575The getelementptr instruction is often confusing. For some more insight
7576into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7577
7578Example:
7579""""""""
7580
7581.. code-block:: llvm
7582
7583 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007584 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007585 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007586 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007587 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007588 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007589 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007590 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007591
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007592Vector of pointers:
7593"""""""""""""""""""
7594
7595The ``getelementptr`` returns a vector of pointers, instead of a single address,
7596when one or more of its arguments is a vector. In such cases, all vector
7597arguments should have the same number of elements, and every scalar argument
7598will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007599
7600.. code-block:: llvm
7601
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007602 ; All arguments are vectors:
7603 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7604 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007605
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007606 ; Add the same scalar offset to each pointer of a vector:
7607 ; A[i] = ptrs[i] + offset*sizeof(i8)
7608 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007609
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007610 ; Add distinct offsets to the same pointer:
7611 ; A[i] = ptr + offsets[i]*sizeof(i8)
7612 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007613
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007614 ; In all cases described above the type of the result is <4 x i8*>
7615
7616The two following instructions are equivalent:
7617
7618.. code-block:: llvm
7619
7620 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7621 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7622 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7623 <4 x i32> %ind4,
7624 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007625
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007626 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7627 i32 2, i32 1, <4 x i32> %ind4, i64 13
7628
7629Let's look at the C code, where the vector version of ``getelementptr``
7630makes sense:
7631
7632.. code-block:: c
7633
7634 // Let's assume that we vectorize the following loop:
7635 double *A, B; int *C;
7636 for (int i = 0; i < size; ++i) {
7637 A[i] = B[C[i]];
7638 }
7639
7640.. code-block:: llvm
7641
7642 ; get pointers for 8 elements from array B
7643 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7644 ; load 8 elements from array B into A
7645 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7646 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007647
7648Conversion Operations
7649---------------------
7650
7651The instructions in this category are the conversion instructions
7652(casting) which all take a single operand and a type. They perform
7653various bit conversions on the operand.
7654
7655'``trunc .. to``' Instruction
7656^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7657
7658Syntax:
7659"""""""
7660
7661::
7662
7663 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7664
7665Overview:
7666"""""""""
7667
7668The '``trunc``' instruction truncates its operand to the type ``ty2``.
7669
7670Arguments:
7671""""""""""
7672
7673The '``trunc``' instruction takes a value to trunc, and a type to trunc
7674it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7675of the same number of integers. The bit size of the ``value`` must be
7676larger than the bit size of the destination type, ``ty2``. Equal sized
7677types are not allowed.
7678
7679Semantics:
7680""""""""""
7681
7682The '``trunc``' instruction truncates the high order bits in ``value``
7683and converts the remaining bits to ``ty2``. Since the source size must
7684be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7685It will always truncate bits.
7686
7687Example:
7688""""""""
7689
7690.. code-block:: llvm
7691
7692 %X = trunc i32 257 to i8 ; yields i8:1
7693 %Y = trunc i32 123 to i1 ; yields i1:true
7694 %Z = trunc i32 122 to i1 ; yields i1:false
7695 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7696
7697'``zext .. to``' Instruction
7698^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7699
7700Syntax:
7701"""""""
7702
7703::
7704
7705 <result> = zext <ty> <value> to <ty2> ; yields ty2
7706
7707Overview:
7708"""""""""
7709
7710The '``zext``' instruction zero extends its operand to type ``ty2``.
7711
7712Arguments:
7713""""""""""
7714
7715The '``zext``' instruction takes a value to cast, and a type to cast it
7716to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7717the same number of integers. The bit size of the ``value`` must be
7718smaller than the bit size of the destination type, ``ty2``.
7719
7720Semantics:
7721""""""""""
7722
7723The ``zext`` fills the high order bits of the ``value`` with zero bits
7724until it reaches the size of the destination type, ``ty2``.
7725
7726When zero extending from i1, the result will always be either 0 or 1.
7727
7728Example:
7729""""""""
7730
7731.. code-block:: llvm
7732
7733 %X = zext i32 257 to i64 ; yields i64:257
7734 %Y = zext i1 true to i32 ; yields i32:1
7735 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7736
7737'``sext .. to``' Instruction
7738^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7739
7740Syntax:
7741"""""""
7742
7743::
7744
7745 <result> = sext <ty> <value> to <ty2> ; yields ty2
7746
7747Overview:
7748"""""""""
7749
7750The '``sext``' sign extends ``value`` to the type ``ty2``.
7751
7752Arguments:
7753""""""""""
7754
7755The '``sext``' instruction takes a value to cast, and a type to cast it
7756to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7757the same number of integers. The bit size of the ``value`` must be
7758smaller than the bit size of the destination type, ``ty2``.
7759
7760Semantics:
7761""""""""""
7762
7763The '``sext``' instruction performs a sign extension by copying the sign
7764bit (highest order bit) of the ``value`` until it reaches the bit size
7765of the type ``ty2``.
7766
7767When sign extending from i1, the extension always results in -1 or 0.
7768
7769Example:
7770""""""""
7771
7772.. code-block:: llvm
7773
7774 %X = sext i8 -1 to i16 ; yields i16 :65535
7775 %Y = sext i1 true to i32 ; yields i32:-1
7776 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7777
7778'``fptrunc .. to``' Instruction
7779^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7780
7781Syntax:
7782"""""""
7783
7784::
7785
7786 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7787
7788Overview:
7789"""""""""
7790
7791The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7792
7793Arguments:
7794""""""""""
7795
7796The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7797value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7798The size of ``value`` must be larger than the size of ``ty2``. This
7799implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7800
7801Semantics:
7802""""""""""
7803
Dan Liew50456fb2015-09-03 18:43:56 +00007804The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007805:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007806point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7807destination type, ``ty2``, then the results are undefined. If the cast produces
7808an inexact result, how rounding is performed (e.g. truncation, also known as
7809round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007810
7811Example:
7812""""""""
7813
7814.. code-block:: llvm
7815
7816 %X = fptrunc double 123.0 to float ; yields float:123.0
7817 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7818
7819'``fpext .. to``' Instruction
7820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7821
7822Syntax:
7823"""""""
7824
7825::
7826
7827 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7828
7829Overview:
7830"""""""""
7831
7832The '``fpext``' extends a floating point ``value`` to a larger floating
7833point value.
7834
7835Arguments:
7836""""""""""
7837
7838The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7839``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7840to. The source type must be smaller than the destination type.
7841
7842Semantics:
7843""""""""""
7844
7845The '``fpext``' instruction extends the ``value`` from a smaller
7846:ref:`floating point <t_floating>` type to a larger :ref:`floating
7847point <t_floating>` type. The ``fpext`` cannot be used to make a
7848*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7849*no-op cast* for a floating point cast.
7850
7851Example:
7852""""""""
7853
7854.. code-block:: llvm
7855
7856 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7857 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7858
7859'``fptoui .. to``' Instruction
7860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7861
7862Syntax:
7863"""""""
7864
7865::
7866
7867 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7868
7869Overview:
7870"""""""""
7871
7872The '``fptoui``' converts a floating point ``value`` to its unsigned
7873integer equivalent of type ``ty2``.
7874
7875Arguments:
7876""""""""""
7877
7878The '``fptoui``' instruction takes a value to cast, which must be a
7879scalar or vector :ref:`floating point <t_floating>` value, and a type to
7880cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7881``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7882type with the same number of elements as ``ty``
7883
7884Semantics:
7885""""""""""
7886
7887The '``fptoui``' instruction converts its :ref:`floating
7888point <t_floating>` operand into the nearest (rounding towards zero)
7889unsigned integer value. If the value cannot fit in ``ty2``, the results
7890are undefined.
7891
7892Example:
7893""""""""
7894
7895.. code-block:: llvm
7896
7897 %X = fptoui double 123.0 to i32 ; yields i32:123
7898 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7899 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7900
7901'``fptosi .. to``' Instruction
7902^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7903
7904Syntax:
7905"""""""
7906
7907::
7908
7909 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7910
7911Overview:
7912"""""""""
7913
7914The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7915``value`` to type ``ty2``.
7916
7917Arguments:
7918""""""""""
7919
7920The '``fptosi``' instruction takes a value to cast, which must be a
7921scalar or vector :ref:`floating point <t_floating>` value, and a type to
7922cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7923``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7924type with the same number of elements as ``ty``
7925
7926Semantics:
7927""""""""""
7928
7929The '``fptosi``' instruction converts its :ref:`floating
7930point <t_floating>` operand into the nearest (rounding towards zero)
7931signed integer value. If the value cannot fit in ``ty2``, the results
7932are undefined.
7933
7934Example:
7935""""""""
7936
7937.. code-block:: llvm
7938
7939 %X = fptosi double -123.0 to i32 ; yields i32:-123
7940 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7941 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7942
7943'``uitofp .. to``' Instruction
7944^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7945
7946Syntax:
7947"""""""
7948
7949::
7950
7951 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7952
7953Overview:
7954"""""""""
7955
7956The '``uitofp``' instruction regards ``value`` as an unsigned integer
7957and converts that value to the ``ty2`` type.
7958
7959Arguments:
7960""""""""""
7961
7962The '``uitofp``' instruction takes a value to cast, which must be a
7963scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7964``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7965``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7966type with the same number of elements as ``ty``
7967
7968Semantics:
7969""""""""""
7970
7971The '``uitofp``' instruction interprets its operand as an unsigned
7972integer quantity and converts it to the corresponding floating point
7973value. If the value cannot fit in the floating point value, the results
7974are undefined.
7975
7976Example:
7977""""""""
7978
7979.. code-block:: llvm
7980
7981 %X = uitofp i32 257 to float ; yields float:257.0
7982 %Y = uitofp i8 -1 to double ; yields double:255.0
7983
7984'``sitofp .. to``' Instruction
7985^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7986
7987Syntax:
7988"""""""
7989
7990::
7991
7992 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7993
7994Overview:
7995"""""""""
7996
7997The '``sitofp``' instruction regards ``value`` as a signed integer and
7998converts that value to the ``ty2`` type.
7999
8000Arguments:
8001""""""""""
8002
8003The '``sitofp``' instruction takes a value to cast, which must be a
8004scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8005``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8006``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8007type with the same number of elements as ``ty``
8008
8009Semantics:
8010""""""""""
8011
8012The '``sitofp``' instruction interprets its operand as a signed integer
8013quantity and converts it to the corresponding floating point value. If
8014the value cannot fit in the floating point value, the results are
8015undefined.
8016
8017Example:
8018""""""""
8019
8020.. code-block:: llvm
8021
8022 %X = sitofp i32 257 to float ; yields float:257.0
8023 %Y = sitofp i8 -1 to double ; yields double:-1.0
8024
8025.. _i_ptrtoint:
8026
8027'``ptrtoint .. to``' Instruction
8028^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8029
8030Syntax:
8031"""""""
8032
8033::
8034
8035 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8036
8037Overview:
8038"""""""""
8039
8040The '``ptrtoint``' instruction converts the pointer or a vector of
8041pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8042
8043Arguments:
8044""""""""""
8045
8046The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008047a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008048type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8049a vector of integers type.
8050
8051Semantics:
8052""""""""""
8053
8054The '``ptrtoint``' instruction converts ``value`` to integer type
8055``ty2`` by interpreting the pointer value as an integer and either
8056truncating or zero extending that value to the size of the integer type.
8057If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8058``value`` is larger than ``ty2`` then a truncation is done. If they are
8059the same size, then nothing is done (*no-op cast*) other than a type
8060change.
8061
8062Example:
8063""""""""
8064
8065.. code-block:: llvm
8066
8067 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8068 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8069 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8070
8071.. _i_inttoptr:
8072
8073'``inttoptr .. to``' Instruction
8074^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8075
8076Syntax:
8077"""""""
8078
8079::
8080
8081 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8082
8083Overview:
8084"""""""""
8085
8086The '``inttoptr``' instruction converts an integer ``value`` to a
8087pointer type, ``ty2``.
8088
8089Arguments:
8090""""""""""
8091
8092The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8093cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8094type.
8095
8096Semantics:
8097""""""""""
8098
8099The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8100applying either a zero extension or a truncation depending on the size
8101of the integer ``value``. If ``value`` is larger than the size of a
8102pointer then a truncation is done. If ``value`` is smaller than the size
8103of a pointer then a zero extension is done. If they are the same size,
8104nothing is done (*no-op cast*).
8105
8106Example:
8107""""""""
8108
8109.. code-block:: llvm
8110
8111 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8112 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8113 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8114 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8115
8116.. _i_bitcast:
8117
8118'``bitcast .. to``' Instruction
8119^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8120
8121Syntax:
8122"""""""
8123
8124::
8125
8126 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8127
8128Overview:
8129"""""""""
8130
8131The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8132changing any bits.
8133
8134Arguments:
8135""""""""""
8136
8137The '``bitcast``' instruction takes a value to cast, which must be a
8138non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008139also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8140bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008141identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008142also be a pointer of the same size. This instruction supports bitwise
8143conversion of vectors to integers and to vectors of other types (as
8144long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008145
8146Semantics:
8147""""""""""
8148
Matt Arsenault24b49c42013-07-31 17:49:08 +00008149The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8150is always a *no-op cast* because no bits change with this
8151conversion. The conversion is done as if the ``value`` had been stored
8152to memory and read back as type ``ty2``. Pointer (or vector of
8153pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008154pointers) types with the same address space through this instruction.
8155To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8156or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008157
8158Example:
8159""""""""
8160
Renato Golin124f2592016-07-20 12:16:38 +00008161.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008162
8163 %X = bitcast i8 255 to i8 ; yields i8 :-1
8164 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8165 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8166 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8167
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008168.. _i_addrspacecast:
8169
8170'``addrspacecast .. to``' Instruction
8171^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8172
8173Syntax:
8174"""""""
8175
8176::
8177
8178 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8179
8180Overview:
8181"""""""""
8182
8183The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8184address space ``n`` to type ``pty2`` in address space ``m``.
8185
8186Arguments:
8187""""""""""
8188
8189The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8190to cast and a pointer type to cast it to, which must have a different
8191address space.
8192
8193Semantics:
8194""""""""""
8195
8196The '``addrspacecast``' instruction converts the pointer value
8197``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008198value modification, depending on the target and the address space
8199pair. Pointer conversions within the same address space must be
8200performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008201conversion is legal then both result and operand refer to the same memory
8202location.
8203
8204Example:
8205""""""""
8206
8207.. code-block:: llvm
8208
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008209 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8210 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8211 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008212
Sean Silvab084af42012-12-07 10:36:55 +00008213.. _otherops:
8214
8215Other Operations
8216----------------
8217
8218The instructions in this category are the "miscellaneous" instructions,
8219which defy better classification.
8220
8221.. _i_icmp:
8222
8223'``icmp``' Instruction
8224^^^^^^^^^^^^^^^^^^^^^^
8225
8226Syntax:
8227"""""""
8228
8229::
8230
Tim Northover675a0962014-06-13 14:24:23 +00008231 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008232
8233Overview:
8234"""""""""
8235
8236The '``icmp``' instruction returns a boolean value or a vector of
8237boolean values based on comparison of its two integer, integer vector,
8238pointer, or pointer vector operands.
8239
8240Arguments:
8241""""""""""
8242
8243The '``icmp``' instruction takes three operands. The first operand is
8244the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008245not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008246
8247#. ``eq``: equal
8248#. ``ne``: not equal
8249#. ``ugt``: unsigned greater than
8250#. ``uge``: unsigned greater or equal
8251#. ``ult``: unsigned less than
8252#. ``ule``: unsigned less or equal
8253#. ``sgt``: signed greater than
8254#. ``sge``: signed greater or equal
8255#. ``slt``: signed less than
8256#. ``sle``: signed less or equal
8257
8258The remaining two arguments must be :ref:`integer <t_integer>` or
8259:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8260must also be identical types.
8261
8262Semantics:
8263""""""""""
8264
8265The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8266code given as ``cond``. The comparison performed always yields either an
8267:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8268
8269#. ``eq``: yields ``true`` if the operands are equal, ``false``
8270 otherwise. No sign interpretation is necessary or performed.
8271#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8272 otherwise. No sign interpretation is necessary or performed.
8273#. ``ugt``: interprets the operands as unsigned values and yields
8274 ``true`` if ``op1`` is greater than ``op2``.
8275#. ``uge``: interprets the operands as unsigned values and yields
8276 ``true`` if ``op1`` is greater than or equal to ``op2``.
8277#. ``ult``: interprets the operands as unsigned values and yields
8278 ``true`` if ``op1`` is less than ``op2``.
8279#. ``ule``: interprets the operands as unsigned values and yields
8280 ``true`` if ``op1`` is less than or equal to ``op2``.
8281#. ``sgt``: interprets the operands as signed values and yields ``true``
8282 if ``op1`` is greater than ``op2``.
8283#. ``sge``: interprets the operands as signed values and yields ``true``
8284 if ``op1`` is greater than or equal to ``op2``.
8285#. ``slt``: interprets the operands as signed values and yields ``true``
8286 if ``op1`` is less than ``op2``.
8287#. ``sle``: interprets the operands as signed values and yields ``true``
8288 if ``op1`` is less than or equal to ``op2``.
8289
8290If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8291are compared as if they were integers.
8292
8293If the operands are integer vectors, then they are compared element by
8294element. The result is an ``i1`` vector with the same number of elements
8295as the values being compared. Otherwise, the result is an ``i1``.
8296
8297Example:
8298""""""""
8299
Renato Golin124f2592016-07-20 12:16:38 +00008300.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008301
8302 <result> = icmp eq i32 4, 5 ; yields: result=false
8303 <result> = icmp ne float* %X, %X ; yields: result=false
8304 <result> = icmp ult i16 4, 5 ; yields: result=true
8305 <result> = icmp sgt i16 4, 5 ; yields: result=false
8306 <result> = icmp ule i16 -4, 5 ; yields: result=false
8307 <result> = icmp sge i16 4, 5 ; yields: result=false
8308
Sean Silvab084af42012-12-07 10:36:55 +00008309.. _i_fcmp:
8310
8311'``fcmp``' Instruction
8312^^^^^^^^^^^^^^^^^^^^^^
8313
8314Syntax:
8315"""""""
8316
8317::
8318
James Molloy88eb5352015-07-10 12:52:00 +00008319 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008320
8321Overview:
8322"""""""""
8323
8324The '``fcmp``' instruction returns a boolean value or vector of boolean
8325values based on comparison of its operands.
8326
8327If the operands are floating point scalars, then the result type is a
8328boolean (:ref:`i1 <t_integer>`).
8329
8330If the operands are floating point vectors, then the result type is a
8331vector of boolean with the same number of elements as the operands being
8332compared.
8333
8334Arguments:
8335""""""""""
8336
8337The '``fcmp``' instruction takes three operands. The first operand is
8338the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008339not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008340
8341#. ``false``: no comparison, always returns false
8342#. ``oeq``: ordered and equal
8343#. ``ogt``: ordered and greater than
8344#. ``oge``: ordered and greater than or equal
8345#. ``olt``: ordered and less than
8346#. ``ole``: ordered and less than or equal
8347#. ``one``: ordered and not equal
8348#. ``ord``: ordered (no nans)
8349#. ``ueq``: unordered or equal
8350#. ``ugt``: unordered or greater than
8351#. ``uge``: unordered or greater than or equal
8352#. ``ult``: unordered or less than
8353#. ``ule``: unordered or less than or equal
8354#. ``une``: unordered or not equal
8355#. ``uno``: unordered (either nans)
8356#. ``true``: no comparison, always returns true
8357
8358*Ordered* means that neither operand is a QNAN while *unordered* means
8359that either operand may be a QNAN.
8360
8361Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8362point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8363type. They must have identical types.
8364
8365Semantics:
8366""""""""""
8367
8368The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8369condition code given as ``cond``. If the operands are vectors, then the
8370vectors are compared element by element. Each comparison performed
8371always yields an :ref:`i1 <t_integer>` result, as follows:
8372
8373#. ``false``: always yields ``false``, regardless of operands.
8374#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8375 is equal to ``op2``.
8376#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8377 is greater than ``op2``.
8378#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8379 is greater than or equal to ``op2``.
8380#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8381 is less than ``op2``.
8382#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8383 is less than or equal to ``op2``.
8384#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8385 is not equal to ``op2``.
8386#. ``ord``: yields ``true`` if both operands are not a QNAN.
8387#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8388 equal to ``op2``.
8389#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8390 greater than ``op2``.
8391#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8392 greater than or equal to ``op2``.
8393#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8394 less than ``op2``.
8395#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8396 less than or equal to ``op2``.
8397#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8398 not equal to ``op2``.
8399#. ``uno``: yields ``true`` if either operand is a QNAN.
8400#. ``true``: always yields ``true``, regardless of operands.
8401
James Molloy88eb5352015-07-10 12:52:00 +00008402The ``fcmp`` instruction can also optionally take any number of
8403:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8404otherwise unsafe floating point optimizations.
8405
8406Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8407only flags that have any effect on its semantics are those that allow
8408assumptions to be made about the values of input arguments; namely
8409``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8410
Sean Silvab084af42012-12-07 10:36:55 +00008411Example:
8412""""""""
8413
Renato Golin124f2592016-07-20 12:16:38 +00008414.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008415
8416 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8417 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8418 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8419 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8420
Sean Silvab084af42012-12-07 10:36:55 +00008421.. _i_phi:
8422
8423'``phi``' Instruction
8424^^^^^^^^^^^^^^^^^^^^^
8425
8426Syntax:
8427"""""""
8428
8429::
8430
8431 <result> = phi <ty> [ <val0>, <label0>], ...
8432
8433Overview:
8434"""""""""
8435
8436The '``phi``' instruction is used to implement the φ node in the SSA
8437graph representing the function.
8438
8439Arguments:
8440""""""""""
8441
8442The type of the incoming values is specified with the first type field.
8443After this, the '``phi``' instruction takes a list of pairs as
8444arguments, with one pair for each predecessor basic block of the current
8445block. Only values of :ref:`first class <t_firstclass>` type may be used as
8446the value arguments to the PHI node. Only labels may be used as the
8447label arguments.
8448
8449There must be no non-phi instructions between the start of a basic block
8450and the PHI instructions: i.e. PHI instructions must be first in a basic
8451block.
8452
8453For the purposes of the SSA form, the use of each incoming value is
8454deemed to occur on the edge from the corresponding predecessor block to
8455the current block (but after any definition of an '``invoke``'
8456instruction's return value on the same edge).
8457
8458Semantics:
8459""""""""""
8460
8461At runtime, the '``phi``' instruction logically takes on the value
8462specified by the pair corresponding to the predecessor basic block that
8463executed just prior to the current block.
8464
8465Example:
8466""""""""
8467
8468.. code-block:: llvm
8469
8470 Loop: ; Infinite loop that counts from 0 on up...
8471 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8472 %nextindvar = add i32 %indvar, 1
8473 br label %Loop
8474
8475.. _i_select:
8476
8477'``select``' Instruction
8478^^^^^^^^^^^^^^^^^^^^^^^^
8479
8480Syntax:
8481"""""""
8482
8483::
8484
8485 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8486
8487 selty is either i1 or {<N x i1>}
8488
8489Overview:
8490"""""""""
8491
8492The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008493condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008494
8495Arguments:
8496""""""""""
8497
8498The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8499values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008500class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008501
8502Semantics:
8503""""""""""
8504
8505If the condition is an i1 and it evaluates to 1, the instruction returns
8506the first value argument; otherwise, it returns the second value
8507argument.
8508
8509If the condition is a vector of i1, then the value arguments must be
8510vectors of the same size, and the selection is done element by element.
8511
David Majnemer40a0b592015-03-03 22:45:47 +00008512If the condition is an i1 and the value arguments are vectors of the
8513same size, then an entire vector is selected.
8514
Sean Silvab084af42012-12-07 10:36:55 +00008515Example:
8516""""""""
8517
8518.. code-block:: llvm
8519
8520 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8521
8522.. _i_call:
8523
8524'``call``' Instruction
8525^^^^^^^^^^^^^^^^^^^^^^
8526
8527Syntax:
8528"""""""
8529
8530::
8531
David Blaikieb83cf102016-07-13 17:21:34 +00008532 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008533 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008534
8535Overview:
8536"""""""""
8537
8538The '``call``' instruction represents a simple function call.
8539
8540Arguments:
8541""""""""""
8542
8543This instruction requires several arguments:
8544
Reid Kleckner5772b772014-04-24 20:14:34 +00008545#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008546 should perform tail call optimization. The ``tail`` marker is a hint that
8547 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008548 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008549 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008550
8551 #. The call will not cause unbounded stack growth if it is part of a
8552 recursive cycle in the call graph.
8553 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8554 forwarded in place.
8555
8556 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008557 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008558 rules:
8559
8560 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8561 or a pointer bitcast followed by a ret instruction.
8562 - The ret instruction must return the (possibly bitcasted) value
8563 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008564 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008565 parameters or return types may differ in pointee type, but not
8566 in address space.
8567 - The calling conventions of the caller and callee must match.
8568 - All ABI-impacting function attributes, such as sret, byval, inreg,
8569 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008570 - The callee must be varargs iff the caller is varargs. Bitcasting a
8571 non-varargs function to the appropriate varargs type is legal so
8572 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008573
8574 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8575 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008576
8577 - Caller and callee both have the calling convention ``fastcc``.
8578 - The call is in tail position (ret immediately follows call and ret
8579 uses value of call or is void).
8580 - Option ``-tailcallopt`` is enabled, or
8581 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008582 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008583 met. <CodeGenerator.html#tailcallopt>`_
8584
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008585#. The optional ``notail`` marker indicates that the optimizers should not add
8586 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8587 call optimization from being performed on the call.
8588
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008589#. The optional ``fast-math flags`` marker indicates that the call has one or more
8590 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8591 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8592 for calls that return a floating-point scalar or vector type.
8593
Sean Silvab084af42012-12-07 10:36:55 +00008594#. The optional "cconv" marker indicates which :ref:`calling
8595 convention <callingconv>` the call should use. If none is
8596 specified, the call defaults to using C calling conventions. The
8597 calling convention of the call must match the calling convention of
8598 the target function, or else the behavior is undefined.
8599#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8600 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8601 are valid here.
8602#. '``ty``': the type of the call instruction itself which is also the
8603 type of the return value. Functions that return no value are marked
8604 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008605#. '``fnty``': shall be the signature of the function being called. The
8606 argument types must match the types implied by this signature. This
8607 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008608#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008609 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008610 indirect ``call``'s are just as possible, calling an arbitrary pointer
8611 to function value.
8612#. '``function args``': argument list whose types match the function
8613 signature argument types and parameter attributes. All arguments must
8614 be of :ref:`first class <t_firstclass>` type. If the function signature
8615 indicates the function accepts a variable number of arguments, the
8616 extra arguments can be specified.
8617#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008618 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8619 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008620#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008621
8622Semantics:
8623""""""""""
8624
8625The '``call``' instruction is used to cause control flow to transfer to
8626a specified function, with its incoming arguments bound to the specified
8627values. Upon a '``ret``' instruction in the called function, control
8628flow continues with the instruction after the function call, and the
8629return value of the function is bound to the result argument.
8630
8631Example:
8632""""""""
8633
8634.. code-block:: llvm
8635
8636 %retval = call i32 @test(i32 %argc)
8637 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8638 %X = tail call i32 @foo() ; yields i32
8639 %Y = tail call fastcc i32 @foo() ; yields i32
8640 call void %foo(i8 97 signext)
8641
8642 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008643 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008644 %gr = extractvalue %struct.A %r, 0 ; yields i32
8645 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8646 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8647 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8648
8649llvm treats calls to some functions with names and arguments that match
8650the standard C99 library as being the C99 library functions, and may
8651perform optimizations or generate code for them under that assumption.
8652This is something we'd like to change in the future to provide better
8653support for freestanding environments and non-C-based languages.
8654
8655.. _i_va_arg:
8656
8657'``va_arg``' Instruction
8658^^^^^^^^^^^^^^^^^^^^^^^^
8659
8660Syntax:
8661"""""""
8662
8663::
8664
8665 <resultval> = va_arg <va_list*> <arglist>, <argty>
8666
8667Overview:
8668"""""""""
8669
8670The '``va_arg``' instruction is used to access arguments passed through
8671the "variable argument" area of a function call. It is used to implement
8672the ``va_arg`` macro in C.
8673
8674Arguments:
8675""""""""""
8676
8677This instruction takes a ``va_list*`` value and the type of the
8678argument. It returns a value of the specified argument type and
8679increments the ``va_list`` to point to the next argument. The actual
8680type of ``va_list`` is target specific.
8681
8682Semantics:
8683""""""""""
8684
8685The '``va_arg``' instruction loads an argument of the specified type
8686from the specified ``va_list`` and causes the ``va_list`` to point to
8687the next argument. For more information, see the variable argument
8688handling :ref:`Intrinsic Functions <int_varargs>`.
8689
8690It is legal for this instruction to be called in a function which does
8691not take a variable number of arguments, for example, the ``vfprintf``
8692function.
8693
8694``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8695function <intrinsics>` because it takes a type as an argument.
8696
8697Example:
8698""""""""
8699
8700See the :ref:`variable argument processing <int_varargs>` section.
8701
8702Note that the code generator does not yet fully support va\_arg on many
8703targets. Also, it does not currently support va\_arg with aggregate
8704types on any target.
8705
8706.. _i_landingpad:
8707
8708'``landingpad``' Instruction
8709^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8710
8711Syntax:
8712"""""""
8713
8714::
8715
David Majnemer7fddecc2015-06-17 20:52:32 +00008716 <resultval> = landingpad <resultty> <clause>+
8717 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008718
8719 <clause> := catch <type> <value>
8720 <clause> := filter <array constant type> <array constant>
8721
8722Overview:
8723"""""""""
8724
8725The '``landingpad``' instruction is used by `LLVM's exception handling
8726system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008727is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008728code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008729defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008730re-entry to the function. The ``resultval`` has the type ``resultty``.
8731
8732Arguments:
8733""""""""""
8734
David Majnemer7fddecc2015-06-17 20:52:32 +00008735The optional
Sean Silvab084af42012-12-07 10:36:55 +00008736``cleanup`` flag indicates that the landing pad block is a cleanup.
8737
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008738A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008739contains the global variable representing the "type" that may be caught
8740or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8741clause takes an array constant as its argument. Use
8742"``[0 x i8**] undef``" for a filter which cannot throw. The
8743'``landingpad``' instruction must contain *at least* one ``clause`` or
8744the ``cleanup`` flag.
8745
8746Semantics:
8747""""""""""
8748
8749The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008750:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008751therefore the "result type" of the ``landingpad`` instruction. As with
8752calling conventions, how the personality function results are
8753represented in LLVM IR is target specific.
8754
8755The clauses are applied in order from top to bottom. If two
8756``landingpad`` instructions are merged together through inlining, the
8757clauses from the calling function are appended to the list of clauses.
8758When the call stack is being unwound due to an exception being thrown,
8759the exception is compared against each ``clause`` in turn. If it doesn't
8760match any of the clauses, and the ``cleanup`` flag is not set, then
8761unwinding continues further up the call stack.
8762
8763The ``landingpad`` instruction has several restrictions:
8764
8765- A landing pad block is a basic block which is the unwind destination
8766 of an '``invoke``' instruction.
8767- A landing pad block must have a '``landingpad``' instruction as its
8768 first non-PHI instruction.
8769- There can be only one '``landingpad``' instruction within the landing
8770 pad block.
8771- A basic block that is not a landing pad block may not include a
8772 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008773
8774Example:
8775""""""""
8776
8777.. code-block:: llvm
8778
8779 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008780 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008781 catch i8** @_ZTIi
8782 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008783 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008784 cleanup
8785 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008786 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008787 catch i8** @_ZTIi
8788 filter [1 x i8**] [@_ZTId]
8789
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008790.. _i_catchpad:
8791
8792'``catchpad``' Instruction
8793^^^^^^^^^^^^^^^^^^^^^^^^^^
8794
8795Syntax:
8796"""""""
8797
8798::
8799
8800 <resultval> = catchpad within <catchswitch> [<args>*]
8801
8802Overview:
8803"""""""""
8804
8805The '``catchpad``' instruction is used by `LLVM's exception handling
8806system <ExceptionHandling.html#overview>`_ to specify that a basic block
8807begins a catch handler --- one where a personality routine attempts to transfer
8808control to catch an exception.
8809
8810Arguments:
8811""""""""""
8812
8813The ``catchswitch`` operand must always be a token produced by a
8814:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8815ensures that each ``catchpad`` has exactly one predecessor block, and it always
8816terminates in a ``catchswitch``.
8817
8818The ``args`` correspond to whatever information the personality routine
8819requires to know if this is an appropriate handler for the exception. Control
8820will transfer to the ``catchpad`` if this is the first appropriate handler for
8821the exception.
8822
8823The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8824``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8825pads.
8826
8827Semantics:
8828""""""""""
8829
8830When the call stack is being unwound due to an exception being thrown, the
8831exception is compared against the ``args``. If it doesn't match, control will
8832not reach the ``catchpad`` instruction. The representation of ``args`` is
8833entirely target and personality function-specific.
8834
8835Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8836instruction must be the first non-phi of its parent basic block.
8837
8838The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8839instructions is described in the
8840`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8841
8842When a ``catchpad`` has been "entered" but not yet "exited" (as
8843described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8844it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8845that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8846
8847Example:
8848""""""""
8849
Renato Golin124f2592016-07-20 12:16:38 +00008850.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008851
8852 dispatch:
8853 %cs = catchswitch within none [label %handler0] unwind to caller
8854 ;; A catch block which can catch an integer.
8855 handler0:
8856 %tok = catchpad within %cs [i8** @_ZTIi]
8857
David Majnemer654e1302015-07-31 17:58:14 +00008858.. _i_cleanuppad:
8859
8860'``cleanuppad``' Instruction
8861^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8862
8863Syntax:
8864"""""""
8865
8866::
8867
David Majnemer8a1c45d2015-12-12 05:38:55 +00008868 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008869
8870Overview:
8871"""""""""
8872
8873The '``cleanuppad``' instruction is used by `LLVM's exception handling
8874system <ExceptionHandling.html#overview>`_ to specify that a basic block
8875is a cleanup block --- one where a personality routine attempts to
8876transfer control to run cleanup actions.
8877The ``args`` correspond to whatever additional
8878information the :ref:`personality function <personalityfn>` requires to
8879execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008880The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008881match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8882The ``parent`` argument is the token of the funclet that contains the
8883``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8884this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008885
8886Arguments:
8887""""""""""
8888
8889The instruction takes a list of arbitrary values which are interpreted
8890by the :ref:`personality function <personalityfn>`.
8891
8892Semantics:
8893""""""""""
8894
David Majnemer654e1302015-07-31 17:58:14 +00008895When the call stack is being unwound due to an exception being thrown,
8896the :ref:`personality function <personalityfn>` transfers control to the
8897``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008898As with calling conventions, how the personality function results are
8899represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008900
8901The ``cleanuppad`` instruction has several restrictions:
8902
8903- A cleanup block is a basic block which is the unwind destination of
8904 an exceptional instruction.
8905- A cleanup block must have a '``cleanuppad``' instruction as its
8906 first non-PHI instruction.
8907- There can be only one '``cleanuppad``' instruction within the
8908 cleanup block.
8909- A basic block that is not a cleanup block may not include a
8910 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008911
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008912When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8913described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8914it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8915that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008916
David Majnemer654e1302015-07-31 17:58:14 +00008917Example:
8918""""""""
8919
Renato Golin124f2592016-07-20 12:16:38 +00008920.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00008921
David Majnemer8a1c45d2015-12-12 05:38:55 +00008922 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008923
Sean Silvab084af42012-12-07 10:36:55 +00008924.. _intrinsics:
8925
8926Intrinsic Functions
8927===================
8928
8929LLVM supports the notion of an "intrinsic function". These functions
8930have well known names and semantics and are required to follow certain
8931restrictions. Overall, these intrinsics represent an extension mechanism
8932for the LLVM language that does not require changing all of the
8933transformations in LLVM when adding to the language (or the bitcode
8934reader/writer, the parser, etc...).
8935
8936Intrinsic function names must all start with an "``llvm.``" prefix. This
8937prefix is reserved in LLVM for intrinsic names; thus, function names may
8938not begin with this prefix. Intrinsic functions must always be external
8939functions: you cannot define the body of intrinsic functions. Intrinsic
8940functions may only be used in call or invoke instructions: it is illegal
8941to take the address of an intrinsic function. Additionally, because
8942intrinsic functions are part of the LLVM language, it is required if any
8943are added that they be documented here.
8944
8945Some intrinsic functions can be overloaded, i.e., the intrinsic
8946represents a family of functions that perform the same operation but on
8947different data types. Because LLVM can represent over 8 million
8948different integer types, overloading is used commonly to allow an
8949intrinsic function to operate on any integer type. One or more of the
8950argument types or the result type can be overloaded to accept any
8951integer type. Argument types may also be defined as exactly matching a
8952previous argument's type or the result type. This allows an intrinsic
8953function which accepts multiple arguments, but needs all of them to be
8954of the same type, to only be overloaded with respect to a single
8955argument or the result.
8956
8957Overloaded intrinsics will have the names of its overloaded argument
8958types encoded into its function name, each preceded by a period. Only
8959those types which are overloaded result in a name suffix. Arguments
8960whose type is matched against another type do not. For example, the
8961``llvm.ctpop`` function can take an integer of any width and returns an
8962integer of exactly the same integer width. This leads to a family of
8963functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8964``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8965overloaded, and only one type suffix is required. Because the argument's
8966type is matched against the return type, it does not require its own
8967name suffix.
8968
8969To learn how to add an intrinsic function, please see the `Extending
8970LLVM Guide <ExtendingLLVM.html>`_.
8971
8972.. _int_varargs:
8973
8974Variable Argument Handling Intrinsics
8975-------------------------------------
8976
8977Variable argument support is defined in LLVM with the
8978:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8979functions. These functions are related to the similarly named macros
8980defined in the ``<stdarg.h>`` header file.
8981
8982All of these functions operate on arguments that use a target-specific
8983value type "``va_list``". The LLVM assembly language reference manual
8984does not define what this type is, so all transformations should be
8985prepared to handle these functions regardless of the type used.
8986
8987This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8988variable argument handling intrinsic functions are used.
8989
8990.. code-block:: llvm
8991
Tim Northoverab60bb92014-11-02 01:21:51 +00008992 ; This struct is different for every platform. For most platforms,
8993 ; it is merely an i8*.
8994 %struct.va_list = type { i8* }
8995
8996 ; For Unix x86_64 platforms, va_list is the following struct:
8997 ; %struct.va_list = type { i32, i32, i8*, i8* }
8998
Sean Silvab084af42012-12-07 10:36:55 +00008999 define i32 @test(i32 %X, ...) {
9000 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009001 %ap = alloca %struct.va_list
9002 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009003 call void @llvm.va_start(i8* %ap2)
9004
9005 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009006 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009007
9008 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9009 %aq = alloca i8*
9010 %aq2 = bitcast i8** %aq to i8*
9011 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9012 call void @llvm.va_end(i8* %aq2)
9013
9014 ; Stop processing of arguments.
9015 call void @llvm.va_end(i8* %ap2)
9016 ret i32 %tmp
9017 }
9018
9019 declare void @llvm.va_start(i8*)
9020 declare void @llvm.va_copy(i8*, i8*)
9021 declare void @llvm.va_end(i8*)
9022
9023.. _int_va_start:
9024
9025'``llvm.va_start``' Intrinsic
9026^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9027
9028Syntax:
9029"""""""
9030
9031::
9032
Nick Lewycky04f6de02013-09-11 22:04:52 +00009033 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009034
9035Overview:
9036"""""""""
9037
9038The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9039subsequent use by ``va_arg``.
9040
9041Arguments:
9042""""""""""
9043
9044The argument is a pointer to a ``va_list`` element to initialize.
9045
9046Semantics:
9047""""""""""
9048
9049The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9050available in C. In a target-dependent way, it initializes the
9051``va_list`` element to which the argument points, so that the next call
9052to ``va_arg`` will produce the first variable argument passed to the
9053function. Unlike the C ``va_start`` macro, this intrinsic does not need
9054to know the last argument of the function as the compiler can figure
9055that out.
9056
9057'``llvm.va_end``' Intrinsic
9058^^^^^^^^^^^^^^^^^^^^^^^^^^^
9059
9060Syntax:
9061"""""""
9062
9063::
9064
9065 declare void @llvm.va_end(i8* <arglist>)
9066
9067Overview:
9068"""""""""
9069
9070The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9071initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9072
9073Arguments:
9074""""""""""
9075
9076The argument is a pointer to a ``va_list`` to destroy.
9077
9078Semantics:
9079""""""""""
9080
9081The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9082available in C. In a target-dependent way, it destroys the ``va_list``
9083element to which the argument points. Calls to
9084:ref:`llvm.va_start <int_va_start>` and
9085:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9086``llvm.va_end``.
9087
9088.. _int_va_copy:
9089
9090'``llvm.va_copy``' Intrinsic
9091^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9092
9093Syntax:
9094"""""""
9095
9096::
9097
9098 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9099
9100Overview:
9101"""""""""
9102
9103The '``llvm.va_copy``' intrinsic copies the current argument position
9104from the source argument list to the destination argument list.
9105
9106Arguments:
9107""""""""""
9108
9109The first argument is a pointer to a ``va_list`` element to initialize.
9110The second argument is a pointer to a ``va_list`` element to copy from.
9111
9112Semantics:
9113""""""""""
9114
9115The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9116available in C. In a target-dependent way, it copies the source
9117``va_list`` element into the destination ``va_list`` element. This
9118intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9119arbitrarily complex and require, for example, memory allocation.
9120
9121Accurate Garbage Collection Intrinsics
9122--------------------------------------
9123
Philip Reamesc5b0f562015-02-25 23:52:06 +00009124LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009125(GC) requires the frontend to generate code containing appropriate intrinsic
9126calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009127intrinsics in a manner which is appropriate for the target collector.
9128
Sean Silvab084af42012-12-07 10:36:55 +00009129These intrinsics allow identification of :ref:`GC roots on the
9130stack <int_gcroot>`, as well as garbage collector implementations that
9131require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009132Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009133these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009134details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009135
Philip Reamesf80bbff2015-02-25 23:45:20 +00009136Experimental Statepoint Intrinsics
9137^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9138
9139LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009140collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009141to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009142:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009143differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009144<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009145described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009146
9147.. _int_gcroot:
9148
9149'``llvm.gcroot``' Intrinsic
9150^^^^^^^^^^^^^^^^^^^^^^^^^^^
9151
9152Syntax:
9153"""""""
9154
9155::
9156
9157 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9158
9159Overview:
9160"""""""""
9161
9162The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9163the code generator, and allows some metadata to be associated with it.
9164
9165Arguments:
9166""""""""""
9167
9168The first argument specifies the address of a stack object that contains
9169the root pointer. The second pointer (which must be either a constant or
9170a global value address) contains the meta-data to be associated with the
9171root.
9172
9173Semantics:
9174""""""""""
9175
9176At runtime, a call to this intrinsic stores a null pointer into the
9177"ptrloc" location. At compile-time, the code generator generates
9178information to allow the runtime to find the pointer at GC safe points.
9179The '``llvm.gcroot``' intrinsic may only be used in a function which
9180:ref:`specifies a GC algorithm <gc>`.
9181
9182.. _int_gcread:
9183
9184'``llvm.gcread``' Intrinsic
9185^^^^^^^^^^^^^^^^^^^^^^^^^^^
9186
9187Syntax:
9188"""""""
9189
9190::
9191
9192 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9193
9194Overview:
9195"""""""""
9196
9197The '``llvm.gcread``' intrinsic identifies reads of references from heap
9198locations, allowing garbage collector implementations that require read
9199barriers.
9200
9201Arguments:
9202""""""""""
9203
9204The second argument is the address to read from, which should be an
9205address allocated from the garbage collector. The first object is a
9206pointer to the start of the referenced object, if needed by the language
9207runtime (otherwise null).
9208
9209Semantics:
9210""""""""""
9211
9212The '``llvm.gcread``' intrinsic has the same semantics as a load
9213instruction, but may be replaced with substantially more complex code by
9214the garbage collector runtime, as needed. The '``llvm.gcread``'
9215intrinsic may only be used in a function which :ref:`specifies a GC
9216algorithm <gc>`.
9217
9218.. _int_gcwrite:
9219
9220'``llvm.gcwrite``' Intrinsic
9221^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9222
9223Syntax:
9224"""""""
9225
9226::
9227
9228 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9229
9230Overview:
9231"""""""""
9232
9233The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9234locations, allowing garbage collector implementations that require write
9235barriers (such as generational or reference counting collectors).
9236
9237Arguments:
9238""""""""""
9239
9240The first argument is the reference to store, the second is the start of
9241the object to store it to, and the third is the address of the field of
9242Obj to store to. If the runtime does not require a pointer to the
9243object, Obj may be null.
9244
9245Semantics:
9246""""""""""
9247
9248The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9249instruction, but may be replaced with substantially more complex code by
9250the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9251intrinsic may only be used in a function which :ref:`specifies a GC
9252algorithm <gc>`.
9253
9254Code Generator Intrinsics
9255-------------------------
9256
9257These intrinsics are provided by LLVM to expose special features that
9258may only be implemented with code generator support.
9259
9260'``llvm.returnaddress``' Intrinsic
9261^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9262
9263Syntax:
9264"""""""
9265
9266::
9267
9268 declare i8 *@llvm.returnaddress(i32 <level>)
9269
9270Overview:
9271"""""""""
9272
9273The '``llvm.returnaddress``' intrinsic attempts to compute a
9274target-specific value indicating the return address of the current
9275function or one of its callers.
9276
9277Arguments:
9278""""""""""
9279
9280The argument to this intrinsic indicates which function to return the
9281address for. Zero indicates the calling function, one indicates its
9282caller, etc. The argument is **required** to be a constant integer
9283value.
9284
9285Semantics:
9286""""""""""
9287
9288The '``llvm.returnaddress``' intrinsic either returns a pointer
9289indicating the return address of the specified call frame, or zero if it
9290cannot be identified. The value returned by this intrinsic is likely to
9291be incorrect or 0 for arguments other than zero, so it should only be
9292used for debugging purposes.
9293
9294Note that calling this intrinsic does not prevent function inlining or
9295other aggressive transformations, so the value returned may not be that
9296of the obvious source-language caller.
9297
Albert Gutowski795d7d62016-10-12 22:13:19 +00009298'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009299^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009300
9301Syntax:
9302"""""""
9303
9304::
9305
9306 declare i8 *@llvm.addressofreturnaddress()
9307
9308Overview:
9309"""""""""
9310
9311The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9312pointer to the place in the stack frame where the return address of the
9313current function is stored.
9314
9315Semantics:
9316""""""""""
9317
9318Note that calling this intrinsic does not prevent function inlining or
9319other aggressive transformations, so the value returned may not be that
9320of the obvious source-language caller.
9321
9322This intrinsic is only implemented for x86.
9323
Sean Silvab084af42012-12-07 10:36:55 +00009324'``llvm.frameaddress``' Intrinsic
9325^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9326
9327Syntax:
9328"""""""
9329
9330::
9331
9332 declare i8* @llvm.frameaddress(i32 <level>)
9333
9334Overview:
9335"""""""""
9336
9337The '``llvm.frameaddress``' intrinsic attempts to return the
9338target-specific frame pointer value for the specified stack frame.
9339
9340Arguments:
9341""""""""""
9342
9343The argument to this intrinsic indicates which function to return the
9344frame pointer for. Zero indicates the calling function, one indicates
9345its caller, etc. The argument is **required** to be a constant integer
9346value.
9347
9348Semantics:
9349""""""""""
9350
9351The '``llvm.frameaddress``' intrinsic either returns a pointer
9352indicating the frame address of the specified call frame, or zero if it
9353cannot be identified. The value returned by this intrinsic is likely to
9354be incorrect or 0 for arguments other than zero, so it should only be
9355used for debugging purposes.
9356
9357Note that calling this intrinsic does not prevent function inlining or
9358other aggressive transformations, so the value returned may not be that
9359of the obvious source-language caller.
9360
Reid Kleckner60381792015-07-07 22:25:32 +00009361'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009362^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9363
9364Syntax:
9365"""""""
9366
9367::
9368
Reid Kleckner60381792015-07-07 22:25:32 +00009369 declare void @llvm.localescape(...)
9370 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009371
9372Overview:
9373"""""""""
9374
Reid Kleckner60381792015-07-07 22:25:32 +00009375The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9376allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009377live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009378computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009379
9380Arguments:
9381""""""""""
9382
Reid Kleckner60381792015-07-07 22:25:32 +00009383All arguments to '``llvm.localescape``' must be pointers to static allocas or
9384casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009385once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009386
Reid Kleckner60381792015-07-07 22:25:32 +00009387The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009388bitcasted pointer to a function defined in the current module. The code
9389generator cannot determine the frame allocation offset of functions defined in
9390other modules.
9391
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009392The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9393call frame that is currently live. The return value of '``llvm.localaddress``'
9394is one way to produce such a value, but various runtimes also expose a suitable
9395pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009396
Reid Kleckner60381792015-07-07 22:25:32 +00009397The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9398'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009399
Reid Klecknere9b89312015-01-13 00:48:10 +00009400Semantics:
9401""""""""""
9402
Reid Kleckner60381792015-07-07 22:25:32 +00009403These intrinsics allow a group of functions to share access to a set of local
9404stack allocations of a one parent function. The parent function may call the
9405'``llvm.localescape``' intrinsic once from the function entry block, and the
9406child functions can use '``llvm.localrecover``' to access the escaped allocas.
9407The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9408the escaped allocas are allocated, which would break attempts to use
9409'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009410
Renato Golinc7aea402014-05-06 16:51:25 +00009411.. _int_read_register:
9412.. _int_write_register:
9413
9414'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9415^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9416
9417Syntax:
9418"""""""
9419
9420::
9421
9422 declare i32 @llvm.read_register.i32(metadata)
9423 declare i64 @llvm.read_register.i64(metadata)
9424 declare void @llvm.write_register.i32(metadata, i32 @value)
9425 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009426 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009427
9428Overview:
9429"""""""""
9430
9431The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9432provides access to the named register. The register must be valid on
9433the architecture being compiled to. The type needs to be compatible
9434with the register being read.
9435
9436Semantics:
9437""""""""""
9438
9439The '``llvm.read_register``' intrinsic returns the current value of the
9440register, where possible. The '``llvm.write_register``' intrinsic sets
9441the current value of the register, where possible.
9442
9443This is useful to implement named register global variables that need
9444to always be mapped to a specific register, as is common practice on
9445bare-metal programs including OS kernels.
9446
9447The compiler doesn't check for register availability or use of the used
9448register in surrounding code, including inline assembly. Because of that,
9449allocatable registers are not supported.
9450
9451Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009452architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009453work is needed to support other registers and even more so, allocatable
9454registers.
9455
Sean Silvab084af42012-12-07 10:36:55 +00009456.. _int_stacksave:
9457
9458'``llvm.stacksave``' Intrinsic
9459^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9460
9461Syntax:
9462"""""""
9463
9464::
9465
9466 declare i8* @llvm.stacksave()
9467
9468Overview:
9469"""""""""
9470
9471The '``llvm.stacksave``' intrinsic is used to remember the current state
9472of the function stack, for use with
9473:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9474implementing language features like scoped automatic variable sized
9475arrays in C99.
9476
9477Semantics:
9478""""""""""
9479
9480This intrinsic returns a opaque pointer value that can be passed to
9481:ref:`llvm.stackrestore <int_stackrestore>`. When an
9482``llvm.stackrestore`` intrinsic is executed with a value saved from
9483``llvm.stacksave``, it effectively restores the state of the stack to
9484the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9485practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9486were allocated after the ``llvm.stacksave`` was executed.
9487
9488.. _int_stackrestore:
9489
9490'``llvm.stackrestore``' Intrinsic
9491^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9492
9493Syntax:
9494"""""""
9495
9496::
9497
9498 declare void @llvm.stackrestore(i8* %ptr)
9499
9500Overview:
9501"""""""""
9502
9503The '``llvm.stackrestore``' intrinsic is used to restore the state of
9504the function stack to the state it was in when the corresponding
9505:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9506useful for implementing language features like scoped automatic variable
9507sized arrays in C99.
9508
9509Semantics:
9510""""""""""
9511
9512See the description for :ref:`llvm.stacksave <int_stacksave>`.
9513
Yury Gribovd7dbb662015-12-01 11:40:55 +00009514.. _int_get_dynamic_area_offset:
9515
9516'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009518
9519Syntax:
9520"""""""
9521
9522::
9523
9524 declare i32 @llvm.get.dynamic.area.offset.i32()
9525 declare i64 @llvm.get.dynamic.area.offset.i64()
9526
Lang Hames10239932016-10-08 00:20:42 +00009527Overview:
9528"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009529
9530 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9531 get the offset from native stack pointer to the address of the most
9532 recent dynamic alloca on the caller's stack. These intrinsics are
9533 intendend for use in combination with
9534 :ref:`llvm.stacksave <int_stacksave>` to get a
9535 pointer to the most recent dynamic alloca. This is useful, for example,
9536 for AddressSanitizer's stack unpoisoning routines.
9537
9538Semantics:
9539""""""""""
9540
9541 These intrinsics return a non-negative integer value that can be used to
9542 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9543 on the caller's stack. In particular, for targets where stack grows downwards,
9544 adding this offset to the native stack pointer would get the address of the most
9545 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009546 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009547 one past the end of the most recent dynamic alloca.
9548
9549 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9550 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9551 compile-time-known constant value.
9552
9553 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9554 must match the target's generic address space's (address space 0) pointer type.
9555
Sean Silvab084af42012-12-07 10:36:55 +00009556'``llvm.prefetch``' Intrinsic
9557^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9558
9559Syntax:
9560"""""""
9561
9562::
9563
9564 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9565
9566Overview:
9567"""""""""
9568
9569The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9570insert a prefetch instruction if supported; otherwise, it is a noop.
9571Prefetches have no effect on the behavior of the program but can change
9572its performance characteristics.
9573
9574Arguments:
9575""""""""""
9576
9577``address`` is the address to be prefetched, ``rw`` is the specifier
9578determining if the fetch should be for a read (0) or write (1), and
9579``locality`` is a temporal locality specifier ranging from (0) - no
9580locality, to (3) - extremely local keep in cache. The ``cache type``
9581specifies whether the prefetch is performed on the data (1) or
9582instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9583arguments must be constant integers.
9584
9585Semantics:
9586""""""""""
9587
9588This intrinsic does not modify the behavior of the program. In
9589particular, prefetches cannot trap and do not produce a value. On
9590targets that support this intrinsic, the prefetch can provide hints to
9591the processor cache for better performance.
9592
9593'``llvm.pcmarker``' Intrinsic
9594^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9595
9596Syntax:
9597"""""""
9598
9599::
9600
9601 declare void @llvm.pcmarker(i32 <id>)
9602
9603Overview:
9604"""""""""
9605
9606The '``llvm.pcmarker``' intrinsic is a method to export a Program
9607Counter (PC) in a region of code to simulators and other tools. The
9608method is target specific, but it is expected that the marker will use
9609exported symbols to transmit the PC of the marker. The marker makes no
9610guarantees that it will remain with any specific instruction after
9611optimizations. It is possible that the presence of a marker will inhibit
9612optimizations. The intended use is to be inserted after optimizations to
9613allow correlations of simulation runs.
9614
9615Arguments:
9616""""""""""
9617
9618``id`` is a numerical id identifying the marker.
9619
9620Semantics:
9621""""""""""
9622
9623This intrinsic does not modify the behavior of the program. Backends
9624that do not support this intrinsic may ignore it.
9625
9626'``llvm.readcyclecounter``' Intrinsic
9627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9628
9629Syntax:
9630"""""""
9631
9632::
9633
9634 declare i64 @llvm.readcyclecounter()
9635
9636Overview:
9637"""""""""
9638
9639The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9640counter register (or similar low latency, high accuracy clocks) on those
9641targets that support it. On X86, it should map to RDTSC. On Alpha, it
9642should map to RPCC. As the backing counters overflow quickly (on the
9643order of 9 seconds on alpha), this should only be used for small
9644timings.
9645
9646Semantics:
9647""""""""""
9648
9649When directly supported, reading the cycle counter should not modify any
9650memory. Implementations are allowed to either return a application
9651specific value or a system wide value. On backends without support, this
9652is lowered to a constant 0.
9653
Tim Northoverbc933082013-05-23 19:11:20 +00009654Note that runtime support may be conditional on the privilege-level code is
9655running at and the host platform.
9656
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009657'``llvm.clear_cache``' Intrinsic
9658^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9659
9660Syntax:
9661"""""""
9662
9663::
9664
9665 declare void @llvm.clear_cache(i8*, i8*)
9666
9667Overview:
9668"""""""""
9669
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009670The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9671in the specified range to the execution unit of the processor. On
9672targets with non-unified instruction and data cache, the implementation
9673flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009674
9675Semantics:
9676""""""""""
9677
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009678On platforms with coherent instruction and data caches (e.g. x86), this
9679intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009680cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009681instructions or a system call, if cache flushing requires special
9682privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009683
Sean Silvad02bf3e2014-04-07 22:29:53 +00009684The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009685time library.
Renato Golin93010e62014-03-26 14:01:32 +00009686
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009687This instrinsic does *not* empty the instruction pipeline. Modifications
9688of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009689
Justin Bogner61ba2e32014-12-08 18:02:35 +00009690'``llvm.instrprof_increment``' Intrinsic
9691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9692
9693Syntax:
9694"""""""
9695
9696::
9697
9698 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9699 i32 <num-counters>, i32 <index>)
9700
9701Overview:
9702"""""""""
9703
9704The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9705frontend for use with instrumentation based profiling. These will be
9706lowered by the ``-instrprof`` pass to generate execution counts of a
9707program at runtime.
9708
9709Arguments:
9710""""""""""
9711
9712The first argument is a pointer to a global variable containing the
9713name of the entity being instrumented. This should generally be the
9714(mangled) function name for a set of counters.
9715
9716The second argument is a hash value that can be used by the consumer
9717of the profile data to detect changes to the instrumented source, and
9718the third is the number of counters associated with ``name``. It is an
9719error if ``hash`` or ``num-counters`` differ between two instances of
9720``instrprof_increment`` that refer to the same name.
9721
9722The last argument refers to which of the counters for ``name`` should
9723be incremented. It should be a value between 0 and ``num-counters``.
9724
9725Semantics:
9726""""""""""
9727
9728This intrinsic represents an increment of a profiling counter. It will
9729cause the ``-instrprof`` pass to generate the appropriate data
9730structures and the code to increment the appropriate value, in a
9731format that can be written out by a compiler runtime and consumed via
9732the ``llvm-profdata`` tool.
9733
Xinliang David Li4ca17332016-09-18 18:34:07 +00009734'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +00009735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +00009736
9737Syntax:
9738"""""""
9739
9740::
9741
9742 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
9743 i32 <num-counters>,
9744 i32 <index>, i64 <step>)
9745
9746Overview:
9747"""""""""
9748
9749The '``llvm.instrprof_increment_step``' intrinsic is an extension to
9750the '``llvm.instrprof_increment``' intrinsic with an additional fifth
9751argument to specify the step of the increment.
9752
9753Arguments:
9754""""""""""
9755The first four arguments are the same as '``llvm.instrprof_increment``'
9756instrinsic.
9757
9758The last argument specifies the value of the increment of the counter variable.
9759
9760Semantics:
9761""""""""""
9762See description of '``llvm.instrprof_increment``' instrinsic.
9763
9764
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009765'``llvm.instrprof_value_profile``' Intrinsic
9766^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9767
9768Syntax:
9769"""""""
9770
9771::
9772
9773 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9774 i64 <value>, i32 <value_kind>,
9775 i32 <index>)
9776
9777Overview:
9778"""""""""
9779
9780The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9781frontend for use with instrumentation based profiling. This will be
9782lowered by the ``-instrprof`` pass to find out the target values,
9783instrumented expressions take in a program at runtime.
9784
9785Arguments:
9786""""""""""
9787
9788The first argument is a pointer to a global variable containing the
9789name of the entity being instrumented. ``name`` should generally be the
9790(mangled) function name for a set of counters.
9791
9792The second argument is a hash value that can be used by the consumer
9793of the profile data to detect changes to the instrumented source. It
9794is an error if ``hash`` differs between two instances of
9795``llvm.instrprof_*`` that refer to the same name.
9796
9797The third argument is the value of the expression being profiled. The profiled
9798expression's value should be representable as an unsigned 64-bit value. The
9799fourth argument represents the kind of value profiling that is being done. The
9800supported value profiling kinds are enumerated through the
9801``InstrProfValueKind`` type declared in the
9802``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9803index of the instrumented expression within ``name``. It should be >= 0.
9804
9805Semantics:
9806""""""""""
9807
9808This intrinsic represents the point where a call to a runtime routine
9809should be inserted for value profiling of target expressions. ``-instrprof``
9810pass will generate the appropriate data structures and replace the
9811``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9812runtime library with proper arguments.
9813
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009814'``llvm.thread.pointer``' Intrinsic
9815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9816
9817Syntax:
9818"""""""
9819
9820::
9821
9822 declare i8* @llvm.thread.pointer()
9823
9824Overview:
9825"""""""""
9826
9827The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9828pointer.
9829
9830Semantics:
9831""""""""""
9832
9833The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9834for the current thread. The exact semantics of this value are target
9835specific: it may point to the start of TLS area, to the end, or somewhere
9836in the middle. Depending on the target, this intrinsic may read a register,
9837call a helper function, read from an alternate memory space, or perform
9838other operations necessary to locate the TLS area. Not all targets support
9839this intrinsic.
9840
Sean Silvab084af42012-12-07 10:36:55 +00009841Standard C Library Intrinsics
9842-----------------------------
9843
9844LLVM provides intrinsics for a few important standard C library
9845functions. These intrinsics allow source-language front-ends to pass
9846information about the alignment of the pointer arguments to the code
9847generator, providing opportunity for more efficient code generation.
9848
9849.. _int_memcpy:
9850
9851'``llvm.memcpy``' Intrinsic
9852^^^^^^^^^^^^^^^^^^^^^^^^^^^
9853
9854Syntax:
9855"""""""
9856
9857This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9858integer bit width and for different address spaces. Not all targets
9859support all bit widths however.
9860
9861::
9862
9863 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9864 i32 <len>, i32 <align>, i1 <isvolatile>)
9865 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9866 i64 <len>, i32 <align>, i1 <isvolatile>)
9867
9868Overview:
9869"""""""""
9870
9871The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9872source location to the destination location.
9873
9874Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9875intrinsics do not return a value, takes extra alignment/isvolatile
9876arguments and the pointers can be in specified address spaces.
9877
9878Arguments:
9879""""""""""
9880
9881The first argument is a pointer to the destination, the second is a
9882pointer to the source. The third argument is an integer argument
9883specifying the number of bytes to copy, the fourth argument is the
9884alignment of the source and destination locations, and the fifth is a
9885boolean indicating a volatile access.
9886
9887If the call to this intrinsic has an alignment value that is not 0 or 1,
9888then the caller guarantees that both the source and destination pointers
9889are aligned to that boundary.
9890
9891If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9892a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9893very cleanly specified and it is unwise to depend on it.
9894
9895Semantics:
9896""""""""""
9897
9898The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9899source location to the destination location, which are not allowed to
9900overlap. It copies "len" bytes of memory over. If the argument is known
9901to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009902argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009903
9904'``llvm.memmove``' Intrinsic
9905^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9906
9907Syntax:
9908"""""""
9909
9910This is an overloaded intrinsic. You can use llvm.memmove on any integer
9911bit width and for different address space. Not all targets support all
9912bit widths however.
9913
9914::
9915
9916 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9917 i32 <len>, i32 <align>, i1 <isvolatile>)
9918 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9919 i64 <len>, i32 <align>, i1 <isvolatile>)
9920
9921Overview:
9922"""""""""
9923
9924The '``llvm.memmove.*``' intrinsics move a block of memory from the
9925source location to the destination location. It is similar to the
9926'``llvm.memcpy``' intrinsic but allows the two memory locations to
9927overlap.
9928
9929Note that, unlike the standard libc function, the ``llvm.memmove.*``
9930intrinsics do not return a value, takes extra alignment/isvolatile
9931arguments and the pointers can be in specified address spaces.
9932
9933Arguments:
9934""""""""""
9935
9936The first argument is a pointer to the destination, the second is a
9937pointer to the source. The third argument is an integer argument
9938specifying the number of bytes to copy, the fourth argument is the
9939alignment of the source and destination locations, and the fifth is a
9940boolean indicating a volatile access.
9941
9942If the call to this intrinsic has an alignment value that is not 0 or 1,
9943then the caller guarantees that the source and destination pointers are
9944aligned to that boundary.
9945
9946If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9947is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9948not very cleanly specified and it is unwise to depend on it.
9949
9950Semantics:
9951""""""""""
9952
9953The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9954source location to the destination location, which may overlap. It
9955copies "len" bytes of memory over. If the argument is known to be
9956aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009957otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009958
9959'``llvm.memset.*``' Intrinsics
9960^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9961
9962Syntax:
9963"""""""
9964
9965This is an overloaded intrinsic. You can use llvm.memset on any integer
9966bit width and for different address spaces. However, not all targets
9967support all bit widths.
9968
9969::
9970
9971 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9972 i32 <len>, i32 <align>, i1 <isvolatile>)
9973 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9974 i64 <len>, i32 <align>, i1 <isvolatile>)
9975
9976Overview:
9977"""""""""
9978
9979The '``llvm.memset.*``' intrinsics fill a block of memory with a
9980particular byte value.
9981
9982Note that, unlike the standard libc function, the ``llvm.memset``
9983intrinsic does not return a value and takes extra alignment/volatile
9984arguments. Also, the destination can be in an arbitrary address space.
9985
9986Arguments:
9987""""""""""
9988
9989The first argument is a pointer to the destination to fill, the second
9990is the byte value with which to fill it, the third argument is an
9991integer argument specifying the number of bytes to fill, and the fourth
9992argument is the known alignment of the destination location.
9993
9994If the call to this intrinsic has an alignment value that is not 0 or 1,
9995then the caller guarantees that the destination pointer is aligned to
9996that boundary.
9997
9998If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9999a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10000very cleanly specified and it is unwise to depend on it.
10001
10002Semantics:
10003""""""""""
10004
10005The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10006at the destination location. If the argument is known to be aligned to
10007some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010008it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010009
10010'``llvm.sqrt.*``' Intrinsic
10011^^^^^^^^^^^^^^^^^^^^^^^^^^^
10012
10013Syntax:
10014"""""""
10015
10016This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10017floating point or vector of floating point type. Not all targets support
10018all types however.
10019
10020::
10021
10022 declare float @llvm.sqrt.f32(float %Val)
10023 declare double @llvm.sqrt.f64(double %Val)
10024 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10025 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10026 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10027
10028Overview:
10029"""""""""
10030
10031The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
10032returning the same value as the libm '``sqrt``' functions would. Unlike
10033``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
10034negative numbers other than -0.0 (which allows for better optimization,
10035because there is no need to worry about errno being set).
10036``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
10037
10038Arguments:
10039""""""""""
10040
10041The argument and return value are floating point numbers of the same
10042type.
10043
10044Semantics:
10045""""""""""
10046
10047This function returns the sqrt of the specified operand if it is a
10048nonnegative floating point number.
10049
10050'``llvm.powi.*``' Intrinsic
10051^^^^^^^^^^^^^^^^^^^^^^^^^^^
10052
10053Syntax:
10054"""""""
10055
10056This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10057floating point or vector of floating point type. Not all targets support
10058all types however.
10059
10060::
10061
10062 declare float @llvm.powi.f32(float %Val, i32 %power)
10063 declare double @llvm.powi.f64(double %Val, i32 %power)
10064 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10065 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10066 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10067
10068Overview:
10069"""""""""
10070
10071The '``llvm.powi.*``' intrinsics return the first operand raised to the
10072specified (positive or negative) power. The order of evaluation of
10073multiplications is not defined. When a vector of floating point type is
10074used, the second argument remains a scalar integer value.
10075
10076Arguments:
10077""""""""""
10078
10079The second argument is an integer power, and the first is a value to
10080raise to that power.
10081
10082Semantics:
10083""""""""""
10084
10085This function returns the first value raised to the second power with an
10086unspecified sequence of rounding operations.
10087
10088'``llvm.sin.*``' Intrinsic
10089^^^^^^^^^^^^^^^^^^^^^^^^^^
10090
10091Syntax:
10092"""""""
10093
10094This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10095floating point or vector of floating point type. Not all targets support
10096all types however.
10097
10098::
10099
10100 declare float @llvm.sin.f32(float %Val)
10101 declare double @llvm.sin.f64(double %Val)
10102 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10103 declare fp128 @llvm.sin.f128(fp128 %Val)
10104 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10105
10106Overview:
10107"""""""""
10108
10109The '``llvm.sin.*``' intrinsics return the sine of the operand.
10110
10111Arguments:
10112""""""""""
10113
10114The argument and return value are floating point numbers of the same
10115type.
10116
10117Semantics:
10118""""""""""
10119
10120This function returns the sine of the specified operand, returning the
10121same values as the libm ``sin`` functions would, and handles error
10122conditions in the same way.
10123
10124'``llvm.cos.*``' Intrinsic
10125^^^^^^^^^^^^^^^^^^^^^^^^^^
10126
10127Syntax:
10128"""""""
10129
10130This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10131floating point or vector of floating point type. Not all targets support
10132all types however.
10133
10134::
10135
10136 declare float @llvm.cos.f32(float %Val)
10137 declare double @llvm.cos.f64(double %Val)
10138 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10139 declare fp128 @llvm.cos.f128(fp128 %Val)
10140 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10141
10142Overview:
10143"""""""""
10144
10145The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10146
10147Arguments:
10148""""""""""
10149
10150The argument and return value are floating point numbers of the same
10151type.
10152
10153Semantics:
10154""""""""""
10155
10156This function returns the cosine of the specified operand, returning the
10157same values as the libm ``cos`` functions would, and handles error
10158conditions in the same way.
10159
10160'``llvm.pow.*``' Intrinsic
10161^^^^^^^^^^^^^^^^^^^^^^^^^^
10162
10163Syntax:
10164"""""""
10165
10166This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10167floating point or vector of floating point type. Not all targets support
10168all types however.
10169
10170::
10171
10172 declare float @llvm.pow.f32(float %Val, float %Power)
10173 declare double @llvm.pow.f64(double %Val, double %Power)
10174 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10175 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10176 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10177
10178Overview:
10179"""""""""
10180
10181The '``llvm.pow.*``' intrinsics return the first operand raised to the
10182specified (positive or negative) power.
10183
10184Arguments:
10185""""""""""
10186
10187The second argument is a floating point power, and the first is a value
10188to raise to that power.
10189
10190Semantics:
10191""""""""""
10192
10193This function returns the first value raised to the second power,
10194returning the same values as the libm ``pow`` functions would, and
10195handles error conditions in the same way.
10196
10197'``llvm.exp.*``' Intrinsic
10198^^^^^^^^^^^^^^^^^^^^^^^^^^
10199
10200Syntax:
10201"""""""
10202
10203This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10204floating point or vector of floating point type. Not all targets support
10205all types however.
10206
10207::
10208
10209 declare float @llvm.exp.f32(float %Val)
10210 declare double @llvm.exp.f64(double %Val)
10211 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10212 declare fp128 @llvm.exp.f128(fp128 %Val)
10213 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10214
10215Overview:
10216"""""""""
10217
10218The '``llvm.exp.*``' intrinsics perform the exp function.
10219
10220Arguments:
10221""""""""""
10222
10223The argument and return value are floating point numbers of the same
10224type.
10225
10226Semantics:
10227""""""""""
10228
10229This function returns the same values as the libm ``exp`` functions
10230would, and handles error conditions in the same way.
10231
10232'``llvm.exp2.*``' Intrinsic
10233^^^^^^^^^^^^^^^^^^^^^^^^^^^
10234
10235Syntax:
10236"""""""
10237
10238This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10239floating point or vector of floating point type. Not all targets support
10240all types however.
10241
10242::
10243
10244 declare float @llvm.exp2.f32(float %Val)
10245 declare double @llvm.exp2.f64(double %Val)
10246 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10247 declare fp128 @llvm.exp2.f128(fp128 %Val)
10248 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10249
10250Overview:
10251"""""""""
10252
10253The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10254
10255Arguments:
10256""""""""""
10257
10258The argument and return value are floating point numbers of the same
10259type.
10260
10261Semantics:
10262""""""""""
10263
10264This function returns the same values as the libm ``exp2`` functions
10265would, and handles error conditions in the same way.
10266
10267'``llvm.log.*``' Intrinsic
10268^^^^^^^^^^^^^^^^^^^^^^^^^^
10269
10270Syntax:
10271"""""""
10272
10273This is an overloaded intrinsic. You can use ``llvm.log`` on any
10274floating point or vector of floating point type. Not all targets support
10275all types however.
10276
10277::
10278
10279 declare float @llvm.log.f32(float %Val)
10280 declare double @llvm.log.f64(double %Val)
10281 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10282 declare fp128 @llvm.log.f128(fp128 %Val)
10283 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10284
10285Overview:
10286"""""""""
10287
10288The '``llvm.log.*``' intrinsics perform the log function.
10289
10290Arguments:
10291""""""""""
10292
10293The argument and return value are floating point numbers of the same
10294type.
10295
10296Semantics:
10297""""""""""
10298
10299This function returns the same values as the libm ``log`` functions
10300would, and handles error conditions in the same way.
10301
10302'``llvm.log10.*``' Intrinsic
10303^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10304
10305Syntax:
10306"""""""
10307
10308This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10309floating point or vector of floating point type. Not all targets support
10310all types however.
10311
10312::
10313
10314 declare float @llvm.log10.f32(float %Val)
10315 declare double @llvm.log10.f64(double %Val)
10316 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10317 declare fp128 @llvm.log10.f128(fp128 %Val)
10318 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10319
10320Overview:
10321"""""""""
10322
10323The '``llvm.log10.*``' intrinsics perform the log10 function.
10324
10325Arguments:
10326""""""""""
10327
10328The argument and return value are floating point numbers of the same
10329type.
10330
10331Semantics:
10332""""""""""
10333
10334This function returns the same values as the libm ``log10`` functions
10335would, and handles error conditions in the same way.
10336
10337'``llvm.log2.*``' Intrinsic
10338^^^^^^^^^^^^^^^^^^^^^^^^^^^
10339
10340Syntax:
10341"""""""
10342
10343This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10344floating point or vector of floating point type. Not all targets support
10345all types however.
10346
10347::
10348
10349 declare float @llvm.log2.f32(float %Val)
10350 declare double @llvm.log2.f64(double %Val)
10351 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10352 declare fp128 @llvm.log2.f128(fp128 %Val)
10353 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10354
10355Overview:
10356"""""""""
10357
10358The '``llvm.log2.*``' intrinsics perform the log2 function.
10359
10360Arguments:
10361""""""""""
10362
10363The argument and return value are floating point numbers of the same
10364type.
10365
10366Semantics:
10367""""""""""
10368
10369This function returns the same values as the libm ``log2`` functions
10370would, and handles error conditions in the same way.
10371
10372'``llvm.fma.*``' Intrinsic
10373^^^^^^^^^^^^^^^^^^^^^^^^^^
10374
10375Syntax:
10376"""""""
10377
10378This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10379floating point or vector of floating point type. Not all targets support
10380all types however.
10381
10382::
10383
10384 declare float @llvm.fma.f32(float %a, float %b, float %c)
10385 declare double @llvm.fma.f64(double %a, double %b, double %c)
10386 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10387 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10388 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10389
10390Overview:
10391"""""""""
10392
10393The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10394operation.
10395
10396Arguments:
10397""""""""""
10398
10399The argument and return value are floating point numbers of the same
10400type.
10401
10402Semantics:
10403""""""""""
10404
10405This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010406would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010407
10408'``llvm.fabs.*``' Intrinsic
10409^^^^^^^^^^^^^^^^^^^^^^^^^^^
10410
10411Syntax:
10412"""""""
10413
10414This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10415floating point or vector of floating point type. Not all targets support
10416all types however.
10417
10418::
10419
10420 declare float @llvm.fabs.f32(float %Val)
10421 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010422 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010423 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010424 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010425
10426Overview:
10427"""""""""
10428
10429The '``llvm.fabs.*``' intrinsics return the absolute value of the
10430operand.
10431
10432Arguments:
10433""""""""""
10434
10435The argument and return value are floating point numbers of the same
10436type.
10437
10438Semantics:
10439""""""""""
10440
10441This function returns the same values as the libm ``fabs`` functions
10442would, and handles error conditions in the same way.
10443
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010444'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010446
10447Syntax:
10448"""""""
10449
10450This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10451floating point or vector of floating point type. Not all targets support
10452all types however.
10453
10454::
10455
Matt Arsenault64313c92014-10-22 18:25:02 +000010456 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10457 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10458 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10459 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10460 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010461
10462Overview:
10463"""""""""
10464
10465The '``llvm.minnum.*``' intrinsics return the minimum of the two
10466arguments.
10467
10468
10469Arguments:
10470""""""""""
10471
10472The arguments and return value are floating point numbers of the same
10473type.
10474
10475Semantics:
10476""""""""""
10477
10478Follows the IEEE-754 semantics for minNum, which also match for libm's
10479fmin.
10480
10481If either operand is a NaN, returns the other non-NaN operand. Returns
10482NaN only if both operands are NaN. If the operands compare equal,
10483returns a value that compares equal to both operands. This means that
10484fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10485
10486'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010487^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010488
10489Syntax:
10490"""""""
10491
10492This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10493floating point or vector of floating point type. Not all targets support
10494all types however.
10495
10496::
10497
Matt Arsenault64313c92014-10-22 18:25:02 +000010498 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10499 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10500 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10501 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10502 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010503
10504Overview:
10505"""""""""
10506
10507The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10508arguments.
10509
10510
10511Arguments:
10512""""""""""
10513
10514The arguments and return value are floating point numbers of the same
10515type.
10516
10517Semantics:
10518""""""""""
10519Follows the IEEE-754 semantics for maxNum, which also match for libm's
10520fmax.
10521
10522If either operand is a NaN, returns the other non-NaN operand. Returns
10523NaN only if both operands are NaN. If the operands compare equal,
10524returns a value that compares equal to both operands. This means that
10525fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10526
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010527'``llvm.copysign.*``' Intrinsic
10528^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10529
10530Syntax:
10531"""""""
10532
10533This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10534floating point or vector of floating point type. Not all targets support
10535all types however.
10536
10537::
10538
10539 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10540 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10541 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10542 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10543 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10544
10545Overview:
10546"""""""""
10547
10548The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10549first operand and the sign of the second operand.
10550
10551Arguments:
10552""""""""""
10553
10554The arguments and return value are floating point numbers of the same
10555type.
10556
10557Semantics:
10558""""""""""
10559
10560This function returns the same values as the libm ``copysign``
10561functions would, and handles error conditions in the same way.
10562
Sean Silvab084af42012-12-07 10:36:55 +000010563'``llvm.floor.*``' Intrinsic
10564^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10565
10566Syntax:
10567"""""""
10568
10569This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10570floating point or vector of floating point type. Not all targets support
10571all types however.
10572
10573::
10574
10575 declare float @llvm.floor.f32(float %Val)
10576 declare double @llvm.floor.f64(double %Val)
10577 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10578 declare fp128 @llvm.floor.f128(fp128 %Val)
10579 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10580
10581Overview:
10582"""""""""
10583
10584The '``llvm.floor.*``' intrinsics return the floor of the operand.
10585
10586Arguments:
10587""""""""""
10588
10589The argument and return value are floating point numbers of the same
10590type.
10591
10592Semantics:
10593""""""""""
10594
10595This function returns the same values as the libm ``floor`` functions
10596would, and handles error conditions in the same way.
10597
10598'``llvm.ceil.*``' Intrinsic
10599^^^^^^^^^^^^^^^^^^^^^^^^^^^
10600
10601Syntax:
10602"""""""
10603
10604This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10605floating point or vector of floating point type. Not all targets support
10606all types however.
10607
10608::
10609
10610 declare float @llvm.ceil.f32(float %Val)
10611 declare double @llvm.ceil.f64(double %Val)
10612 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10613 declare fp128 @llvm.ceil.f128(fp128 %Val)
10614 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10615
10616Overview:
10617"""""""""
10618
10619The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10620
10621Arguments:
10622""""""""""
10623
10624The argument and return value are floating point numbers of the same
10625type.
10626
10627Semantics:
10628""""""""""
10629
10630This function returns the same values as the libm ``ceil`` functions
10631would, and handles error conditions in the same way.
10632
10633'``llvm.trunc.*``' Intrinsic
10634^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10635
10636Syntax:
10637"""""""
10638
10639This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10640floating point or vector of floating point type. Not all targets support
10641all types however.
10642
10643::
10644
10645 declare float @llvm.trunc.f32(float %Val)
10646 declare double @llvm.trunc.f64(double %Val)
10647 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10648 declare fp128 @llvm.trunc.f128(fp128 %Val)
10649 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10650
10651Overview:
10652"""""""""
10653
10654The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10655nearest integer not larger in magnitude than the operand.
10656
10657Arguments:
10658""""""""""
10659
10660The argument and return value are floating point numbers of the same
10661type.
10662
10663Semantics:
10664""""""""""
10665
10666This function returns the same values as the libm ``trunc`` functions
10667would, and handles error conditions in the same way.
10668
10669'``llvm.rint.*``' Intrinsic
10670^^^^^^^^^^^^^^^^^^^^^^^^^^^
10671
10672Syntax:
10673"""""""
10674
10675This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10676floating point or vector of floating point type. Not all targets support
10677all types however.
10678
10679::
10680
10681 declare float @llvm.rint.f32(float %Val)
10682 declare double @llvm.rint.f64(double %Val)
10683 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10684 declare fp128 @llvm.rint.f128(fp128 %Val)
10685 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10686
10687Overview:
10688"""""""""
10689
10690The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10691nearest integer. It may raise an inexact floating-point exception if the
10692operand isn't an integer.
10693
10694Arguments:
10695""""""""""
10696
10697The argument and return value are floating point numbers of the same
10698type.
10699
10700Semantics:
10701""""""""""
10702
10703This function returns the same values as the libm ``rint`` functions
10704would, and handles error conditions in the same way.
10705
10706'``llvm.nearbyint.*``' Intrinsic
10707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10708
10709Syntax:
10710"""""""
10711
10712This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10713floating point or vector of floating point type. Not all targets support
10714all types however.
10715
10716::
10717
10718 declare float @llvm.nearbyint.f32(float %Val)
10719 declare double @llvm.nearbyint.f64(double %Val)
10720 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10721 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10722 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10723
10724Overview:
10725"""""""""
10726
10727The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10728nearest integer.
10729
10730Arguments:
10731""""""""""
10732
10733The argument and return value are floating point numbers of the same
10734type.
10735
10736Semantics:
10737""""""""""
10738
10739This function returns the same values as the libm ``nearbyint``
10740functions would, and handles error conditions in the same way.
10741
Hal Finkel171817e2013-08-07 22:49:12 +000010742'``llvm.round.*``' Intrinsic
10743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10744
10745Syntax:
10746"""""""
10747
10748This is an overloaded intrinsic. You can use ``llvm.round`` on any
10749floating point or vector of floating point type. Not all targets support
10750all types however.
10751
10752::
10753
10754 declare float @llvm.round.f32(float %Val)
10755 declare double @llvm.round.f64(double %Val)
10756 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10757 declare fp128 @llvm.round.f128(fp128 %Val)
10758 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10759
10760Overview:
10761"""""""""
10762
10763The '``llvm.round.*``' intrinsics returns the operand rounded to the
10764nearest integer.
10765
10766Arguments:
10767""""""""""
10768
10769The argument and return value are floating point numbers of the same
10770type.
10771
10772Semantics:
10773""""""""""
10774
10775This function returns the same values as the libm ``round``
10776functions would, and handles error conditions in the same way.
10777
Sean Silvab084af42012-12-07 10:36:55 +000010778Bit Manipulation Intrinsics
10779---------------------------
10780
10781LLVM provides intrinsics for a few important bit manipulation
10782operations. These allow efficient code generation for some algorithms.
10783
James Molloy90111f72015-11-12 12:29:09 +000010784'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010785^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010786
10787Syntax:
10788"""""""
10789
10790This is an overloaded intrinsic function. You can use bitreverse on any
10791integer type.
10792
10793::
10794
10795 declare i16 @llvm.bitreverse.i16(i16 <id>)
10796 declare i32 @llvm.bitreverse.i32(i32 <id>)
10797 declare i64 @llvm.bitreverse.i64(i64 <id>)
10798
10799Overview:
10800"""""""""
10801
10802The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010803bitpattern of an integer value; for example ``0b10110110`` becomes
10804``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010805
10806Semantics:
10807""""""""""
10808
10809The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10810``M`` in the input moved to bit ``N-M`` in the output.
10811
Sean Silvab084af42012-12-07 10:36:55 +000010812'``llvm.bswap.*``' Intrinsics
10813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10814
10815Syntax:
10816"""""""
10817
10818This is an overloaded intrinsic function. You can use bswap on any
10819integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10820
10821::
10822
10823 declare i16 @llvm.bswap.i16(i16 <id>)
10824 declare i32 @llvm.bswap.i32(i32 <id>)
10825 declare i64 @llvm.bswap.i64(i64 <id>)
10826
10827Overview:
10828"""""""""
10829
10830The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10831values with an even number of bytes (positive multiple of 16 bits).
10832These are useful for performing operations on data that is not in the
10833target's native byte order.
10834
10835Semantics:
10836""""""""""
10837
10838The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10839and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10840intrinsic returns an i32 value that has the four bytes of the input i32
10841swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10842returned i32 will have its bytes in 3, 2, 1, 0 order. The
10843``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10844concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10845respectively).
10846
10847'``llvm.ctpop.*``' Intrinsic
10848^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10849
10850Syntax:
10851"""""""
10852
10853This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10854bit width, or on any vector with integer elements. Not all targets
10855support all bit widths or vector types, however.
10856
10857::
10858
10859 declare i8 @llvm.ctpop.i8(i8 <src>)
10860 declare i16 @llvm.ctpop.i16(i16 <src>)
10861 declare i32 @llvm.ctpop.i32(i32 <src>)
10862 declare i64 @llvm.ctpop.i64(i64 <src>)
10863 declare i256 @llvm.ctpop.i256(i256 <src>)
10864 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10865
10866Overview:
10867"""""""""
10868
10869The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10870in a value.
10871
10872Arguments:
10873""""""""""
10874
10875The only argument is the value to be counted. The argument may be of any
10876integer type, or a vector with integer elements. The return type must
10877match the argument type.
10878
10879Semantics:
10880""""""""""
10881
10882The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10883each element of a vector.
10884
10885'``llvm.ctlz.*``' Intrinsic
10886^^^^^^^^^^^^^^^^^^^^^^^^^^^
10887
10888Syntax:
10889"""""""
10890
10891This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10892integer bit width, or any vector whose elements are integers. Not all
10893targets support all bit widths or vector types, however.
10894
10895::
10896
10897 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10898 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10899 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10900 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10901 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010902 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010903
10904Overview:
10905"""""""""
10906
10907The '``llvm.ctlz``' family of intrinsic functions counts the number of
10908leading zeros in a variable.
10909
10910Arguments:
10911""""""""""
10912
10913The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010914any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010915type must match the first argument type.
10916
10917The second argument must be a constant and is a flag to indicate whether
10918the intrinsic should ensure that a zero as the first argument produces a
10919defined result. Historically some architectures did not provide a
10920defined result for zero values as efficiently, and many algorithms are
10921now predicated on avoiding zero-value inputs.
10922
10923Semantics:
10924""""""""""
10925
10926The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10927zeros in a variable, or within each element of the vector. If
10928``src == 0`` then the result is the size in bits of the type of ``src``
10929if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10930``llvm.ctlz(i32 2) = 30``.
10931
10932'``llvm.cttz.*``' Intrinsic
10933^^^^^^^^^^^^^^^^^^^^^^^^^^^
10934
10935Syntax:
10936"""""""
10937
10938This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10939integer bit width, or any vector of integer elements. Not all targets
10940support all bit widths or vector types, however.
10941
10942::
10943
10944 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10945 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10946 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10947 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10948 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010949 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010950
10951Overview:
10952"""""""""
10953
10954The '``llvm.cttz``' family of intrinsic functions counts the number of
10955trailing zeros.
10956
10957Arguments:
10958""""""""""
10959
10960The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010961any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010962type must match the first argument type.
10963
10964The second argument must be a constant and is a flag to indicate whether
10965the intrinsic should ensure that a zero as the first argument produces a
10966defined result. Historically some architectures did not provide a
10967defined result for zero values as efficiently, and many algorithms are
10968now predicated on avoiding zero-value inputs.
10969
10970Semantics:
10971""""""""""
10972
10973The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10974zeros in a variable, or within each element of a vector. If ``src == 0``
10975then the result is the size in bits of the type of ``src`` if
10976``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10977``llvm.cttz(2) = 1``.
10978
Philip Reames34843ae2015-03-05 05:55:55 +000010979.. _int_overflow:
10980
Sean Silvab084af42012-12-07 10:36:55 +000010981Arithmetic with Overflow Intrinsics
10982-----------------------------------
10983
John Regehr6a493f22016-05-12 20:55:09 +000010984LLVM provides intrinsics for fast arithmetic overflow checking.
10985
10986Each of these intrinsics returns a two-element struct. The first
10987element of this struct contains the result of the corresponding
10988arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
10989the result. Therefore, for example, the first element of the struct
10990returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
10991result of a 32-bit ``add`` instruction with the same operands, where
10992the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
10993
10994The second element of the result is an ``i1`` that is 1 if the
10995arithmetic operation overflowed and 0 otherwise. An operation
10996overflows if, for any values of its operands ``A`` and ``B`` and for
10997any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
10998not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
10999``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11000``op`` is the underlying arithmetic operation.
11001
11002The behavior of these intrinsics is well-defined for all argument
11003values.
Sean Silvab084af42012-12-07 10:36:55 +000011004
11005'``llvm.sadd.with.overflow.*``' Intrinsics
11006^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11007
11008Syntax:
11009"""""""
11010
11011This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11012on any integer bit width.
11013
11014::
11015
11016 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11017 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11018 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11019
11020Overview:
11021"""""""""
11022
11023The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11024a signed addition of the two arguments, and indicate whether an overflow
11025occurred during the signed summation.
11026
11027Arguments:
11028""""""""""
11029
11030The arguments (%a and %b) and the first element of the result structure
11031may be of integer types of any bit width, but they must have the same
11032bit width. The second element of the result structure must be of type
11033``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11034addition.
11035
11036Semantics:
11037""""""""""
11038
11039The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011040a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011041first element of which is the signed summation, and the second element
11042of which is a bit specifying if the signed summation resulted in an
11043overflow.
11044
11045Examples:
11046"""""""""
11047
11048.. code-block:: llvm
11049
11050 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11051 %sum = extractvalue {i32, i1} %res, 0
11052 %obit = extractvalue {i32, i1} %res, 1
11053 br i1 %obit, label %overflow, label %normal
11054
11055'``llvm.uadd.with.overflow.*``' Intrinsics
11056^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11057
11058Syntax:
11059"""""""
11060
11061This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11062on any integer bit width.
11063
11064::
11065
11066 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11067 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11068 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11069
11070Overview:
11071"""""""""
11072
11073The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11074an unsigned addition of the two arguments, and indicate whether a carry
11075occurred during the unsigned summation.
11076
11077Arguments:
11078""""""""""
11079
11080The arguments (%a and %b) and the first element of the result structure
11081may be of integer types of any bit width, but they must have the same
11082bit width. The second element of the result structure must be of type
11083``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11084addition.
11085
11086Semantics:
11087""""""""""
11088
11089The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011090an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011091first element of which is the sum, and the second element of which is a
11092bit specifying if the unsigned summation resulted in a carry.
11093
11094Examples:
11095"""""""""
11096
11097.. code-block:: llvm
11098
11099 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11100 %sum = extractvalue {i32, i1} %res, 0
11101 %obit = extractvalue {i32, i1} %res, 1
11102 br i1 %obit, label %carry, label %normal
11103
11104'``llvm.ssub.with.overflow.*``' Intrinsics
11105^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11106
11107Syntax:
11108"""""""
11109
11110This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11111on any integer bit width.
11112
11113::
11114
11115 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11116 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11117 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11118
11119Overview:
11120"""""""""
11121
11122The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11123a signed subtraction of the two arguments, and indicate whether an
11124overflow occurred during the signed subtraction.
11125
11126Arguments:
11127""""""""""
11128
11129The arguments (%a and %b) and the first element of the result structure
11130may be of integer types of any bit width, but they must have the same
11131bit width. The second element of the result structure must be of type
11132``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11133subtraction.
11134
11135Semantics:
11136""""""""""
11137
11138The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011139a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011140first element of which is the subtraction, and the second element of
11141which is a bit specifying if the signed subtraction resulted in an
11142overflow.
11143
11144Examples:
11145"""""""""
11146
11147.. code-block:: llvm
11148
11149 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11150 %sum = extractvalue {i32, i1} %res, 0
11151 %obit = extractvalue {i32, i1} %res, 1
11152 br i1 %obit, label %overflow, label %normal
11153
11154'``llvm.usub.with.overflow.*``' Intrinsics
11155^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11156
11157Syntax:
11158"""""""
11159
11160This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11161on any integer bit width.
11162
11163::
11164
11165 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11166 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11167 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11168
11169Overview:
11170"""""""""
11171
11172The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11173an unsigned subtraction of the two arguments, and indicate whether an
11174overflow occurred during the unsigned subtraction.
11175
11176Arguments:
11177""""""""""
11178
11179The arguments (%a and %b) and the first element of the result structure
11180may be of integer types of any bit width, but they must have the same
11181bit width. The second element of the result structure must be of type
11182``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11183subtraction.
11184
11185Semantics:
11186""""""""""
11187
11188The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011189an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011190the first element of which is the subtraction, and the second element of
11191which is a bit specifying if the unsigned subtraction resulted in an
11192overflow.
11193
11194Examples:
11195"""""""""
11196
11197.. code-block:: llvm
11198
11199 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11200 %sum = extractvalue {i32, i1} %res, 0
11201 %obit = extractvalue {i32, i1} %res, 1
11202 br i1 %obit, label %overflow, label %normal
11203
11204'``llvm.smul.with.overflow.*``' Intrinsics
11205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11206
11207Syntax:
11208"""""""
11209
11210This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11211on any integer bit width.
11212
11213::
11214
11215 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11216 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11217 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11218
11219Overview:
11220"""""""""
11221
11222The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11223a signed multiplication of the two arguments, and indicate whether an
11224overflow occurred during the signed multiplication.
11225
11226Arguments:
11227""""""""""
11228
11229The arguments (%a and %b) and the first element of the result structure
11230may be of integer types of any bit width, but they must have the same
11231bit width. The second element of the result structure must be of type
11232``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11233multiplication.
11234
11235Semantics:
11236""""""""""
11237
11238The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011239a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011240the first element of which is the multiplication, and the second element
11241of which is a bit specifying if the signed multiplication resulted in an
11242overflow.
11243
11244Examples:
11245"""""""""
11246
11247.. code-block:: llvm
11248
11249 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11250 %sum = extractvalue {i32, i1} %res, 0
11251 %obit = extractvalue {i32, i1} %res, 1
11252 br i1 %obit, label %overflow, label %normal
11253
11254'``llvm.umul.with.overflow.*``' Intrinsics
11255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11256
11257Syntax:
11258"""""""
11259
11260This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11261on any integer bit width.
11262
11263::
11264
11265 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11266 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11267 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11268
11269Overview:
11270"""""""""
11271
11272The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11273a unsigned multiplication of the two arguments, and indicate whether an
11274overflow occurred during the unsigned multiplication.
11275
11276Arguments:
11277""""""""""
11278
11279The arguments (%a and %b) and the first element of the result structure
11280may be of integer types of any bit width, but they must have the same
11281bit width. The second element of the result structure must be of type
11282``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11283multiplication.
11284
11285Semantics:
11286""""""""""
11287
11288The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011289an unsigned multiplication of the two arguments. They return a structure ---
11290the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011291element of which is a bit specifying if the unsigned multiplication
11292resulted in an overflow.
11293
11294Examples:
11295"""""""""
11296
11297.. code-block:: llvm
11298
11299 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11300 %sum = extractvalue {i32, i1} %res, 0
11301 %obit = extractvalue {i32, i1} %res, 1
11302 br i1 %obit, label %overflow, label %normal
11303
11304Specialised Arithmetic Intrinsics
11305---------------------------------
11306
Owen Anderson1056a922015-07-11 07:01:27 +000011307'``llvm.canonicalize.*``' Intrinsic
11308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11309
11310Syntax:
11311"""""""
11312
11313::
11314
11315 declare float @llvm.canonicalize.f32(float %a)
11316 declare double @llvm.canonicalize.f64(double %b)
11317
11318Overview:
11319"""""""""
11320
11321The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011322encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011323implementing certain numeric primitives such as frexp. The canonical encoding is
11324defined by IEEE-754-2008 to be:
11325
11326::
11327
11328 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011329 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011330 numbers, infinities, and NaNs, especially in decimal formats.
11331
11332This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011333conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011334according to section 6.2.
11335
11336Examples of non-canonical encodings:
11337
Sean Silvaa1190322015-08-06 22:56:48 +000011338- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011339 converted to a canonical representation per hardware-specific protocol.
11340- Many normal decimal floating point numbers have non-canonical alternative
11341 encodings.
11342- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011343 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011344 a zero of the same sign by this operation.
11345
11346Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11347default exception handling must signal an invalid exception, and produce a
11348quiet NaN result.
11349
11350This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011351that the compiler does not constant fold the operation. Likewise, division by
113521.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011353-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11354
Sean Silvaa1190322015-08-06 22:56:48 +000011355``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011356
11357- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11358- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11359 to ``(x == y)``
11360
11361Additionally, the sign of zero must be conserved:
11362``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11363
11364The payload bits of a NaN must be conserved, with two exceptions.
11365First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011366must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011367usual methods.
11368
11369The canonicalization operation may be optimized away if:
11370
Sean Silvaa1190322015-08-06 22:56:48 +000011371- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011372 floating-point operation that is required by the standard to be canonical.
11373- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011374 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011375
Sean Silvab084af42012-12-07 10:36:55 +000011376'``llvm.fmuladd.*``' Intrinsic
11377^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11378
11379Syntax:
11380"""""""
11381
11382::
11383
11384 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11385 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11386
11387Overview:
11388"""""""""
11389
11390The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011391expressions that can be fused if the code generator determines that (a) the
11392target instruction set has support for a fused operation, and (b) that the
11393fused operation is more efficient than the equivalent, separate pair of mul
11394and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011395
11396Arguments:
11397""""""""""
11398
11399The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11400multiplicands, a and b, and an addend c.
11401
11402Semantics:
11403""""""""""
11404
11405The expression:
11406
11407::
11408
11409 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11410
11411is equivalent to the expression a \* b + c, except that rounding will
11412not be performed between the multiplication and addition steps if the
11413code generator fuses the operations. Fusion is not guaranteed, even if
11414the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011415corresponding llvm.fma.\* intrinsic function should be used
11416instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011417
11418Examples:
11419"""""""""
11420
11421.. code-block:: llvm
11422
Tim Northover675a0962014-06-13 14:24:23 +000011423 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011424
11425Half Precision Floating Point Intrinsics
11426----------------------------------------
11427
11428For most target platforms, half precision floating point is a
11429storage-only format. This means that it is a dense encoding (in memory)
11430but does not support computation in the format.
11431
11432This means that code must first load the half-precision floating point
11433value as an i16, then convert it to float with
11434:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11435then be performed on the float value (including extending to double
11436etc). To store the value back to memory, it is first converted to float
11437if needed, then converted to i16 with
11438:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11439i16 value.
11440
11441.. _int_convert_to_fp16:
11442
11443'``llvm.convert.to.fp16``' Intrinsic
11444^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11445
11446Syntax:
11447"""""""
11448
11449::
11450
Tim Northoverfd7e4242014-07-17 10:51:23 +000011451 declare i16 @llvm.convert.to.fp16.f32(float %a)
11452 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011453
11454Overview:
11455"""""""""
11456
Tim Northoverfd7e4242014-07-17 10:51:23 +000011457The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11458conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011459
11460Arguments:
11461""""""""""
11462
11463The intrinsic function contains single argument - the value to be
11464converted.
11465
11466Semantics:
11467""""""""""
11468
Tim Northoverfd7e4242014-07-17 10:51:23 +000011469The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11470conventional floating point format to half precision floating point format. The
11471return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011472
11473Examples:
11474"""""""""
11475
11476.. code-block:: llvm
11477
Tim Northoverfd7e4242014-07-17 10:51:23 +000011478 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011479 store i16 %res, i16* @x, align 2
11480
11481.. _int_convert_from_fp16:
11482
11483'``llvm.convert.from.fp16``' Intrinsic
11484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11485
11486Syntax:
11487"""""""
11488
11489::
11490
Tim Northoverfd7e4242014-07-17 10:51:23 +000011491 declare float @llvm.convert.from.fp16.f32(i16 %a)
11492 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011493
11494Overview:
11495"""""""""
11496
11497The '``llvm.convert.from.fp16``' intrinsic function performs a
11498conversion from half precision floating point format to single precision
11499floating point format.
11500
11501Arguments:
11502""""""""""
11503
11504The intrinsic function contains single argument - the value to be
11505converted.
11506
11507Semantics:
11508""""""""""
11509
11510The '``llvm.convert.from.fp16``' intrinsic function performs a
11511conversion from half single precision floating point format to single
11512precision floating point format. The input half-float value is
11513represented by an ``i16`` value.
11514
11515Examples:
11516"""""""""
11517
11518.. code-block:: llvm
11519
David Blaikiec7aabbb2015-03-04 22:06:14 +000011520 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011521 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011522
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011523.. _dbg_intrinsics:
11524
Sean Silvab084af42012-12-07 10:36:55 +000011525Debugger Intrinsics
11526-------------------
11527
11528The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11529prefix), are described in the `LLVM Source Level
11530Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11531document.
11532
11533Exception Handling Intrinsics
11534-----------------------------
11535
11536The LLVM exception handling intrinsics (which all start with
11537``llvm.eh.`` prefix), are described in the `LLVM Exception
11538Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11539
11540.. _int_trampoline:
11541
11542Trampoline Intrinsics
11543---------------------
11544
11545These intrinsics make it possible to excise one parameter, marked with
11546the :ref:`nest <nest>` attribute, from a function. The result is a
11547callable function pointer lacking the nest parameter - the caller does
11548not need to provide a value for it. Instead, the value to use is stored
11549in advance in a "trampoline", a block of memory usually allocated on the
11550stack, which also contains code to splice the nest value into the
11551argument list. This is used to implement the GCC nested function address
11552extension.
11553
11554For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11555then the resulting function pointer has signature ``i32 (i32, i32)*``.
11556It can be created as follows:
11557
11558.. code-block:: llvm
11559
11560 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011561 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011562 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11563 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11564 %fp = bitcast i8* %p to i32 (i32, i32)*
11565
11566The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11567``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11568
11569.. _int_it:
11570
11571'``llvm.init.trampoline``' Intrinsic
11572^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11573
11574Syntax:
11575"""""""
11576
11577::
11578
11579 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11580
11581Overview:
11582"""""""""
11583
11584This fills the memory pointed to by ``tramp`` with executable code,
11585turning it into a trampoline.
11586
11587Arguments:
11588""""""""""
11589
11590The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11591pointers. The ``tramp`` argument must point to a sufficiently large and
11592sufficiently aligned block of memory; this memory is written to by the
11593intrinsic. Note that the size and the alignment are target-specific -
11594LLVM currently provides no portable way of determining them, so a
11595front-end that generates this intrinsic needs to have some
11596target-specific knowledge. The ``func`` argument must hold a function
11597bitcast to an ``i8*``.
11598
11599Semantics:
11600""""""""""
11601
11602The block of memory pointed to by ``tramp`` is filled with target
11603dependent code, turning it into a function. Then ``tramp`` needs to be
11604passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11605be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11606function's signature is the same as that of ``func`` with any arguments
11607marked with the ``nest`` attribute removed. At most one such ``nest``
11608argument is allowed, and it must be of pointer type. Calling the new
11609function is equivalent to calling ``func`` with the same argument list,
11610but with ``nval`` used for the missing ``nest`` argument. If, after
11611calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11612modified, then the effect of any later call to the returned function
11613pointer is undefined.
11614
11615.. _int_at:
11616
11617'``llvm.adjust.trampoline``' Intrinsic
11618^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11619
11620Syntax:
11621"""""""
11622
11623::
11624
11625 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11626
11627Overview:
11628"""""""""
11629
11630This performs any required machine-specific adjustment to the address of
11631a trampoline (passed as ``tramp``).
11632
11633Arguments:
11634""""""""""
11635
11636``tramp`` must point to a block of memory which already has trampoline
11637code filled in by a previous call to
11638:ref:`llvm.init.trampoline <int_it>`.
11639
11640Semantics:
11641""""""""""
11642
11643On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011644different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011645intrinsic returns the executable address corresponding to ``tramp``
11646after performing the required machine specific adjustments. The pointer
11647returned can then be :ref:`bitcast and executed <int_trampoline>`.
11648
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011649.. _int_mload_mstore:
11650
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011651Masked Vector Load and Store Intrinsics
11652---------------------------------------
11653
11654LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11655
11656.. _int_mload:
11657
11658'``llvm.masked.load.*``' Intrinsics
11659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11660
11661Syntax:
11662"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011663This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011664
11665::
11666
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011667 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11668 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011669 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011670 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011671 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011672 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011673
11674Overview:
11675"""""""""
11676
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011677Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011678
11679
11680Arguments:
11681""""""""""
11682
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011683The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011684
11685
11686Semantics:
11687""""""""""
11688
11689The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11690The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11691
11692
11693::
11694
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011695 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011696
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011697 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011698 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011699 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011700
11701.. _int_mstore:
11702
11703'``llvm.masked.store.*``' Intrinsics
11704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11705
11706Syntax:
11707"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011708This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011709
11710::
11711
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011712 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11713 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011714 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011715 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011716 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011717 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011718
11719Overview:
11720"""""""""
11721
11722Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11723
11724Arguments:
11725""""""""""
11726
11727The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11728
11729
11730Semantics:
11731""""""""""
11732
11733The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11734The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11735
11736::
11737
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011738 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011739
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011740 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011741 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011742 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11743 store <16 x float> %res, <16 x float>* %ptr, align 4
11744
11745
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011746Masked Vector Gather and Scatter Intrinsics
11747-------------------------------------------
11748
11749LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11750
11751.. _int_mgather:
11752
11753'``llvm.masked.gather.*``' Intrinsics
11754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11755
11756Syntax:
11757"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011758This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011759
11760::
11761
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011762 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11763 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11764 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011765
11766Overview:
11767"""""""""
11768
11769Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11770
11771
11772Arguments:
11773""""""""""
11774
11775The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11776
11777
11778Semantics:
11779""""""""""
11780
11781The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11782The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11783
11784
11785::
11786
11787 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11788
11789 ;; The gather with all-true mask is equivalent to the following instruction sequence
11790 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11791 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11792 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11793 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11794
11795 %val0 = load double, double* %ptr0, align 8
11796 %val1 = load double, double* %ptr1, align 8
11797 %val2 = load double, double* %ptr2, align 8
11798 %val3 = load double, double* %ptr3, align 8
11799
11800 %vec0 = insertelement <4 x double>undef, %val0, 0
11801 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11802 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11803 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11804
11805.. _int_mscatter:
11806
11807'``llvm.masked.scatter.*``' Intrinsics
11808^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11809
11810Syntax:
11811"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011812This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011813
11814::
11815
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011816 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11817 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11818 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011819
11820Overview:
11821"""""""""
11822
11823Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11824
11825Arguments:
11826""""""""""
11827
11828The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11829
11830
11831Semantics:
11832""""""""""
11833
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011834The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011835
11836::
11837
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011838 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011839 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11840
11841 ;; It is equivalent to a list of scalar stores
11842 %val0 = extractelement <8 x i32> %value, i32 0
11843 %val1 = extractelement <8 x i32> %value, i32 1
11844 ..
11845 %val7 = extractelement <8 x i32> %value, i32 7
11846 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11847 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11848 ..
11849 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11850 ;; Note: the order of the following stores is important when they overlap:
11851 store i32 %val0, i32* %ptr0, align 4
11852 store i32 %val1, i32* %ptr1, align 4
11853 ..
11854 store i32 %val7, i32* %ptr7, align 4
11855
11856
Sean Silvab084af42012-12-07 10:36:55 +000011857Memory Use Markers
11858------------------
11859
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011860This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011861memory objects and ranges where variables are immutable.
11862
Reid Klecknera534a382013-12-19 02:14:12 +000011863.. _int_lifestart:
11864
Sean Silvab084af42012-12-07 10:36:55 +000011865'``llvm.lifetime.start``' Intrinsic
11866^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11867
11868Syntax:
11869"""""""
11870
11871::
11872
11873 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11874
11875Overview:
11876"""""""""
11877
11878The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11879object's lifetime.
11880
11881Arguments:
11882""""""""""
11883
11884The first argument is a constant integer representing the size of the
11885object, or -1 if it is variable sized. The second argument is a pointer
11886to the object.
11887
11888Semantics:
11889""""""""""
11890
11891This intrinsic indicates that before this point in the code, the value
11892of the memory pointed to by ``ptr`` is dead. This means that it is known
11893to never be used and has an undefined value. A load from the pointer
11894that precedes this intrinsic can be replaced with ``'undef'``.
11895
Reid Klecknera534a382013-12-19 02:14:12 +000011896.. _int_lifeend:
11897
Sean Silvab084af42012-12-07 10:36:55 +000011898'``llvm.lifetime.end``' Intrinsic
11899^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11900
11901Syntax:
11902"""""""
11903
11904::
11905
11906 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11907
11908Overview:
11909"""""""""
11910
11911The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11912object's lifetime.
11913
11914Arguments:
11915""""""""""
11916
11917The first argument is a constant integer representing the size of the
11918object, or -1 if it is variable sized. The second argument is a pointer
11919to the object.
11920
11921Semantics:
11922""""""""""
11923
11924This intrinsic indicates that after this point in the code, the value of
11925the memory pointed to by ``ptr`` is dead. This means that it is known to
11926never be used and has an undefined value. Any stores into the memory
11927object following this intrinsic may be removed as dead.
11928
11929'``llvm.invariant.start``' Intrinsic
11930^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11931
11932Syntax:
11933"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011934This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011935
11936::
11937
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011938 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011939
11940Overview:
11941"""""""""
11942
11943The '``llvm.invariant.start``' intrinsic specifies that the contents of
11944a memory object will not change.
11945
11946Arguments:
11947""""""""""
11948
11949The first argument is a constant integer representing the size of the
11950object, or -1 if it is variable sized. The second argument is a pointer
11951to the object.
11952
11953Semantics:
11954""""""""""
11955
11956This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11957the return value, the referenced memory location is constant and
11958unchanging.
11959
11960'``llvm.invariant.end``' Intrinsic
11961^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11962
11963Syntax:
11964"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011965This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011966
11967::
11968
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011969 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011970
11971Overview:
11972"""""""""
11973
11974The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11975memory object are mutable.
11976
11977Arguments:
11978""""""""""
11979
11980The first argument is the matching ``llvm.invariant.start`` intrinsic.
11981The second argument is a constant integer representing the size of the
11982object, or -1 if it is variable sized and the third argument is a
11983pointer to the object.
11984
11985Semantics:
11986""""""""""
11987
11988This intrinsic indicates that the memory is mutable again.
11989
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011990'``llvm.invariant.group.barrier``' Intrinsic
11991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11992
11993Syntax:
11994"""""""
11995
11996::
11997
11998 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11999
12000Overview:
12001"""""""""
12002
12003The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12004established by invariant.group metadata no longer holds, to obtain a new pointer
12005value that does not carry the invariant information.
12006
12007
12008Arguments:
12009""""""""""
12010
12011The ``llvm.invariant.group.barrier`` takes only one argument, which is
12012the pointer to the memory for which the ``invariant.group`` no longer holds.
12013
12014Semantics:
12015""""""""""
12016
12017Returns another pointer that aliases its argument but which is considered different
12018for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12019
Sean Silvab084af42012-12-07 10:36:55 +000012020General Intrinsics
12021------------------
12022
12023This class of intrinsics is designed to be generic and has no specific
12024purpose.
12025
12026'``llvm.var.annotation``' Intrinsic
12027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12028
12029Syntax:
12030"""""""
12031
12032::
12033
12034 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12035
12036Overview:
12037"""""""""
12038
12039The '``llvm.var.annotation``' intrinsic.
12040
12041Arguments:
12042""""""""""
12043
12044The first argument is a pointer to a value, the second is a pointer to a
12045global string, the third is a pointer to a global string which is the
12046source file name, and the last argument is the line number.
12047
12048Semantics:
12049""""""""""
12050
12051This intrinsic allows annotation of local variables with arbitrary
12052strings. This can be useful for special purpose optimizations that want
12053to look for these annotations. These have no other defined use; they are
12054ignored by code generation and optimization.
12055
Michael Gottesman88d18832013-03-26 00:34:27 +000012056'``llvm.ptr.annotation.*``' Intrinsic
12057^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12058
12059Syntax:
12060"""""""
12061
12062This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12063pointer to an integer of any width. *NOTE* you must specify an address space for
12064the pointer. The identifier for the default address space is the integer
12065'``0``'.
12066
12067::
12068
12069 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12070 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12071 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12072 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12073 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12074
12075Overview:
12076"""""""""
12077
12078The '``llvm.ptr.annotation``' intrinsic.
12079
12080Arguments:
12081""""""""""
12082
12083The first argument is a pointer to an integer value of arbitrary bitwidth
12084(result of some expression), the second is a pointer to a global string, the
12085third is a pointer to a global string which is the source file name, and the
12086last argument is the line number. It returns the value of the first argument.
12087
12088Semantics:
12089""""""""""
12090
12091This intrinsic allows annotation of a pointer to an integer with arbitrary
12092strings. This can be useful for special purpose optimizations that want to look
12093for these annotations. These have no other defined use; they are ignored by code
12094generation and optimization.
12095
Sean Silvab084af42012-12-07 10:36:55 +000012096'``llvm.annotation.*``' Intrinsic
12097^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12098
12099Syntax:
12100"""""""
12101
12102This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12103any integer bit width.
12104
12105::
12106
12107 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12108 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12109 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12110 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12111 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12112
12113Overview:
12114"""""""""
12115
12116The '``llvm.annotation``' intrinsic.
12117
12118Arguments:
12119""""""""""
12120
12121The first argument is an integer value (result of some expression), the
12122second is a pointer to a global string, the third is a pointer to a
12123global string which is the source file name, and the last argument is
12124the line number. It returns the value of the first argument.
12125
12126Semantics:
12127""""""""""
12128
12129This intrinsic allows annotations to be put on arbitrary expressions
12130with arbitrary strings. This can be useful for special purpose
12131optimizations that want to look for these annotations. These have no
12132other defined use; they are ignored by code generation and optimization.
12133
12134'``llvm.trap``' Intrinsic
12135^^^^^^^^^^^^^^^^^^^^^^^^^
12136
12137Syntax:
12138"""""""
12139
12140::
12141
12142 declare void @llvm.trap() noreturn nounwind
12143
12144Overview:
12145"""""""""
12146
12147The '``llvm.trap``' intrinsic.
12148
12149Arguments:
12150""""""""""
12151
12152None.
12153
12154Semantics:
12155""""""""""
12156
12157This intrinsic is lowered to the target dependent trap instruction. If
12158the target does not have a trap instruction, this intrinsic will be
12159lowered to a call of the ``abort()`` function.
12160
12161'``llvm.debugtrap``' Intrinsic
12162^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12163
12164Syntax:
12165"""""""
12166
12167::
12168
12169 declare void @llvm.debugtrap() nounwind
12170
12171Overview:
12172"""""""""
12173
12174The '``llvm.debugtrap``' intrinsic.
12175
12176Arguments:
12177""""""""""
12178
12179None.
12180
12181Semantics:
12182""""""""""
12183
12184This intrinsic is lowered to code which is intended to cause an
12185execution trap with the intention of requesting the attention of a
12186debugger.
12187
12188'``llvm.stackprotector``' Intrinsic
12189^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12190
12191Syntax:
12192"""""""
12193
12194::
12195
12196 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12197
12198Overview:
12199"""""""""
12200
12201The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12202onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12203is placed on the stack before local variables.
12204
12205Arguments:
12206""""""""""
12207
12208The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12209The first argument is the value loaded from the stack guard
12210``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12211enough space to hold the value of the guard.
12212
12213Semantics:
12214""""""""""
12215
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012216This intrinsic causes the prologue/epilogue inserter to force the position of
12217the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12218to ensure that if a local variable on the stack is overwritten, it will destroy
12219the value of the guard. When the function exits, the guard on the stack is
12220checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12221different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12222calling the ``__stack_chk_fail()`` function.
12223
Tim Shene885d5e2016-04-19 19:40:37 +000012224'``llvm.stackguard``' Intrinsic
12225^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12226
12227Syntax:
12228"""""""
12229
12230::
12231
12232 declare i8* @llvm.stackguard()
12233
12234Overview:
12235"""""""""
12236
12237The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12238
12239It should not be generated by frontends, since it is only for internal usage.
12240The reason why we create this intrinsic is that we still support IR form Stack
12241Protector in FastISel.
12242
12243Arguments:
12244""""""""""
12245
12246None.
12247
12248Semantics:
12249""""""""""
12250
12251On some platforms, the value returned by this intrinsic remains unchanged
12252between loads in the same thread. On other platforms, it returns the same
12253global variable value, if any, e.g. ``@__stack_chk_guard``.
12254
12255Currently some platforms have IR-level customized stack guard loading (e.g.
12256X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12257in the future.
12258
Sean Silvab084af42012-12-07 10:36:55 +000012259'``llvm.objectsize``' Intrinsic
12260^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12261
12262Syntax:
12263"""""""
12264
12265::
12266
12267 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12268 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12269
12270Overview:
12271"""""""""
12272
12273The ``llvm.objectsize`` intrinsic is designed to provide information to
12274the optimizers to determine at compile time whether a) an operation
12275(like memcpy) will overflow a buffer that corresponds to an object, or
12276b) that a runtime check for overflow isn't necessary. An object in this
12277context means an allocation of a specific class, structure, array, or
12278other object.
12279
12280Arguments:
12281""""""""""
12282
12283The ``llvm.objectsize`` intrinsic takes two arguments. The first
12284argument is a pointer to or into the ``object``. The second argument is
12285a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12286or -1 (if false) when the object size is unknown. The second argument
12287only accepts constants.
12288
12289Semantics:
12290""""""""""
12291
12292The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12293the size of the object concerned. If the size cannot be determined at
12294compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12295on the ``min`` argument).
12296
12297'``llvm.expect``' Intrinsic
12298^^^^^^^^^^^^^^^^^^^^^^^^^^^
12299
12300Syntax:
12301"""""""
12302
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012303This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12304integer bit width.
12305
Sean Silvab084af42012-12-07 10:36:55 +000012306::
12307
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012308 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012309 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12310 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12311
12312Overview:
12313"""""""""
12314
12315The ``llvm.expect`` intrinsic provides information about expected (the
12316most probable) value of ``val``, which can be used by optimizers.
12317
12318Arguments:
12319""""""""""
12320
12321The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12322a value. The second argument is an expected value, this needs to be a
12323constant value, variables are not allowed.
12324
12325Semantics:
12326""""""""""
12327
12328This intrinsic is lowered to the ``val``.
12329
Philip Reamese0e90832015-04-26 22:23:12 +000012330.. _int_assume:
12331
Hal Finkel93046912014-07-25 21:13:35 +000012332'``llvm.assume``' Intrinsic
12333^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12334
12335Syntax:
12336"""""""
12337
12338::
12339
12340 declare void @llvm.assume(i1 %cond)
12341
12342Overview:
12343"""""""""
12344
12345The ``llvm.assume`` allows the optimizer to assume that the provided
12346condition is true. This information can then be used in simplifying other parts
12347of the code.
12348
12349Arguments:
12350""""""""""
12351
12352The condition which the optimizer may assume is always true.
12353
12354Semantics:
12355""""""""""
12356
12357The intrinsic allows the optimizer to assume that the provided condition is
12358always true whenever the control flow reaches the intrinsic call. No code is
12359generated for this intrinsic, and instructions that contribute only to the
12360provided condition are not used for code generation. If the condition is
12361violated during execution, the behavior is undefined.
12362
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012363Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012364used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12365only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012366if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012367sufficient overall improvement in code quality. For this reason,
12368``llvm.assume`` should not be used to document basic mathematical invariants
12369that the optimizer can otherwise deduce or facts that are of little use to the
12370optimizer.
12371
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012372.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012373
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012374'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012375^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12376
12377Syntax:
12378"""""""
12379
12380::
12381
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012382 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012383
12384
12385Arguments:
12386""""""""""
12387
12388The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012389metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012390
12391Overview:
12392"""""""""
12393
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012394The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12395with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012396
Peter Collingbourne0312f612016-06-25 00:23:04 +000012397'``llvm.type.checked.load``' Intrinsic
12398^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12399
12400Syntax:
12401"""""""
12402
12403::
12404
12405 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12406
12407
12408Arguments:
12409""""""""""
12410
12411The first argument is a pointer from which to load a function pointer. The
12412second argument is the byte offset from which to load the function pointer. The
12413third argument is a metadata object representing a :doc:`type identifier
12414<TypeMetadata>`.
12415
12416Overview:
12417"""""""""
12418
12419The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12420virtual table pointer using type metadata. This intrinsic is used to implement
12421control flow integrity in conjunction with virtual call optimization. The
12422virtual call optimization pass will optimize away ``llvm.type.checked.load``
12423intrinsics associated with devirtualized calls, thereby removing the type
12424check in cases where it is not needed to enforce the control flow integrity
12425constraint.
12426
12427If the given pointer is associated with a type metadata identifier, this
12428function returns true as the second element of its return value. (Note that
12429the function may also return true if the given pointer is not associated
12430with a type metadata identifier.) If the function's return value's second
12431element is true, the following rules apply to the first element:
12432
12433- If the given pointer is associated with the given type metadata identifier,
12434 it is the function pointer loaded from the given byte offset from the given
12435 pointer.
12436
12437- If the given pointer is not associated with the given type metadata
12438 identifier, it is one of the following (the choice of which is unspecified):
12439
12440 1. The function pointer that would have been loaded from an arbitrarily chosen
12441 (through an unspecified mechanism) pointer associated with the type
12442 metadata.
12443
12444 2. If the function has a non-void return type, a pointer to a function that
12445 returns an unspecified value without causing side effects.
12446
12447If the function's return value's second element is false, the value of the
12448first element is undefined.
12449
12450
Sean Silvab084af42012-12-07 10:36:55 +000012451'``llvm.donothing``' Intrinsic
12452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12453
12454Syntax:
12455"""""""
12456
12457::
12458
12459 declare void @llvm.donothing() nounwind readnone
12460
12461Overview:
12462"""""""""
12463
Juergen Ributzkac9161192014-10-23 22:36:13 +000012464The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012465three intrinsics (besides ``llvm.experimental.patchpoint`` and
12466``llvm.experimental.gc.statepoint``) that can be called with an invoke
12467instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012468
12469Arguments:
12470""""""""""
12471
12472None.
12473
12474Semantics:
12475""""""""""
12476
12477This intrinsic does nothing, and it's removed by optimizers and ignored
12478by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012479
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012480'``llvm.experimental.deoptimize``' Intrinsic
12481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12482
12483Syntax:
12484"""""""
12485
12486::
12487
12488 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12489
12490Overview:
12491"""""""""
12492
12493This intrinsic, together with :ref:`deoptimization operand bundles
12494<deopt_opbundles>`, allow frontends to express transfer of control and
12495frame-local state from the currently executing (typically more specialized,
12496hence faster) version of a function into another (typically more generic, hence
12497slower) version.
12498
12499In languages with a fully integrated managed runtime like Java and JavaScript
12500this intrinsic can be used to implement "uncommon trap" or "side exit" like
12501functionality. In unmanaged languages like C and C++, this intrinsic can be
12502used to represent the slow paths of specialized functions.
12503
12504
12505Arguments:
12506""""""""""
12507
12508The intrinsic takes an arbitrary number of arguments, whose meaning is
12509decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12510
12511Semantics:
12512""""""""""
12513
12514The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12515deoptimization continuation (denoted using a :ref:`deoptimization
12516operand bundle <deopt_opbundles>`) and returns the value returned by
12517the deoptimization continuation. Defining the semantic properties of
12518the continuation itself is out of scope of the language reference --
12519as far as LLVM is concerned, the deoptimization continuation can
12520invoke arbitrary side effects, including reading from and writing to
12521the entire heap.
12522
12523Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12524continue execution to the end of the physical frame containing them, so all
12525calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12526
12527 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12528 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12529 - The ``ret`` instruction must return the value produced by the
12530 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12531
12532Note that the above restrictions imply that the return type for a call to
12533``@llvm.experimental.deoptimize`` will match the return type of its immediate
12534caller.
12535
12536The inliner composes the ``"deopt"`` continuations of the caller into the
12537``"deopt"`` continuations present in the inlinee, and also updates calls to this
12538intrinsic to return directly from the frame of the function it inlined into.
12539
Sanjoy Dase0aa4142016-05-12 01:17:38 +000012540All declarations of ``@llvm.experimental.deoptimize`` must share the
12541same calling convention.
12542
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012543.. _deoptimize_lowering:
12544
12545Lowering:
12546"""""""""
12547
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012548Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12549symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12550ensure that this symbol is defined). The call arguments to
12551``@llvm.experimental.deoptimize`` are lowered as if they were formal
12552arguments of the specified types, and not as varargs.
12553
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012554
Sanjoy Das021de052016-03-31 00:18:46 +000012555'``llvm.experimental.guard``' Intrinsic
12556^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12557
12558Syntax:
12559"""""""
12560
12561::
12562
12563 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12564
12565Overview:
12566"""""""""
12567
12568This intrinsic, together with :ref:`deoptimization operand bundles
12569<deopt_opbundles>`, allows frontends to express guards or checks on
12570optimistic assumptions made during compilation. The semantics of
12571``@llvm.experimental.guard`` is defined in terms of
12572``@llvm.experimental.deoptimize`` -- its body is defined to be
12573equivalent to:
12574
Renato Golin124f2592016-07-20 12:16:38 +000012575.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000012576
Renato Golin124f2592016-07-20 12:16:38 +000012577 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12578 %realPred = and i1 %pred, undef
12579 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000012580
Renato Golin124f2592016-07-20 12:16:38 +000012581 leave:
12582 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12583 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000012584
Renato Golin124f2592016-07-20 12:16:38 +000012585 continue:
12586 ret void
12587 }
Sanjoy Das021de052016-03-31 00:18:46 +000012588
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012589
12590with the optional ``[, !make.implicit !{}]`` present if and only if it
12591is present on the call site. For more details on ``!make.implicit``,
12592see :doc:`FaultMaps`.
12593
Sanjoy Das021de052016-03-31 00:18:46 +000012594In words, ``@llvm.experimental.guard`` executes the attached
12595``"deopt"`` continuation if (but **not** only if) its first argument
12596is ``false``. Since the optimizer is allowed to replace the ``undef``
12597with an arbitrary value, it can optimize guard to fail "spuriously",
12598i.e. without the original condition being false (hence the "not only
12599if"); and this allows for "check widening" type optimizations.
12600
12601``@llvm.experimental.guard`` cannot be invoked.
12602
12603
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012604'``llvm.load.relative``' Intrinsic
12605^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12606
12607Syntax:
12608"""""""
12609
12610::
12611
12612 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12613
12614Overview:
12615"""""""""
12616
12617This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12618adds ``%ptr`` to that value and returns it. The constant folder specifically
12619recognizes the form of this intrinsic and the constant initializers it may
12620load from; if a loaded constant initializer is known to have the form
12621``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12622
12623LLVM provides that the calculation of such a constant initializer will
12624not overflow at link time under the medium code model if ``x`` is an
12625``unnamed_addr`` function. However, it does not provide this guarantee for
12626a constant initializer folded into a function body. This intrinsic can be
12627used to avoid the possibility of overflows when loading from such a constant.
12628
Andrew Trick5e029ce2013-12-24 02:57:25 +000012629Stack Map Intrinsics
12630--------------------
12631
12632LLVM provides experimental intrinsics to support runtime patching
12633mechanisms commonly desired in dynamic language JITs. These intrinsics
12634are described in :doc:`StackMaps`.