blob: 4dd7157d04e08abc8cdd53cdc458dfdcd86b5ceb [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
645an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000646
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000647Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000648:ref:`Thread Local Storage Model <tls_model>`.
649
Nico Rieck7157bb72014-01-14 15:22:47 +0000650Syntax::
651
Rafael Espindola32483a72016-05-10 18:22:45 +0000652 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000653 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
654 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000655 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000656 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000657 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659For example, the following defines a global in a numbered address space
660with an initializer, section, and alignment:
661
662.. code-block:: llvm
663
664 @G = addrspace(5) constant float 1.0, section "foo", align 4
665
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000666The following example just declares a global variable
667
668.. code-block:: llvm
669
670 @G = external global i32
671
Sean Silvab084af42012-12-07 10:36:55 +0000672The following example defines a thread-local global with the
673``initialexec`` TLS model:
674
675.. code-block:: llvm
676
677 @G = thread_local(initialexec) global i32 0, align 4
678
679.. _functionstructure:
680
681Functions
682---------
683
684LLVM function definitions consist of the "``define``" keyword, an
685optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000686style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
687an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000688an optional ``unnamed_addr`` attribute, a return type, an optional
689:ref:`parameter attribute <paramattrs>` for the return type, a function
690name, a (possibly empty) argument list (each with optional :ref:`parameter
691attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000692an optional section, an optional alignment,
693an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000694an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000695an optional :ref:`prologue <prologuedata>`,
696an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000697an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000698an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000699
700LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000701optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
702<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
703optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
704or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
705attribute <paramattrs>` for the return type, a function name, a possibly
706empty list of arguments, an optional alignment, an optional :ref:`garbage
707collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
708:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000709
Bill Wendling6822ecb2013-10-27 05:09:12 +0000710A function definition contains a list of basic blocks, forming the CFG (Control
711Flow Graph) for the function. Each basic block may optionally start with a label
712(giving the basic block a symbol table entry), contains a list of instructions,
713and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
714function return). If an explicit label is not provided, a block is assigned an
715implicit numbered label, using the next value from the same counter as used for
716unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
717entry block does not have an explicit label, it will be assigned label "%0",
718then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000719
720The first basic block in a function is special in two ways: it is
721immediately executed on entrance to the function, and it is not allowed
722to have predecessor basic blocks (i.e. there can not be any branches to
723the entry block of a function). Because the block can have no
724predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
725
726LLVM allows an explicit section to be specified for functions. If the
727target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000728Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730An explicit alignment may be specified for a function. If not present,
731or if the alignment is set to zero, the alignment of the function is set
732by the target to whatever it feels convenient. If an explicit alignment
733is specified, the function is forced to have at least that much
734alignment. All alignments must be a power of 2.
735
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000736If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000737be significant and two identical functions can be merged.
738
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000739If the ``local_unnamed_addr`` attribute is given, the address is known to
740not be significant within the module.
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Syntax::
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000745 [cconv] [ret attrs]
746 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000747 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
748 [comdat [($name)]] [align N] [gc] [prefix Constant]
749 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000750
Sean Silva706fba52015-08-06 22:56:24 +0000751The argument list is a comma separated sequence of arguments where each
752argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000753
754Syntax::
755
756 <type> [parameter Attrs] [name]
757
758
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000759.. _langref_aliases:
760
Sean Silvab084af42012-12-07 10:36:55 +0000761Aliases
762-------
763
Rafael Espindola64c1e182014-06-03 02:41:57 +0000764Aliases, unlike function or variables, don't create any new data. They
765are just a new symbol and metadata for an existing position.
766
767Aliases have a name and an aliasee that is either a global value or a
768constant expression.
769
Nico Rieck7157bb72014-01-14 15:22:47 +0000770Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000771:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
772<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000773
774Syntax::
775
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000776 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000777
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000778The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000779``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000780might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000781
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000782Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000783the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
784to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000785
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000786If the ``local_unnamed_addr`` attribute is given, the address is known to
787not be significant within the module.
788
Rafael Espindola64c1e182014-06-03 02:41:57 +0000789Since aliases are only a second name, some restrictions apply, of which
790some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000791
Rafael Espindola64c1e182014-06-03 02:41:57 +0000792* The expression defining the aliasee must be computable at assembly
793 time. Since it is just a name, no relocations can be used.
794
795* No alias in the expression can be weak as the possibility of the
796 intermediate alias being overridden cannot be represented in an
797 object file.
798
799* No global value in the expression can be a declaration, since that
800 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000801
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000802.. _langref_ifunc:
803
804IFuncs
805-------
806
807IFuncs, like as aliases, don't create any new data or func. They are just a new
808symbol that dynamic linker resolves at runtime by calling a resolver function.
809
810IFuncs have a name and a resolver that is a function called by dynamic linker
811that returns address of another function associated with the name.
812
813IFunc may have an optional :ref:`linkage type <linkage>` and an optional
814:ref:`visibility style <visibility>`.
815
816Syntax::
817
818 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821.. _langref_comdats:
822
823Comdats
824-------
825
826Comdat IR provides access to COFF and ELF object file COMDAT functionality.
827
Sean Silvaa1190322015-08-06 22:56:48 +0000828Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000829specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000830that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000831aliasee computes to, if any.
832
833Comdats have a selection kind to provide input on how the linker should
834choose between keys in two different object files.
835
836Syntax::
837
838 $<Name> = comdat SelectionKind
839
840The selection kind must be one of the following:
841
842``any``
843 The linker may choose any COMDAT key, the choice is arbitrary.
844``exactmatch``
845 The linker may choose any COMDAT key but the sections must contain the
846 same data.
847``largest``
848 The linker will choose the section containing the largest COMDAT key.
849``noduplicates``
850 The linker requires that only section with this COMDAT key exist.
851``samesize``
852 The linker may choose any COMDAT key but the sections must contain the
853 same amount of data.
854
855Note that the Mach-O platform doesn't support COMDATs and ELF only supports
856``any`` as a selection kind.
857
858Here is an example of a COMDAT group where a function will only be selected if
859the COMDAT key's section is the largest:
860
Renato Golin124f2592016-07-20 12:16:38 +0000861.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000862
863 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000864 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000865
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000867 ret void
868 }
869
Rafael Espindola83a362c2015-01-06 22:55:16 +0000870As a syntactic sugar the ``$name`` can be omitted if the name is the same as
871the global name:
872
Renato Golin124f2592016-07-20 12:16:38 +0000873.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000874
875 $foo = comdat any
876 @foo = global i32 2, comdat
877
878
David Majnemerdad0a642014-06-27 18:19:56 +0000879In a COFF object file, this will create a COMDAT section with selection kind
880``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
881and another COMDAT section with selection kind
882``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000883section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885There are some restrictions on the properties of the global object.
886It, or an alias to it, must have the same name as the COMDAT group when
887targeting COFF.
888The contents and size of this object may be used during link-time to determine
889which COMDAT groups get selected depending on the selection kind.
890Because the name of the object must match the name of the COMDAT group, the
891linkage of the global object must not be local; local symbols can get renamed
892if a collision occurs in the symbol table.
893
894The combined use of COMDATS and section attributes may yield surprising results.
895For example:
896
Renato Golin124f2592016-07-20 12:16:38 +0000897.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000898
899 $foo = comdat any
900 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901 @g1 = global i32 42, section "sec", comdat($foo)
902 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000903
904From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000905with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000906COMDAT groups and COMDATs, at the object file level, are represented by
907sections.
908
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000909Note that certain IR constructs like global variables and functions may
910create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000911COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000912in individual sections (e.g. when `-data-sections` or `-function-sections`
913is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000914
Sean Silvab084af42012-12-07 10:36:55 +0000915.. _namedmetadatastructure:
916
917Named Metadata
918--------------
919
920Named metadata is a collection of metadata. :ref:`Metadata
921nodes <metadata>` (but not metadata strings) are the only valid
922operands for a named metadata.
923
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000924#. Named metadata are represented as a string of characters with the
925 metadata prefix. The rules for metadata names are the same as for
926 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
927 are still valid, which allows any character to be part of a name.
928
Sean Silvab084af42012-12-07 10:36:55 +0000929Syntax::
930
931 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000932 !0 = !{!"zero"}
933 !1 = !{!"one"}
934 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000935 ; A named metadata.
936 !name = !{!0, !1, !2}
937
938.. _paramattrs:
939
940Parameter Attributes
941--------------------
942
943The return type and each parameter of a function type may have a set of
944*parameter attributes* associated with them. Parameter attributes are
945used to communicate additional information about the result or
946parameters of a function. Parameter attributes are considered to be part
947of the function, not of the function type, so functions with different
948parameter attributes can have the same function type.
949
950Parameter attributes are simple keywords that follow the type specified.
951If multiple parameter attributes are needed, they are space separated.
952For example:
953
954.. code-block:: llvm
955
956 declare i32 @printf(i8* noalias nocapture, ...)
957 declare i32 @atoi(i8 zeroext)
958 declare signext i8 @returns_signed_char()
959
960Note that any attributes for the function result (``nounwind``,
961``readonly``) come immediately after the argument list.
962
963Currently, only the following parameter attributes are defined:
964
965``zeroext``
966 This indicates to the code generator that the parameter or return
967 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000968 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000969``signext``
970 This indicates to the code generator that the parameter or return
971 value should be sign-extended to the extent required by the target's
972 ABI (which is usually 32-bits) by the caller (for a parameter) or
973 the callee (for a return value).
974``inreg``
975 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000976 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000977 a function call or return (usually, by putting it in a register as
978 opposed to memory, though some targets use it to distinguish between
979 two different kinds of registers). Use of this attribute is
980 target-specific.
981``byval``
982 This indicates that the pointer parameter should really be passed by
983 value to the function. The attribute implies that a hidden copy of
984 the pointee is made between the caller and the callee, so the callee
985 is unable to modify the value in the caller. This attribute is only
986 valid on LLVM pointer arguments. It is generally used to pass
987 structs and arrays by value, but is also valid on pointers to
988 scalars. The copy is considered to belong to the caller not the
989 callee (for example, ``readonly`` functions should not write to
990 ``byval`` parameters). This is not a valid attribute for return
991 values.
992
993 The byval attribute also supports specifying an alignment with the
994 align attribute. It indicates the alignment of the stack slot to
995 form and the known alignment of the pointer specified to the call
996 site. If the alignment is not specified, then the code generator
997 makes a target-specific assumption.
998
Reid Klecknera534a382013-12-19 02:14:12 +0000999.. _attr_inalloca:
1000
1001``inalloca``
1002
Reid Kleckner60d3a832014-01-16 22:59:24 +00001003 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001004 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001005 be a pointer to stack memory produced by an ``alloca`` instruction.
1006 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001007 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001008 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001009
Reid Kleckner436c42e2014-01-17 23:58:17 +00001010 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001011 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001012 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001013 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001014 ``inalloca`` attribute also disables LLVM's implicit lowering of
1015 large aggregate return values, which means that frontend authors
1016 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001017
Reid Kleckner60d3a832014-01-16 22:59:24 +00001018 When the call site is reached, the argument allocation must have
1019 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001020 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001021 space after an argument allocation and before its call site, but it
1022 must be cleared off with :ref:`llvm.stackrestore
1023 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001024
1025 See :doc:`InAlloca` for more information on how to use this
1026 attribute.
1027
Sean Silvab084af42012-12-07 10:36:55 +00001028``sret``
1029 This indicates that the pointer parameter specifies the address of a
1030 structure that is the return value of the function in the source
1031 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001032 loads and stores to the structure may be assumed by the callee not
1033 to trap and to be properly aligned. This is not a valid attribute
1034 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001035
Hal Finkelccc70902014-07-22 16:58:55 +00001036``align <n>``
1037 This indicates that the pointer value may be assumed by the optimizer to
1038 have the specified alignment.
1039
1040 Note that this attribute has additional semantics when combined with the
1041 ``byval`` attribute.
1042
Sean Silva1703e702014-04-08 21:06:22 +00001043.. _noalias:
1044
Sean Silvab084af42012-12-07 10:36:55 +00001045``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001046 This indicates that objects accessed via pointer values
1047 :ref:`based <pointeraliasing>` on the argument or return value are not also
1048 accessed, during the execution of the function, via pointer values not
1049 *based* on the argument or return value. The attribute on a return value
1050 also has additional semantics described below. The caller shares the
1051 responsibility with the callee for ensuring that these requirements are met.
1052 For further details, please see the discussion of the NoAlias response in
1053 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001054
1055 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001056 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001057
1058 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001059 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1060 attribute on return values are stronger than the semantics of the attribute
1061 when used on function arguments. On function return values, the ``noalias``
1062 attribute indicates that the function acts like a system memory allocation
1063 function, returning a pointer to allocated storage disjoint from the
1064 storage for any other object accessible to the caller.
1065
Sean Silvab084af42012-12-07 10:36:55 +00001066``nocapture``
1067 This indicates that the callee does not make any copies of the
1068 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001069 attribute for return values. Addresses used in volatile operations
1070 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001071
1072.. _nest:
1073
1074``nest``
1075 This indicates that the pointer parameter can be excised using the
1076 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001077 attribute for return values and can only be applied to one parameter.
1078
1079``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001080 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001081 value. This is a hint to the optimizer and code generator used when
1082 generating the caller, allowing value propagation, tail call optimization,
1083 and omission of register saves and restores in some cases; it is not
1084 checked or enforced when generating the callee. The parameter and the
1085 function return type must be valid operands for the
1086 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1087 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001088
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001089``nonnull``
1090 This indicates that the parameter or return pointer is not null. This
1091 attribute may only be applied to pointer typed parameters. This is not
1092 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001093 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001094 is non-null.
1095
Hal Finkelb0407ba2014-07-18 15:51:28 +00001096``dereferenceable(<n>)``
1097 This indicates that the parameter or return pointer is dereferenceable. This
1098 attribute may only be applied to pointer typed parameters. A pointer that
1099 is dereferenceable can be loaded from speculatively without a risk of
1100 trapping. The number of bytes known to be dereferenceable must be provided
1101 in parentheses. It is legal for the number of bytes to be less than the
1102 size of the pointee type. The ``nonnull`` attribute does not imply
1103 dereferenceability (consider a pointer to one element past the end of an
1104 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1105 ``addrspace(0)`` (which is the default address space).
1106
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001107``dereferenceable_or_null(<n>)``
1108 This indicates that the parameter or return value isn't both
1109 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001110 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001111 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1112 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1113 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1114 and in other address spaces ``dereferenceable_or_null(<n>)``
1115 implies that a pointer is at least one of ``dereferenceable(<n>)``
1116 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001117 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001118 pointer typed parameters.
1119
Manman Renf46262e2016-03-29 17:37:21 +00001120``swiftself``
1121 This indicates that the parameter is the self/context parameter. This is not
1122 a valid attribute for return values and can only be applied to one
1123 parameter.
1124
Manman Ren9bfd0d02016-04-01 21:41:15 +00001125``swifterror``
1126 This attribute is motivated to model and optimize Swift error handling. It
1127 can be applied to a parameter with pointer to pointer type or a
1128 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001129 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1130 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1131 the parameter or the alloca) can only be loaded and stored from, or used as
1132 a ``swifterror`` argument. This is not a valid attribute for return values
1133 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001134
1135 These constraints allow the calling convention to optimize access to
1136 ``swifterror`` variables by associating them with a specific register at
1137 call boundaries rather than placing them in memory. Since this does change
1138 the calling convention, a function which uses the ``swifterror`` attribute
1139 on a parameter is not ABI-compatible with one which does not.
1140
1141 These constraints also allow LLVM to assume that a ``swifterror`` argument
1142 does not alias any other memory visible within a function and that a
1143 ``swifterror`` alloca passed as an argument does not escape.
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _gc:
1146
Philip Reamesf80bbff2015-02-25 23:45:20 +00001147Garbage Collector Strategy Names
1148--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001149
Philip Reamesf80bbff2015-02-25 23:45:20 +00001150Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001151string:
1152
1153.. code-block:: llvm
1154
1155 define void @f() gc "name" { ... }
1156
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001157The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001158<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001159strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001160named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001161garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001162which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001163
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001164.. _prefixdata:
1165
1166Prefix Data
1167-----------
1168
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001169Prefix data is data associated with a function which the code
1170generator will emit immediately before the function's entrypoint.
1171The purpose of this feature is to allow frontends to associate
1172language-specific runtime metadata with specific functions and make it
1173available through the function pointer while still allowing the
1174function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001175
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001176To access the data for a given function, a program may bitcast the
1177function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001178index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001179the prefix data. For instance, take the example of a function annotated
1180with a single ``i32``,
1181
1182.. code-block:: llvm
1183
1184 define void @f() prefix i32 123 { ... }
1185
1186The prefix data can be referenced as,
1187
1188.. code-block:: llvm
1189
David Blaikie16a97eb2015-03-04 22:02:58 +00001190 %0 = bitcast void* () @f to i32*
1191 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001192 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001193
1194Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001195of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001196beginning of the prefix data is aligned. This means that if the size
1197of the prefix data is not a multiple of the alignment size, the
1198function's entrypoint will not be aligned. If alignment of the
1199function's entrypoint is desired, padding must be added to the prefix
1200data.
1201
Sean Silvaa1190322015-08-06 22:56:48 +00001202A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001203to the ``available_externally`` linkage in that the data may be used by the
1204optimizers but will not be emitted in the object file.
1205
1206.. _prologuedata:
1207
1208Prologue Data
1209-------------
1210
1211The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1212be inserted prior to the function body. This can be used for enabling
1213function hot-patching and instrumentation.
1214
1215To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001216have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001217bytes which decode to a sequence of machine instructions, valid for the
1218module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001219the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001221definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001222makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001223
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001225which encodes the ``nop`` instruction:
1226
Renato Golin124f2592016-07-20 12:16:38 +00001227.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001228
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001230
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231Generally prologue data can be formed by encoding a relative branch instruction
1232which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001233x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1234
Renato Golin124f2592016-07-20 12:16:38 +00001235.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001236
1237 %0 = type <{ i8, i8, i8* }>
1238
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001239 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001240
Sean Silvaa1190322015-08-06 22:56:48 +00001241A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001242to the ``available_externally`` linkage in that the data may be used by the
1243optimizers but will not be emitted in the object file.
1244
David Majnemer7fddecc2015-06-17 20:52:32 +00001245.. _personalityfn:
1246
1247Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001248--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001249
1250The ``personality`` attribute permits functions to specify what function
1251to use for exception handling.
1252
Bill Wendling63b88192013-02-06 06:52:58 +00001253.. _attrgrp:
1254
1255Attribute Groups
1256----------------
1257
1258Attribute groups are groups of attributes that are referenced by objects within
1259the IR. They are important for keeping ``.ll`` files readable, because a lot of
1260functions will use the same set of attributes. In the degenerative case of a
1261``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1262group will capture the important command line flags used to build that file.
1263
1264An attribute group is a module-level object. To use an attribute group, an
1265object references the attribute group's ID (e.g. ``#37``). An object may refer
1266to more than one attribute group. In that situation, the attributes from the
1267different groups are merged.
1268
1269Here is an example of attribute groups for a function that should always be
1270inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1271
1272.. code-block:: llvm
1273
1274 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001275 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001276
1277 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001278 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001279
1280 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1281 define void @f() #0 #1 { ... }
1282
Sean Silvab084af42012-12-07 10:36:55 +00001283.. _fnattrs:
1284
1285Function Attributes
1286-------------------
1287
1288Function attributes are set to communicate additional information about
1289a function. Function attributes are considered to be part of the
1290function, not of the function type, so functions with different function
1291attributes can have the same function type.
1292
1293Function attributes are simple keywords that follow the type specified.
1294If multiple attributes are needed, they are space separated. For
1295example:
1296
1297.. code-block:: llvm
1298
1299 define void @f() noinline { ... }
1300 define void @f() alwaysinline { ... }
1301 define void @f() alwaysinline optsize { ... }
1302 define void @f() optsize { ... }
1303
Sean Silvab084af42012-12-07 10:36:55 +00001304``alignstack(<n>)``
1305 This attribute indicates that, when emitting the prologue and
1306 epilogue, the backend should forcibly align the stack pointer.
1307 Specify the desired alignment, which must be a power of two, in
1308 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001309``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1310 This attribute indicates that the annotated function will always return at
1311 least a given number of bytes (or null). Its arguments are zero-indexed
1312 parameter numbers; if one argument is provided, then it's assumed that at
1313 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1314 returned pointer. If two are provided, then it's assumed that
1315 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1316 available. The referenced parameters must be integer types. No assumptions
1317 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001318``alwaysinline``
1319 This attribute indicates that the inliner should attempt to inline
1320 this function into callers whenever possible, ignoring any active
1321 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001322``builtin``
1323 This indicates that the callee function at a call site should be
1324 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001325 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001326 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001327 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001328``cold``
1329 This attribute indicates that this function is rarely called. When
1330 computing edge weights, basic blocks post-dominated by a cold
1331 function call are also considered to be cold; and, thus, given low
1332 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001333``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001334 In some parallel execution models, there exist operations that cannot be
1335 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001336 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001337
Justin Lebar58535b12016-02-17 17:46:41 +00001338 The ``convergent`` attribute may appear on functions or call/invoke
1339 instructions. When it appears on a function, it indicates that calls to
1340 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001341 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001342 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001343 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001344
Justin Lebar58535b12016-02-17 17:46:41 +00001345 When it appears on a call/invoke, the ``convergent`` attribute indicates
1346 that we should treat the call as though we're calling a convergent
1347 function. This is particularly useful on indirect calls; without this we
1348 may treat such calls as though the target is non-convergent.
1349
1350 The optimizer may remove the ``convergent`` attribute on functions when it
1351 can prove that the function does not execute any convergent operations.
1352 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1353 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001354``inaccessiblememonly``
1355 This attribute indicates that the function may only access memory that
1356 is not accessible by the module being compiled. This is a weaker form
1357 of ``readnone``.
1358``inaccessiblemem_or_argmemonly``
1359 This attribute indicates that the function may only access memory that is
1360 either not accessible by the module being compiled, or is pointed to
1361 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001362``inlinehint``
1363 This attribute indicates that the source code contained a hint that
1364 inlining this function is desirable (such as the "inline" keyword in
1365 C/C++). It is just a hint; it imposes no requirements on the
1366 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001367``jumptable``
1368 This attribute indicates that the function should be added to a
1369 jump-instruction table at code-generation time, and that all address-taken
1370 references to this function should be replaced with a reference to the
1371 appropriate jump-instruction-table function pointer. Note that this creates
1372 a new pointer for the original function, which means that code that depends
1373 on function-pointer identity can break. So, any function annotated with
1374 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001375``minsize``
1376 This attribute suggests that optimization passes and code generator
1377 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001378 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001379 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001380``naked``
1381 This attribute disables prologue / epilogue emission for the
1382 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001383``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001384 This indicates that the callee function at a call site is not recognized as
1385 a built-in function. LLVM will retain the original call and not replace it
1386 with equivalent code based on the semantics of the built-in function, unless
1387 the call site uses the ``builtin`` attribute. This is valid at call sites
1388 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001389``noduplicate``
1390 This attribute indicates that calls to the function cannot be
1391 duplicated. A call to a ``noduplicate`` function may be moved
1392 within its parent function, but may not be duplicated within
1393 its parent function.
1394
1395 A function containing a ``noduplicate`` call may still
1396 be an inlining candidate, provided that the call is not
1397 duplicated by inlining. That implies that the function has
1398 internal linkage and only has one call site, so the original
1399 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001400``noimplicitfloat``
1401 This attributes disables implicit floating point instructions.
1402``noinline``
1403 This attribute indicates that the inliner should never inline this
1404 function in any situation. This attribute may not be used together
1405 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001406``nonlazybind``
1407 This attribute suppresses lazy symbol binding for the function. This
1408 may make calls to the function faster, at the cost of extra program
1409 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001410``noredzone``
1411 This attribute indicates that the code generator should not use a
1412 red zone, even if the target-specific ABI normally permits it.
1413``noreturn``
1414 This function attribute indicates that the function never returns
1415 normally. This produces undefined behavior at runtime if the
1416 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001417``norecurse``
1418 This function attribute indicates that the function does not call itself
1419 either directly or indirectly down any possible call path. This produces
1420 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001421``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001422 This function attribute indicates that the function never raises an
1423 exception. If the function does raise an exception, its runtime
1424 behavior is undefined. However, functions marked nounwind may still
1425 trap or generate asynchronous exceptions. Exception handling schemes
1426 that are recognized by LLVM to handle asynchronous exceptions, such
1427 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001428``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001429 This function attribute indicates that most optimization passes will skip
1430 this function, with the exception of interprocedural optimization passes.
1431 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001432 This attribute cannot be used together with the ``alwaysinline``
1433 attribute; this attribute is also incompatible
1434 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001435
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001436 This attribute requires the ``noinline`` attribute to be specified on
1437 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001438 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001439 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001440``optsize``
1441 This attribute suggests that optimization passes and code generator
1442 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001443 and otherwise do optimizations specifically to reduce code size as
1444 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001445``"patchable-function"``
1446 This attribute tells the code generator that the code
1447 generated for this function needs to follow certain conventions that
1448 make it possible for a runtime function to patch over it later.
1449 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001450 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001451
1452 * ``"prologue-short-redirect"`` - This style of patchable
1453 function is intended to support patching a function prologue to
1454 redirect control away from the function in a thread safe
1455 manner. It guarantees that the first instruction of the
1456 function will be large enough to accommodate a short jump
1457 instruction, and will be sufficiently aligned to allow being
1458 fully changed via an atomic compare-and-swap instruction.
1459 While the first requirement can be satisfied by inserting large
1460 enough NOP, LLVM can and will try to re-purpose an existing
1461 instruction (i.e. one that would have to be emitted anyway) as
1462 the patchable instruction larger than a short jump.
1463
1464 ``"prologue-short-redirect"`` is currently only supported on
1465 x86-64.
1466
1467 This attribute by itself does not imply restrictions on
1468 inter-procedural optimizations. All of the semantic effects the
1469 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001470``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001471 On a function, this attribute indicates that the function computes its
1472 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001473 without dereferencing any pointer arguments or otherwise accessing
1474 any mutable state (e.g. memory, control registers, etc) visible to
1475 caller functions. It does not write through any pointer arguments
1476 (including ``byval`` arguments) and never changes any state visible
1477 to callers. This means that it cannot unwind exceptions by calling
1478 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001479
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001480 On an argument, this attribute indicates that the function does not
1481 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001482 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001483``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001484 On a function, this attribute indicates that the function does not write
1485 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001486 modify any state (e.g. memory, control registers, etc) visible to
1487 caller functions. It may dereference pointer arguments and read
1488 state that may be set in the caller. A readonly function always
1489 returns the same value (or unwinds an exception identically) when
1490 called with the same set of arguments and global state. It cannot
1491 unwind an exception by calling the ``C++`` exception throwing
1492 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001493
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001494 On an argument, this attribute indicates that the function does not write
1495 through this pointer argument, even though it may write to the memory that
1496 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001497``writeonly``
1498 On a function, this attribute indicates that the function may write to but
1499 does not read from memory.
1500
1501 On an argument, this attribute indicates that the function may write to but
1502 does not read through this pointer argument (even though it may read from
1503 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001504``argmemonly``
1505 This attribute indicates that the only memory accesses inside function are
1506 loads and stores from objects pointed to by its pointer-typed arguments,
1507 with arbitrary offsets. Or in other words, all memory operations in the
1508 function can refer to memory only using pointers based on its function
1509 arguments.
1510 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1511 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001512``returns_twice``
1513 This attribute indicates that this function can return twice. The C
1514 ``setjmp`` is an example of such a function. The compiler disables
1515 some optimizations (like tail calls) in the caller of these
1516 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001517``safestack``
1518 This attribute indicates that
1519 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1520 protection is enabled for this function.
1521
1522 If a function that has a ``safestack`` attribute is inlined into a
1523 function that doesn't have a ``safestack`` attribute or which has an
1524 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1525 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001526``sanitize_address``
1527 This attribute indicates that AddressSanitizer checks
1528 (dynamic address safety analysis) are enabled for this function.
1529``sanitize_memory``
1530 This attribute indicates that MemorySanitizer checks (dynamic detection
1531 of accesses to uninitialized memory) are enabled for this function.
1532``sanitize_thread``
1533 This attribute indicates that ThreadSanitizer checks
1534 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001535``ssp``
1536 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001537 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001538 placed on the stack before the local variables that's checked upon
1539 return from the function to see if it has been overwritten. A
1540 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001541 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001542
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001543 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1544 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1545 - Calls to alloca() with variable sizes or constant sizes greater than
1546 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001547
Josh Magee24c7f062014-02-01 01:36:16 +00001548 Variables that are identified as requiring a protector will be arranged
1549 on the stack such that they are adjacent to the stack protector guard.
1550
Sean Silvab084af42012-12-07 10:36:55 +00001551 If a function that has an ``ssp`` attribute is inlined into a
1552 function that doesn't have an ``ssp`` attribute, then the resulting
1553 function will have an ``ssp`` attribute.
1554``sspreq``
1555 This attribute indicates that the function should *always* emit a
1556 stack smashing protector. This overrides the ``ssp`` function
1557 attribute.
1558
Josh Magee24c7f062014-02-01 01:36:16 +00001559 Variables that are identified as requiring a protector will be arranged
1560 on the stack such that they are adjacent to the stack protector guard.
1561 The specific layout rules are:
1562
1563 #. Large arrays and structures containing large arrays
1564 (``>= ssp-buffer-size``) are closest to the stack protector.
1565 #. Small arrays and structures containing small arrays
1566 (``< ssp-buffer-size``) are 2nd closest to the protector.
1567 #. Variables that have had their address taken are 3rd closest to the
1568 protector.
1569
Sean Silvab084af42012-12-07 10:36:55 +00001570 If a function that has an ``sspreq`` attribute is inlined into a
1571 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001572 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1573 an ``sspreq`` attribute.
1574``sspstrong``
1575 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001576 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001577 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001578 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001579
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001580 - Arrays of any size and type
1581 - Aggregates containing an array of any size and type.
1582 - Calls to alloca().
1583 - Local variables that have had their address taken.
1584
Josh Magee24c7f062014-02-01 01:36:16 +00001585 Variables that are identified as requiring a protector will be arranged
1586 on the stack such that they are adjacent to the stack protector guard.
1587 The specific layout rules are:
1588
1589 #. Large arrays and structures containing large arrays
1590 (``>= ssp-buffer-size``) are closest to the stack protector.
1591 #. Small arrays and structures containing small arrays
1592 (``< ssp-buffer-size``) are 2nd closest to the protector.
1593 #. Variables that have had their address taken are 3rd closest to the
1594 protector.
1595
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001596 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001597
1598 If a function that has an ``sspstrong`` attribute is inlined into a
1599 function that doesn't have an ``sspstrong`` attribute, then the
1600 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001601``"thunk"``
1602 This attribute indicates that the function will delegate to some other
1603 function with a tail call. The prototype of a thunk should not be used for
1604 optimization purposes. The caller is expected to cast the thunk prototype to
1605 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001606``uwtable``
1607 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001608 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001609 show that no exceptions passes by it. This is normally the case for
1610 the ELF x86-64 abi, but it can be disabled for some compilation
1611 units.
Sean Silvab084af42012-12-07 10:36:55 +00001612
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001613
1614.. _opbundles:
1615
1616Operand Bundles
1617---------------
1618
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001619Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001620with certain LLVM instructions (currently only ``call`` s and
1621``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001622incorrect and will change program semantics.
1623
1624Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001625
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001626 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001627 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1628 bundle operand ::= SSA value
1629 tag ::= string constant
1630
1631Operand bundles are **not** part of a function's signature, and a
1632given function may be called from multiple places with different kinds
1633of operand bundles. This reflects the fact that the operand bundles
1634are conceptually a part of the ``call`` (or ``invoke``), not the
1635callee being dispatched to.
1636
1637Operand bundles are a generic mechanism intended to support
1638runtime-introspection-like functionality for managed languages. While
1639the exact semantics of an operand bundle depend on the bundle tag,
1640there are certain limitations to how much the presence of an operand
1641bundle can influence the semantics of a program. These restrictions
1642are described as the semantics of an "unknown" operand bundle. As
1643long as the behavior of an operand bundle is describable within these
1644restrictions, LLVM does not need to have special knowledge of the
1645operand bundle to not miscompile programs containing it.
1646
David Majnemer34cacb42015-10-22 01:46:38 +00001647- The bundle operands for an unknown operand bundle escape in unknown
1648 ways before control is transferred to the callee or invokee.
1649- Calls and invokes with operand bundles have unknown read / write
1650 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001651 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001652 callsite specific attributes.
1653- An operand bundle at a call site cannot change the implementation
1654 of the called function. Inter-procedural optimizations work as
1655 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001656
Sanjoy Dascdafd842015-11-11 21:38:02 +00001657More specific types of operand bundles are described below.
1658
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001659.. _deopt_opbundles:
1660
Sanjoy Dascdafd842015-11-11 21:38:02 +00001661Deoptimization Operand Bundles
1662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1663
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001664Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001665operand bundle tag. These operand bundles represent an alternate
1666"safe" continuation for the call site they're attached to, and can be
1667used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001668specified call site. There can be at most one ``"deopt"`` operand
1669bundle attached to a call site. Exact details of deoptimization is
1670out of scope for the language reference, but it usually involves
1671rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001672
1673From the compiler's perspective, deoptimization operand bundles make
1674the call sites they're attached to at least ``readonly``. They read
1675through all of their pointer typed operands (even if they're not
1676otherwise escaped) and the entire visible heap. Deoptimization
1677operand bundles do not capture their operands except during
1678deoptimization, in which case control will not be returned to the
1679compiled frame.
1680
Sanjoy Das2d161452015-11-18 06:23:38 +00001681The inliner knows how to inline through calls that have deoptimization
1682operand bundles. Just like inlining through a normal call site
1683involves composing the normal and exceptional continuations, inlining
1684through a call site with a deoptimization operand bundle needs to
1685appropriately compose the "safe" deoptimization continuation. The
1686inliner does this by prepending the parent's deoptimization
1687continuation to every deoptimization continuation in the inlined body.
1688E.g. inlining ``@f`` into ``@g`` in the following example
1689
1690.. code-block:: llvm
1691
1692 define void @f() {
1693 call void @x() ;; no deopt state
1694 call void @y() [ "deopt"(i32 10) ]
1695 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1696 ret void
1697 }
1698
1699 define void @g() {
1700 call void @f() [ "deopt"(i32 20) ]
1701 ret void
1702 }
1703
1704will result in
1705
1706.. code-block:: llvm
1707
1708 define void @g() {
1709 call void @x() ;; still no deopt state
1710 call void @y() [ "deopt"(i32 20, i32 10) ]
1711 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1712 ret void
1713 }
1714
1715It is the frontend's responsibility to structure or encode the
1716deoptimization state in a way that syntactically prepending the
1717caller's deoptimization state to the callee's deoptimization state is
1718semantically equivalent to composing the caller's deoptimization
1719continuation after the callee's deoptimization continuation.
1720
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001721.. _ob_funclet:
1722
David Majnemer3bb88c02015-12-15 21:27:27 +00001723Funclet Operand Bundles
1724^^^^^^^^^^^^^^^^^^^^^^^
1725
1726Funclet operand bundles are characterized by the ``"funclet"``
1727operand bundle tag. These operand bundles indicate that a call site
1728is within a particular funclet. There can be at most one
1729``"funclet"`` operand bundle attached to a call site and it must have
1730exactly one bundle operand.
1731
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001732If any funclet EH pads have been "entered" but not "exited" (per the
1733`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1734it is undefined behavior to execute a ``call`` or ``invoke`` which:
1735
1736* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1737 intrinsic, or
1738* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1739 not-yet-exited funclet EH pad.
1740
1741Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1742executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1743
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001744GC Transition Operand Bundles
1745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1746
1747GC transition operand bundles are characterized by the
1748``"gc-transition"`` operand bundle tag. These operand bundles mark a
1749call as a transition between a function with one GC strategy to a
1750function with a different GC strategy. If coordinating the transition
1751between GC strategies requires additional code generation at the call
1752site, these bundles may contain any values that are needed by the
1753generated code. For more details, see :ref:`GC Transitions
1754<gc_transition_args>`.
1755
Sean Silvab084af42012-12-07 10:36:55 +00001756.. _moduleasm:
1757
1758Module-Level Inline Assembly
1759----------------------------
1760
1761Modules may contain "module-level inline asm" blocks, which corresponds
1762to the GCC "file scope inline asm" blocks. These blocks are internally
1763concatenated by LLVM and treated as a single unit, but may be separated
1764in the ``.ll`` file if desired. The syntax is very simple:
1765
1766.. code-block:: llvm
1767
1768 module asm "inline asm code goes here"
1769 module asm "more can go here"
1770
1771The strings can contain any character by escaping non-printable
1772characters. The escape sequence used is simply "\\xx" where "xx" is the
1773two digit hex code for the number.
1774
James Y Knightbc832ed2015-07-08 18:08:36 +00001775Note that the assembly string *must* be parseable by LLVM's integrated assembler
1776(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001777
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001778.. _langref_datalayout:
1779
Sean Silvab084af42012-12-07 10:36:55 +00001780Data Layout
1781-----------
1782
1783A module may specify a target specific data layout string that specifies
1784how data is to be laid out in memory. The syntax for the data layout is
1785simply:
1786
1787.. code-block:: llvm
1788
1789 target datalayout = "layout specification"
1790
1791The *layout specification* consists of a list of specifications
1792separated by the minus sign character ('-'). Each specification starts
1793with a letter and may include other information after the letter to
1794define some aspect of the data layout. The specifications accepted are
1795as follows:
1796
1797``E``
1798 Specifies that the target lays out data in big-endian form. That is,
1799 the bits with the most significance have the lowest address
1800 location.
1801``e``
1802 Specifies that the target lays out data in little-endian form. That
1803 is, the bits with the least significance have the lowest address
1804 location.
1805``S<size>``
1806 Specifies the natural alignment of the stack in bits. Alignment
1807 promotion of stack variables is limited to the natural stack
1808 alignment to avoid dynamic stack realignment. The stack alignment
1809 must be a multiple of 8-bits. If omitted, the natural stack
1810 alignment defaults to "unspecified", which does not prevent any
1811 alignment promotions.
1812``p[n]:<size>:<abi>:<pref>``
1813 This specifies the *size* of a pointer and its ``<abi>`` and
1814 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001815 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001816 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001817 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001818``i<size>:<abi>:<pref>``
1819 This specifies the alignment for an integer type of a given bit
1820 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1821``v<size>:<abi>:<pref>``
1822 This specifies the alignment for a vector type of a given bit
1823 ``<size>``.
1824``f<size>:<abi>:<pref>``
1825 This specifies the alignment for a floating point type of a given bit
1826 ``<size>``. Only values of ``<size>`` that are supported by the target
1827 will work. 32 (float) and 64 (double) are supported on all targets; 80
1828 or 128 (different flavors of long double) are also supported on some
1829 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001830``a:<abi>:<pref>``
1831 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001832``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001833 If present, specifies that llvm names are mangled in the output. The
1834 options are
1835
1836 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1837 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1838 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1839 symbols get a ``_`` prefix.
1840 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1841 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001842 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1843 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001844``n<size1>:<size2>:<size3>...``
1845 This specifies a set of native integer widths for the target CPU in
1846 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1847 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1848 this set are considered to support most general arithmetic operations
1849 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001850``ni:<address space0>:<address space1>:<address space2>...``
1851 This specifies pointer types with the specified address spaces
1852 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1853 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001854
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001855On every specification that takes a ``<abi>:<pref>``, specifying the
1856``<pref>`` alignment is optional. If omitted, the preceding ``:``
1857should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1858
Sean Silvab084af42012-12-07 10:36:55 +00001859When constructing the data layout for a given target, LLVM starts with a
1860default set of specifications which are then (possibly) overridden by
1861the specifications in the ``datalayout`` keyword. The default
1862specifications are given in this list:
1863
1864- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001865- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1866- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1867 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001868- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001869- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1870- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1871- ``i16:16:16`` - i16 is 16-bit aligned
1872- ``i32:32:32`` - i32 is 32-bit aligned
1873- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1874 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001875- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001876- ``f32:32:32`` - float is 32-bit aligned
1877- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001878- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001879- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1880- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001881- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001882
1883When LLVM is determining the alignment for a given type, it uses the
1884following rules:
1885
1886#. If the type sought is an exact match for one of the specifications,
1887 that specification is used.
1888#. If no match is found, and the type sought is an integer type, then
1889 the smallest integer type that is larger than the bitwidth of the
1890 sought type is used. If none of the specifications are larger than
1891 the bitwidth then the largest integer type is used. For example,
1892 given the default specifications above, the i7 type will use the
1893 alignment of i8 (next largest) while both i65 and i256 will use the
1894 alignment of i64 (largest specified).
1895#. If no match is found, and the type sought is a vector type, then the
1896 largest vector type that is smaller than the sought vector type will
1897 be used as a fall back. This happens because <128 x double> can be
1898 implemented in terms of 64 <2 x double>, for example.
1899
1900The function of the data layout string may not be what you expect.
1901Notably, this is not a specification from the frontend of what alignment
1902the code generator should use.
1903
1904Instead, if specified, the target data layout is required to match what
1905the ultimate *code generator* expects. This string is used by the
1906mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001907what the ultimate code generator uses. There is no way to generate IR
1908that does not embed this target-specific detail into the IR. If you
1909don't specify the string, the default specifications will be used to
1910generate a Data Layout and the optimization phases will operate
1911accordingly and introduce target specificity into the IR with respect to
1912these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001913
Bill Wendling5cc90842013-10-18 23:41:25 +00001914.. _langref_triple:
1915
1916Target Triple
1917-------------
1918
1919A module may specify a target triple string that describes the target
1920host. The syntax for the target triple is simply:
1921
1922.. code-block:: llvm
1923
1924 target triple = "x86_64-apple-macosx10.7.0"
1925
1926The *target triple* string consists of a series of identifiers delimited
1927by the minus sign character ('-'). The canonical forms are:
1928
1929::
1930
1931 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1932 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1933
1934This information is passed along to the backend so that it generates
1935code for the proper architecture. It's possible to override this on the
1936command line with the ``-mtriple`` command line option.
1937
Sean Silvab084af42012-12-07 10:36:55 +00001938.. _pointeraliasing:
1939
1940Pointer Aliasing Rules
1941----------------------
1942
1943Any memory access must be done through a pointer value associated with
1944an address range of the memory access, otherwise the behavior is
1945undefined. Pointer values are associated with address ranges according
1946to the following rules:
1947
1948- A pointer value is associated with the addresses associated with any
1949 value it is *based* on.
1950- An address of a global variable is associated with the address range
1951 of the variable's storage.
1952- The result value of an allocation instruction is associated with the
1953 address range of the allocated storage.
1954- A null pointer in the default address-space is associated with no
1955 address.
1956- An integer constant other than zero or a pointer value returned from
1957 a function not defined within LLVM may be associated with address
1958 ranges allocated through mechanisms other than those provided by
1959 LLVM. Such ranges shall not overlap with any ranges of addresses
1960 allocated by mechanisms provided by LLVM.
1961
1962A pointer value is *based* on another pointer value according to the
1963following rules:
1964
1965- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001966 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001967- The result value of a ``bitcast`` is *based* on the operand of the
1968 ``bitcast``.
1969- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1970 values that contribute (directly or indirectly) to the computation of
1971 the pointer's value.
1972- The "*based* on" relationship is transitive.
1973
1974Note that this definition of *"based"* is intentionally similar to the
1975definition of *"based"* in C99, though it is slightly weaker.
1976
1977LLVM IR does not associate types with memory. The result type of a
1978``load`` merely indicates the size and alignment of the memory from
1979which to load, as well as the interpretation of the value. The first
1980operand type of a ``store`` similarly only indicates the size and
1981alignment of the store.
1982
1983Consequently, type-based alias analysis, aka TBAA, aka
1984``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1985:ref:`Metadata <metadata>` may be used to encode additional information
1986which specialized optimization passes may use to implement type-based
1987alias analysis.
1988
1989.. _volatile:
1990
1991Volatile Memory Accesses
1992------------------------
1993
1994Certain memory accesses, such as :ref:`load <i_load>`'s,
1995:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1996marked ``volatile``. The optimizers must not change the number of
1997volatile operations or change their order of execution relative to other
1998volatile operations. The optimizers *may* change the order of volatile
1999operations relative to non-volatile operations. This is not Java's
2000"volatile" and has no cross-thread synchronization behavior.
2001
Andrew Trick89fc5a62013-01-30 21:19:35 +00002002IR-level volatile loads and stores cannot safely be optimized into
2003llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2004flagged volatile. Likewise, the backend should never split or merge
2005target-legal volatile load/store instructions.
2006
Andrew Trick7e6f9282013-01-31 00:49:39 +00002007.. admonition:: Rationale
2008
2009 Platforms may rely on volatile loads and stores of natively supported
2010 data width to be executed as single instruction. For example, in C
2011 this holds for an l-value of volatile primitive type with native
2012 hardware support, but not necessarily for aggregate types. The
2013 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002014 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002015 do not violate the frontend's contract with the language.
2016
Sean Silvab084af42012-12-07 10:36:55 +00002017.. _memmodel:
2018
2019Memory Model for Concurrent Operations
2020--------------------------------------
2021
2022The LLVM IR does not define any way to start parallel threads of
2023execution or to register signal handlers. Nonetheless, there are
2024platform-specific ways to create them, and we define LLVM IR's behavior
2025in their presence. This model is inspired by the C++0x memory model.
2026
2027For a more informal introduction to this model, see the :doc:`Atomics`.
2028
2029We define a *happens-before* partial order as the least partial order
2030that
2031
2032- Is a superset of single-thread program order, and
2033- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2034 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2035 techniques, like pthread locks, thread creation, thread joining,
2036 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2037 Constraints <ordering>`).
2038
2039Note that program order does not introduce *happens-before* edges
2040between a thread and signals executing inside that thread.
2041
2042Every (defined) read operation (load instructions, memcpy, atomic
2043loads/read-modify-writes, etc.) R reads a series of bytes written by
2044(defined) write operations (store instructions, atomic
2045stores/read-modify-writes, memcpy, etc.). For the purposes of this
2046section, initialized globals are considered to have a write of the
2047initializer which is atomic and happens before any other read or write
2048of the memory in question. For each byte of a read R, R\ :sub:`byte`
2049may see any write to the same byte, except:
2050
2051- If write\ :sub:`1` happens before write\ :sub:`2`, and
2052 write\ :sub:`2` happens before R\ :sub:`byte`, then
2053 R\ :sub:`byte` does not see write\ :sub:`1`.
2054- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2055 R\ :sub:`byte` does not see write\ :sub:`3`.
2056
2057Given that definition, R\ :sub:`byte` is defined as follows:
2058
2059- If R is volatile, the result is target-dependent. (Volatile is
2060 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002061 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002062 like normal memory. It does not generally provide cross-thread
2063 synchronization.)
2064- Otherwise, if there is no write to the same byte that happens before
2065 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2066- Otherwise, if R\ :sub:`byte` may see exactly one write,
2067 R\ :sub:`byte` returns the value written by that write.
2068- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2069 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2070 Memory Ordering Constraints <ordering>` section for additional
2071 constraints on how the choice is made.
2072- Otherwise R\ :sub:`byte` returns ``undef``.
2073
2074R returns the value composed of the series of bytes it read. This
2075implies that some bytes within the value may be ``undef`` **without**
2076the entire value being ``undef``. Note that this only defines the
2077semantics of the operation; it doesn't mean that targets will emit more
2078than one instruction to read the series of bytes.
2079
2080Note that in cases where none of the atomic intrinsics are used, this
2081model places only one restriction on IR transformations on top of what
2082is required for single-threaded execution: introducing a store to a byte
2083which might not otherwise be stored is not allowed in general.
2084(Specifically, in the case where another thread might write to and read
2085from an address, introducing a store can change a load that may see
2086exactly one write into a load that may see multiple writes.)
2087
2088.. _ordering:
2089
2090Atomic Memory Ordering Constraints
2091----------------------------------
2092
2093Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2094:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2095:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002096ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002097the same address they *synchronize with*. These semantics are borrowed
2098from Java and C++0x, but are somewhat more colloquial. If these
2099descriptions aren't precise enough, check those specs (see spec
2100references in the :doc:`atomics guide <Atomics>`).
2101:ref:`fence <i_fence>` instructions treat these orderings somewhat
2102differently since they don't take an address. See that instruction's
2103documentation for details.
2104
2105For a simpler introduction to the ordering constraints, see the
2106:doc:`Atomics`.
2107
2108``unordered``
2109 The set of values that can be read is governed by the happens-before
2110 partial order. A value cannot be read unless some operation wrote
2111 it. This is intended to provide a guarantee strong enough to model
2112 Java's non-volatile shared variables. This ordering cannot be
2113 specified for read-modify-write operations; it is not strong enough
2114 to make them atomic in any interesting way.
2115``monotonic``
2116 In addition to the guarantees of ``unordered``, there is a single
2117 total order for modifications by ``monotonic`` operations on each
2118 address. All modification orders must be compatible with the
2119 happens-before order. There is no guarantee that the modification
2120 orders can be combined to a global total order for the whole program
2121 (and this often will not be possible). The read in an atomic
2122 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2123 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2124 order immediately before the value it writes. If one atomic read
2125 happens before another atomic read of the same address, the later
2126 read must see the same value or a later value in the address's
2127 modification order. This disallows reordering of ``monotonic`` (or
2128 stronger) operations on the same address. If an address is written
2129 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2130 read that address repeatedly, the other threads must eventually see
2131 the write. This corresponds to the C++0x/C1x
2132 ``memory_order_relaxed``.
2133``acquire``
2134 In addition to the guarantees of ``monotonic``, a
2135 *synchronizes-with* edge may be formed with a ``release`` operation.
2136 This is intended to model C++'s ``memory_order_acquire``.
2137``release``
2138 In addition to the guarantees of ``monotonic``, if this operation
2139 writes a value which is subsequently read by an ``acquire``
2140 operation, it *synchronizes-with* that operation. (This isn't a
2141 complete description; see the C++0x definition of a release
2142 sequence.) This corresponds to the C++0x/C1x
2143 ``memory_order_release``.
2144``acq_rel`` (acquire+release)
2145 Acts as both an ``acquire`` and ``release`` operation on its
2146 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2147``seq_cst`` (sequentially consistent)
2148 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002149 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002150 writes), there is a global total order on all
2151 sequentially-consistent operations on all addresses, which is
2152 consistent with the *happens-before* partial order and with the
2153 modification orders of all the affected addresses. Each
2154 sequentially-consistent read sees the last preceding write to the
2155 same address in this global order. This corresponds to the C++0x/C1x
2156 ``memory_order_seq_cst`` and Java volatile.
2157
2158.. _singlethread:
2159
2160If an atomic operation is marked ``singlethread``, it only *synchronizes
2161with* or participates in modification and seq\_cst total orderings with
2162other operations running in the same thread (for example, in signal
2163handlers).
2164
2165.. _fastmath:
2166
2167Fast-Math Flags
2168---------------
2169
2170LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2171:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002172:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2173be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002174
2175``nnan``
2176 No NaNs - Allow optimizations to assume the arguments and result are not
2177 NaN. Such optimizations are required to retain defined behavior over
2178 NaNs, but the value of the result is undefined.
2179
2180``ninf``
2181 No Infs - Allow optimizations to assume the arguments and result are not
2182 +/-Inf. Such optimizations are required to retain defined behavior over
2183 +/-Inf, but the value of the result is undefined.
2184
2185``nsz``
2186 No Signed Zeros - Allow optimizations to treat the sign of a zero
2187 argument or result as insignificant.
2188
2189``arcp``
2190 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2191 argument rather than perform division.
2192
2193``fast``
2194 Fast - Allow algebraically equivalent transformations that may
2195 dramatically change results in floating point (e.g. reassociate). This
2196 flag implies all the others.
2197
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002198.. _uselistorder:
2199
2200Use-list Order Directives
2201-------------------------
2202
2203Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002204order to be recreated. ``<order-indexes>`` is a comma-separated list of
2205indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002206value's use-list is immediately sorted by these indexes.
2207
Sean Silvaa1190322015-08-06 22:56:48 +00002208Use-list directives may appear at function scope or global scope. They are not
2209instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002210function scope, they must appear after the terminator of the final basic block.
2211
2212If basic blocks have their address taken via ``blockaddress()`` expressions,
2213``uselistorder_bb`` can be used to reorder their use-lists from outside their
2214function's scope.
2215
2216:Syntax:
2217
2218::
2219
2220 uselistorder <ty> <value>, { <order-indexes> }
2221 uselistorder_bb @function, %block { <order-indexes> }
2222
2223:Examples:
2224
2225::
2226
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002227 define void @foo(i32 %arg1, i32 %arg2) {
2228 entry:
2229 ; ... instructions ...
2230 bb:
2231 ; ... instructions ...
2232
2233 ; At function scope.
2234 uselistorder i32 %arg1, { 1, 0, 2 }
2235 uselistorder label %bb, { 1, 0 }
2236 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002237
2238 ; At global scope.
2239 uselistorder i32* @global, { 1, 2, 0 }
2240 uselistorder i32 7, { 1, 0 }
2241 uselistorder i32 (i32) @bar, { 1, 0 }
2242 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2243
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002244.. _source_filename:
2245
2246Source Filename
2247---------------
2248
2249The *source filename* string is set to the original module identifier,
2250which will be the name of the compiled source file when compiling from
2251source through the clang front end, for example. It is then preserved through
2252the IR and bitcode.
2253
2254This is currently necessary to generate a consistent unique global
2255identifier for local functions used in profile data, which prepends the
2256source file name to the local function name.
2257
2258The syntax for the source file name is simply:
2259
Renato Golin124f2592016-07-20 12:16:38 +00002260.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002261
2262 source_filename = "/path/to/source.c"
2263
Sean Silvab084af42012-12-07 10:36:55 +00002264.. _typesystem:
2265
2266Type System
2267===========
2268
2269The LLVM type system is one of the most important features of the
2270intermediate representation. Being typed enables a number of
2271optimizations to be performed on the intermediate representation
2272directly, without having to do extra analyses on the side before the
2273transformation. A strong type system makes it easier to read the
2274generated code and enables novel analyses and transformations that are
2275not feasible to perform on normal three address code representations.
2276
Rafael Espindola08013342013-12-07 19:34:20 +00002277.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002278
Rafael Espindola08013342013-12-07 19:34:20 +00002279Void Type
2280---------
Sean Silvab084af42012-12-07 10:36:55 +00002281
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002282:Overview:
2283
Rafael Espindola08013342013-12-07 19:34:20 +00002284
2285The void type does not represent any value and has no size.
2286
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002287:Syntax:
2288
Rafael Espindola08013342013-12-07 19:34:20 +00002289
2290::
2291
2292 void
Sean Silvab084af42012-12-07 10:36:55 +00002293
2294
Rafael Espindola08013342013-12-07 19:34:20 +00002295.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002296
Rafael Espindola08013342013-12-07 19:34:20 +00002297Function Type
2298-------------
Sean Silvab084af42012-12-07 10:36:55 +00002299
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002300:Overview:
2301
Sean Silvab084af42012-12-07 10:36:55 +00002302
Rafael Espindola08013342013-12-07 19:34:20 +00002303The function type can be thought of as a function signature. It consists of a
2304return type and a list of formal parameter types. The return type of a function
2305type is a void type or first class type --- except for :ref:`label <t_label>`
2306and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002307
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002308:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002309
Rafael Espindola08013342013-12-07 19:34:20 +00002310::
Sean Silvab084af42012-12-07 10:36:55 +00002311
Rafael Espindola08013342013-12-07 19:34:20 +00002312 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002313
Rafael Espindola08013342013-12-07 19:34:20 +00002314...where '``<parameter list>``' is a comma-separated list of type
2315specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002316indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002317argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002318handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002319except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002320
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002321:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002322
Rafael Espindola08013342013-12-07 19:34:20 +00002323+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2324| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2325+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2326| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2327+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2328| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2329+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2330| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2331+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2332
2333.. _t_firstclass:
2334
2335First Class Types
2336-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002337
2338The :ref:`first class <t_firstclass>` types are perhaps the most important.
2339Values of these types are the only ones which can be produced by
2340instructions.
2341
Rafael Espindola08013342013-12-07 19:34:20 +00002342.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002343
Rafael Espindola08013342013-12-07 19:34:20 +00002344Single Value Types
2345^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002346
Rafael Espindola08013342013-12-07 19:34:20 +00002347These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002348
2349.. _t_integer:
2350
2351Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002352""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002353
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002354:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002355
2356The integer type is a very simple type that simply specifies an
2357arbitrary bit width for the integer type desired. Any bit width from 1
2358bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2359
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002360:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002361
2362::
2363
2364 iN
2365
2366The number of bits the integer will occupy is specified by the ``N``
2367value.
2368
2369Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002370*********
Sean Silvab084af42012-12-07 10:36:55 +00002371
2372+----------------+------------------------------------------------+
2373| ``i1`` | a single-bit integer. |
2374+----------------+------------------------------------------------+
2375| ``i32`` | a 32-bit integer. |
2376+----------------+------------------------------------------------+
2377| ``i1942652`` | a really big integer of over 1 million bits. |
2378+----------------+------------------------------------------------+
2379
2380.. _t_floating:
2381
2382Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002383""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002384
2385.. list-table::
2386 :header-rows: 1
2387
2388 * - Type
2389 - Description
2390
2391 * - ``half``
2392 - 16-bit floating point value
2393
2394 * - ``float``
2395 - 32-bit floating point value
2396
2397 * - ``double``
2398 - 64-bit floating point value
2399
2400 * - ``fp128``
2401 - 128-bit floating point value (112-bit mantissa)
2402
2403 * - ``x86_fp80``
2404 - 80-bit floating point value (X87)
2405
2406 * - ``ppc_fp128``
2407 - 128-bit floating point value (two 64-bits)
2408
Reid Kleckner9a16d082014-03-05 02:41:37 +00002409X86_mmx Type
2410""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002411
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002412:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002413
Reid Kleckner9a16d082014-03-05 02:41:37 +00002414The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002415machine. The operations allowed on it are quite limited: parameters and
2416return values, load and store, and bitcast. User-specified MMX
2417instructions are represented as intrinsic or asm calls with arguments
2418and/or results of this type. There are no arrays, vectors or constants
2419of this type.
2420
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002421:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002422
2423::
2424
Reid Kleckner9a16d082014-03-05 02:41:37 +00002425 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002426
Sean Silvab084af42012-12-07 10:36:55 +00002427
Rafael Espindola08013342013-12-07 19:34:20 +00002428.. _t_pointer:
2429
2430Pointer Type
2431""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002432
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002433:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002434
Rafael Espindola08013342013-12-07 19:34:20 +00002435The pointer type is used to specify memory locations. Pointers are
2436commonly used to reference objects in memory.
2437
2438Pointer types may have an optional address space attribute defining the
2439numbered address space where the pointed-to object resides. The default
2440address space is number zero. The semantics of non-zero address spaces
2441are target-specific.
2442
2443Note that LLVM does not permit pointers to void (``void*``) nor does it
2444permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002445
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002446:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002447
2448::
2449
Rafael Espindola08013342013-12-07 19:34:20 +00002450 <type> *
2451
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002452:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002453
2454+-------------------------+--------------------------------------------------------------------------------------------------------------+
2455| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2456+-------------------------+--------------------------------------------------------------------------------------------------------------+
2457| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2458+-------------------------+--------------------------------------------------------------------------------------------------------------+
2459| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2460+-------------------------+--------------------------------------------------------------------------------------------------------------+
2461
2462.. _t_vector:
2463
2464Vector Type
2465"""""""""""
2466
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002467:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002468
2469A vector type is a simple derived type that represents a vector of
2470elements. Vector types are used when multiple primitive data are
2471operated in parallel using a single instruction (SIMD). A vector type
2472requires a size (number of elements) and an underlying primitive data
2473type. Vector types are considered :ref:`first class <t_firstclass>`.
2474
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002475:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002476
2477::
2478
2479 < <# elements> x <elementtype> >
2480
2481The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002482elementtype may be any integer, floating point or pointer type. Vectors
2483of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002484
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002485:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002486
2487+-------------------+--------------------------------------------------+
2488| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2489+-------------------+--------------------------------------------------+
2490| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2491+-------------------+--------------------------------------------------+
2492| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2493+-------------------+--------------------------------------------------+
2494| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2495+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002496
2497.. _t_label:
2498
2499Label Type
2500^^^^^^^^^^
2501
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002502:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002503
2504The label type represents code labels.
2505
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002506:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002507
2508::
2509
2510 label
2511
David Majnemerb611e3f2015-08-14 05:09:07 +00002512.. _t_token:
2513
2514Token Type
2515^^^^^^^^^^
2516
2517:Overview:
2518
2519The token type is used when a value is associated with an instruction
2520but all uses of the value must not attempt to introspect or obscure it.
2521As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2522:ref:`select <i_select>` of type token.
2523
2524:Syntax:
2525
2526::
2527
2528 token
2529
2530
2531
Sean Silvab084af42012-12-07 10:36:55 +00002532.. _t_metadata:
2533
2534Metadata Type
2535^^^^^^^^^^^^^
2536
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002537:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002538
2539The metadata type represents embedded metadata. No derived types may be
2540created from metadata except for :ref:`function <t_function>` arguments.
2541
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002542:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002543
2544::
2545
2546 metadata
2547
Sean Silvab084af42012-12-07 10:36:55 +00002548.. _t_aggregate:
2549
2550Aggregate Types
2551^^^^^^^^^^^^^^^
2552
2553Aggregate Types are a subset of derived types that can contain multiple
2554member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2555aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2556aggregate types.
2557
2558.. _t_array:
2559
2560Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002561""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002562
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002563:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002564
2565The array type is a very simple derived type that arranges elements
2566sequentially in memory. The array type requires a size (number of
2567elements) and an underlying data type.
2568
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002569:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002570
2571::
2572
2573 [<# elements> x <elementtype>]
2574
2575The number of elements is a constant integer value; ``elementtype`` may
2576be any type with a size.
2577
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002578:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002579
2580+------------------+--------------------------------------+
2581| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2582+------------------+--------------------------------------+
2583| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2584+------------------+--------------------------------------+
2585| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2586+------------------+--------------------------------------+
2587
2588Here are some examples of multidimensional arrays:
2589
2590+-----------------------------+----------------------------------------------------------+
2591| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2592+-----------------------------+----------------------------------------------------------+
2593| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2594+-----------------------------+----------------------------------------------------------+
2595| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2596+-----------------------------+----------------------------------------------------------+
2597
2598There is no restriction on indexing beyond the end of the array implied
2599by a static type (though there are restrictions on indexing beyond the
2600bounds of an allocated object in some cases). This means that
2601single-dimension 'variable sized array' addressing can be implemented in
2602LLVM with a zero length array type. An implementation of 'pascal style
2603arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2604example.
2605
Sean Silvab084af42012-12-07 10:36:55 +00002606.. _t_struct:
2607
2608Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002609""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002610
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002611:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002612
2613The structure type is used to represent a collection of data members
2614together in memory. The elements of a structure may be any type that has
2615a size.
2616
2617Structures in memory are accessed using '``load``' and '``store``' by
2618getting a pointer to a field with the '``getelementptr``' instruction.
2619Structures in registers are accessed using the '``extractvalue``' and
2620'``insertvalue``' instructions.
2621
2622Structures may optionally be "packed" structures, which indicate that
2623the alignment of the struct is one byte, and that there is no padding
2624between the elements. In non-packed structs, padding between field types
2625is inserted as defined by the DataLayout string in the module, which is
2626required to match what the underlying code generator expects.
2627
2628Structures can either be "literal" or "identified". A literal structure
2629is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2630identified types are always defined at the top level with a name.
2631Literal types are uniqued by their contents and can never be recursive
2632or opaque since there is no way to write one. Identified types can be
2633recursive, can be opaqued, and are never uniqued.
2634
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002635:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002636
2637::
2638
2639 %T1 = type { <type list> } ; Identified normal struct type
2640 %T2 = type <{ <type list> }> ; Identified packed struct type
2641
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002642:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002643
2644+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2645| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2646+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002647| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002648+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2649| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2650+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2651
2652.. _t_opaque:
2653
2654Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002655""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002656
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002657:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002658
2659Opaque structure types are used to represent named structure types that
2660do not have a body specified. This corresponds (for example) to the C
2661notion of a forward declared structure.
2662
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002663:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002664
2665::
2666
2667 %X = type opaque
2668 %52 = type opaque
2669
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002670:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002671
2672+--------------+-------------------+
2673| ``opaque`` | An opaque type. |
2674+--------------+-------------------+
2675
Sean Silva1703e702014-04-08 21:06:22 +00002676.. _constants:
2677
Sean Silvab084af42012-12-07 10:36:55 +00002678Constants
2679=========
2680
2681LLVM has several different basic types of constants. This section
2682describes them all and their syntax.
2683
2684Simple Constants
2685----------------
2686
2687**Boolean constants**
2688 The two strings '``true``' and '``false``' are both valid constants
2689 of the ``i1`` type.
2690**Integer constants**
2691 Standard integers (such as '4') are constants of the
2692 :ref:`integer <t_integer>` type. Negative numbers may be used with
2693 integer types.
2694**Floating point constants**
2695 Floating point constants use standard decimal notation (e.g.
2696 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2697 hexadecimal notation (see below). The assembler requires the exact
2698 decimal value of a floating-point constant. For example, the
2699 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2700 decimal in binary. Floating point constants must have a :ref:`floating
2701 point <t_floating>` type.
2702**Null pointer constants**
2703 The identifier '``null``' is recognized as a null pointer constant
2704 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002705**Token constants**
2706 The identifier '``none``' is recognized as an empty token constant
2707 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002708
2709The one non-intuitive notation for constants is the hexadecimal form of
2710floating point constants. For example, the form
2711'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2712than) '``double 4.5e+15``'. The only time hexadecimal floating point
2713constants are required (and the only time that they are generated by the
2714disassembler) is when a floating point constant must be emitted but it
2715cannot be represented as a decimal floating point number in a reasonable
2716number of digits. For example, NaN's, infinities, and other special
2717values are represented in their IEEE hexadecimal format so that assembly
2718and disassembly do not cause any bits to change in the constants.
2719
2720When using the hexadecimal form, constants of types half, float, and
2721double are represented using the 16-digit form shown above (which
2722matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002723must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002724precision, respectively. Hexadecimal format is always used for long
2725double, and there are three forms of long double. The 80-bit format used
2726by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2727128-bit format used by PowerPC (two adjacent doubles) is represented by
2728``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002729represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2730will only work if they match the long double format on your target.
2731The IEEE 16-bit format (half precision) is represented by ``0xH``
2732followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2733(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002734
Reid Kleckner9a16d082014-03-05 02:41:37 +00002735There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002736
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002737.. _complexconstants:
2738
Sean Silvab084af42012-12-07 10:36:55 +00002739Complex Constants
2740-----------------
2741
2742Complex constants are a (potentially recursive) combination of simple
2743constants and smaller complex constants.
2744
2745**Structure constants**
2746 Structure constants are represented with notation similar to
2747 structure type definitions (a comma separated list of elements,
2748 surrounded by braces (``{}``)). For example:
2749 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2750 "``@G = external global i32``". Structure constants must have
2751 :ref:`structure type <t_struct>`, and the number and types of elements
2752 must match those specified by the type.
2753**Array constants**
2754 Array constants are represented with notation similar to array type
2755 definitions (a comma separated list of elements, surrounded by
2756 square brackets (``[]``)). For example:
2757 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2758 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002759 match those specified by the type. As a special case, character array
2760 constants may also be represented as a double-quoted string using the ``c``
2761 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002762**Vector constants**
2763 Vector constants are represented with notation similar to vector
2764 type definitions (a comma separated list of elements, surrounded by
2765 less-than/greater-than's (``<>``)). For example:
2766 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2767 must have :ref:`vector type <t_vector>`, and the number and types of
2768 elements must match those specified by the type.
2769**Zero initialization**
2770 The string '``zeroinitializer``' can be used to zero initialize a
2771 value to zero of *any* type, including scalar and
2772 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2773 having to print large zero initializers (e.g. for large arrays) and
2774 is always exactly equivalent to using explicit zero initializers.
2775**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002776 A metadata node is a constant tuple without types. For example:
2777 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002778 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2779 Unlike other typed constants that are meant to be interpreted as part of
2780 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002781 information such as debug info.
2782
2783Global Variable and Function Addresses
2784--------------------------------------
2785
2786The addresses of :ref:`global variables <globalvars>` and
2787:ref:`functions <functionstructure>` are always implicitly valid
2788(link-time) constants. These constants are explicitly referenced when
2789the :ref:`identifier for the global <identifiers>` is used and always have
2790:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2791file:
2792
2793.. code-block:: llvm
2794
2795 @X = global i32 17
2796 @Y = global i32 42
2797 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2798
2799.. _undefvalues:
2800
2801Undefined Values
2802----------------
2803
2804The string '``undef``' can be used anywhere a constant is expected, and
2805indicates that the user of the value may receive an unspecified
2806bit-pattern. Undefined values may be of any type (other than '``label``'
2807or '``void``') and be used anywhere a constant is permitted.
2808
2809Undefined values are useful because they indicate to the compiler that
2810the program is well defined no matter what value is used. This gives the
2811compiler more freedom to optimize. Here are some examples of
2812(potentially surprising) transformations that are valid (in pseudo IR):
2813
2814.. code-block:: llvm
2815
2816 %A = add %X, undef
2817 %B = sub %X, undef
2818 %C = xor %X, undef
2819 Safe:
2820 %A = undef
2821 %B = undef
2822 %C = undef
2823
2824This is safe because all of the output bits are affected by the undef
2825bits. Any output bit can have a zero or one depending on the input bits.
2826
2827.. code-block:: llvm
2828
2829 %A = or %X, undef
2830 %B = and %X, undef
2831 Safe:
2832 %A = -1
2833 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002834 Safe:
2835 %A = %X ;; By choosing undef as 0
2836 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002837 Unsafe:
2838 %A = undef
2839 %B = undef
2840
2841These logical operations have bits that are not always affected by the
2842input. For example, if ``%X`` has a zero bit, then the output of the
2843'``and``' operation will always be a zero for that bit, no matter what
2844the corresponding bit from the '``undef``' is. As such, it is unsafe to
2845optimize or assume that the result of the '``and``' is '``undef``'.
2846However, it is safe to assume that all bits of the '``undef``' could be
28470, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2848all the bits of the '``undef``' operand to the '``or``' could be set,
2849allowing the '``or``' to be folded to -1.
2850
2851.. code-block:: llvm
2852
2853 %A = select undef, %X, %Y
2854 %B = select undef, 42, %Y
2855 %C = select %X, %Y, undef
2856 Safe:
2857 %A = %X (or %Y)
2858 %B = 42 (or %Y)
2859 %C = %Y
2860 Unsafe:
2861 %A = undef
2862 %B = undef
2863 %C = undef
2864
2865This set of examples shows that undefined '``select``' (and conditional
2866branch) conditions can go *either way*, but they have to come from one
2867of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2868both known to have a clear low bit, then ``%A`` would have to have a
2869cleared low bit. However, in the ``%C`` example, the optimizer is
2870allowed to assume that the '``undef``' operand could be the same as
2871``%Y``, allowing the whole '``select``' to be eliminated.
2872
Renato Golin124f2592016-07-20 12:16:38 +00002873.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002874
2875 %A = xor undef, undef
2876
2877 %B = undef
2878 %C = xor %B, %B
2879
2880 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002881 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002882 %F = icmp gte %D, 4
2883
2884 Safe:
2885 %A = undef
2886 %B = undef
2887 %C = undef
2888 %D = undef
2889 %E = undef
2890 %F = undef
2891
2892This example points out that two '``undef``' operands are not
2893necessarily the same. This can be surprising to people (and also matches
2894C semantics) where they assume that "``X^X``" is always zero, even if
2895``X`` is undefined. This isn't true for a number of reasons, but the
2896short answer is that an '``undef``' "variable" can arbitrarily change
2897its value over its "live range". This is true because the variable
2898doesn't actually *have a live range*. Instead, the value is logically
2899read from arbitrary registers that happen to be around when needed, so
2900the value is not necessarily consistent over time. In fact, ``%A`` and
2901``%C`` need to have the same semantics or the core LLVM "replace all
2902uses with" concept would not hold.
2903
2904.. code-block:: llvm
2905
2906 %A = fdiv undef, %X
2907 %B = fdiv %X, undef
2908 Safe:
2909 %A = undef
2910 b: unreachable
2911
2912These examples show the crucial difference between an *undefined value*
2913and *undefined behavior*. An undefined value (like '``undef``') is
2914allowed to have an arbitrary bit-pattern. This means that the ``%A``
2915operation can be constant folded to '``undef``', because the '``undef``'
2916could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2917However, in the second example, we can make a more aggressive
2918assumption: because the ``undef`` is allowed to be an arbitrary value,
2919we are allowed to assume that it could be zero. Since a divide by zero
2920has *undefined behavior*, we are allowed to assume that the operation
2921does not execute at all. This allows us to delete the divide and all
2922code after it. Because the undefined operation "can't happen", the
2923optimizer can assume that it occurs in dead code.
2924
Renato Golin124f2592016-07-20 12:16:38 +00002925.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002926
2927 a: store undef -> %X
2928 b: store %X -> undef
2929 Safe:
2930 a: <deleted>
2931 b: unreachable
2932
2933These examples reiterate the ``fdiv`` example: a store *of* an undefined
2934value can be assumed to not have any effect; we can assume that the
2935value is overwritten with bits that happen to match what was already
2936there. However, a store *to* an undefined location could clobber
2937arbitrary memory, therefore, it has undefined behavior.
2938
2939.. _poisonvalues:
2940
2941Poison Values
2942-------------
2943
2944Poison values are similar to :ref:`undef values <undefvalues>`, however
2945they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002946that cannot evoke side effects has nevertheless detected a condition
2947that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002948
2949There is currently no way of representing a poison value in the IR; they
2950only exist when produced by operations such as :ref:`add <i_add>` with
2951the ``nsw`` flag.
2952
2953Poison value behavior is defined in terms of value *dependence*:
2954
2955- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2956- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2957 their dynamic predecessor basic block.
2958- Function arguments depend on the corresponding actual argument values
2959 in the dynamic callers of their functions.
2960- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2961 instructions that dynamically transfer control back to them.
2962- :ref:`Invoke <i_invoke>` instructions depend on the
2963 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2964 call instructions that dynamically transfer control back to them.
2965- Non-volatile loads and stores depend on the most recent stores to all
2966 of the referenced memory addresses, following the order in the IR
2967 (including loads and stores implied by intrinsics such as
2968 :ref:`@llvm.memcpy <int_memcpy>`.)
2969- An instruction with externally visible side effects depends on the
2970 most recent preceding instruction with externally visible side
2971 effects, following the order in the IR. (This includes :ref:`volatile
2972 operations <volatile>`.)
2973- An instruction *control-depends* on a :ref:`terminator
2974 instruction <terminators>` if the terminator instruction has
2975 multiple successors and the instruction is always executed when
2976 control transfers to one of the successors, and may not be executed
2977 when control is transferred to another.
2978- Additionally, an instruction also *control-depends* on a terminator
2979 instruction if the set of instructions it otherwise depends on would
2980 be different if the terminator had transferred control to a different
2981 successor.
2982- Dependence is transitive.
2983
Richard Smith32dbdf62014-07-31 04:25:36 +00002984Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2985with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002986on a poison value has undefined behavior.
2987
2988Here are some examples:
2989
2990.. code-block:: llvm
2991
2992 entry:
2993 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2994 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002995 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002996 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2997
2998 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002999 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003000
3001 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3002
3003 %narrowaddr = bitcast i32* @g to i16*
3004 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003005 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3006 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003007
3008 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3009 br i1 %cmp, label %true, label %end ; Branch to either destination.
3010
3011 true:
3012 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3013 ; it has undefined behavior.
3014 br label %end
3015
3016 end:
3017 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3018 ; Both edges into this PHI are
3019 ; control-dependent on %cmp, so this
3020 ; always results in a poison value.
3021
3022 store volatile i32 0, i32* @g ; This would depend on the store in %true
3023 ; if %cmp is true, or the store in %entry
3024 ; otherwise, so this is undefined behavior.
3025
3026 br i1 %cmp, label %second_true, label %second_end
3027 ; The same branch again, but this time the
3028 ; true block doesn't have side effects.
3029
3030 second_true:
3031 ; No side effects!
3032 ret void
3033
3034 second_end:
3035 store volatile i32 0, i32* @g ; This time, the instruction always depends
3036 ; on the store in %end. Also, it is
3037 ; control-equivalent to %end, so this is
3038 ; well-defined (ignoring earlier undefined
3039 ; behavior in this example).
3040
3041.. _blockaddress:
3042
3043Addresses of Basic Blocks
3044-------------------------
3045
3046``blockaddress(@function, %block)``
3047
3048The '``blockaddress``' constant computes the address of the specified
3049basic block in the specified function, and always has an ``i8*`` type.
3050Taking the address of the entry block is illegal.
3051
3052This value only has defined behavior when used as an operand to the
3053':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3054against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003055undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003056no label is equal to the null pointer. This may be passed around as an
3057opaque pointer sized value as long as the bits are not inspected. This
3058allows ``ptrtoint`` and arithmetic to be performed on these values so
3059long as the original value is reconstituted before the ``indirectbr``
3060instruction.
3061
3062Finally, some targets may provide defined semantics when using the value
3063as the operand to an inline assembly, but that is target specific.
3064
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003065.. _constantexprs:
3066
Sean Silvab084af42012-12-07 10:36:55 +00003067Constant Expressions
3068--------------------
3069
3070Constant expressions are used to allow expressions involving other
3071constants to be used as constants. Constant expressions may be of any
3072:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3073that does not have side effects (e.g. load and call are not supported).
3074The following is the syntax for constant expressions:
3075
3076``trunc (CST to TYPE)``
3077 Truncate a constant to another type. The bit size of CST must be
3078 larger than the bit size of TYPE. Both types must be integers.
3079``zext (CST to TYPE)``
3080 Zero extend a constant to another type. The bit size of CST must be
3081 smaller than the bit size of TYPE. Both types must be integers.
3082``sext (CST to TYPE)``
3083 Sign extend a constant to another type. The bit size of CST must be
3084 smaller than the bit size of TYPE. Both types must be integers.
3085``fptrunc (CST to TYPE)``
3086 Truncate a floating point constant to another floating point type.
3087 The size of CST must be larger than the size of TYPE. Both types
3088 must be floating point.
3089``fpext (CST to TYPE)``
3090 Floating point extend a constant to another type. The size of CST
3091 must be smaller or equal to the size of TYPE. Both types must be
3092 floating point.
3093``fptoui (CST to TYPE)``
3094 Convert a floating point constant to the corresponding unsigned
3095 integer constant. TYPE must be a scalar or vector integer type. CST
3096 must be of scalar or vector floating point type. Both CST and TYPE
3097 must be scalars, or vectors of the same number of elements. If the
3098 value won't fit in the integer type, the results are undefined.
3099``fptosi (CST to TYPE)``
3100 Convert a floating point constant to the corresponding signed
3101 integer constant. TYPE must be a scalar or vector integer type. CST
3102 must be of scalar or vector floating point type. Both CST and TYPE
3103 must be scalars, or vectors of the same number of elements. If the
3104 value won't fit in the integer type, the results are undefined.
3105``uitofp (CST to TYPE)``
3106 Convert an unsigned integer constant to the corresponding floating
3107 point constant. TYPE must be a scalar or vector floating point type.
3108 CST must be of scalar or vector integer type. Both CST and TYPE must
3109 be scalars, or vectors of the same number of elements. If the value
3110 won't fit in the floating point type, the results are undefined.
3111``sitofp (CST to TYPE)``
3112 Convert a signed integer constant to the corresponding floating
3113 point constant. TYPE must be a scalar or vector floating point type.
3114 CST must be of scalar or vector integer type. Both CST and TYPE must
3115 be scalars, or vectors of the same number of elements. If the value
3116 won't fit in the floating point type, the results are undefined.
3117``ptrtoint (CST to TYPE)``
3118 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003119 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003120 pointer type. The ``CST`` value is zero extended, truncated, or
3121 unchanged to make it fit in ``TYPE``.
3122``inttoptr (CST to TYPE)``
3123 Convert an integer constant to a pointer constant. TYPE must be a
3124 pointer type. CST must be of integer type. The CST value is zero
3125 extended, truncated, or unchanged to make it fit in a pointer size.
3126 This one is *really* dangerous!
3127``bitcast (CST to TYPE)``
3128 Convert a constant, CST, to another TYPE. The constraints of the
3129 operands are the same as those for the :ref:`bitcast
3130 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003131``addrspacecast (CST to TYPE)``
3132 Convert a constant pointer or constant vector of pointer, CST, to another
3133 TYPE in a different address space. The constraints of the operands are the
3134 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003135``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003136 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3137 constants. As with the :ref:`getelementptr <i_getelementptr>`
3138 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003139 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003140``select (COND, VAL1, VAL2)``
3141 Perform the :ref:`select operation <i_select>` on constants.
3142``icmp COND (VAL1, VAL2)``
3143 Performs the :ref:`icmp operation <i_icmp>` on constants.
3144``fcmp COND (VAL1, VAL2)``
3145 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3146``extractelement (VAL, IDX)``
3147 Perform the :ref:`extractelement operation <i_extractelement>` on
3148 constants.
3149``insertelement (VAL, ELT, IDX)``
3150 Perform the :ref:`insertelement operation <i_insertelement>` on
3151 constants.
3152``shufflevector (VEC1, VEC2, IDXMASK)``
3153 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3154 constants.
3155``extractvalue (VAL, IDX0, IDX1, ...)``
3156 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3157 constants. The index list is interpreted in a similar manner as
3158 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3159 least one index value must be specified.
3160``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3161 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3162 The index list is interpreted in a similar manner as indices in a
3163 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3164 value must be specified.
3165``OPCODE (LHS, RHS)``
3166 Perform the specified operation of the LHS and RHS constants. OPCODE
3167 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3168 binary <bitwiseops>` operations. The constraints on operands are
3169 the same as those for the corresponding instruction (e.g. no bitwise
3170 operations on floating point values are allowed).
3171
3172Other Values
3173============
3174
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003175.. _inlineasmexprs:
3176
Sean Silvab084af42012-12-07 10:36:55 +00003177Inline Assembler Expressions
3178----------------------------
3179
3180LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003181Inline Assembly <moduleasm>`) through the use of a special value. This value
3182represents the inline assembler as a template string (containing the
3183instructions to emit), a list of operand constraints (stored as a string), a
3184flag that indicates whether or not the inline asm expression has side effects,
3185and a flag indicating whether the function containing the asm needs to align its
3186stack conservatively.
3187
3188The template string supports argument substitution of the operands using "``$``"
3189followed by a number, to indicate substitution of the given register/memory
3190location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3191be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3192operand (See :ref:`inline-asm-modifiers`).
3193
3194A literal "``$``" may be included by using "``$$``" in the template. To include
3195other special characters into the output, the usual "``\XX``" escapes may be
3196used, just as in other strings. Note that after template substitution, the
3197resulting assembly string is parsed by LLVM's integrated assembler unless it is
3198disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3199syntax known to LLVM.
3200
3201LLVM's support for inline asm is modeled closely on the requirements of Clang's
3202GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3203modifier codes listed here are similar or identical to those in GCC's inline asm
3204support. However, to be clear, the syntax of the template and constraint strings
3205described here is *not* the same as the syntax accepted by GCC and Clang, and,
3206while most constraint letters are passed through as-is by Clang, some get
3207translated to other codes when converting from the C source to the LLVM
3208assembly.
3209
3210An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003211
3212.. code-block:: llvm
3213
3214 i32 (i32) asm "bswap $0", "=r,r"
3215
3216Inline assembler expressions may **only** be used as the callee operand
3217of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3218Thus, typically we have:
3219
3220.. code-block:: llvm
3221
3222 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3223
3224Inline asms with side effects not visible in the constraint list must be
3225marked as having side effects. This is done through the use of the
3226'``sideeffect``' keyword, like so:
3227
3228.. code-block:: llvm
3229
3230 call void asm sideeffect "eieio", ""()
3231
3232In some cases inline asms will contain code that will not work unless
3233the stack is aligned in some way, such as calls or SSE instructions on
3234x86, yet will not contain code that does that alignment within the asm.
3235The compiler should make conservative assumptions about what the asm
3236might contain and should generate its usual stack alignment code in the
3237prologue if the '``alignstack``' keyword is present:
3238
3239.. code-block:: llvm
3240
3241 call void asm alignstack "eieio", ""()
3242
3243Inline asms also support using non-standard assembly dialects. The
3244assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3245the inline asm is using the Intel dialect. Currently, ATT and Intel are
3246the only supported dialects. An example is:
3247
3248.. code-block:: llvm
3249
3250 call void asm inteldialect "eieio", ""()
3251
3252If multiple keywords appear the '``sideeffect``' keyword must come
3253first, the '``alignstack``' keyword second and the '``inteldialect``'
3254keyword last.
3255
James Y Knightbc832ed2015-07-08 18:08:36 +00003256Inline Asm Constraint String
3257^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3258
3259The constraint list is a comma-separated string, each element containing one or
3260more constraint codes.
3261
3262For each element in the constraint list an appropriate register or memory
3263operand will be chosen, and it will be made available to assembly template
3264string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3265second, etc.
3266
3267There are three different types of constraints, which are distinguished by a
3268prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3269constraints must always be given in that order: outputs first, then inputs, then
3270clobbers. They cannot be intermingled.
3271
3272There are also three different categories of constraint codes:
3273
3274- Register constraint. This is either a register class, or a fixed physical
3275 register. This kind of constraint will allocate a register, and if necessary,
3276 bitcast the argument or result to the appropriate type.
3277- Memory constraint. This kind of constraint is for use with an instruction
3278 taking a memory operand. Different constraints allow for different addressing
3279 modes used by the target.
3280- Immediate value constraint. This kind of constraint is for an integer or other
3281 immediate value which can be rendered directly into an instruction. The
3282 various target-specific constraints allow the selection of a value in the
3283 proper range for the instruction you wish to use it with.
3284
3285Output constraints
3286""""""""""""""""""
3287
3288Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3289indicates that the assembly will write to this operand, and the operand will
3290then be made available as a return value of the ``asm`` expression. Output
3291constraints do not consume an argument from the call instruction. (Except, see
3292below about indirect outputs).
3293
3294Normally, it is expected that no output locations are written to by the assembly
3295expression until *all* of the inputs have been read. As such, LLVM may assign
3296the same register to an output and an input. If this is not safe (e.g. if the
3297assembly contains two instructions, where the first writes to one output, and
3298the second reads an input and writes to a second output), then the "``&``"
3299modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003300"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003301will not use the same register for any inputs (other than an input tied to this
3302output).
3303
3304Input constraints
3305"""""""""""""""""
3306
3307Input constraints do not have a prefix -- just the constraint codes. Each input
3308constraint will consume one argument from the call instruction. It is not
3309permitted for the asm to write to any input register or memory location (unless
3310that input is tied to an output). Note also that multiple inputs may all be
3311assigned to the same register, if LLVM can determine that they necessarily all
3312contain the same value.
3313
3314Instead of providing a Constraint Code, input constraints may also "tie"
3315themselves to an output constraint, by providing an integer as the constraint
3316string. Tied inputs still consume an argument from the call instruction, and
3317take up a position in the asm template numbering as is usual -- they will simply
3318be constrained to always use the same register as the output they've been tied
3319to. For example, a constraint string of "``=r,0``" says to assign a register for
3320output, and use that register as an input as well (it being the 0'th
3321constraint).
3322
3323It is permitted to tie an input to an "early-clobber" output. In that case, no
3324*other* input may share the same register as the input tied to the early-clobber
3325(even when the other input has the same value).
3326
3327You may only tie an input to an output which has a register constraint, not a
3328memory constraint. Only a single input may be tied to an output.
3329
3330There is also an "interesting" feature which deserves a bit of explanation: if a
3331register class constraint allocates a register which is too small for the value
3332type operand provided as input, the input value will be split into multiple
3333registers, and all of them passed to the inline asm.
3334
3335However, this feature is often not as useful as you might think.
3336
3337Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3338architectures that have instructions which operate on multiple consecutive
3339instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3340SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3341hardware then loads into both the named register, and the next register. This
3342feature of inline asm would not be useful to support that.)
3343
3344A few of the targets provide a template string modifier allowing explicit access
3345to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3346``D``). On such an architecture, you can actually access the second allocated
3347register (yet, still, not any subsequent ones). But, in that case, you're still
3348probably better off simply splitting the value into two separate operands, for
3349clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3350despite existing only for use with this feature, is not really a good idea to
3351use)
3352
3353Indirect inputs and outputs
3354"""""""""""""""""""""""""""
3355
3356Indirect output or input constraints can be specified by the "``*``" modifier
3357(which goes after the "``=``" in case of an output). This indicates that the asm
3358will write to or read from the contents of an *address* provided as an input
3359argument. (Note that in this way, indirect outputs act more like an *input* than
3360an output: just like an input, they consume an argument of the call expression,
3361rather than producing a return value. An indirect output constraint is an
3362"output" only in that the asm is expected to write to the contents of the input
3363memory location, instead of just read from it).
3364
3365This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3366address of a variable as a value.
3367
3368It is also possible to use an indirect *register* constraint, but only on output
3369(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3370value normally, and then, separately emit a store to the address provided as
3371input, after the provided inline asm. (It's not clear what value this
3372functionality provides, compared to writing the store explicitly after the asm
3373statement, and it can only produce worse code, since it bypasses many
3374optimization passes. I would recommend not using it.)
3375
3376
3377Clobber constraints
3378"""""""""""""""""""
3379
3380A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3381consume an input operand, nor generate an output. Clobbers cannot use any of the
3382general constraint code letters -- they may use only explicit register
3383constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3384"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3385memory locations -- not only the memory pointed to by a declared indirect
3386output.
3387
Peter Zotov00257232016-08-30 10:48:31 +00003388Note that clobbering named registers that are also present in output
3389constraints is not legal.
3390
James Y Knightbc832ed2015-07-08 18:08:36 +00003391
3392Constraint Codes
3393""""""""""""""""
3394After a potential prefix comes constraint code, or codes.
3395
3396A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3397followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3398(e.g. "``{eax}``").
3399
3400The one and two letter constraint codes are typically chosen to be the same as
3401GCC's constraint codes.
3402
3403A single constraint may include one or more than constraint code in it, leaving
3404it up to LLVM to choose which one to use. This is included mainly for
3405compatibility with the translation of GCC inline asm coming from clang.
3406
3407There are two ways to specify alternatives, and either or both may be used in an
3408inline asm constraint list:
3409
34101) Append the codes to each other, making a constraint code set. E.g. "``im``"
3411 or "``{eax}m``". This means "choose any of the options in the set". The
3412 choice of constraint is made independently for each constraint in the
3413 constraint list.
3414
34152) Use "``|``" between constraint code sets, creating alternatives. Every
3416 constraint in the constraint list must have the same number of alternative
3417 sets. With this syntax, the same alternative in *all* of the items in the
3418 constraint list will be chosen together.
3419
3420Putting those together, you might have a two operand constraint string like
3421``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3422operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3423may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3424
3425However, the use of either of the alternatives features is *NOT* recommended, as
3426LLVM is not able to make an intelligent choice about which one to use. (At the
3427point it currently needs to choose, not enough information is available to do so
3428in a smart way.) Thus, it simply tries to make a choice that's most likely to
3429compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3430always choose to use memory, not registers). And, if given multiple registers,
3431or multiple register classes, it will simply choose the first one. (In fact, it
3432doesn't currently even ensure explicitly specified physical registers are
3433unique, so specifying multiple physical registers as alternatives, like
3434``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3435intended.)
3436
3437Supported Constraint Code List
3438""""""""""""""""""""""""""""""
3439
3440The constraint codes are, in general, expected to behave the same way they do in
3441GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3442inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3443and GCC likely indicates a bug in LLVM.
3444
3445Some constraint codes are typically supported by all targets:
3446
3447- ``r``: A register in the target's general purpose register class.
3448- ``m``: A memory address operand. It is target-specific what addressing modes
3449 are supported, typical examples are register, or register + register offset,
3450 or register + immediate offset (of some target-specific size).
3451- ``i``: An integer constant (of target-specific width). Allows either a simple
3452 immediate, or a relocatable value.
3453- ``n``: An integer constant -- *not* including relocatable values.
3454- ``s``: An integer constant, but allowing *only* relocatable values.
3455- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3456 useful to pass a label for an asm branch or call.
3457
3458 .. FIXME: but that surely isn't actually okay to jump out of an asm
3459 block without telling llvm about the control transfer???)
3460
3461- ``{register-name}``: Requires exactly the named physical register.
3462
3463Other constraints are target-specific:
3464
3465AArch64:
3466
3467- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3468- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3469 i.e. 0 to 4095 with optional shift by 12.
3470- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3471 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3472- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3473 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3474- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3475 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3476- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3477 32-bit register. This is a superset of ``K``: in addition to the bitmask
3478 immediate, also allows immediate integers which can be loaded with a single
3479 ``MOVZ`` or ``MOVL`` instruction.
3480- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3481 64-bit register. This is a superset of ``L``.
3482- ``Q``: Memory address operand must be in a single register (no
3483 offsets). (However, LLVM currently does this for the ``m`` constraint as
3484 well.)
3485- ``r``: A 32 or 64-bit integer register (W* or X*).
3486- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3487- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3488
3489AMDGPU:
3490
3491- ``r``: A 32 or 64-bit integer register.
3492- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3493- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3494
3495
3496All ARM modes:
3497
3498- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3499 operand. Treated the same as operand ``m``, at the moment.
3500
3501ARM and ARM's Thumb2 mode:
3502
3503- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3504- ``I``: An immediate integer valid for a data-processing instruction.
3505- ``J``: An immediate integer between -4095 and 4095.
3506- ``K``: An immediate integer whose bitwise inverse is valid for a
3507 data-processing instruction. (Can be used with template modifier "``B``" to
3508 print the inverted value).
3509- ``L``: An immediate integer whose negation is valid for a data-processing
3510 instruction. (Can be used with template modifier "``n``" to print the negated
3511 value).
3512- ``M``: A power of two or a integer between 0 and 32.
3513- ``N``: Invalid immediate constraint.
3514- ``O``: Invalid immediate constraint.
3515- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3516- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3517 as ``r``.
3518- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3519 invalid.
3520- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3521 ``d0-d31``, or ``q0-q15``.
3522- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3523 ``d0-d7``, or ``q0-q3``.
3524- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3525 ``s0-s31``.
3526
3527ARM's Thumb1 mode:
3528
3529- ``I``: An immediate integer between 0 and 255.
3530- ``J``: An immediate integer between -255 and -1.
3531- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3532 some amount.
3533- ``L``: An immediate integer between -7 and 7.
3534- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3535- ``N``: An immediate integer between 0 and 31.
3536- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3537- ``r``: A low 32-bit GPR register (``r0-r7``).
3538- ``l``: A low 32-bit GPR register (``r0-r7``).
3539- ``h``: A high GPR register (``r0-r7``).
3540- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3541 ``d0-d31``, or ``q0-q15``.
3542- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3543 ``d0-d7``, or ``q0-q3``.
3544- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3545 ``s0-s31``.
3546
3547
3548Hexagon:
3549
3550- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3551 at the moment.
3552- ``r``: A 32 or 64-bit register.
3553
3554MSP430:
3555
3556- ``r``: An 8 or 16-bit register.
3557
3558MIPS:
3559
3560- ``I``: An immediate signed 16-bit integer.
3561- ``J``: An immediate integer zero.
3562- ``K``: An immediate unsigned 16-bit integer.
3563- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3564- ``N``: An immediate integer between -65535 and -1.
3565- ``O``: An immediate signed 15-bit integer.
3566- ``P``: An immediate integer between 1 and 65535.
3567- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3568 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3569- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3570 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3571 ``m``.
3572- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3573 ``sc`` instruction on the given subtarget (details vary).
3574- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3575- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003576 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3577 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003578- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3579 ``25``).
3580- ``l``: The ``lo`` register, 32 or 64-bit.
3581- ``x``: Invalid.
3582
3583NVPTX:
3584
3585- ``b``: A 1-bit integer register.
3586- ``c`` or ``h``: A 16-bit integer register.
3587- ``r``: A 32-bit integer register.
3588- ``l`` or ``N``: A 64-bit integer register.
3589- ``f``: A 32-bit float register.
3590- ``d``: A 64-bit float register.
3591
3592
3593PowerPC:
3594
3595- ``I``: An immediate signed 16-bit integer.
3596- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3597- ``K``: An immediate unsigned 16-bit integer.
3598- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3599- ``M``: An immediate integer greater than 31.
3600- ``N``: An immediate integer that is an exact power of 2.
3601- ``O``: The immediate integer constant 0.
3602- ``P``: An immediate integer constant whose negation is a signed 16-bit
3603 constant.
3604- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3605 treated the same as ``m``.
3606- ``r``: A 32 or 64-bit integer register.
3607- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3608 ``R1-R31``).
3609- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3610 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3611- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3612 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3613 altivec vector register (``V0-V31``).
3614
3615 .. FIXME: is this a bug that v accepts QPX registers? I think this
3616 is supposed to only use the altivec vector registers?
3617
3618- ``y``: Condition register (``CR0-CR7``).
3619- ``wc``: An individual CR bit in a CR register.
3620- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3621 register set (overlapping both the floating-point and vector register files).
3622- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3623 set.
3624
3625Sparc:
3626
3627- ``I``: An immediate 13-bit signed integer.
3628- ``r``: A 32-bit integer register.
3629
3630SystemZ:
3631
3632- ``I``: An immediate unsigned 8-bit integer.
3633- ``J``: An immediate unsigned 12-bit integer.
3634- ``K``: An immediate signed 16-bit integer.
3635- ``L``: An immediate signed 20-bit integer.
3636- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003637- ``Q``: A memory address operand with a base address and a 12-bit immediate
3638 unsigned displacement.
3639- ``R``: A memory address operand with a base address, a 12-bit immediate
3640 unsigned displacement, and an index register.
3641- ``S``: A memory address operand with a base address and a 20-bit immediate
3642 signed displacement.
3643- ``T``: A memory address operand with a base address, a 20-bit immediate
3644 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003645- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3646- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3647 address context evaluates as zero).
3648- ``h``: A 32-bit value in the high part of a 64bit data register
3649 (LLVM-specific)
3650- ``f``: A 32, 64, or 128-bit floating point register.
3651
3652X86:
3653
3654- ``I``: An immediate integer between 0 and 31.
3655- ``J``: An immediate integer between 0 and 64.
3656- ``K``: An immediate signed 8-bit integer.
3657- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3658 0xffffffff.
3659- ``M``: An immediate integer between 0 and 3.
3660- ``N``: An immediate unsigned 8-bit integer.
3661- ``O``: An immediate integer between 0 and 127.
3662- ``e``: An immediate 32-bit signed integer.
3663- ``Z``: An immediate 32-bit unsigned integer.
3664- ``o``, ``v``: Treated the same as ``m``, at the moment.
3665- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3666 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3667 registers, and on X86-64, it is all of the integer registers.
3668- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3669 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3670- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3671- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3672 existed since i386, and can be accessed without the REX prefix.
3673- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3674- ``y``: A 64-bit MMX register, if MMX is enabled.
3675- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3676 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3677 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3678 512-bit vector operand in an AVX512 register, Otherwise, an error.
3679- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3680- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3681 32-bit mode, a 64-bit integer operand will get split into two registers). It
3682 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3683 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3684 you're better off splitting it yourself, before passing it to the asm
3685 statement.
3686
3687XCore:
3688
3689- ``r``: A 32-bit integer register.
3690
3691
3692.. _inline-asm-modifiers:
3693
3694Asm template argument modifiers
3695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3696
3697In the asm template string, modifiers can be used on the operand reference, like
3698"``${0:n}``".
3699
3700The modifiers are, in general, expected to behave the same way they do in
3701GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3702inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3703and GCC likely indicates a bug in LLVM.
3704
3705Target-independent:
3706
Sean Silvaa1190322015-08-06 22:56:48 +00003707- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003708 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3709- ``n``: Negate and print immediate integer constant unadorned, without the
3710 target-specific immediate punctuation (e.g. no ``$`` prefix).
3711- ``l``: Print as an unadorned label, without the target-specific label
3712 punctuation (e.g. no ``$`` prefix).
3713
3714AArch64:
3715
3716- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3717 instead of ``x30``, print ``w30``.
3718- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3719- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3720 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3721 ``v*``.
3722
3723AMDGPU:
3724
3725- ``r``: No effect.
3726
3727ARM:
3728
3729- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3730 register).
3731- ``P``: No effect.
3732- ``q``: No effect.
3733- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3734 as ``d4[1]`` instead of ``s9``)
3735- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3736 prefix.
3737- ``L``: Print the low 16-bits of an immediate integer constant.
3738- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3739 register operands subsequent to the specified one (!), so use carefully.
3740- ``Q``: Print the low-order register of a register-pair, or the low-order
3741 register of a two-register operand.
3742- ``R``: Print the high-order register of a register-pair, or the high-order
3743 register of a two-register operand.
3744- ``H``: Print the second register of a register-pair. (On a big-endian system,
3745 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3746 to ``R``.)
3747
3748 .. FIXME: H doesn't currently support printing the second register
3749 of a two-register operand.
3750
3751- ``e``: Print the low doubleword register of a NEON quad register.
3752- ``f``: Print the high doubleword register of a NEON quad register.
3753- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3754 adornment.
3755
3756Hexagon:
3757
3758- ``L``: Print the second register of a two-register operand. Requires that it
3759 has been allocated consecutively to the first.
3760
3761 .. FIXME: why is it restricted to consecutive ones? And there's
3762 nothing that ensures that happens, is there?
3763
3764- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3765 nothing. Used to print 'addi' vs 'add' instructions.
3766
3767MSP430:
3768
3769No additional modifiers.
3770
3771MIPS:
3772
3773- ``X``: Print an immediate integer as hexadecimal
3774- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3775- ``d``: Print an immediate integer as decimal.
3776- ``m``: Subtract one and print an immediate integer as decimal.
3777- ``z``: Print $0 if an immediate zero, otherwise print normally.
3778- ``L``: Print the low-order register of a two-register operand, or prints the
3779 address of the low-order word of a double-word memory operand.
3780
3781 .. FIXME: L seems to be missing memory operand support.
3782
3783- ``M``: Print the high-order register of a two-register operand, or prints the
3784 address of the high-order word of a double-word memory operand.
3785
3786 .. FIXME: M seems to be missing memory operand support.
3787
3788- ``D``: Print the second register of a two-register operand, or prints the
3789 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3790 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3791 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003792- ``w``: No effect. Provided for compatibility with GCC which requires this
3793 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3794 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003795
3796NVPTX:
3797
3798- ``r``: No effect.
3799
3800PowerPC:
3801
3802- ``L``: Print the second register of a two-register operand. Requires that it
3803 has been allocated consecutively to the first.
3804
3805 .. FIXME: why is it restricted to consecutive ones? And there's
3806 nothing that ensures that happens, is there?
3807
3808- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3809 nothing. Used to print 'addi' vs 'add' instructions.
3810- ``y``: For a memory operand, prints formatter for a two-register X-form
3811 instruction. (Currently always prints ``r0,OPERAND``).
3812- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3813 otherwise. (NOTE: LLVM does not support update form, so this will currently
3814 always print nothing)
3815- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3816 not support indexed form, so this will currently always print nothing)
3817
3818Sparc:
3819
3820- ``r``: No effect.
3821
3822SystemZ:
3823
3824SystemZ implements only ``n``, and does *not* support any of the other
3825target-independent modifiers.
3826
3827X86:
3828
3829- ``c``: Print an unadorned integer or symbol name. (The latter is
3830 target-specific behavior for this typically target-independent modifier).
3831- ``A``: Print a register name with a '``*``' before it.
3832- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3833 operand.
3834- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3835 memory operand.
3836- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3837 operand.
3838- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3839 operand.
3840- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3841 available, otherwise the 32-bit register name; do nothing on a memory operand.
3842- ``n``: Negate and print an unadorned integer, or, for operands other than an
3843 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3844 the operand. (The behavior for relocatable symbol expressions is a
3845 target-specific behavior for this typically target-independent modifier)
3846- ``H``: Print a memory reference with additional offset +8.
3847- ``P``: Print a memory reference or operand for use as the argument of a call
3848 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3849
3850XCore:
3851
3852No additional modifiers.
3853
3854
Sean Silvab084af42012-12-07 10:36:55 +00003855Inline Asm Metadata
3856^^^^^^^^^^^^^^^^^^^
3857
3858The call instructions that wrap inline asm nodes may have a
3859"``!srcloc``" MDNode attached to it that contains a list of constant
3860integers. If present, the code generator will use the integer as the
3861location cookie value when report errors through the ``LLVMContext``
3862error reporting mechanisms. This allows a front-end to correlate backend
3863errors that occur with inline asm back to the source code that produced
3864it. For example:
3865
3866.. code-block:: llvm
3867
3868 call void asm sideeffect "something bad", ""(), !srcloc !42
3869 ...
3870 !42 = !{ i32 1234567 }
3871
3872It is up to the front-end to make sense of the magic numbers it places
3873in the IR. If the MDNode contains multiple constants, the code generator
3874will use the one that corresponds to the line of the asm that the error
3875occurs on.
3876
3877.. _metadata:
3878
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003879Metadata
3880========
Sean Silvab084af42012-12-07 10:36:55 +00003881
3882LLVM IR allows metadata to be attached to instructions in the program
3883that can convey extra information about the code to the optimizers and
3884code generator. One example application of metadata is source-level
3885debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003886
Sean Silvaa1190322015-08-06 22:56:48 +00003887Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003888``call`` instruction, it uses the ``metadata`` type.
3889
3890All metadata are identified in syntax by a exclamation point ('``!``').
3891
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003892.. _metadata-string:
3893
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003894Metadata Nodes and Metadata Strings
3895-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003896
3897A metadata string is a string surrounded by double quotes. It can
3898contain any character by escaping non-printable characters with
3899"``\xx``" where "``xx``" is the two digit hex code. For example:
3900"``!"test\00"``".
3901
3902Metadata nodes are represented with notation similar to structure
3903constants (a comma separated list of elements, surrounded by braces and
3904preceded by an exclamation point). Metadata nodes can have any values as
3905their operand. For example:
3906
3907.. code-block:: llvm
3908
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003909 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003910
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003911Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3912
Renato Golin124f2592016-07-20 12:16:38 +00003913.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003914
3915 !0 = distinct !{!"test\00", i32 10}
3916
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003917``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003918content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003919when metadata operands change.
3920
Sean Silvab084af42012-12-07 10:36:55 +00003921A :ref:`named metadata <namedmetadatastructure>` is a collection of
3922metadata nodes, which can be looked up in the module symbol table. For
3923example:
3924
3925.. code-block:: llvm
3926
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003927 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003928
3929Metadata can be used as function arguments. Here ``llvm.dbg.value``
3930function is using two metadata arguments:
3931
3932.. code-block:: llvm
3933
3934 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3935
Peter Collingbourne50108682015-11-06 02:41:02 +00003936Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3937to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003938
3939.. code-block:: llvm
3940
3941 %indvar.next = add i64 %indvar, 1, !dbg !21
3942
Peter Collingbourne50108682015-11-06 02:41:02 +00003943Metadata can also be attached to a function definition. Here metadata ``!22``
3944is attached to the ``foo`` function using the ``!dbg`` identifier:
3945
3946.. code-block:: llvm
3947
3948 define void @foo() !dbg !22 {
3949 ret void
3950 }
3951
Sean Silvab084af42012-12-07 10:36:55 +00003952More information about specific metadata nodes recognized by the
3953optimizers and code generator is found below.
3954
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003955.. _specialized-metadata:
3956
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003957Specialized Metadata Nodes
3958^^^^^^^^^^^^^^^^^^^^^^^^^^
3959
3960Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003961to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003962order.
3963
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003964These aren't inherently debug info centric, but currently all the specialized
3965metadata nodes are related to debug info.
3966
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003967.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003968
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003969DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003970"""""""""""""
3971
Sean Silvaa1190322015-08-06 22:56:48 +00003972``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003973``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3974fields are tuples containing the debug info to be emitted along with the compile
3975unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003976references to them from instructions).
3977
Renato Golin124f2592016-07-20 12:16:38 +00003978.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003979
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003980 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003981 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003982 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003983 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003984 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003985
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003986Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003987specific compilation unit. File descriptors are defined using this scope.
3988These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003989keep track of subprograms, global variables, type information, and imported
3990entities (declarations and namespaces).
3991
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003992.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003993
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003994DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003995""""""
3996
Sean Silvaa1190322015-08-06 22:56:48 +00003997``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003998
3999.. code-block:: llvm
4000
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004001 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004002
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004003Files are sometimes used in ``scope:`` fields, and are the only valid target
4004for ``file:`` fields.
4005
Michael Kuperstein605308a2015-05-14 10:58:59 +00004006.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004007
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004008DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004009"""""""""""
4010
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004011``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004012``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004013
Renato Golin124f2592016-07-20 12:16:38 +00004014.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004015
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004016 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004017 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004018 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004019
Sean Silvaa1190322015-08-06 22:56:48 +00004020The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004021following:
4022
Renato Golin124f2592016-07-20 12:16:38 +00004023.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004024
4025 DW_ATE_address = 1
4026 DW_ATE_boolean = 2
4027 DW_ATE_float = 4
4028 DW_ATE_signed = 5
4029 DW_ATE_signed_char = 6
4030 DW_ATE_unsigned = 7
4031 DW_ATE_unsigned_char = 8
4032
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004033.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004034
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004035DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004036""""""""""""""""
4037
Sean Silvaa1190322015-08-06 22:56:48 +00004038``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004039refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004040types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004041represents a function with no return value (such as ``void foo() {}`` in C++).
4042
Renato Golin124f2592016-07-20 12:16:38 +00004043.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004044
4045 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4046 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004047 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004049.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004050
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004051DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004052"""""""""""""
4053
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004054``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004055qualified types.
4056
Renato Golin124f2592016-07-20 12:16:38 +00004057.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004058
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004059 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004060 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004061 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004062 align: 32)
4063
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004064The following ``tag:`` values are valid:
4065
Renato Golin124f2592016-07-20 12:16:38 +00004066.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004067
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004068 DW_TAG_member = 13
4069 DW_TAG_pointer_type = 15
4070 DW_TAG_reference_type = 16
4071 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004072 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004073 DW_TAG_ptr_to_member_type = 31
4074 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004075 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004076 DW_TAG_volatile_type = 53
4077 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004078 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004079
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004080.. _DIDerivedTypeMember:
4081
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004082``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004083<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004084``offset:`` is the member's bit offset. If the composite type has an ODR
4085``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4086uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004087
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004088``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4089field of :ref:`composite types <DICompositeType>` to describe parents and
4090friends.
4091
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004092``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4093
4094``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004095``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4096are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004097
4098Note that the ``void *`` type is expressed as a type derived from NULL.
4099
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004100.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004101
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004102DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004103"""""""""""""""
4104
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004105``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004106structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004107
4108If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004109identifier used for type merging between modules. When specified,
4110:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4111derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4112``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004113
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004114For a given ``identifier:``, there should only be a single composite type that
4115does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4116together will unique such definitions at parse time via the ``identifier:``
4117field, even if the nodes are ``distinct``.
4118
Renato Golin124f2592016-07-20 12:16:38 +00004119.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004120
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004121 !0 = !DIEnumerator(name: "SixKind", value: 7)
4122 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4123 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4124 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004125 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4126 elements: !{!0, !1, !2})
4127
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004128The following ``tag:`` values are valid:
4129
Renato Golin124f2592016-07-20 12:16:38 +00004130.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004131
4132 DW_TAG_array_type = 1
4133 DW_TAG_class_type = 2
4134 DW_TAG_enumeration_type = 4
4135 DW_TAG_structure_type = 19
4136 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004137
4138For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004139descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004140level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004141array type is a native packed vector.
4142
4143For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004144descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004145value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004146``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004147
4148For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4149``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004150<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4151``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4152``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004153
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004154.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004155
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004156DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004157""""""""""
4158
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004159``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004160:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004161
4162.. code-block:: llvm
4163
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004164 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4165 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4166 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004167
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004168.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004169
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004170DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004171""""""""""""
4172
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004173``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4174variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004175
4176.. code-block:: llvm
4177
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004178 !0 = !DIEnumerator(name: "SixKind", value: 7)
4179 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4180 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004181
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004182DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004183"""""""""""""""""""""""
4184
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004185``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004186language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004187:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004188
4189.. code-block:: llvm
4190
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004191 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004192
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004193DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004194""""""""""""""""""""""""
4195
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004196``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004197language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004198but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004199``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004200:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004201
4202.. code-block:: llvm
4203
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004204 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004205
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004206DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004207"""""""""""
4208
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004209``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004210
4211.. code-block:: llvm
4212
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004213 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004214
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004215DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004216""""""""""""""""
4217
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004218``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004219
4220.. code-block:: llvm
4221
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004222 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004223 file: !2, line: 7, type: !3, isLocal: true,
4224 isDefinition: false, variable: i32* @foo,
4225 declaration: !4)
4226
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004227All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004228:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004229
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004230.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004231
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004232DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004233""""""""""""
4234
Peter Collingbourne50108682015-11-06 02:41:02 +00004235``DISubprogram`` nodes represent functions from the source language. A
4236``DISubprogram`` may be attached to a function definition using ``!dbg``
4237metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4238that must be retained, even if their IR counterparts are optimized out of
4239the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004240
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004241.. _DISubprogramDeclaration:
4242
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004243When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004244tree as opposed to a definition of a function. If the scope is a composite
4245type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4246then the subprogram declaration is uniqued based only on its ``linkageName:``
4247and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004248
Renato Golin124f2592016-07-20 12:16:38 +00004249.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004250
Peter Collingbourne50108682015-11-06 02:41:02 +00004251 define void @_Z3foov() !dbg !0 {
4252 ...
4253 }
4254
4255 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4256 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004257 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004258 containingType: !4,
4259 virtuality: DW_VIRTUALITY_pure_virtual,
4260 virtualIndex: 10, flags: DIFlagPrototyped,
4261 isOptimized: true, templateParams: !5,
4262 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004263
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004264.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004265
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004266DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004267""""""""""""""
4268
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004269``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004270<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004271two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004272fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004273
Renato Golin124f2592016-07-20 12:16:38 +00004274.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004275
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004276 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004277
4278Usually lexical blocks are ``distinct`` to prevent node merging based on
4279operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004280
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004281.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004282
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004283DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004284""""""""""""""""""
4285
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004286``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004287:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004288indicate textual inclusion, or the ``discriminator:`` field can be used to
4289discriminate between control flow within a single block in the source language.
4290
4291.. code-block:: llvm
4292
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004293 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4294 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4295 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004296
Michael Kuperstein605308a2015-05-14 10:58:59 +00004297.. _DILocation:
4298
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004299DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004300""""""""""
4301
Sean Silvaa1190322015-08-06 22:56:48 +00004302``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004303mandatory, and points at an :ref:`DILexicalBlockFile`, an
4304:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004305
4306.. code-block:: llvm
4307
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004308 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004309
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004310.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004311
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004312DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004313"""""""""""""""
4314
Sean Silvaa1190322015-08-06 22:56:48 +00004315``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004316the ``arg:`` field is set to non-zero, then this variable is a subprogram
4317parameter, and it will be included in the ``variables:`` field of its
4318:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004319
Renato Golin124f2592016-07-20 12:16:38 +00004320.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004321
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004322 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4323 type: !3, flags: DIFlagArtificial)
4324 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4325 type: !3)
4326 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004327
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004328DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004329""""""""""""
4330
Sean Silvaa1190322015-08-06 22:56:48 +00004331``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004332:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4333describe how the referenced LLVM variable relates to the source language
4334variable.
4335
4336The current supported vocabulary is limited:
4337
4338- ``DW_OP_deref`` dereferences the working expression.
4339- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4340- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4341 here, respectively) of the variable piece from the working expression.
4342
Renato Golin124f2592016-07-20 12:16:38 +00004343.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004344
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004345 !0 = !DIExpression(DW_OP_deref)
4346 !1 = !DIExpression(DW_OP_plus, 3)
4347 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4348 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004349
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004350DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004351""""""""""""""
4352
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004353``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004354
4355.. code-block:: llvm
4356
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004357 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004358 getter: "getFoo", attributes: 7, type: !2)
4359
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004360DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004361""""""""""""""""
4362
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004363``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004364compile unit.
4365
Renato Golin124f2592016-07-20 12:16:38 +00004366.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004367
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004368 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004369 entity: !1, line: 7)
4370
Amjad Abouda9bcf162015-12-10 12:56:35 +00004371DIMacro
4372"""""""
4373
4374``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4375The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004376defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004377used to expand the macro identifier.
4378
Renato Golin124f2592016-07-20 12:16:38 +00004379.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004380
4381 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4382 value: "((x) + 1)")
4383 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4384
4385DIMacroFile
4386"""""""""""
4387
4388``DIMacroFile`` nodes represent inclusion of source files.
4389The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4390appear in the included source file.
4391
Renato Golin124f2592016-07-20 12:16:38 +00004392.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004393
4394 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4395 nodes: !3)
4396
Sean Silvab084af42012-12-07 10:36:55 +00004397'``tbaa``' Metadata
4398^^^^^^^^^^^^^^^^^^^
4399
4400In LLVM IR, memory does not have types, so LLVM's own type system is not
4401suitable for doing TBAA. Instead, metadata is added to the IR to
4402describe a type system of a higher level language. This can be used to
4403implement typical C/C++ TBAA, but it can also be used to implement
4404custom alias analysis behavior for other languages.
4405
4406The current metadata format is very simple. TBAA metadata nodes have up
4407to three fields, e.g.:
4408
4409.. code-block:: llvm
4410
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004411 !0 = !{ !"an example type tree" }
4412 !1 = !{ !"int", !0 }
4413 !2 = !{ !"float", !0 }
4414 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004415
4416The first field is an identity field. It can be any value, usually a
4417metadata string, which uniquely identifies the type. The most important
4418name in the tree is the name of the root node. Two trees with different
4419root node names are entirely disjoint, even if they have leaves with
4420common names.
4421
4422The second field identifies the type's parent node in the tree, or is
4423null or omitted for a root node. A type is considered to alias all of
4424its descendants and all of its ancestors in the tree. Also, a type is
4425considered to alias all types in other trees, so that bitcode produced
4426from multiple front-ends is handled conservatively.
4427
4428If the third field is present, it's an integer which if equal to 1
4429indicates that the type is "constant" (meaning
4430``pointsToConstantMemory`` should return true; see `other useful
4431AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4432
4433'``tbaa.struct``' Metadata
4434^^^^^^^^^^^^^^^^^^^^^^^^^^
4435
4436The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4437aggregate assignment operations in C and similar languages, however it
4438is defined to copy a contiguous region of memory, which is more than
4439strictly necessary for aggregate types which contain holes due to
4440padding. Also, it doesn't contain any TBAA information about the fields
4441of the aggregate.
4442
4443``!tbaa.struct`` metadata can describe which memory subregions in a
4444memcpy are padding and what the TBAA tags of the struct are.
4445
4446The current metadata format is very simple. ``!tbaa.struct`` metadata
4447nodes are a list of operands which are in conceptual groups of three.
4448For each group of three, the first operand gives the byte offset of a
4449field in bytes, the second gives its size in bytes, and the third gives
4450its tbaa tag. e.g.:
4451
4452.. code-block:: llvm
4453
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004454 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004455
4456This describes a struct with two fields. The first is at offset 0 bytes
4457with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4458and has size 4 bytes and has tbaa tag !2.
4459
4460Note that the fields need not be contiguous. In this example, there is a
44614 byte gap between the two fields. This gap represents padding which
4462does not carry useful data and need not be preserved.
4463
Hal Finkel94146652014-07-24 14:25:39 +00004464'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004466
4467``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4468noalias memory-access sets. This means that some collection of memory access
4469instructions (loads, stores, memory-accessing calls, etc.) that carry
4470``noalias`` metadata can specifically be specified not to alias with some other
4471collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004472Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004473a domain.
4474
4475When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004476of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004477subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004478instruction's ``noalias`` list, then the two memory accesses are assumed not to
4479alias.
Hal Finkel94146652014-07-24 14:25:39 +00004480
Adam Nemet569a5b32016-04-27 00:52:48 +00004481Because scopes in one domain don't affect scopes in other domains, separate
4482domains can be used to compose multiple independent noalias sets. This is
4483used for example during inlining. As the noalias function parameters are
4484turned into noalias scope metadata, a new domain is used every time the
4485function is inlined.
4486
Hal Finkel029cde62014-07-25 15:50:02 +00004487The metadata identifying each domain is itself a list containing one or two
4488entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004489string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004490self-reference can be used to create globally unique domain names. A
4491descriptive string may optionally be provided as a second list entry.
4492
4493The metadata identifying each scope is also itself a list containing two or
4494three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004495is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004496self-reference can be used to create globally unique scope names. A metadata
4497reference to the scope's domain is the second entry. A descriptive string may
4498optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004499
4500For example,
4501
4502.. code-block:: llvm
4503
Hal Finkel029cde62014-07-25 15:50:02 +00004504 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004505 !0 = !{!0}
4506 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004507
Hal Finkel029cde62014-07-25 15:50:02 +00004508 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004509 !2 = !{!2, !0}
4510 !3 = !{!3, !0}
4511 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004512
Hal Finkel029cde62014-07-25 15:50:02 +00004513 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004514 !5 = !{!4} ; A list containing only scope !4
4515 !6 = !{!4, !3, !2}
4516 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004517
4518 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004519 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004520 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004521
Hal Finkel029cde62014-07-25 15:50:02 +00004522 ; These two instructions also don't alias (for domain !1, the set of scopes
4523 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004524 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004525 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004526
Adam Nemet0a8416f2015-05-11 08:30:28 +00004527 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004528 ; the !noalias list is not a superset of, or equal to, the scopes in the
4529 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004530 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004531 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004532
Sean Silvab084af42012-12-07 10:36:55 +00004533'``fpmath``' Metadata
4534^^^^^^^^^^^^^^^^^^^^^
4535
4536``fpmath`` metadata may be attached to any instruction of floating point
4537type. It can be used to express the maximum acceptable error in the
4538result of that instruction, in ULPs, thus potentially allowing the
4539compiler to use a more efficient but less accurate method of computing
4540it. ULP is defined as follows:
4541
4542 If ``x`` is a real number that lies between two finite consecutive
4543 floating-point numbers ``a`` and ``b``, without being equal to one
4544 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4545 distance between the two non-equal finite floating-point numbers
4546 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4547
Matt Arsenault82f41512016-06-27 19:43:15 +00004548The metadata node shall consist of a single positive float type number
4549representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004550
4551.. code-block:: llvm
4552
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004553 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004554
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004555.. _range-metadata:
4556
Sean Silvab084af42012-12-07 10:36:55 +00004557'``range``' Metadata
4558^^^^^^^^^^^^^^^^^^^^
4559
Jingyue Wu37fcb592014-06-19 16:50:16 +00004560``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4561integer types. It expresses the possible ranges the loaded value or the value
4562returned by the called function at this call site is in. The ranges are
4563represented with a flattened list of integers. The loaded value or the value
4564returned is known to be in the union of the ranges defined by each consecutive
4565pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004566
4567- The type must match the type loaded by the instruction.
4568- The pair ``a,b`` represents the range ``[a,b)``.
4569- Both ``a`` and ``b`` are constants.
4570- The range is allowed to wrap.
4571- The range should not represent the full or empty set. That is,
4572 ``a!=b``.
4573
4574In addition, the pairs must be in signed order of the lower bound and
4575they must be non-contiguous.
4576
4577Examples:
4578
4579.. code-block:: llvm
4580
David Blaikiec7aabbb2015-03-04 22:06:14 +00004581 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4582 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004583 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4584 %d = invoke i8 @bar() to label %cont
4585 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004586 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004587 !0 = !{ i8 0, i8 2 }
4588 !1 = !{ i8 255, i8 2 }
4589 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4590 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004591
Peter Collingbourne235c2752016-12-08 19:01:00 +00004592'``absolute_symbol``' Metadata
4593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4594
4595``absolute_symbol`` metadata may be attached to a global variable
4596declaration. It marks the declaration as a reference to an absolute symbol,
4597which causes the backend to use absolute relocations for the symbol even
4598in position independent code, and expresses the possible ranges that the
4599global variable's *address* (not its value) is in, in the same format as
4600``range`` metadata.
4601
4602Example:
4603
4604.. code-block:: llvm
4605
4606 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
4607
4608 ...
4609 !0 = !{ i64 0, i64 256 }
4610
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004611'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004612^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004613
4614``unpredictable`` metadata may be attached to any branch or switch
4615instruction. It can be used to express the unpredictability of control
4616flow. Similar to the llvm.expect intrinsic, it may be used to alter
4617optimizations related to compare and branch instructions. The metadata
4618is treated as a boolean value; if it exists, it signals that the branch
4619or switch that it is attached to is completely unpredictable.
4620
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004621'``llvm.loop``'
4622^^^^^^^^^^^^^^^
4623
4624It is sometimes useful to attach information to loop constructs. Currently,
4625loop metadata is implemented as metadata attached to the branch instruction
4626in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004627guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004628specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004629
4630The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004631itself to avoid merging it with any other identifier metadata, e.g.,
4632during module linkage or function inlining. That is, each loop should refer
4633to their own identification metadata even if they reside in separate functions.
4634The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004635constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004636
4637.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004638
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004639 !0 = !{!0}
4640 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004641
Mark Heffernan893752a2014-07-18 19:24:51 +00004642The loop identifier metadata can be used to specify additional
4643per-loop metadata. Any operands after the first operand can be treated
4644as user-defined metadata. For example the ``llvm.loop.unroll.count``
4645suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004646
Paul Redmond5fdf8362013-05-28 20:00:34 +00004647.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004648
Paul Redmond5fdf8362013-05-28 20:00:34 +00004649 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4650 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004651 !0 = !{!0, !1}
4652 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004653
Mark Heffernan9d20e422014-07-21 23:11:03 +00004654'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4655^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004656
Mark Heffernan9d20e422014-07-21 23:11:03 +00004657Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4658used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004659vectorization width and interleave count. These metadata should be used in
4660conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004661``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4662optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004663it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004664which contains information about loop-carried memory dependencies can be helpful
4665in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004666
Mark Heffernan9d20e422014-07-21 23:11:03 +00004667'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4669
Mark Heffernan9d20e422014-07-21 23:11:03 +00004670This metadata suggests an interleave count to the loop interleaver.
4671The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004672second operand is an integer specifying the interleave count. For
4673example:
4674
4675.. code-block:: llvm
4676
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004677 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004678
Mark Heffernan9d20e422014-07-21 23:11:03 +00004679Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004680multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004681then the interleave count will be determined automatically.
4682
4683'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004685
4686This metadata selectively enables or disables vectorization for the loop. The
4687first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004688is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000046890 disables vectorization:
4690
4691.. code-block:: llvm
4692
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004693 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4694 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004695
4696'``llvm.loop.vectorize.width``' Metadata
4697^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4698
4699This metadata sets the target width of the vectorizer. The first
4700operand is the string ``llvm.loop.vectorize.width`` and the second
4701operand is an integer specifying the width. For example:
4702
4703.. code-block:: llvm
4704
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004705 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004706
4707Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004708vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000047090 or if the loop does not have this metadata the width will be
4710determined automatically.
4711
4712'``llvm.loop.unroll``'
4713^^^^^^^^^^^^^^^^^^^^^^
4714
4715Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4716optimization hints such as the unroll factor. ``llvm.loop.unroll``
4717metadata should be used in conjunction with ``llvm.loop`` loop
4718identification metadata. The ``llvm.loop.unroll`` metadata are only
4719optimization hints and the unrolling will only be performed if the
4720optimizer believes it is safe to do so.
4721
Mark Heffernan893752a2014-07-18 19:24:51 +00004722'``llvm.loop.unroll.count``' Metadata
4723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4724
4725This metadata suggests an unroll factor to the loop unroller. The
4726first operand is the string ``llvm.loop.unroll.count`` and the second
4727operand is a positive integer specifying the unroll factor. For
4728example:
4729
4730.. code-block:: llvm
4731
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004732 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004733
4734If the trip count of the loop is less than the unroll count the loop
4735will be partially unrolled.
4736
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004737'``llvm.loop.unroll.disable``' Metadata
4738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4739
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004740This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004741which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004742
4743.. code-block:: llvm
4744
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004745 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004746
Kevin Qin715b01e2015-03-09 06:14:18 +00004747'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004749
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004750This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004751operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004752
4753.. code-block:: llvm
4754
4755 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4756
Mark Heffernan89391542015-08-10 17:28:08 +00004757'``llvm.loop.unroll.enable``' Metadata
4758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4759
4760This metadata suggests that the loop should be fully unrolled if the trip count
4761is known at compile time and partially unrolled if the trip count is not known
4762at compile time. The metadata has a single operand which is the string
4763``llvm.loop.unroll.enable``. For example:
4764
4765.. code-block:: llvm
4766
4767 !0 = !{!"llvm.loop.unroll.enable"}
4768
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004769'``llvm.loop.unroll.full``' Metadata
4770^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4771
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004772This metadata suggests that the loop should be unrolled fully. The
4773metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004774For example:
4775
4776.. code-block:: llvm
4777
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004778 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004779
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004780'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004782
4783This metadata indicates that the loop should not be versioned for the purpose
4784of enabling loop-invariant code motion (LICM). The metadata has a single operand
4785which is the string ``llvm.loop.licm_versioning.disable``. For example:
4786
4787.. code-block:: llvm
4788
4789 !0 = !{!"llvm.loop.licm_versioning.disable"}
4790
Adam Nemetd2fa4142016-04-27 05:28:18 +00004791'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004792^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004793
4794Loop distribution allows splitting a loop into multiple loops. Currently,
4795this is only performed if the entire loop cannot be vectorized due to unsafe
4796memory dependencies. The transformation will atempt to isolate the unsafe
4797dependencies into their own loop.
4798
4799This metadata can be used to selectively enable or disable distribution of the
4800loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4801second operand is a bit. If the bit operand value is 1 distribution is
4802enabled. A value of 0 disables distribution:
4803
4804.. code-block:: llvm
4805
4806 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4807 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4808
4809This metadata should be used in conjunction with ``llvm.loop`` loop
4810identification metadata.
4811
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004812'``llvm.mem``'
4813^^^^^^^^^^^^^^^
4814
4815Metadata types used to annotate memory accesses with information helpful
4816for optimizations are prefixed with ``llvm.mem``.
4817
4818'``llvm.mem.parallel_loop_access``' Metadata
4819^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4820
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004821The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4822or metadata containing a list of loop identifiers for nested loops.
4823The metadata is attached to memory accessing instructions and denotes that
4824no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004825with the same loop identifier. The metadata on memory reads also implies that
4826if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004827
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004828Precisely, given two instructions ``m1`` and ``m2`` that both have the
4829``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4830set of loops associated with that metadata, respectively, then there is no loop
4831carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004832``L2``.
4833
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004834As a special case, if all memory accessing instructions in a loop have
4835``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4836loop has no loop carried memory dependences and is considered to be a parallel
4837loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004838
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004839Note that if not all memory access instructions have such metadata referring to
4840the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004841memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004842safe mechanism, this causes loops that were originally parallel to be considered
4843sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004844insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004845
4846Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004847both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004848metadata types that refer to the same loop identifier metadata.
4849
4850.. code-block:: llvm
4851
4852 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004853 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004854 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004855 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004856 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004857 ...
4858 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004859
4860 for.end:
4861 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004862 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004863
4864It is also possible to have nested parallel loops. In that case the
4865memory accesses refer to a list of loop identifier metadata nodes instead of
4866the loop identifier metadata node directly:
4867
4868.. code-block:: llvm
4869
4870 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004871 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004872 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004873 ...
4874 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004875
4876 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004877 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004878 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004879 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004880 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004881 ...
4882 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004883
4884 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004885 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004886 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004887 ...
4888 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004889
4890 outer.for.end: ; preds = %for.body
4891 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004892 !0 = !{!1, !2} ; a list of loop identifiers
4893 !1 = !{!1} ; an identifier for the inner loop
4894 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004895
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004896'``invariant.group``' Metadata
4897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4898
4899The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4900The existence of the ``invariant.group`` metadata on the instruction tells
4901the optimizer that every ``load`` and ``store`` to the same pointer operand
4902within the same invariant group can be assumed to load or store the same
4903value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4904when two pointers are considered the same).
4905
4906Examples:
4907
4908.. code-block:: llvm
4909
4910 @unknownPtr = external global i8
4911 ...
4912 %ptr = alloca i8
4913 store i8 42, i8* %ptr, !invariant.group !0
4914 call void @foo(i8* %ptr)
4915
4916 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4917 call void @foo(i8* %ptr)
4918 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4919
4920 %newPtr = call i8* @getPointer(i8* %ptr)
4921 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4922
4923 %unknownValue = load i8, i8* @unknownPtr
4924 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4925
4926 call void @foo(i8* %ptr)
4927 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4928 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4929
4930 ...
4931 declare void @foo(i8*)
4932 declare i8* @getPointer(i8*)
4933 declare i8* @llvm.invariant.group.barrier(i8*)
4934
4935 !0 = !{!"magic ptr"}
4936 !1 = !{!"other ptr"}
4937
Peter Collingbournea333db82016-07-26 22:31:30 +00004938'``type``' Metadata
4939^^^^^^^^^^^^^^^^^^^
4940
4941See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004942
4943
Sean Silvab084af42012-12-07 10:36:55 +00004944Module Flags Metadata
4945=====================
4946
4947Information about the module as a whole is difficult to convey to LLVM's
4948subsystems. The LLVM IR isn't sufficient to transmit this information.
4949The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004950this. These flags are in the form of key / value pairs --- much like a
4951dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004952look it up.
4953
4954The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4955Each triplet has the following form:
4956
4957- The first element is a *behavior* flag, which specifies the behavior
4958 when two (or more) modules are merged together, and it encounters two
4959 (or more) metadata with the same ID. The supported behaviors are
4960 described below.
4961- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004962 metadata. Each module may only have one flag entry for each unique ID (not
4963 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004964- The third element is the value of the flag.
4965
4966When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004967``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4968each unique metadata ID string, there will be exactly one entry in the merged
4969modules ``llvm.module.flags`` metadata table, and the value for that entry will
4970be determined by the merge behavior flag, as described below. The only exception
4971is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004972
4973The following behaviors are supported:
4974
4975.. list-table::
4976 :header-rows: 1
4977 :widths: 10 90
4978
4979 * - Value
4980 - Behavior
4981
4982 * - 1
4983 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004984 Emits an error if two values disagree, otherwise the resulting value
4985 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004986
4987 * - 2
4988 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004989 Emits a warning if two values disagree. The result value will be the
4990 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004991
4992 * - 3
4993 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004994 Adds a requirement that another module flag be present and have a
4995 specified value after linking is performed. The value must be a
4996 metadata pair, where the first element of the pair is the ID of the
4997 module flag to be restricted, and the second element of the pair is
4998 the value the module flag should be restricted to. This behavior can
4999 be used to restrict the allowable results (via triggering of an
5000 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005001
5002 * - 4
5003 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005004 Uses the specified value, regardless of the behavior or value of the
5005 other module. If both modules specify **Override**, but the values
5006 differ, an error will be emitted.
5007
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005008 * - 5
5009 - **Append**
5010 Appends the two values, which are required to be metadata nodes.
5011
5012 * - 6
5013 - **AppendUnique**
5014 Appends the two values, which are required to be metadata
5015 nodes. However, duplicate entries in the second list are dropped
5016 during the append operation.
5017
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005018It is an error for a particular unique flag ID to have multiple behaviors,
5019except in the case of **Require** (which adds restrictions on another metadata
5020value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005021
5022An example of module flags:
5023
5024.. code-block:: llvm
5025
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005026 !0 = !{ i32 1, !"foo", i32 1 }
5027 !1 = !{ i32 4, !"bar", i32 37 }
5028 !2 = !{ i32 2, !"qux", i32 42 }
5029 !3 = !{ i32 3, !"qux",
5030 !{
5031 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005032 }
5033 }
5034 !llvm.module.flags = !{ !0, !1, !2, !3 }
5035
5036- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5037 if two or more ``!"foo"`` flags are seen is to emit an error if their
5038 values are not equal.
5039
5040- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5041 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005042 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005043
5044- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5045 behavior if two or more ``!"qux"`` flags are seen is to emit a
5046 warning if their values are not equal.
5047
5048- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5049
5050 ::
5051
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005052 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005053
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005054 The behavior is to emit an error if the ``llvm.module.flags`` does not
5055 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5056 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005057
5058Objective-C Garbage Collection Module Flags Metadata
5059----------------------------------------------------
5060
5061On the Mach-O platform, Objective-C stores metadata about garbage
5062collection in a special section called "image info". The metadata
5063consists of a version number and a bitmask specifying what types of
5064garbage collection are supported (if any) by the file. If two or more
5065modules are linked together their garbage collection metadata needs to
5066be merged rather than appended together.
5067
5068The Objective-C garbage collection module flags metadata consists of the
5069following key-value pairs:
5070
5071.. list-table::
5072 :header-rows: 1
5073 :widths: 30 70
5074
5075 * - Key
5076 - Value
5077
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005078 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005079 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005080
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005081 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005082 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005083 always 0.
5084
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005085 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005086 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005087 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5088 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5089 Objective-C ABI version 2.
5090
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005091 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005092 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005093 not. Valid values are 0, for no garbage collection, and 2, for garbage
5094 collection supported.
5095
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005096 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005097 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005098 If present, its value must be 6. This flag requires that the
5099 ``Objective-C Garbage Collection`` flag have the value 2.
5100
5101Some important flag interactions:
5102
5103- If a module with ``Objective-C Garbage Collection`` set to 0 is
5104 merged with a module with ``Objective-C Garbage Collection`` set to
5105 2, then the resulting module has the
5106 ``Objective-C Garbage Collection`` flag set to 0.
5107- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5108 merged with a module with ``Objective-C GC Only`` set to 6.
5109
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005110Automatic Linker Flags Module Flags Metadata
5111--------------------------------------------
5112
5113Some targets support embedding flags to the linker inside individual object
5114files. Typically this is used in conjunction with language extensions which
5115allow source files to explicitly declare the libraries they depend on, and have
5116these automatically be transmitted to the linker via object files.
5117
5118These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005119using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005120to be ``AppendUnique``, and the value for the key is expected to be a metadata
5121node which should be a list of other metadata nodes, each of which should be a
5122list of metadata strings defining linker options.
5123
5124For example, the following metadata section specifies two separate sets of
5125linker options, presumably to link against ``libz`` and the ``Cocoa``
5126framework::
5127
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005128 !0 = !{ i32 6, !"Linker Options",
5129 !{
5130 !{ !"-lz" },
5131 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005132 !llvm.module.flags = !{ !0 }
5133
5134The metadata encoding as lists of lists of options, as opposed to a collapsed
5135list of options, is chosen so that the IR encoding can use multiple option
5136strings to specify e.g., a single library, while still having that specifier be
5137preserved as an atomic element that can be recognized by a target specific
5138assembly writer or object file emitter.
5139
5140Each individual option is required to be either a valid option for the target's
5141linker, or an option that is reserved by the target specific assembly writer or
5142object file emitter. No other aspect of these options is defined by the IR.
5143
Oliver Stannard5dc29342014-06-20 10:08:11 +00005144C type width Module Flags Metadata
5145----------------------------------
5146
5147The ARM backend emits a section into each generated object file describing the
5148options that it was compiled with (in a compiler-independent way) to prevent
5149linking incompatible objects, and to allow automatic library selection. Some
5150of these options are not visible at the IR level, namely wchar_t width and enum
5151width.
5152
5153To pass this information to the backend, these options are encoded in module
5154flags metadata, using the following key-value pairs:
5155
5156.. list-table::
5157 :header-rows: 1
5158 :widths: 30 70
5159
5160 * - Key
5161 - Value
5162
5163 * - short_wchar
5164 - * 0 --- sizeof(wchar_t) == 4
5165 * 1 --- sizeof(wchar_t) == 2
5166
5167 * - short_enum
5168 - * 0 --- Enums are at least as large as an ``int``.
5169 * 1 --- Enums are stored in the smallest integer type which can
5170 represent all of its values.
5171
5172For example, the following metadata section specifies that the module was
5173compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5174enum is the smallest type which can represent all of its values::
5175
5176 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005177 !0 = !{i32 1, !"short_wchar", i32 1}
5178 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005179
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005180.. _intrinsicglobalvariables:
5181
Sean Silvab084af42012-12-07 10:36:55 +00005182Intrinsic Global Variables
5183==========================
5184
5185LLVM has a number of "magic" global variables that contain data that
5186affect code generation or other IR semantics. These are documented here.
5187All globals of this sort should have a section specified as
5188"``llvm.metadata``". This section and all globals that start with
5189"``llvm.``" are reserved for use by LLVM.
5190
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005191.. _gv_llvmused:
5192
Sean Silvab084af42012-12-07 10:36:55 +00005193The '``llvm.used``' Global Variable
5194-----------------------------------
5195
Rafael Espindola74f2e462013-04-22 14:58:02 +00005196The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005197:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005198pointers to named global variables, functions and aliases which may optionally
5199have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005200use of it is:
5201
5202.. code-block:: llvm
5203
5204 @X = global i8 4
5205 @Y = global i32 123
5206
5207 @llvm.used = appending global [2 x i8*] [
5208 i8* @X,
5209 i8* bitcast (i32* @Y to i8*)
5210 ], section "llvm.metadata"
5211
Rafael Espindola74f2e462013-04-22 14:58:02 +00005212If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5213and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005214symbol that it cannot see (which is why they have to be named). For example, if
5215a variable has internal linkage and no references other than that from the
5216``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5217references from inline asms and other things the compiler cannot "see", and
5218corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005219
5220On some targets, the code generator must emit a directive to the
5221assembler or object file to prevent the assembler and linker from
5222molesting the symbol.
5223
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005224.. _gv_llvmcompilerused:
5225
Sean Silvab084af42012-12-07 10:36:55 +00005226The '``llvm.compiler.used``' Global Variable
5227--------------------------------------------
5228
5229The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5230directive, except that it only prevents the compiler from touching the
5231symbol. On targets that support it, this allows an intelligent linker to
5232optimize references to the symbol without being impeded as it would be
5233by ``@llvm.used``.
5234
5235This is a rare construct that should only be used in rare circumstances,
5236and should not be exposed to source languages.
5237
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005238.. _gv_llvmglobalctors:
5239
Sean Silvab084af42012-12-07 10:36:55 +00005240The '``llvm.global_ctors``' Global Variable
5241-------------------------------------------
5242
5243.. code-block:: llvm
5244
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005245 %0 = type { i32, void ()*, i8* }
5246 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005247
5248The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005249functions, priorities, and an optional associated global or function.
5250The functions referenced by this array will be called in ascending order
5251of priority (i.e. lowest first) when the module is loaded. The order of
5252functions with the same priority is not defined.
5253
5254If the third field is present, non-null, and points to a global variable
5255or function, the initializer function will only run if the associated
5256data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005257
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005258.. _llvmglobaldtors:
5259
Sean Silvab084af42012-12-07 10:36:55 +00005260The '``llvm.global_dtors``' Global Variable
5261-------------------------------------------
5262
5263.. code-block:: llvm
5264
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005265 %0 = type { i32, void ()*, i8* }
5266 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005267
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005268The ``@llvm.global_dtors`` array contains a list of destructor
5269functions, priorities, and an optional associated global or function.
5270The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005271order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005272order of functions with the same priority is not defined.
5273
5274If the third field is present, non-null, and points to a global variable
5275or function, the destructor function will only run if the associated
5276data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005277
5278Instruction Reference
5279=====================
5280
5281The LLVM instruction set consists of several different classifications
5282of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5283instructions <binaryops>`, :ref:`bitwise binary
5284instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5285:ref:`other instructions <otherops>`.
5286
5287.. _terminators:
5288
5289Terminator Instructions
5290-----------------------
5291
5292As mentioned :ref:`previously <functionstructure>`, every basic block in a
5293program ends with a "Terminator" instruction, which indicates which
5294block should be executed after the current block is finished. These
5295terminator instructions typically yield a '``void``' value: they produce
5296control flow, not values (the one exception being the
5297':ref:`invoke <i_invoke>`' instruction).
5298
5299The terminator instructions are: ':ref:`ret <i_ret>`',
5300':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5301':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005302':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005303':ref:`catchret <i_catchret>`',
5304':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005305and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005306
5307.. _i_ret:
5308
5309'``ret``' Instruction
5310^^^^^^^^^^^^^^^^^^^^^
5311
5312Syntax:
5313"""""""
5314
5315::
5316
5317 ret <type> <value> ; Return a value from a non-void function
5318 ret void ; Return from void function
5319
5320Overview:
5321"""""""""
5322
5323The '``ret``' instruction is used to return control flow (and optionally
5324a value) from a function back to the caller.
5325
5326There are two forms of the '``ret``' instruction: one that returns a
5327value and then causes control flow, and one that just causes control
5328flow to occur.
5329
5330Arguments:
5331""""""""""
5332
5333The '``ret``' instruction optionally accepts a single argument, the
5334return value. The type of the return value must be a ':ref:`first
5335class <t_firstclass>`' type.
5336
5337A function is not :ref:`well formed <wellformed>` if it it has a non-void
5338return type and contains a '``ret``' instruction with no return value or
5339a return value with a type that does not match its type, or if it has a
5340void return type and contains a '``ret``' instruction with a return
5341value.
5342
5343Semantics:
5344""""""""""
5345
5346When the '``ret``' instruction is executed, control flow returns back to
5347the calling function's context. If the caller is a
5348":ref:`call <i_call>`" instruction, execution continues at the
5349instruction after the call. If the caller was an
5350":ref:`invoke <i_invoke>`" instruction, execution continues at the
5351beginning of the "normal" destination block. If the instruction returns
5352a value, that value shall set the call or invoke instruction's return
5353value.
5354
5355Example:
5356""""""""
5357
5358.. code-block:: llvm
5359
5360 ret i32 5 ; Return an integer value of 5
5361 ret void ; Return from a void function
5362 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5363
5364.. _i_br:
5365
5366'``br``' Instruction
5367^^^^^^^^^^^^^^^^^^^^
5368
5369Syntax:
5370"""""""
5371
5372::
5373
5374 br i1 <cond>, label <iftrue>, label <iffalse>
5375 br label <dest> ; Unconditional branch
5376
5377Overview:
5378"""""""""
5379
5380The '``br``' instruction is used to cause control flow to transfer to a
5381different basic block in the current function. There are two forms of
5382this instruction, corresponding to a conditional branch and an
5383unconditional branch.
5384
5385Arguments:
5386""""""""""
5387
5388The conditional branch form of the '``br``' instruction takes a single
5389'``i1``' value and two '``label``' values. The unconditional form of the
5390'``br``' instruction takes a single '``label``' value as a target.
5391
5392Semantics:
5393""""""""""
5394
5395Upon execution of a conditional '``br``' instruction, the '``i1``'
5396argument is evaluated. If the value is ``true``, control flows to the
5397'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5398to the '``iffalse``' ``label`` argument.
5399
5400Example:
5401""""""""
5402
5403.. code-block:: llvm
5404
5405 Test:
5406 %cond = icmp eq i32 %a, %b
5407 br i1 %cond, label %IfEqual, label %IfUnequal
5408 IfEqual:
5409 ret i32 1
5410 IfUnequal:
5411 ret i32 0
5412
5413.. _i_switch:
5414
5415'``switch``' Instruction
5416^^^^^^^^^^^^^^^^^^^^^^^^
5417
5418Syntax:
5419"""""""
5420
5421::
5422
5423 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5424
5425Overview:
5426"""""""""
5427
5428The '``switch``' instruction is used to transfer control flow to one of
5429several different places. It is a generalization of the '``br``'
5430instruction, allowing a branch to occur to one of many possible
5431destinations.
5432
5433Arguments:
5434""""""""""
5435
5436The '``switch``' instruction uses three parameters: an integer
5437comparison value '``value``', a default '``label``' destination, and an
5438array of pairs of comparison value constants and '``label``'s. The table
5439is not allowed to contain duplicate constant entries.
5440
5441Semantics:
5442""""""""""
5443
5444The ``switch`` instruction specifies a table of values and destinations.
5445When the '``switch``' instruction is executed, this table is searched
5446for the given value. If the value is found, control flow is transferred
5447to the corresponding destination; otherwise, control flow is transferred
5448to the default destination.
5449
5450Implementation:
5451"""""""""""""""
5452
5453Depending on properties of the target machine and the particular
5454``switch`` instruction, this instruction may be code generated in
5455different ways. For example, it could be generated as a series of
5456chained conditional branches or with a lookup table.
5457
5458Example:
5459""""""""
5460
5461.. code-block:: llvm
5462
5463 ; Emulate a conditional br instruction
5464 %Val = zext i1 %value to i32
5465 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5466
5467 ; Emulate an unconditional br instruction
5468 switch i32 0, label %dest [ ]
5469
5470 ; Implement a jump table:
5471 switch i32 %val, label %otherwise [ i32 0, label %onzero
5472 i32 1, label %onone
5473 i32 2, label %ontwo ]
5474
5475.. _i_indirectbr:
5476
5477'``indirectbr``' Instruction
5478^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5479
5480Syntax:
5481"""""""
5482
5483::
5484
5485 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5486
5487Overview:
5488"""""""""
5489
5490The '``indirectbr``' instruction implements an indirect branch to a
5491label within the current function, whose address is specified by
5492"``address``". Address must be derived from a
5493:ref:`blockaddress <blockaddress>` constant.
5494
5495Arguments:
5496""""""""""
5497
5498The '``address``' argument is the address of the label to jump to. The
5499rest of the arguments indicate the full set of possible destinations
5500that the address may point to. Blocks are allowed to occur multiple
5501times in the destination list, though this isn't particularly useful.
5502
5503This destination list is required so that dataflow analysis has an
5504accurate understanding of the CFG.
5505
5506Semantics:
5507""""""""""
5508
5509Control transfers to the block specified in the address argument. All
5510possible destination blocks must be listed in the label list, otherwise
5511this instruction has undefined behavior. This implies that jumps to
5512labels defined in other functions have undefined behavior as well.
5513
5514Implementation:
5515"""""""""""""""
5516
5517This is typically implemented with a jump through a register.
5518
5519Example:
5520""""""""
5521
5522.. code-block:: llvm
5523
5524 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5525
5526.. _i_invoke:
5527
5528'``invoke``' Instruction
5529^^^^^^^^^^^^^^^^^^^^^^^^
5530
5531Syntax:
5532"""""""
5533
5534::
5535
David Blaikieb83cf102016-07-13 17:21:34 +00005536 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005537 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005538
5539Overview:
5540"""""""""
5541
5542The '``invoke``' instruction causes control to transfer to a specified
5543function, with the possibility of control flow transfer to either the
5544'``normal``' label or the '``exception``' label. If the callee function
5545returns with the "``ret``" instruction, control flow will return to the
5546"normal" label. If the callee (or any indirect callees) returns via the
5547":ref:`resume <i_resume>`" instruction or other exception handling
5548mechanism, control is interrupted and continued at the dynamically
5549nearest "exception" label.
5550
5551The '``exception``' label is a `landing
5552pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5553'``exception``' label is required to have the
5554":ref:`landingpad <i_landingpad>`" instruction, which contains the
5555information about the behavior of the program after unwinding happens,
5556as its first non-PHI instruction. The restrictions on the
5557"``landingpad``" instruction's tightly couples it to the "``invoke``"
5558instruction, so that the important information contained within the
5559"``landingpad``" instruction can't be lost through normal code motion.
5560
5561Arguments:
5562""""""""""
5563
5564This instruction requires several arguments:
5565
5566#. The optional "cconv" marker indicates which :ref:`calling
5567 convention <callingconv>` the call should use. If none is
5568 specified, the call defaults to using C calling conventions.
5569#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5570 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5571 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005572#. '``ty``': the type of the call instruction itself which is also the
5573 type of the return value. Functions that return no value are marked
5574 ``void``.
5575#. '``fnty``': shall be the signature of the function being invoked. The
5576 argument types must match the types implied by this signature. This
5577 type can be omitted if the function is not varargs.
5578#. '``fnptrval``': An LLVM value containing a pointer to a function to
5579 be invoked. In most cases, this is a direct function invocation, but
5580 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5581 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005582#. '``function args``': argument list whose types match the function
5583 signature argument types and parameter attributes. All arguments must
5584 be of :ref:`first class <t_firstclass>` type. If the function signature
5585 indicates the function accepts a variable number of arguments, the
5586 extra arguments can be specified.
5587#. '``normal label``': the label reached when the called function
5588 executes a '``ret``' instruction.
5589#. '``exception label``': the label reached when a callee returns via
5590 the :ref:`resume <i_resume>` instruction or other exception handling
5591 mechanism.
5592#. The optional :ref:`function attributes <fnattrs>` list. Only
5593 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5594 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005595#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005596
5597Semantics:
5598""""""""""
5599
5600This instruction is designed to operate as a standard '``call``'
5601instruction in most regards. The primary difference is that it
5602establishes an association with a label, which is used by the runtime
5603library to unwind the stack.
5604
5605This instruction is used in languages with destructors to ensure that
5606proper cleanup is performed in the case of either a ``longjmp`` or a
5607thrown exception. Additionally, this is important for implementation of
5608'``catch``' clauses in high-level languages that support them.
5609
5610For the purposes of the SSA form, the definition of the value returned
5611by the '``invoke``' instruction is deemed to occur on the edge from the
5612current block to the "normal" label. If the callee unwinds then no
5613return value is available.
5614
5615Example:
5616""""""""
5617
5618.. code-block:: llvm
5619
5620 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005621 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005622 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005623 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005624
5625.. _i_resume:
5626
5627'``resume``' Instruction
5628^^^^^^^^^^^^^^^^^^^^^^^^
5629
5630Syntax:
5631"""""""
5632
5633::
5634
5635 resume <type> <value>
5636
5637Overview:
5638"""""""""
5639
5640The '``resume``' instruction is a terminator instruction that has no
5641successors.
5642
5643Arguments:
5644""""""""""
5645
5646The '``resume``' instruction requires one argument, which must have the
5647same type as the result of any '``landingpad``' instruction in the same
5648function.
5649
5650Semantics:
5651""""""""""
5652
5653The '``resume``' instruction resumes propagation of an existing
5654(in-flight) exception whose unwinding was interrupted with a
5655:ref:`landingpad <i_landingpad>` instruction.
5656
5657Example:
5658""""""""
5659
5660.. code-block:: llvm
5661
5662 resume { i8*, i32 } %exn
5663
David Majnemer8a1c45d2015-12-12 05:38:55 +00005664.. _i_catchswitch:
5665
5666'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005667^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005668
5669Syntax:
5670"""""""
5671
5672::
5673
5674 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5675 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5676
5677Overview:
5678"""""""""
5679
5680The '``catchswitch``' instruction is used by `LLVM's exception handling system
5681<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5682that may be executed by the :ref:`EH personality routine <personalityfn>`.
5683
5684Arguments:
5685""""""""""
5686
5687The ``parent`` argument is the token of the funclet that contains the
5688``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5689this operand may be the token ``none``.
5690
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005691The ``default`` argument is the label of another basic block beginning with
5692either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5693must be a legal target with respect to the ``parent`` links, as described in
5694the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005695
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005696The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005697:ref:`catchpad <i_catchpad>` instruction.
5698
5699Semantics:
5700""""""""""
5701
5702Executing this instruction transfers control to one of the successors in
5703``handlers``, if appropriate, or continues to unwind via the unwind label if
5704present.
5705
5706The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5707it must be both the first non-phi instruction and last instruction in the basic
5708block. Therefore, it must be the only non-phi instruction in the block.
5709
5710Example:
5711""""""""
5712
Renato Golin124f2592016-07-20 12:16:38 +00005713.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005714
5715 dispatch1:
5716 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5717 dispatch2:
5718 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5719
David Majnemer654e1302015-07-31 17:58:14 +00005720.. _i_catchret:
5721
5722'``catchret``' Instruction
5723^^^^^^^^^^^^^^^^^^^^^^^^^^
5724
5725Syntax:
5726"""""""
5727
5728::
5729
David Majnemer8a1c45d2015-12-12 05:38:55 +00005730 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005731
5732Overview:
5733"""""""""
5734
5735The '``catchret``' instruction is a terminator instruction that has a
5736single successor.
5737
5738
5739Arguments:
5740""""""""""
5741
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005742The first argument to a '``catchret``' indicates which ``catchpad`` it
5743exits. It must be a :ref:`catchpad <i_catchpad>`.
5744The second argument to a '``catchret``' specifies where control will
5745transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005746
5747Semantics:
5748""""""""""
5749
David Majnemer8a1c45d2015-12-12 05:38:55 +00005750The '``catchret``' instruction ends an existing (in-flight) exception whose
5751unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5752:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5753code to, for example, destroy the active exception. Control then transfers to
5754``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005755
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005756The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5757If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5758funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5759the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005760
5761Example:
5762""""""""
5763
Renato Golin124f2592016-07-20 12:16:38 +00005764.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005765
David Majnemer8a1c45d2015-12-12 05:38:55 +00005766 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005767
David Majnemer654e1302015-07-31 17:58:14 +00005768.. _i_cleanupret:
5769
5770'``cleanupret``' Instruction
5771^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5772
5773Syntax:
5774"""""""
5775
5776::
5777
David Majnemer8a1c45d2015-12-12 05:38:55 +00005778 cleanupret from <value> unwind label <continue>
5779 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005780
5781Overview:
5782"""""""""
5783
5784The '``cleanupret``' instruction is a terminator instruction that has
5785an optional successor.
5786
5787
5788Arguments:
5789""""""""""
5790
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005791The '``cleanupret``' instruction requires one argument, which indicates
5792which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005793If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5794funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5795the ``cleanupret``'s behavior is undefined.
5796
5797The '``cleanupret``' instruction also has an optional successor, ``continue``,
5798which must be the label of another basic block beginning with either a
5799``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5800be a legal target with respect to the ``parent`` links, as described in the
5801`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005802
5803Semantics:
5804""""""""""
5805
5806The '``cleanupret``' instruction indicates to the
5807:ref:`personality function <personalityfn>` that one
5808:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5809It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005810
David Majnemer654e1302015-07-31 17:58:14 +00005811Example:
5812""""""""
5813
Renato Golin124f2592016-07-20 12:16:38 +00005814.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005815
David Majnemer8a1c45d2015-12-12 05:38:55 +00005816 cleanupret from %cleanup unwind to caller
5817 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005818
Sean Silvab084af42012-12-07 10:36:55 +00005819.. _i_unreachable:
5820
5821'``unreachable``' Instruction
5822^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5823
5824Syntax:
5825"""""""
5826
5827::
5828
5829 unreachable
5830
5831Overview:
5832"""""""""
5833
5834The '``unreachable``' instruction has no defined semantics. This
5835instruction is used to inform the optimizer that a particular portion of
5836the code is not reachable. This can be used to indicate that the code
5837after a no-return function cannot be reached, and other facts.
5838
5839Semantics:
5840""""""""""
5841
5842The '``unreachable``' instruction has no defined semantics.
5843
5844.. _binaryops:
5845
5846Binary Operations
5847-----------------
5848
5849Binary operators are used to do most of the computation in a program.
5850They require two operands of the same type, execute an operation on
5851them, and produce a single value. The operands might represent multiple
5852data, as is the case with the :ref:`vector <t_vector>` data type. The
5853result value has the same type as its operands.
5854
5855There are several different binary operators:
5856
5857.. _i_add:
5858
5859'``add``' Instruction
5860^^^^^^^^^^^^^^^^^^^^^
5861
5862Syntax:
5863"""""""
5864
5865::
5866
Tim Northover675a0962014-06-13 14:24:23 +00005867 <result> = add <ty> <op1>, <op2> ; yields ty:result
5868 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5869 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5870 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005871
5872Overview:
5873"""""""""
5874
5875The '``add``' instruction returns the sum of its two operands.
5876
5877Arguments:
5878""""""""""
5879
5880The two arguments to the '``add``' instruction must be
5881:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5882arguments must have identical types.
5883
5884Semantics:
5885""""""""""
5886
5887The value produced is the integer sum of the two operands.
5888
5889If the sum has unsigned overflow, the result returned is the
5890mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5891the result.
5892
5893Because LLVM integers use a two's complement representation, this
5894instruction is appropriate for both signed and unsigned integers.
5895
5896``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5897respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5898result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5899unsigned and/or signed overflow, respectively, occurs.
5900
5901Example:
5902""""""""
5903
Renato Golin124f2592016-07-20 12:16:38 +00005904.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005905
Tim Northover675a0962014-06-13 14:24:23 +00005906 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005907
5908.. _i_fadd:
5909
5910'``fadd``' Instruction
5911^^^^^^^^^^^^^^^^^^^^^^
5912
5913Syntax:
5914"""""""
5915
5916::
5917
Tim Northover675a0962014-06-13 14:24:23 +00005918 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005919
5920Overview:
5921"""""""""
5922
5923The '``fadd``' instruction returns the sum of its two operands.
5924
5925Arguments:
5926""""""""""
5927
5928The two arguments to the '``fadd``' instruction must be :ref:`floating
5929point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5930Both arguments must have identical types.
5931
5932Semantics:
5933""""""""""
5934
5935The value produced is the floating point sum of the two operands. This
5936instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5937which are optimization hints to enable otherwise unsafe floating point
5938optimizations:
5939
5940Example:
5941""""""""
5942
Renato Golin124f2592016-07-20 12:16:38 +00005943.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005944
Tim Northover675a0962014-06-13 14:24:23 +00005945 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005946
5947'``sub``' Instruction
5948^^^^^^^^^^^^^^^^^^^^^
5949
5950Syntax:
5951"""""""
5952
5953::
5954
Tim Northover675a0962014-06-13 14:24:23 +00005955 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5956 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5957 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5958 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005959
5960Overview:
5961"""""""""
5962
5963The '``sub``' instruction returns the difference of its two operands.
5964
5965Note that the '``sub``' instruction is used to represent the '``neg``'
5966instruction present in most other intermediate representations.
5967
5968Arguments:
5969""""""""""
5970
5971The two arguments to the '``sub``' instruction must be
5972:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5973arguments must have identical types.
5974
5975Semantics:
5976""""""""""
5977
5978The value produced is the integer difference of the two operands.
5979
5980If the difference has unsigned overflow, the result returned is the
5981mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5982the result.
5983
5984Because LLVM integers use a two's complement representation, this
5985instruction is appropriate for both signed and unsigned integers.
5986
5987``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5988respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5989result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5990unsigned and/or signed overflow, respectively, occurs.
5991
5992Example:
5993""""""""
5994
Renato Golin124f2592016-07-20 12:16:38 +00005995.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005996
Tim Northover675a0962014-06-13 14:24:23 +00005997 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5998 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005999
6000.. _i_fsub:
6001
6002'``fsub``' Instruction
6003^^^^^^^^^^^^^^^^^^^^^^
6004
6005Syntax:
6006"""""""
6007
6008::
6009
Tim Northover675a0962014-06-13 14:24:23 +00006010 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006011
6012Overview:
6013"""""""""
6014
6015The '``fsub``' instruction returns the difference of its two operands.
6016
6017Note that the '``fsub``' instruction is used to represent the '``fneg``'
6018instruction present in most other intermediate representations.
6019
6020Arguments:
6021""""""""""
6022
6023The two arguments to the '``fsub``' instruction must be :ref:`floating
6024point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6025Both arguments must have identical types.
6026
6027Semantics:
6028""""""""""
6029
6030The value produced is the floating point difference of the two operands.
6031This instruction can also take any number of :ref:`fast-math
6032flags <fastmath>`, which are optimization hints to enable otherwise
6033unsafe floating point optimizations:
6034
6035Example:
6036""""""""
6037
Renato Golin124f2592016-07-20 12:16:38 +00006038.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006039
Tim Northover675a0962014-06-13 14:24:23 +00006040 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6041 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006042
6043'``mul``' Instruction
6044^^^^^^^^^^^^^^^^^^^^^
6045
6046Syntax:
6047"""""""
6048
6049::
6050
Tim Northover675a0962014-06-13 14:24:23 +00006051 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6052 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6053 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6054 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006055
6056Overview:
6057"""""""""
6058
6059The '``mul``' instruction returns the product of its two operands.
6060
6061Arguments:
6062""""""""""
6063
6064The two arguments to the '``mul``' instruction must be
6065:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6066arguments must have identical types.
6067
6068Semantics:
6069""""""""""
6070
6071The value produced is the integer product of the two operands.
6072
6073If the result of the multiplication has unsigned overflow, the result
6074returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6075bit width of the result.
6076
6077Because LLVM integers use a two's complement representation, and the
6078result is the same width as the operands, this instruction returns the
6079correct result for both signed and unsigned integers. If a full product
6080(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6081sign-extended or zero-extended as appropriate to the width of the full
6082product.
6083
6084``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6085respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6086result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6087unsigned and/or signed overflow, respectively, occurs.
6088
6089Example:
6090""""""""
6091
Renato Golin124f2592016-07-20 12:16:38 +00006092.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006093
Tim Northover675a0962014-06-13 14:24:23 +00006094 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006095
6096.. _i_fmul:
6097
6098'``fmul``' Instruction
6099^^^^^^^^^^^^^^^^^^^^^^
6100
6101Syntax:
6102"""""""
6103
6104::
6105
Tim Northover675a0962014-06-13 14:24:23 +00006106 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006107
6108Overview:
6109"""""""""
6110
6111The '``fmul``' instruction returns the product of its two operands.
6112
6113Arguments:
6114""""""""""
6115
6116The two arguments to the '``fmul``' instruction must be :ref:`floating
6117point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6118Both arguments must have identical types.
6119
6120Semantics:
6121""""""""""
6122
6123The value produced is the floating point product of the two operands.
6124This instruction can also take any number of :ref:`fast-math
6125flags <fastmath>`, which are optimization hints to enable otherwise
6126unsafe floating point optimizations:
6127
6128Example:
6129""""""""
6130
Renato Golin124f2592016-07-20 12:16:38 +00006131.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006132
Tim Northover675a0962014-06-13 14:24:23 +00006133 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006134
6135'``udiv``' Instruction
6136^^^^^^^^^^^^^^^^^^^^^^
6137
6138Syntax:
6139"""""""
6140
6141::
6142
Tim Northover675a0962014-06-13 14:24:23 +00006143 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6144 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006145
6146Overview:
6147"""""""""
6148
6149The '``udiv``' instruction returns the quotient of its two operands.
6150
6151Arguments:
6152""""""""""
6153
6154The two arguments to the '``udiv``' instruction must be
6155:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6156arguments must have identical types.
6157
6158Semantics:
6159""""""""""
6160
6161The value produced is the unsigned integer quotient of the two operands.
6162
6163Note that unsigned integer division and signed integer division are
6164distinct operations; for signed integer division, use '``sdiv``'.
6165
6166Division by zero leads to undefined behavior.
6167
6168If the ``exact`` keyword is present, the result value of the ``udiv`` is
6169a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6170such, "((a udiv exact b) mul b) == a").
6171
6172Example:
6173""""""""
6174
Renato Golin124f2592016-07-20 12:16:38 +00006175.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006176
Tim Northover675a0962014-06-13 14:24:23 +00006177 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006178
6179'``sdiv``' Instruction
6180^^^^^^^^^^^^^^^^^^^^^^
6181
6182Syntax:
6183"""""""
6184
6185::
6186
Tim Northover675a0962014-06-13 14:24:23 +00006187 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6188 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006189
6190Overview:
6191"""""""""
6192
6193The '``sdiv``' instruction returns the quotient of its two operands.
6194
6195Arguments:
6196""""""""""
6197
6198The two arguments to the '``sdiv``' instruction must be
6199:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6200arguments must have identical types.
6201
6202Semantics:
6203""""""""""
6204
6205The value produced is the signed integer quotient of the two operands
6206rounded towards zero.
6207
6208Note that signed integer division and unsigned integer division are
6209distinct operations; for unsigned integer division, use '``udiv``'.
6210
6211Division by zero leads to undefined behavior. Overflow also leads to
6212undefined behavior; this is a rare case, but can occur, for example, by
6213doing a 32-bit division of -2147483648 by -1.
6214
6215If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6216a :ref:`poison value <poisonvalues>` if the result would be rounded.
6217
6218Example:
6219""""""""
6220
Renato Golin124f2592016-07-20 12:16:38 +00006221.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006222
Tim Northover675a0962014-06-13 14:24:23 +00006223 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006224
6225.. _i_fdiv:
6226
6227'``fdiv``' Instruction
6228^^^^^^^^^^^^^^^^^^^^^^
6229
6230Syntax:
6231"""""""
6232
6233::
6234
Tim Northover675a0962014-06-13 14:24:23 +00006235 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006236
6237Overview:
6238"""""""""
6239
6240The '``fdiv``' instruction returns the quotient of its two operands.
6241
6242Arguments:
6243""""""""""
6244
6245The two arguments to the '``fdiv``' instruction must be :ref:`floating
6246point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6247Both arguments must have identical types.
6248
6249Semantics:
6250""""""""""
6251
6252The value produced is the floating point quotient of the two operands.
6253This instruction can also take any number of :ref:`fast-math
6254flags <fastmath>`, which are optimization hints to enable otherwise
6255unsafe floating point optimizations:
6256
6257Example:
6258""""""""
6259
Renato Golin124f2592016-07-20 12:16:38 +00006260.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006261
Tim Northover675a0962014-06-13 14:24:23 +00006262 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006263
6264'``urem``' Instruction
6265^^^^^^^^^^^^^^^^^^^^^^
6266
6267Syntax:
6268"""""""
6269
6270::
6271
Tim Northover675a0962014-06-13 14:24:23 +00006272 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006273
6274Overview:
6275"""""""""
6276
6277The '``urem``' instruction returns the remainder from the unsigned
6278division of its two arguments.
6279
6280Arguments:
6281""""""""""
6282
6283The two arguments to the '``urem``' instruction must be
6284:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6285arguments must have identical types.
6286
6287Semantics:
6288""""""""""
6289
6290This instruction returns the unsigned integer *remainder* of a division.
6291This instruction always performs an unsigned division to get the
6292remainder.
6293
6294Note that unsigned integer remainder and signed integer remainder are
6295distinct operations; for signed integer remainder, use '``srem``'.
6296
6297Taking the remainder of a division by zero leads to undefined behavior.
6298
6299Example:
6300""""""""
6301
Renato Golin124f2592016-07-20 12:16:38 +00006302.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006303
Tim Northover675a0962014-06-13 14:24:23 +00006304 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006305
6306'``srem``' Instruction
6307^^^^^^^^^^^^^^^^^^^^^^
6308
6309Syntax:
6310"""""""
6311
6312::
6313
Tim Northover675a0962014-06-13 14:24:23 +00006314 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006315
6316Overview:
6317"""""""""
6318
6319The '``srem``' instruction returns the remainder from the signed
6320division of its two operands. This instruction can also take
6321:ref:`vector <t_vector>` versions of the values in which case the elements
6322must be integers.
6323
6324Arguments:
6325""""""""""
6326
6327The two arguments to the '``srem``' instruction must be
6328:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6329arguments must have identical types.
6330
6331Semantics:
6332""""""""""
6333
6334This instruction returns the *remainder* of a division (where the result
6335is either zero or has the same sign as the dividend, ``op1``), not the
6336*modulo* operator (where the result is either zero or has the same sign
6337as the divisor, ``op2``) of a value. For more information about the
6338difference, see `The Math
6339Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6340table of how this is implemented in various languages, please see
6341`Wikipedia: modulo
6342operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6343
6344Note that signed integer remainder and unsigned integer remainder are
6345distinct operations; for unsigned integer remainder, use '``urem``'.
6346
6347Taking the remainder of a division by zero leads to undefined behavior.
6348Overflow also leads to undefined behavior; this is a rare case, but can
6349occur, for example, by taking the remainder of a 32-bit division of
6350-2147483648 by -1. (The remainder doesn't actually overflow, but this
6351rule lets srem be implemented using instructions that return both the
6352result of the division and the remainder.)
6353
6354Example:
6355""""""""
6356
Renato Golin124f2592016-07-20 12:16:38 +00006357.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006358
Tim Northover675a0962014-06-13 14:24:23 +00006359 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006360
6361.. _i_frem:
6362
6363'``frem``' Instruction
6364^^^^^^^^^^^^^^^^^^^^^^
6365
6366Syntax:
6367"""""""
6368
6369::
6370
Tim Northover675a0962014-06-13 14:24:23 +00006371 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006372
6373Overview:
6374"""""""""
6375
6376The '``frem``' instruction returns the remainder from the division of
6377its two operands.
6378
6379Arguments:
6380""""""""""
6381
6382The two arguments to the '``frem``' instruction must be :ref:`floating
6383point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6384Both arguments must have identical types.
6385
6386Semantics:
6387""""""""""
6388
6389This instruction returns the *remainder* of a division. The remainder
6390has the same sign as the dividend. This instruction can also take any
6391number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6392to enable otherwise unsafe floating point optimizations:
6393
6394Example:
6395""""""""
6396
Renato Golin124f2592016-07-20 12:16:38 +00006397.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006398
Tim Northover675a0962014-06-13 14:24:23 +00006399 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006400
6401.. _bitwiseops:
6402
6403Bitwise Binary Operations
6404-------------------------
6405
6406Bitwise binary operators are used to do various forms of bit-twiddling
6407in a program. They are generally very efficient instructions and can
6408commonly be strength reduced from other instructions. They require two
6409operands of the same type, execute an operation on them, and produce a
6410single value. The resulting value is the same type as its operands.
6411
6412'``shl``' Instruction
6413^^^^^^^^^^^^^^^^^^^^^
6414
6415Syntax:
6416"""""""
6417
6418::
6419
Tim Northover675a0962014-06-13 14:24:23 +00006420 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6421 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6422 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6423 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006424
6425Overview:
6426"""""""""
6427
6428The '``shl``' instruction returns the first operand shifted to the left
6429a specified number of bits.
6430
6431Arguments:
6432""""""""""
6433
6434Both arguments to the '``shl``' instruction must be the same
6435:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6436'``op2``' is treated as an unsigned value.
6437
6438Semantics:
6439""""""""""
6440
6441The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6442where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006443dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006444``op1``, the result is undefined. If the arguments are vectors, each
6445vector element of ``op1`` is shifted by the corresponding shift amount
6446in ``op2``.
6447
6448If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6449value <poisonvalues>` if it shifts out any non-zero bits. If the
6450``nsw`` keyword is present, then the shift produces a :ref:`poison
6451value <poisonvalues>` if it shifts out any bits that disagree with the
Sanjoy Dasdbc58d02016-11-13 23:40:40 +00006452resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006453
6454Example:
6455""""""""
6456
Renato Golin124f2592016-07-20 12:16:38 +00006457.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006458
Tim Northover675a0962014-06-13 14:24:23 +00006459 <result> = shl i32 4, %var ; yields i32: 4 << %var
6460 <result> = shl i32 4, 2 ; yields i32: 16
6461 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006462 <result> = shl i32 1, 32 ; undefined
6463 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6464
6465'``lshr``' Instruction
6466^^^^^^^^^^^^^^^^^^^^^^
6467
6468Syntax:
6469"""""""
6470
6471::
6472
Tim Northover675a0962014-06-13 14:24:23 +00006473 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6474 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006475
6476Overview:
6477"""""""""
6478
6479The '``lshr``' instruction (logical shift right) returns the first
6480operand shifted to the right a specified number of bits with zero fill.
6481
6482Arguments:
6483""""""""""
6484
6485Both arguments to the '``lshr``' instruction must be the same
6486:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6487'``op2``' is treated as an unsigned value.
6488
6489Semantics:
6490""""""""""
6491
6492This instruction always performs a logical shift right operation. The
6493most significant bits of the result will be filled with zero bits after
6494the shift. If ``op2`` is (statically or dynamically) equal to or larger
6495than the number of bits in ``op1``, the result is undefined. If the
6496arguments are vectors, each vector element of ``op1`` is shifted by the
6497corresponding shift amount in ``op2``.
6498
6499If the ``exact`` keyword is present, the result value of the ``lshr`` is
6500a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6501non-zero.
6502
6503Example:
6504""""""""
6505
Renato Golin124f2592016-07-20 12:16:38 +00006506.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006507
Tim Northover675a0962014-06-13 14:24:23 +00006508 <result> = lshr i32 4, 1 ; yields i32:result = 2
6509 <result> = lshr i32 4, 2 ; yields i32:result = 1
6510 <result> = lshr i8 4, 3 ; yields i8:result = 0
6511 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006512 <result> = lshr i32 1, 32 ; undefined
6513 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6514
6515'``ashr``' Instruction
6516^^^^^^^^^^^^^^^^^^^^^^
6517
6518Syntax:
6519"""""""
6520
6521::
6522
Tim Northover675a0962014-06-13 14:24:23 +00006523 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6524 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006525
6526Overview:
6527"""""""""
6528
6529The '``ashr``' instruction (arithmetic shift right) returns the first
6530operand shifted to the right a specified number of bits with sign
6531extension.
6532
6533Arguments:
6534""""""""""
6535
6536Both arguments to the '``ashr``' instruction must be the same
6537:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6538'``op2``' is treated as an unsigned value.
6539
6540Semantics:
6541""""""""""
6542
6543This instruction always performs an arithmetic shift right operation,
6544The most significant bits of the result will be filled with the sign bit
6545of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6546than the number of bits in ``op1``, the result is undefined. If the
6547arguments are vectors, each vector element of ``op1`` is shifted by the
6548corresponding shift amount in ``op2``.
6549
6550If the ``exact`` keyword is present, the result value of the ``ashr`` is
6551a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6552non-zero.
6553
6554Example:
6555""""""""
6556
Renato Golin124f2592016-07-20 12:16:38 +00006557.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006558
Tim Northover675a0962014-06-13 14:24:23 +00006559 <result> = ashr i32 4, 1 ; yields i32:result = 2
6560 <result> = ashr i32 4, 2 ; yields i32:result = 1
6561 <result> = ashr i8 4, 3 ; yields i8:result = 0
6562 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006563 <result> = ashr i32 1, 32 ; undefined
6564 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6565
6566'``and``' Instruction
6567^^^^^^^^^^^^^^^^^^^^^
6568
6569Syntax:
6570"""""""
6571
6572::
6573
Tim Northover675a0962014-06-13 14:24:23 +00006574 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006575
6576Overview:
6577"""""""""
6578
6579The '``and``' instruction returns the bitwise logical and of its two
6580operands.
6581
6582Arguments:
6583""""""""""
6584
6585The two arguments to the '``and``' instruction must be
6586:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6587arguments must have identical types.
6588
6589Semantics:
6590""""""""""
6591
6592The truth table used for the '``and``' instruction is:
6593
6594+-----+-----+-----+
6595| In0 | In1 | Out |
6596+-----+-----+-----+
6597| 0 | 0 | 0 |
6598+-----+-----+-----+
6599| 0 | 1 | 0 |
6600+-----+-----+-----+
6601| 1 | 0 | 0 |
6602+-----+-----+-----+
6603| 1 | 1 | 1 |
6604+-----+-----+-----+
6605
6606Example:
6607""""""""
6608
Renato Golin124f2592016-07-20 12:16:38 +00006609.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006610
Tim Northover675a0962014-06-13 14:24:23 +00006611 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6612 <result> = and i32 15, 40 ; yields i32:result = 8
6613 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006614
6615'``or``' Instruction
6616^^^^^^^^^^^^^^^^^^^^
6617
6618Syntax:
6619"""""""
6620
6621::
6622
Tim Northover675a0962014-06-13 14:24:23 +00006623 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006624
6625Overview:
6626"""""""""
6627
6628The '``or``' instruction returns the bitwise logical inclusive or of its
6629two operands.
6630
6631Arguments:
6632""""""""""
6633
6634The two arguments to the '``or``' instruction must be
6635:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6636arguments must have identical types.
6637
6638Semantics:
6639""""""""""
6640
6641The truth table used for the '``or``' instruction is:
6642
6643+-----+-----+-----+
6644| In0 | In1 | Out |
6645+-----+-----+-----+
6646| 0 | 0 | 0 |
6647+-----+-----+-----+
6648| 0 | 1 | 1 |
6649+-----+-----+-----+
6650| 1 | 0 | 1 |
6651+-----+-----+-----+
6652| 1 | 1 | 1 |
6653+-----+-----+-----+
6654
6655Example:
6656""""""""
6657
6658::
6659
Tim Northover675a0962014-06-13 14:24:23 +00006660 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6661 <result> = or i32 15, 40 ; yields i32:result = 47
6662 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006663
6664'``xor``' Instruction
6665^^^^^^^^^^^^^^^^^^^^^
6666
6667Syntax:
6668"""""""
6669
6670::
6671
Tim Northover675a0962014-06-13 14:24:23 +00006672 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006673
6674Overview:
6675"""""""""
6676
6677The '``xor``' instruction returns the bitwise logical exclusive or of
6678its two operands. The ``xor`` is used to implement the "one's
6679complement" operation, which is the "~" operator in C.
6680
6681Arguments:
6682""""""""""
6683
6684The two arguments to the '``xor``' instruction must be
6685:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6686arguments must have identical types.
6687
6688Semantics:
6689""""""""""
6690
6691The truth table used for the '``xor``' instruction is:
6692
6693+-----+-----+-----+
6694| In0 | In1 | Out |
6695+-----+-----+-----+
6696| 0 | 0 | 0 |
6697+-----+-----+-----+
6698| 0 | 1 | 1 |
6699+-----+-----+-----+
6700| 1 | 0 | 1 |
6701+-----+-----+-----+
6702| 1 | 1 | 0 |
6703+-----+-----+-----+
6704
6705Example:
6706""""""""
6707
Renato Golin124f2592016-07-20 12:16:38 +00006708.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006709
Tim Northover675a0962014-06-13 14:24:23 +00006710 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6711 <result> = xor i32 15, 40 ; yields i32:result = 39
6712 <result> = xor i32 4, 8 ; yields i32:result = 12
6713 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006714
6715Vector Operations
6716-----------------
6717
6718LLVM supports several instructions to represent vector operations in a
6719target-independent manner. These instructions cover the element-access
6720and vector-specific operations needed to process vectors effectively.
6721While LLVM does directly support these vector operations, many
6722sophisticated algorithms will want to use target-specific intrinsics to
6723take full advantage of a specific target.
6724
6725.. _i_extractelement:
6726
6727'``extractelement``' Instruction
6728^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6729
6730Syntax:
6731"""""""
6732
6733::
6734
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006735 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006736
6737Overview:
6738"""""""""
6739
6740The '``extractelement``' instruction extracts a single scalar element
6741from a vector at a specified index.
6742
6743Arguments:
6744""""""""""
6745
6746The first operand of an '``extractelement``' instruction is a value of
6747:ref:`vector <t_vector>` type. The second operand is an index indicating
6748the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006749variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006750
6751Semantics:
6752""""""""""
6753
6754The result is a scalar of the same type as the element type of ``val``.
6755Its value is the value at position ``idx`` of ``val``. If ``idx``
6756exceeds the length of ``val``, the results are undefined.
6757
6758Example:
6759""""""""
6760
Renato Golin124f2592016-07-20 12:16:38 +00006761.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006762
6763 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6764
6765.. _i_insertelement:
6766
6767'``insertelement``' Instruction
6768^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6769
6770Syntax:
6771"""""""
6772
6773::
6774
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006775 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006776
6777Overview:
6778"""""""""
6779
6780The '``insertelement``' instruction inserts a scalar element into a
6781vector at a specified index.
6782
6783Arguments:
6784""""""""""
6785
6786The first operand of an '``insertelement``' instruction is a value of
6787:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6788type must equal the element type of the first operand. The third operand
6789is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006790index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006791
6792Semantics:
6793""""""""""
6794
6795The result is a vector of the same type as ``val``. Its element values
6796are those of ``val`` except at position ``idx``, where it gets the value
6797``elt``. If ``idx`` exceeds the length of ``val``, the results are
6798undefined.
6799
6800Example:
6801""""""""
6802
Renato Golin124f2592016-07-20 12:16:38 +00006803.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006804
6805 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6806
6807.. _i_shufflevector:
6808
6809'``shufflevector``' Instruction
6810^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6811
6812Syntax:
6813"""""""
6814
6815::
6816
6817 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6818
6819Overview:
6820"""""""""
6821
6822The '``shufflevector``' instruction constructs a permutation of elements
6823from two input vectors, returning a vector with the same element type as
6824the input and length that is the same as the shuffle mask.
6825
6826Arguments:
6827""""""""""
6828
6829The first two operands of a '``shufflevector``' instruction are vectors
6830with the same type. The third argument is a shuffle mask whose element
6831type is always 'i32'. The result of the instruction is a vector whose
6832length is the same as the shuffle mask and whose element type is the
6833same as the element type of the first two operands.
6834
6835The shuffle mask operand is required to be a constant vector with either
6836constant integer or undef values.
6837
6838Semantics:
6839""""""""""
6840
6841The elements of the two input vectors are numbered from left to right
6842across both of the vectors. The shuffle mask operand specifies, for each
6843element of the result vector, which element of the two input vectors the
6844result element gets. The element selector may be undef (meaning "don't
6845care") and the second operand may be undef if performing a shuffle from
6846only one vector.
6847
6848Example:
6849""""""""
6850
Renato Golin124f2592016-07-20 12:16:38 +00006851.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006852
6853 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6854 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6855 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6856 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6857 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6858 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6859 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6860 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6861
6862Aggregate Operations
6863--------------------
6864
6865LLVM supports several instructions for working with
6866:ref:`aggregate <t_aggregate>` values.
6867
6868.. _i_extractvalue:
6869
6870'``extractvalue``' Instruction
6871^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6872
6873Syntax:
6874"""""""
6875
6876::
6877
6878 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6879
6880Overview:
6881"""""""""
6882
6883The '``extractvalue``' instruction extracts the value of a member field
6884from an :ref:`aggregate <t_aggregate>` value.
6885
6886Arguments:
6887""""""""""
6888
6889The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006890:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006891constant indices to specify which value to extract in a similar manner
6892as indices in a '``getelementptr``' instruction.
6893
6894The major differences to ``getelementptr`` indexing are:
6895
6896- Since the value being indexed is not a pointer, the first index is
6897 omitted and assumed to be zero.
6898- At least one index must be specified.
6899- Not only struct indices but also array indices must be in bounds.
6900
6901Semantics:
6902""""""""""
6903
6904The result is the value at the position in the aggregate specified by
6905the index operands.
6906
6907Example:
6908""""""""
6909
Renato Golin124f2592016-07-20 12:16:38 +00006910.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006911
6912 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6913
6914.. _i_insertvalue:
6915
6916'``insertvalue``' Instruction
6917^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6918
6919Syntax:
6920"""""""
6921
6922::
6923
6924 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6925
6926Overview:
6927"""""""""
6928
6929The '``insertvalue``' instruction inserts a value into a member field in
6930an :ref:`aggregate <t_aggregate>` value.
6931
6932Arguments:
6933""""""""""
6934
6935The first operand of an '``insertvalue``' instruction is a value of
6936:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6937a first-class value to insert. The following operands are constant
6938indices indicating the position at which to insert the value in a
6939similar manner as indices in a '``extractvalue``' instruction. The value
6940to insert must have the same type as the value identified by the
6941indices.
6942
6943Semantics:
6944""""""""""
6945
6946The result is an aggregate of the same type as ``val``. Its value is
6947that of ``val`` except that the value at the position specified by the
6948indices is that of ``elt``.
6949
6950Example:
6951""""""""
6952
6953.. code-block:: llvm
6954
6955 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6956 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006957 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006958
6959.. _memoryops:
6960
6961Memory Access and Addressing Operations
6962---------------------------------------
6963
6964A key design point of an SSA-based representation is how it represents
6965memory. In LLVM, no memory locations are in SSA form, which makes things
6966very simple. This section describes how to read, write, and allocate
6967memory in LLVM.
6968
6969.. _i_alloca:
6970
6971'``alloca``' Instruction
6972^^^^^^^^^^^^^^^^^^^^^^^^
6973
6974Syntax:
6975"""""""
6976
6977::
6978
Tim Northover675a0962014-06-13 14:24:23 +00006979 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006980
6981Overview:
6982"""""""""
6983
6984The '``alloca``' instruction allocates memory on the stack frame of the
6985currently executing function, to be automatically released when this
6986function returns to its caller. The object is always allocated in the
6987generic address space (address space zero).
6988
6989Arguments:
6990""""""""""
6991
6992The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6993bytes of memory on the runtime stack, returning a pointer of the
6994appropriate type to the program. If "NumElements" is specified, it is
6995the number of elements allocated, otherwise "NumElements" is defaulted
6996to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006997allocation is guaranteed to be aligned to at least that boundary. The
6998alignment may not be greater than ``1 << 29``. If not specified, or if
6999zero, the target can choose to align the allocation on any convenient
7000boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007001
7002'``type``' may be any sized type.
7003
7004Semantics:
7005""""""""""
7006
7007Memory is allocated; a pointer is returned. The operation is undefined
7008if there is insufficient stack space for the allocation. '``alloca``'d
7009memory is automatically released when the function returns. The
7010'``alloca``' instruction is commonly used to represent automatic
7011variables that must have an address available. When the function returns
7012(either with the ``ret`` or ``resume`` instructions), the memory is
7013reclaimed. Allocating zero bytes is legal, but the result is undefined.
7014The order in which memory is allocated (ie., which way the stack grows)
7015is not specified.
7016
7017Example:
7018""""""""
7019
7020.. code-block:: llvm
7021
Tim Northover675a0962014-06-13 14:24:23 +00007022 %ptr = alloca i32 ; yields i32*:ptr
7023 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7024 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7025 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007026
7027.. _i_load:
7028
7029'``load``' Instruction
7030^^^^^^^^^^^^^^^^^^^^^^
7031
7032Syntax:
7033"""""""
7034
7035::
7036
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007037 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007038 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007039 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007040 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007041 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007042
7043Overview:
7044"""""""""
7045
7046The '``load``' instruction is used to read from memory.
7047
7048Arguments:
7049""""""""""
7050
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007051The argument to the ``load`` instruction specifies the memory address from which
7052to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7053known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7054the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7055modify the number or order of execution of this ``load`` with other
7056:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007057
JF Bastiend1fb5852015-12-17 22:09:19 +00007058If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7059<ordering>` and optional ``singlethread`` argument. The ``release`` and
7060``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7061produce :ref:`defined <memmodel>` results when they may see multiple atomic
7062stores. The type of the pointee must be an integer, pointer, or floating-point
7063type whose bit width is a power of two greater than or equal to eight and less
7064than or equal to a target-specific size limit. ``align`` must be explicitly
7065specified on atomic loads, and the load has undefined behavior if the alignment
7066is not set to a value which is at least the size in bytes of the
7067pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007068
7069The optional constant ``align`` argument specifies the alignment of the
7070operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007071or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007072alignment for the target. It is the responsibility of the code emitter
7073to ensure that the alignment information is correct. Overestimating the
7074alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007075may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007076maximum possible alignment is ``1 << 29``. An alignment value higher
7077than the size of the loaded type implies memory up to the alignment
7078value bytes can be safely loaded without trapping in the default
7079address space. Access of the high bytes can interfere with debugging
7080tools, so should not be accessed if the function has the
7081``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007082
7083The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007084metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007085``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007086metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007087that this load is not expected to be reused in the cache. The code
7088generator may select special instructions to save cache bandwidth, such
7089as the ``MOVNT`` instruction on x86.
7090
7091The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007092metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007093entries. If a load instruction tagged with the ``!invariant.load``
7094metadata is executed, the optimizer may assume the memory location
7095referenced by the load contains the same value at all points in the
7096program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007097
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007098The optional ``!invariant.group`` metadata must reference a single metadata name
7099 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7100
Philip Reamescdb72f32014-10-20 22:40:55 +00007101The optional ``!nonnull`` metadata must reference a single
7102metadata name ``<index>`` corresponding to a metadata node with no
7103entries. The existence of the ``!nonnull`` metadata on the
7104instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007105never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007106on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007107to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007108
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007109The optional ``!dereferenceable`` metadata must reference a single metadata
7110name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007111entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007112tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007113The number of bytes known to be dereferenceable is specified by the integer
7114value in the metadata node. This is analogous to the ''dereferenceable''
7115attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007116to loads of a pointer type.
7117
7118The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007119metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7120``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007121instruction tells the optimizer that the value loaded is known to be either
7122dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007123The number of bytes known to be dereferenceable is specified by the integer
7124value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7125attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007126to loads of a pointer type.
7127
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007128The optional ``!align`` metadata must reference a single metadata name
7129``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7130The existence of the ``!align`` metadata on the instruction tells the
7131optimizer that the value loaded is known to be aligned to a boundary specified
7132by the integer value in the metadata node. The alignment must be a power of 2.
7133This is analogous to the ''align'' attribute on parameters and return values.
7134This metadata can only be applied to loads of a pointer type.
7135
Sean Silvab084af42012-12-07 10:36:55 +00007136Semantics:
7137""""""""""
7138
7139The location of memory pointed to is loaded. If the value being loaded
7140is of scalar type then the number of bytes read does not exceed the
7141minimum number of bytes needed to hold all bits of the type. For
7142example, loading an ``i24`` reads at most three bytes. When loading a
7143value of a type like ``i20`` with a size that is not an integral number
7144of bytes, the result is undefined if the value was not originally
7145written using a store of the same type.
7146
7147Examples:
7148"""""""""
7149
7150.. code-block:: llvm
7151
Tim Northover675a0962014-06-13 14:24:23 +00007152 %ptr = alloca i32 ; yields i32*:ptr
7153 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007154 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007155
7156.. _i_store:
7157
7158'``store``' Instruction
7159^^^^^^^^^^^^^^^^^^^^^^^
7160
7161Syntax:
7162"""""""
7163
7164::
7165
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007166 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7167 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007168
7169Overview:
7170"""""""""
7171
7172The '``store``' instruction is used to write to memory.
7173
7174Arguments:
7175""""""""""
7176
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007177There are two arguments to the ``store`` instruction: a value to store and an
7178address at which to store it. The type of the ``<pointer>`` operand must be a
7179pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7180operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7181allowed to modify the number or order of execution of this ``store`` with other
7182:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7183<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7184structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007185
JF Bastiend1fb5852015-12-17 22:09:19 +00007186If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7187<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7188``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7189produce :ref:`defined <memmodel>` results when they may see multiple atomic
7190stores. The type of the pointee must be an integer, pointer, or floating-point
7191type whose bit width is a power of two greater than or equal to eight and less
7192than or equal to a target-specific size limit. ``align`` must be explicitly
7193specified on atomic stores, and the store has undefined behavior if the
7194alignment is not set to a value which is at least the size in bytes of the
7195pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007196
Eli Benderskyca380842013-04-17 17:17:20 +00007197The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007198operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007199or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007200alignment for the target. It is the responsibility of the code emitter
7201to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007202alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007203alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007204safe. The maximum possible alignment is ``1 << 29``. An alignment
7205value higher than the size of the stored type implies memory up to the
7206alignment value bytes can be stored to without trapping in the default
7207address space. Storing to the higher bytes however may result in data
7208races if another thread can access the same address. Introducing a
7209data race is not allowed. Storing to the extra bytes is not allowed
7210even in situations where a data race is known to not exist if the
7211function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007212
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007213The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007214name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007215value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007216tells the optimizer and code generator that this load is not expected to
7217be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007218instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007219x86.
7220
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007221The optional ``!invariant.group`` metadata must reference a
7222single metadata name ``<index>``. See ``invariant.group`` metadata.
7223
Sean Silvab084af42012-12-07 10:36:55 +00007224Semantics:
7225""""""""""
7226
Eli Benderskyca380842013-04-17 17:17:20 +00007227The contents of memory are updated to contain ``<value>`` at the
7228location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007229of scalar type then the number of bytes written does not exceed the
7230minimum number of bytes needed to hold all bits of the type. For
7231example, storing an ``i24`` writes at most three bytes. When writing a
7232value of a type like ``i20`` with a size that is not an integral number
7233of bytes, it is unspecified what happens to the extra bits that do not
7234belong to the type, but they will typically be overwritten.
7235
7236Example:
7237""""""""
7238
7239.. code-block:: llvm
7240
Tim Northover675a0962014-06-13 14:24:23 +00007241 %ptr = alloca i32 ; yields i32*:ptr
7242 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007243 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007244
7245.. _i_fence:
7246
7247'``fence``' Instruction
7248^^^^^^^^^^^^^^^^^^^^^^^
7249
7250Syntax:
7251"""""""
7252
7253::
7254
Tim Northover675a0962014-06-13 14:24:23 +00007255 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007256
7257Overview:
7258"""""""""
7259
7260The '``fence``' instruction is used to introduce happens-before edges
7261between operations.
7262
7263Arguments:
7264""""""""""
7265
7266'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7267defines what *synchronizes-with* edges they add. They can only be given
7268``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7269
7270Semantics:
7271""""""""""
7272
7273A fence A which has (at least) ``release`` ordering semantics
7274*synchronizes with* a fence B with (at least) ``acquire`` ordering
7275semantics if and only if there exist atomic operations X and Y, both
7276operating on some atomic object M, such that A is sequenced before X, X
7277modifies M (either directly or through some side effect of a sequence
7278headed by X), Y is sequenced before B, and Y observes M. This provides a
7279*happens-before* dependency between A and B. Rather than an explicit
7280``fence``, one (but not both) of the atomic operations X or Y might
7281provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7282still *synchronize-with* the explicit ``fence`` and establish the
7283*happens-before* edge.
7284
7285A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7286``acquire`` and ``release`` semantics specified above, participates in
7287the global program order of other ``seq_cst`` operations and/or fences.
7288
7289The optional ":ref:`singlethread <singlethread>`" argument specifies
7290that the fence only synchronizes with other fences in the same thread.
7291(This is useful for interacting with signal handlers.)
7292
7293Example:
7294""""""""
7295
7296.. code-block:: llvm
7297
Tim Northover675a0962014-06-13 14:24:23 +00007298 fence acquire ; yields void
7299 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007300
7301.. _i_cmpxchg:
7302
7303'``cmpxchg``' Instruction
7304^^^^^^^^^^^^^^^^^^^^^^^^^
7305
7306Syntax:
7307"""""""
7308
7309::
7310
Tim Northover675a0962014-06-13 14:24:23 +00007311 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007312
7313Overview:
7314"""""""""
7315
7316The '``cmpxchg``' instruction is used to atomically modify memory. It
7317loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007318equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007319
7320Arguments:
7321""""""""""
7322
7323There are three arguments to the '``cmpxchg``' instruction: an address
7324to operate on, a value to compare to the value currently be at that
7325address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007326are equal. The type of '<cmp>' must be an integer or pointer type whose
7327bit width is a power of two greater than or equal to eight and less
7328than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7329have the same type, and the type of '<pointer>' must be a pointer to
7330that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7331optimizer is not allowed to modify the number or order of execution of
7332this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007333
Tim Northovere94a5182014-03-11 10:48:52 +00007334The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007335``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7336must be at least ``monotonic``, the ordering constraint on failure must be no
7337stronger than that on success, and the failure ordering cannot be either
7338``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007339
7340The optional "``singlethread``" argument declares that the ``cmpxchg``
7341is only atomic with respect to code (usually signal handlers) running in
7342the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7343respect to all other code in the system.
7344
7345The pointer passed into cmpxchg must have alignment greater than or
7346equal to the size in memory of the operand.
7347
7348Semantics:
7349""""""""""
7350
Tim Northover420a2162014-06-13 14:24:07 +00007351The contents of memory at the location specified by the '``<pointer>``' operand
7352is read and compared to '``<cmp>``'; if the read value is the equal, the
7353'``<new>``' is written. The original value at the location is returned, together
7354with a flag indicating success (true) or failure (false).
7355
7356If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7357permitted: the operation may not write ``<new>`` even if the comparison
7358matched.
7359
7360If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7361if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007362
Tim Northovere94a5182014-03-11 10:48:52 +00007363A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7364identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7365load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007366
7367Example:
7368""""""""
7369
7370.. code-block:: llvm
7371
7372 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007373 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007374 br label %loop
7375
7376 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007377 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007378 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007379 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007380 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7381 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007382 br i1 %success, label %done, label %loop
7383
7384 done:
7385 ...
7386
7387.. _i_atomicrmw:
7388
7389'``atomicrmw``' Instruction
7390^^^^^^^^^^^^^^^^^^^^^^^^^^^
7391
7392Syntax:
7393"""""""
7394
7395::
7396
Tim Northover675a0962014-06-13 14:24:23 +00007397 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007398
7399Overview:
7400"""""""""
7401
7402The '``atomicrmw``' instruction is used to atomically modify memory.
7403
7404Arguments:
7405""""""""""
7406
7407There are three arguments to the '``atomicrmw``' instruction: an
7408operation to apply, an address whose value to modify, an argument to the
7409operation. The operation must be one of the following keywords:
7410
7411- xchg
7412- add
7413- sub
7414- and
7415- nand
7416- or
7417- xor
7418- max
7419- min
7420- umax
7421- umin
7422
7423The type of '<value>' must be an integer type whose bit width is a power
7424of two greater than or equal to eight and less than or equal to a
7425target-specific size limit. The type of the '``<pointer>``' operand must
7426be a pointer to that type. If the ``atomicrmw`` is marked as
7427``volatile``, then the optimizer is not allowed to modify the number or
7428order of execution of this ``atomicrmw`` with other :ref:`volatile
7429operations <volatile>`.
7430
7431Semantics:
7432""""""""""
7433
7434The contents of memory at the location specified by the '``<pointer>``'
7435operand are atomically read, modified, and written back. The original
7436value at the location is returned. The modification is specified by the
7437operation argument:
7438
7439- xchg: ``*ptr = val``
7440- add: ``*ptr = *ptr + val``
7441- sub: ``*ptr = *ptr - val``
7442- and: ``*ptr = *ptr & val``
7443- nand: ``*ptr = ~(*ptr & val)``
7444- or: ``*ptr = *ptr | val``
7445- xor: ``*ptr = *ptr ^ val``
7446- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7447- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7448- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7449 comparison)
7450- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7451 comparison)
7452
7453Example:
7454""""""""
7455
7456.. code-block:: llvm
7457
Tim Northover675a0962014-06-13 14:24:23 +00007458 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007459
7460.. _i_getelementptr:
7461
7462'``getelementptr``' Instruction
7463^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7464
7465Syntax:
7466"""""""
7467
7468::
7469
Peter Collingbourned93620b2016-11-10 22:34:55 +00007470 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7471 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7472 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007473
7474Overview:
7475"""""""""
7476
7477The '``getelementptr``' instruction is used to get the address of a
7478subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007479address calculation only and does not access memory. The instruction can also
7480be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007481
7482Arguments:
7483""""""""""
7484
David Blaikie16a97eb2015-03-04 22:02:58 +00007485The first argument is always a type used as the basis for the calculations.
7486The second argument is always a pointer or a vector of pointers, and is the
7487base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007488that indicate which of the elements of the aggregate object are indexed.
7489The interpretation of each index is dependent on the type being indexed
7490into. The first index always indexes the pointer value given as the
7491first argument, the second index indexes a value of the type pointed to
7492(not necessarily the value directly pointed to, since the first index
7493can be non-zero), etc. The first type indexed into must be a pointer
7494value, subsequent types can be arrays, vectors, and structs. Note that
7495subsequent types being indexed into can never be pointers, since that
7496would require loading the pointer before continuing calculation.
7497
7498The type of each index argument depends on the type it is indexing into.
7499When indexing into a (optionally packed) structure, only ``i32`` integer
7500**constants** are allowed (when using a vector of indices they must all
7501be the **same** ``i32`` integer constant). When indexing into an array,
7502pointer or vector, integers of any width are allowed, and they are not
7503required to be constant. These integers are treated as signed values
7504where relevant.
7505
7506For example, let's consider a C code fragment and how it gets compiled
7507to LLVM:
7508
7509.. code-block:: c
7510
7511 struct RT {
7512 char A;
7513 int B[10][20];
7514 char C;
7515 };
7516 struct ST {
7517 int X;
7518 double Y;
7519 struct RT Z;
7520 };
7521
7522 int *foo(struct ST *s) {
7523 return &s[1].Z.B[5][13];
7524 }
7525
7526The LLVM code generated by Clang is:
7527
7528.. code-block:: llvm
7529
7530 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7531 %struct.ST = type { i32, double, %struct.RT }
7532
7533 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7534 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007535 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007536 ret i32* %arrayidx
7537 }
7538
7539Semantics:
7540""""""""""
7541
7542In the example above, the first index is indexing into the
7543'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7544= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7545indexes into the third element of the structure, yielding a
7546'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7547structure. The third index indexes into the second element of the
7548structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7549dimensions of the array are subscripted into, yielding an '``i32``'
7550type. The '``getelementptr``' instruction returns a pointer to this
7551element, thus computing a value of '``i32*``' type.
7552
7553Note that it is perfectly legal to index partially through a structure,
7554returning a pointer to an inner element. Because of this, the LLVM code
7555for the given testcase is equivalent to:
7556
7557.. code-block:: llvm
7558
7559 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007560 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7561 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7562 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7563 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7564 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007565 ret i32* %t5
7566 }
7567
7568If the ``inbounds`` keyword is present, the result value of the
7569``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7570pointer is not an *in bounds* address of an allocated object, or if any
7571of the addresses that would be formed by successive addition of the
7572offsets implied by the indices to the base address with infinitely
7573precise signed arithmetic are not an *in bounds* address of that
7574allocated object. The *in bounds* addresses for an allocated object are
7575all the addresses that point into the object, plus the address one byte
7576past the end. In cases where the base is a vector of pointers the
7577``inbounds`` keyword applies to each of the computations element-wise.
7578
7579If the ``inbounds`` keyword is not present, the offsets are added to the
7580base address with silently-wrapping two's complement arithmetic. If the
7581offsets have a different width from the pointer, they are sign-extended
7582or truncated to the width of the pointer. The result value of the
7583``getelementptr`` may be outside the object pointed to by the base
7584pointer. The result value may not necessarily be used to access memory
7585though, even if it happens to point into allocated storage. See the
7586:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7587information.
7588
Peter Collingbourned93620b2016-11-10 22:34:55 +00007589If the ``inrange`` keyword is present before any index, loading from or
7590storing to any pointer derived from the ``getelementptr`` has undefined
7591behavior if the load or store would access memory outside of the bounds of
7592the element selected by the index marked as ``inrange``. The result of a
7593pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7594involving memory) involving a pointer derived from a ``getelementptr`` with
7595the ``inrange`` keyword is undefined, with the exception of comparisons
7596in the case where both operands are in the range of the element selected
7597by the ``inrange`` keyword, inclusive of the address one past the end of
7598that element. Note that the ``inrange`` keyword is currently only allowed
7599in constant ``getelementptr`` expressions.
7600
Sean Silvab084af42012-12-07 10:36:55 +00007601The getelementptr instruction is often confusing. For some more insight
7602into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7603
7604Example:
7605""""""""
7606
7607.. code-block:: llvm
7608
7609 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007610 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007611 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007612 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007613 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007614 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007615 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007616 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007617
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007618Vector of pointers:
7619"""""""""""""""""""
7620
7621The ``getelementptr`` returns a vector of pointers, instead of a single address,
7622when one or more of its arguments is a vector. In such cases, all vector
7623arguments should have the same number of elements, and every scalar argument
7624will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007625
7626.. code-block:: llvm
7627
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007628 ; All arguments are vectors:
7629 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7630 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007631
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007632 ; Add the same scalar offset to each pointer of a vector:
7633 ; A[i] = ptrs[i] + offset*sizeof(i8)
7634 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007635
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007636 ; Add distinct offsets to the same pointer:
7637 ; A[i] = ptr + offsets[i]*sizeof(i8)
7638 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007639
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007640 ; In all cases described above the type of the result is <4 x i8*>
7641
7642The two following instructions are equivalent:
7643
7644.. code-block:: llvm
7645
7646 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7647 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7648 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7649 <4 x i32> %ind4,
7650 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007651
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007652 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7653 i32 2, i32 1, <4 x i32> %ind4, i64 13
7654
7655Let's look at the C code, where the vector version of ``getelementptr``
7656makes sense:
7657
7658.. code-block:: c
7659
7660 // Let's assume that we vectorize the following loop:
7661 double *A, B; int *C;
7662 for (int i = 0; i < size; ++i) {
7663 A[i] = B[C[i]];
7664 }
7665
7666.. code-block:: llvm
7667
7668 ; get pointers for 8 elements from array B
7669 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7670 ; load 8 elements from array B into A
7671 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7672 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007673
7674Conversion Operations
7675---------------------
7676
7677The instructions in this category are the conversion instructions
7678(casting) which all take a single operand and a type. They perform
7679various bit conversions on the operand.
7680
7681'``trunc .. to``' Instruction
7682^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7683
7684Syntax:
7685"""""""
7686
7687::
7688
7689 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7690
7691Overview:
7692"""""""""
7693
7694The '``trunc``' instruction truncates its operand to the type ``ty2``.
7695
7696Arguments:
7697""""""""""
7698
7699The '``trunc``' instruction takes a value to trunc, and a type to trunc
7700it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7701of the same number of integers. The bit size of the ``value`` must be
7702larger than the bit size of the destination type, ``ty2``. Equal sized
7703types are not allowed.
7704
7705Semantics:
7706""""""""""
7707
7708The '``trunc``' instruction truncates the high order bits in ``value``
7709and converts the remaining bits to ``ty2``. Since the source size must
7710be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7711It will always truncate bits.
7712
7713Example:
7714""""""""
7715
7716.. code-block:: llvm
7717
7718 %X = trunc i32 257 to i8 ; yields i8:1
7719 %Y = trunc i32 123 to i1 ; yields i1:true
7720 %Z = trunc i32 122 to i1 ; yields i1:false
7721 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7722
7723'``zext .. to``' Instruction
7724^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7725
7726Syntax:
7727"""""""
7728
7729::
7730
7731 <result> = zext <ty> <value> to <ty2> ; yields ty2
7732
7733Overview:
7734"""""""""
7735
7736The '``zext``' instruction zero extends its operand to type ``ty2``.
7737
7738Arguments:
7739""""""""""
7740
7741The '``zext``' instruction takes a value to cast, and a type to cast it
7742to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7743the same number of integers. The bit size of the ``value`` must be
7744smaller than the bit size of the destination type, ``ty2``.
7745
7746Semantics:
7747""""""""""
7748
7749The ``zext`` fills the high order bits of the ``value`` with zero bits
7750until it reaches the size of the destination type, ``ty2``.
7751
7752When zero extending from i1, the result will always be either 0 or 1.
7753
7754Example:
7755""""""""
7756
7757.. code-block:: llvm
7758
7759 %X = zext i32 257 to i64 ; yields i64:257
7760 %Y = zext i1 true to i32 ; yields i32:1
7761 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7762
7763'``sext .. to``' Instruction
7764^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7765
7766Syntax:
7767"""""""
7768
7769::
7770
7771 <result> = sext <ty> <value> to <ty2> ; yields ty2
7772
7773Overview:
7774"""""""""
7775
7776The '``sext``' sign extends ``value`` to the type ``ty2``.
7777
7778Arguments:
7779""""""""""
7780
7781The '``sext``' instruction takes a value to cast, and a type to cast it
7782to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7783the same number of integers. The bit size of the ``value`` must be
7784smaller than the bit size of the destination type, ``ty2``.
7785
7786Semantics:
7787""""""""""
7788
7789The '``sext``' instruction performs a sign extension by copying the sign
7790bit (highest order bit) of the ``value`` until it reaches the bit size
7791of the type ``ty2``.
7792
7793When sign extending from i1, the extension always results in -1 or 0.
7794
7795Example:
7796""""""""
7797
7798.. code-block:: llvm
7799
7800 %X = sext i8 -1 to i16 ; yields i16 :65535
7801 %Y = sext i1 true to i32 ; yields i32:-1
7802 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7803
7804'``fptrunc .. to``' Instruction
7805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7806
7807Syntax:
7808"""""""
7809
7810::
7811
7812 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7813
7814Overview:
7815"""""""""
7816
7817The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7818
7819Arguments:
7820""""""""""
7821
7822The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7823value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7824The size of ``value`` must be larger than the size of ``ty2``. This
7825implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7826
7827Semantics:
7828""""""""""
7829
Dan Liew50456fb2015-09-03 18:43:56 +00007830The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007831:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007832point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7833destination type, ``ty2``, then the results are undefined. If the cast produces
7834an inexact result, how rounding is performed (e.g. truncation, also known as
7835round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007836
7837Example:
7838""""""""
7839
7840.. code-block:: llvm
7841
7842 %X = fptrunc double 123.0 to float ; yields float:123.0
7843 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7844
7845'``fpext .. to``' Instruction
7846^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7847
7848Syntax:
7849"""""""
7850
7851::
7852
7853 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7854
7855Overview:
7856"""""""""
7857
7858The '``fpext``' extends a floating point ``value`` to a larger floating
7859point value.
7860
7861Arguments:
7862""""""""""
7863
7864The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7865``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7866to. The source type must be smaller than the destination type.
7867
7868Semantics:
7869""""""""""
7870
7871The '``fpext``' instruction extends the ``value`` from a smaller
7872:ref:`floating point <t_floating>` type to a larger :ref:`floating
7873point <t_floating>` type. The ``fpext`` cannot be used to make a
7874*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7875*no-op cast* for a floating point cast.
7876
7877Example:
7878""""""""
7879
7880.. code-block:: llvm
7881
7882 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7883 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7884
7885'``fptoui .. to``' Instruction
7886^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7887
7888Syntax:
7889"""""""
7890
7891::
7892
7893 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7894
7895Overview:
7896"""""""""
7897
7898The '``fptoui``' converts a floating point ``value`` to its unsigned
7899integer equivalent of type ``ty2``.
7900
7901Arguments:
7902""""""""""
7903
7904The '``fptoui``' instruction takes a value to cast, which must be a
7905scalar or vector :ref:`floating point <t_floating>` value, and a type to
7906cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7907``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7908type with the same number of elements as ``ty``
7909
7910Semantics:
7911""""""""""
7912
7913The '``fptoui``' instruction converts its :ref:`floating
7914point <t_floating>` operand into the nearest (rounding towards zero)
7915unsigned integer value. If the value cannot fit in ``ty2``, the results
7916are undefined.
7917
7918Example:
7919""""""""
7920
7921.. code-block:: llvm
7922
7923 %X = fptoui double 123.0 to i32 ; yields i32:123
7924 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7925 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7926
7927'``fptosi .. to``' Instruction
7928^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7929
7930Syntax:
7931"""""""
7932
7933::
7934
7935 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7936
7937Overview:
7938"""""""""
7939
7940The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7941``value`` to type ``ty2``.
7942
7943Arguments:
7944""""""""""
7945
7946The '``fptosi``' instruction takes a value to cast, which must be a
7947scalar or vector :ref:`floating point <t_floating>` value, and a type to
7948cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7949``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7950type with the same number of elements as ``ty``
7951
7952Semantics:
7953""""""""""
7954
7955The '``fptosi``' instruction converts its :ref:`floating
7956point <t_floating>` operand into the nearest (rounding towards zero)
7957signed integer value. If the value cannot fit in ``ty2``, the results
7958are undefined.
7959
7960Example:
7961""""""""
7962
7963.. code-block:: llvm
7964
7965 %X = fptosi double -123.0 to i32 ; yields i32:-123
7966 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7967 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7968
7969'``uitofp .. to``' Instruction
7970^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7971
7972Syntax:
7973"""""""
7974
7975::
7976
7977 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7978
7979Overview:
7980"""""""""
7981
7982The '``uitofp``' instruction regards ``value`` as an unsigned integer
7983and converts that value to the ``ty2`` type.
7984
7985Arguments:
7986""""""""""
7987
7988The '``uitofp``' instruction takes a value to cast, which must be a
7989scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7990``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7991``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7992type with the same number of elements as ``ty``
7993
7994Semantics:
7995""""""""""
7996
7997The '``uitofp``' instruction interprets its operand as an unsigned
7998integer quantity and converts it to the corresponding floating point
7999value. If the value cannot fit in the floating point value, the results
8000are undefined.
8001
8002Example:
8003""""""""
8004
8005.. code-block:: llvm
8006
8007 %X = uitofp i32 257 to float ; yields float:257.0
8008 %Y = uitofp i8 -1 to double ; yields double:255.0
8009
8010'``sitofp .. to``' Instruction
8011^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8012
8013Syntax:
8014"""""""
8015
8016::
8017
8018 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8019
8020Overview:
8021"""""""""
8022
8023The '``sitofp``' instruction regards ``value`` as a signed integer and
8024converts that value to the ``ty2`` type.
8025
8026Arguments:
8027""""""""""
8028
8029The '``sitofp``' instruction takes a value to cast, which must be a
8030scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8031``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8032``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8033type with the same number of elements as ``ty``
8034
8035Semantics:
8036""""""""""
8037
8038The '``sitofp``' instruction interprets its operand as a signed integer
8039quantity and converts it to the corresponding floating point value. If
8040the value cannot fit in the floating point value, the results are
8041undefined.
8042
8043Example:
8044""""""""
8045
8046.. code-block:: llvm
8047
8048 %X = sitofp i32 257 to float ; yields float:257.0
8049 %Y = sitofp i8 -1 to double ; yields double:-1.0
8050
8051.. _i_ptrtoint:
8052
8053'``ptrtoint .. to``' Instruction
8054^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8055
8056Syntax:
8057"""""""
8058
8059::
8060
8061 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8062
8063Overview:
8064"""""""""
8065
8066The '``ptrtoint``' instruction converts the pointer or a vector of
8067pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8068
8069Arguments:
8070""""""""""
8071
8072The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008073a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008074type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8075a vector of integers type.
8076
8077Semantics:
8078""""""""""
8079
8080The '``ptrtoint``' instruction converts ``value`` to integer type
8081``ty2`` by interpreting the pointer value as an integer and either
8082truncating or zero extending that value to the size of the integer type.
8083If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8084``value`` is larger than ``ty2`` then a truncation is done. If they are
8085the same size, then nothing is done (*no-op cast*) other than a type
8086change.
8087
8088Example:
8089""""""""
8090
8091.. code-block:: llvm
8092
8093 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8094 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8095 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8096
8097.. _i_inttoptr:
8098
8099'``inttoptr .. to``' Instruction
8100^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8101
8102Syntax:
8103"""""""
8104
8105::
8106
8107 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8108
8109Overview:
8110"""""""""
8111
8112The '``inttoptr``' instruction converts an integer ``value`` to a
8113pointer type, ``ty2``.
8114
8115Arguments:
8116""""""""""
8117
8118The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8119cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8120type.
8121
8122Semantics:
8123""""""""""
8124
8125The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8126applying either a zero extension or a truncation depending on the size
8127of the integer ``value``. If ``value`` is larger than the size of a
8128pointer then a truncation is done. If ``value`` is smaller than the size
8129of a pointer then a zero extension is done. If they are the same size,
8130nothing is done (*no-op cast*).
8131
8132Example:
8133""""""""
8134
8135.. code-block:: llvm
8136
8137 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8138 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8139 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8140 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8141
8142.. _i_bitcast:
8143
8144'``bitcast .. to``' Instruction
8145^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8146
8147Syntax:
8148"""""""
8149
8150::
8151
8152 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8153
8154Overview:
8155"""""""""
8156
8157The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8158changing any bits.
8159
8160Arguments:
8161""""""""""
8162
8163The '``bitcast``' instruction takes a value to cast, which must be a
8164non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008165also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8166bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008167identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008168also be a pointer of the same size. This instruction supports bitwise
8169conversion of vectors to integers and to vectors of other types (as
8170long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008171
8172Semantics:
8173""""""""""
8174
Matt Arsenault24b49c42013-07-31 17:49:08 +00008175The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8176is always a *no-op cast* because no bits change with this
8177conversion. The conversion is done as if the ``value`` had been stored
8178to memory and read back as type ``ty2``. Pointer (or vector of
8179pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008180pointers) types with the same address space through this instruction.
8181To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8182or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008183
8184Example:
8185""""""""
8186
Renato Golin124f2592016-07-20 12:16:38 +00008187.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008188
8189 %X = bitcast i8 255 to i8 ; yields i8 :-1
8190 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8191 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8192 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8193
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008194.. _i_addrspacecast:
8195
8196'``addrspacecast .. to``' Instruction
8197^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8198
8199Syntax:
8200"""""""
8201
8202::
8203
8204 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8205
8206Overview:
8207"""""""""
8208
8209The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8210address space ``n`` to type ``pty2`` in address space ``m``.
8211
8212Arguments:
8213""""""""""
8214
8215The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8216to cast and a pointer type to cast it to, which must have a different
8217address space.
8218
8219Semantics:
8220""""""""""
8221
8222The '``addrspacecast``' instruction converts the pointer value
8223``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008224value modification, depending on the target and the address space
8225pair. Pointer conversions within the same address space must be
8226performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008227conversion is legal then both result and operand refer to the same memory
8228location.
8229
8230Example:
8231""""""""
8232
8233.. code-block:: llvm
8234
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008235 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8236 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8237 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008238
Sean Silvab084af42012-12-07 10:36:55 +00008239.. _otherops:
8240
8241Other Operations
8242----------------
8243
8244The instructions in this category are the "miscellaneous" instructions,
8245which defy better classification.
8246
8247.. _i_icmp:
8248
8249'``icmp``' Instruction
8250^^^^^^^^^^^^^^^^^^^^^^
8251
8252Syntax:
8253"""""""
8254
8255::
8256
Tim Northover675a0962014-06-13 14:24:23 +00008257 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008258
8259Overview:
8260"""""""""
8261
8262The '``icmp``' instruction returns a boolean value or a vector of
8263boolean values based on comparison of its two integer, integer vector,
8264pointer, or pointer vector operands.
8265
8266Arguments:
8267""""""""""
8268
8269The '``icmp``' instruction takes three operands. The first operand is
8270the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008271not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008272
8273#. ``eq``: equal
8274#. ``ne``: not equal
8275#. ``ugt``: unsigned greater than
8276#. ``uge``: unsigned greater or equal
8277#. ``ult``: unsigned less than
8278#. ``ule``: unsigned less or equal
8279#. ``sgt``: signed greater than
8280#. ``sge``: signed greater or equal
8281#. ``slt``: signed less than
8282#. ``sle``: signed less or equal
8283
8284The remaining two arguments must be :ref:`integer <t_integer>` or
8285:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8286must also be identical types.
8287
8288Semantics:
8289""""""""""
8290
8291The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8292code given as ``cond``. The comparison performed always yields either an
8293:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8294
8295#. ``eq``: yields ``true`` if the operands are equal, ``false``
8296 otherwise. No sign interpretation is necessary or performed.
8297#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8298 otherwise. No sign interpretation is necessary or performed.
8299#. ``ugt``: interprets the operands as unsigned values and yields
8300 ``true`` if ``op1`` is greater than ``op2``.
8301#. ``uge``: interprets the operands as unsigned values and yields
8302 ``true`` if ``op1`` is greater than or equal to ``op2``.
8303#. ``ult``: interprets the operands as unsigned values and yields
8304 ``true`` if ``op1`` is less than ``op2``.
8305#. ``ule``: interprets the operands as unsigned values and yields
8306 ``true`` if ``op1`` is less than or equal to ``op2``.
8307#. ``sgt``: interprets the operands as signed values and yields ``true``
8308 if ``op1`` is greater than ``op2``.
8309#. ``sge``: interprets the operands as signed values and yields ``true``
8310 if ``op1`` is greater than or equal to ``op2``.
8311#. ``slt``: interprets the operands as signed values and yields ``true``
8312 if ``op1`` is less than ``op2``.
8313#. ``sle``: interprets the operands as signed values and yields ``true``
8314 if ``op1`` is less than or equal to ``op2``.
8315
8316If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8317are compared as if they were integers.
8318
8319If the operands are integer vectors, then they are compared element by
8320element. The result is an ``i1`` vector with the same number of elements
8321as the values being compared. Otherwise, the result is an ``i1``.
8322
8323Example:
8324""""""""
8325
Renato Golin124f2592016-07-20 12:16:38 +00008326.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008327
8328 <result> = icmp eq i32 4, 5 ; yields: result=false
8329 <result> = icmp ne float* %X, %X ; yields: result=false
8330 <result> = icmp ult i16 4, 5 ; yields: result=true
8331 <result> = icmp sgt i16 4, 5 ; yields: result=false
8332 <result> = icmp ule i16 -4, 5 ; yields: result=false
8333 <result> = icmp sge i16 4, 5 ; yields: result=false
8334
Sean Silvab084af42012-12-07 10:36:55 +00008335.. _i_fcmp:
8336
8337'``fcmp``' Instruction
8338^^^^^^^^^^^^^^^^^^^^^^
8339
8340Syntax:
8341"""""""
8342
8343::
8344
James Molloy88eb5352015-07-10 12:52:00 +00008345 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008346
8347Overview:
8348"""""""""
8349
8350The '``fcmp``' instruction returns a boolean value or vector of boolean
8351values based on comparison of its operands.
8352
8353If the operands are floating point scalars, then the result type is a
8354boolean (:ref:`i1 <t_integer>`).
8355
8356If the operands are floating point vectors, then the result type is a
8357vector of boolean with the same number of elements as the operands being
8358compared.
8359
8360Arguments:
8361""""""""""
8362
8363The '``fcmp``' instruction takes three operands. The first operand is
8364the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008365not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008366
8367#. ``false``: no comparison, always returns false
8368#. ``oeq``: ordered and equal
8369#. ``ogt``: ordered and greater than
8370#. ``oge``: ordered and greater than or equal
8371#. ``olt``: ordered and less than
8372#. ``ole``: ordered and less than or equal
8373#. ``one``: ordered and not equal
8374#. ``ord``: ordered (no nans)
8375#. ``ueq``: unordered or equal
8376#. ``ugt``: unordered or greater than
8377#. ``uge``: unordered or greater than or equal
8378#. ``ult``: unordered or less than
8379#. ``ule``: unordered or less than or equal
8380#. ``une``: unordered or not equal
8381#. ``uno``: unordered (either nans)
8382#. ``true``: no comparison, always returns true
8383
8384*Ordered* means that neither operand is a QNAN while *unordered* means
8385that either operand may be a QNAN.
8386
8387Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8388point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8389type. They must have identical types.
8390
8391Semantics:
8392""""""""""
8393
8394The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8395condition code given as ``cond``. If the operands are vectors, then the
8396vectors are compared element by element. Each comparison performed
8397always yields an :ref:`i1 <t_integer>` result, as follows:
8398
8399#. ``false``: always yields ``false``, regardless of operands.
8400#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8401 is equal to ``op2``.
8402#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8403 is greater than ``op2``.
8404#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8405 is greater than or equal to ``op2``.
8406#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8407 is less than ``op2``.
8408#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8409 is less than or equal to ``op2``.
8410#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8411 is not equal to ``op2``.
8412#. ``ord``: yields ``true`` if both operands are not a QNAN.
8413#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8414 equal to ``op2``.
8415#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8416 greater than ``op2``.
8417#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8418 greater than or equal to ``op2``.
8419#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8420 less than ``op2``.
8421#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8422 less than or equal to ``op2``.
8423#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8424 not equal to ``op2``.
8425#. ``uno``: yields ``true`` if either operand is a QNAN.
8426#. ``true``: always yields ``true``, regardless of operands.
8427
James Molloy88eb5352015-07-10 12:52:00 +00008428The ``fcmp`` instruction can also optionally take any number of
8429:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8430otherwise unsafe floating point optimizations.
8431
8432Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8433only flags that have any effect on its semantics are those that allow
8434assumptions to be made about the values of input arguments; namely
8435``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8436
Sean Silvab084af42012-12-07 10:36:55 +00008437Example:
8438""""""""
8439
Renato Golin124f2592016-07-20 12:16:38 +00008440.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008441
8442 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8443 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8444 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8445 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8446
Sean Silvab084af42012-12-07 10:36:55 +00008447.. _i_phi:
8448
8449'``phi``' Instruction
8450^^^^^^^^^^^^^^^^^^^^^
8451
8452Syntax:
8453"""""""
8454
8455::
8456
8457 <result> = phi <ty> [ <val0>, <label0>], ...
8458
8459Overview:
8460"""""""""
8461
8462The '``phi``' instruction is used to implement the φ node in the SSA
8463graph representing the function.
8464
8465Arguments:
8466""""""""""
8467
8468The type of the incoming values is specified with the first type field.
8469After this, the '``phi``' instruction takes a list of pairs as
8470arguments, with one pair for each predecessor basic block of the current
8471block. Only values of :ref:`first class <t_firstclass>` type may be used as
8472the value arguments to the PHI node. Only labels may be used as the
8473label arguments.
8474
8475There must be no non-phi instructions between the start of a basic block
8476and the PHI instructions: i.e. PHI instructions must be first in a basic
8477block.
8478
8479For the purposes of the SSA form, the use of each incoming value is
8480deemed to occur on the edge from the corresponding predecessor block to
8481the current block (but after any definition of an '``invoke``'
8482instruction's return value on the same edge).
8483
8484Semantics:
8485""""""""""
8486
8487At runtime, the '``phi``' instruction logically takes on the value
8488specified by the pair corresponding to the predecessor basic block that
8489executed just prior to the current block.
8490
8491Example:
8492""""""""
8493
8494.. code-block:: llvm
8495
8496 Loop: ; Infinite loop that counts from 0 on up...
8497 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8498 %nextindvar = add i32 %indvar, 1
8499 br label %Loop
8500
8501.. _i_select:
8502
8503'``select``' Instruction
8504^^^^^^^^^^^^^^^^^^^^^^^^
8505
8506Syntax:
8507"""""""
8508
8509::
8510
8511 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8512
8513 selty is either i1 or {<N x i1>}
8514
8515Overview:
8516"""""""""
8517
8518The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008519condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008520
8521Arguments:
8522""""""""""
8523
8524The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8525values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008526class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008527
8528Semantics:
8529""""""""""
8530
8531If the condition is an i1 and it evaluates to 1, the instruction returns
8532the first value argument; otherwise, it returns the second value
8533argument.
8534
8535If the condition is a vector of i1, then the value arguments must be
8536vectors of the same size, and the selection is done element by element.
8537
David Majnemer40a0b592015-03-03 22:45:47 +00008538If the condition is an i1 and the value arguments are vectors of the
8539same size, then an entire vector is selected.
8540
Sean Silvab084af42012-12-07 10:36:55 +00008541Example:
8542""""""""
8543
8544.. code-block:: llvm
8545
8546 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8547
8548.. _i_call:
8549
8550'``call``' Instruction
8551^^^^^^^^^^^^^^^^^^^^^^
8552
8553Syntax:
8554"""""""
8555
8556::
8557
David Blaikieb83cf102016-07-13 17:21:34 +00008558 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008559 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008560
8561Overview:
8562"""""""""
8563
8564The '``call``' instruction represents a simple function call.
8565
8566Arguments:
8567""""""""""
8568
8569This instruction requires several arguments:
8570
Reid Kleckner5772b772014-04-24 20:14:34 +00008571#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008572 should perform tail call optimization. The ``tail`` marker is a hint that
8573 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008574 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008575 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008576
8577 #. The call will not cause unbounded stack growth if it is part of a
8578 recursive cycle in the call graph.
8579 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8580 forwarded in place.
8581
8582 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008583 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008584 rules:
8585
8586 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8587 or a pointer bitcast followed by a ret instruction.
8588 - The ret instruction must return the (possibly bitcasted) value
8589 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008590 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008591 parameters or return types may differ in pointee type, but not
8592 in address space.
8593 - The calling conventions of the caller and callee must match.
8594 - All ABI-impacting function attributes, such as sret, byval, inreg,
8595 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008596 - The callee must be varargs iff the caller is varargs. Bitcasting a
8597 non-varargs function to the appropriate varargs type is legal so
8598 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008599
8600 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8601 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008602
8603 - Caller and callee both have the calling convention ``fastcc``.
8604 - The call is in tail position (ret immediately follows call and ret
8605 uses value of call or is void).
8606 - Option ``-tailcallopt`` is enabled, or
8607 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008608 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008609 met. <CodeGenerator.html#tailcallopt>`_
8610
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008611#. The optional ``notail`` marker indicates that the optimizers should not add
8612 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8613 call optimization from being performed on the call.
8614
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008615#. The optional ``fast-math flags`` marker indicates that the call has one or more
8616 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8617 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8618 for calls that return a floating-point scalar or vector type.
8619
Sean Silvab084af42012-12-07 10:36:55 +00008620#. The optional "cconv" marker indicates which :ref:`calling
8621 convention <callingconv>` the call should use. If none is
8622 specified, the call defaults to using C calling conventions. The
8623 calling convention of the call must match the calling convention of
8624 the target function, or else the behavior is undefined.
8625#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8626 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8627 are valid here.
8628#. '``ty``': the type of the call instruction itself which is also the
8629 type of the return value. Functions that return no value are marked
8630 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008631#. '``fnty``': shall be the signature of the function being called. The
8632 argument types must match the types implied by this signature. This
8633 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008634#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008635 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008636 indirect ``call``'s are just as possible, calling an arbitrary pointer
8637 to function value.
8638#. '``function args``': argument list whose types match the function
8639 signature argument types and parameter attributes. All arguments must
8640 be of :ref:`first class <t_firstclass>` type. If the function signature
8641 indicates the function accepts a variable number of arguments, the
8642 extra arguments can be specified.
8643#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008644 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8645 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008646#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008647
8648Semantics:
8649""""""""""
8650
8651The '``call``' instruction is used to cause control flow to transfer to
8652a specified function, with its incoming arguments bound to the specified
8653values. Upon a '``ret``' instruction in the called function, control
8654flow continues with the instruction after the function call, and the
8655return value of the function is bound to the result argument.
8656
8657Example:
8658""""""""
8659
8660.. code-block:: llvm
8661
8662 %retval = call i32 @test(i32 %argc)
8663 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8664 %X = tail call i32 @foo() ; yields i32
8665 %Y = tail call fastcc i32 @foo() ; yields i32
8666 call void %foo(i8 97 signext)
8667
8668 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008669 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008670 %gr = extractvalue %struct.A %r, 0 ; yields i32
8671 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8672 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8673 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8674
8675llvm treats calls to some functions with names and arguments that match
8676the standard C99 library as being the C99 library functions, and may
8677perform optimizations or generate code for them under that assumption.
8678This is something we'd like to change in the future to provide better
8679support for freestanding environments and non-C-based languages.
8680
8681.. _i_va_arg:
8682
8683'``va_arg``' Instruction
8684^^^^^^^^^^^^^^^^^^^^^^^^
8685
8686Syntax:
8687"""""""
8688
8689::
8690
8691 <resultval> = va_arg <va_list*> <arglist>, <argty>
8692
8693Overview:
8694"""""""""
8695
8696The '``va_arg``' instruction is used to access arguments passed through
8697the "variable argument" area of a function call. It is used to implement
8698the ``va_arg`` macro in C.
8699
8700Arguments:
8701""""""""""
8702
8703This instruction takes a ``va_list*`` value and the type of the
8704argument. It returns a value of the specified argument type and
8705increments the ``va_list`` to point to the next argument. The actual
8706type of ``va_list`` is target specific.
8707
8708Semantics:
8709""""""""""
8710
8711The '``va_arg``' instruction loads an argument of the specified type
8712from the specified ``va_list`` and causes the ``va_list`` to point to
8713the next argument. For more information, see the variable argument
8714handling :ref:`Intrinsic Functions <int_varargs>`.
8715
8716It is legal for this instruction to be called in a function which does
8717not take a variable number of arguments, for example, the ``vfprintf``
8718function.
8719
8720``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8721function <intrinsics>` because it takes a type as an argument.
8722
8723Example:
8724""""""""
8725
8726See the :ref:`variable argument processing <int_varargs>` section.
8727
8728Note that the code generator does not yet fully support va\_arg on many
8729targets. Also, it does not currently support va\_arg with aggregate
8730types on any target.
8731
8732.. _i_landingpad:
8733
8734'``landingpad``' Instruction
8735^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8736
8737Syntax:
8738"""""""
8739
8740::
8741
David Majnemer7fddecc2015-06-17 20:52:32 +00008742 <resultval> = landingpad <resultty> <clause>+
8743 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008744
8745 <clause> := catch <type> <value>
8746 <clause> := filter <array constant type> <array constant>
8747
8748Overview:
8749"""""""""
8750
8751The '``landingpad``' instruction is used by `LLVM's exception handling
8752system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008753is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008754code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008755defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008756re-entry to the function. The ``resultval`` has the type ``resultty``.
8757
8758Arguments:
8759""""""""""
8760
David Majnemer7fddecc2015-06-17 20:52:32 +00008761The optional
Sean Silvab084af42012-12-07 10:36:55 +00008762``cleanup`` flag indicates that the landing pad block is a cleanup.
8763
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008764A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008765contains the global variable representing the "type" that may be caught
8766or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8767clause takes an array constant as its argument. Use
8768"``[0 x i8**] undef``" for a filter which cannot throw. The
8769'``landingpad``' instruction must contain *at least* one ``clause`` or
8770the ``cleanup`` flag.
8771
8772Semantics:
8773""""""""""
8774
8775The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008776:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008777therefore the "result type" of the ``landingpad`` instruction. As with
8778calling conventions, how the personality function results are
8779represented in LLVM IR is target specific.
8780
8781The clauses are applied in order from top to bottom. If two
8782``landingpad`` instructions are merged together through inlining, the
8783clauses from the calling function are appended to the list of clauses.
8784When the call stack is being unwound due to an exception being thrown,
8785the exception is compared against each ``clause`` in turn. If it doesn't
8786match any of the clauses, and the ``cleanup`` flag is not set, then
8787unwinding continues further up the call stack.
8788
8789The ``landingpad`` instruction has several restrictions:
8790
8791- A landing pad block is a basic block which is the unwind destination
8792 of an '``invoke``' instruction.
8793- A landing pad block must have a '``landingpad``' instruction as its
8794 first non-PHI instruction.
8795- There can be only one '``landingpad``' instruction within the landing
8796 pad block.
8797- A basic block that is not a landing pad block may not include a
8798 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008799
8800Example:
8801""""""""
8802
8803.. code-block:: llvm
8804
8805 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008806 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008807 catch i8** @_ZTIi
8808 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008809 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008810 cleanup
8811 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008812 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008813 catch i8** @_ZTIi
8814 filter [1 x i8**] [@_ZTId]
8815
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008816.. _i_catchpad:
8817
8818'``catchpad``' Instruction
8819^^^^^^^^^^^^^^^^^^^^^^^^^^
8820
8821Syntax:
8822"""""""
8823
8824::
8825
8826 <resultval> = catchpad within <catchswitch> [<args>*]
8827
8828Overview:
8829"""""""""
8830
8831The '``catchpad``' instruction is used by `LLVM's exception handling
8832system <ExceptionHandling.html#overview>`_ to specify that a basic block
8833begins a catch handler --- one where a personality routine attempts to transfer
8834control to catch an exception.
8835
8836Arguments:
8837""""""""""
8838
8839The ``catchswitch`` operand must always be a token produced by a
8840:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8841ensures that each ``catchpad`` has exactly one predecessor block, and it always
8842terminates in a ``catchswitch``.
8843
8844The ``args`` correspond to whatever information the personality routine
8845requires to know if this is an appropriate handler for the exception. Control
8846will transfer to the ``catchpad`` if this is the first appropriate handler for
8847the exception.
8848
8849The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8850``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8851pads.
8852
8853Semantics:
8854""""""""""
8855
8856When the call stack is being unwound due to an exception being thrown, the
8857exception is compared against the ``args``. If it doesn't match, control will
8858not reach the ``catchpad`` instruction. The representation of ``args`` is
8859entirely target and personality function-specific.
8860
8861Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8862instruction must be the first non-phi of its parent basic block.
8863
8864The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8865instructions is described in the
8866`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8867
8868When a ``catchpad`` has been "entered" but not yet "exited" (as
8869described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8870it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8871that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8872
8873Example:
8874""""""""
8875
Renato Golin124f2592016-07-20 12:16:38 +00008876.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008877
8878 dispatch:
8879 %cs = catchswitch within none [label %handler0] unwind to caller
8880 ;; A catch block which can catch an integer.
8881 handler0:
8882 %tok = catchpad within %cs [i8** @_ZTIi]
8883
David Majnemer654e1302015-07-31 17:58:14 +00008884.. _i_cleanuppad:
8885
8886'``cleanuppad``' Instruction
8887^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8888
8889Syntax:
8890"""""""
8891
8892::
8893
David Majnemer8a1c45d2015-12-12 05:38:55 +00008894 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008895
8896Overview:
8897"""""""""
8898
8899The '``cleanuppad``' instruction is used by `LLVM's exception handling
8900system <ExceptionHandling.html#overview>`_ to specify that a basic block
8901is a cleanup block --- one where a personality routine attempts to
8902transfer control to run cleanup actions.
8903The ``args`` correspond to whatever additional
8904information the :ref:`personality function <personalityfn>` requires to
8905execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008906The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008907match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8908The ``parent`` argument is the token of the funclet that contains the
8909``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8910this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008911
8912Arguments:
8913""""""""""
8914
8915The instruction takes a list of arbitrary values which are interpreted
8916by the :ref:`personality function <personalityfn>`.
8917
8918Semantics:
8919""""""""""
8920
David Majnemer654e1302015-07-31 17:58:14 +00008921When the call stack is being unwound due to an exception being thrown,
8922the :ref:`personality function <personalityfn>` transfers control to the
8923``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008924As with calling conventions, how the personality function results are
8925represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008926
8927The ``cleanuppad`` instruction has several restrictions:
8928
8929- A cleanup block is a basic block which is the unwind destination of
8930 an exceptional instruction.
8931- A cleanup block must have a '``cleanuppad``' instruction as its
8932 first non-PHI instruction.
8933- There can be only one '``cleanuppad``' instruction within the
8934 cleanup block.
8935- A basic block that is not a cleanup block may not include a
8936 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008937
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008938When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8939described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8940it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8941that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008942
David Majnemer654e1302015-07-31 17:58:14 +00008943Example:
8944""""""""
8945
Renato Golin124f2592016-07-20 12:16:38 +00008946.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00008947
David Majnemer8a1c45d2015-12-12 05:38:55 +00008948 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008949
Sean Silvab084af42012-12-07 10:36:55 +00008950.. _intrinsics:
8951
8952Intrinsic Functions
8953===================
8954
8955LLVM supports the notion of an "intrinsic function". These functions
8956have well known names and semantics and are required to follow certain
8957restrictions. Overall, these intrinsics represent an extension mechanism
8958for the LLVM language that does not require changing all of the
8959transformations in LLVM when adding to the language (or the bitcode
8960reader/writer, the parser, etc...).
8961
8962Intrinsic function names must all start with an "``llvm.``" prefix. This
8963prefix is reserved in LLVM for intrinsic names; thus, function names may
8964not begin with this prefix. Intrinsic functions must always be external
8965functions: you cannot define the body of intrinsic functions. Intrinsic
8966functions may only be used in call or invoke instructions: it is illegal
8967to take the address of an intrinsic function. Additionally, because
8968intrinsic functions are part of the LLVM language, it is required if any
8969are added that they be documented here.
8970
8971Some intrinsic functions can be overloaded, i.e., the intrinsic
8972represents a family of functions that perform the same operation but on
8973different data types. Because LLVM can represent over 8 million
8974different integer types, overloading is used commonly to allow an
8975intrinsic function to operate on any integer type. One or more of the
8976argument types or the result type can be overloaded to accept any
8977integer type. Argument types may also be defined as exactly matching a
8978previous argument's type or the result type. This allows an intrinsic
8979function which accepts multiple arguments, but needs all of them to be
8980of the same type, to only be overloaded with respect to a single
8981argument or the result.
8982
8983Overloaded intrinsics will have the names of its overloaded argument
8984types encoded into its function name, each preceded by a period. Only
8985those types which are overloaded result in a name suffix. Arguments
8986whose type is matched against another type do not. For example, the
8987``llvm.ctpop`` function can take an integer of any width and returns an
8988integer of exactly the same integer width. This leads to a family of
8989functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8990``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8991overloaded, and only one type suffix is required. Because the argument's
8992type is matched against the return type, it does not require its own
8993name suffix.
8994
8995To learn how to add an intrinsic function, please see the `Extending
8996LLVM Guide <ExtendingLLVM.html>`_.
8997
8998.. _int_varargs:
8999
9000Variable Argument Handling Intrinsics
9001-------------------------------------
9002
9003Variable argument support is defined in LLVM with the
9004:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9005functions. These functions are related to the similarly named macros
9006defined in the ``<stdarg.h>`` header file.
9007
9008All of these functions operate on arguments that use a target-specific
9009value type "``va_list``". The LLVM assembly language reference manual
9010does not define what this type is, so all transformations should be
9011prepared to handle these functions regardless of the type used.
9012
9013This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9014variable argument handling intrinsic functions are used.
9015
9016.. code-block:: llvm
9017
Tim Northoverab60bb92014-11-02 01:21:51 +00009018 ; This struct is different for every platform. For most platforms,
9019 ; it is merely an i8*.
9020 %struct.va_list = type { i8* }
9021
9022 ; For Unix x86_64 platforms, va_list is the following struct:
9023 ; %struct.va_list = type { i32, i32, i8*, i8* }
9024
Sean Silvab084af42012-12-07 10:36:55 +00009025 define i32 @test(i32 %X, ...) {
9026 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009027 %ap = alloca %struct.va_list
9028 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009029 call void @llvm.va_start(i8* %ap2)
9030
9031 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009032 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009033
9034 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9035 %aq = alloca i8*
9036 %aq2 = bitcast i8** %aq to i8*
9037 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9038 call void @llvm.va_end(i8* %aq2)
9039
9040 ; Stop processing of arguments.
9041 call void @llvm.va_end(i8* %ap2)
9042 ret i32 %tmp
9043 }
9044
9045 declare void @llvm.va_start(i8*)
9046 declare void @llvm.va_copy(i8*, i8*)
9047 declare void @llvm.va_end(i8*)
9048
9049.. _int_va_start:
9050
9051'``llvm.va_start``' Intrinsic
9052^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9053
9054Syntax:
9055"""""""
9056
9057::
9058
Nick Lewycky04f6de02013-09-11 22:04:52 +00009059 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009060
9061Overview:
9062"""""""""
9063
9064The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9065subsequent use by ``va_arg``.
9066
9067Arguments:
9068""""""""""
9069
9070The argument is a pointer to a ``va_list`` element to initialize.
9071
9072Semantics:
9073""""""""""
9074
9075The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9076available in C. In a target-dependent way, it initializes the
9077``va_list`` element to which the argument points, so that the next call
9078to ``va_arg`` will produce the first variable argument passed to the
9079function. Unlike the C ``va_start`` macro, this intrinsic does not need
9080to know the last argument of the function as the compiler can figure
9081that out.
9082
9083'``llvm.va_end``' Intrinsic
9084^^^^^^^^^^^^^^^^^^^^^^^^^^^
9085
9086Syntax:
9087"""""""
9088
9089::
9090
9091 declare void @llvm.va_end(i8* <arglist>)
9092
9093Overview:
9094"""""""""
9095
9096The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9097initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9098
9099Arguments:
9100""""""""""
9101
9102The argument is a pointer to a ``va_list`` to destroy.
9103
9104Semantics:
9105""""""""""
9106
9107The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9108available in C. In a target-dependent way, it destroys the ``va_list``
9109element to which the argument points. Calls to
9110:ref:`llvm.va_start <int_va_start>` and
9111:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9112``llvm.va_end``.
9113
9114.. _int_va_copy:
9115
9116'``llvm.va_copy``' Intrinsic
9117^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9118
9119Syntax:
9120"""""""
9121
9122::
9123
9124 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9125
9126Overview:
9127"""""""""
9128
9129The '``llvm.va_copy``' intrinsic copies the current argument position
9130from the source argument list to the destination argument list.
9131
9132Arguments:
9133""""""""""
9134
9135The first argument is a pointer to a ``va_list`` element to initialize.
9136The second argument is a pointer to a ``va_list`` element to copy from.
9137
9138Semantics:
9139""""""""""
9140
9141The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9142available in C. In a target-dependent way, it copies the source
9143``va_list`` element into the destination ``va_list`` element. This
9144intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9145arbitrarily complex and require, for example, memory allocation.
9146
9147Accurate Garbage Collection Intrinsics
9148--------------------------------------
9149
Philip Reamesc5b0f562015-02-25 23:52:06 +00009150LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009151(GC) requires the frontend to generate code containing appropriate intrinsic
9152calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009153intrinsics in a manner which is appropriate for the target collector.
9154
Sean Silvab084af42012-12-07 10:36:55 +00009155These intrinsics allow identification of :ref:`GC roots on the
9156stack <int_gcroot>`, as well as garbage collector implementations that
9157require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009158Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009159these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009160details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009161
Philip Reamesf80bbff2015-02-25 23:45:20 +00009162Experimental Statepoint Intrinsics
9163^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9164
9165LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009166collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009167to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009168:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009169differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009170<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009171described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009172
9173.. _int_gcroot:
9174
9175'``llvm.gcroot``' Intrinsic
9176^^^^^^^^^^^^^^^^^^^^^^^^^^^
9177
9178Syntax:
9179"""""""
9180
9181::
9182
9183 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9184
9185Overview:
9186"""""""""
9187
9188The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9189the code generator, and allows some metadata to be associated with it.
9190
9191Arguments:
9192""""""""""
9193
9194The first argument specifies the address of a stack object that contains
9195the root pointer. The second pointer (which must be either a constant or
9196a global value address) contains the meta-data to be associated with the
9197root.
9198
9199Semantics:
9200""""""""""
9201
9202At runtime, a call to this intrinsic stores a null pointer into the
9203"ptrloc" location. At compile-time, the code generator generates
9204information to allow the runtime to find the pointer at GC safe points.
9205The '``llvm.gcroot``' intrinsic may only be used in a function which
9206:ref:`specifies a GC algorithm <gc>`.
9207
9208.. _int_gcread:
9209
9210'``llvm.gcread``' Intrinsic
9211^^^^^^^^^^^^^^^^^^^^^^^^^^^
9212
9213Syntax:
9214"""""""
9215
9216::
9217
9218 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9219
9220Overview:
9221"""""""""
9222
9223The '``llvm.gcread``' intrinsic identifies reads of references from heap
9224locations, allowing garbage collector implementations that require read
9225barriers.
9226
9227Arguments:
9228""""""""""
9229
9230The second argument is the address to read from, which should be an
9231address allocated from the garbage collector. The first object is a
9232pointer to the start of the referenced object, if needed by the language
9233runtime (otherwise null).
9234
9235Semantics:
9236""""""""""
9237
9238The '``llvm.gcread``' intrinsic has the same semantics as a load
9239instruction, but may be replaced with substantially more complex code by
9240the garbage collector runtime, as needed. The '``llvm.gcread``'
9241intrinsic may only be used in a function which :ref:`specifies a GC
9242algorithm <gc>`.
9243
9244.. _int_gcwrite:
9245
9246'``llvm.gcwrite``' Intrinsic
9247^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9248
9249Syntax:
9250"""""""
9251
9252::
9253
9254 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9255
9256Overview:
9257"""""""""
9258
9259The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9260locations, allowing garbage collector implementations that require write
9261barriers (such as generational or reference counting collectors).
9262
9263Arguments:
9264""""""""""
9265
9266The first argument is the reference to store, the second is the start of
9267the object to store it to, and the third is the address of the field of
9268Obj to store to. If the runtime does not require a pointer to the
9269object, Obj may be null.
9270
9271Semantics:
9272""""""""""
9273
9274The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9275instruction, but may be replaced with substantially more complex code by
9276the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9277intrinsic may only be used in a function which :ref:`specifies a GC
9278algorithm <gc>`.
9279
9280Code Generator Intrinsics
9281-------------------------
9282
9283These intrinsics are provided by LLVM to expose special features that
9284may only be implemented with code generator support.
9285
9286'``llvm.returnaddress``' Intrinsic
9287^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9288
9289Syntax:
9290"""""""
9291
9292::
9293
9294 declare i8 *@llvm.returnaddress(i32 <level>)
9295
9296Overview:
9297"""""""""
9298
9299The '``llvm.returnaddress``' intrinsic attempts to compute a
9300target-specific value indicating the return address of the current
9301function or one of its callers.
9302
9303Arguments:
9304""""""""""
9305
9306The argument to this intrinsic indicates which function to return the
9307address for. Zero indicates the calling function, one indicates its
9308caller, etc. The argument is **required** to be a constant integer
9309value.
9310
9311Semantics:
9312""""""""""
9313
9314The '``llvm.returnaddress``' intrinsic either returns a pointer
9315indicating the return address of the specified call frame, or zero if it
9316cannot be identified. The value returned by this intrinsic is likely to
9317be incorrect or 0 for arguments other than zero, so it should only be
9318used for debugging purposes.
9319
9320Note that calling this intrinsic does not prevent function inlining or
9321other aggressive transformations, so the value returned may not be that
9322of the obvious source-language caller.
9323
Albert Gutowski795d7d62016-10-12 22:13:19 +00009324'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009325^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009326
9327Syntax:
9328"""""""
9329
9330::
9331
9332 declare i8 *@llvm.addressofreturnaddress()
9333
9334Overview:
9335"""""""""
9336
9337The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9338pointer to the place in the stack frame where the return address of the
9339current function is stored.
9340
9341Semantics:
9342""""""""""
9343
9344Note that calling this intrinsic does not prevent function inlining or
9345other aggressive transformations, so the value returned may not be that
9346of the obvious source-language caller.
9347
9348This intrinsic is only implemented for x86.
9349
Sean Silvab084af42012-12-07 10:36:55 +00009350'``llvm.frameaddress``' Intrinsic
9351^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9352
9353Syntax:
9354"""""""
9355
9356::
9357
9358 declare i8* @llvm.frameaddress(i32 <level>)
9359
9360Overview:
9361"""""""""
9362
9363The '``llvm.frameaddress``' intrinsic attempts to return the
9364target-specific frame pointer value for the specified stack frame.
9365
9366Arguments:
9367""""""""""
9368
9369The argument to this intrinsic indicates which function to return the
9370frame pointer for. Zero indicates the calling function, one indicates
9371its caller, etc. The argument is **required** to be a constant integer
9372value.
9373
9374Semantics:
9375""""""""""
9376
9377The '``llvm.frameaddress``' intrinsic either returns a pointer
9378indicating the frame address of the specified call frame, or zero if it
9379cannot be identified. The value returned by this intrinsic is likely to
9380be incorrect or 0 for arguments other than zero, so it should only be
9381used for debugging purposes.
9382
9383Note that calling this intrinsic does not prevent function inlining or
9384other aggressive transformations, so the value returned may not be that
9385of the obvious source-language caller.
9386
Reid Kleckner60381792015-07-07 22:25:32 +00009387'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9389
9390Syntax:
9391"""""""
9392
9393::
9394
Reid Kleckner60381792015-07-07 22:25:32 +00009395 declare void @llvm.localescape(...)
9396 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009397
9398Overview:
9399"""""""""
9400
Reid Kleckner60381792015-07-07 22:25:32 +00009401The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9402allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009403live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009404computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009405
9406Arguments:
9407""""""""""
9408
Reid Kleckner60381792015-07-07 22:25:32 +00009409All arguments to '``llvm.localescape``' must be pointers to static allocas or
9410casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009411once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009412
Reid Kleckner60381792015-07-07 22:25:32 +00009413The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009414bitcasted pointer to a function defined in the current module. The code
9415generator cannot determine the frame allocation offset of functions defined in
9416other modules.
9417
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009418The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9419call frame that is currently live. The return value of '``llvm.localaddress``'
9420is one way to produce such a value, but various runtimes also expose a suitable
9421pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009422
Reid Kleckner60381792015-07-07 22:25:32 +00009423The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9424'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009425
Reid Klecknere9b89312015-01-13 00:48:10 +00009426Semantics:
9427""""""""""
9428
Reid Kleckner60381792015-07-07 22:25:32 +00009429These intrinsics allow a group of functions to share access to a set of local
9430stack allocations of a one parent function. The parent function may call the
9431'``llvm.localescape``' intrinsic once from the function entry block, and the
9432child functions can use '``llvm.localrecover``' to access the escaped allocas.
9433The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9434the escaped allocas are allocated, which would break attempts to use
9435'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009436
Renato Golinc7aea402014-05-06 16:51:25 +00009437.. _int_read_register:
9438.. _int_write_register:
9439
9440'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9441^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9442
9443Syntax:
9444"""""""
9445
9446::
9447
9448 declare i32 @llvm.read_register.i32(metadata)
9449 declare i64 @llvm.read_register.i64(metadata)
9450 declare void @llvm.write_register.i32(metadata, i32 @value)
9451 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009452 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009453
9454Overview:
9455"""""""""
9456
9457The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9458provides access to the named register. The register must be valid on
9459the architecture being compiled to. The type needs to be compatible
9460with the register being read.
9461
9462Semantics:
9463""""""""""
9464
9465The '``llvm.read_register``' intrinsic returns the current value of the
9466register, where possible. The '``llvm.write_register``' intrinsic sets
9467the current value of the register, where possible.
9468
9469This is useful to implement named register global variables that need
9470to always be mapped to a specific register, as is common practice on
9471bare-metal programs including OS kernels.
9472
9473The compiler doesn't check for register availability or use of the used
9474register in surrounding code, including inline assembly. Because of that,
9475allocatable registers are not supported.
9476
9477Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009478architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009479work is needed to support other registers and even more so, allocatable
9480registers.
9481
Sean Silvab084af42012-12-07 10:36:55 +00009482.. _int_stacksave:
9483
9484'``llvm.stacksave``' Intrinsic
9485^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9486
9487Syntax:
9488"""""""
9489
9490::
9491
9492 declare i8* @llvm.stacksave()
9493
9494Overview:
9495"""""""""
9496
9497The '``llvm.stacksave``' intrinsic is used to remember the current state
9498of the function stack, for use with
9499:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9500implementing language features like scoped automatic variable sized
9501arrays in C99.
9502
9503Semantics:
9504""""""""""
9505
9506This intrinsic returns a opaque pointer value that can be passed to
9507:ref:`llvm.stackrestore <int_stackrestore>`. When an
9508``llvm.stackrestore`` intrinsic is executed with a value saved from
9509``llvm.stacksave``, it effectively restores the state of the stack to
9510the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9511practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9512were allocated after the ``llvm.stacksave`` was executed.
9513
9514.. _int_stackrestore:
9515
9516'``llvm.stackrestore``' Intrinsic
9517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9518
9519Syntax:
9520"""""""
9521
9522::
9523
9524 declare void @llvm.stackrestore(i8* %ptr)
9525
9526Overview:
9527"""""""""
9528
9529The '``llvm.stackrestore``' intrinsic is used to restore the state of
9530the function stack to the state it was in when the corresponding
9531:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9532useful for implementing language features like scoped automatic variable
9533sized arrays in C99.
9534
9535Semantics:
9536""""""""""
9537
9538See the description for :ref:`llvm.stacksave <int_stacksave>`.
9539
Yury Gribovd7dbb662015-12-01 11:40:55 +00009540.. _int_get_dynamic_area_offset:
9541
9542'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009543^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009544
9545Syntax:
9546"""""""
9547
9548::
9549
9550 declare i32 @llvm.get.dynamic.area.offset.i32()
9551 declare i64 @llvm.get.dynamic.area.offset.i64()
9552
Lang Hames10239932016-10-08 00:20:42 +00009553Overview:
9554"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009555
9556 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9557 get the offset from native stack pointer to the address of the most
9558 recent dynamic alloca on the caller's stack. These intrinsics are
9559 intendend for use in combination with
9560 :ref:`llvm.stacksave <int_stacksave>` to get a
9561 pointer to the most recent dynamic alloca. This is useful, for example,
9562 for AddressSanitizer's stack unpoisoning routines.
9563
9564Semantics:
9565""""""""""
9566
9567 These intrinsics return a non-negative integer value that can be used to
9568 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9569 on the caller's stack. In particular, for targets where stack grows downwards,
9570 adding this offset to the native stack pointer would get the address of the most
9571 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009572 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009573 one past the end of the most recent dynamic alloca.
9574
9575 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9576 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9577 compile-time-known constant value.
9578
9579 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9580 must match the target's generic address space's (address space 0) pointer type.
9581
Sean Silvab084af42012-12-07 10:36:55 +00009582'``llvm.prefetch``' Intrinsic
9583^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9584
9585Syntax:
9586"""""""
9587
9588::
9589
9590 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9591
9592Overview:
9593"""""""""
9594
9595The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9596insert a prefetch instruction if supported; otherwise, it is a noop.
9597Prefetches have no effect on the behavior of the program but can change
9598its performance characteristics.
9599
9600Arguments:
9601""""""""""
9602
9603``address`` is the address to be prefetched, ``rw`` is the specifier
9604determining if the fetch should be for a read (0) or write (1), and
9605``locality`` is a temporal locality specifier ranging from (0) - no
9606locality, to (3) - extremely local keep in cache. The ``cache type``
9607specifies whether the prefetch is performed on the data (1) or
9608instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9609arguments must be constant integers.
9610
9611Semantics:
9612""""""""""
9613
9614This intrinsic does not modify the behavior of the program. In
9615particular, prefetches cannot trap and do not produce a value. On
9616targets that support this intrinsic, the prefetch can provide hints to
9617the processor cache for better performance.
9618
9619'``llvm.pcmarker``' Intrinsic
9620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9621
9622Syntax:
9623"""""""
9624
9625::
9626
9627 declare void @llvm.pcmarker(i32 <id>)
9628
9629Overview:
9630"""""""""
9631
9632The '``llvm.pcmarker``' intrinsic is a method to export a Program
9633Counter (PC) in a region of code to simulators and other tools. The
9634method is target specific, but it is expected that the marker will use
9635exported symbols to transmit the PC of the marker. The marker makes no
9636guarantees that it will remain with any specific instruction after
9637optimizations. It is possible that the presence of a marker will inhibit
9638optimizations. The intended use is to be inserted after optimizations to
9639allow correlations of simulation runs.
9640
9641Arguments:
9642""""""""""
9643
9644``id`` is a numerical id identifying the marker.
9645
9646Semantics:
9647""""""""""
9648
9649This intrinsic does not modify the behavior of the program. Backends
9650that do not support this intrinsic may ignore it.
9651
9652'``llvm.readcyclecounter``' Intrinsic
9653^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9654
9655Syntax:
9656"""""""
9657
9658::
9659
9660 declare i64 @llvm.readcyclecounter()
9661
9662Overview:
9663"""""""""
9664
9665The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9666counter register (or similar low latency, high accuracy clocks) on those
9667targets that support it. On X86, it should map to RDTSC. On Alpha, it
9668should map to RPCC. As the backing counters overflow quickly (on the
9669order of 9 seconds on alpha), this should only be used for small
9670timings.
9671
9672Semantics:
9673""""""""""
9674
9675When directly supported, reading the cycle counter should not modify any
9676memory. Implementations are allowed to either return a application
9677specific value or a system wide value. On backends without support, this
9678is lowered to a constant 0.
9679
Tim Northoverbc933082013-05-23 19:11:20 +00009680Note that runtime support may be conditional on the privilege-level code is
9681running at and the host platform.
9682
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009683'``llvm.clear_cache``' Intrinsic
9684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9685
9686Syntax:
9687"""""""
9688
9689::
9690
9691 declare void @llvm.clear_cache(i8*, i8*)
9692
9693Overview:
9694"""""""""
9695
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009696The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9697in the specified range to the execution unit of the processor. On
9698targets with non-unified instruction and data cache, the implementation
9699flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009700
9701Semantics:
9702""""""""""
9703
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009704On platforms with coherent instruction and data caches (e.g. x86), this
9705intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009706cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009707instructions or a system call, if cache flushing requires special
9708privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009709
Sean Silvad02bf3e2014-04-07 22:29:53 +00009710The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009711time library.
Renato Golin93010e62014-03-26 14:01:32 +00009712
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009713This instrinsic does *not* empty the instruction pipeline. Modifications
9714of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009715
Justin Bogner61ba2e32014-12-08 18:02:35 +00009716'``llvm.instrprof_increment``' Intrinsic
9717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9718
9719Syntax:
9720"""""""
9721
9722::
9723
9724 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9725 i32 <num-counters>, i32 <index>)
9726
9727Overview:
9728"""""""""
9729
9730The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9731frontend for use with instrumentation based profiling. These will be
9732lowered by the ``-instrprof`` pass to generate execution counts of a
9733program at runtime.
9734
9735Arguments:
9736""""""""""
9737
9738The first argument is a pointer to a global variable containing the
9739name of the entity being instrumented. This should generally be the
9740(mangled) function name for a set of counters.
9741
9742The second argument is a hash value that can be used by the consumer
9743of the profile data to detect changes to the instrumented source, and
9744the third is the number of counters associated with ``name``. It is an
9745error if ``hash`` or ``num-counters`` differ between two instances of
9746``instrprof_increment`` that refer to the same name.
9747
9748The last argument refers to which of the counters for ``name`` should
9749be incremented. It should be a value between 0 and ``num-counters``.
9750
9751Semantics:
9752""""""""""
9753
9754This intrinsic represents an increment of a profiling counter. It will
9755cause the ``-instrprof`` pass to generate the appropriate data
9756structures and the code to increment the appropriate value, in a
9757format that can be written out by a compiler runtime and consumed via
9758the ``llvm-profdata`` tool.
9759
Xinliang David Li4ca17332016-09-18 18:34:07 +00009760'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +00009761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +00009762
9763Syntax:
9764"""""""
9765
9766::
9767
9768 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
9769 i32 <num-counters>,
9770 i32 <index>, i64 <step>)
9771
9772Overview:
9773"""""""""
9774
9775The '``llvm.instrprof_increment_step``' intrinsic is an extension to
9776the '``llvm.instrprof_increment``' intrinsic with an additional fifth
9777argument to specify the step of the increment.
9778
9779Arguments:
9780""""""""""
9781The first four arguments are the same as '``llvm.instrprof_increment``'
9782instrinsic.
9783
9784The last argument specifies the value of the increment of the counter variable.
9785
9786Semantics:
9787""""""""""
9788See description of '``llvm.instrprof_increment``' instrinsic.
9789
9790
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009791'``llvm.instrprof_value_profile``' Intrinsic
9792^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9793
9794Syntax:
9795"""""""
9796
9797::
9798
9799 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9800 i64 <value>, i32 <value_kind>,
9801 i32 <index>)
9802
9803Overview:
9804"""""""""
9805
9806The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9807frontend for use with instrumentation based profiling. This will be
9808lowered by the ``-instrprof`` pass to find out the target values,
9809instrumented expressions take in a program at runtime.
9810
9811Arguments:
9812""""""""""
9813
9814The first argument is a pointer to a global variable containing the
9815name of the entity being instrumented. ``name`` should generally be the
9816(mangled) function name for a set of counters.
9817
9818The second argument is a hash value that can be used by the consumer
9819of the profile data to detect changes to the instrumented source. It
9820is an error if ``hash`` differs between two instances of
9821``llvm.instrprof_*`` that refer to the same name.
9822
9823The third argument is the value of the expression being profiled. The profiled
9824expression's value should be representable as an unsigned 64-bit value. The
9825fourth argument represents the kind of value profiling that is being done. The
9826supported value profiling kinds are enumerated through the
9827``InstrProfValueKind`` type declared in the
9828``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9829index of the instrumented expression within ``name``. It should be >= 0.
9830
9831Semantics:
9832""""""""""
9833
9834This intrinsic represents the point where a call to a runtime routine
9835should be inserted for value profiling of target expressions. ``-instrprof``
9836pass will generate the appropriate data structures and replace the
9837``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9838runtime library with proper arguments.
9839
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009840'``llvm.thread.pointer``' Intrinsic
9841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9842
9843Syntax:
9844"""""""
9845
9846::
9847
9848 declare i8* @llvm.thread.pointer()
9849
9850Overview:
9851"""""""""
9852
9853The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9854pointer.
9855
9856Semantics:
9857""""""""""
9858
9859The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9860for the current thread. The exact semantics of this value are target
9861specific: it may point to the start of TLS area, to the end, or somewhere
9862in the middle. Depending on the target, this intrinsic may read a register,
9863call a helper function, read from an alternate memory space, or perform
9864other operations necessary to locate the TLS area. Not all targets support
9865this intrinsic.
9866
Sean Silvab084af42012-12-07 10:36:55 +00009867Standard C Library Intrinsics
9868-----------------------------
9869
9870LLVM provides intrinsics for a few important standard C library
9871functions. These intrinsics allow source-language front-ends to pass
9872information about the alignment of the pointer arguments to the code
9873generator, providing opportunity for more efficient code generation.
9874
9875.. _int_memcpy:
9876
9877'``llvm.memcpy``' Intrinsic
9878^^^^^^^^^^^^^^^^^^^^^^^^^^^
9879
9880Syntax:
9881"""""""
9882
9883This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9884integer bit width and for different address spaces. Not all targets
9885support all bit widths however.
9886
9887::
9888
9889 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9890 i32 <len>, i32 <align>, i1 <isvolatile>)
9891 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9892 i64 <len>, i32 <align>, i1 <isvolatile>)
9893
9894Overview:
9895"""""""""
9896
9897The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9898source location to the destination location.
9899
9900Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9901intrinsics do not return a value, takes extra alignment/isvolatile
9902arguments and the pointers can be in specified address spaces.
9903
9904Arguments:
9905""""""""""
9906
9907The first argument is a pointer to the destination, the second is a
9908pointer to the source. The third argument is an integer argument
9909specifying the number of bytes to copy, the fourth argument is the
9910alignment of the source and destination locations, and the fifth is a
9911boolean indicating a volatile access.
9912
9913If the call to this intrinsic has an alignment value that is not 0 or 1,
9914then the caller guarantees that both the source and destination pointers
9915are aligned to that boundary.
9916
9917If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9918a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9919very cleanly specified and it is unwise to depend on it.
9920
9921Semantics:
9922""""""""""
9923
9924The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9925source location to the destination location, which are not allowed to
9926overlap. It copies "len" bytes of memory over. If the argument is known
9927to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009928argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009929
9930'``llvm.memmove``' Intrinsic
9931^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9932
9933Syntax:
9934"""""""
9935
9936This is an overloaded intrinsic. You can use llvm.memmove on any integer
9937bit width and for different address space. Not all targets support all
9938bit widths however.
9939
9940::
9941
9942 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9943 i32 <len>, i32 <align>, i1 <isvolatile>)
9944 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9945 i64 <len>, i32 <align>, i1 <isvolatile>)
9946
9947Overview:
9948"""""""""
9949
9950The '``llvm.memmove.*``' intrinsics move a block of memory from the
9951source location to the destination location. It is similar to the
9952'``llvm.memcpy``' intrinsic but allows the two memory locations to
9953overlap.
9954
9955Note that, unlike the standard libc function, the ``llvm.memmove.*``
9956intrinsics do not return a value, takes extra alignment/isvolatile
9957arguments and the pointers can be in specified address spaces.
9958
9959Arguments:
9960""""""""""
9961
9962The first argument is a pointer to the destination, the second is a
9963pointer to the source. The third argument is an integer argument
9964specifying the number of bytes to copy, the fourth argument is the
9965alignment of the source and destination locations, and the fifth is a
9966boolean indicating a volatile access.
9967
9968If the call to this intrinsic has an alignment value that is not 0 or 1,
9969then the caller guarantees that the source and destination pointers are
9970aligned to that boundary.
9971
9972If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9973is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9974not very cleanly specified and it is unwise to depend on it.
9975
9976Semantics:
9977""""""""""
9978
9979The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9980source location to the destination location, which may overlap. It
9981copies "len" bytes of memory over. If the argument is known to be
9982aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009983otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009984
9985'``llvm.memset.*``' Intrinsics
9986^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9987
9988Syntax:
9989"""""""
9990
9991This is an overloaded intrinsic. You can use llvm.memset on any integer
9992bit width and for different address spaces. However, not all targets
9993support all bit widths.
9994
9995::
9996
9997 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9998 i32 <len>, i32 <align>, i1 <isvolatile>)
9999 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10000 i64 <len>, i32 <align>, i1 <isvolatile>)
10001
10002Overview:
10003"""""""""
10004
10005The '``llvm.memset.*``' intrinsics fill a block of memory with a
10006particular byte value.
10007
10008Note that, unlike the standard libc function, the ``llvm.memset``
10009intrinsic does not return a value and takes extra alignment/volatile
10010arguments. Also, the destination can be in an arbitrary address space.
10011
10012Arguments:
10013""""""""""
10014
10015The first argument is a pointer to the destination to fill, the second
10016is the byte value with which to fill it, the third argument is an
10017integer argument specifying the number of bytes to fill, and the fourth
10018argument is the known alignment of the destination location.
10019
10020If the call to this intrinsic has an alignment value that is not 0 or 1,
10021then the caller guarantees that the destination pointer is aligned to
10022that boundary.
10023
10024If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10025a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10026very cleanly specified and it is unwise to depend on it.
10027
10028Semantics:
10029""""""""""
10030
10031The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10032at the destination location. If the argument is known to be aligned to
10033some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010034it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010035
10036'``llvm.sqrt.*``' Intrinsic
10037^^^^^^^^^^^^^^^^^^^^^^^^^^^
10038
10039Syntax:
10040"""""""
10041
10042This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10043floating point or vector of floating point type. Not all targets support
10044all types however.
10045
10046::
10047
10048 declare float @llvm.sqrt.f32(float %Val)
10049 declare double @llvm.sqrt.f64(double %Val)
10050 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10051 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10052 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10053
10054Overview:
10055"""""""""
10056
10057The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
10058returning the same value as the libm '``sqrt``' functions would. Unlike
10059``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
10060negative numbers other than -0.0 (which allows for better optimization,
10061because there is no need to worry about errno being set).
10062``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
10063
10064Arguments:
10065""""""""""
10066
10067The argument and return value are floating point numbers of the same
10068type.
10069
10070Semantics:
10071""""""""""
10072
10073This function returns the sqrt of the specified operand if it is a
10074nonnegative floating point number.
10075
10076'``llvm.powi.*``' Intrinsic
10077^^^^^^^^^^^^^^^^^^^^^^^^^^^
10078
10079Syntax:
10080"""""""
10081
10082This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10083floating point or vector of floating point type. Not all targets support
10084all types however.
10085
10086::
10087
10088 declare float @llvm.powi.f32(float %Val, i32 %power)
10089 declare double @llvm.powi.f64(double %Val, i32 %power)
10090 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10091 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10092 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10093
10094Overview:
10095"""""""""
10096
10097The '``llvm.powi.*``' intrinsics return the first operand raised to the
10098specified (positive or negative) power. The order of evaluation of
10099multiplications is not defined. When a vector of floating point type is
10100used, the second argument remains a scalar integer value.
10101
10102Arguments:
10103""""""""""
10104
10105The second argument is an integer power, and the first is a value to
10106raise to that power.
10107
10108Semantics:
10109""""""""""
10110
10111This function returns the first value raised to the second power with an
10112unspecified sequence of rounding operations.
10113
10114'``llvm.sin.*``' Intrinsic
10115^^^^^^^^^^^^^^^^^^^^^^^^^^
10116
10117Syntax:
10118"""""""
10119
10120This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10121floating point or vector of floating point type. Not all targets support
10122all types however.
10123
10124::
10125
10126 declare float @llvm.sin.f32(float %Val)
10127 declare double @llvm.sin.f64(double %Val)
10128 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10129 declare fp128 @llvm.sin.f128(fp128 %Val)
10130 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10131
10132Overview:
10133"""""""""
10134
10135The '``llvm.sin.*``' intrinsics return the sine of the operand.
10136
10137Arguments:
10138""""""""""
10139
10140The argument and return value are floating point numbers of the same
10141type.
10142
10143Semantics:
10144""""""""""
10145
10146This function returns the sine of the specified operand, returning the
10147same values as the libm ``sin`` functions would, and handles error
10148conditions in the same way.
10149
10150'``llvm.cos.*``' Intrinsic
10151^^^^^^^^^^^^^^^^^^^^^^^^^^
10152
10153Syntax:
10154"""""""
10155
10156This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10157floating point or vector of floating point type. Not all targets support
10158all types however.
10159
10160::
10161
10162 declare float @llvm.cos.f32(float %Val)
10163 declare double @llvm.cos.f64(double %Val)
10164 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10165 declare fp128 @llvm.cos.f128(fp128 %Val)
10166 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10167
10168Overview:
10169"""""""""
10170
10171The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10172
10173Arguments:
10174""""""""""
10175
10176The argument and return value are floating point numbers of the same
10177type.
10178
10179Semantics:
10180""""""""""
10181
10182This function returns the cosine of the specified operand, returning the
10183same values as the libm ``cos`` functions would, and handles error
10184conditions in the same way.
10185
10186'``llvm.pow.*``' Intrinsic
10187^^^^^^^^^^^^^^^^^^^^^^^^^^
10188
10189Syntax:
10190"""""""
10191
10192This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10193floating point or vector of floating point type. Not all targets support
10194all types however.
10195
10196::
10197
10198 declare float @llvm.pow.f32(float %Val, float %Power)
10199 declare double @llvm.pow.f64(double %Val, double %Power)
10200 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10201 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10202 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10203
10204Overview:
10205"""""""""
10206
10207The '``llvm.pow.*``' intrinsics return the first operand raised to the
10208specified (positive or negative) power.
10209
10210Arguments:
10211""""""""""
10212
10213The second argument is a floating point power, and the first is a value
10214to raise to that power.
10215
10216Semantics:
10217""""""""""
10218
10219This function returns the first value raised to the second power,
10220returning the same values as the libm ``pow`` functions would, and
10221handles error conditions in the same way.
10222
10223'``llvm.exp.*``' Intrinsic
10224^^^^^^^^^^^^^^^^^^^^^^^^^^
10225
10226Syntax:
10227"""""""
10228
10229This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10230floating point or vector of floating point type. Not all targets support
10231all types however.
10232
10233::
10234
10235 declare float @llvm.exp.f32(float %Val)
10236 declare double @llvm.exp.f64(double %Val)
10237 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10238 declare fp128 @llvm.exp.f128(fp128 %Val)
10239 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10240
10241Overview:
10242"""""""""
10243
10244The '``llvm.exp.*``' intrinsics perform the exp function.
10245
10246Arguments:
10247""""""""""
10248
10249The argument and return value are floating point numbers of the same
10250type.
10251
10252Semantics:
10253""""""""""
10254
10255This function returns the same values as the libm ``exp`` functions
10256would, and handles error conditions in the same way.
10257
10258'``llvm.exp2.*``' Intrinsic
10259^^^^^^^^^^^^^^^^^^^^^^^^^^^
10260
10261Syntax:
10262"""""""
10263
10264This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10265floating point or vector of floating point type. Not all targets support
10266all types however.
10267
10268::
10269
10270 declare float @llvm.exp2.f32(float %Val)
10271 declare double @llvm.exp2.f64(double %Val)
10272 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10273 declare fp128 @llvm.exp2.f128(fp128 %Val)
10274 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10275
10276Overview:
10277"""""""""
10278
10279The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10280
10281Arguments:
10282""""""""""
10283
10284The argument and return value are floating point numbers of the same
10285type.
10286
10287Semantics:
10288""""""""""
10289
10290This function returns the same values as the libm ``exp2`` functions
10291would, and handles error conditions in the same way.
10292
10293'``llvm.log.*``' Intrinsic
10294^^^^^^^^^^^^^^^^^^^^^^^^^^
10295
10296Syntax:
10297"""""""
10298
10299This is an overloaded intrinsic. You can use ``llvm.log`` on any
10300floating point or vector of floating point type. Not all targets support
10301all types however.
10302
10303::
10304
10305 declare float @llvm.log.f32(float %Val)
10306 declare double @llvm.log.f64(double %Val)
10307 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10308 declare fp128 @llvm.log.f128(fp128 %Val)
10309 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10310
10311Overview:
10312"""""""""
10313
10314The '``llvm.log.*``' intrinsics perform the log function.
10315
10316Arguments:
10317""""""""""
10318
10319The argument and return value are floating point numbers of the same
10320type.
10321
10322Semantics:
10323""""""""""
10324
10325This function returns the same values as the libm ``log`` functions
10326would, and handles error conditions in the same way.
10327
10328'``llvm.log10.*``' Intrinsic
10329^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10330
10331Syntax:
10332"""""""
10333
10334This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10335floating point or vector of floating point type. Not all targets support
10336all types however.
10337
10338::
10339
10340 declare float @llvm.log10.f32(float %Val)
10341 declare double @llvm.log10.f64(double %Val)
10342 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10343 declare fp128 @llvm.log10.f128(fp128 %Val)
10344 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10345
10346Overview:
10347"""""""""
10348
10349The '``llvm.log10.*``' intrinsics perform the log10 function.
10350
10351Arguments:
10352""""""""""
10353
10354The argument and return value are floating point numbers of the same
10355type.
10356
10357Semantics:
10358""""""""""
10359
10360This function returns the same values as the libm ``log10`` functions
10361would, and handles error conditions in the same way.
10362
10363'``llvm.log2.*``' Intrinsic
10364^^^^^^^^^^^^^^^^^^^^^^^^^^^
10365
10366Syntax:
10367"""""""
10368
10369This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10370floating point or vector of floating point type. Not all targets support
10371all types however.
10372
10373::
10374
10375 declare float @llvm.log2.f32(float %Val)
10376 declare double @llvm.log2.f64(double %Val)
10377 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10378 declare fp128 @llvm.log2.f128(fp128 %Val)
10379 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10380
10381Overview:
10382"""""""""
10383
10384The '``llvm.log2.*``' intrinsics perform the log2 function.
10385
10386Arguments:
10387""""""""""
10388
10389The argument and return value are floating point numbers of the same
10390type.
10391
10392Semantics:
10393""""""""""
10394
10395This function returns the same values as the libm ``log2`` functions
10396would, and handles error conditions in the same way.
10397
10398'``llvm.fma.*``' Intrinsic
10399^^^^^^^^^^^^^^^^^^^^^^^^^^
10400
10401Syntax:
10402"""""""
10403
10404This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10405floating point or vector of floating point type. Not all targets support
10406all types however.
10407
10408::
10409
10410 declare float @llvm.fma.f32(float %a, float %b, float %c)
10411 declare double @llvm.fma.f64(double %a, double %b, double %c)
10412 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10413 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10414 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10415
10416Overview:
10417"""""""""
10418
10419The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10420operation.
10421
10422Arguments:
10423""""""""""
10424
10425The argument and return value are floating point numbers of the same
10426type.
10427
10428Semantics:
10429""""""""""
10430
10431This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010432would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010433
10434'``llvm.fabs.*``' Intrinsic
10435^^^^^^^^^^^^^^^^^^^^^^^^^^^
10436
10437Syntax:
10438"""""""
10439
10440This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10441floating point or vector of floating point type. Not all targets support
10442all types however.
10443
10444::
10445
10446 declare float @llvm.fabs.f32(float %Val)
10447 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010448 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010449 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010450 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010451
10452Overview:
10453"""""""""
10454
10455The '``llvm.fabs.*``' intrinsics return the absolute value of the
10456operand.
10457
10458Arguments:
10459""""""""""
10460
10461The argument and return value are floating point numbers of the same
10462type.
10463
10464Semantics:
10465""""""""""
10466
10467This function returns the same values as the libm ``fabs`` functions
10468would, and handles error conditions in the same way.
10469
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010470'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010471^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010472
10473Syntax:
10474"""""""
10475
10476This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10477floating point or vector of floating point type. Not all targets support
10478all types however.
10479
10480::
10481
Matt Arsenault64313c92014-10-22 18:25:02 +000010482 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10483 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10484 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10485 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10486 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010487
10488Overview:
10489"""""""""
10490
10491The '``llvm.minnum.*``' intrinsics return the minimum of the two
10492arguments.
10493
10494
10495Arguments:
10496""""""""""
10497
10498The arguments and return value are floating point numbers of the same
10499type.
10500
10501Semantics:
10502""""""""""
10503
10504Follows the IEEE-754 semantics for minNum, which also match for libm's
10505fmin.
10506
10507If either operand is a NaN, returns the other non-NaN operand. Returns
10508NaN only if both operands are NaN. If the operands compare equal,
10509returns a value that compares equal to both operands. This means that
10510fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10511
10512'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010514
10515Syntax:
10516"""""""
10517
10518This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10519floating point or vector of floating point type. Not all targets support
10520all types however.
10521
10522::
10523
Matt Arsenault64313c92014-10-22 18:25:02 +000010524 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10525 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10526 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10527 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10528 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010529
10530Overview:
10531"""""""""
10532
10533The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10534arguments.
10535
10536
10537Arguments:
10538""""""""""
10539
10540The arguments and return value are floating point numbers of the same
10541type.
10542
10543Semantics:
10544""""""""""
10545Follows the IEEE-754 semantics for maxNum, which also match for libm's
10546fmax.
10547
10548If either operand is a NaN, returns the other non-NaN operand. Returns
10549NaN only if both operands are NaN. If the operands compare equal,
10550returns a value that compares equal to both operands. This means that
10551fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10552
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010553'``llvm.copysign.*``' Intrinsic
10554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10555
10556Syntax:
10557"""""""
10558
10559This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10560floating point or vector of floating point type. Not all targets support
10561all types however.
10562
10563::
10564
10565 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10566 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10567 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10568 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10569 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10570
10571Overview:
10572"""""""""
10573
10574The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10575first operand and the sign of the second operand.
10576
10577Arguments:
10578""""""""""
10579
10580The arguments and return value are floating point numbers of the same
10581type.
10582
10583Semantics:
10584""""""""""
10585
10586This function returns the same values as the libm ``copysign``
10587functions would, and handles error conditions in the same way.
10588
Sean Silvab084af42012-12-07 10:36:55 +000010589'``llvm.floor.*``' Intrinsic
10590^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10591
10592Syntax:
10593"""""""
10594
10595This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10596floating point or vector of floating point type. Not all targets support
10597all types however.
10598
10599::
10600
10601 declare float @llvm.floor.f32(float %Val)
10602 declare double @llvm.floor.f64(double %Val)
10603 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10604 declare fp128 @llvm.floor.f128(fp128 %Val)
10605 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10606
10607Overview:
10608"""""""""
10609
10610The '``llvm.floor.*``' intrinsics return the floor of the operand.
10611
10612Arguments:
10613""""""""""
10614
10615The argument and return value are floating point numbers of the same
10616type.
10617
10618Semantics:
10619""""""""""
10620
10621This function returns the same values as the libm ``floor`` functions
10622would, and handles error conditions in the same way.
10623
10624'``llvm.ceil.*``' Intrinsic
10625^^^^^^^^^^^^^^^^^^^^^^^^^^^
10626
10627Syntax:
10628"""""""
10629
10630This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10631floating point or vector of floating point type. Not all targets support
10632all types however.
10633
10634::
10635
10636 declare float @llvm.ceil.f32(float %Val)
10637 declare double @llvm.ceil.f64(double %Val)
10638 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10639 declare fp128 @llvm.ceil.f128(fp128 %Val)
10640 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10641
10642Overview:
10643"""""""""
10644
10645The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10646
10647Arguments:
10648""""""""""
10649
10650The argument and return value are floating point numbers of the same
10651type.
10652
10653Semantics:
10654""""""""""
10655
10656This function returns the same values as the libm ``ceil`` functions
10657would, and handles error conditions in the same way.
10658
10659'``llvm.trunc.*``' Intrinsic
10660^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10661
10662Syntax:
10663"""""""
10664
10665This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10666floating point or vector of floating point type. Not all targets support
10667all types however.
10668
10669::
10670
10671 declare float @llvm.trunc.f32(float %Val)
10672 declare double @llvm.trunc.f64(double %Val)
10673 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10674 declare fp128 @llvm.trunc.f128(fp128 %Val)
10675 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10676
10677Overview:
10678"""""""""
10679
10680The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10681nearest integer not larger in magnitude than the operand.
10682
10683Arguments:
10684""""""""""
10685
10686The argument and return value are floating point numbers of the same
10687type.
10688
10689Semantics:
10690""""""""""
10691
10692This function returns the same values as the libm ``trunc`` functions
10693would, and handles error conditions in the same way.
10694
10695'``llvm.rint.*``' Intrinsic
10696^^^^^^^^^^^^^^^^^^^^^^^^^^^
10697
10698Syntax:
10699"""""""
10700
10701This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10702floating point or vector of floating point type. Not all targets support
10703all types however.
10704
10705::
10706
10707 declare float @llvm.rint.f32(float %Val)
10708 declare double @llvm.rint.f64(double %Val)
10709 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10710 declare fp128 @llvm.rint.f128(fp128 %Val)
10711 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10712
10713Overview:
10714"""""""""
10715
10716The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10717nearest integer. It may raise an inexact floating-point exception if the
10718operand isn't an integer.
10719
10720Arguments:
10721""""""""""
10722
10723The argument and return value are floating point numbers of the same
10724type.
10725
10726Semantics:
10727""""""""""
10728
10729This function returns the same values as the libm ``rint`` functions
10730would, and handles error conditions in the same way.
10731
10732'``llvm.nearbyint.*``' Intrinsic
10733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10734
10735Syntax:
10736"""""""
10737
10738This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10739floating point or vector of floating point type. Not all targets support
10740all types however.
10741
10742::
10743
10744 declare float @llvm.nearbyint.f32(float %Val)
10745 declare double @llvm.nearbyint.f64(double %Val)
10746 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10747 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10748 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10749
10750Overview:
10751"""""""""
10752
10753The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10754nearest integer.
10755
10756Arguments:
10757""""""""""
10758
10759The argument and return value are floating point numbers of the same
10760type.
10761
10762Semantics:
10763""""""""""
10764
10765This function returns the same values as the libm ``nearbyint``
10766functions would, and handles error conditions in the same way.
10767
Hal Finkel171817e2013-08-07 22:49:12 +000010768'``llvm.round.*``' Intrinsic
10769^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10770
10771Syntax:
10772"""""""
10773
10774This is an overloaded intrinsic. You can use ``llvm.round`` on any
10775floating point or vector of floating point type. Not all targets support
10776all types however.
10777
10778::
10779
10780 declare float @llvm.round.f32(float %Val)
10781 declare double @llvm.round.f64(double %Val)
10782 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10783 declare fp128 @llvm.round.f128(fp128 %Val)
10784 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10785
10786Overview:
10787"""""""""
10788
10789The '``llvm.round.*``' intrinsics returns the operand rounded to the
10790nearest integer.
10791
10792Arguments:
10793""""""""""
10794
10795The argument and return value are floating point numbers of the same
10796type.
10797
10798Semantics:
10799""""""""""
10800
10801This function returns the same values as the libm ``round``
10802functions would, and handles error conditions in the same way.
10803
Sean Silvab084af42012-12-07 10:36:55 +000010804Bit Manipulation Intrinsics
10805---------------------------
10806
10807LLVM provides intrinsics for a few important bit manipulation
10808operations. These allow efficient code generation for some algorithms.
10809
James Molloy90111f72015-11-12 12:29:09 +000010810'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010811^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010812
10813Syntax:
10814"""""""
10815
10816This is an overloaded intrinsic function. You can use bitreverse on any
10817integer type.
10818
10819::
10820
10821 declare i16 @llvm.bitreverse.i16(i16 <id>)
10822 declare i32 @llvm.bitreverse.i32(i32 <id>)
10823 declare i64 @llvm.bitreverse.i64(i64 <id>)
10824
10825Overview:
10826"""""""""
10827
10828The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010829bitpattern of an integer value; for example ``0b10110110`` becomes
10830``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010831
10832Semantics:
10833""""""""""
10834
Yichao Yu5abf14b2016-11-23 16:25:31 +000010835The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000010836``M`` in the input moved to bit ``N-M`` in the output.
10837
Sean Silvab084af42012-12-07 10:36:55 +000010838'``llvm.bswap.*``' Intrinsics
10839^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10840
10841Syntax:
10842"""""""
10843
10844This is an overloaded intrinsic function. You can use bswap on any
10845integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10846
10847::
10848
10849 declare i16 @llvm.bswap.i16(i16 <id>)
10850 declare i32 @llvm.bswap.i32(i32 <id>)
10851 declare i64 @llvm.bswap.i64(i64 <id>)
10852
10853Overview:
10854"""""""""
10855
10856The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10857values with an even number of bytes (positive multiple of 16 bits).
10858These are useful for performing operations on data that is not in the
10859target's native byte order.
10860
10861Semantics:
10862""""""""""
10863
10864The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10865and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10866intrinsic returns an i32 value that has the four bytes of the input i32
10867swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10868returned i32 will have its bytes in 3, 2, 1, 0 order. The
10869``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10870concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10871respectively).
10872
10873'``llvm.ctpop.*``' Intrinsic
10874^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10875
10876Syntax:
10877"""""""
10878
10879This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10880bit width, or on any vector with integer elements. Not all targets
10881support all bit widths or vector types, however.
10882
10883::
10884
10885 declare i8 @llvm.ctpop.i8(i8 <src>)
10886 declare i16 @llvm.ctpop.i16(i16 <src>)
10887 declare i32 @llvm.ctpop.i32(i32 <src>)
10888 declare i64 @llvm.ctpop.i64(i64 <src>)
10889 declare i256 @llvm.ctpop.i256(i256 <src>)
10890 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10891
10892Overview:
10893"""""""""
10894
10895The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10896in a value.
10897
10898Arguments:
10899""""""""""
10900
10901The only argument is the value to be counted. The argument may be of any
10902integer type, or a vector with integer elements. The return type must
10903match the argument type.
10904
10905Semantics:
10906""""""""""
10907
10908The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10909each element of a vector.
10910
10911'``llvm.ctlz.*``' Intrinsic
10912^^^^^^^^^^^^^^^^^^^^^^^^^^^
10913
10914Syntax:
10915"""""""
10916
10917This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10918integer bit width, or any vector whose elements are integers. Not all
10919targets support all bit widths or vector types, however.
10920
10921::
10922
10923 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10924 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10925 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10926 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10927 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010928 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010929
10930Overview:
10931"""""""""
10932
10933The '``llvm.ctlz``' family of intrinsic functions counts the number of
10934leading zeros in a variable.
10935
10936Arguments:
10937""""""""""
10938
10939The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010940any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010941type must match the first argument type.
10942
10943The second argument must be a constant and is a flag to indicate whether
10944the intrinsic should ensure that a zero as the first argument produces a
10945defined result. Historically some architectures did not provide a
10946defined result for zero values as efficiently, and many algorithms are
10947now predicated on avoiding zero-value inputs.
10948
10949Semantics:
10950""""""""""
10951
10952The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10953zeros in a variable, or within each element of the vector. If
10954``src == 0`` then the result is the size in bits of the type of ``src``
10955if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10956``llvm.ctlz(i32 2) = 30``.
10957
10958'``llvm.cttz.*``' Intrinsic
10959^^^^^^^^^^^^^^^^^^^^^^^^^^^
10960
10961Syntax:
10962"""""""
10963
10964This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10965integer bit width, or any vector of integer elements. Not all targets
10966support all bit widths or vector types, however.
10967
10968::
10969
10970 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10971 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10972 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10973 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10974 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010975 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010976
10977Overview:
10978"""""""""
10979
10980The '``llvm.cttz``' family of intrinsic functions counts the number of
10981trailing zeros.
10982
10983Arguments:
10984""""""""""
10985
10986The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010987any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010988type must match the first argument type.
10989
10990The second argument must be a constant and is a flag to indicate whether
10991the intrinsic should ensure that a zero as the first argument produces a
10992defined result. Historically some architectures did not provide a
10993defined result for zero values as efficiently, and many algorithms are
10994now predicated on avoiding zero-value inputs.
10995
10996Semantics:
10997""""""""""
10998
10999The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11000zeros in a variable, or within each element of a vector. If ``src == 0``
11001then the result is the size in bits of the type of ``src`` if
11002``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11003``llvm.cttz(2) = 1``.
11004
Philip Reames34843ae2015-03-05 05:55:55 +000011005.. _int_overflow:
11006
Sean Silvab084af42012-12-07 10:36:55 +000011007Arithmetic with Overflow Intrinsics
11008-----------------------------------
11009
John Regehr6a493f22016-05-12 20:55:09 +000011010LLVM provides intrinsics for fast arithmetic overflow checking.
11011
11012Each of these intrinsics returns a two-element struct. The first
11013element of this struct contains the result of the corresponding
11014arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11015the result. Therefore, for example, the first element of the struct
11016returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11017result of a 32-bit ``add`` instruction with the same operands, where
11018the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11019
11020The second element of the result is an ``i1`` that is 1 if the
11021arithmetic operation overflowed and 0 otherwise. An operation
11022overflows if, for any values of its operands ``A`` and ``B`` and for
11023any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11024not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11025``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11026``op`` is the underlying arithmetic operation.
11027
11028The behavior of these intrinsics is well-defined for all argument
11029values.
Sean Silvab084af42012-12-07 10:36:55 +000011030
11031'``llvm.sadd.with.overflow.*``' Intrinsics
11032^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11033
11034Syntax:
11035"""""""
11036
11037This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11038on any integer bit width.
11039
11040::
11041
11042 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11043 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11044 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11045
11046Overview:
11047"""""""""
11048
11049The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11050a signed addition of the two arguments, and indicate whether an overflow
11051occurred during the signed summation.
11052
11053Arguments:
11054""""""""""
11055
11056The arguments (%a and %b) and the first element of the result structure
11057may be of integer types of any bit width, but they must have the same
11058bit width. The second element of the result structure must be of type
11059``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11060addition.
11061
11062Semantics:
11063""""""""""
11064
11065The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011066a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011067first element of which is the signed summation, and the second element
11068of which is a bit specifying if the signed summation resulted in an
11069overflow.
11070
11071Examples:
11072"""""""""
11073
11074.. code-block:: llvm
11075
11076 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11077 %sum = extractvalue {i32, i1} %res, 0
11078 %obit = extractvalue {i32, i1} %res, 1
11079 br i1 %obit, label %overflow, label %normal
11080
11081'``llvm.uadd.with.overflow.*``' Intrinsics
11082^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11083
11084Syntax:
11085"""""""
11086
11087This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11088on any integer bit width.
11089
11090::
11091
11092 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11093 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11094 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11095
11096Overview:
11097"""""""""
11098
11099The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11100an unsigned addition of the two arguments, and indicate whether a carry
11101occurred during the unsigned summation.
11102
11103Arguments:
11104""""""""""
11105
11106The arguments (%a and %b) and the first element of the result structure
11107may be of integer types of any bit width, but they must have the same
11108bit width. The second element of the result structure must be of type
11109``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11110addition.
11111
11112Semantics:
11113""""""""""
11114
11115The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011116an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011117first element of which is the sum, and the second element of which is a
11118bit specifying if the unsigned summation resulted in a carry.
11119
11120Examples:
11121"""""""""
11122
11123.. code-block:: llvm
11124
11125 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11126 %sum = extractvalue {i32, i1} %res, 0
11127 %obit = extractvalue {i32, i1} %res, 1
11128 br i1 %obit, label %carry, label %normal
11129
11130'``llvm.ssub.with.overflow.*``' Intrinsics
11131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11132
11133Syntax:
11134"""""""
11135
11136This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11137on any integer bit width.
11138
11139::
11140
11141 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11142 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11143 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11144
11145Overview:
11146"""""""""
11147
11148The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11149a signed subtraction of the two arguments, and indicate whether an
11150overflow occurred during the signed subtraction.
11151
11152Arguments:
11153""""""""""
11154
11155The arguments (%a and %b) and the first element of the result structure
11156may be of integer types of any bit width, but they must have the same
11157bit width. The second element of the result structure must be of type
11158``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11159subtraction.
11160
11161Semantics:
11162""""""""""
11163
11164The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011165a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011166first element of which is the subtraction, and the second element of
11167which is a bit specifying if the signed subtraction resulted in an
11168overflow.
11169
11170Examples:
11171"""""""""
11172
11173.. code-block:: llvm
11174
11175 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11176 %sum = extractvalue {i32, i1} %res, 0
11177 %obit = extractvalue {i32, i1} %res, 1
11178 br i1 %obit, label %overflow, label %normal
11179
11180'``llvm.usub.with.overflow.*``' Intrinsics
11181^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11182
11183Syntax:
11184"""""""
11185
11186This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11187on any integer bit width.
11188
11189::
11190
11191 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11192 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11193 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11194
11195Overview:
11196"""""""""
11197
11198The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11199an unsigned subtraction of the two arguments, and indicate whether an
11200overflow occurred during the unsigned subtraction.
11201
11202Arguments:
11203""""""""""
11204
11205The arguments (%a and %b) and the first element of the result structure
11206may be of integer types of any bit width, but they must have the same
11207bit width. The second element of the result structure must be of type
11208``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11209subtraction.
11210
11211Semantics:
11212""""""""""
11213
11214The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011215an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011216the first element of which is the subtraction, and the second element of
11217which is a bit specifying if the unsigned subtraction resulted in an
11218overflow.
11219
11220Examples:
11221"""""""""
11222
11223.. code-block:: llvm
11224
11225 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11226 %sum = extractvalue {i32, i1} %res, 0
11227 %obit = extractvalue {i32, i1} %res, 1
11228 br i1 %obit, label %overflow, label %normal
11229
11230'``llvm.smul.with.overflow.*``' Intrinsics
11231^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11232
11233Syntax:
11234"""""""
11235
11236This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11237on any integer bit width.
11238
11239::
11240
11241 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11242 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11243 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11244
11245Overview:
11246"""""""""
11247
11248The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11249a signed multiplication of the two arguments, and indicate whether an
11250overflow occurred during the signed multiplication.
11251
11252Arguments:
11253""""""""""
11254
11255The arguments (%a and %b) and the first element of the result structure
11256may be of integer types of any bit width, but they must have the same
11257bit width. The second element of the result structure must be of type
11258``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11259multiplication.
11260
11261Semantics:
11262""""""""""
11263
11264The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011265a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011266the first element of which is the multiplication, and the second element
11267of which is a bit specifying if the signed multiplication resulted in an
11268overflow.
11269
11270Examples:
11271"""""""""
11272
11273.. code-block:: llvm
11274
11275 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11276 %sum = extractvalue {i32, i1} %res, 0
11277 %obit = extractvalue {i32, i1} %res, 1
11278 br i1 %obit, label %overflow, label %normal
11279
11280'``llvm.umul.with.overflow.*``' Intrinsics
11281^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11282
11283Syntax:
11284"""""""
11285
11286This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11287on any integer bit width.
11288
11289::
11290
11291 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11292 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11293 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11294
11295Overview:
11296"""""""""
11297
11298The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11299a unsigned multiplication of the two arguments, and indicate whether an
11300overflow occurred during the unsigned multiplication.
11301
11302Arguments:
11303""""""""""
11304
11305The arguments (%a and %b) and the first element of the result structure
11306may be of integer types of any bit width, but they must have the same
11307bit width. The second element of the result structure must be of type
11308``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11309multiplication.
11310
11311Semantics:
11312""""""""""
11313
11314The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011315an unsigned multiplication of the two arguments. They return a structure ---
11316the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011317element of which is a bit specifying if the unsigned multiplication
11318resulted in an overflow.
11319
11320Examples:
11321"""""""""
11322
11323.. code-block:: llvm
11324
11325 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11326 %sum = extractvalue {i32, i1} %res, 0
11327 %obit = extractvalue {i32, i1} %res, 1
11328 br i1 %obit, label %overflow, label %normal
11329
11330Specialised Arithmetic Intrinsics
11331---------------------------------
11332
Owen Anderson1056a922015-07-11 07:01:27 +000011333'``llvm.canonicalize.*``' Intrinsic
11334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11335
11336Syntax:
11337"""""""
11338
11339::
11340
11341 declare float @llvm.canonicalize.f32(float %a)
11342 declare double @llvm.canonicalize.f64(double %b)
11343
11344Overview:
11345"""""""""
11346
11347The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011348encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011349implementing certain numeric primitives such as frexp. The canonical encoding is
11350defined by IEEE-754-2008 to be:
11351
11352::
11353
11354 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011355 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011356 numbers, infinities, and NaNs, especially in decimal formats.
11357
11358This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011359conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011360according to section 6.2.
11361
11362Examples of non-canonical encodings:
11363
Sean Silvaa1190322015-08-06 22:56:48 +000011364- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011365 converted to a canonical representation per hardware-specific protocol.
11366- Many normal decimal floating point numbers have non-canonical alternative
11367 encodings.
11368- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011369 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011370 a zero of the same sign by this operation.
11371
11372Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11373default exception handling must signal an invalid exception, and produce a
11374quiet NaN result.
11375
11376This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011377that the compiler does not constant fold the operation. Likewise, division by
113781.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011379-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11380
Sean Silvaa1190322015-08-06 22:56:48 +000011381``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011382
11383- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11384- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11385 to ``(x == y)``
11386
11387Additionally, the sign of zero must be conserved:
11388``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11389
11390The payload bits of a NaN must be conserved, with two exceptions.
11391First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011392must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011393usual methods.
11394
11395The canonicalization operation may be optimized away if:
11396
Sean Silvaa1190322015-08-06 22:56:48 +000011397- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011398 floating-point operation that is required by the standard to be canonical.
11399- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011400 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011401
Sean Silvab084af42012-12-07 10:36:55 +000011402'``llvm.fmuladd.*``' Intrinsic
11403^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11404
11405Syntax:
11406"""""""
11407
11408::
11409
11410 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11411 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11412
11413Overview:
11414"""""""""
11415
11416The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011417expressions that can be fused if the code generator determines that (a) the
11418target instruction set has support for a fused operation, and (b) that the
11419fused operation is more efficient than the equivalent, separate pair of mul
11420and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011421
11422Arguments:
11423""""""""""
11424
11425The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11426multiplicands, a and b, and an addend c.
11427
11428Semantics:
11429""""""""""
11430
11431The expression:
11432
11433::
11434
11435 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11436
11437is equivalent to the expression a \* b + c, except that rounding will
11438not be performed between the multiplication and addition steps if the
11439code generator fuses the operations. Fusion is not guaranteed, even if
11440the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011441corresponding llvm.fma.\* intrinsic function should be used
11442instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011443
11444Examples:
11445"""""""""
11446
11447.. code-block:: llvm
11448
Tim Northover675a0962014-06-13 14:24:23 +000011449 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011450
11451Half Precision Floating Point Intrinsics
11452----------------------------------------
11453
11454For most target platforms, half precision floating point is a
11455storage-only format. This means that it is a dense encoding (in memory)
11456but does not support computation in the format.
11457
11458This means that code must first load the half-precision floating point
11459value as an i16, then convert it to float with
11460:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11461then be performed on the float value (including extending to double
11462etc). To store the value back to memory, it is first converted to float
11463if needed, then converted to i16 with
11464:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11465i16 value.
11466
11467.. _int_convert_to_fp16:
11468
11469'``llvm.convert.to.fp16``' Intrinsic
11470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11471
11472Syntax:
11473"""""""
11474
11475::
11476
Tim Northoverfd7e4242014-07-17 10:51:23 +000011477 declare i16 @llvm.convert.to.fp16.f32(float %a)
11478 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011479
11480Overview:
11481"""""""""
11482
Tim Northoverfd7e4242014-07-17 10:51:23 +000011483The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11484conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011485
11486Arguments:
11487""""""""""
11488
11489The intrinsic function contains single argument - the value to be
11490converted.
11491
11492Semantics:
11493""""""""""
11494
Tim Northoverfd7e4242014-07-17 10:51:23 +000011495The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11496conventional floating point format to half precision floating point format. The
11497return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011498
11499Examples:
11500"""""""""
11501
11502.. code-block:: llvm
11503
Tim Northoverfd7e4242014-07-17 10:51:23 +000011504 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011505 store i16 %res, i16* @x, align 2
11506
11507.. _int_convert_from_fp16:
11508
11509'``llvm.convert.from.fp16``' Intrinsic
11510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11511
11512Syntax:
11513"""""""
11514
11515::
11516
Tim Northoverfd7e4242014-07-17 10:51:23 +000011517 declare float @llvm.convert.from.fp16.f32(i16 %a)
11518 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011519
11520Overview:
11521"""""""""
11522
11523The '``llvm.convert.from.fp16``' intrinsic function performs a
11524conversion from half precision floating point format to single precision
11525floating point format.
11526
11527Arguments:
11528""""""""""
11529
11530The intrinsic function contains single argument - the value to be
11531converted.
11532
11533Semantics:
11534""""""""""
11535
11536The '``llvm.convert.from.fp16``' intrinsic function performs a
11537conversion from half single precision floating point format to single
11538precision floating point format. The input half-float value is
11539represented by an ``i16`` value.
11540
11541Examples:
11542"""""""""
11543
11544.. code-block:: llvm
11545
David Blaikiec7aabbb2015-03-04 22:06:14 +000011546 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011547 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011548
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011549.. _dbg_intrinsics:
11550
Sean Silvab084af42012-12-07 10:36:55 +000011551Debugger Intrinsics
11552-------------------
11553
11554The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11555prefix), are described in the `LLVM Source Level
11556Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11557document.
11558
11559Exception Handling Intrinsics
11560-----------------------------
11561
11562The LLVM exception handling intrinsics (which all start with
11563``llvm.eh.`` prefix), are described in the `LLVM Exception
11564Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11565
11566.. _int_trampoline:
11567
11568Trampoline Intrinsics
11569---------------------
11570
11571These intrinsics make it possible to excise one parameter, marked with
11572the :ref:`nest <nest>` attribute, from a function. The result is a
11573callable function pointer lacking the nest parameter - the caller does
11574not need to provide a value for it. Instead, the value to use is stored
11575in advance in a "trampoline", a block of memory usually allocated on the
11576stack, which also contains code to splice the nest value into the
11577argument list. This is used to implement the GCC nested function address
11578extension.
11579
11580For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11581then the resulting function pointer has signature ``i32 (i32, i32)*``.
11582It can be created as follows:
11583
11584.. code-block:: llvm
11585
11586 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011587 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011588 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11589 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11590 %fp = bitcast i8* %p to i32 (i32, i32)*
11591
11592The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11593``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11594
11595.. _int_it:
11596
11597'``llvm.init.trampoline``' Intrinsic
11598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11599
11600Syntax:
11601"""""""
11602
11603::
11604
11605 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11606
11607Overview:
11608"""""""""
11609
11610This fills the memory pointed to by ``tramp`` with executable code,
11611turning it into a trampoline.
11612
11613Arguments:
11614""""""""""
11615
11616The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11617pointers. The ``tramp`` argument must point to a sufficiently large and
11618sufficiently aligned block of memory; this memory is written to by the
11619intrinsic. Note that the size and the alignment are target-specific -
11620LLVM currently provides no portable way of determining them, so a
11621front-end that generates this intrinsic needs to have some
11622target-specific knowledge. The ``func`` argument must hold a function
11623bitcast to an ``i8*``.
11624
11625Semantics:
11626""""""""""
11627
11628The block of memory pointed to by ``tramp`` is filled with target
11629dependent code, turning it into a function. Then ``tramp`` needs to be
11630passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11631be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11632function's signature is the same as that of ``func`` with any arguments
11633marked with the ``nest`` attribute removed. At most one such ``nest``
11634argument is allowed, and it must be of pointer type. Calling the new
11635function is equivalent to calling ``func`` with the same argument list,
11636but with ``nval`` used for the missing ``nest`` argument. If, after
11637calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11638modified, then the effect of any later call to the returned function
11639pointer is undefined.
11640
11641.. _int_at:
11642
11643'``llvm.adjust.trampoline``' Intrinsic
11644^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11645
11646Syntax:
11647"""""""
11648
11649::
11650
11651 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11652
11653Overview:
11654"""""""""
11655
11656This performs any required machine-specific adjustment to the address of
11657a trampoline (passed as ``tramp``).
11658
11659Arguments:
11660""""""""""
11661
11662``tramp`` must point to a block of memory which already has trampoline
11663code filled in by a previous call to
11664:ref:`llvm.init.trampoline <int_it>`.
11665
11666Semantics:
11667""""""""""
11668
11669On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011670different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011671intrinsic returns the executable address corresponding to ``tramp``
11672after performing the required machine specific adjustments. The pointer
11673returned can then be :ref:`bitcast and executed <int_trampoline>`.
11674
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011675.. _int_mload_mstore:
11676
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011677Masked Vector Load and Store Intrinsics
11678---------------------------------------
11679
11680LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11681
11682.. _int_mload:
11683
11684'``llvm.masked.load.*``' Intrinsics
11685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11686
11687Syntax:
11688"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011689This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011690
11691::
11692
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011693 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11694 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011695 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011696 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011697 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011698 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011699
11700Overview:
11701"""""""""
11702
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011703Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011704
11705
11706Arguments:
11707""""""""""
11708
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011709The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011710
11711
11712Semantics:
11713""""""""""
11714
11715The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11716The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11717
11718
11719::
11720
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011721 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011722
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011723 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011724 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011725 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011726
11727.. _int_mstore:
11728
11729'``llvm.masked.store.*``' Intrinsics
11730^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11731
11732Syntax:
11733"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011734This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011735
11736::
11737
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011738 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11739 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011740 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011741 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011742 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011743 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011744
11745Overview:
11746"""""""""
11747
11748Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11749
11750Arguments:
11751""""""""""
11752
11753The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11754
11755
11756Semantics:
11757""""""""""
11758
11759The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11760The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11761
11762::
11763
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011764 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011765
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011766 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011767 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011768 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11769 store <16 x float> %res, <16 x float>* %ptr, align 4
11770
11771
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011772Masked Vector Gather and Scatter Intrinsics
11773-------------------------------------------
11774
11775LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11776
11777.. _int_mgather:
11778
11779'``llvm.masked.gather.*``' Intrinsics
11780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11781
11782Syntax:
11783"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011784This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011785
11786::
11787
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011788 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11789 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11790 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011791
11792Overview:
11793"""""""""
11794
11795Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11796
11797
11798Arguments:
11799""""""""""
11800
11801The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11802
11803
11804Semantics:
11805""""""""""
11806
11807The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11808The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11809
11810
11811::
11812
11813 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11814
11815 ;; The gather with all-true mask is equivalent to the following instruction sequence
11816 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11817 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11818 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11819 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11820
11821 %val0 = load double, double* %ptr0, align 8
11822 %val1 = load double, double* %ptr1, align 8
11823 %val2 = load double, double* %ptr2, align 8
11824 %val3 = load double, double* %ptr3, align 8
11825
11826 %vec0 = insertelement <4 x double>undef, %val0, 0
11827 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11828 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11829 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11830
11831.. _int_mscatter:
11832
11833'``llvm.masked.scatter.*``' Intrinsics
11834^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11835
11836Syntax:
11837"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011838This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011839
11840::
11841
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011842 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11843 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11844 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011845
11846Overview:
11847"""""""""
11848
11849Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11850
11851Arguments:
11852""""""""""
11853
11854The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11855
11856
11857Semantics:
11858""""""""""
11859
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011860The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011861
11862::
11863
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011864 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011865 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11866
11867 ;; It is equivalent to a list of scalar stores
11868 %val0 = extractelement <8 x i32> %value, i32 0
11869 %val1 = extractelement <8 x i32> %value, i32 1
11870 ..
11871 %val7 = extractelement <8 x i32> %value, i32 7
11872 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11873 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11874 ..
11875 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11876 ;; Note: the order of the following stores is important when they overlap:
11877 store i32 %val0, i32* %ptr0, align 4
11878 store i32 %val1, i32* %ptr1, align 4
11879 ..
11880 store i32 %val7, i32* %ptr7, align 4
11881
11882
Sean Silvab084af42012-12-07 10:36:55 +000011883Memory Use Markers
11884------------------
11885
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011886This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011887memory objects and ranges where variables are immutable.
11888
Reid Klecknera534a382013-12-19 02:14:12 +000011889.. _int_lifestart:
11890
Sean Silvab084af42012-12-07 10:36:55 +000011891'``llvm.lifetime.start``' Intrinsic
11892^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11893
11894Syntax:
11895"""""""
11896
11897::
11898
11899 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11900
11901Overview:
11902"""""""""
11903
11904The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11905object's lifetime.
11906
11907Arguments:
11908""""""""""
11909
11910The first argument is a constant integer representing the size of the
11911object, or -1 if it is variable sized. The second argument is a pointer
11912to the object.
11913
11914Semantics:
11915""""""""""
11916
11917This intrinsic indicates that before this point in the code, the value
11918of the memory pointed to by ``ptr`` is dead. This means that it is known
11919to never be used and has an undefined value. A load from the pointer
11920that precedes this intrinsic can be replaced with ``'undef'``.
11921
Reid Klecknera534a382013-12-19 02:14:12 +000011922.. _int_lifeend:
11923
Sean Silvab084af42012-12-07 10:36:55 +000011924'``llvm.lifetime.end``' Intrinsic
11925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11926
11927Syntax:
11928"""""""
11929
11930::
11931
11932 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11933
11934Overview:
11935"""""""""
11936
11937The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11938object's lifetime.
11939
11940Arguments:
11941""""""""""
11942
11943The first argument is a constant integer representing the size of the
11944object, or -1 if it is variable sized. The second argument is a pointer
11945to the object.
11946
11947Semantics:
11948""""""""""
11949
11950This intrinsic indicates that after this point in the code, the value of
11951the memory pointed to by ``ptr`` is dead. This means that it is known to
11952never be used and has an undefined value. Any stores into the memory
11953object following this intrinsic may be removed as dead.
11954
11955'``llvm.invariant.start``' Intrinsic
11956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11957
11958Syntax:
11959"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011960This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011961
11962::
11963
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011964 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011965
11966Overview:
11967"""""""""
11968
11969The '``llvm.invariant.start``' intrinsic specifies that the contents of
11970a memory object will not change.
11971
11972Arguments:
11973""""""""""
11974
11975The first argument is a constant integer representing the size of the
11976object, or -1 if it is variable sized. The second argument is a pointer
11977to the object.
11978
11979Semantics:
11980""""""""""
11981
11982This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11983the return value, the referenced memory location is constant and
11984unchanging.
11985
11986'``llvm.invariant.end``' Intrinsic
11987^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11988
11989Syntax:
11990"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011991This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011992
11993::
11994
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011995 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011996
11997Overview:
11998"""""""""
11999
12000The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12001memory object are mutable.
12002
12003Arguments:
12004""""""""""
12005
12006The first argument is the matching ``llvm.invariant.start`` intrinsic.
12007The second argument is a constant integer representing the size of the
12008object, or -1 if it is variable sized and the third argument is a
12009pointer to the object.
12010
12011Semantics:
12012""""""""""
12013
12014This intrinsic indicates that the memory is mutable again.
12015
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012016'``llvm.invariant.group.barrier``' Intrinsic
12017^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12018
12019Syntax:
12020"""""""
12021
12022::
12023
12024 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12025
12026Overview:
12027"""""""""
12028
12029The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12030established by invariant.group metadata no longer holds, to obtain a new pointer
12031value that does not carry the invariant information.
12032
12033
12034Arguments:
12035""""""""""
12036
12037The ``llvm.invariant.group.barrier`` takes only one argument, which is
12038the pointer to the memory for which the ``invariant.group`` no longer holds.
12039
12040Semantics:
12041""""""""""
12042
12043Returns another pointer that aliases its argument but which is considered different
12044for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12045
Sean Silvab084af42012-12-07 10:36:55 +000012046General Intrinsics
12047------------------
12048
12049This class of intrinsics is designed to be generic and has no specific
12050purpose.
12051
12052'``llvm.var.annotation``' Intrinsic
12053^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12054
12055Syntax:
12056"""""""
12057
12058::
12059
12060 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12061
12062Overview:
12063"""""""""
12064
12065The '``llvm.var.annotation``' intrinsic.
12066
12067Arguments:
12068""""""""""
12069
12070The first argument is a pointer to a value, the second is a pointer to a
12071global string, the third is a pointer to a global string which is the
12072source file name, and the last argument is the line number.
12073
12074Semantics:
12075""""""""""
12076
12077This intrinsic allows annotation of local variables with arbitrary
12078strings. This can be useful for special purpose optimizations that want
12079to look for these annotations. These have no other defined use; they are
12080ignored by code generation and optimization.
12081
Michael Gottesman88d18832013-03-26 00:34:27 +000012082'``llvm.ptr.annotation.*``' Intrinsic
12083^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12084
12085Syntax:
12086"""""""
12087
12088This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12089pointer to an integer of any width. *NOTE* you must specify an address space for
12090the pointer. The identifier for the default address space is the integer
12091'``0``'.
12092
12093::
12094
12095 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12096 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12097 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12098 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12099 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12100
12101Overview:
12102"""""""""
12103
12104The '``llvm.ptr.annotation``' intrinsic.
12105
12106Arguments:
12107""""""""""
12108
12109The first argument is a pointer to an integer value of arbitrary bitwidth
12110(result of some expression), the second is a pointer to a global string, the
12111third is a pointer to a global string which is the source file name, and the
12112last argument is the line number. It returns the value of the first argument.
12113
12114Semantics:
12115""""""""""
12116
12117This intrinsic allows annotation of a pointer to an integer with arbitrary
12118strings. This can be useful for special purpose optimizations that want to look
12119for these annotations. These have no other defined use; they are ignored by code
12120generation and optimization.
12121
Sean Silvab084af42012-12-07 10:36:55 +000012122'``llvm.annotation.*``' Intrinsic
12123^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12124
12125Syntax:
12126"""""""
12127
12128This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12129any integer bit width.
12130
12131::
12132
12133 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12134 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12135 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12136 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12137 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12138
12139Overview:
12140"""""""""
12141
12142The '``llvm.annotation``' intrinsic.
12143
12144Arguments:
12145""""""""""
12146
12147The first argument is an integer value (result of some expression), the
12148second is a pointer to a global string, the third is a pointer to a
12149global string which is the source file name, and the last argument is
12150the line number. It returns the value of the first argument.
12151
12152Semantics:
12153""""""""""
12154
12155This intrinsic allows annotations to be put on arbitrary expressions
12156with arbitrary strings. This can be useful for special purpose
12157optimizations that want to look for these annotations. These have no
12158other defined use; they are ignored by code generation and optimization.
12159
12160'``llvm.trap``' Intrinsic
12161^^^^^^^^^^^^^^^^^^^^^^^^^
12162
12163Syntax:
12164"""""""
12165
12166::
12167
12168 declare void @llvm.trap() noreturn nounwind
12169
12170Overview:
12171"""""""""
12172
12173The '``llvm.trap``' intrinsic.
12174
12175Arguments:
12176""""""""""
12177
12178None.
12179
12180Semantics:
12181""""""""""
12182
12183This intrinsic is lowered to the target dependent trap instruction. If
12184the target does not have a trap instruction, this intrinsic will be
12185lowered to a call of the ``abort()`` function.
12186
12187'``llvm.debugtrap``' Intrinsic
12188^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12189
12190Syntax:
12191"""""""
12192
12193::
12194
12195 declare void @llvm.debugtrap() nounwind
12196
12197Overview:
12198"""""""""
12199
12200The '``llvm.debugtrap``' intrinsic.
12201
12202Arguments:
12203""""""""""
12204
12205None.
12206
12207Semantics:
12208""""""""""
12209
12210This intrinsic is lowered to code which is intended to cause an
12211execution trap with the intention of requesting the attention of a
12212debugger.
12213
12214'``llvm.stackprotector``' Intrinsic
12215^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12216
12217Syntax:
12218"""""""
12219
12220::
12221
12222 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12223
12224Overview:
12225"""""""""
12226
12227The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12228onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12229is placed on the stack before local variables.
12230
12231Arguments:
12232""""""""""
12233
12234The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12235The first argument is the value loaded from the stack guard
12236``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12237enough space to hold the value of the guard.
12238
12239Semantics:
12240""""""""""
12241
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012242This intrinsic causes the prologue/epilogue inserter to force the position of
12243the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12244to ensure that if a local variable on the stack is overwritten, it will destroy
12245the value of the guard. When the function exits, the guard on the stack is
12246checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12247different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12248calling the ``__stack_chk_fail()`` function.
12249
Tim Shene885d5e2016-04-19 19:40:37 +000012250'``llvm.stackguard``' Intrinsic
12251^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12252
12253Syntax:
12254"""""""
12255
12256::
12257
12258 declare i8* @llvm.stackguard()
12259
12260Overview:
12261"""""""""
12262
12263The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12264
12265It should not be generated by frontends, since it is only for internal usage.
12266The reason why we create this intrinsic is that we still support IR form Stack
12267Protector in FastISel.
12268
12269Arguments:
12270""""""""""
12271
12272None.
12273
12274Semantics:
12275""""""""""
12276
12277On some platforms, the value returned by this intrinsic remains unchanged
12278between loads in the same thread. On other platforms, it returns the same
12279global variable value, if any, e.g. ``@__stack_chk_guard``.
12280
12281Currently some platforms have IR-level customized stack guard loading (e.g.
12282X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12283in the future.
12284
Sean Silvab084af42012-12-07 10:36:55 +000012285'``llvm.objectsize``' Intrinsic
12286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12287
12288Syntax:
12289"""""""
12290
12291::
12292
12293 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12294 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12295
12296Overview:
12297"""""""""
12298
12299The ``llvm.objectsize`` intrinsic is designed to provide information to
12300the optimizers to determine at compile time whether a) an operation
12301(like memcpy) will overflow a buffer that corresponds to an object, or
12302b) that a runtime check for overflow isn't necessary. An object in this
12303context means an allocation of a specific class, structure, array, or
12304other object.
12305
12306Arguments:
12307""""""""""
12308
12309The ``llvm.objectsize`` intrinsic takes two arguments. The first
12310argument is a pointer to or into the ``object``. The second argument is
12311a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12312or -1 (if false) when the object size is unknown. The second argument
12313only accepts constants.
12314
12315Semantics:
12316""""""""""
12317
12318The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12319the size of the object concerned. If the size cannot be determined at
12320compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12321on the ``min`` argument).
12322
12323'``llvm.expect``' Intrinsic
12324^^^^^^^^^^^^^^^^^^^^^^^^^^^
12325
12326Syntax:
12327"""""""
12328
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012329This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12330integer bit width.
12331
Sean Silvab084af42012-12-07 10:36:55 +000012332::
12333
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012334 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012335 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12336 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12337
12338Overview:
12339"""""""""
12340
12341The ``llvm.expect`` intrinsic provides information about expected (the
12342most probable) value of ``val``, which can be used by optimizers.
12343
12344Arguments:
12345""""""""""
12346
12347The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12348a value. The second argument is an expected value, this needs to be a
12349constant value, variables are not allowed.
12350
12351Semantics:
12352""""""""""
12353
12354This intrinsic is lowered to the ``val``.
12355
Philip Reamese0e90832015-04-26 22:23:12 +000012356.. _int_assume:
12357
Hal Finkel93046912014-07-25 21:13:35 +000012358'``llvm.assume``' Intrinsic
12359^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12360
12361Syntax:
12362"""""""
12363
12364::
12365
12366 declare void @llvm.assume(i1 %cond)
12367
12368Overview:
12369"""""""""
12370
12371The ``llvm.assume`` allows the optimizer to assume that the provided
12372condition is true. This information can then be used in simplifying other parts
12373of the code.
12374
12375Arguments:
12376""""""""""
12377
12378The condition which the optimizer may assume is always true.
12379
12380Semantics:
12381""""""""""
12382
12383The intrinsic allows the optimizer to assume that the provided condition is
12384always true whenever the control flow reaches the intrinsic call. No code is
12385generated for this intrinsic, and instructions that contribute only to the
12386provided condition are not used for code generation. If the condition is
12387violated during execution, the behavior is undefined.
12388
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012389Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012390used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12391only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012392if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012393sufficient overall improvement in code quality. For this reason,
12394``llvm.assume`` should not be used to document basic mathematical invariants
12395that the optimizer can otherwise deduce or facts that are of little use to the
12396optimizer.
12397
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012398.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012399
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012400'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012401^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12402
12403Syntax:
12404"""""""
12405
12406::
12407
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012408 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012409
12410
12411Arguments:
12412""""""""""
12413
12414The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012415metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012416
12417Overview:
12418"""""""""
12419
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012420The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12421with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012422
Peter Collingbourne0312f612016-06-25 00:23:04 +000012423'``llvm.type.checked.load``' Intrinsic
12424^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12425
12426Syntax:
12427"""""""
12428
12429::
12430
12431 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12432
12433
12434Arguments:
12435""""""""""
12436
12437The first argument is a pointer from which to load a function pointer. The
12438second argument is the byte offset from which to load the function pointer. The
12439third argument is a metadata object representing a :doc:`type identifier
12440<TypeMetadata>`.
12441
12442Overview:
12443"""""""""
12444
12445The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12446virtual table pointer using type metadata. This intrinsic is used to implement
12447control flow integrity in conjunction with virtual call optimization. The
12448virtual call optimization pass will optimize away ``llvm.type.checked.load``
12449intrinsics associated with devirtualized calls, thereby removing the type
12450check in cases where it is not needed to enforce the control flow integrity
12451constraint.
12452
12453If the given pointer is associated with a type metadata identifier, this
12454function returns true as the second element of its return value. (Note that
12455the function may also return true if the given pointer is not associated
12456with a type metadata identifier.) If the function's return value's second
12457element is true, the following rules apply to the first element:
12458
12459- If the given pointer is associated with the given type metadata identifier,
12460 it is the function pointer loaded from the given byte offset from the given
12461 pointer.
12462
12463- If the given pointer is not associated with the given type metadata
12464 identifier, it is one of the following (the choice of which is unspecified):
12465
12466 1. The function pointer that would have been loaded from an arbitrarily chosen
12467 (through an unspecified mechanism) pointer associated with the type
12468 metadata.
12469
12470 2. If the function has a non-void return type, a pointer to a function that
12471 returns an unspecified value without causing side effects.
12472
12473If the function's return value's second element is false, the value of the
12474first element is undefined.
12475
12476
Sean Silvab084af42012-12-07 10:36:55 +000012477'``llvm.donothing``' Intrinsic
12478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12479
12480Syntax:
12481"""""""
12482
12483::
12484
12485 declare void @llvm.donothing() nounwind readnone
12486
12487Overview:
12488"""""""""
12489
Juergen Ributzkac9161192014-10-23 22:36:13 +000012490The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012491three intrinsics (besides ``llvm.experimental.patchpoint`` and
12492``llvm.experimental.gc.statepoint``) that can be called with an invoke
12493instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012494
12495Arguments:
12496""""""""""
12497
12498None.
12499
12500Semantics:
12501""""""""""
12502
12503This intrinsic does nothing, and it's removed by optimizers and ignored
12504by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012505
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012506'``llvm.experimental.deoptimize``' Intrinsic
12507^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12508
12509Syntax:
12510"""""""
12511
12512::
12513
12514 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12515
12516Overview:
12517"""""""""
12518
12519This intrinsic, together with :ref:`deoptimization operand bundles
12520<deopt_opbundles>`, allow frontends to express transfer of control and
12521frame-local state from the currently executing (typically more specialized,
12522hence faster) version of a function into another (typically more generic, hence
12523slower) version.
12524
12525In languages with a fully integrated managed runtime like Java and JavaScript
12526this intrinsic can be used to implement "uncommon trap" or "side exit" like
12527functionality. In unmanaged languages like C and C++, this intrinsic can be
12528used to represent the slow paths of specialized functions.
12529
12530
12531Arguments:
12532""""""""""
12533
12534The intrinsic takes an arbitrary number of arguments, whose meaning is
12535decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12536
12537Semantics:
12538""""""""""
12539
12540The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12541deoptimization continuation (denoted using a :ref:`deoptimization
12542operand bundle <deopt_opbundles>`) and returns the value returned by
12543the deoptimization continuation. Defining the semantic properties of
12544the continuation itself is out of scope of the language reference --
12545as far as LLVM is concerned, the deoptimization continuation can
12546invoke arbitrary side effects, including reading from and writing to
12547the entire heap.
12548
12549Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12550continue execution to the end of the physical frame containing them, so all
12551calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12552
12553 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12554 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12555 - The ``ret`` instruction must return the value produced by the
12556 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12557
12558Note that the above restrictions imply that the return type for a call to
12559``@llvm.experimental.deoptimize`` will match the return type of its immediate
12560caller.
12561
12562The inliner composes the ``"deopt"`` continuations of the caller into the
12563``"deopt"`` continuations present in the inlinee, and also updates calls to this
12564intrinsic to return directly from the frame of the function it inlined into.
12565
Sanjoy Dase0aa4142016-05-12 01:17:38 +000012566All declarations of ``@llvm.experimental.deoptimize`` must share the
12567same calling convention.
12568
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012569.. _deoptimize_lowering:
12570
12571Lowering:
12572"""""""""
12573
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012574Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12575symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12576ensure that this symbol is defined). The call arguments to
12577``@llvm.experimental.deoptimize`` are lowered as if they were formal
12578arguments of the specified types, and not as varargs.
12579
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012580
Sanjoy Das021de052016-03-31 00:18:46 +000012581'``llvm.experimental.guard``' Intrinsic
12582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12583
12584Syntax:
12585"""""""
12586
12587::
12588
12589 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12590
12591Overview:
12592"""""""""
12593
12594This intrinsic, together with :ref:`deoptimization operand bundles
12595<deopt_opbundles>`, allows frontends to express guards or checks on
12596optimistic assumptions made during compilation. The semantics of
12597``@llvm.experimental.guard`` is defined in terms of
12598``@llvm.experimental.deoptimize`` -- its body is defined to be
12599equivalent to:
12600
Renato Golin124f2592016-07-20 12:16:38 +000012601.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000012602
Renato Golin124f2592016-07-20 12:16:38 +000012603 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12604 %realPred = and i1 %pred, undef
12605 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000012606
Renato Golin124f2592016-07-20 12:16:38 +000012607 leave:
12608 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12609 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000012610
Renato Golin124f2592016-07-20 12:16:38 +000012611 continue:
12612 ret void
12613 }
Sanjoy Das021de052016-03-31 00:18:46 +000012614
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012615
12616with the optional ``[, !make.implicit !{}]`` present if and only if it
12617is present on the call site. For more details on ``!make.implicit``,
12618see :doc:`FaultMaps`.
12619
Sanjoy Das021de052016-03-31 00:18:46 +000012620In words, ``@llvm.experimental.guard`` executes the attached
12621``"deopt"`` continuation if (but **not** only if) its first argument
12622is ``false``. Since the optimizer is allowed to replace the ``undef``
12623with an arbitrary value, it can optimize guard to fail "spuriously",
12624i.e. without the original condition being false (hence the "not only
12625if"); and this allows for "check widening" type optimizations.
12626
12627``@llvm.experimental.guard`` cannot be invoked.
12628
12629
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012630'``llvm.load.relative``' Intrinsic
12631^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12632
12633Syntax:
12634"""""""
12635
12636::
12637
12638 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12639
12640Overview:
12641"""""""""
12642
12643This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12644adds ``%ptr`` to that value and returns it. The constant folder specifically
12645recognizes the form of this intrinsic and the constant initializers it may
12646load from; if a loaded constant initializer is known to have the form
12647``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12648
12649LLVM provides that the calculation of such a constant initializer will
12650not overflow at link time under the medium code model if ``x`` is an
12651``unnamed_addr`` function. However, it does not provide this guarantee for
12652a constant initializer folded into a function body. This intrinsic can be
12653used to avoid the possibility of overflows when loading from such a constant.
12654
Andrew Trick5e029ce2013-12-24 02:57:25 +000012655Stack Map Intrinsics
12656--------------------
12657
12658LLVM provides experimental intrinsics to support runtime patching
12659mechanisms commonly desired in dynamic language JITs. These intrinsics
12660are described in :doc:`StackMaps`.