blob: e8dc8319d9cdbda658c3240e42cc14079c21abff [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
645an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000646
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000647Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000648:ref:`Thread Local Storage Model <tls_model>`.
649
Nico Rieck7157bb72014-01-14 15:22:47 +0000650Syntax::
651
Rafael Espindola32483a72016-05-10 18:22:45 +0000652 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000653 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
654 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000655 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000656 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000657 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659For example, the following defines a global in a numbered address space
660with an initializer, section, and alignment:
661
662.. code-block:: llvm
663
664 @G = addrspace(5) constant float 1.0, section "foo", align 4
665
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000666The following example just declares a global variable
667
668.. code-block:: llvm
669
670 @G = external global i32
671
Sean Silvab084af42012-12-07 10:36:55 +0000672The following example defines a thread-local global with the
673``initialexec`` TLS model:
674
675.. code-block:: llvm
676
677 @G = thread_local(initialexec) global i32 0, align 4
678
679.. _functionstructure:
680
681Functions
682---------
683
684LLVM function definitions consist of the "``define``" keyword, an
685optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000686style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
687an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000688an optional ``unnamed_addr`` attribute, a return type, an optional
689:ref:`parameter attribute <paramattrs>` for the return type, a function
690name, a (possibly empty) argument list (each with optional :ref:`parameter
691attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000692an optional section, an optional alignment,
693an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000694an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000695an optional :ref:`prologue <prologuedata>`,
696an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000697an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000698an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000699
700LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000701optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
702<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
703optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
704or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
705attribute <paramattrs>` for the return type, a function name, a possibly
706empty list of arguments, an optional alignment, an optional :ref:`garbage
707collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
708:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000709
Bill Wendling6822ecb2013-10-27 05:09:12 +0000710A function definition contains a list of basic blocks, forming the CFG (Control
711Flow Graph) for the function. Each basic block may optionally start with a label
712(giving the basic block a symbol table entry), contains a list of instructions,
713and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
714function return). If an explicit label is not provided, a block is assigned an
715implicit numbered label, using the next value from the same counter as used for
716unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
717entry block does not have an explicit label, it will be assigned label "%0",
718then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000719
720The first basic block in a function is special in two ways: it is
721immediately executed on entrance to the function, and it is not allowed
722to have predecessor basic blocks (i.e. there can not be any branches to
723the entry block of a function). Because the block can have no
724predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
725
726LLVM allows an explicit section to be specified for functions. If the
727target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000728Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730An explicit alignment may be specified for a function. If not present,
731or if the alignment is set to zero, the alignment of the function is set
732by the target to whatever it feels convenient. If an explicit alignment
733is specified, the function is forced to have at least that much
734alignment. All alignments must be a power of 2.
735
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000736If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000737be significant and two identical functions can be merged.
738
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000739If the ``local_unnamed_addr`` attribute is given, the address is known to
740not be significant within the module.
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Syntax::
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000745 [cconv] [ret attrs]
746 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000747 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
748 [comdat [($name)]] [align N] [gc] [prefix Constant]
749 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000750
Sean Silva706fba52015-08-06 22:56:24 +0000751The argument list is a comma separated sequence of arguments where each
752argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000753
754Syntax::
755
756 <type> [parameter Attrs] [name]
757
758
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000759.. _langref_aliases:
760
Sean Silvab084af42012-12-07 10:36:55 +0000761Aliases
762-------
763
Rafael Espindola64c1e182014-06-03 02:41:57 +0000764Aliases, unlike function or variables, don't create any new data. They
765are just a new symbol and metadata for an existing position.
766
767Aliases have a name and an aliasee that is either a global value or a
768constant expression.
769
Nico Rieck7157bb72014-01-14 15:22:47 +0000770Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000771:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
772<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000773
774Syntax::
775
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000776 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000777
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000778The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000779``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000780might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000781
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000782Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000783the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
784to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000785
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000786If the ``local_unnamed_addr`` attribute is given, the address is known to
787not be significant within the module.
788
Rafael Espindola64c1e182014-06-03 02:41:57 +0000789Since aliases are only a second name, some restrictions apply, of which
790some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000791
Rafael Espindola64c1e182014-06-03 02:41:57 +0000792* The expression defining the aliasee must be computable at assembly
793 time. Since it is just a name, no relocations can be used.
794
795* No alias in the expression can be weak as the possibility of the
796 intermediate alias being overridden cannot be represented in an
797 object file.
798
799* No global value in the expression can be a declaration, since that
800 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000801
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000802.. _langref_ifunc:
803
804IFuncs
805-------
806
807IFuncs, like as aliases, don't create any new data or func. They are just a new
808symbol that dynamic linker resolves at runtime by calling a resolver function.
809
810IFuncs have a name and a resolver that is a function called by dynamic linker
811that returns address of another function associated with the name.
812
813IFunc may have an optional :ref:`linkage type <linkage>` and an optional
814:ref:`visibility style <visibility>`.
815
816Syntax::
817
818 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821.. _langref_comdats:
822
823Comdats
824-------
825
826Comdat IR provides access to COFF and ELF object file COMDAT functionality.
827
Sean Silvaa1190322015-08-06 22:56:48 +0000828Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000829specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000830that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000831aliasee computes to, if any.
832
833Comdats have a selection kind to provide input on how the linker should
834choose between keys in two different object files.
835
836Syntax::
837
838 $<Name> = comdat SelectionKind
839
840The selection kind must be one of the following:
841
842``any``
843 The linker may choose any COMDAT key, the choice is arbitrary.
844``exactmatch``
845 The linker may choose any COMDAT key but the sections must contain the
846 same data.
847``largest``
848 The linker will choose the section containing the largest COMDAT key.
849``noduplicates``
850 The linker requires that only section with this COMDAT key exist.
851``samesize``
852 The linker may choose any COMDAT key but the sections must contain the
853 same amount of data.
854
855Note that the Mach-O platform doesn't support COMDATs and ELF only supports
856``any`` as a selection kind.
857
858Here is an example of a COMDAT group where a function will only be selected if
859the COMDAT key's section is the largest:
860
Renato Golin124f2592016-07-20 12:16:38 +0000861.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000862
863 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000864 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000865
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000867 ret void
868 }
869
Rafael Espindola83a362c2015-01-06 22:55:16 +0000870As a syntactic sugar the ``$name`` can be omitted if the name is the same as
871the global name:
872
Renato Golin124f2592016-07-20 12:16:38 +0000873.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000874
875 $foo = comdat any
876 @foo = global i32 2, comdat
877
878
David Majnemerdad0a642014-06-27 18:19:56 +0000879In a COFF object file, this will create a COMDAT section with selection kind
880``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
881and another COMDAT section with selection kind
882``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000883section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885There are some restrictions on the properties of the global object.
886It, or an alias to it, must have the same name as the COMDAT group when
887targeting COFF.
888The contents and size of this object may be used during link-time to determine
889which COMDAT groups get selected depending on the selection kind.
890Because the name of the object must match the name of the COMDAT group, the
891linkage of the global object must not be local; local symbols can get renamed
892if a collision occurs in the symbol table.
893
894The combined use of COMDATS and section attributes may yield surprising results.
895For example:
896
Renato Golin124f2592016-07-20 12:16:38 +0000897.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000898
899 $foo = comdat any
900 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901 @g1 = global i32 42, section "sec", comdat($foo)
902 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000903
904From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000905with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000906COMDAT groups and COMDATs, at the object file level, are represented by
907sections.
908
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000909Note that certain IR constructs like global variables and functions may
910create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000911COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000912in individual sections (e.g. when `-data-sections` or `-function-sections`
913is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000914
Sean Silvab084af42012-12-07 10:36:55 +0000915.. _namedmetadatastructure:
916
917Named Metadata
918--------------
919
920Named metadata is a collection of metadata. :ref:`Metadata
921nodes <metadata>` (but not metadata strings) are the only valid
922operands for a named metadata.
923
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000924#. Named metadata are represented as a string of characters with the
925 metadata prefix. The rules for metadata names are the same as for
926 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
927 are still valid, which allows any character to be part of a name.
928
Sean Silvab084af42012-12-07 10:36:55 +0000929Syntax::
930
931 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000932 !0 = !{!"zero"}
933 !1 = !{!"one"}
934 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000935 ; A named metadata.
936 !name = !{!0, !1, !2}
937
938.. _paramattrs:
939
940Parameter Attributes
941--------------------
942
943The return type and each parameter of a function type may have a set of
944*parameter attributes* associated with them. Parameter attributes are
945used to communicate additional information about the result or
946parameters of a function. Parameter attributes are considered to be part
947of the function, not of the function type, so functions with different
948parameter attributes can have the same function type.
949
950Parameter attributes are simple keywords that follow the type specified.
951If multiple parameter attributes are needed, they are space separated.
952For example:
953
954.. code-block:: llvm
955
956 declare i32 @printf(i8* noalias nocapture, ...)
957 declare i32 @atoi(i8 zeroext)
958 declare signext i8 @returns_signed_char()
959
960Note that any attributes for the function result (``nounwind``,
961``readonly``) come immediately after the argument list.
962
963Currently, only the following parameter attributes are defined:
964
965``zeroext``
966 This indicates to the code generator that the parameter or return
967 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000968 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000969``signext``
970 This indicates to the code generator that the parameter or return
971 value should be sign-extended to the extent required by the target's
972 ABI (which is usually 32-bits) by the caller (for a parameter) or
973 the callee (for a return value).
974``inreg``
975 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000976 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000977 a function call or return (usually, by putting it in a register as
978 opposed to memory, though some targets use it to distinguish between
979 two different kinds of registers). Use of this attribute is
980 target-specific.
981``byval``
982 This indicates that the pointer parameter should really be passed by
983 value to the function. The attribute implies that a hidden copy of
984 the pointee is made between the caller and the callee, so the callee
985 is unable to modify the value in the caller. This attribute is only
986 valid on LLVM pointer arguments. It is generally used to pass
987 structs and arrays by value, but is also valid on pointers to
988 scalars. The copy is considered to belong to the caller not the
989 callee (for example, ``readonly`` functions should not write to
990 ``byval`` parameters). This is not a valid attribute for return
991 values.
992
993 The byval attribute also supports specifying an alignment with the
994 align attribute. It indicates the alignment of the stack slot to
995 form and the known alignment of the pointer specified to the call
996 site. If the alignment is not specified, then the code generator
997 makes a target-specific assumption.
998
Reid Klecknera534a382013-12-19 02:14:12 +0000999.. _attr_inalloca:
1000
1001``inalloca``
1002
Reid Kleckner60d3a832014-01-16 22:59:24 +00001003 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001004 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001005 be a pointer to stack memory produced by an ``alloca`` instruction.
1006 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001007 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001008 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001009
Reid Kleckner436c42e2014-01-17 23:58:17 +00001010 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001011 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001012 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001013 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001014 ``inalloca`` attribute also disables LLVM's implicit lowering of
1015 large aggregate return values, which means that frontend authors
1016 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001017
Reid Kleckner60d3a832014-01-16 22:59:24 +00001018 When the call site is reached, the argument allocation must have
1019 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001020 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001021 space after an argument allocation and before its call site, but it
1022 must be cleared off with :ref:`llvm.stackrestore
1023 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001024
1025 See :doc:`InAlloca` for more information on how to use this
1026 attribute.
1027
Sean Silvab084af42012-12-07 10:36:55 +00001028``sret``
1029 This indicates that the pointer parameter specifies the address of a
1030 structure that is the return value of the function in the source
1031 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001032 loads and stores to the structure may be assumed by the callee not
1033 to trap and to be properly aligned. This is not a valid attribute
1034 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001035
Hal Finkelccc70902014-07-22 16:58:55 +00001036``align <n>``
1037 This indicates that the pointer value may be assumed by the optimizer to
1038 have the specified alignment.
1039
1040 Note that this attribute has additional semantics when combined with the
1041 ``byval`` attribute.
1042
Sean Silva1703e702014-04-08 21:06:22 +00001043.. _noalias:
1044
Sean Silvab084af42012-12-07 10:36:55 +00001045``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001046 This indicates that objects accessed via pointer values
1047 :ref:`based <pointeraliasing>` on the argument or return value are not also
1048 accessed, during the execution of the function, via pointer values not
1049 *based* on the argument or return value. The attribute on a return value
1050 also has additional semantics described below. The caller shares the
1051 responsibility with the callee for ensuring that these requirements are met.
1052 For further details, please see the discussion of the NoAlias response in
1053 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001054
1055 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001056 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001057
1058 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001059 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1060 attribute on return values are stronger than the semantics of the attribute
1061 when used on function arguments. On function return values, the ``noalias``
1062 attribute indicates that the function acts like a system memory allocation
1063 function, returning a pointer to allocated storage disjoint from the
1064 storage for any other object accessible to the caller.
1065
Sean Silvab084af42012-12-07 10:36:55 +00001066``nocapture``
1067 This indicates that the callee does not make any copies of the
1068 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001069 attribute for return values. Addresses used in volatile operations
1070 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001071
1072.. _nest:
1073
1074``nest``
1075 This indicates that the pointer parameter can be excised using the
1076 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001077 attribute for return values and can only be applied to one parameter.
1078
1079``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001080 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001081 value. This is a hint to the optimizer and code generator used when
1082 generating the caller, allowing value propagation, tail call optimization,
1083 and omission of register saves and restores in some cases; it is not
1084 checked or enforced when generating the callee. The parameter and the
1085 function return type must be valid operands for the
1086 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1087 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001088
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001089``nonnull``
1090 This indicates that the parameter or return pointer is not null. This
1091 attribute may only be applied to pointer typed parameters. This is not
1092 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001093 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001094 is non-null.
1095
Hal Finkelb0407ba2014-07-18 15:51:28 +00001096``dereferenceable(<n>)``
1097 This indicates that the parameter or return pointer is dereferenceable. This
1098 attribute may only be applied to pointer typed parameters. A pointer that
1099 is dereferenceable can be loaded from speculatively without a risk of
1100 trapping. The number of bytes known to be dereferenceable must be provided
1101 in parentheses. It is legal for the number of bytes to be less than the
1102 size of the pointee type. The ``nonnull`` attribute does not imply
1103 dereferenceability (consider a pointer to one element past the end of an
1104 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1105 ``addrspace(0)`` (which is the default address space).
1106
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001107``dereferenceable_or_null(<n>)``
1108 This indicates that the parameter or return value isn't both
1109 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001110 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001111 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1112 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1113 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1114 and in other address spaces ``dereferenceable_or_null(<n>)``
1115 implies that a pointer is at least one of ``dereferenceable(<n>)``
1116 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001117 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001118 pointer typed parameters.
1119
Manman Renf46262e2016-03-29 17:37:21 +00001120``swiftself``
1121 This indicates that the parameter is the self/context parameter. This is not
1122 a valid attribute for return values and can only be applied to one
1123 parameter.
1124
Manman Ren9bfd0d02016-04-01 21:41:15 +00001125``swifterror``
1126 This attribute is motivated to model and optimize Swift error handling. It
1127 can be applied to a parameter with pointer to pointer type or a
1128 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001129 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1130 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1131 the parameter or the alloca) can only be loaded and stored from, or used as
1132 a ``swifterror`` argument. This is not a valid attribute for return values
1133 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001134
1135 These constraints allow the calling convention to optimize access to
1136 ``swifterror`` variables by associating them with a specific register at
1137 call boundaries rather than placing them in memory. Since this does change
1138 the calling convention, a function which uses the ``swifterror`` attribute
1139 on a parameter is not ABI-compatible with one which does not.
1140
1141 These constraints also allow LLVM to assume that a ``swifterror`` argument
1142 does not alias any other memory visible within a function and that a
1143 ``swifterror`` alloca passed as an argument does not escape.
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _gc:
1146
Philip Reamesf80bbff2015-02-25 23:45:20 +00001147Garbage Collector Strategy Names
1148--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001149
Philip Reamesf80bbff2015-02-25 23:45:20 +00001150Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001151string:
1152
1153.. code-block:: llvm
1154
1155 define void @f() gc "name" { ... }
1156
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001157The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001158<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001159strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001160named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001161garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001162which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001163
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001164.. _prefixdata:
1165
1166Prefix Data
1167-----------
1168
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001169Prefix data is data associated with a function which the code
1170generator will emit immediately before the function's entrypoint.
1171The purpose of this feature is to allow frontends to associate
1172language-specific runtime metadata with specific functions and make it
1173available through the function pointer while still allowing the
1174function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001175
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001176To access the data for a given function, a program may bitcast the
1177function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001178index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001179the prefix data. For instance, take the example of a function annotated
1180with a single ``i32``,
1181
1182.. code-block:: llvm
1183
1184 define void @f() prefix i32 123 { ... }
1185
1186The prefix data can be referenced as,
1187
1188.. code-block:: llvm
1189
David Blaikie16a97eb2015-03-04 22:02:58 +00001190 %0 = bitcast void* () @f to i32*
1191 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001192 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001193
1194Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001195of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001196beginning of the prefix data is aligned. This means that if the size
1197of the prefix data is not a multiple of the alignment size, the
1198function's entrypoint will not be aligned. If alignment of the
1199function's entrypoint is desired, padding must be added to the prefix
1200data.
1201
Sean Silvaa1190322015-08-06 22:56:48 +00001202A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001203to the ``available_externally`` linkage in that the data may be used by the
1204optimizers but will not be emitted in the object file.
1205
1206.. _prologuedata:
1207
1208Prologue Data
1209-------------
1210
1211The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1212be inserted prior to the function body. This can be used for enabling
1213function hot-patching and instrumentation.
1214
1215To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001216have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001217bytes which decode to a sequence of machine instructions, valid for the
1218module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001219the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001221definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001222makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001223
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001225which encodes the ``nop`` instruction:
1226
Renato Golin124f2592016-07-20 12:16:38 +00001227.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001228
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001230
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231Generally prologue data can be formed by encoding a relative branch instruction
1232which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001233x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1234
Renato Golin124f2592016-07-20 12:16:38 +00001235.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001236
1237 %0 = type <{ i8, i8, i8* }>
1238
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001239 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001240
Sean Silvaa1190322015-08-06 22:56:48 +00001241A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001242to the ``available_externally`` linkage in that the data may be used by the
1243optimizers but will not be emitted in the object file.
1244
David Majnemer7fddecc2015-06-17 20:52:32 +00001245.. _personalityfn:
1246
1247Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001248--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001249
1250The ``personality`` attribute permits functions to specify what function
1251to use for exception handling.
1252
Bill Wendling63b88192013-02-06 06:52:58 +00001253.. _attrgrp:
1254
1255Attribute Groups
1256----------------
1257
1258Attribute groups are groups of attributes that are referenced by objects within
1259the IR. They are important for keeping ``.ll`` files readable, because a lot of
1260functions will use the same set of attributes. In the degenerative case of a
1261``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1262group will capture the important command line flags used to build that file.
1263
1264An attribute group is a module-level object. To use an attribute group, an
1265object references the attribute group's ID (e.g. ``#37``). An object may refer
1266to more than one attribute group. In that situation, the attributes from the
1267different groups are merged.
1268
1269Here is an example of attribute groups for a function that should always be
1270inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1271
1272.. code-block:: llvm
1273
1274 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001275 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001276
1277 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001278 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001279
1280 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1281 define void @f() #0 #1 { ... }
1282
Sean Silvab084af42012-12-07 10:36:55 +00001283.. _fnattrs:
1284
1285Function Attributes
1286-------------------
1287
1288Function attributes are set to communicate additional information about
1289a function. Function attributes are considered to be part of the
1290function, not of the function type, so functions with different function
1291attributes can have the same function type.
1292
1293Function attributes are simple keywords that follow the type specified.
1294If multiple attributes are needed, they are space separated. For
1295example:
1296
1297.. code-block:: llvm
1298
1299 define void @f() noinline { ... }
1300 define void @f() alwaysinline { ... }
1301 define void @f() alwaysinline optsize { ... }
1302 define void @f() optsize { ... }
1303
Sean Silvab084af42012-12-07 10:36:55 +00001304``alignstack(<n>)``
1305 This attribute indicates that, when emitting the prologue and
1306 epilogue, the backend should forcibly align the stack pointer.
1307 Specify the desired alignment, which must be a power of two, in
1308 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001309``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1310 This attribute indicates that the annotated function will always return at
1311 least a given number of bytes (or null). Its arguments are zero-indexed
1312 parameter numbers; if one argument is provided, then it's assumed that at
1313 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1314 returned pointer. If two are provided, then it's assumed that
1315 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1316 available. The referenced parameters must be integer types. No assumptions
1317 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001318``alwaysinline``
1319 This attribute indicates that the inliner should attempt to inline
1320 this function into callers whenever possible, ignoring any active
1321 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001322``builtin``
1323 This indicates that the callee function at a call site should be
1324 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001325 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001326 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001327 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001328``cold``
1329 This attribute indicates that this function is rarely called. When
1330 computing edge weights, basic blocks post-dominated by a cold
1331 function call are also considered to be cold; and, thus, given low
1332 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001333``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001334 In some parallel execution models, there exist operations that cannot be
1335 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001336 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001337
Justin Lebar58535b12016-02-17 17:46:41 +00001338 The ``convergent`` attribute may appear on functions or call/invoke
1339 instructions. When it appears on a function, it indicates that calls to
1340 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001341 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001342 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001343 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001344
Justin Lebar58535b12016-02-17 17:46:41 +00001345 When it appears on a call/invoke, the ``convergent`` attribute indicates
1346 that we should treat the call as though we're calling a convergent
1347 function. This is particularly useful on indirect calls; without this we
1348 may treat such calls as though the target is non-convergent.
1349
1350 The optimizer may remove the ``convergent`` attribute on functions when it
1351 can prove that the function does not execute any convergent operations.
1352 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1353 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001354``inaccessiblememonly``
1355 This attribute indicates that the function may only access memory that
1356 is not accessible by the module being compiled. This is a weaker form
1357 of ``readnone``.
1358``inaccessiblemem_or_argmemonly``
1359 This attribute indicates that the function may only access memory that is
1360 either not accessible by the module being compiled, or is pointed to
1361 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001362``inlinehint``
1363 This attribute indicates that the source code contained a hint that
1364 inlining this function is desirable (such as the "inline" keyword in
1365 C/C++). It is just a hint; it imposes no requirements on the
1366 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001367``jumptable``
1368 This attribute indicates that the function should be added to a
1369 jump-instruction table at code-generation time, and that all address-taken
1370 references to this function should be replaced with a reference to the
1371 appropriate jump-instruction-table function pointer. Note that this creates
1372 a new pointer for the original function, which means that code that depends
1373 on function-pointer identity can break. So, any function annotated with
1374 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001375``minsize``
1376 This attribute suggests that optimization passes and code generator
1377 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001378 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001379 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001380``naked``
1381 This attribute disables prologue / epilogue emission for the
1382 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001383``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001384 This indicates that the callee function at a call site is not recognized as
1385 a built-in function. LLVM will retain the original call and not replace it
1386 with equivalent code based on the semantics of the built-in function, unless
1387 the call site uses the ``builtin`` attribute. This is valid at call sites
1388 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001389``noduplicate``
1390 This attribute indicates that calls to the function cannot be
1391 duplicated. A call to a ``noduplicate`` function may be moved
1392 within its parent function, but may not be duplicated within
1393 its parent function.
1394
1395 A function containing a ``noduplicate`` call may still
1396 be an inlining candidate, provided that the call is not
1397 duplicated by inlining. That implies that the function has
1398 internal linkage and only has one call site, so the original
1399 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001400``noimplicitfloat``
1401 This attributes disables implicit floating point instructions.
1402``noinline``
1403 This attribute indicates that the inliner should never inline this
1404 function in any situation. This attribute may not be used together
1405 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001406``nonlazybind``
1407 This attribute suppresses lazy symbol binding for the function. This
1408 may make calls to the function faster, at the cost of extra program
1409 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001410``noredzone``
1411 This attribute indicates that the code generator should not use a
1412 red zone, even if the target-specific ABI normally permits it.
1413``noreturn``
1414 This function attribute indicates that the function never returns
1415 normally. This produces undefined behavior at runtime if the
1416 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001417``norecurse``
1418 This function attribute indicates that the function does not call itself
1419 either directly or indirectly down any possible call path. This produces
1420 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001421``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001422 This function attribute indicates that the function never raises an
1423 exception. If the function does raise an exception, its runtime
1424 behavior is undefined. However, functions marked nounwind may still
1425 trap or generate asynchronous exceptions. Exception handling schemes
1426 that are recognized by LLVM to handle asynchronous exceptions, such
1427 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001428``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001429 This function attribute indicates that most optimization passes will skip
1430 this function, with the exception of interprocedural optimization passes.
1431 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001432 This attribute cannot be used together with the ``alwaysinline``
1433 attribute; this attribute is also incompatible
1434 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001435
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001436 This attribute requires the ``noinline`` attribute to be specified on
1437 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001438 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001439 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001440``optsize``
1441 This attribute suggests that optimization passes and code generator
1442 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001443 and otherwise do optimizations specifically to reduce code size as
1444 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001445``"patchable-function"``
1446 This attribute tells the code generator that the code
1447 generated for this function needs to follow certain conventions that
1448 make it possible for a runtime function to patch over it later.
1449 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001450 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001451
1452 * ``"prologue-short-redirect"`` - This style of patchable
1453 function is intended to support patching a function prologue to
1454 redirect control away from the function in a thread safe
1455 manner. It guarantees that the first instruction of the
1456 function will be large enough to accommodate a short jump
1457 instruction, and will be sufficiently aligned to allow being
1458 fully changed via an atomic compare-and-swap instruction.
1459 While the first requirement can be satisfied by inserting large
1460 enough NOP, LLVM can and will try to re-purpose an existing
1461 instruction (i.e. one that would have to be emitted anyway) as
1462 the patchable instruction larger than a short jump.
1463
1464 ``"prologue-short-redirect"`` is currently only supported on
1465 x86-64.
1466
1467 This attribute by itself does not imply restrictions on
1468 inter-procedural optimizations. All of the semantic effects the
1469 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001470``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001471 On a function, this attribute indicates that the function computes its
1472 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001473 without dereferencing any pointer arguments or otherwise accessing
1474 any mutable state (e.g. memory, control registers, etc) visible to
1475 caller functions. It does not write through any pointer arguments
1476 (including ``byval`` arguments) and never changes any state visible
1477 to callers. This means that it cannot unwind exceptions by calling
1478 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001479
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001480 On an argument, this attribute indicates that the function does not
1481 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001482 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001483``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001484 On a function, this attribute indicates that the function does not write
1485 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001486 modify any state (e.g. memory, control registers, etc) visible to
1487 caller functions. It may dereference pointer arguments and read
1488 state that may be set in the caller. A readonly function always
1489 returns the same value (or unwinds an exception identically) when
1490 called with the same set of arguments and global state. It cannot
1491 unwind an exception by calling the ``C++`` exception throwing
1492 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001493
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001494 On an argument, this attribute indicates that the function does not write
1495 through this pointer argument, even though it may write to the memory that
1496 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001497``writeonly``
1498 On a function, this attribute indicates that the function may write to but
1499 does not read from memory.
1500
1501 On an argument, this attribute indicates that the function may write to but
1502 does not read through this pointer argument (even though it may read from
1503 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001504``argmemonly``
1505 This attribute indicates that the only memory accesses inside function are
1506 loads and stores from objects pointed to by its pointer-typed arguments,
1507 with arbitrary offsets. Or in other words, all memory operations in the
1508 function can refer to memory only using pointers based on its function
1509 arguments.
1510 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1511 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001512``returns_twice``
1513 This attribute indicates that this function can return twice. The C
1514 ``setjmp`` is an example of such a function. The compiler disables
1515 some optimizations (like tail calls) in the caller of these
1516 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001517``safestack``
1518 This attribute indicates that
1519 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1520 protection is enabled for this function.
1521
1522 If a function that has a ``safestack`` attribute is inlined into a
1523 function that doesn't have a ``safestack`` attribute or which has an
1524 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1525 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001526``sanitize_address``
1527 This attribute indicates that AddressSanitizer checks
1528 (dynamic address safety analysis) are enabled for this function.
1529``sanitize_memory``
1530 This attribute indicates that MemorySanitizer checks (dynamic detection
1531 of accesses to uninitialized memory) are enabled for this function.
1532``sanitize_thread``
1533 This attribute indicates that ThreadSanitizer checks
1534 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001535``ssp``
1536 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001537 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001538 placed on the stack before the local variables that's checked upon
1539 return from the function to see if it has been overwritten. A
1540 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001541 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001542
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001543 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1544 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1545 - Calls to alloca() with variable sizes or constant sizes greater than
1546 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001547
Josh Magee24c7f062014-02-01 01:36:16 +00001548 Variables that are identified as requiring a protector will be arranged
1549 on the stack such that they are adjacent to the stack protector guard.
1550
Sean Silvab084af42012-12-07 10:36:55 +00001551 If a function that has an ``ssp`` attribute is inlined into a
1552 function that doesn't have an ``ssp`` attribute, then the resulting
1553 function will have an ``ssp`` attribute.
1554``sspreq``
1555 This attribute indicates that the function should *always* emit a
1556 stack smashing protector. This overrides the ``ssp`` function
1557 attribute.
1558
Josh Magee24c7f062014-02-01 01:36:16 +00001559 Variables that are identified as requiring a protector will be arranged
1560 on the stack such that they are adjacent to the stack protector guard.
1561 The specific layout rules are:
1562
1563 #. Large arrays and structures containing large arrays
1564 (``>= ssp-buffer-size``) are closest to the stack protector.
1565 #. Small arrays and structures containing small arrays
1566 (``< ssp-buffer-size``) are 2nd closest to the protector.
1567 #. Variables that have had their address taken are 3rd closest to the
1568 protector.
1569
Sean Silvab084af42012-12-07 10:36:55 +00001570 If a function that has an ``sspreq`` attribute is inlined into a
1571 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001572 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1573 an ``sspreq`` attribute.
1574``sspstrong``
1575 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001576 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001577 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001578 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001579
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001580 - Arrays of any size and type
1581 - Aggregates containing an array of any size and type.
1582 - Calls to alloca().
1583 - Local variables that have had their address taken.
1584
Josh Magee24c7f062014-02-01 01:36:16 +00001585 Variables that are identified as requiring a protector will be arranged
1586 on the stack such that they are adjacent to the stack protector guard.
1587 The specific layout rules are:
1588
1589 #. Large arrays and structures containing large arrays
1590 (``>= ssp-buffer-size``) are closest to the stack protector.
1591 #. Small arrays and structures containing small arrays
1592 (``< ssp-buffer-size``) are 2nd closest to the protector.
1593 #. Variables that have had their address taken are 3rd closest to the
1594 protector.
1595
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001596 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001597
1598 If a function that has an ``sspstrong`` attribute is inlined into a
1599 function that doesn't have an ``sspstrong`` attribute, then the
1600 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001601``"thunk"``
1602 This attribute indicates that the function will delegate to some other
1603 function with a tail call. The prototype of a thunk should not be used for
1604 optimization purposes. The caller is expected to cast the thunk prototype to
1605 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001606``uwtable``
1607 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001608 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001609 show that no exceptions passes by it. This is normally the case for
1610 the ELF x86-64 abi, but it can be disabled for some compilation
1611 units.
Sean Silvab084af42012-12-07 10:36:55 +00001612
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001613
1614.. _opbundles:
1615
1616Operand Bundles
1617---------------
1618
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001619Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001620with certain LLVM instructions (currently only ``call`` s and
1621``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001622incorrect and will change program semantics.
1623
1624Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001625
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001626 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001627 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1628 bundle operand ::= SSA value
1629 tag ::= string constant
1630
1631Operand bundles are **not** part of a function's signature, and a
1632given function may be called from multiple places with different kinds
1633of operand bundles. This reflects the fact that the operand bundles
1634are conceptually a part of the ``call`` (or ``invoke``), not the
1635callee being dispatched to.
1636
1637Operand bundles are a generic mechanism intended to support
1638runtime-introspection-like functionality for managed languages. While
1639the exact semantics of an operand bundle depend on the bundle tag,
1640there are certain limitations to how much the presence of an operand
1641bundle can influence the semantics of a program. These restrictions
1642are described as the semantics of an "unknown" operand bundle. As
1643long as the behavior of an operand bundle is describable within these
1644restrictions, LLVM does not need to have special knowledge of the
1645operand bundle to not miscompile programs containing it.
1646
David Majnemer34cacb42015-10-22 01:46:38 +00001647- The bundle operands for an unknown operand bundle escape in unknown
1648 ways before control is transferred to the callee or invokee.
1649- Calls and invokes with operand bundles have unknown read / write
1650 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001651 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001652 callsite specific attributes.
1653- An operand bundle at a call site cannot change the implementation
1654 of the called function. Inter-procedural optimizations work as
1655 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001656
Sanjoy Dascdafd842015-11-11 21:38:02 +00001657More specific types of operand bundles are described below.
1658
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001659.. _deopt_opbundles:
1660
Sanjoy Dascdafd842015-11-11 21:38:02 +00001661Deoptimization Operand Bundles
1662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1663
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001664Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001665operand bundle tag. These operand bundles represent an alternate
1666"safe" continuation for the call site they're attached to, and can be
1667used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001668specified call site. There can be at most one ``"deopt"`` operand
1669bundle attached to a call site. Exact details of deoptimization is
1670out of scope for the language reference, but it usually involves
1671rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001672
1673From the compiler's perspective, deoptimization operand bundles make
1674the call sites they're attached to at least ``readonly``. They read
1675through all of their pointer typed operands (even if they're not
1676otherwise escaped) and the entire visible heap. Deoptimization
1677operand bundles do not capture their operands except during
1678deoptimization, in which case control will not be returned to the
1679compiled frame.
1680
Sanjoy Das2d161452015-11-18 06:23:38 +00001681The inliner knows how to inline through calls that have deoptimization
1682operand bundles. Just like inlining through a normal call site
1683involves composing the normal and exceptional continuations, inlining
1684through a call site with a deoptimization operand bundle needs to
1685appropriately compose the "safe" deoptimization continuation. The
1686inliner does this by prepending the parent's deoptimization
1687continuation to every deoptimization continuation in the inlined body.
1688E.g. inlining ``@f`` into ``@g`` in the following example
1689
1690.. code-block:: llvm
1691
1692 define void @f() {
1693 call void @x() ;; no deopt state
1694 call void @y() [ "deopt"(i32 10) ]
1695 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1696 ret void
1697 }
1698
1699 define void @g() {
1700 call void @f() [ "deopt"(i32 20) ]
1701 ret void
1702 }
1703
1704will result in
1705
1706.. code-block:: llvm
1707
1708 define void @g() {
1709 call void @x() ;; still no deopt state
1710 call void @y() [ "deopt"(i32 20, i32 10) ]
1711 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1712 ret void
1713 }
1714
1715It is the frontend's responsibility to structure or encode the
1716deoptimization state in a way that syntactically prepending the
1717caller's deoptimization state to the callee's deoptimization state is
1718semantically equivalent to composing the caller's deoptimization
1719continuation after the callee's deoptimization continuation.
1720
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001721.. _ob_funclet:
1722
David Majnemer3bb88c02015-12-15 21:27:27 +00001723Funclet Operand Bundles
1724^^^^^^^^^^^^^^^^^^^^^^^
1725
1726Funclet operand bundles are characterized by the ``"funclet"``
1727operand bundle tag. These operand bundles indicate that a call site
1728is within a particular funclet. There can be at most one
1729``"funclet"`` operand bundle attached to a call site and it must have
1730exactly one bundle operand.
1731
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001732If any funclet EH pads have been "entered" but not "exited" (per the
1733`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1734it is undefined behavior to execute a ``call`` or ``invoke`` which:
1735
1736* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1737 intrinsic, or
1738* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1739 not-yet-exited funclet EH pad.
1740
1741Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1742executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1743
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001744GC Transition Operand Bundles
1745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1746
1747GC transition operand bundles are characterized by the
1748``"gc-transition"`` operand bundle tag. These operand bundles mark a
1749call as a transition between a function with one GC strategy to a
1750function with a different GC strategy. If coordinating the transition
1751between GC strategies requires additional code generation at the call
1752site, these bundles may contain any values that are needed by the
1753generated code. For more details, see :ref:`GC Transitions
1754<gc_transition_args>`.
1755
Sean Silvab084af42012-12-07 10:36:55 +00001756.. _moduleasm:
1757
1758Module-Level Inline Assembly
1759----------------------------
1760
1761Modules may contain "module-level inline asm" blocks, which corresponds
1762to the GCC "file scope inline asm" blocks. These blocks are internally
1763concatenated by LLVM and treated as a single unit, but may be separated
1764in the ``.ll`` file if desired. The syntax is very simple:
1765
1766.. code-block:: llvm
1767
1768 module asm "inline asm code goes here"
1769 module asm "more can go here"
1770
1771The strings can contain any character by escaping non-printable
1772characters. The escape sequence used is simply "\\xx" where "xx" is the
1773two digit hex code for the number.
1774
James Y Knightbc832ed2015-07-08 18:08:36 +00001775Note that the assembly string *must* be parseable by LLVM's integrated assembler
1776(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001777
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001778.. _langref_datalayout:
1779
Sean Silvab084af42012-12-07 10:36:55 +00001780Data Layout
1781-----------
1782
1783A module may specify a target specific data layout string that specifies
1784how data is to be laid out in memory. The syntax for the data layout is
1785simply:
1786
1787.. code-block:: llvm
1788
1789 target datalayout = "layout specification"
1790
1791The *layout specification* consists of a list of specifications
1792separated by the minus sign character ('-'). Each specification starts
1793with a letter and may include other information after the letter to
1794define some aspect of the data layout. The specifications accepted are
1795as follows:
1796
1797``E``
1798 Specifies that the target lays out data in big-endian form. That is,
1799 the bits with the most significance have the lowest address
1800 location.
1801``e``
1802 Specifies that the target lays out data in little-endian form. That
1803 is, the bits with the least significance have the lowest address
1804 location.
1805``S<size>``
1806 Specifies the natural alignment of the stack in bits. Alignment
1807 promotion of stack variables is limited to the natural stack
1808 alignment to avoid dynamic stack realignment. The stack alignment
1809 must be a multiple of 8-bits. If omitted, the natural stack
1810 alignment defaults to "unspecified", which does not prevent any
1811 alignment promotions.
1812``p[n]:<size>:<abi>:<pref>``
1813 This specifies the *size* of a pointer and its ``<abi>`` and
1814 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001815 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001816 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001817 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001818``i<size>:<abi>:<pref>``
1819 This specifies the alignment for an integer type of a given bit
1820 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1821``v<size>:<abi>:<pref>``
1822 This specifies the alignment for a vector type of a given bit
1823 ``<size>``.
1824``f<size>:<abi>:<pref>``
1825 This specifies the alignment for a floating point type of a given bit
1826 ``<size>``. Only values of ``<size>`` that are supported by the target
1827 will work. 32 (float) and 64 (double) are supported on all targets; 80
1828 or 128 (different flavors of long double) are also supported on some
1829 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001830``a:<abi>:<pref>``
1831 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001832``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001833 If present, specifies that llvm names are mangled in the output. The
1834 options are
1835
1836 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1837 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1838 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1839 symbols get a ``_`` prefix.
1840 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1841 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001842 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1843 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001844``n<size1>:<size2>:<size3>...``
1845 This specifies a set of native integer widths for the target CPU in
1846 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1847 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1848 this set are considered to support most general arithmetic operations
1849 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001850``ni:<address space0>:<address space1>:<address space2>...``
1851 This specifies pointer types with the specified address spaces
1852 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1853 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001854
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001855On every specification that takes a ``<abi>:<pref>``, specifying the
1856``<pref>`` alignment is optional. If omitted, the preceding ``:``
1857should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1858
Sean Silvab084af42012-12-07 10:36:55 +00001859When constructing the data layout for a given target, LLVM starts with a
1860default set of specifications which are then (possibly) overridden by
1861the specifications in the ``datalayout`` keyword. The default
1862specifications are given in this list:
1863
1864- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001865- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1866- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1867 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001868- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001869- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1870- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1871- ``i16:16:16`` - i16 is 16-bit aligned
1872- ``i32:32:32`` - i32 is 32-bit aligned
1873- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1874 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001875- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001876- ``f32:32:32`` - float is 32-bit aligned
1877- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001878- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001879- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1880- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001881- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001882
1883When LLVM is determining the alignment for a given type, it uses the
1884following rules:
1885
1886#. If the type sought is an exact match for one of the specifications,
1887 that specification is used.
1888#. If no match is found, and the type sought is an integer type, then
1889 the smallest integer type that is larger than the bitwidth of the
1890 sought type is used. If none of the specifications are larger than
1891 the bitwidth then the largest integer type is used. For example,
1892 given the default specifications above, the i7 type will use the
1893 alignment of i8 (next largest) while both i65 and i256 will use the
1894 alignment of i64 (largest specified).
1895#. If no match is found, and the type sought is a vector type, then the
1896 largest vector type that is smaller than the sought vector type will
1897 be used as a fall back. This happens because <128 x double> can be
1898 implemented in terms of 64 <2 x double>, for example.
1899
1900The function of the data layout string may not be what you expect.
1901Notably, this is not a specification from the frontend of what alignment
1902the code generator should use.
1903
1904Instead, if specified, the target data layout is required to match what
1905the ultimate *code generator* expects. This string is used by the
1906mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001907what the ultimate code generator uses. There is no way to generate IR
1908that does not embed this target-specific detail into the IR. If you
1909don't specify the string, the default specifications will be used to
1910generate a Data Layout and the optimization phases will operate
1911accordingly and introduce target specificity into the IR with respect to
1912these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001913
Bill Wendling5cc90842013-10-18 23:41:25 +00001914.. _langref_triple:
1915
1916Target Triple
1917-------------
1918
1919A module may specify a target triple string that describes the target
1920host. The syntax for the target triple is simply:
1921
1922.. code-block:: llvm
1923
1924 target triple = "x86_64-apple-macosx10.7.0"
1925
1926The *target triple* string consists of a series of identifiers delimited
1927by the minus sign character ('-'). The canonical forms are:
1928
1929::
1930
1931 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1932 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1933
1934This information is passed along to the backend so that it generates
1935code for the proper architecture. It's possible to override this on the
1936command line with the ``-mtriple`` command line option.
1937
Sean Silvab084af42012-12-07 10:36:55 +00001938.. _pointeraliasing:
1939
1940Pointer Aliasing Rules
1941----------------------
1942
1943Any memory access must be done through a pointer value associated with
1944an address range of the memory access, otherwise the behavior is
1945undefined. Pointer values are associated with address ranges according
1946to the following rules:
1947
1948- A pointer value is associated with the addresses associated with any
1949 value it is *based* on.
1950- An address of a global variable is associated with the address range
1951 of the variable's storage.
1952- The result value of an allocation instruction is associated with the
1953 address range of the allocated storage.
1954- A null pointer in the default address-space is associated with no
1955 address.
1956- An integer constant other than zero or a pointer value returned from
1957 a function not defined within LLVM may be associated with address
1958 ranges allocated through mechanisms other than those provided by
1959 LLVM. Such ranges shall not overlap with any ranges of addresses
1960 allocated by mechanisms provided by LLVM.
1961
1962A pointer value is *based* on another pointer value according to the
1963following rules:
1964
1965- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001966 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001967- The result value of a ``bitcast`` is *based* on the operand of the
1968 ``bitcast``.
1969- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1970 values that contribute (directly or indirectly) to the computation of
1971 the pointer's value.
1972- The "*based* on" relationship is transitive.
1973
1974Note that this definition of *"based"* is intentionally similar to the
1975definition of *"based"* in C99, though it is slightly weaker.
1976
1977LLVM IR does not associate types with memory. The result type of a
1978``load`` merely indicates the size and alignment of the memory from
1979which to load, as well as the interpretation of the value. The first
1980operand type of a ``store`` similarly only indicates the size and
1981alignment of the store.
1982
1983Consequently, type-based alias analysis, aka TBAA, aka
1984``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1985:ref:`Metadata <metadata>` may be used to encode additional information
1986which specialized optimization passes may use to implement type-based
1987alias analysis.
1988
1989.. _volatile:
1990
1991Volatile Memory Accesses
1992------------------------
1993
1994Certain memory accesses, such as :ref:`load <i_load>`'s,
1995:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1996marked ``volatile``. The optimizers must not change the number of
1997volatile operations or change their order of execution relative to other
1998volatile operations. The optimizers *may* change the order of volatile
1999operations relative to non-volatile operations. This is not Java's
2000"volatile" and has no cross-thread synchronization behavior.
2001
Andrew Trick89fc5a62013-01-30 21:19:35 +00002002IR-level volatile loads and stores cannot safely be optimized into
2003llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2004flagged volatile. Likewise, the backend should never split or merge
2005target-legal volatile load/store instructions.
2006
Andrew Trick7e6f9282013-01-31 00:49:39 +00002007.. admonition:: Rationale
2008
2009 Platforms may rely on volatile loads and stores of natively supported
2010 data width to be executed as single instruction. For example, in C
2011 this holds for an l-value of volatile primitive type with native
2012 hardware support, but not necessarily for aggregate types. The
2013 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002014 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002015 do not violate the frontend's contract with the language.
2016
Sean Silvab084af42012-12-07 10:36:55 +00002017.. _memmodel:
2018
2019Memory Model for Concurrent Operations
2020--------------------------------------
2021
2022The LLVM IR does not define any way to start parallel threads of
2023execution or to register signal handlers. Nonetheless, there are
2024platform-specific ways to create them, and we define LLVM IR's behavior
2025in their presence. This model is inspired by the C++0x memory model.
2026
2027For a more informal introduction to this model, see the :doc:`Atomics`.
2028
2029We define a *happens-before* partial order as the least partial order
2030that
2031
2032- Is a superset of single-thread program order, and
2033- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2034 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2035 techniques, like pthread locks, thread creation, thread joining,
2036 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2037 Constraints <ordering>`).
2038
2039Note that program order does not introduce *happens-before* edges
2040between a thread and signals executing inside that thread.
2041
2042Every (defined) read operation (load instructions, memcpy, atomic
2043loads/read-modify-writes, etc.) R reads a series of bytes written by
2044(defined) write operations (store instructions, atomic
2045stores/read-modify-writes, memcpy, etc.). For the purposes of this
2046section, initialized globals are considered to have a write of the
2047initializer which is atomic and happens before any other read or write
2048of the memory in question. For each byte of a read R, R\ :sub:`byte`
2049may see any write to the same byte, except:
2050
2051- If write\ :sub:`1` happens before write\ :sub:`2`, and
2052 write\ :sub:`2` happens before R\ :sub:`byte`, then
2053 R\ :sub:`byte` does not see write\ :sub:`1`.
2054- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2055 R\ :sub:`byte` does not see write\ :sub:`3`.
2056
2057Given that definition, R\ :sub:`byte` is defined as follows:
2058
2059- If R is volatile, the result is target-dependent. (Volatile is
2060 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002061 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002062 like normal memory. It does not generally provide cross-thread
2063 synchronization.)
2064- Otherwise, if there is no write to the same byte that happens before
2065 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2066- Otherwise, if R\ :sub:`byte` may see exactly one write,
2067 R\ :sub:`byte` returns the value written by that write.
2068- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2069 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2070 Memory Ordering Constraints <ordering>` section for additional
2071 constraints on how the choice is made.
2072- Otherwise R\ :sub:`byte` returns ``undef``.
2073
2074R returns the value composed of the series of bytes it read. This
2075implies that some bytes within the value may be ``undef`` **without**
2076the entire value being ``undef``. Note that this only defines the
2077semantics of the operation; it doesn't mean that targets will emit more
2078than one instruction to read the series of bytes.
2079
2080Note that in cases where none of the atomic intrinsics are used, this
2081model places only one restriction on IR transformations on top of what
2082is required for single-threaded execution: introducing a store to a byte
2083which might not otherwise be stored is not allowed in general.
2084(Specifically, in the case where another thread might write to and read
2085from an address, introducing a store can change a load that may see
2086exactly one write into a load that may see multiple writes.)
2087
2088.. _ordering:
2089
2090Atomic Memory Ordering Constraints
2091----------------------------------
2092
2093Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2094:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2095:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002096ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002097the same address they *synchronize with*. These semantics are borrowed
2098from Java and C++0x, but are somewhat more colloquial. If these
2099descriptions aren't precise enough, check those specs (see spec
2100references in the :doc:`atomics guide <Atomics>`).
2101:ref:`fence <i_fence>` instructions treat these orderings somewhat
2102differently since they don't take an address. See that instruction's
2103documentation for details.
2104
2105For a simpler introduction to the ordering constraints, see the
2106:doc:`Atomics`.
2107
2108``unordered``
2109 The set of values that can be read is governed by the happens-before
2110 partial order. A value cannot be read unless some operation wrote
2111 it. This is intended to provide a guarantee strong enough to model
2112 Java's non-volatile shared variables. This ordering cannot be
2113 specified for read-modify-write operations; it is not strong enough
2114 to make them atomic in any interesting way.
2115``monotonic``
2116 In addition to the guarantees of ``unordered``, there is a single
2117 total order for modifications by ``monotonic`` operations on each
2118 address. All modification orders must be compatible with the
2119 happens-before order. There is no guarantee that the modification
2120 orders can be combined to a global total order for the whole program
2121 (and this often will not be possible). The read in an atomic
2122 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2123 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2124 order immediately before the value it writes. If one atomic read
2125 happens before another atomic read of the same address, the later
2126 read must see the same value or a later value in the address's
2127 modification order. This disallows reordering of ``monotonic`` (or
2128 stronger) operations on the same address. If an address is written
2129 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2130 read that address repeatedly, the other threads must eventually see
2131 the write. This corresponds to the C++0x/C1x
2132 ``memory_order_relaxed``.
2133``acquire``
2134 In addition to the guarantees of ``monotonic``, a
2135 *synchronizes-with* edge may be formed with a ``release`` operation.
2136 This is intended to model C++'s ``memory_order_acquire``.
2137``release``
2138 In addition to the guarantees of ``monotonic``, if this operation
2139 writes a value which is subsequently read by an ``acquire``
2140 operation, it *synchronizes-with* that operation. (This isn't a
2141 complete description; see the C++0x definition of a release
2142 sequence.) This corresponds to the C++0x/C1x
2143 ``memory_order_release``.
2144``acq_rel`` (acquire+release)
2145 Acts as both an ``acquire`` and ``release`` operation on its
2146 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2147``seq_cst`` (sequentially consistent)
2148 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002149 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002150 writes), there is a global total order on all
2151 sequentially-consistent operations on all addresses, which is
2152 consistent with the *happens-before* partial order and with the
2153 modification orders of all the affected addresses. Each
2154 sequentially-consistent read sees the last preceding write to the
2155 same address in this global order. This corresponds to the C++0x/C1x
2156 ``memory_order_seq_cst`` and Java volatile.
2157
2158.. _singlethread:
2159
2160If an atomic operation is marked ``singlethread``, it only *synchronizes
2161with* or participates in modification and seq\_cst total orderings with
2162other operations running in the same thread (for example, in signal
2163handlers).
2164
2165.. _fastmath:
2166
2167Fast-Math Flags
2168---------------
2169
2170LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2171:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002172:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2173be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002174
2175``nnan``
2176 No NaNs - Allow optimizations to assume the arguments and result are not
2177 NaN. Such optimizations are required to retain defined behavior over
2178 NaNs, but the value of the result is undefined.
2179
2180``ninf``
2181 No Infs - Allow optimizations to assume the arguments and result are not
2182 +/-Inf. Such optimizations are required to retain defined behavior over
2183 +/-Inf, but the value of the result is undefined.
2184
2185``nsz``
2186 No Signed Zeros - Allow optimizations to treat the sign of a zero
2187 argument or result as insignificant.
2188
2189``arcp``
2190 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2191 argument rather than perform division.
2192
2193``fast``
2194 Fast - Allow algebraically equivalent transformations that may
2195 dramatically change results in floating point (e.g. reassociate). This
2196 flag implies all the others.
2197
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002198.. _uselistorder:
2199
2200Use-list Order Directives
2201-------------------------
2202
2203Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002204order to be recreated. ``<order-indexes>`` is a comma-separated list of
2205indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002206value's use-list is immediately sorted by these indexes.
2207
Sean Silvaa1190322015-08-06 22:56:48 +00002208Use-list directives may appear at function scope or global scope. They are not
2209instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002210function scope, they must appear after the terminator of the final basic block.
2211
2212If basic blocks have their address taken via ``blockaddress()`` expressions,
2213``uselistorder_bb`` can be used to reorder their use-lists from outside their
2214function's scope.
2215
2216:Syntax:
2217
2218::
2219
2220 uselistorder <ty> <value>, { <order-indexes> }
2221 uselistorder_bb @function, %block { <order-indexes> }
2222
2223:Examples:
2224
2225::
2226
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002227 define void @foo(i32 %arg1, i32 %arg2) {
2228 entry:
2229 ; ... instructions ...
2230 bb:
2231 ; ... instructions ...
2232
2233 ; At function scope.
2234 uselistorder i32 %arg1, { 1, 0, 2 }
2235 uselistorder label %bb, { 1, 0 }
2236 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002237
2238 ; At global scope.
2239 uselistorder i32* @global, { 1, 2, 0 }
2240 uselistorder i32 7, { 1, 0 }
2241 uselistorder i32 (i32) @bar, { 1, 0 }
2242 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2243
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002244.. _source_filename:
2245
2246Source Filename
2247---------------
2248
2249The *source filename* string is set to the original module identifier,
2250which will be the name of the compiled source file when compiling from
2251source through the clang front end, for example. It is then preserved through
2252the IR and bitcode.
2253
2254This is currently necessary to generate a consistent unique global
2255identifier for local functions used in profile data, which prepends the
2256source file name to the local function name.
2257
2258The syntax for the source file name is simply:
2259
Renato Golin124f2592016-07-20 12:16:38 +00002260.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002261
2262 source_filename = "/path/to/source.c"
2263
Sean Silvab084af42012-12-07 10:36:55 +00002264.. _typesystem:
2265
2266Type System
2267===========
2268
2269The LLVM type system is one of the most important features of the
2270intermediate representation. Being typed enables a number of
2271optimizations to be performed on the intermediate representation
2272directly, without having to do extra analyses on the side before the
2273transformation. A strong type system makes it easier to read the
2274generated code and enables novel analyses and transformations that are
2275not feasible to perform on normal three address code representations.
2276
Rafael Espindola08013342013-12-07 19:34:20 +00002277.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002278
Rafael Espindola08013342013-12-07 19:34:20 +00002279Void Type
2280---------
Sean Silvab084af42012-12-07 10:36:55 +00002281
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002282:Overview:
2283
Rafael Espindola08013342013-12-07 19:34:20 +00002284
2285The void type does not represent any value and has no size.
2286
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002287:Syntax:
2288
Rafael Espindola08013342013-12-07 19:34:20 +00002289
2290::
2291
2292 void
Sean Silvab084af42012-12-07 10:36:55 +00002293
2294
Rafael Espindola08013342013-12-07 19:34:20 +00002295.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002296
Rafael Espindola08013342013-12-07 19:34:20 +00002297Function Type
2298-------------
Sean Silvab084af42012-12-07 10:36:55 +00002299
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002300:Overview:
2301
Sean Silvab084af42012-12-07 10:36:55 +00002302
Rafael Espindola08013342013-12-07 19:34:20 +00002303The function type can be thought of as a function signature. It consists of a
2304return type and a list of formal parameter types. The return type of a function
2305type is a void type or first class type --- except for :ref:`label <t_label>`
2306and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002307
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002308:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002309
Rafael Espindola08013342013-12-07 19:34:20 +00002310::
Sean Silvab084af42012-12-07 10:36:55 +00002311
Rafael Espindola08013342013-12-07 19:34:20 +00002312 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002313
Rafael Espindola08013342013-12-07 19:34:20 +00002314...where '``<parameter list>``' is a comma-separated list of type
2315specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002316indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002317argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002318handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002319except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002320
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002321:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002322
Rafael Espindola08013342013-12-07 19:34:20 +00002323+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2324| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2325+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2326| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2327+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2328| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2329+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2330| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2331+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2332
2333.. _t_firstclass:
2334
2335First Class Types
2336-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002337
2338The :ref:`first class <t_firstclass>` types are perhaps the most important.
2339Values of these types are the only ones which can be produced by
2340instructions.
2341
Rafael Espindola08013342013-12-07 19:34:20 +00002342.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002343
Rafael Espindola08013342013-12-07 19:34:20 +00002344Single Value Types
2345^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002346
Rafael Espindola08013342013-12-07 19:34:20 +00002347These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002348
2349.. _t_integer:
2350
2351Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002352""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002353
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002354:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002355
2356The integer type is a very simple type that simply specifies an
2357arbitrary bit width for the integer type desired. Any bit width from 1
2358bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2359
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002360:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002361
2362::
2363
2364 iN
2365
2366The number of bits the integer will occupy is specified by the ``N``
2367value.
2368
2369Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002370*********
Sean Silvab084af42012-12-07 10:36:55 +00002371
2372+----------------+------------------------------------------------+
2373| ``i1`` | a single-bit integer. |
2374+----------------+------------------------------------------------+
2375| ``i32`` | a 32-bit integer. |
2376+----------------+------------------------------------------------+
2377| ``i1942652`` | a really big integer of over 1 million bits. |
2378+----------------+------------------------------------------------+
2379
2380.. _t_floating:
2381
2382Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002383""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002384
2385.. list-table::
2386 :header-rows: 1
2387
2388 * - Type
2389 - Description
2390
2391 * - ``half``
2392 - 16-bit floating point value
2393
2394 * - ``float``
2395 - 32-bit floating point value
2396
2397 * - ``double``
2398 - 64-bit floating point value
2399
2400 * - ``fp128``
2401 - 128-bit floating point value (112-bit mantissa)
2402
2403 * - ``x86_fp80``
2404 - 80-bit floating point value (X87)
2405
2406 * - ``ppc_fp128``
2407 - 128-bit floating point value (two 64-bits)
2408
Reid Kleckner9a16d082014-03-05 02:41:37 +00002409X86_mmx Type
2410""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002411
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002412:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002413
Reid Kleckner9a16d082014-03-05 02:41:37 +00002414The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002415machine. The operations allowed on it are quite limited: parameters and
2416return values, load and store, and bitcast. User-specified MMX
2417instructions are represented as intrinsic or asm calls with arguments
2418and/or results of this type. There are no arrays, vectors or constants
2419of this type.
2420
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002421:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002422
2423::
2424
Reid Kleckner9a16d082014-03-05 02:41:37 +00002425 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002426
Sean Silvab084af42012-12-07 10:36:55 +00002427
Rafael Espindola08013342013-12-07 19:34:20 +00002428.. _t_pointer:
2429
2430Pointer Type
2431""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002432
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002433:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002434
Rafael Espindola08013342013-12-07 19:34:20 +00002435The pointer type is used to specify memory locations. Pointers are
2436commonly used to reference objects in memory.
2437
2438Pointer types may have an optional address space attribute defining the
2439numbered address space where the pointed-to object resides. The default
2440address space is number zero. The semantics of non-zero address spaces
2441are target-specific.
2442
2443Note that LLVM does not permit pointers to void (``void*``) nor does it
2444permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002445
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002446:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002447
2448::
2449
Rafael Espindola08013342013-12-07 19:34:20 +00002450 <type> *
2451
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002452:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002453
2454+-------------------------+--------------------------------------------------------------------------------------------------------------+
2455| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2456+-------------------------+--------------------------------------------------------------------------------------------------------------+
2457| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2458+-------------------------+--------------------------------------------------------------------------------------------------------------+
2459| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2460+-------------------------+--------------------------------------------------------------------------------------------------------------+
2461
2462.. _t_vector:
2463
2464Vector Type
2465"""""""""""
2466
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002467:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002468
2469A vector type is a simple derived type that represents a vector of
2470elements. Vector types are used when multiple primitive data are
2471operated in parallel using a single instruction (SIMD). A vector type
2472requires a size (number of elements) and an underlying primitive data
2473type. Vector types are considered :ref:`first class <t_firstclass>`.
2474
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002475:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002476
2477::
2478
2479 < <# elements> x <elementtype> >
2480
2481The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002482elementtype may be any integer, floating point or pointer type. Vectors
2483of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002484
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002485:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002486
2487+-------------------+--------------------------------------------------+
2488| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2489+-------------------+--------------------------------------------------+
2490| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2491+-------------------+--------------------------------------------------+
2492| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2493+-------------------+--------------------------------------------------+
2494| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2495+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002496
2497.. _t_label:
2498
2499Label Type
2500^^^^^^^^^^
2501
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002502:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002503
2504The label type represents code labels.
2505
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002506:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002507
2508::
2509
2510 label
2511
David Majnemerb611e3f2015-08-14 05:09:07 +00002512.. _t_token:
2513
2514Token Type
2515^^^^^^^^^^
2516
2517:Overview:
2518
2519The token type is used when a value is associated with an instruction
2520but all uses of the value must not attempt to introspect or obscure it.
2521As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2522:ref:`select <i_select>` of type token.
2523
2524:Syntax:
2525
2526::
2527
2528 token
2529
2530
2531
Sean Silvab084af42012-12-07 10:36:55 +00002532.. _t_metadata:
2533
2534Metadata Type
2535^^^^^^^^^^^^^
2536
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002537:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002538
2539The metadata type represents embedded metadata. No derived types may be
2540created from metadata except for :ref:`function <t_function>` arguments.
2541
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002542:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002543
2544::
2545
2546 metadata
2547
Sean Silvab084af42012-12-07 10:36:55 +00002548.. _t_aggregate:
2549
2550Aggregate Types
2551^^^^^^^^^^^^^^^
2552
2553Aggregate Types are a subset of derived types that can contain multiple
2554member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2555aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2556aggregate types.
2557
2558.. _t_array:
2559
2560Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002561""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002562
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002563:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002564
2565The array type is a very simple derived type that arranges elements
2566sequentially in memory. The array type requires a size (number of
2567elements) and an underlying data type.
2568
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002569:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002570
2571::
2572
2573 [<# elements> x <elementtype>]
2574
2575The number of elements is a constant integer value; ``elementtype`` may
2576be any type with a size.
2577
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002578:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002579
2580+------------------+--------------------------------------+
2581| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2582+------------------+--------------------------------------+
2583| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2584+------------------+--------------------------------------+
2585| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2586+------------------+--------------------------------------+
2587
2588Here are some examples of multidimensional arrays:
2589
2590+-----------------------------+----------------------------------------------------------+
2591| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2592+-----------------------------+----------------------------------------------------------+
2593| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2594+-----------------------------+----------------------------------------------------------+
2595| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2596+-----------------------------+----------------------------------------------------------+
2597
2598There is no restriction on indexing beyond the end of the array implied
2599by a static type (though there are restrictions on indexing beyond the
2600bounds of an allocated object in some cases). This means that
2601single-dimension 'variable sized array' addressing can be implemented in
2602LLVM with a zero length array type. An implementation of 'pascal style
2603arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2604example.
2605
Sean Silvab084af42012-12-07 10:36:55 +00002606.. _t_struct:
2607
2608Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002609""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002610
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002611:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002612
2613The structure type is used to represent a collection of data members
2614together in memory. The elements of a structure may be any type that has
2615a size.
2616
2617Structures in memory are accessed using '``load``' and '``store``' by
2618getting a pointer to a field with the '``getelementptr``' instruction.
2619Structures in registers are accessed using the '``extractvalue``' and
2620'``insertvalue``' instructions.
2621
2622Structures may optionally be "packed" structures, which indicate that
2623the alignment of the struct is one byte, and that there is no padding
2624between the elements. In non-packed structs, padding between field types
2625is inserted as defined by the DataLayout string in the module, which is
2626required to match what the underlying code generator expects.
2627
2628Structures can either be "literal" or "identified". A literal structure
2629is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2630identified types are always defined at the top level with a name.
2631Literal types are uniqued by their contents and can never be recursive
2632or opaque since there is no way to write one. Identified types can be
2633recursive, can be opaqued, and are never uniqued.
2634
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002635:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002636
2637::
2638
2639 %T1 = type { <type list> } ; Identified normal struct type
2640 %T2 = type <{ <type list> }> ; Identified packed struct type
2641
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002642:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002643
2644+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2645| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2646+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002647| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002648+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2649| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2650+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2651
2652.. _t_opaque:
2653
2654Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002655""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002656
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002657:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002658
2659Opaque structure types are used to represent named structure types that
2660do not have a body specified. This corresponds (for example) to the C
2661notion of a forward declared structure.
2662
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002663:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002664
2665::
2666
2667 %X = type opaque
2668 %52 = type opaque
2669
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002670:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002671
2672+--------------+-------------------+
2673| ``opaque`` | An opaque type. |
2674+--------------+-------------------+
2675
Sean Silva1703e702014-04-08 21:06:22 +00002676.. _constants:
2677
Sean Silvab084af42012-12-07 10:36:55 +00002678Constants
2679=========
2680
2681LLVM has several different basic types of constants. This section
2682describes them all and their syntax.
2683
2684Simple Constants
2685----------------
2686
2687**Boolean constants**
2688 The two strings '``true``' and '``false``' are both valid constants
2689 of the ``i1`` type.
2690**Integer constants**
2691 Standard integers (such as '4') are constants of the
2692 :ref:`integer <t_integer>` type. Negative numbers may be used with
2693 integer types.
2694**Floating point constants**
2695 Floating point constants use standard decimal notation (e.g.
2696 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2697 hexadecimal notation (see below). The assembler requires the exact
2698 decimal value of a floating-point constant. For example, the
2699 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2700 decimal in binary. Floating point constants must have a :ref:`floating
2701 point <t_floating>` type.
2702**Null pointer constants**
2703 The identifier '``null``' is recognized as a null pointer constant
2704 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002705**Token constants**
2706 The identifier '``none``' is recognized as an empty token constant
2707 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002708
2709The one non-intuitive notation for constants is the hexadecimal form of
2710floating point constants. For example, the form
2711'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2712than) '``double 4.5e+15``'. The only time hexadecimal floating point
2713constants are required (and the only time that they are generated by the
2714disassembler) is when a floating point constant must be emitted but it
2715cannot be represented as a decimal floating point number in a reasonable
2716number of digits. For example, NaN's, infinities, and other special
2717values are represented in their IEEE hexadecimal format so that assembly
2718and disassembly do not cause any bits to change in the constants.
2719
2720When using the hexadecimal form, constants of types half, float, and
2721double are represented using the 16-digit form shown above (which
2722matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002723must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002724precision, respectively. Hexadecimal format is always used for long
2725double, and there are three forms of long double. The 80-bit format used
2726by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2727128-bit format used by PowerPC (two adjacent doubles) is represented by
2728``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002729represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2730will only work if they match the long double format on your target.
2731The IEEE 16-bit format (half precision) is represented by ``0xH``
2732followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2733(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002734
Reid Kleckner9a16d082014-03-05 02:41:37 +00002735There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002736
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002737.. _complexconstants:
2738
Sean Silvab084af42012-12-07 10:36:55 +00002739Complex Constants
2740-----------------
2741
2742Complex constants are a (potentially recursive) combination of simple
2743constants and smaller complex constants.
2744
2745**Structure constants**
2746 Structure constants are represented with notation similar to
2747 structure type definitions (a comma separated list of elements,
2748 surrounded by braces (``{}``)). For example:
2749 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2750 "``@G = external global i32``". Structure constants must have
2751 :ref:`structure type <t_struct>`, and the number and types of elements
2752 must match those specified by the type.
2753**Array constants**
2754 Array constants are represented with notation similar to array type
2755 definitions (a comma separated list of elements, surrounded by
2756 square brackets (``[]``)). For example:
2757 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2758 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002759 match those specified by the type. As a special case, character array
2760 constants may also be represented as a double-quoted string using the ``c``
2761 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002762**Vector constants**
2763 Vector constants are represented with notation similar to vector
2764 type definitions (a comma separated list of elements, surrounded by
2765 less-than/greater-than's (``<>``)). For example:
2766 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2767 must have :ref:`vector type <t_vector>`, and the number and types of
2768 elements must match those specified by the type.
2769**Zero initialization**
2770 The string '``zeroinitializer``' can be used to zero initialize a
2771 value to zero of *any* type, including scalar and
2772 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2773 having to print large zero initializers (e.g. for large arrays) and
2774 is always exactly equivalent to using explicit zero initializers.
2775**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002776 A metadata node is a constant tuple without types. For example:
2777 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002778 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2779 Unlike other typed constants that are meant to be interpreted as part of
2780 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002781 information such as debug info.
2782
2783Global Variable and Function Addresses
2784--------------------------------------
2785
2786The addresses of :ref:`global variables <globalvars>` and
2787:ref:`functions <functionstructure>` are always implicitly valid
2788(link-time) constants. These constants are explicitly referenced when
2789the :ref:`identifier for the global <identifiers>` is used and always have
2790:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2791file:
2792
2793.. code-block:: llvm
2794
2795 @X = global i32 17
2796 @Y = global i32 42
2797 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2798
2799.. _undefvalues:
2800
2801Undefined Values
2802----------------
2803
2804The string '``undef``' can be used anywhere a constant is expected, and
2805indicates that the user of the value may receive an unspecified
2806bit-pattern. Undefined values may be of any type (other than '``label``'
2807or '``void``') and be used anywhere a constant is permitted.
2808
2809Undefined values are useful because they indicate to the compiler that
2810the program is well defined no matter what value is used. This gives the
2811compiler more freedom to optimize. Here are some examples of
2812(potentially surprising) transformations that are valid (in pseudo IR):
2813
2814.. code-block:: llvm
2815
2816 %A = add %X, undef
2817 %B = sub %X, undef
2818 %C = xor %X, undef
2819 Safe:
2820 %A = undef
2821 %B = undef
2822 %C = undef
2823
2824This is safe because all of the output bits are affected by the undef
2825bits. Any output bit can have a zero or one depending on the input bits.
2826
2827.. code-block:: llvm
2828
2829 %A = or %X, undef
2830 %B = and %X, undef
2831 Safe:
2832 %A = -1
2833 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002834 Safe:
2835 %A = %X ;; By choosing undef as 0
2836 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002837 Unsafe:
2838 %A = undef
2839 %B = undef
2840
2841These logical operations have bits that are not always affected by the
2842input. For example, if ``%X`` has a zero bit, then the output of the
2843'``and``' operation will always be a zero for that bit, no matter what
2844the corresponding bit from the '``undef``' is. As such, it is unsafe to
2845optimize or assume that the result of the '``and``' is '``undef``'.
2846However, it is safe to assume that all bits of the '``undef``' could be
28470, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2848all the bits of the '``undef``' operand to the '``or``' could be set,
2849allowing the '``or``' to be folded to -1.
2850
2851.. code-block:: llvm
2852
2853 %A = select undef, %X, %Y
2854 %B = select undef, 42, %Y
2855 %C = select %X, %Y, undef
2856 Safe:
2857 %A = %X (or %Y)
2858 %B = 42 (or %Y)
2859 %C = %Y
2860 Unsafe:
2861 %A = undef
2862 %B = undef
2863 %C = undef
2864
2865This set of examples shows that undefined '``select``' (and conditional
2866branch) conditions can go *either way*, but they have to come from one
2867of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2868both known to have a clear low bit, then ``%A`` would have to have a
2869cleared low bit. However, in the ``%C`` example, the optimizer is
2870allowed to assume that the '``undef``' operand could be the same as
2871``%Y``, allowing the whole '``select``' to be eliminated.
2872
Renato Golin124f2592016-07-20 12:16:38 +00002873.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002874
2875 %A = xor undef, undef
2876
2877 %B = undef
2878 %C = xor %B, %B
2879
2880 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002881 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002882 %F = icmp gte %D, 4
2883
2884 Safe:
2885 %A = undef
2886 %B = undef
2887 %C = undef
2888 %D = undef
2889 %E = undef
2890 %F = undef
2891
2892This example points out that two '``undef``' operands are not
2893necessarily the same. This can be surprising to people (and also matches
2894C semantics) where they assume that "``X^X``" is always zero, even if
2895``X`` is undefined. This isn't true for a number of reasons, but the
2896short answer is that an '``undef``' "variable" can arbitrarily change
2897its value over its "live range". This is true because the variable
2898doesn't actually *have a live range*. Instead, the value is logically
2899read from arbitrary registers that happen to be around when needed, so
2900the value is not necessarily consistent over time. In fact, ``%A`` and
2901``%C`` need to have the same semantics or the core LLVM "replace all
2902uses with" concept would not hold.
2903
2904.. code-block:: llvm
2905
2906 %A = fdiv undef, %X
2907 %B = fdiv %X, undef
2908 Safe:
2909 %A = undef
2910 b: unreachable
2911
2912These examples show the crucial difference between an *undefined value*
2913and *undefined behavior*. An undefined value (like '``undef``') is
2914allowed to have an arbitrary bit-pattern. This means that the ``%A``
2915operation can be constant folded to '``undef``', because the '``undef``'
2916could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2917However, in the second example, we can make a more aggressive
2918assumption: because the ``undef`` is allowed to be an arbitrary value,
2919we are allowed to assume that it could be zero. Since a divide by zero
2920has *undefined behavior*, we are allowed to assume that the operation
2921does not execute at all. This allows us to delete the divide and all
2922code after it. Because the undefined operation "can't happen", the
2923optimizer can assume that it occurs in dead code.
2924
Renato Golin124f2592016-07-20 12:16:38 +00002925.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002926
2927 a: store undef -> %X
2928 b: store %X -> undef
2929 Safe:
2930 a: <deleted>
2931 b: unreachable
2932
2933These examples reiterate the ``fdiv`` example: a store *of* an undefined
2934value can be assumed to not have any effect; we can assume that the
2935value is overwritten with bits that happen to match what was already
2936there. However, a store *to* an undefined location could clobber
2937arbitrary memory, therefore, it has undefined behavior.
2938
2939.. _poisonvalues:
2940
2941Poison Values
2942-------------
2943
2944Poison values are similar to :ref:`undef values <undefvalues>`, however
2945they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002946that cannot evoke side effects has nevertheless detected a condition
2947that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002948
2949There is currently no way of representing a poison value in the IR; they
2950only exist when produced by operations such as :ref:`add <i_add>` with
2951the ``nsw`` flag.
2952
2953Poison value behavior is defined in terms of value *dependence*:
2954
2955- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2956- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2957 their dynamic predecessor basic block.
2958- Function arguments depend on the corresponding actual argument values
2959 in the dynamic callers of their functions.
2960- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2961 instructions that dynamically transfer control back to them.
2962- :ref:`Invoke <i_invoke>` instructions depend on the
2963 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2964 call instructions that dynamically transfer control back to them.
2965- Non-volatile loads and stores depend on the most recent stores to all
2966 of the referenced memory addresses, following the order in the IR
2967 (including loads and stores implied by intrinsics such as
2968 :ref:`@llvm.memcpy <int_memcpy>`.)
2969- An instruction with externally visible side effects depends on the
2970 most recent preceding instruction with externally visible side
2971 effects, following the order in the IR. (This includes :ref:`volatile
2972 operations <volatile>`.)
2973- An instruction *control-depends* on a :ref:`terminator
2974 instruction <terminators>` if the terminator instruction has
2975 multiple successors and the instruction is always executed when
2976 control transfers to one of the successors, and may not be executed
2977 when control is transferred to another.
2978- Additionally, an instruction also *control-depends* on a terminator
2979 instruction if the set of instructions it otherwise depends on would
2980 be different if the terminator had transferred control to a different
2981 successor.
2982- Dependence is transitive.
2983
Richard Smith32dbdf62014-07-31 04:25:36 +00002984Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2985with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002986on a poison value has undefined behavior.
2987
2988Here are some examples:
2989
2990.. code-block:: llvm
2991
2992 entry:
2993 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2994 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002995 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002996 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2997
2998 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002999 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003000
3001 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3002
3003 %narrowaddr = bitcast i32* @g to i16*
3004 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003005 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3006 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003007
3008 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3009 br i1 %cmp, label %true, label %end ; Branch to either destination.
3010
3011 true:
3012 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3013 ; it has undefined behavior.
3014 br label %end
3015
3016 end:
3017 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3018 ; Both edges into this PHI are
3019 ; control-dependent on %cmp, so this
3020 ; always results in a poison value.
3021
3022 store volatile i32 0, i32* @g ; This would depend on the store in %true
3023 ; if %cmp is true, or the store in %entry
3024 ; otherwise, so this is undefined behavior.
3025
3026 br i1 %cmp, label %second_true, label %second_end
3027 ; The same branch again, but this time the
3028 ; true block doesn't have side effects.
3029
3030 second_true:
3031 ; No side effects!
3032 ret void
3033
3034 second_end:
3035 store volatile i32 0, i32* @g ; This time, the instruction always depends
3036 ; on the store in %end. Also, it is
3037 ; control-equivalent to %end, so this is
3038 ; well-defined (ignoring earlier undefined
3039 ; behavior in this example).
3040
3041.. _blockaddress:
3042
3043Addresses of Basic Blocks
3044-------------------------
3045
3046``blockaddress(@function, %block)``
3047
3048The '``blockaddress``' constant computes the address of the specified
3049basic block in the specified function, and always has an ``i8*`` type.
3050Taking the address of the entry block is illegal.
3051
3052This value only has defined behavior when used as an operand to the
3053':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3054against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003055undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003056no label is equal to the null pointer. This may be passed around as an
3057opaque pointer sized value as long as the bits are not inspected. This
3058allows ``ptrtoint`` and arithmetic to be performed on these values so
3059long as the original value is reconstituted before the ``indirectbr``
3060instruction.
3061
3062Finally, some targets may provide defined semantics when using the value
3063as the operand to an inline assembly, but that is target specific.
3064
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003065.. _constantexprs:
3066
Sean Silvab084af42012-12-07 10:36:55 +00003067Constant Expressions
3068--------------------
3069
3070Constant expressions are used to allow expressions involving other
3071constants to be used as constants. Constant expressions may be of any
3072:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3073that does not have side effects (e.g. load and call are not supported).
3074The following is the syntax for constant expressions:
3075
3076``trunc (CST to TYPE)``
3077 Truncate a constant to another type. The bit size of CST must be
3078 larger than the bit size of TYPE. Both types must be integers.
3079``zext (CST to TYPE)``
3080 Zero extend a constant to another type. The bit size of CST must be
3081 smaller than the bit size of TYPE. Both types must be integers.
3082``sext (CST to TYPE)``
3083 Sign extend a constant to another type. The bit size of CST must be
3084 smaller than the bit size of TYPE. Both types must be integers.
3085``fptrunc (CST to TYPE)``
3086 Truncate a floating point constant to another floating point type.
3087 The size of CST must be larger than the size of TYPE. Both types
3088 must be floating point.
3089``fpext (CST to TYPE)``
3090 Floating point extend a constant to another type. The size of CST
3091 must be smaller or equal to the size of TYPE. Both types must be
3092 floating point.
3093``fptoui (CST to TYPE)``
3094 Convert a floating point constant to the corresponding unsigned
3095 integer constant. TYPE must be a scalar or vector integer type. CST
3096 must be of scalar or vector floating point type. Both CST and TYPE
3097 must be scalars, or vectors of the same number of elements. If the
3098 value won't fit in the integer type, the results are undefined.
3099``fptosi (CST to TYPE)``
3100 Convert a floating point constant to the corresponding signed
3101 integer constant. TYPE must be a scalar or vector integer type. CST
3102 must be of scalar or vector floating point type. Both CST and TYPE
3103 must be scalars, or vectors of the same number of elements. If the
3104 value won't fit in the integer type, the results are undefined.
3105``uitofp (CST to TYPE)``
3106 Convert an unsigned integer constant to the corresponding floating
3107 point constant. TYPE must be a scalar or vector floating point type.
3108 CST must be of scalar or vector integer type. Both CST and TYPE must
3109 be scalars, or vectors of the same number of elements. If the value
3110 won't fit in the floating point type, the results are undefined.
3111``sitofp (CST to TYPE)``
3112 Convert a signed integer constant to the corresponding floating
3113 point constant. TYPE must be a scalar or vector floating point type.
3114 CST must be of scalar or vector integer type. Both CST and TYPE must
3115 be scalars, or vectors of the same number of elements. If the value
3116 won't fit in the floating point type, the results are undefined.
3117``ptrtoint (CST to TYPE)``
3118 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003119 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003120 pointer type. The ``CST`` value is zero extended, truncated, or
3121 unchanged to make it fit in ``TYPE``.
3122``inttoptr (CST to TYPE)``
3123 Convert an integer constant to a pointer constant. TYPE must be a
3124 pointer type. CST must be of integer type. The CST value is zero
3125 extended, truncated, or unchanged to make it fit in a pointer size.
3126 This one is *really* dangerous!
3127``bitcast (CST to TYPE)``
3128 Convert a constant, CST, to another TYPE. The constraints of the
3129 operands are the same as those for the :ref:`bitcast
3130 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003131``addrspacecast (CST to TYPE)``
3132 Convert a constant pointer or constant vector of pointer, CST, to another
3133 TYPE in a different address space. The constraints of the operands are the
3134 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003135``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003136 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3137 constants. As with the :ref:`getelementptr <i_getelementptr>`
3138 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003139 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003140``select (COND, VAL1, VAL2)``
3141 Perform the :ref:`select operation <i_select>` on constants.
3142``icmp COND (VAL1, VAL2)``
3143 Performs the :ref:`icmp operation <i_icmp>` on constants.
3144``fcmp COND (VAL1, VAL2)``
3145 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3146``extractelement (VAL, IDX)``
3147 Perform the :ref:`extractelement operation <i_extractelement>` on
3148 constants.
3149``insertelement (VAL, ELT, IDX)``
3150 Perform the :ref:`insertelement operation <i_insertelement>` on
3151 constants.
3152``shufflevector (VEC1, VEC2, IDXMASK)``
3153 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3154 constants.
3155``extractvalue (VAL, IDX0, IDX1, ...)``
3156 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3157 constants. The index list is interpreted in a similar manner as
3158 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3159 least one index value must be specified.
3160``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3161 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3162 The index list is interpreted in a similar manner as indices in a
3163 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3164 value must be specified.
3165``OPCODE (LHS, RHS)``
3166 Perform the specified operation of the LHS and RHS constants. OPCODE
3167 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3168 binary <bitwiseops>` operations. The constraints on operands are
3169 the same as those for the corresponding instruction (e.g. no bitwise
3170 operations on floating point values are allowed).
3171
3172Other Values
3173============
3174
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003175.. _inlineasmexprs:
3176
Sean Silvab084af42012-12-07 10:36:55 +00003177Inline Assembler Expressions
3178----------------------------
3179
3180LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003181Inline Assembly <moduleasm>`) through the use of a special value. This value
3182represents the inline assembler as a template string (containing the
3183instructions to emit), a list of operand constraints (stored as a string), a
3184flag that indicates whether or not the inline asm expression has side effects,
3185and a flag indicating whether the function containing the asm needs to align its
3186stack conservatively.
3187
3188The template string supports argument substitution of the operands using "``$``"
3189followed by a number, to indicate substitution of the given register/memory
3190location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3191be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3192operand (See :ref:`inline-asm-modifiers`).
3193
3194A literal "``$``" may be included by using "``$$``" in the template. To include
3195other special characters into the output, the usual "``\XX``" escapes may be
3196used, just as in other strings. Note that after template substitution, the
3197resulting assembly string is parsed by LLVM's integrated assembler unless it is
3198disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3199syntax known to LLVM.
3200
3201LLVM's support for inline asm is modeled closely on the requirements of Clang's
3202GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3203modifier codes listed here are similar or identical to those in GCC's inline asm
3204support. However, to be clear, the syntax of the template and constraint strings
3205described here is *not* the same as the syntax accepted by GCC and Clang, and,
3206while most constraint letters are passed through as-is by Clang, some get
3207translated to other codes when converting from the C source to the LLVM
3208assembly.
3209
3210An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003211
3212.. code-block:: llvm
3213
3214 i32 (i32) asm "bswap $0", "=r,r"
3215
3216Inline assembler expressions may **only** be used as the callee operand
3217of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3218Thus, typically we have:
3219
3220.. code-block:: llvm
3221
3222 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3223
3224Inline asms with side effects not visible in the constraint list must be
3225marked as having side effects. This is done through the use of the
3226'``sideeffect``' keyword, like so:
3227
3228.. code-block:: llvm
3229
3230 call void asm sideeffect "eieio", ""()
3231
3232In some cases inline asms will contain code that will not work unless
3233the stack is aligned in some way, such as calls or SSE instructions on
3234x86, yet will not contain code that does that alignment within the asm.
3235The compiler should make conservative assumptions about what the asm
3236might contain and should generate its usual stack alignment code in the
3237prologue if the '``alignstack``' keyword is present:
3238
3239.. code-block:: llvm
3240
3241 call void asm alignstack "eieio", ""()
3242
3243Inline asms also support using non-standard assembly dialects. The
3244assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3245the inline asm is using the Intel dialect. Currently, ATT and Intel are
3246the only supported dialects. An example is:
3247
3248.. code-block:: llvm
3249
3250 call void asm inteldialect "eieio", ""()
3251
3252If multiple keywords appear the '``sideeffect``' keyword must come
3253first, the '``alignstack``' keyword second and the '``inteldialect``'
3254keyword last.
3255
James Y Knightbc832ed2015-07-08 18:08:36 +00003256Inline Asm Constraint String
3257^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3258
3259The constraint list is a comma-separated string, each element containing one or
3260more constraint codes.
3261
3262For each element in the constraint list an appropriate register or memory
3263operand will be chosen, and it will be made available to assembly template
3264string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3265second, etc.
3266
3267There are three different types of constraints, which are distinguished by a
3268prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3269constraints must always be given in that order: outputs first, then inputs, then
3270clobbers. They cannot be intermingled.
3271
3272There are also three different categories of constraint codes:
3273
3274- Register constraint. This is either a register class, or a fixed physical
3275 register. This kind of constraint will allocate a register, and if necessary,
3276 bitcast the argument or result to the appropriate type.
3277- Memory constraint. This kind of constraint is for use with an instruction
3278 taking a memory operand. Different constraints allow for different addressing
3279 modes used by the target.
3280- Immediate value constraint. This kind of constraint is for an integer or other
3281 immediate value which can be rendered directly into an instruction. The
3282 various target-specific constraints allow the selection of a value in the
3283 proper range for the instruction you wish to use it with.
3284
3285Output constraints
3286""""""""""""""""""
3287
3288Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3289indicates that the assembly will write to this operand, and the operand will
3290then be made available as a return value of the ``asm`` expression. Output
3291constraints do not consume an argument from the call instruction. (Except, see
3292below about indirect outputs).
3293
3294Normally, it is expected that no output locations are written to by the assembly
3295expression until *all* of the inputs have been read. As such, LLVM may assign
3296the same register to an output and an input. If this is not safe (e.g. if the
3297assembly contains two instructions, where the first writes to one output, and
3298the second reads an input and writes to a second output), then the "``&``"
3299modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003300"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003301will not use the same register for any inputs (other than an input tied to this
3302output).
3303
3304Input constraints
3305"""""""""""""""""
3306
3307Input constraints do not have a prefix -- just the constraint codes. Each input
3308constraint will consume one argument from the call instruction. It is not
3309permitted for the asm to write to any input register or memory location (unless
3310that input is tied to an output). Note also that multiple inputs may all be
3311assigned to the same register, if LLVM can determine that they necessarily all
3312contain the same value.
3313
3314Instead of providing a Constraint Code, input constraints may also "tie"
3315themselves to an output constraint, by providing an integer as the constraint
3316string. Tied inputs still consume an argument from the call instruction, and
3317take up a position in the asm template numbering as is usual -- they will simply
3318be constrained to always use the same register as the output they've been tied
3319to. For example, a constraint string of "``=r,0``" says to assign a register for
3320output, and use that register as an input as well (it being the 0'th
3321constraint).
3322
3323It is permitted to tie an input to an "early-clobber" output. In that case, no
3324*other* input may share the same register as the input tied to the early-clobber
3325(even when the other input has the same value).
3326
3327You may only tie an input to an output which has a register constraint, not a
3328memory constraint. Only a single input may be tied to an output.
3329
3330There is also an "interesting" feature which deserves a bit of explanation: if a
3331register class constraint allocates a register which is too small for the value
3332type operand provided as input, the input value will be split into multiple
3333registers, and all of them passed to the inline asm.
3334
3335However, this feature is often not as useful as you might think.
3336
3337Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3338architectures that have instructions which operate on multiple consecutive
3339instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3340SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3341hardware then loads into both the named register, and the next register. This
3342feature of inline asm would not be useful to support that.)
3343
3344A few of the targets provide a template string modifier allowing explicit access
3345to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3346``D``). On such an architecture, you can actually access the second allocated
3347register (yet, still, not any subsequent ones). But, in that case, you're still
3348probably better off simply splitting the value into two separate operands, for
3349clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3350despite existing only for use with this feature, is not really a good idea to
3351use)
3352
3353Indirect inputs and outputs
3354"""""""""""""""""""""""""""
3355
3356Indirect output or input constraints can be specified by the "``*``" modifier
3357(which goes after the "``=``" in case of an output). This indicates that the asm
3358will write to or read from the contents of an *address* provided as an input
3359argument. (Note that in this way, indirect outputs act more like an *input* than
3360an output: just like an input, they consume an argument of the call expression,
3361rather than producing a return value. An indirect output constraint is an
3362"output" only in that the asm is expected to write to the contents of the input
3363memory location, instead of just read from it).
3364
3365This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3366address of a variable as a value.
3367
3368It is also possible to use an indirect *register* constraint, but only on output
3369(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3370value normally, and then, separately emit a store to the address provided as
3371input, after the provided inline asm. (It's not clear what value this
3372functionality provides, compared to writing the store explicitly after the asm
3373statement, and it can only produce worse code, since it bypasses many
3374optimization passes. I would recommend not using it.)
3375
3376
3377Clobber constraints
3378"""""""""""""""""""
3379
3380A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3381consume an input operand, nor generate an output. Clobbers cannot use any of the
3382general constraint code letters -- they may use only explicit register
3383constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3384"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3385memory locations -- not only the memory pointed to by a declared indirect
3386output.
3387
Peter Zotov00257232016-08-30 10:48:31 +00003388Note that clobbering named registers that are also present in output
3389constraints is not legal.
3390
James Y Knightbc832ed2015-07-08 18:08:36 +00003391
3392Constraint Codes
3393""""""""""""""""
3394After a potential prefix comes constraint code, or codes.
3395
3396A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3397followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3398(e.g. "``{eax}``").
3399
3400The one and two letter constraint codes are typically chosen to be the same as
3401GCC's constraint codes.
3402
3403A single constraint may include one or more than constraint code in it, leaving
3404it up to LLVM to choose which one to use. This is included mainly for
3405compatibility with the translation of GCC inline asm coming from clang.
3406
3407There are two ways to specify alternatives, and either or both may be used in an
3408inline asm constraint list:
3409
34101) Append the codes to each other, making a constraint code set. E.g. "``im``"
3411 or "``{eax}m``". This means "choose any of the options in the set". The
3412 choice of constraint is made independently for each constraint in the
3413 constraint list.
3414
34152) Use "``|``" between constraint code sets, creating alternatives. Every
3416 constraint in the constraint list must have the same number of alternative
3417 sets. With this syntax, the same alternative in *all* of the items in the
3418 constraint list will be chosen together.
3419
3420Putting those together, you might have a two operand constraint string like
3421``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3422operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3423may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3424
3425However, the use of either of the alternatives features is *NOT* recommended, as
3426LLVM is not able to make an intelligent choice about which one to use. (At the
3427point it currently needs to choose, not enough information is available to do so
3428in a smart way.) Thus, it simply tries to make a choice that's most likely to
3429compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3430always choose to use memory, not registers). And, if given multiple registers,
3431or multiple register classes, it will simply choose the first one. (In fact, it
3432doesn't currently even ensure explicitly specified physical registers are
3433unique, so specifying multiple physical registers as alternatives, like
3434``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3435intended.)
3436
3437Supported Constraint Code List
3438""""""""""""""""""""""""""""""
3439
3440The constraint codes are, in general, expected to behave the same way they do in
3441GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3442inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3443and GCC likely indicates a bug in LLVM.
3444
3445Some constraint codes are typically supported by all targets:
3446
3447- ``r``: A register in the target's general purpose register class.
3448- ``m``: A memory address operand. It is target-specific what addressing modes
3449 are supported, typical examples are register, or register + register offset,
3450 or register + immediate offset (of some target-specific size).
3451- ``i``: An integer constant (of target-specific width). Allows either a simple
3452 immediate, or a relocatable value.
3453- ``n``: An integer constant -- *not* including relocatable values.
3454- ``s``: An integer constant, but allowing *only* relocatable values.
3455- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3456 useful to pass a label for an asm branch or call.
3457
3458 .. FIXME: but that surely isn't actually okay to jump out of an asm
3459 block without telling llvm about the control transfer???)
3460
3461- ``{register-name}``: Requires exactly the named physical register.
3462
3463Other constraints are target-specific:
3464
3465AArch64:
3466
3467- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3468- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3469 i.e. 0 to 4095 with optional shift by 12.
3470- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3471 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3472- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3473 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3474- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3475 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3476- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3477 32-bit register. This is a superset of ``K``: in addition to the bitmask
3478 immediate, also allows immediate integers which can be loaded with a single
3479 ``MOVZ`` or ``MOVL`` instruction.
3480- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3481 64-bit register. This is a superset of ``L``.
3482- ``Q``: Memory address operand must be in a single register (no
3483 offsets). (However, LLVM currently does this for the ``m`` constraint as
3484 well.)
3485- ``r``: A 32 or 64-bit integer register (W* or X*).
3486- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3487- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3488
3489AMDGPU:
3490
3491- ``r``: A 32 or 64-bit integer register.
3492- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3493- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3494
3495
3496All ARM modes:
3497
3498- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3499 operand. Treated the same as operand ``m``, at the moment.
3500
3501ARM and ARM's Thumb2 mode:
3502
3503- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3504- ``I``: An immediate integer valid for a data-processing instruction.
3505- ``J``: An immediate integer between -4095 and 4095.
3506- ``K``: An immediate integer whose bitwise inverse is valid for a
3507 data-processing instruction. (Can be used with template modifier "``B``" to
3508 print the inverted value).
3509- ``L``: An immediate integer whose negation is valid for a data-processing
3510 instruction. (Can be used with template modifier "``n``" to print the negated
3511 value).
3512- ``M``: A power of two or a integer between 0 and 32.
3513- ``N``: Invalid immediate constraint.
3514- ``O``: Invalid immediate constraint.
3515- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3516- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3517 as ``r``.
3518- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3519 invalid.
3520- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3521 ``d0-d31``, or ``q0-q15``.
3522- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3523 ``d0-d7``, or ``q0-q3``.
3524- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3525 ``s0-s31``.
3526
3527ARM's Thumb1 mode:
3528
3529- ``I``: An immediate integer between 0 and 255.
3530- ``J``: An immediate integer between -255 and -1.
3531- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3532 some amount.
3533- ``L``: An immediate integer between -7 and 7.
3534- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3535- ``N``: An immediate integer between 0 and 31.
3536- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3537- ``r``: A low 32-bit GPR register (``r0-r7``).
3538- ``l``: A low 32-bit GPR register (``r0-r7``).
3539- ``h``: A high GPR register (``r0-r7``).
3540- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3541 ``d0-d31``, or ``q0-q15``.
3542- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3543 ``d0-d7``, or ``q0-q3``.
3544- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3545 ``s0-s31``.
3546
3547
3548Hexagon:
3549
3550- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3551 at the moment.
3552- ``r``: A 32 or 64-bit register.
3553
3554MSP430:
3555
3556- ``r``: An 8 or 16-bit register.
3557
3558MIPS:
3559
3560- ``I``: An immediate signed 16-bit integer.
3561- ``J``: An immediate integer zero.
3562- ``K``: An immediate unsigned 16-bit integer.
3563- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3564- ``N``: An immediate integer between -65535 and -1.
3565- ``O``: An immediate signed 15-bit integer.
3566- ``P``: An immediate integer between 1 and 65535.
3567- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3568 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3569- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3570 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3571 ``m``.
3572- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3573 ``sc`` instruction on the given subtarget (details vary).
3574- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3575- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003576 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3577 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003578- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3579 ``25``).
3580- ``l``: The ``lo`` register, 32 or 64-bit.
3581- ``x``: Invalid.
3582
3583NVPTX:
3584
3585- ``b``: A 1-bit integer register.
3586- ``c`` or ``h``: A 16-bit integer register.
3587- ``r``: A 32-bit integer register.
3588- ``l`` or ``N``: A 64-bit integer register.
3589- ``f``: A 32-bit float register.
3590- ``d``: A 64-bit float register.
3591
3592
3593PowerPC:
3594
3595- ``I``: An immediate signed 16-bit integer.
3596- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3597- ``K``: An immediate unsigned 16-bit integer.
3598- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3599- ``M``: An immediate integer greater than 31.
3600- ``N``: An immediate integer that is an exact power of 2.
3601- ``O``: The immediate integer constant 0.
3602- ``P``: An immediate integer constant whose negation is a signed 16-bit
3603 constant.
3604- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3605 treated the same as ``m``.
3606- ``r``: A 32 or 64-bit integer register.
3607- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3608 ``R1-R31``).
3609- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3610 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3611- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3612 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3613 altivec vector register (``V0-V31``).
3614
3615 .. FIXME: is this a bug that v accepts QPX registers? I think this
3616 is supposed to only use the altivec vector registers?
3617
3618- ``y``: Condition register (``CR0-CR7``).
3619- ``wc``: An individual CR bit in a CR register.
3620- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3621 register set (overlapping both the floating-point and vector register files).
3622- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3623 set.
3624
3625Sparc:
3626
3627- ``I``: An immediate 13-bit signed integer.
3628- ``r``: A 32-bit integer register.
3629
3630SystemZ:
3631
3632- ``I``: An immediate unsigned 8-bit integer.
3633- ``J``: An immediate unsigned 12-bit integer.
3634- ``K``: An immediate signed 16-bit integer.
3635- ``L``: An immediate signed 20-bit integer.
3636- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003637- ``Q``: A memory address operand with a base address and a 12-bit immediate
3638 unsigned displacement.
3639- ``R``: A memory address operand with a base address, a 12-bit immediate
3640 unsigned displacement, and an index register.
3641- ``S``: A memory address operand with a base address and a 20-bit immediate
3642 signed displacement.
3643- ``T``: A memory address operand with a base address, a 20-bit immediate
3644 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003645- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3646- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3647 address context evaluates as zero).
3648- ``h``: A 32-bit value in the high part of a 64bit data register
3649 (LLVM-specific)
3650- ``f``: A 32, 64, or 128-bit floating point register.
3651
3652X86:
3653
3654- ``I``: An immediate integer between 0 and 31.
3655- ``J``: An immediate integer between 0 and 64.
3656- ``K``: An immediate signed 8-bit integer.
3657- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3658 0xffffffff.
3659- ``M``: An immediate integer between 0 and 3.
3660- ``N``: An immediate unsigned 8-bit integer.
3661- ``O``: An immediate integer between 0 and 127.
3662- ``e``: An immediate 32-bit signed integer.
3663- ``Z``: An immediate 32-bit unsigned integer.
3664- ``o``, ``v``: Treated the same as ``m``, at the moment.
3665- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3666 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3667 registers, and on X86-64, it is all of the integer registers.
3668- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3669 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3670- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3671- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3672 existed since i386, and can be accessed without the REX prefix.
3673- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3674- ``y``: A 64-bit MMX register, if MMX is enabled.
3675- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3676 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3677 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3678 512-bit vector operand in an AVX512 register, Otherwise, an error.
3679- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3680- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3681 32-bit mode, a 64-bit integer operand will get split into two registers). It
3682 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3683 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3684 you're better off splitting it yourself, before passing it to the asm
3685 statement.
3686
3687XCore:
3688
3689- ``r``: A 32-bit integer register.
3690
3691
3692.. _inline-asm-modifiers:
3693
3694Asm template argument modifiers
3695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3696
3697In the asm template string, modifiers can be used on the operand reference, like
3698"``${0:n}``".
3699
3700The modifiers are, in general, expected to behave the same way they do in
3701GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3702inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3703and GCC likely indicates a bug in LLVM.
3704
3705Target-independent:
3706
Sean Silvaa1190322015-08-06 22:56:48 +00003707- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003708 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3709- ``n``: Negate and print immediate integer constant unadorned, without the
3710 target-specific immediate punctuation (e.g. no ``$`` prefix).
3711- ``l``: Print as an unadorned label, without the target-specific label
3712 punctuation (e.g. no ``$`` prefix).
3713
3714AArch64:
3715
3716- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3717 instead of ``x30``, print ``w30``.
3718- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3719- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3720 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3721 ``v*``.
3722
3723AMDGPU:
3724
3725- ``r``: No effect.
3726
3727ARM:
3728
3729- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3730 register).
3731- ``P``: No effect.
3732- ``q``: No effect.
3733- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3734 as ``d4[1]`` instead of ``s9``)
3735- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3736 prefix.
3737- ``L``: Print the low 16-bits of an immediate integer constant.
3738- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3739 register operands subsequent to the specified one (!), so use carefully.
3740- ``Q``: Print the low-order register of a register-pair, or the low-order
3741 register of a two-register operand.
3742- ``R``: Print the high-order register of a register-pair, or the high-order
3743 register of a two-register operand.
3744- ``H``: Print the second register of a register-pair. (On a big-endian system,
3745 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3746 to ``R``.)
3747
3748 .. FIXME: H doesn't currently support printing the second register
3749 of a two-register operand.
3750
3751- ``e``: Print the low doubleword register of a NEON quad register.
3752- ``f``: Print the high doubleword register of a NEON quad register.
3753- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3754 adornment.
3755
3756Hexagon:
3757
3758- ``L``: Print the second register of a two-register operand. Requires that it
3759 has been allocated consecutively to the first.
3760
3761 .. FIXME: why is it restricted to consecutive ones? And there's
3762 nothing that ensures that happens, is there?
3763
3764- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3765 nothing. Used to print 'addi' vs 'add' instructions.
3766
3767MSP430:
3768
3769No additional modifiers.
3770
3771MIPS:
3772
3773- ``X``: Print an immediate integer as hexadecimal
3774- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3775- ``d``: Print an immediate integer as decimal.
3776- ``m``: Subtract one and print an immediate integer as decimal.
3777- ``z``: Print $0 if an immediate zero, otherwise print normally.
3778- ``L``: Print the low-order register of a two-register operand, or prints the
3779 address of the low-order word of a double-word memory operand.
3780
3781 .. FIXME: L seems to be missing memory operand support.
3782
3783- ``M``: Print the high-order register of a two-register operand, or prints the
3784 address of the high-order word of a double-word memory operand.
3785
3786 .. FIXME: M seems to be missing memory operand support.
3787
3788- ``D``: Print the second register of a two-register operand, or prints the
3789 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3790 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3791 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003792- ``w``: No effect. Provided for compatibility with GCC which requires this
3793 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3794 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003795
3796NVPTX:
3797
3798- ``r``: No effect.
3799
3800PowerPC:
3801
3802- ``L``: Print the second register of a two-register operand. Requires that it
3803 has been allocated consecutively to the first.
3804
3805 .. FIXME: why is it restricted to consecutive ones? And there's
3806 nothing that ensures that happens, is there?
3807
3808- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3809 nothing. Used to print 'addi' vs 'add' instructions.
3810- ``y``: For a memory operand, prints formatter for a two-register X-form
3811 instruction. (Currently always prints ``r0,OPERAND``).
3812- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3813 otherwise. (NOTE: LLVM does not support update form, so this will currently
3814 always print nothing)
3815- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3816 not support indexed form, so this will currently always print nothing)
3817
3818Sparc:
3819
3820- ``r``: No effect.
3821
3822SystemZ:
3823
3824SystemZ implements only ``n``, and does *not* support any of the other
3825target-independent modifiers.
3826
3827X86:
3828
3829- ``c``: Print an unadorned integer or symbol name. (The latter is
3830 target-specific behavior for this typically target-independent modifier).
3831- ``A``: Print a register name with a '``*``' before it.
3832- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3833 operand.
3834- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3835 memory operand.
3836- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3837 operand.
3838- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3839 operand.
3840- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3841 available, otherwise the 32-bit register name; do nothing on a memory operand.
3842- ``n``: Negate and print an unadorned integer, or, for operands other than an
3843 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3844 the operand. (The behavior for relocatable symbol expressions is a
3845 target-specific behavior for this typically target-independent modifier)
3846- ``H``: Print a memory reference with additional offset +8.
3847- ``P``: Print a memory reference or operand for use as the argument of a call
3848 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3849
3850XCore:
3851
3852No additional modifiers.
3853
3854
Sean Silvab084af42012-12-07 10:36:55 +00003855Inline Asm Metadata
3856^^^^^^^^^^^^^^^^^^^
3857
3858The call instructions that wrap inline asm nodes may have a
3859"``!srcloc``" MDNode attached to it that contains a list of constant
3860integers. If present, the code generator will use the integer as the
3861location cookie value when report errors through the ``LLVMContext``
3862error reporting mechanisms. This allows a front-end to correlate backend
3863errors that occur with inline asm back to the source code that produced
3864it. For example:
3865
3866.. code-block:: llvm
3867
3868 call void asm sideeffect "something bad", ""(), !srcloc !42
3869 ...
3870 !42 = !{ i32 1234567 }
3871
3872It is up to the front-end to make sense of the magic numbers it places
3873in the IR. If the MDNode contains multiple constants, the code generator
3874will use the one that corresponds to the line of the asm that the error
3875occurs on.
3876
3877.. _metadata:
3878
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003879Metadata
3880========
Sean Silvab084af42012-12-07 10:36:55 +00003881
3882LLVM IR allows metadata to be attached to instructions in the program
3883that can convey extra information about the code to the optimizers and
3884code generator. One example application of metadata is source-level
3885debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003886
Sean Silvaa1190322015-08-06 22:56:48 +00003887Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003888``call`` instruction, it uses the ``metadata`` type.
3889
3890All metadata are identified in syntax by a exclamation point ('``!``').
3891
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003892.. _metadata-string:
3893
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003894Metadata Nodes and Metadata Strings
3895-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003896
3897A metadata string is a string surrounded by double quotes. It can
3898contain any character by escaping non-printable characters with
3899"``\xx``" where "``xx``" is the two digit hex code. For example:
3900"``!"test\00"``".
3901
3902Metadata nodes are represented with notation similar to structure
3903constants (a comma separated list of elements, surrounded by braces and
3904preceded by an exclamation point). Metadata nodes can have any values as
3905their operand. For example:
3906
3907.. code-block:: llvm
3908
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003909 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003910
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003911Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3912
Renato Golin124f2592016-07-20 12:16:38 +00003913.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003914
3915 !0 = distinct !{!"test\00", i32 10}
3916
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003917``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003918content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003919when metadata operands change.
3920
Sean Silvab084af42012-12-07 10:36:55 +00003921A :ref:`named metadata <namedmetadatastructure>` is a collection of
3922metadata nodes, which can be looked up in the module symbol table. For
3923example:
3924
3925.. code-block:: llvm
3926
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003927 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003928
3929Metadata can be used as function arguments. Here ``llvm.dbg.value``
3930function is using two metadata arguments:
3931
3932.. code-block:: llvm
3933
3934 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3935
Peter Collingbourne50108682015-11-06 02:41:02 +00003936Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3937to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003938
3939.. code-block:: llvm
3940
3941 %indvar.next = add i64 %indvar, 1, !dbg !21
3942
Peter Collingbourne50108682015-11-06 02:41:02 +00003943Metadata can also be attached to a function definition. Here metadata ``!22``
3944is attached to the ``foo`` function using the ``!dbg`` identifier:
3945
3946.. code-block:: llvm
3947
3948 define void @foo() !dbg !22 {
3949 ret void
3950 }
3951
Sean Silvab084af42012-12-07 10:36:55 +00003952More information about specific metadata nodes recognized by the
3953optimizers and code generator is found below.
3954
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003955.. _specialized-metadata:
3956
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003957Specialized Metadata Nodes
3958^^^^^^^^^^^^^^^^^^^^^^^^^^
3959
3960Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003961to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003962order.
3963
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003964These aren't inherently debug info centric, but currently all the specialized
3965metadata nodes are related to debug info.
3966
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003967.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003968
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003969DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003970"""""""""""""
3971
Sean Silvaa1190322015-08-06 22:56:48 +00003972``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003973``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3974fields are tuples containing the debug info to be emitted along with the compile
3975unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003976references to them from instructions).
3977
Renato Golin124f2592016-07-20 12:16:38 +00003978.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003979
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003980 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003981 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003982 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003983 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003984 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003985
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003986Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003987specific compilation unit. File descriptors are defined using this scope.
3988These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003989keep track of subprograms, global variables, type information, and imported
3990entities (declarations and namespaces).
3991
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003992.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003993
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003994DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003995""""""
3996
Sean Silvaa1190322015-08-06 22:56:48 +00003997``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003998
3999.. code-block:: llvm
4000
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004001 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4002 checksumkind: CSK_MD5,
4003 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004004
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004005Files are sometimes used in ``scope:`` fields, and are the only valid target
4006for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004007Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004008
Michael Kuperstein605308a2015-05-14 10:58:59 +00004009.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004010
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004011DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004012"""""""""""
4013
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004014``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004015``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004016
Renato Golin124f2592016-07-20 12:16:38 +00004017.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004018
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004019 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004020 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004021 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004022
Sean Silvaa1190322015-08-06 22:56:48 +00004023The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004024following:
4025
Renato Golin124f2592016-07-20 12:16:38 +00004026.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004027
4028 DW_ATE_address = 1
4029 DW_ATE_boolean = 2
4030 DW_ATE_float = 4
4031 DW_ATE_signed = 5
4032 DW_ATE_signed_char = 6
4033 DW_ATE_unsigned = 7
4034 DW_ATE_unsigned_char = 8
4035
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004036.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004037
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004038DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004039""""""""""""""""
4040
Sean Silvaa1190322015-08-06 22:56:48 +00004041``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004042refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004043types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004044represents a function with no return value (such as ``void foo() {}`` in C++).
4045
Renato Golin124f2592016-07-20 12:16:38 +00004046.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004047
4048 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4049 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004050 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004051
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004052.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004053
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004054DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004055"""""""""""""
4056
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004057``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004058qualified types.
4059
Renato Golin124f2592016-07-20 12:16:38 +00004060.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004061
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004062 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004063 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004064 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004065 align: 32)
4066
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004067The following ``tag:`` values are valid:
4068
Renato Golin124f2592016-07-20 12:16:38 +00004069.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004070
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004071 DW_TAG_member = 13
4072 DW_TAG_pointer_type = 15
4073 DW_TAG_reference_type = 16
4074 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004075 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004076 DW_TAG_ptr_to_member_type = 31
4077 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004078 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004079 DW_TAG_volatile_type = 53
4080 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004081 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004082
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004083.. _DIDerivedTypeMember:
4084
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004085``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004086<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004087``offset:`` is the member's bit offset. If the composite type has an ODR
4088``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4089uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004090
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004091``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4092field of :ref:`composite types <DICompositeType>` to describe parents and
4093friends.
4094
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004095``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4096
4097``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004098``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4099are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004100
4101Note that the ``void *`` type is expressed as a type derived from NULL.
4102
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004103.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004104
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004105DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004106"""""""""""""""
4107
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004108``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004109structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004110
4111If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004112identifier used for type merging between modules. When specified,
4113:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4114derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4115``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004116
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004117For a given ``identifier:``, there should only be a single composite type that
4118does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4119together will unique such definitions at parse time via the ``identifier:``
4120field, even if the nodes are ``distinct``.
4121
Renato Golin124f2592016-07-20 12:16:38 +00004122.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004123
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004124 !0 = !DIEnumerator(name: "SixKind", value: 7)
4125 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4126 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4127 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004128 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4129 elements: !{!0, !1, !2})
4130
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004131The following ``tag:`` values are valid:
4132
Renato Golin124f2592016-07-20 12:16:38 +00004133.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004134
4135 DW_TAG_array_type = 1
4136 DW_TAG_class_type = 2
4137 DW_TAG_enumeration_type = 4
4138 DW_TAG_structure_type = 19
4139 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004140
4141For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004142descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004143level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004144array type is a native packed vector.
4145
4146For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004147descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004148value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004149``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004150
4151For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4152``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004153<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4154``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4155``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004156
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004157.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004158
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004159DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004160""""""""""
4161
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004162``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004163:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004164
4165.. code-block:: llvm
4166
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004167 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4168 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4169 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004170
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004171.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004172
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004173DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004174""""""""""""
4175
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004176``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4177variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004178
4179.. code-block:: llvm
4180
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004181 !0 = !DIEnumerator(name: "SixKind", value: 7)
4182 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4183 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004184
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004185DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004186"""""""""""""""""""""""
4187
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004188``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004189language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004190:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004191
4192.. code-block:: llvm
4193
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004194 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004195
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004196DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004197""""""""""""""""""""""""
4198
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004199``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004200language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004201but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004202``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004203:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004204
4205.. code-block:: llvm
4206
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004207 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004208
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004209DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004210"""""""""""
4211
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004212``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004213
4214.. code-block:: llvm
4215
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004216 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004217
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004218DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004219""""""""""""""""
4220
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004221``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004222
4223.. code-block:: llvm
4224
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004225 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004226 file: !2, line: 7, type: !3, isLocal: true,
4227 isDefinition: false, variable: i32* @foo,
4228 declaration: !4)
4229
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004230All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004231:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004232
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004233.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004234
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004235DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004236""""""""""""
4237
Peter Collingbourne50108682015-11-06 02:41:02 +00004238``DISubprogram`` nodes represent functions from the source language. A
4239``DISubprogram`` may be attached to a function definition using ``!dbg``
4240metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4241that must be retained, even if their IR counterparts are optimized out of
4242the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004243
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004244.. _DISubprogramDeclaration:
4245
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004246When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004247tree as opposed to a definition of a function. If the scope is a composite
4248type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4249then the subprogram declaration is uniqued based only on its ``linkageName:``
4250and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004251
Renato Golin124f2592016-07-20 12:16:38 +00004252.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004253
Peter Collingbourne50108682015-11-06 02:41:02 +00004254 define void @_Z3foov() !dbg !0 {
4255 ...
4256 }
4257
4258 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4259 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004260 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004261 containingType: !4,
4262 virtuality: DW_VIRTUALITY_pure_virtual,
4263 virtualIndex: 10, flags: DIFlagPrototyped,
4264 isOptimized: true, templateParams: !5,
4265 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004266
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004267.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004268
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004269DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004270""""""""""""""
4271
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004272``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004273<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004274two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004275fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004276
Renato Golin124f2592016-07-20 12:16:38 +00004277.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004278
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004279 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004280
4281Usually lexical blocks are ``distinct`` to prevent node merging based on
4282operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004283
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004284.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004285
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004286DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004287""""""""""""""""""
4288
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004289``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004290:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004291indicate textual inclusion, or the ``discriminator:`` field can be used to
4292discriminate between control flow within a single block in the source language.
4293
4294.. code-block:: llvm
4295
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004296 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4297 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4298 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004299
Michael Kuperstein605308a2015-05-14 10:58:59 +00004300.. _DILocation:
4301
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004302DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004303""""""""""
4304
Sean Silvaa1190322015-08-06 22:56:48 +00004305``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004306mandatory, and points at an :ref:`DILexicalBlockFile`, an
4307:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004308
4309.. code-block:: llvm
4310
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004311 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004312
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004313.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004314
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004315DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004316"""""""""""""""
4317
Sean Silvaa1190322015-08-06 22:56:48 +00004318``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004319the ``arg:`` field is set to non-zero, then this variable is a subprogram
4320parameter, and it will be included in the ``variables:`` field of its
4321:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004322
Renato Golin124f2592016-07-20 12:16:38 +00004323.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004324
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004325 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4326 type: !3, flags: DIFlagArtificial)
4327 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4328 type: !3)
4329 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004330
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004331DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004332""""""""""""
4333
Sean Silvaa1190322015-08-06 22:56:48 +00004334``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004335:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4336describe how the referenced LLVM variable relates to the source language
4337variable.
4338
4339The current supported vocabulary is limited:
4340
4341- ``DW_OP_deref`` dereferences the working expression.
4342- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4343- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4344 here, respectively) of the variable piece from the working expression.
4345
Renato Golin124f2592016-07-20 12:16:38 +00004346.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004347
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004348 !0 = !DIExpression(DW_OP_deref)
4349 !1 = !DIExpression(DW_OP_plus, 3)
4350 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4351 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004352
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004353DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004354""""""""""""""
4355
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004356``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004357
4358.. code-block:: llvm
4359
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004360 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004361 getter: "getFoo", attributes: 7, type: !2)
4362
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004363DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004364""""""""""""""""
4365
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004366``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004367compile unit.
4368
Renato Golin124f2592016-07-20 12:16:38 +00004369.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004370
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004371 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004372 entity: !1, line: 7)
4373
Amjad Abouda9bcf162015-12-10 12:56:35 +00004374DIMacro
4375"""""""
4376
4377``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4378The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004379defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004380used to expand the macro identifier.
4381
Renato Golin124f2592016-07-20 12:16:38 +00004382.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004383
4384 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4385 value: "((x) + 1)")
4386 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4387
4388DIMacroFile
4389"""""""""""
4390
4391``DIMacroFile`` nodes represent inclusion of source files.
4392The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4393appear in the included source file.
4394
Renato Golin124f2592016-07-20 12:16:38 +00004395.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004396
4397 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4398 nodes: !3)
4399
Sean Silvab084af42012-12-07 10:36:55 +00004400'``tbaa``' Metadata
4401^^^^^^^^^^^^^^^^^^^
4402
4403In LLVM IR, memory does not have types, so LLVM's own type system is not
4404suitable for doing TBAA. Instead, metadata is added to the IR to
4405describe a type system of a higher level language. This can be used to
4406implement typical C/C++ TBAA, but it can also be used to implement
4407custom alias analysis behavior for other languages.
4408
4409The current metadata format is very simple. TBAA metadata nodes have up
4410to three fields, e.g.:
4411
4412.. code-block:: llvm
4413
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004414 !0 = !{ !"an example type tree" }
4415 !1 = !{ !"int", !0 }
4416 !2 = !{ !"float", !0 }
4417 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004418
4419The first field is an identity field. It can be any value, usually a
4420metadata string, which uniquely identifies the type. The most important
4421name in the tree is the name of the root node. Two trees with different
4422root node names are entirely disjoint, even if they have leaves with
4423common names.
4424
4425The second field identifies the type's parent node in the tree, or is
4426null or omitted for a root node. A type is considered to alias all of
4427its descendants and all of its ancestors in the tree. Also, a type is
4428considered to alias all types in other trees, so that bitcode produced
4429from multiple front-ends is handled conservatively.
4430
4431If the third field is present, it's an integer which if equal to 1
4432indicates that the type is "constant" (meaning
4433``pointsToConstantMemory`` should return true; see `other useful
4434AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4435
4436'``tbaa.struct``' Metadata
4437^^^^^^^^^^^^^^^^^^^^^^^^^^
4438
4439The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4440aggregate assignment operations in C and similar languages, however it
4441is defined to copy a contiguous region of memory, which is more than
4442strictly necessary for aggregate types which contain holes due to
4443padding. Also, it doesn't contain any TBAA information about the fields
4444of the aggregate.
4445
4446``!tbaa.struct`` metadata can describe which memory subregions in a
4447memcpy are padding and what the TBAA tags of the struct are.
4448
4449The current metadata format is very simple. ``!tbaa.struct`` metadata
4450nodes are a list of operands which are in conceptual groups of three.
4451For each group of three, the first operand gives the byte offset of a
4452field in bytes, the second gives its size in bytes, and the third gives
4453its tbaa tag. e.g.:
4454
4455.. code-block:: llvm
4456
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004457 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004458
4459This describes a struct with two fields. The first is at offset 0 bytes
4460with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4461and has size 4 bytes and has tbaa tag !2.
4462
4463Note that the fields need not be contiguous. In this example, there is a
44644 byte gap between the two fields. This gap represents padding which
4465does not carry useful data and need not be preserved.
4466
Hal Finkel94146652014-07-24 14:25:39 +00004467'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004468^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004469
4470``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4471noalias memory-access sets. This means that some collection of memory access
4472instructions (loads, stores, memory-accessing calls, etc.) that carry
4473``noalias`` metadata can specifically be specified not to alias with some other
4474collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004475Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004476a domain.
4477
4478When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004479of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004480subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004481instruction's ``noalias`` list, then the two memory accesses are assumed not to
4482alias.
Hal Finkel94146652014-07-24 14:25:39 +00004483
Adam Nemet569a5b32016-04-27 00:52:48 +00004484Because scopes in one domain don't affect scopes in other domains, separate
4485domains can be used to compose multiple independent noalias sets. This is
4486used for example during inlining. As the noalias function parameters are
4487turned into noalias scope metadata, a new domain is used every time the
4488function is inlined.
4489
Hal Finkel029cde62014-07-25 15:50:02 +00004490The metadata identifying each domain is itself a list containing one or two
4491entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004492string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004493self-reference can be used to create globally unique domain names. A
4494descriptive string may optionally be provided as a second list entry.
4495
4496The metadata identifying each scope is also itself a list containing two or
4497three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004498is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004499self-reference can be used to create globally unique scope names. A metadata
4500reference to the scope's domain is the second entry. A descriptive string may
4501optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004502
4503For example,
4504
4505.. code-block:: llvm
4506
Hal Finkel029cde62014-07-25 15:50:02 +00004507 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004508 !0 = !{!0}
4509 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004510
Hal Finkel029cde62014-07-25 15:50:02 +00004511 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004512 !2 = !{!2, !0}
4513 !3 = !{!3, !0}
4514 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004515
Hal Finkel029cde62014-07-25 15:50:02 +00004516 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004517 !5 = !{!4} ; A list containing only scope !4
4518 !6 = !{!4, !3, !2}
4519 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004520
4521 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004522 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004523 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004524
Hal Finkel029cde62014-07-25 15:50:02 +00004525 ; These two instructions also don't alias (for domain !1, the set of scopes
4526 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004527 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004528 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004529
Adam Nemet0a8416f2015-05-11 08:30:28 +00004530 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004531 ; the !noalias list is not a superset of, or equal to, the scopes in the
4532 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004533 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004534 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004535
Sean Silvab084af42012-12-07 10:36:55 +00004536'``fpmath``' Metadata
4537^^^^^^^^^^^^^^^^^^^^^
4538
4539``fpmath`` metadata may be attached to any instruction of floating point
4540type. It can be used to express the maximum acceptable error in the
4541result of that instruction, in ULPs, thus potentially allowing the
4542compiler to use a more efficient but less accurate method of computing
4543it. ULP is defined as follows:
4544
4545 If ``x`` is a real number that lies between two finite consecutive
4546 floating-point numbers ``a`` and ``b``, without being equal to one
4547 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4548 distance between the two non-equal finite floating-point numbers
4549 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4550
Matt Arsenault82f41512016-06-27 19:43:15 +00004551The metadata node shall consist of a single positive float type number
4552representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004553
4554.. code-block:: llvm
4555
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004556 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004557
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004558.. _range-metadata:
4559
Sean Silvab084af42012-12-07 10:36:55 +00004560'``range``' Metadata
4561^^^^^^^^^^^^^^^^^^^^
4562
Jingyue Wu37fcb592014-06-19 16:50:16 +00004563``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4564integer types. It expresses the possible ranges the loaded value or the value
4565returned by the called function at this call site is in. The ranges are
4566represented with a flattened list of integers. The loaded value or the value
4567returned is known to be in the union of the ranges defined by each consecutive
4568pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004569
4570- The type must match the type loaded by the instruction.
4571- The pair ``a,b`` represents the range ``[a,b)``.
4572- Both ``a`` and ``b`` are constants.
4573- The range is allowed to wrap.
4574- The range should not represent the full or empty set. That is,
4575 ``a!=b``.
4576
4577In addition, the pairs must be in signed order of the lower bound and
4578they must be non-contiguous.
4579
4580Examples:
4581
4582.. code-block:: llvm
4583
David Blaikiec7aabbb2015-03-04 22:06:14 +00004584 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4585 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004586 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4587 %d = invoke i8 @bar() to label %cont
4588 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004589 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004590 !0 = !{ i8 0, i8 2 }
4591 !1 = !{ i8 255, i8 2 }
4592 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4593 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004594
Peter Collingbourne235c2752016-12-08 19:01:00 +00004595'``absolute_symbol``' Metadata
4596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4597
4598``absolute_symbol`` metadata may be attached to a global variable
4599declaration. It marks the declaration as a reference to an absolute symbol,
4600which causes the backend to use absolute relocations for the symbol even
4601in position independent code, and expresses the possible ranges that the
4602global variable's *address* (not its value) is in, in the same format as
4603``range`` metadata.
4604
4605Example:
4606
4607.. code-block:: llvm
4608
4609 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
4610
4611 ...
4612 !0 = !{ i64 0, i64 256 }
4613
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004614'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004615^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004616
4617``unpredictable`` metadata may be attached to any branch or switch
4618instruction. It can be used to express the unpredictability of control
4619flow. Similar to the llvm.expect intrinsic, it may be used to alter
4620optimizations related to compare and branch instructions. The metadata
4621is treated as a boolean value; if it exists, it signals that the branch
4622or switch that it is attached to is completely unpredictable.
4623
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004624'``llvm.loop``'
4625^^^^^^^^^^^^^^^
4626
4627It is sometimes useful to attach information to loop constructs. Currently,
4628loop metadata is implemented as metadata attached to the branch instruction
4629in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004630guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004631specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004632
4633The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004634itself to avoid merging it with any other identifier metadata, e.g.,
4635during module linkage or function inlining. That is, each loop should refer
4636to their own identification metadata even if they reside in separate functions.
4637The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004638constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004639
4640.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004641
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004642 !0 = !{!0}
4643 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004644
Mark Heffernan893752a2014-07-18 19:24:51 +00004645The loop identifier metadata can be used to specify additional
4646per-loop metadata. Any operands after the first operand can be treated
4647as user-defined metadata. For example the ``llvm.loop.unroll.count``
4648suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004649
Paul Redmond5fdf8362013-05-28 20:00:34 +00004650.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004651
Paul Redmond5fdf8362013-05-28 20:00:34 +00004652 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4653 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004654 !0 = !{!0, !1}
4655 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004656
Mark Heffernan9d20e422014-07-21 23:11:03 +00004657'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4658^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004659
Mark Heffernan9d20e422014-07-21 23:11:03 +00004660Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4661used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004662vectorization width and interleave count. These metadata should be used in
4663conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004664``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4665optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004666it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004667which contains information about loop-carried memory dependencies can be helpful
4668in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004669
Mark Heffernan9d20e422014-07-21 23:11:03 +00004670'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4672
Mark Heffernan9d20e422014-07-21 23:11:03 +00004673This metadata suggests an interleave count to the loop interleaver.
4674The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004675second operand is an integer specifying the interleave count. For
4676example:
4677
4678.. code-block:: llvm
4679
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004680 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004681
Mark Heffernan9d20e422014-07-21 23:11:03 +00004682Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004683multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004684then the interleave count will be determined automatically.
4685
4686'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004688
4689This metadata selectively enables or disables vectorization for the loop. The
4690first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004691is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000046920 disables vectorization:
4693
4694.. code-block:: llvm
4695
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004696 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4697 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004698
4699'``llvm.loop.vectorize.width``' Metadata
4700^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4701
4702This metadata sets the target width of the vectorizer. The first
4703operand is the string ``llvm.loop.vectorize.width`` and the second
4704operand is an integer specifying the width. For example:
4705
4706.. code-block:: llvm
4707
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004708 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004709
4710Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004711vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000047120 or if the loop does not have this metadata the width will be
4713determined automatically.
4714
4715'``llvm.loop.unroll``'
4716^^^^^^^^^^^^^^^^^^^^^^
4717
4718Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4719optimization hints such as the unroll factor. ``llvm.loop.unroll``
4720metadata should be used in conjunction with ``llvm.loop`` loop
4721identification metadata. The ``llvm.loop.unroll`` metadata are only
4722optimization hints and the unrolling will only be performed if the
4723optimizer believes it is safe to do so.
4724
Mark Heffernan893752a2014-07-18 19:24:51 +00004725'``llvm.loop.unroll.count``' Metadata
4726^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4727
4728This metadata suggests an unroll factor to the loop unroller. The
4729first operand is the string ``llvm.loop.unroll.count`` and the second
4730operand is a positive integer specifying the unroll factor. For
4731example:
4732
4733.. code-block:: llvm
4734
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004735 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004736
4737If the trip count of the loop is less than the unroll count the loop
4738will be partially unrolled.
4739
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004740'``llvm.loop.unroll.disable``' Metadata
4741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4742
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004743This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004744which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004745
4746.. code-block:: llvm
4747
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004748 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004749
Kevin Qin715b01e2015-03-09 06:14:18 +00004750'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004752
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004753This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004754operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004755
4756.. code-block:: llvm
4757
4758 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4759
Mark Heffernan89391542015-08-10 17:28:08 +00004760'``llvm.loop.unroll.enable``' Metadata
4761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4762
4763This metadata suggests that the loop should be fully unrolled if the trip count
4764is known at compile time and partially unrolled if the trip count is not known
4765at compile time. The metadata has a single operand which is the string
4766``llvm.loop.unroll.enable``. For example:
4767
4768.. code-block:: llvm
4769
4770 !0 = !{!"llvm.loop.unroll.enable"}
4771
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004772'``llvm.loop.unroll.full``' Metadata
4773^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4774
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004775This metadata suggests that the loop should be unrolled fully. The
4776metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004777For example:
4778
4779.. code-block:: llvm
4780
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004781 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004782
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004783'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004785
4786This metadata indicates that the loop should not be versioned for the purpose
4787of enabling loop-invariant code motion (LICM). The metadata has a single operand
4788which is the string ``llvm.loop.licm_versioning.disable``. For example:
4789
4790.. code-block:: llvm
4791
4792 !0 = !{!"llvm.loop.licm_versioning.disable"}
4793
Adam Nemetd2fa4142016-04-27 05:28:18 +00004794'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004795^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004796
4797Loop distribution allows splitting a loop into multiple loops. Currently,
4798this is only performed if the entire loop cannot be vectorized due to unsafe
4799memory dependencies. The transformation will atempt to isolate the unsafe
4800dependencies into their own loop.
4801
4802This metadata can be used to selectively enable or disable distribution of the
4803loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4804second operand is a bit. If the bit operand value is 1 distribution is
4805enabled. A value of 0 disables distribution:
4806
4807.. code-block:: llvm
4808
4809 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4810 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4811
4812This metadata should be used in conjunction with ``llvm.loop`` loop
4813identification metadata.
4814
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004815'``llvm.mem``'
4816^^^^^^^^^^^^^^^
4817
4818Metadata types used to annotate memory accesses with information helpful
4819for optimizations are prefixed with ``llvm.mem``.
4820
4821'``llvm.mem.parallel_loop_access``' Metadata
4822^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4823
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004824The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4825or metadata containing a list of loop identifiers for nested loops.
4826The metadata is attached to memory accessing instructions and denotes that
4827no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004828with the same loop identifier. The metadata on memory reads also implies that
4829if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004830
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004831Precisely, given two instructions ``m1`` and ``m2`` that both have the
4832``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4833set of loops associated with that metadata, respectively, then there is no loop
4834carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004835``L2``.
4836
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004837As a special case, if all memory accessing instructions in a loop have
4838``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4839loop has no loop carried memory dependences and is considered to be a parallel
4840loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004841
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004842Note that if not all memory access instructions have such metadata referring to
4843the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004844memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004845safe mechanism, this causes loops that were originally parallel to be considered
4846sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004847insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004848
4849Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004850both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004851metadata types that refer to the same loop identifier metadata.
4852
4853.. code-block:: llvm
4854
4855 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004856 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004857 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004858 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004859 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004860 ...
4861 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004862
4863 for.end:
4864 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004865 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004866
4867It is also possible to have nested parallel loops. In that case the
4868memory accesses refer to a list of loop identifier metadata nodes instead of
4869the loop identifier metadata node directly:
4870
4871.. code-block:: llvm
4872
4873 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004874 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004875 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004876 ...
4877 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004878
4879 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004880 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004881 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004882 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004883 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004884 ...
4885 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004886
4887 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004888 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004889 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004890 ...
4891 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004892
4893 outer.for.end: ; preds = %for.body
4894 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004895 !0 = !{!1, !2} ; a list of loop identifiers
4896 !1 = !{!1} ; an identifier for the inner loop
4897 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004898
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004899'``invariant.group``' Metadata
4900^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4901
4902The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4903The existence of the ``invariant.group`` metadata on the instruction tells
4904the optimizer that every ``load`` and ``store`` to the same pointer operand
4905within the same invariant group can be assumed to load or store the same
4906value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4907when two pointers are considered the same).
4908
4909Examples:
4910
4911.. code-block:: llvm
4912
4913 @unknownPtr = external global i8
4914 ...
4915 %ptr = alloca i8
4916 store i8 42, i8* %ptr, !invariant.group !0
4917 call void @foo(i8* %ptr)
4918
4919 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4920 call void @foo(i8* %ptr)
4921 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4922
4923 %newPtr = call i8* @getPointer(i8* %ptr)
4924 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4925
4926 %unknownValue = load i8, i8* @unknownPtr
4927 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4928
4929 call void @foo(i8* %ptr)
4930 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4931 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4932
4933 ...
4934 declare void @foo(i8*)
4935 declare i8* @getPointer(i8*)
4936 declare i8* @llvm.invariant.group.barrier(i8*)
4937
4938 !0 = !{!"magic ptr"}
4939 !1 = !{!"other ptr"}
4940
Peter Collingbournea333db82016-07-26 22:31:30 +00004941'``type``' Metadata
4942^^^^^^^^^^^^^^^^^^^
4943
4944See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004945
4946
Sean Silvab084af42012-12-07 10:36:55 +00004947Module Flags Metadata
4948=====================
4949
4950Information about the module as a whole is difficult to convey to LLVM's
4951subsystems. The LLVM IR isn't sufficient to transmit this information.
4952The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004953this. These flags are in the form of key / value pairs --- much like a
4954dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004955look it up.
4956
4957The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4958Each triplet has the following form:
4959
4960- The first element is a *behavior* flag, which specifies the behavior
4961 when two (or more) modules are merged together, and it encounters two
4962 (or more) metadata with the same ID. The supported behaviors are
4963 described below.
4964- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004965 metadata. Each module may only have one flag entry for each unique ID (not
4966 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004967- The third element is the value of the flag.
4968
4969When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004970``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4971each unique metadata ID string, there will be exactly one entry in the merged
4972modules ``llvm.module.flags`` metadata table, and the value for that entry will
4973be determined by the merge behavior flag, as described below. The only exception
4974is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004975
4976The following behaviors are supported:
4977
4978.. list-table::
4979 :header-rows: 1
4980 :widths: 10 90
4981
4982 * - Value
4983 - Behavior
4984
4985 * - 1
4986 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004987 Emits an error if two values disagree, otherwise the resulting value
4988 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004989
4990 * - 2
4991 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004992 Emits a warning if two values disagree. The result value will be the
4993 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004994
4995 * - 3
4996 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004997 Adds a requirement that another module flag be present and have a
4998 specified value after linking is performed. The value must be a
4999 metadata pair, where the first element of the pair is the ID of the
5000 module flag to be restricted, and the second element of the pair is
5001 the value the module flag should be restricted to. This behavior can
5002 be used to restrict the allowable results (via triggering of an
5003 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005004
5005 * - 4
5006 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005007 Uses the specified value, regardless of the behavior or value of the
5008 other module. If both modules specify **Override**, but the values
5009 differ, an error will be emitted.
5010
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005011 * - 5
5012 - **Append**
5013 Appends the two values, which are required to be metadata nodes.
5014
5015 * - 6
5016 - **AppendUnique**
5017 Appends the two values, which are required to be metadata
5018 nodes. However, duplicate entries in the second list are dropped
5019 during the append operation.
5020
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005021It is an error for a particular unique flag ID to have multiple behaviors,
5022except in the case of **Require** (which adds restrictions on another metadata
5023value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005024
5025An example of module flags:
5026
5027.. code-block:: llvm
5028
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005029 !0 = !{ i32 1, !"foo", i32 1 }
5030 !1 = !{ i32 4, !"bar", i32 37 }
5031 !2 = !{ i32 2, !"qux", i32 42 }
5032 !3 = !{ i32 3, !"qux",
5033 !{
5034 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005035 }
5036 }
5037 !llvm.module.flags = !{ !0, !1, !2, !3 }
5038
5039- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5040 if two or more ``!"foo"`` flags are seen is to emit an error if their
5041 values are not equal.
5042
5043- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5044 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005045 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005046
5047- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5048 behavior if two or more ``!"qux"`` flags are seen is to emit a
5049 warning if their values are not equal.
5050
5051- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5052
5053 ::
5054
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005055 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005056
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005057 The behavior is to emit an error if the ``llvm.module.flags`` does not
5058 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5059 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005060
5061Objective-C Garbage Collection Module Flags Metadata
5062----------------------------------------------------
5063
5064On the Mach-O platform, Objective-C stores metadata about garbage
5065collection in a special section called "image info". The metadata
5066consists of a version number and a bitmask specifying what types of
5067garbage collection are supported (if any) by the file. If two or more
5068modules are linked together their garbage collection metadata needs to
5069be merged rather than appended together.
5070
5071The Objective-C garbage collection module flags metadata consists of the
5072following key-value pairs:
5073
5074.. list-table::
5075 :header-rows: 1
5076 :widths: 30 70
5077
5078 * - Key
5079 - Value
5080
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005081 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005082 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005083
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005084 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005085 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005086 always 0.
5087
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005088 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005089 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005090 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5091 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5092 Objective-C ABI version 2.
5093
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005094 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005095 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005096 not. Valid values are 0, for no garbage collection, and 2, for garbage
5097 collection supported.
5098
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005099 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005100 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005101 If present, its value must be 6. This flag requires that the
5102 ``Objective-C Garbage Collection`` flag have the value 2.
5103
5104Some important flag interactions:
5105
5106- If a module with ``Objective-C Garbage Collection`` set to 0 is
5107 merged with a module with ``Objective-C Garbage Collection`` set to
5108 2, then the resulting module has the
5109 ``Objective-C Garbage Collection`` flag set to 0.
5110- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5111 merged with a module with ``Objective-C GC Only`` set to 6.
5112
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005113Automatic Linker Flags Module Flags Metadata
5114--------------------------------------------
5115
5116Some targets support embedding flags to the linker inside individual object
5117files. Typically this is used in conjunction with language extensions which
5118allow source files to explicitly declare the libraries they depend on, and have
5119these automatically be transmitted to the linker via object files.
5120
5121These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005122using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005123to be ``AppendUnique``, and the value for the key is expected to be a metadata
5124node which should be a list of other metadata nodes, each of which should be a
5125list of metadata strings defining linker options.
5126
5127For example, the following metadata section specifies two separate sets of
5128linker options, presumably to link against ``libz`` and the ``Cocoa``
5129framework::
5130
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005131 !0 = !{ i32 6, !"Linker Options",
5132 !{
5133 !{ !"-lz" },
5134 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005135 !llvm.module.flags = !{ !0 }
5136
5137The metadata encoding as lists of lists of options, as opposed to a collapsed
5138list of options, is chosen so that the IR encoding can use multiple option
5139strings to specify e.g., a single library, while still having that specifier be
5140preserved as an atomic element that can be recognized by a target specific
5141assembly writer or object file emitter.
5142
5143Each individual option is required to be either a valid option for the target's
5144linker, or an option that is reserved by the target specific assembly writer or
5145object file emitter. No other aspect of these options is defined by the IR.
5146
Oliver Stannard5dc29342014-06-20 10:08:11 +00005147C type width Module Flags Metadata
5148----------------------------------
5149
5150The ARM backend emits a section into each generated object file describing the
5151options that it was compiled with (in a compiler-independent way) to prevent
5152linking incompatible objects, and to allow automatic library selection. Some
5153of these options are not visible at the IR level, namely wchar_t width and enum
5154width.
5155
5156To pass this information to the backend, these options are encoded in module
5157flags metadata, using the following key-value pairs:
5158
5159.. list-table::
5160 :header-rows: 1
5161 :widths: 30 70
5162
5163 * - Key
5164 - Value
5165
5166 * - short_wchar
5167 - * 0 --- sizeof(wchar_t) == 4
5168 * 1 --- sizeof(wchar_t) == 2
5169
5170 * - short_enum
5171 - * 0 --- Enums are at least as large as an ``int``.
5172 * 1 --- Enums are stored in the smallest integer type which can
5173 represent all of its values.
5174
5175For example, the following metadata section specifies that the module was
5176compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5177enum is the smallest type which can represent all of its values::
5178
5179 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005180 !0 = !{i32 1, !"short_wchar", i32 1}
5181 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005182
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005183.. _intrinsicglobalvariables:
5184
Sean Silvab084af42012-12-07 10:36:55 +00005185Intrinsic Global Variables
5186==========================
5187
5188LLVM has a number of "magic" global variables that contain data that
5189affect code generation or other IR semantics. These are documented here.
5190All globals of this sort should have a section specified as
5191"``llvm.metadata``". This section and all globals that start with
5192"``llvm.``" are reserved for use by LLVM.
5193
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005194.. _gv_llvmused:
5195
Sean Silvab084af42012-12-07 10:36:55 +00005196The '``llvm.used``' Global Variable
5197-----------------------------------
5198
Rafael Espindola74f2e462013-04-22 14:58:02 +00005199The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005200:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005201pointers to named global variables, functions and aliases which may optionally
5202have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005203use of it is:
5204
5205.. code-block:: llvm
5206
5207 @X = global i8 4
5208 @Y = global i32 123
5209
5210 @llvm.used = appending global [2 x i8*] [
5211 i8* @X,
5212 i8* bitcast (i32* @Y to i8*)
5213 ], section "llvm.metadata"
5214
Rafael Espindola74f2e462013-04-22 14:58:02 +00005215If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5216and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005217symbol that it cannot see (which is why they have to be named). For example, if
5218a variable has internal linkage and no references other than that from the
5219``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5220references from inline asms and other things the compiler cannot "see", and
5221corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005222
5223On some targets, the code generator must emit a directive to the
5224assembler or object file to prevent the assembler and linker from
5225molesting the symbol.
5226
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005227.. _gv_llvmcompilerused:
5228
Sean Silvab084af42012-12-07 10:36:55 +00005229The '``llvm.compiler.used``' Global Variable
5230--------------------------------------------
5231
5232The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5233directive, except that it only prevents the compiler from touching the
5234symbol. On targets that support it, this allows an intelligent linker to
5235optimize references to the symbol without being impeded as it would be
5236by ``@llvm.used``.
5237
5238This is a rare construct that should only be used in rare circumstances,
5239and should not be exposed to source languages.
5240
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005241.. _gv_llvmglobalctors:
5242
Sean Silvab084af42012-12-07 10:36:55 +00005243The '``llvm.global_ctors``' Global Variable
5244-------------------------------------------
5245
5246.. code-block:: llvm
5247
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005248 %0 = type { i32, void ()*, i8* }
5249 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005250
5251The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005252functions, priorities, and an optional associated global or function.
5253The functions referenced by this array will be called in ascending order
5254of priority (i.e. lowest first) when the module is loaded. The order of
5255functions with the same priority is not defined.
5256
5257If the third field is present, non-null, and points to a global variable
5258or function, the initializer function will only run if the associated
5259data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005260
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005261.. _llvmglobaldtors:
5262
Sean Silvab084af42012-12-07 10:36:55 +00005263The '``llvm.global_dtors``' Global Variable
5264-------------------------------------------
5265
5266.. code-block:: llvm
5267
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005268 %0 = type { i32, void ()*, i8* }
5269 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005270
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005271The ``@llvm.global_dtors`` array contains a list of destructor
5272functions, priorities, and an optional associated global or function.
5273The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005274order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005275order of functions with the same priority is not defined.
5276
5277If the third field is present, non-null, and points to a global variable
5278or function, the destructor function will only run if the associated
5279data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005280
5281Instruction Reference
5282=====================
5283
5284The LLVM instruction set consists of several different classifications
5285of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5286instructions <binaryops>`, :ref:`bitwise binary
5287instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5288:ref:`other instructions <otherops>`.
5289
5290.. _terminators:
5291
5292Terminator Instructions
5293-----------------------
5294
5295As mentioned :ref:`previously <functionstructure>`, every basic block in a
5296program ends with a "Terminator" instruction, which indicates which
5297block should be executed after the current block is finished. These
5298terminator instructions typically yield a '``void``' value: they produce
5299control flow, not values (the one exception being the
5300':ref:`invoke <i_invoke>`' instruction).
5301
5302The terminator instructions are: ':ref:`ret <i_ret>`',
5303':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5304':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005305':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005306':ref:`catchret <i_catchret>`',
5307':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005308and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005309
5310.. _i_ret:
5311
5312'``ret``' Instruction
5313^^^^^^^^^^^^^^^^^^^^^
5314
5315Syntax:
5316"""""""
5317
5318::
5319
5320 ret <type> <value> ; Return a value from a non-void function
5321 ret void ; Return from void function
5322
5323Overview:
5324"""""""""
5325
5326The '``ret``' instruction is used to return control flow (and optionally
5327a value) from a function back to the caller.
5328
5329There are two forms of the '``ret``' instruction: one that returns a
5330value and then causes control flow, and one that just causes control
5331flow to occur.
5332
5333Arguments:
5334""""""""""
5335
5336The '``ret``' instruction optionally accepts a single argument, the
5337return value. The type of the return value must be a ':ref:`first
5338class <t_firstclass>`' type.
5339
5340A function is not :ref:`well formed <wellformed>` if it it has a non-void
5341return type and contains a '``ret``' instruction with no return value or
5342a return value with a type that does not match its type, or if it has a
5343void return type and contains a '``ret``' instruction with a return
5344value.
5345
5346Semantics:
5347""""""""""
5348
5349When the '``ret``' instruction is executed, control flow returns back to
5350the calling function's context. If the caller is a
5351":ref:`call <i_call>`" instruction, execution continues at the
5352instruction after the call. If the caller was an
5353":ref:`invoke <i_invoke>`" instruction, execution continues at the
5354beginning of the "normal" destination block. If the instruction returns
5355a value, that value shall set the call or invoke instruction's return
5356value.
5357
5358Example:
5359""""""""
5360
5361.. code-block:: llvm
5362
5363 ret i32 5 ; Return an integer value of 5
5364 ret void ; Return from a void function
5365 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5366
5367.. _i_br:
5368
5369'``br``' Instruction
5370^^^^^^^^^^^^^^^^^^^^
5371
5372Syntax:
5373"""""""
5374
5375::
5376
5377 br i1 <cond>, label <iftrue>, label <iffalse>
5378 br label <dest> ; Unconditional branch
5379
5380Overview:
5381"""""""""
5382
5383The '``br``' instruction is used to cause control flow to transfer to a
5384different basic block in the current function. There are two forms of
5385this instruction, corresponding to a conditional branch and an
5386unconditional branch.
5387
5388Arguments:
5389""""""""""
5390
5391The conditional branch form of the '``br``' instruction takes a single
5392'``i1``' value and two '``label``' values. The unconditional form of the
5393'``br``' instruction takes a single '``label``' value as a target.
5394
5395Semantics:
5396""""""""""
5397
5398Upon execution of a conditional '``br``' instruction, the '``i1``'
5399argument is evaluated. If the value is ``true``, control flows to the
5400'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5401to the '``iffalse``' ``label`` argument.
5402
5403Example:
5404""""""""
5405
5406.. code-block:: llvm
5407
5408 Test:
5409 %cond = icmp eq i32 %a, %b
5410 br i1 %cond, label %IfEqual, label %IfUnequal
5411 IfEqual:
5412 ret i32 1
5413 IfUnequal:
5414 ret i32 0
5415
5416.. _i_switch:
5417
5418'``switch``' Instruction
5419^^^^^^^^^^^^^^^^^^^^^^^^
5420
5421Syntax:
5422"""""""
5423
5424::
5425
5426 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5427
5428Overview:
5429"""""""""
5430
5431The '``switch``' instruction is used to transfer control flow to one of
5432several different places. It is a generalization of the '``br``'
5433instruction, allowing a branch to occur to one of many possible
5434destinations.
5435
5436Arguments:
5437""""""""""
5438
5439The '``switch``' instruction uses three parameters: an integer
5440comparison value '``value``', a default '``label``' destination, and an
5441array of pairs of comparison value constants and '``label``'s. The table
5442is not allowed to contain duplicate constant entries.
5443
5444Semantics:
5445""""""""""
5446
5447The ``switch`` instruction specifies a table of values and destinations.
5448When the '``switch``' instruction is executed, this table is searched
5449for the given value. If the value is found, control flow is transferred
5450to the corresponding destination; otherwise, control flow is transferred
5451to the default destination.
5452
5453Implementation:
5454"""""""""""""""
5455
5456Depending on properties of the target machine and the particular
5457``switch`` instruction, this instruction may be code generated in
5458different ways. For example, it could be generated as a series of
5459chained conditional branches or with a lookup table.
5460
5461Example:
5462""""""""
5463
5464.. code-block:: llvm
5465
5466 ; Emulate a conditional br instruction
5467 %Val = zext i1 %value to i32
5468 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5469
5470 ; Emulate an unconditional br instruction
5471 switch i32 0, label %dest [ ]
5472
5473 ; Implement a jump table:
5474 switch i32 %val, label %otherwise [ i32 0, label %onzero
5475 i32 1, label %onone
5476 i32 2, label %ontwo ]
5477
5478.. _i_indirectbr:
5479
5480'``indirectbr``' Instruction
5481^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5482
5483Syntax:
5484"""""""
5485
5486::
5487
5488 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5489
5490Overview:
5491"""""""""
5492
5493The '``indirectbr``' instruction implements an indirect branch to a
5494label within the current function, whose address is specified by
5495"``address``". Address must be derived from a
5496:ref:`blockaddress <blockaddress>` constant.
5497
5498Arguments:
5499""""""""""
5500
5501The '``address``' argument is the address of the label to jump to. The
5502rest of the arguments indicate the full set of possible destinations
5503that the address may point to. Blocks are allowed to occur multiple
5504times in the destination list, though this isn't particularly useful.
5505
5506This destination list is required so that dataflow analysis has an
5507accurate understanding of the CFG.
5508
5509Semantics:
5510""""""""""
5511
5512Control transfers to the block specified in the address argument. All
5513possible destination blocks must be listed in the label list, otherwise
5514this instruction has undefined behavior. This implies that jumps to
5515labels defined in other functions have undefined behavior as well.
5516
5517Implementation:
5518"""""""""""""""
5519
5520This is typically implemented with a jump through a register.
5521
5522Example:
5523""""""""
5524
5525.. code-block:: llvm
5526
5527 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5528
5529.. _i_invoke:
5530
5531'``invoke``' Instruction
5532^^^^^^^^^^^^^^^^^^^^^^^^
5533
5534Syntax:
5535"""""""
5536
5537::
5538
David Blaikieb83cf102016-07-13 17:21:34 +00005539 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005540 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005541
5542Overview:
5543"""""""""
5544
5545The '``invoke``' instruction causes control to transfer to a specified
5546function, with the possibility of control flow transfer to either the
5547'``normal``' label or the '``exception``' label. If the callee function
5548returns with the "``ret``" instruction, control flow will return to the
5549"normal" label. If the callee (or any indirect callees) returns via the
5550":ref:`resume <i_resume>`" instruction or other exception handling
5551mechanism, control is interrupted and continued at the dynamically
5552nearest "exception" label.
5553
5554The '``exception``' label is a `landing
5555pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5556'``exception``' label is required to have the
5557":ref:`landingpad <i_landingpad>`" instruction, which contains the
5558information about the behavior of the program after unwinding happens,
5559as its first non-PHI instruction. The restrictions on the
5560"``landingpad``" instruction's tightly couples it to the "``invoke``"
5561instruction, so that the important information contained within the
5562"``landingpad``" instruction can't be lost through normal code motion.
5563
5564Arguments:
5565""""""""""
5566
5567This instruction requires several arguments:
5568
5569#. The optional "cconv" marker indicates which :ref:`calling
5570 convention <callingconv>` the call should use. If none is
5571 specified, the call defaults to using C calling conventions.
5572#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5573 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5574 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005575#. '``ty``': the type of the call instruction itself which is also the
5576 type of the return value. Functions that return no value are marked
5577 ``void``.
5578#. '``fnty``': shall be the signature of the function being invoked. The
5579 argument types must match the types implied by this signature. This
5580 type can be omitted if the function is not varargs.
5581#. '``fnptrval``': An LLVM value containing a pointer to a function to
5582 be invoked. In most cases, this is a direct function invocation, but
5583 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5584 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005585#. '``function args``': argument list whose types match the function
5586 signature argument types and parameter attributes. All arguments must
5587 be of :ref:`first class <t_firstclass>` type. If the function signature
5588 indicates the function accepts a variable number of arguments, the
5589 extra arguments can be specified.
5590#. '``normal label``': the label reached when the called function
5591 executes a '``ret``' instruction.
5592#. '``exception label``': the label reached when a callee returns via
5593 the :ref:`resume <i_resume>` instruction or other exception handling
5594 mechanism.
5595#. The optional :ref:`function attributes <fnattrs>` list. Only
5596 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5597 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005598#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005599
5600Semantics:
5601""""""""""
5602
5603This instruction is designed to operate as a standard '``call``'
5604instruction in most regards. The primary difference is that it
5605establishes an association with a label, which is used by the runtime
5606library to unwind the stack.
5607
5608This instruction is used in languages with destructors to ensure that
5609proper cleanup is performed in the case of either a ``longjmp`` or a
5610thrown exception. Additionally, this is important for implementation of
5611'``catch``' clauses in high-level languages that support them.
5612
5613For the purposes of the SSA form, the definition of the value returned
5614by the '``invoke``' instruction is deemed to occur on the edge from the
5615current block to the "normal" label. If the callee unwinds then no
5616return value is available.
5617
5618Example:
5619""""""""
5620
5621.. code-block:: llvm
5622
5623 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005624 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005625 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005626 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005627
5628.. _i_resume:
5629
5630'``resume``' Instruction
5631^^^^^^^^^^^^^^^^^^^^^^^^
5632
5633Syntax:
5634"""""""
5635
5636::
5637
5638 resume <type> <value>
5639
5640Overview:
5641"""""""""
5642
5643The '``resume``' instruction is a terminator instruction that has no
5644successors.
5645
5646Arguments:
5647""""""""""
5648
5649The '``resume``' instruction requires one argument, which must have the
5650same type as the result of any '``landingpad``' instruction in the same
5651function.
5652
5653Semantics:
5654""""""""""
5655
5656The '``resume``' instruction resumes propagation of an existing
5657(in-flight) exception whose unwinding was interrupted with a
5658:ref:`landingpad <i_landingpad>` instruction.
5659
5660Example:
5661""""""""
5662
5663.. code-block:: llvm
5664
5665 resume { i8*, i32 } %exn
5666
David Majnemer8a1c45d2015-12-12 05:38:55 +00005667.. _i_catchswitch:
5668
5669'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005671
5672Syntax:
5673"""""""
5674
5675::
5676
5677 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5678 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5679
5680Overview:
5681"""""""""
5682
5683The '``catchswitch``' instruction is used by `LLVM's exception handling system
5684<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5685that may be executed by the :ref:`EH personality routine <personalityfn>`.
5686
5687Arguments:
5688""""""""""
5689
5690The ``parent`` argument is the token of the funclet that contains the
5691``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5692this operand may be the token ``none``.
5693
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005694The ``default`` argument is the label of another basic block beginning with
5695either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5696must be a legal target with respect to the ``parent`` links, as described in
5697the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005698
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005699The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005700:ref:`catchpad <i_catchpad>` instruction.
5701
5702Semantics:
5703""""""""""
5704
5705Executing this instruction transfers control to one of the successors in
5706``handlers``, if appropriate, or continues to unwind via the unwind label if
5707present.
5708
5709The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5710it must be both the first non-phi instruction and last instruction in the basic
5711block. Therefore, it must be the only non-phi instruction in the block.
5712
5713Example:
5714""""""""
5715
Renato Golin124f2592016-07-20 12:16:38 +00005716.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005717
5718 dispatch1:
5719 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5720 dispatch2:
5721 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5722
David Majnemer654e1302015-07-31 17:58:14 +00005723.. _i_catchret:
5724
5725'``catchret``' Instruction
5726^^^^^^^^^^^^^^^^^^^^^^^^^^
5727
5728Syntax:
5729"""""""
5730
5731::
5732
David Majnemer8a1c45d2015-12-12 05:38:55 +00005733 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005734
5735Overview:
5736"""""""""
5737
5738The '``catchret``' instruction is a terminator instruction that has a
5739single successor.
5740
5741
5742Arguments:
5743""""""""""
5744
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005745The first argument to a '``catchret``' indicates which ``catchpad`` it
5746exits. It must be a :ref:`catchpad <i_catchpad>`.
5747The second argument to a '``catchret``' specifies where control will
5748transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005749
5750Semantics:
5751""""""""""
5752
David Majnemer8a1c45d2015-12-12 05:38:55 +00005753The '``catchret``' instruction ends an existing (in-flight) exception whose
5754unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5755:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5756code to, for example, destroy the active exception. Control then transfers to
5757``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005758
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005759The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5760If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5761funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5762the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005763
5764Example:
5765""""""""
5766
Renato Golin124f2592016-07-20 12:16:38 +00005767.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005768
David Majnemer8a1c45d2015-12-12 05:38:55 +00005769 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005770
David Majnemer654e1302015-07-31 17:58:14 +00005771.. _i_cleanupret:
5772
5773'``cleanupret``' Instruction
5774^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5775
5776Syntax:
5777"""""""
5778
5779::
5780
David Majnemer8a1c45d2015-12-12 05:38:55 +00005781 cleanupret from <value> unwind label <continue>
5782 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005783
5784Overview:
5785"""""""""
5786
5787The '``cleanupret``' instruction is a terminator instruction that has
5788an optional successor.
5789
5790
5791Arguments:
5792""""""""""
5793
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005794The '``cleanupret``' instruction requires one argument, which indicates
5795which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005796If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5797funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5798the ``cleanupret``'s behavior is undefined.
5799
5800The '``cleanupret``' instruction also has an optional successor, ``continue``,
5801which must be the label of another basic block beginning with either a
5802``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5803be a legal target with respect to the ``parent`` links, as described in the
5804`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005805
5806Semantics:
5807""""""""""
5808
5809The '``cleanupret``' instruction indicates to the
5810:ref:`personality function <personalityfn>` that one
5811:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5812It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005813
David Majnemer654e1302015-07-31 17:58:14 +00005814Example:
5815""""""""
5816
Renato Golin124f2592016-07-20 12:16:38 +00005817.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005818
David Majnemer8a1c45d2015-12-12 05:38:55 +00005819 cleanupret from %cleanup unwind to caller
5820 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005821
Sean Silvab084af42012-12-07 10:36:55 +00005822.. _i_unreachable:
5823
5824'``unreachable``' Instruction
5825^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5826
5827Syntax:
5828"""""""
5829
5830::
5831
5832 unreachable
5833
5834Overview:
5835"""""""""
5836
5837The '``unreachable``' instruction has no defined semantics. This
5838instruction is used to inform the optimizer that a particular portion of
5839the code is not reachable. This can be used to indicate that the code
5840after a no-return function cannot be reached, and other facts.
5841
5842Semantics:
5843""""""""""
5844
5845The '``unreachable``' instruction has no defined semantics.
5846
5847.. _binaryops:
5848
5849Binary Operations
5850-----------------
5851
5852Binary operators are used to do most of the computation in a program.
5853They require two operands of the same type, execute an operation on
5854them, and produce a single value. The operands might represent multiple
5855data, as is the case with the :ref:`vector <t_vector>` data type. The
5856result value has the same type as its operands.
5857
5858There are several different binary operators:
5859
5860.. _i_add:
5861
5862'``add``' Instruction
5863^^^^^^^^^^^^^^^^^^^^^
5864
5865Syntax:
5866"""""""
5867
5868::
5869
Tim Northover675a0962014-06-13 14:24:23 +00005870 <result> = add <ty> <op1>, <op2> ; yields ty:result
5871 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5872 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5873 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005874
5875Overview:
5876"""""""""
5877
5878The '``add``' instruction returns the sum of its two operands.
5879
5880Arguments:
5881""""""""""
5882
5883The two arguments to the '``add``' instruction must be
5884:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5885arguments must have identical types.
5886
5887Semantics:
5888""""""""""
5889
5890The value produced is the integer sum of the two operands.
5891
5892If the sum has unsigned overflow, the result returned is the
5893mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5894the result.
5895
5896Because LLVM integers use a two's complement representation, this
5897instruction is appropriate for both signed and unsigned integers.
5898
5899``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5900respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5901result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5902unsigned and/or signed overflow, respectively, occurs.
5903
5904Example:
5905""""""""
5906
Renato Golin124f2592016-07-20 12:16:38 +00005907.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005908
Tim Northover675a0962014-06-13 14:24:23 +00005909 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005910
5911.. _i_fadd:
5912
5913'``fadd``' Instruction
5914^^^^^^^^^^^^^^^^^^^^^^
5915
5916Syntax:
5917"""""""
5918
5919::
5920
Tim Northover675a0962014-06-13 14:24:23 +00005921 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005922
5923Overview:
5924"""""""""
5925
5926The '``fadd``' instruction returns the sum of its two operands.
5927
5928Arguments:
5929""""""""""
5930
5931The two arguments to the '``fadd``' instruction must be :ref:`floating
5932point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5933Both arguments must have identical types.
5934
5935Semantics:
5936""""""""""
5937
5938The value produced is the floating point sum of the two operands. This
5939instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5940which are optimization hints to enable otherwise unsafe floating point
5941optimizations:
5942
5943Example:
5944""""""""
5945
Renato Golin124f2592016-07-20 12:16:38 +00005946.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005947
Tim Northover675a0962014-06-13 14:24:23 +00005948 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005949
5950'``sub``' Instruction
5951^^^^^^^^^^^^^^^^^^^^^
5952
5953Syntax:
5954"""""""
5955
5956::
5957
Tim Northover675a0962014-06-13 14:24:23 +00005958 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5959 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5960 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5961 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005962
5963Overview:
5964"""""""""
5965
5966The '``sub``' instruction returns the difference of its two operands.
5967
5968Note that the '``sub``' instruction is used to represent the '``neg``'
5969instruction present in most other intermediate representations.
5970
5971Arguments:
5972""""""""""
5973
5974The two arguments to the '``sub``' instruction must be
5975:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5976arguments must have identical types.
5977
5978Semantics:
5979""""""""""
5980
5981The value produced is the integer difference of the two operands.
5982
5983If the difference has unsigned overflow, the result returned is the
5984mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5985the result.
5986
5987Because LLVM integers use a two's complement representation, this
5988instruction is appropriate for both signed and unsigned integers.
5989
5990``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5991respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5992result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5993unsigned and/or signed overflow, respectively, occurs.
5994
5995Example:
5996""""""""
5997
Renato Golin124f2592016-07-20 12:16:38 +00005998.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005999
Tim Northover675a0962014-06-13 14:24:23 +00006000 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6001 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006002
6003.. _i_fsub:
6004
6005'``fsub``' Instruction
6006^^^^^^^^^^^^^^^^^^^^^^
6007
6008Syntax:
6009"""""""
6010
6011::
6012
Tim Northover675a0962014-06-13 14:24:23 +00006013 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006014
6015Overview:
6016"""""""""
6017
6018The '``fsub``' instruction returns the difference of its two operands.
6019
6020Note that the '``fsub``' instruction is used to represent the '``fneg``'
6021instruction present in most other intermediate representations.
6022
6023Arguments:
6024""""""""""
6025
6026The two arguments to the '``fsub``' instruction must be :ref:`floating
6027point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6028Both arguments must have identical types.
6029
6030Semantics:
6031""""""""""
6032
6033The value produced is the floating point difference of the two operands.
6034This instruction can also take any number of :ref:`fast-math
6035flags <fastmath>`, which are optimization hints to enable otherwise
6036unsafe floating point optimizations:
6037
6038Example:
6039""""""""
6040
Renato Golin124f2592016-07-20 12:16:38 +00006041.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006042
Tim Northover675a0962014-06-13 14:24:23 +00006043 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6044 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006045
6046'``mul``' Instruction
6047^^^^^^^^^^^^^^^^^^^^^
6048
6049Syntax:
6050"""""""
6051
6052::
6053
Tim Northover675a0962014-06-13 14:24:23 +00006054 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6055 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6056 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6057 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006058
6059Overview:
6060"""""""""
6061
6062The '``mul``' instruction returns the product of its two operands.
6063
6064Arguments:
6065""""""""""
6066
6067The two arguments to the '``mul``' instruction must be
6068:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6069arguments must have identical types.
6070
6071Semantics:
6072""""""""""
6073
6074The value produced is the integer product of the two operands.
6075
6076If the result of the multiplication has unsigned overflow, the result
6077returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6078bit width of the result.
6079
6080Because LLVM integers use a two's complement representation, and the
6081result is the same width as the operands, this instruction returns the
6082correct result for both signed and unsigned integers. If a full product
6083(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6084sign-extended or zero-extended as appropriate to the width of the full
6085product.
6086
6087``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6088respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6089result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6090unsigned and/or signed overflow, respectively, occurs.
6091
6092Example:
6093""""""""
6094
Renato Golin124f2592016-07-20 12:16:38 +00006095.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006096
Tim Northover675a0962014-06-13 14:24:23 +00006097 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006098
6099.. _i_fmul:
6100
6101'``fmul``' Instruction
6102^^^^^^^^^^^^^^^^^^^^^^
6103
6104Syntax:
6105"""""""
6106
6107::
6108
Tim Northover675a0962014-06-13 14:24:23 +00006109 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006110
6111Overview:
6112"""""""""
6113
6114The '``fmul``' instruction returns the product of its two operands.
6115
6116Arguments:
6117""""""""""
6118
6119The two arguments to the '``fmul``' instruction must be :ref:`floating
6120point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6121Both arguments must have identical types.
6122
6123Semantics:
6124""""""""""
6125
6126The value produced is the floating point product of the two operands.
6127This instruction can also take any number of :ref:`fast-math
6128flags <fastmath>`, which are optimization hints to enable otherwise
6129unsafe floating point optimizations:
6130
6131Example:
6132""""""""
6133
Renato Golin124f2592016-07-20 12:16:38 +00006134.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006135
Tim Northover675a0962014-06-13 14:24:23 +00006136 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006137
6138'``udiv``' Instruction
6139^^^^^^^^^^^^^^^^^^^^^^
6140
6141Syntax:
6142"""""""
6143
6144::
6145
Tim Northover675a0962014-06-13 14:24:23 +00006146 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6147 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006148
6149Overview:
6150"""""""""
6151
6152The '``udiv``' instruction returns the quotient of its two operands.
6153
6154Arguments:
6155""""""""""
6156
6157The two arguments to the '``udiv``' instruction must be
6158:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6159arguments must have identical types.
6160
6161Semantics:
6162""""""""""
6163
6164The value produced is the unsigned integer quotient of the two operands.
6165
6166Note that unsigned integer division and signed integer division are
6167distinct operations; for signed integer division, use '``sdiv``'.
6168
6169Division by zero leads to undefined behavior.
6170
6171If the ``exact`` keyword is present, the result value of the ``udiv`` is
6172a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6173such, "((a udiv exact b) mul b) == a").
6174
6175Example:
6176""""""""
6177
Renato Golin124f2592016-07-20 12:16:38 +00006178.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006179
Tim Northover675a0962014-06-13 14:24:23 +00006180 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006181
6182'``sdiv``' Instruction
6183^^^^^^^^^^^^^^^^^^^^^^
6184
6185Syntax:
6186"""""""
6187
6188::
6189
Tim Northover675a0962014-06-13 14:24:23 +00006190 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6191 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006192
6193Overview:
6194"""""""""
6195
6196The '``sdiv``' instruction returns the quotient of its two operands.
6197
6198Arguments:
6199""""""""""
6200
6201The two arguments to the '``sdiv``' instruction must be
6202:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6203arguments must have identical types.
6204
6205Semantics:
6206""""""""""
6207
6208The value produced is the signed integer quotient of the two operands
6209rounded towards zero.
6210
6211Note that signed integer division and unsigned integer division are
6212distinct operations; for unsigned integer division, use '``udiv``'.
6213
6214Division by zero leads to undefined behavior. Overflow also leads to
6215undefined behavior; this is a rare case, but can occur, for example, by
6216doing a 32-bit division of -2147483648 by -1.
6217
6218If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6219a :ref:`poison value <poisonvalues>` if the result would be rounded.
6220
6221Example:
6222""""""""
6223
Renato Golin124f2592016-07-20 12:16:38 +00006224.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006225
Tim Northover675a0962014-06-13 14:24:23 +00006226 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006227
6228.. _i_fdiv:
6229
6230'``fdiv``' Instruction
6231^^^^^^^^^^^^^^^^^^^^^^
6232
6233Syntax:
6234"""""""
6235
6236::
6237
Tim Northover675a0962014-06-13 14:24:23 +00006238 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006239
6240Overview:
6241"""""""""
6242
6243The '``fdiv``' instruction returns the quotient of its two operands.
6244
6245Arguments:
6246""""""""""
6247
6248The two arguments to the '``fdiv``' instruction must be :ref:`floating
6249point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6250Both arguments must have identical types.
6251
6252Semantics:
6253""""""""""
6254
6255The value produced is the floating point quotient of the two operands.
6256This instruction can also take any number of :ref:`fast-math
6257flags <fastmath>`, which are optimization hints to enable otherwise
6258unsafe floating point optimizations:
6259
6260Example:
6261""""""""
6262
Renato Golin124f2592016-07-20 12:16:38 +00006263.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006264
Tim Northover675a0962014-06-13 14:24:23 +00006265 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006266
6267'``urem``' Instruction
6268^^^^^^^^^^^^^^^^^^^^^^
6269
6270Syntax:
6271"""""""
6272
6273::
6274
Tim Northover675a0962014-06-13 14:24:23 +00006275 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006276
6277Overview:
6278"""""""""
6279
6280The '``urem``' instruction returns the remainder from the unsigned
6281division of its two arguments.
6282
6283Arguments:
6284""""""""""
6285
6286The two arguments to the '``urem``' instruction must be
6287:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6288arguments must have identical types.
6289
6290Semantics:
6291""""""""""
6292
6293This instruction returns the unsigned integer *remainder* of a division.
6294This instruction always performs an unsigned division to get the
6295remainder.
6296
6297Note that unsigned integer remainder and signed integer remainder are
6298distinct operations; for signed integer remainder, use '``srem``'.
6299
6300Taking the remainder of a division by zero leads to undefined behavior.
6301
6302Example:
6303""""""""
6304
Renato Golin124f2592016-07-20 12:16:38 +00006305.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006306
Tim Northover675a0962014-06-13 14:24:23 +00006307 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006308
6309'``srem``' Instruction
6310^^^^^^^^^^^^^^^^^^^^^^
6311
6312Syntax:
6313"""""""
6314
6315::
6316
Tim Northover675a0962014-06-13 14:24:23 +00006317 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006318
6319Overview:
6320"""""""""
6321
6322The '``srem``' instruction returns the remainder from the signed
6323division of its two operands. This instruction can also take
6324:ref:`vector <t_vector>` versions of the values in which case the elements
6325must be integers.
6326
6327Arguments:
6328""""""""""
6329
6330The two arguments to the '``srem``' instruction must be
6331:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6332arguments must have identical types.
6333
6334Semantics:
6335""""""""""
6336
6337This instruction returns the *remainder* of a division (where the result
6338is either zero or has the same sign as the dividend, ``op1``), not the
6339*modulo* operator (where the result is either zero or has the same sign
6340as the divisor, ``op2``) of a value. For more information about the
6341difference, see `The Math
6342Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6343table of how this is implemented in various languages, please see
6344`Wikipedia: modulo
6345operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6346
6347Note that signed integer remainder and unsigned integer remainder are
6348distinct operations; for unsigned integer remainder, use '``urem``'.
6349
6350Taking the remainder of a division by zero leads to undefined behavior.
6351Overflow also leads to undefined behavior; this is a rare case, but can
6352occur, for example, by taking the remainder of a 32-bit division of
6353-2147483648 by -1. (The remainder doesn't actually overflow, but this
6354rule lets srem be implemented using instructions that return both the
6355result of the division and the remainder.)
6356
6357Example:
6358""""""""
6359
Renato Golin124f2592016-07-20 12:16:38 +00006360.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006361
Tim Northover675a0962014-06-13 14:24:23 +00006362 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006363
6364.. _i_frem:
6365
6366'``frem``' Instruction
6367^^^^^^^^^^^^^^^^^^^^^^
6368
6369Syntax:
6370"""""""
6371
6372::
6373
Tim Northover675a0962014-06-13 14:24:23 +00006374 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006375
6376Overview:
6377"""""""""
6378
6379The '``frem``' instruction returns the remainder from the division of
6380its two operands.
6381
6382Arguments:
6383""""""""""
6384
6385The two arguments to the '``frem``' instruction must be :ref:`floating
6386point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6387Both arguments must have identical types.
6388
6389Semantics:
6390""""""""""
6391
6392This instruction returns the *remainder* of a division. The remainder
6393has the same sign as the dividend. This instruction can also take any
6394number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6395to enable otherwise unsafe floating point optimizations:
6396
6397Example:
6398""""""""
6399
Renato Golin124f2592016-07-20 12:16:38 +00006400.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006401
Tim Northover675a0962014-06-13 14:24:23 +00006402 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006403
6404.. _bitwiseops:
6405
6406Bitwise Binary Operations
6407-------------------------
6408
6409Bitwise binary operators are used to do various forms of bit-twiddling
6410in a program. They are generally very efficient instructions and can
6411commonly be strength reduced from other instructions. They require two
6412operands of the same type, execute an operation on them, and produce a
6413single value. The resulting value is the same type as its operands.
6414
6415'``shl``' Instruction
6416^^^^^^^^^^^^^^^^^^^^^
6417
6418Syntax:
6419"""""""
6420
6421::
6422
Tim Northover675a0962014-06-13 14:24:23 +00006423 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6424 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6425 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6426 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006427
6428Overview:
6429"""""""""
6430
6431The '``shl``' instruction returns the first operand shifted to the left
6432a specified number of bits.
6433
6434Arguments:
6435""""""""""
6436
6437Both arguments to the '``shl``' instruction must be the same
6438:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6439'``op2``' is treated as an unsigned value.
6440
6441Semantics:
6442""""""""""
6443
6444The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6445where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006446dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006447``op1``, the result is undefined. If the arguments are vectors, each
6448vector element of ``op1`` is shifted by the corresponding shift amount
6449in ``op2``.
6450
6451If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6452value <poisonvalues>` if it shifts out any non-zero bits. If the
6453``nsw`` keyword is present, then the shift produces a :ref:`poison
6454value <poisonvalues>` if it shifts out any bits that disagree with the
Sanjoy Dasdbc58d02016-11-13 23:40:40 +00006455resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006456
6457Example:
6458""""""""
6459
Renato Golin124f2592016-07-20 12:16:38 +00006460.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006461
Tim Northover675a0962014-06-13 14:24:23 +00006462 <result> = shl i32 4, %var ; yields i32: 4 << %var
6463 <result> = shl i32 4, 2 ; yields i32: 16
6464 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006465 <result> = shl i32 1, 32 ; undefined
6466 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6467
6468'``lshr``' Instruction
6469^^^^^^^^^^^^^^^^^^^^^^
6470
6471Syntax:
6472"""""""
6473
6474::
6475
Tim Northover675a0962014-06-13 14:24:23 +00006476 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6477 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006478
6479Overview:
6480"""""""""
6481
6482The '``lshr``' instruction (logical shift right) returns the first
6483operand shifted to the right a specified number of bits with zero fill.
6484
6485Arguments:
6486""""""""""
6487
6488Both arguments to the '``lshr``' instruction must be the same
6489:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6490'``op2``' is treated as an unsigned value.
6491
6492Semantics:
6493""""""""""
6494
6495This instruction always performs a logical shift right operation. The
6496most significant bits of the result will be filled with zero bits after
6497the shift. If ``op2`` is (statically or dynamically) equal to or larger
6498than the number of bits in ``op1``, the result is undefined. If the
6499arguments are vectors, each vector element of ``op1`` is shifted by the
6500corresponding shift amount in ``op2``.
6501
6502If the ``exact`` keyword is present, the result value of the ``lshr`` is
6503a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6504non-zero.
6505
6506Example:
6507""""""""
6508
Renato Golin124f2592016-07-20 12:16:38 +00006509.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006510
Tim Northover675a0962014-06-13 14:24:23 +00006511 <result> = lshr i32 4, 1 ; yields i32:result = 2
6512 <result> = lshr i32 4, 2 ; yields i32:result = 1
6513 <result> = lshr i8 4, 3 ; yields i8:result = 0
6514 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006515 <result> = lshr i32 1, 32 ; undefined
6516 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6517
6518'``ashr``' Instruction
6519^^^^^^^^^^^^^^^^^^^^^^
6520
6521Syntax:
6522"""""""
6523
6524::
6525
Tim Northover675a0962014-06-13 14:24:23 +00006526 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6527 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006528
6529Overview:
6530"""""""""
6531
6532The '``ashr``' instruction (arithmetic shift right) returns the first
6533operand shifted to the right a specified number of bits with sign
6534extension.
6535
6536Arguments:
6537""""""""""
6538
6539Both arguments to the '``ashr``' instruction must be the same
6540:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6541'``op2``' is treated as an unsigned value.
6542
6543Semantics:
6544""""""""""
6545
6546This instruction always performs an arithmetic shift right operation,
6547The most significant bits of the result will be filled with the sign bit
6548of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6549than the number of bits in ``op1``, the result is undefined. If the
6550arguments are vectors, each vector element of ``op1`` is shifted by the
6551corresponding shift amount in ``op2``.
6552
6553If the ``exact`` keyword is present, the result value of the ``ashr`` is
6554a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6555non-zero.
6556
6557Example:
6558""""""""
6559
Renato Golin124f2592016-07-20 12:16:38 +00006560.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006561
Tim Northover675a0962014-06-13 14:24:23 +00006562 <result> = ashr i32 4, 1 ; yields i32:result = 2
6563 <result> = ashr i32 4, 2 ; yields i32:result = 1
6564 <result> = ashr i8 4, 3 ; yields i8:result = 0
6565 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006566 <result> = ashr i32 1, 32 ; undefined
6567 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6568
6569'``and``' Instruction
6570^^^^^^^^^^^^^^^^^^^^^
6571
6572Syntax:
6573"""""""
6574
6575::
6576
Tim Northover675a0962014-06-13 14:24:23 +00006577 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006578
6579Overview:
6580"""""""""
6581
6582The '``and``' instruction returns the bitwise logical and of its two
6583operands.
6584
6585Arguments:
6586""""""""""
6587
6588The two arguments to the '``and``' instruction must be
6589:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6590arguments must have identical types.
6591
6592Semantics:
6593""""""""""
6594
6595The truth table used for the '``and``' instruction is:
6596
6597+-----+-----+-----+
6598| In0 | In1 | Out |
6599+-----+-----+-----+
6600| 0 | 0 | 0 |
6601+-----+-----+-----+
6602| 0 | 1 | 0 |
6603+-----+-----+-----+
6604| 1 | 0 | 0 |
6605+-----+-----+-----+
6606| 1 | 1 | 1 |
6607+-----+-----+-----+
6608
6609Example:
6610""""""""
6611
Renato Golin124f2592016-07-20 12:16:38 +00006612.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006613
Tim Northover675a0962014-06-13 14:24:23 +00006614 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6615 <result> = and i32 15, 40 ; yields i32:result = 8
6616 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006617
6618'``or``' Instruction
6619^^^^^^^^^^^^^^^^^^^^
6620
6621Syntax:
6622"""""""
6623
6624::
6625
Tim Northover675a0962014-06-13 14:24:23 +00006626 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006627
6628Overview:
6629"""""""""
6630
6631The '``or``' instruction returns the bitwise logical inclusive or of its
6632two operands.
6633
6634Arguments:
6635""""""""""
6636
6637The two arguments to the '``or``' instruction must be
6638:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6639arguments must have identical types.
6640
6641Semantics:
6642""""""""""
6643
6644The truth table used for the '``or``' instruction is:
6645
6646+-----+-----+-----+
6647| In0 | In1 | Out |
6648+-----+-----+-----+
6649| 0 | 0 | 0 |
6650+-----+-----+-----+
6651| 0 | 1 | 1 |
6652+-----+-----+-----+
6653| 1 | 0 | 1 |
6654+-----+-----+-----+
6655| 1 | 1 | 1 |
6656+-----+-----+-----+
6657
6658Example:
6659""""""""
6660
6661::
6662
Tim Northover675a0962014-06-13 14:24:23 +00006663 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6664 <result> = or i32 15, 40 ; yields i32:result = 47
6665 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006666
6667'``xor``' Instruction
6668^^^^^^^^^^^^^^^^^^^^^
6669
6670Syntax:
6671"""""""
6672
6673::
6674
Tim Northover675a0962014-06-13 14:24:23 +00006675 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006676
6677Overview:
6678"""""""""
6679
6680The '``xor``' instruction returns the bitwise logical exclusive or of
6681its two operands. The ``xor`` is used to implement the "one's
6682complement" operation, which is the "~" operator in C.
6683
6684Arguments:
6685""""""""""
6686
6687The two arguments to the '``xor``' instruction must be
6688:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6689arguments must have identical types.
6690
6691Semantics:
6692""""""""""
6693
6694The truth table used for the '``xor``' instruction is:
6695
6696+-----+-----+-----+
6697| In0 | In1 | Out |
6698+-----+-----+-----+
6699| 0 | 0 | 0 |
6700+-----+-----+-----+
6701| 0 | 1 | 1 |
6702+-----+-----+-----+
6703| 1 | 0 | 1 |
6704+-----+-----+-----+
6705| 1 | 1 | 0 |
6706+-----+-----+-----+
6707
6708Example:
6709""""""""
6710
Renato Golin124f2592016-07-20 12:16:38 +00006711.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006712
Tim Northover675a0962014-06-13 14:24:23 +00006713 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6714 <result> = xor i32 15, 40 ; yields i32:result = 39
6715 <result> = xor i32 4, 8 ; yields i32:result = 12
6716 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006717
6718Vector Operations
6719-----------------
6720
6721LLVM supports several instructions to represent vector operations in a
6722target-independent manner. These instructions cover the element-access
6723and vector-specific operations needed to process vectors effectively.
6724While LLVM does directly support these vector operations, many
6725sophisticated algorithms will want to use target-specific intrinsics to
6726take full advantage of a specific target.
6727
6728.. _i_extractelement:
6729
6730'``extractelement``' Instruction
6731^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6732
6733Syntax:
6734"""""""
6735
6736::
6737
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006738 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006739
6740Overview:
6741"""""""""
6742
6743The '``extractelement``' instruction extracts a single scalar element
6744from a vector at a specified index.
6745
6746Arguments:
6747""""""""""
6748
6749The first operand of an '``extractelement``' instruction is a value of
6750:ref:`vector <t_vector>` type. The second operand is an index indicating
6751the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006752variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006753
6754Semantics:
6755""""""""""
6756
6757The result is a scalar of the same type as the element type of ``val``.
6758Its value is the value at position ``idx`` of ``val``. If ``idx``
6759exceeds the length of ``val``, the results are undefined.
6760
6761Example:
6762""""""""
6763
Renato Golin124f2592016-07-20 12:16:38 +00006764.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006765
6766 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6767
6768.. _i_insertelement:
6769
6770'``insertelement``' Instruction
6771^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6772
6773Syntax:
6774"""""""
6775
6776::
6777
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006778 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006779
6780Overview:
6781"""""""""
6782
6783The '``insertelement``' instruction inserts a scalar element into a
6784vector at a specified index.
6785
6786Arguments:
6787""""""""""
6788
6789The first operand of an '``insertelement``' instruction is a value of
6790:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6791type must equal the element type of the first operand. The third operand
6792is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006793index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006794
6795Semantics:
6796""""""""""
6797
6798The result is a vector of the same type as ``val``. Its element values
6799are those of ``val`` except at position ``idx``, where it gets the value
6800``elt``. If ``idx`` exceeds the length of ``val``, the results are
6801undefined.
6802
6803Example:
6804""""""""
6805
Renato Golin124f2592016-07-20 12:16:38 +00006806.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006807
6808 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6809
6810.. _i_shufflevector:
6811
6812'``shufflevector``' Instruction
6813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6814
6815Syntax:
6816"""""""
6817
6818::
6819
6820 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6821
6822Overview:
6823"""""""""
6824
6825The '``shufflevector``' instruction constructs a permutation of elements
6826from two input vectors, returning a vector with the same element type as
6827the input and length that is the same as the shuffle mask.
6828
6829Arguments:
6830""""""""""
6831
6832The first two operands of a '``shufflevector``' instruction are vectors
6833with the same type. The third argument is a shuffle mask whose element
6834type is always 'i32'. The result of the instruction is a vector whose
6835length is the same as the shuffle mask and whose element type is the
6836same as the element type of the first two operands.
6837
6838The shuffle mask operand is required to be a constant vector with either
6839constant integer or undef values.
6840
6841Semantics:
6842""""""""""
6843
6844The elements of the two input vectors are numbered from left to right
6845across both of the vectors. The shuffle mask operand specifies, for each
6846element of the result vector, which element of the two input vectors the
6847result element gets. The element selector may be undef (meaning "don't
6848care") and the second operand may be undef if performing a shuffle from
6849only one vector.
6850
6851Example:
6852""""""""
6853
Renato Golin124f2592016-07-20 12:16:38 +00006854.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006855
6856 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6857 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6858 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6859 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6860 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6861 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6862 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6863 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6864
6865Aggregate Operations
6866--------------------
6867
6868LLVM supports several instructions for working with
6869:ref:`aggregate <t_aggregate>` values.
6870
6871.. _i_extractvalue:
6872
6873'``extractvalue``' Instruction
6874^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6875
6876Syntax:
6877"""""""
6878
6879::
6880
6881 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6882
6883Overview:
6884"""""""""
6885
6886The '``extractvalue``' instruction extracts the value of a member field
6887from an :ref:`aggregate <t_aggregate>` value.
6888
6889Arguments:
6890""""""""""
6891
6892The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006893:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006894constant indices to specify which value to extract in a similar manner
6895as indices in a '``getelementptr``' instruction.
6896
6897The major differences to ``getelementptr`` indexing are:
6898
6899- Since the value being indexed is not a pointer, the first index is
6900 omitted and assumed to be zero.
6901- At least one index must be specified.
6902- Not only struct indices but also array indices must be in bounds.
6903
6904Semantics:
6905""""""""""
6906
6907The result is the value at the position in the aggregate specified by
6908the index operands.
6909
6910Example:
6911""""""""
6912
Renato Golin124f2592016-07-20 12:16:38 +00006913.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006914
6915 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6916
6917.. _i_insertvalue:
6918
6919'``insertvalue``' Instruction
6920^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6921
6922Syntax:
6923"""""""
6924
6925::
6926
6927 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6928
6929Overview:
6930"""""""""
6931
6932The '``insertvalue``' instruction inserts a value into a member field in
6933an :ref:`aggregate <t_aggregate>` value.
6934
6935Arguments:
6936""""""""""
6937
6938The first operand of an '``insertvalue``' instruction is a value of
6939:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6940a first-class value to insert. The following operands are constant
6941indices indicating the position at which to insert the value in a
6942similar manner as indices in a '``extractvalue``' instruction. The value
6943to insert must have the same type as the value identified by the
6944indices.
6945
6946Semantics:
6947""""""""""
6948
6949The result is an aggregate of the same type as ``val``. Its value is
6950that of ``val`` except that the value at the position specified by the
6951indices is that of ``elt``.
6952
6953Example:
6954""""""""
6955
6956.. code-block:: llvm
6957
6958 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6959 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006960 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006961
6962.. _memoryops:
6963
6964Memory Access and Addressing Operations
6965---------------------------------------
6966
6967A key design point of an SSA-based representation is how it represents
6968memory. In LLVM, no memory locations are in SSA form, which makes things
6969very simple. This section describes how to read, write, and allocate
6970memory in LLVM.
6971
6972.. _i_alloca:
6973
6974'``alloca``' Instruction
6975^^^^^^^^^^^^^^^^^^^^^^^^
6976
6977Syntax:
6978"""""""
6979
6980::
6981
Tim Northover675a0962014-06-13 14:24:23 +00006982 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006983
6984Overview:
6985"""""""""
6986
6987The '``alloca``' instruction allocates memory on the stack frame of the
6988currently executing function, to be automatically released when this
6989function returns to its caller. The object is always allocated in the
6990generic address space (address space zero).
6991
6992Arguments:
6993""""""""""
6994
6995The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6996bytes of memory on the runtime stack, returning a pointer of the
6997appropriate type to the program. If "NumElements" is specified, it is
6998the number of elements allocated, otherwise "NumElements" is defaulted
6999to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007000allocation is guaranteed to be aligned to at least that boundary. The
7001alignment may not be greater than ``1 << 29``. If not specified, or if
7002zero, the target can choose to align the allocation on any convenient
7003boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007004
7005'``type``' may be any sized type.
7006
7007Semantics:
7008""""""""""
7009
7010Memory is allocated; a pointer is returned. The operation is undefined
7011if there is insufficient stack space for the allocation. '``alloca``'d
7012memory is automatically released when the function returns. The
7013'``alloca``' instruction is commonly used to represent automatic
7014variables that must have an address available. When the function returns
7015(either with the ``ret`` or ``resume`` instructions), the memory is
7016reclaimed. Allocating zero bytes is legal, but the result is undefined.
7017The order in which memory is allocated (ie., which way the stack grows)
7018is not specified.
7019
7020Example:
7021""""""""
7022
7023.. code-block:: llvm
7024
Tim Northover675a0962014-06-13 14:24:23 +00007025 %ptr = alloca i32 ; yields i32*:ptr
7026 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7027 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7028 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007029
7030.. _i_load:
7031
7032'``load``' Instruction
7033^^^^^^^^^^^^^^^^^^^^^^
7034
7035Syntax:
7036"""""""
7037
7038::
7039
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007040 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007041 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007042 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007043 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007044 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007045
7046Overview:
7047"""""""""
7048
7049The '``load``' instruction is used to read from memory.
7050
7051Arguments:
7052""""""""""
7053
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007054The argument to the ``load`` instruction specifies the memory address from which
7055to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7056known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7057the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7058modify the number or order of execution of this ``load`` with other
7059:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007060
JF Bastiend1fb5852015-12-17 22:09:19 +00007061If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7062<ordering>` and optional ``singlethread`` argument. The ``release`` and
7063``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7064produce :ref:`defined <memmodel>` results when they may see multiple atomic
7065stores. The type of the pointee must be an integer, pointer, or floating-point
7066type whose bit width is a power of two greater than or equal to eight and less
7067than or equal to a target-specific size limit. ``align`` must be explicitly
7068specified on atomic loads, and the load has undefined behavior if the alignment
7069is not set to a value which is at least the size in bytes of the
7070pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007071
7072The optional constant ``align`` argument specifies the alignment of the
7073operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007074or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007075alignment for the target. It is the responsibility of the code emitter
7076to ensure that the alignment information is correct. Overestimating the
7077alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007078may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007079maximum possible alignment is ``1 << 29``. An alignment value higher
7080than the size of the loaded type implies memory up to the alignment
7081value bytes can be safely loaded without trapping in the default
7082address space. Access of the high bytes can interfere with debugging
7083tools, so should not be accessed if the function has the
7084``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007085
7086The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007087metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007088``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007089metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007090that this load is not expected to be reused in the cache. The code
7091generator may select special instructions to save cache bandwidth, such
7092as the ``MOVNT`` instruction on x86.
7093
7094The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007095metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007096entries. If a load instruction tagged with the ``!invariant.load``
7097metadata is executed, the optimizer may assume the memory location
7098referenced by the load contains the same value at all points in the
7099program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007100
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007101The optional ``!invariant.group`` metadata must reference a single metadata name
7102 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7103
Philip Reamescdb72f32014-10-20 22:40:55 +00007104The optional ``!nonnull`` metadata must reference a single
7105metadata name ``<index>`` corresponding to a metadata node with no
7106entries. The existence of the ``!nonnull`` metadata on the
7107instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007108never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007109on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007110to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007111
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007112The optional ``!dereferenceable`` metadata must reference a single metadata
7113name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007114entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007115tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007116The number of bytes known to be dereferenceable is specified by the integer
7117value in the metadata node. This is analogous to the ''dereferenceable''
7118attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007119to loads of a pointer type.
7120
7121The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007122metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7123``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007124instruction tells the optimizer that the value loaded is known to be either
7125dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007126The number of bytes known to be dereferenceable is specified by the integer
7127value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7128attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007129to loads of a pointer type.
7130
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007131The optional ``!align`` metadata must reference a single metadata name
7132``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7133The existence of the ``!align`` metadata on the instruction tells the
7134optimizer that the value loaded is known to be aligned to a boundary specified
7135by the integer value in the metadata node. The alignment must be a power of 2.
7136This is analogous to the ''align'' attribute on parameters and return values.
7137This metadata can only be applied to loads of a pointer type.
7138
Sean Silvab084af42012-12-07 10:36:55 +00007139Semantics:
7140""""""""""
7141
7142The location of memory pointed to is loaded. If the value being loaded
7143is of scalar type then the number of bytes read does not exceed the
7144minimum number of bytes needed to hold all bits of the type. For
7145example, loading an ``i24`` reads at most three bytes. When loading a
7146value of a type like ``i20`` with a size that is not an integral number
7147of bytes, the result is undefined if the value was not originally
7148written using a store of the same type.
7149
7150Examples:
7151"""""""""
7152
7153.. code-block:: llvm
7154
Tim Northover675a0962014-06-13 14:24:23 +00007155 %ptr = alloca i32 ; yields i32*:ptr
7156 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007157 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007158
7159.. _i_store:
7160
7161'``store``' Instruction
7162^^^^^^^^^^^^^^^^^^^^^^^
7163
7164Syntax:
7165"""""""
7166
7167::
7168
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007169 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7170 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007171
7172Overview:
7173"""""""""
7174
7175The '``store``' instruction is used to write to memory.
7176
7177Arguments:
7178""""""""""
7179
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007180There are two arguments to the ``store`` instruction: a value to store and an
7181address at which to store it. The type of the ``<pointer>`` operand must be a
7182pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7183operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7184allowed to modify the number or order of execution of this ``store`` with other
7185:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7186<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7187structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007188
JF Bastiend1fb5852015-12-17 22:09:19 +00007189If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7190<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7191``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7192produce :ref:`defined <memmodel>` results when they may see multiple atomic
7193stores. The type of the pointee must be an integer, pointer, or floating-point
7194type whose bit width is a power of two greater than or equal to eight and less
7195than or equal to a target-specific size limit. ``align`` must be explicitly
7196specified on atomic stores, and the store has undefined behavior if the
7197alignment is not set to a value which is at least the size in bytes of the
7198pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007199
Eli Benderskyca380842013-04-17 17:17:20 +00007200The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007201operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007202or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007203alignment for the target. It is the responsibility of the code emitter
7204to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007205alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007206alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007207safe. The maximum possible alignment is ``1 << 29``. An alignment
7208value higher than the size of the stored type implies memory up to the
7209alignment value bytes can be stored to without trapping in the default
7210address space. Storing to the higher bytes however may result in data
7211races if another thread can access the same address. Introducing a
7212data race is not allowed. Storing to the extra bytes is not allowed
7213even in situations where a data race is known to not exist if the
7214function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007215
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007216The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007217name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007218value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007219tells the optimizer and code generator that this load is not expected to
7220be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007221instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007222x86.
7223
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007224The optional ``!invariant.group`` metadata must reference a
7225single metadata name ``<index>``. See ``invariant.group`` metadata.
7226
Sean Silvab084af42012-12-07 10:36:55 +00007227Semantics:
7228""""""""""
7229
Eli Benderskyca380842013-04-17 17:17:20 +00007230The contents of memory are updated to contain ``<value>`` at the
7231location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007232of scalar type then the number of bytes written does not exceed the
7233minimum number of bytes needed to hold all bits of the type. For
7234example, storing an ``i24`` writes at most three bytes. When writing a
7235value of a type like ``i20`` with a size that is not an integral number
7236of bytes, it is unspecified what happens to the extra bits that do not
7237belong to the type, but they will typically be overwritten.
7238
7239Example:
7240""""""""
7241
7242.. code-block:: llvm
7243
Tim Northover675a0962014-06-13 14:24:23 +00007244 %ptr = alloca i32 ; yields i32*:ptr
7245 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007246 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007247
7248.. _i_fence:
7249
7250'``fence``' Instruction
7251^^^^^^^^^^^^^^^^^^^^^^^
7252
7253Syntax:
7254"""""""
7255
7256::
7257
Tim Northover675a0962014-06-13 14:24:23 +00007258 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007259
7260Overview:
7261"""""""""
7262
7263The '``fence``' instruction is used to introduce happens-before edges
7264between operations.
7265
7266Arguments:
7267""""""""""
7268
7269'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7270defines what *synchronizes-with* edges they add. They can only be given
7271``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7272
7273Semantics:
7274""""""""""
7275
7276A fence A which has (at least) ``release`` ordering semantics
7277*synchronizes with* a fence B with (at least) ``acquire`` ordering
7278semantics if and only if there exist atomic operations X and Y, both
7279operating on some atomic object M, such that A is sequenced before X, X
7280modifies M (either directly or through some side effect of a sequence
7281headed by X), Y is sequenced before B, and Y observes M. This provides a
7282*happens-before* dependency between A and B. Rather than an explicit
7283``fence``, one (but not both) of the atomic operations X or Y might
7284provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7285still *synchronize-with* the explicit ``fence`` and establish the
7286*happens-before* edge.
7287
7288A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7289``acquire`` and ``release`` semantics specified above, participates in
7290the global program order of other ``seq_cst`` operations and/or fences.
7291
7292The optional ":ref:`singlethread <singlethread>`" argument specifies
7293that the fence only synchronizes with other fences in the same thread.
7294(This is useful for interacting with signal handlers.)
7295
7296Example:
7297""""""""
7298
7299.. code-block:: llvm
7300
Tim Northover675a0962014-06-13 14:24:23 +00007301 fence acquire ; yields void
7302 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007303
7304.. _i_cmpxchg:
7305
7306'``cmpxchg``' Instruction
7307^^^^^^^^^^^^^^^^^^^^^^^^^
7308
7309Syntax:
7310"""""""
7311
7312::
7313
Tim Northover675a0962014-06-13 14:24:23 +00007314 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007315
7316Overview:
7317"""""""""
7318
7319The '``cmpxchg``' instruction is used to atomically modify memory. It
7320loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007321equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007322
7323Arguments:
7324""""""""""
7325
7326There are three arguments to the '``cmpxchg``' instruction: an address
7327to operate on, a value to compare to the value currently be at that
7328address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007329are equal. The type of '<cmp>' must be an integer or pointer type whose
7330bit width is a power of two greater than or equal to eight and less
7331than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7332have the same type, and the type of '<pointer>' must be a pointer to
7333that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7334optimizer is not allowed to modify the number or order of execution of
7335this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007336
Tim Northovere94a5182014-03-11 10:48:52 +00007337The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007338``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7339must be at least ``monotonic``, the ordering constraint on failure must be no
7340stronger than that on success, and the failure ordering cannot be either
7341``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007342
7343The optional "``singlethread``" argument declares that the ``cmpxchg``
7344is only atomic with respect to code (usually signal handlers) running in
7345the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7346respect to all other code in the system.
7347
7348The pointer passed into cmpxchg must have alignment greater than or
7349equal to the size in memory of the operand.
7350
7351Semantics:
7352""""""""""
7353
Tim Northover420a2162014-06-13 14:24:07 +00007354The contents of memory at the location specified by the '``<pointer>``' operand
7355is read and compared to '``<cmp>``'; if the read value is the equal, the
7356'``<new>``' is written. The original value at the location is returned, together
7357with a flag indicating success (true) or failure (false).
7358
7359If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7360permitted: the operation may not write ``<new>`` even if the comparison
7361matched.
7362
7363If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7364if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007365
Tim Northovere94a5182014-03-11 10:48:52 +00007366A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7367identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7368load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007369
7370Example:
7371""""""""
7372
7373.. code-block:: llvm
7374
7375 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007376 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007377 br label %loop
7378
7379 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007380 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007381 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007382 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007383 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7384 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007385 br i1 %success, label %done, label %loop
7386
7387 done:
7388 ...
7389
7390.. _i_atomicrmw:
7391
7392'``atomicrmw``' Instruction
7393^^^^^^^^^^^^^^^^^^^^^^^^^^^
7394
7395Syntax:
7396"""""""
7397
7398::
7399
Tim Northover675a0962014-06-13 14:24:23 +00007400 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007401
7402Overview:
7403"""""""""
7404
7405The '``atomicrmw``' instruction is used to atomically modify memory.
7406
7407Arguments:
7408""""""""""
7409
7410There are three arguments to the '``atomicrmw``' instruction: an
7411operation to apply, an address whose value to modify, an argument to the
7412operation. The operation must be one of the following keywords:
7413
7414- xchg
7415- add
7416- sub
7417- and
7418- nand
7419- or
7420- xor
7421- max
7422- min
7423- umax
7424- umin
7425
7426The type of '<value>' must be an integer type whose bit width is a power
7427of two greater than or equal to eight and less than or equal to a
7428target-specific size limit. The type of the '``<pointer>``' operand must
7429be a pointer to that type. If the ``atomicrmw`` is marked as
7430``volatile``, then the optimizer is not allowed to modify the number or
7431order of execution of this ``atomicrmw`` with other :ref:`volatile
7432operations <volatile>`.
7433
7434Semantics:
7435""""""""""
7436
7437The contents of memory at the location specified by the '``<pointer>``'
7438operand are atomically read, modified, and written back. The original
7439value at the location is returned. The modification is specified by the
7440operation argument:
7441
7442- xchg: ``*ptr = val``
7443- add: ``*ptr = *ptr + val``
7444- sub: ``*ptr = *ptr - val``
7445- and: ``*ptr = *ptr & val``
7446- nand: ``*ptr = ~(*ptr & val)``
7447- or: ``*ptr = *ptr | val``
7448- xor: ``*ptr = *ptr ^ val``
7449- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7450- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7451- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7452 comparison)
7453- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7454 comparison)
7455
7456Example:
7457""""""""
7458
7459.. code-block:: llvm
7460
Tim Northover675a0962014-06-13 14:24:23 +00007461 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007462
7463.. _i_getelementptr:
7464
7465'``getelementptr``' Instruction
7466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7467
7468Syntax:
7469"""""""
7470
7471::
7472
Peter Collingbourned93620b2016-11-10 22:34:55 +00007473 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7474 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7475 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007476
7477Overview:
7478"""""""""
7479
7480The '``getelementptr``' instruction is used to get the address of a
7481subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007482address calculation only and does not access memory. The instruction can also
7483be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007484
7485Arguments:
7486""""""""""
7487
David Blaikie16a97eb2015-03-04 22:02:58 +00007488The first argument is always a type used as the basis for the calculations.
7489The second argument is always a pointer or a vector of pointers, and is the
7490base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007491that indicate which of the elements of the aggregate object are indexed.
7492The interpretation of each index is dependent on the type being indexed
7493into. The first index always indexes the pointer value given as the
7494first argument, the second index indexes a value of the type pointed to
7495(not necessarily the value directly pointed to, since the first index
7496can be non-zero), etc. The first type indexed into must be a pointer
7497value, subsequent types can be arrays, vectors, and structs. Note that
7498subsequent types being indexed into can never be pointers, since that
7499would require loading the pointer before continuing calculation.
7500
7501The type of each index argument depends on the type it is indexing into.
7502When indexing into a (optionally packed) structure, only ``i32`` integer
7503**constants** are allowed (when using a vector of indices they must all
7504be the **same** ``i32`` integer constant). When indexing into an array,
7505pointer or vector, integers of any width are allowed, and they are not
7506required to be constant. These integers are treated as signed values
7507where relevant.
7508
7509For example, let's consider a C code fragment and how it gets compiled
7510to LLVM:
7511
7512.. code-block:: c
7513
7514 struct RT {
7515 char A;
7516 int B[10][20];
7517 char C;
7518 };
7519 struct ST {
7520 int X;
7521 double Y;
7522 struct RT Z;
7523 };
7524
7525 int *foo(struct ST *s) {
7526 return &s[1].Z.B[5][13];
7527 }
7528
7529The LLVM code generated by Clang is:
7530
7531.. code-block:: llvm
7532
7533 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7534 %struct.ST = type { i32, double, %struct.RT }
7535
7536 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7537 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007538 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007539 ret i32* %arrayidx
7540 }
7541
7542Semantics:
7543""""""""""
7544
7545In the example above, the first index is indexing into the
7546'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7547= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7548indexes into the third element of the structure, yielding a
7549'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7550structure. The third index indexes into the second element of the
7551structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7552dimensions of the array are subscripted into, yielding an '``i32``'
7553type. The '``getelementptr``' instruction returns a pointer to this
7554element, thus computing a value of '``i32*``' type.
7555
7556Note that it is perfectly legal to index partially through a structure,
7557returning a pointer to an inner element. Because of this, the LLVM code
7558for the given testcase is equivalent to:
7559
7560.. code-block:: llvm
7561
7562 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007563 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7564 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7565 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7566 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7567 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007568 ret i32* %t5
7569 }
7570
7571If the ``inbounds`` keyword is present, the result value of the
7572``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7573pointer is not an *in bounds* address of an allocated object, or if any
7574of the addresses that would be formed by successive addition of the
7575offsets implied by the indices to the base address with infinitely
7576precise signed arithmetic are not an *in bounds* address of that
7577allocated object. The *in bounds* addresses for an allocated object are
7578all the addresses that point into the object, plus the address one byte
7579past the end. In cases where the base is a vector of pointers the
7580``inbounds`` keyword applies to each of the computations element-wise.
7581
7582If the ``inbounds`` keyword is not present, the offsets are added to the
7583base address with silently-wrapping two's complement arithmetic. If the
7584offsets have a different width from the pointer, they are sign-extended
7585or truncated to the width of the pointer. The result value of the
7586``getelementptr`` may be outside the object pointed to by the base
7587pointer. The result value may not necessarily be used to access memory
7588though, even if it happens to point into allocated storage. See the
7589:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7590information.
7591
Peter Collingbourned93620b2016-11-10 22:34:55 +00007592If the ``inrange`` keyword is present before any index, loading from or
7593storing to any pointer derived from the ``getelementptr`` has undefined
7594behavior if the load or store would access memory outside of the bounds of
7595the element selected by the index marked as ``inrange``. The result of a
7596pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7597involving memory) involving a pointer derived from a ``getelementptr`` with
7598the ``inrange`` keyword is undefined, with the exception of comparisons
7599in the case where both operands are in the range of the element selected
7600by the ``inrange`` keyword, inclusive of the address one past the end of
7601that element. Note that the ``inrange`` keyword is currently only allowed
7602in constant ``getelementptr`` expressions.
7603
Sean Silvab084af42012-12-07 10:36:55 +00007604The getelementptr instruction is often confusing. For some more insight
7605into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7606
7607Example:
7608""""""""
7609
7610.. code-block:: llvm
7611
7612 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007613 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007614 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007615 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007616 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007617 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007618 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007619 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007620
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007621Vector of pointers:
7622"""""""""""""""""""
7623
7624The ``getelementptr`` returns a vector of pointers, instead of a single address,
7625when one or more of its arguments is a vector. In such cases, all vector
7626arguments should have the same number of elements, and every scalar argument
7627will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007628
7629.. code-block:: llvm
7630
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007631 ; All arguments are vectors:
7632 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7633 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007634
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007635 ; Add the same scalar offset to each pointer of a vector:
7636 ; A[i] = ptrs[i] + offset*sizeof(i8)
7637 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007638
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007639 ; Add distinct offsets to the same pointer:
7640 ; A[i] = ptr + offsets[i]*sizeof(i8)
7641 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007642
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007643 ; In all cases described above the type of the result is <4 x i8*>
7644
7645The two following instructions are equivalent:
7646
7647.. code-block:: llvm
7648
7649 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7650 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7651 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7652 <4 x i32> %ind4,
7653 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007654
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007655 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7656 i32 2, i32 1, <4 x i32> %ind4, i64 13
7657
7658Let's look at the C code, where the vector version of ``getelementptr``
7659makes sense:
7660
7661.. code-block:: c
7662
7663 // Let's assume that we vectorize the following loop:
7664 double *A, B; int *C;
7665 for (int i = 0; i < size; ++i) {
7666 A[i] = B[C[i]];
7667 }
7668
7669.. code-block:: llvm
7670
7671 ; get pointers for 8 elements from array B
7672 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7673 ; load 8 elements from array B into A
7674 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7675 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007676
7677Conversion Operations
7678---------------------
7679
7680The instructions in this category are the conversion instructions
7681(casting) which all take a single operand and a type. They perform
7682various bit conversions on the operand.
7683
7684'``trunc .. to``' Instruction
7685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7686
7687Syntax:
7688"""""""
7689
7690::
7691
7692 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7693
7694Overview:
7695"""""""""
7696
7697The '``trunc``' instruction truncates its operand to the type ``ty2``.
7698
7699Arguments:
7700""""""""""
7701
7702The '``trunc``' instruction takes a value to trunc, and a type to trunc
7703it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7704of the same number of integers. The bit size of the ``value`` must be
7705larger than the bit size of the destination type, ``ty2``. Equal sized
7706types are not allowed.
7707
7708Semantics:
7709""""""""""
7710
7711The '``trunc``' instruction truncates the high order bits in ``value``
7712and converts the remaining bits to ``ty2``. Since the source size must
7713be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7714It will always truncate bits.
7715
7716Example:
7717""""""""
7718
7719.. code-block:: llvm
7720
7721 %X = trunc i32 257 to i8 ; yields i8:1
7722 %Y = trunc i32 123 to i1 ; yields i1:true
7723 %Z = trunc i32 122 to i1 ; yields i1:false
7724 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7725
7726'``zext .. to``' Instruction
7727^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7728
7729Syntax:
7730"""""""
7731
7732::
7733
7734 <result> = zext <ty> <value> to <ty2> ; yields ty2
7735
7736Overview:
7737"""""""""
7738
7739The '``zext``' instruction zero extends its operand to type ``ty2``.
7740
7741Arguments:
7742""""""""""
7743
7744The '``zext``' instruction takes a value to cast, and a type to cast it
7745to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7746the same number of integers. The bit size of the ``value`` must be
7747smaller than the bit size of the destination type, ``ty2``.
7748
7749Semantics:
7750""""""""""
7751
7752The ``zext`` fills the high order bits of the ``value`` with zero bits
7753until it reaches the size of the destination type, ``ty2``.
7754
7755When zero extending from i1, the result will always be either 0 or 1.
7756
7757Example:
7758""""""""
7759
7760.. code-block:: llvm
7761
7762 %X = zext i32 257 to i64 ; yields i64:257
7763 %Y = zext i1 true to i32 ; yields i32:1
7764 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7765
7766'``sext .. to``' Instruction
7767^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7768
7769Syntax:
7770"""""""
7771
7772::
7773
7774 <result> = sext <ty> <value> to <ty2> ; yields ty2
7775
7776Overview:
7777"""""""""
7778
7779The '``sext``' sign extends ``value`` to the type ``ty2``.
7780
7781Arguments:
7782""""""""""
7783
7784The '``sext``' instruction takes a value to cast, and a type to cast it
7785to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7786the same number of integers. The bit size of the ``value`` must be
7787smaller than the bit size of the destination type, ``ty2``.
7788
7789Semantics:
7790""""""""""
7791
7792The '``sext``' instruction performs a sign extension by copying the sign
7793bit (highest order bit) of the ``value`` until it reaches the bit size
7794of the type ``ty2``.
7795
7796When sign extending from i1, the extension always results in -1 or 0.
7797
7798Example:
7799""""""""
7800
7801.. code-block:: llvm
7802
7803 %X = sext i8 -1 to i16 ; yields i16 :65535
7804 %Y = sext i1 true to i32 ; yields i32:-1
7805 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7806
7807'``fptrunc .. to``' Instruction
7808^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7809
7810Syntax:
7811"""""""
7812
7813::
7814
7815 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7816
7817Overview:
7818"""""""""
7819
7820The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7821
7822Arguments:
7823""""""""""
7824
7825The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7826value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7827The size of ``value`` must be larger than the size of ``ty2``. This
7828implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7829
7830Semantics:
7831""""""""""
7832
Dan Liew50456fb2015-09-03 18:43:56 +00007833The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007834:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007835point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7836destination type, ``ty2``, then the results are undefined. If the cast produces
7837an inexact result, how rounding is performed (e.g. truncation, also known as
7838round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007839
7840Example:
7841""""""""
7842
7843.. code-block:: llvm
7844
7845 %X = fptrunc double 123.0 to float ; yields float:123.0
7846 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7847
7848'``fpext .. to``' Instruction
7849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7850
7851Syntax:
7852"""""""
7853
7854::
7855
7856 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7857
7858Overview:
7859"""""""""
7860
7861The '``fpext``' extends a floating point ``value`` to a larger floating
7862point value.
7863
7864Arguments:
7865""""""""""
7866
7867The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7868``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7869to. The source type must be smaller than the destination type.
7870
7871Semantics:
7872""""""""""
7873
7874The '``fpext``' instruction extends the ``value`` from a smaller
7875:ref:`floating point <t_floating>` type to a larger :ref:`floating
7876point <t_floating>` type. The ``fpext`` cannot be used to make a
7877*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7878*no-op cast* for a floating point cast.
7879
7880Example:
7881""""""""
7882
7883.. code-block:: llvm
7884
7885 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7886 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7887
7888'``fptoui .. to``' Instruction
7889^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7890
7891Syntax:
7892"""""""
7893
7894::
7895
7896 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7897
7898Overview:
7899"""""""""
7900
7901The '``fptoui``' converts a floating point ``value`` to its unsigned
7902integer equivalent of type ``ty2``.
7903
7904Arguments:
7905""""""""""
7906
7907The '``fptoui``' instruction takes a value to cast, which must be a
7908scalar or vector :ref:`floating point <t_floating>` value, and a type to
7909cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7910``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7911type with the same number of elements as ``ty``
7912
7913Semantics:
7914""""""""""
7915
7916The '``fptoui``' instruction converts its :ref:`floating
7917point <t_floating>` operand into the nearest (rounding towards zero)
7918unsigned integer value. If the value cannot fit in ``ty2``, the results
7919are undefined.
7920
7921Example:
7922""""""""
7923
7924.. code-block:: llvm
7925
7926 %X = fptoui double 123.0 to i32 ; yields i32:123
7927 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7928 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7929
7930'``fptosi .. to``' Instruction
7931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7932
7933Syntax:
7934"""""""
7935
7936::
7937
7938 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7939
7940Overview:
7941"""""""""
7942
7943The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7944``value`` to type ``ty2``.
7945
7946Arguments:
7947""""""""""
7948
7949The '``fptosi``' instruction takes a value to cast, which must be a
7950scalar or vector :ref:`floating point <t_floating>` value, and a type to
7951cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7952``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7953type with the same number of elements as ``ty``
7954
7955Semantics:
7956""""""""""
7957
7958The '``fptosi``' instruction converts its :ref:`floating
7959point <t_floating>` operand into the nearest (rounding towards zero)
7960signed integer value. If the value cannot fit in ``ty2``, the results
7961are undefined.
7962
7963Example:
7964""""""""
7965
7966.. code-block:: llvm
7967
7968 %X = fptosi double -123.0 to i32 ; yields i32:-123
7969 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7970 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7971
7972'``uitofp .. to``' Instruction
7973^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7974
7975Syntax:
7976"""""""
7977
7978::
7979
7980 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7981
7982Overview:
7983"""""""""
7984
7985The '``uitofp``' instruction regards ``value`` as an unsigned integer
7986and converts that value to the ``ty2`` type.
7987
7988Arguments:
7989""""""""""
7990
7991The '``uitofp``' instruction takes a value to cast, which must be a
7992scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7993``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7994``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7995type with the same number of elements as ``ty``
7996
7997Semantics:
7998""""""""""
7999
8000The '``uitofp``' instruction interprets its operand as an unsigned
8001integer quantity and converts it to the corresponding floating point
8002value. If the value cannot fit in the floating point value, the results
8003are undefined.
8004
8005Example:
8006""""""""
8007
8008.. code-block:: llvm
8009
8010 %X = uitofp i32 257 to float ; yields float:257.0
8011 %Y = uitofp i8 -1 to double ; yields double:255.0
8012
8013'``sitofp .. to``' Instruction
8014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8015
8016Syntax:
8017"""""""
8018
8019::
8020
8021 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8022
8023Overview:
8024"""""""""
8025
8026The '``sitofp``' instruction regards ``value`` as a signed integer and
8027converts that value to the ``ty2`` type.
8028
8029Arguments:
8030""""""""""
8031
8032The '``sitofp``' instruction takes a value to cast, which must be a
8033scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8034``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8035``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8036type with the same number of elements as ``ty``
8037
8038Semantics:
8039""""""""""
8040
8041The '``sitofp``' instruction interprets its operand as a signed integer
8042quantity and converts it to the corresponding floating point value. If
8043the value cannot fit in the floating point value, the results are
8044undefined.
8045
8046Example:
8047""""""""
8048
8049.. code-block:: llvm
8050
8051 %X = sitofp i32 257 to float ; yields float:257.0
8052 %Y = sitofp i8 -1 to double ; yields double:-1.0
8053
8054.. _i_ptrtoint:
8055
8056'``ptrtoint .. to``' Instruction
8057^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8058
8059Syntax:
8060"""""""
8061
8062::
8063
8064 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8065
8066Overview:
8067"""""""""
8068
8069The '``ptrtoint``' instruction converts the pointer or a vector of
8070pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8071
8072Arguments:
8073""""""""""
8074
8075The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008076a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008077type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8078a vector of integers type.
8079
8080Semantics:
8081""""""""""
8082
8083The '``ptrtoint``' instruction converts ``value`` to integer type
8084``ty2`` by interpreting the pointer value as an integer and either
8085truncating or zero extending that value to the size of the integer type.
8086If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8087``value`` is larger than ``ty2`` then a truncation is done. If they are
8088the same size, then nothing is done (*no-op cast*) other than a type
8089change.
8090
8091Example:
8092""""""""
8093
8094.. code-block:: llvm
8095
8096 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8097 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8098 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8099
8100.. _i_inttoptr:
8101
8102'``inttoptr .. to``' Instruction
8103^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8104
8105Syntax:
8106"""""""
8107
8108::
8109
8110 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8111
8112Overview:
8113"""""""""
8114
8115The '``inttoptr``' instruction converts an integer ``value`` to a
8116pointer type, ``ty2``.
8117
8118Arguments:
8119""""""""""
8120
8121The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8122cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8123type.
8124
8125Semantics:
8126""""""""""
8127
8128The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8129applying either a zero extension or a truncation depending on the size
8130of the integer ``value``. If ``value`` is larger than the size of a
8131pointer then a truncation is done. If ``value`` is smaller than the size
8132of a pointer then a zero extension is done. If they are the same size,
8133nothing is done (*no-op cast*).
8134
8135Example:
8136""""""""
8137
8138.. code-block:: llvm
8139
8140 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8141 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8142 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8143 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8144
8145.. _i_bitcast:
8146
8147'``bitcast .. to``' Instruction
8148^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8149
8150Syntax:
8151"""""""
8152
8153::
8154
8155 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8156
8157Overview:
8158"""""""""
8159
8160The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8161changing any bits.
8162
8163Arguments:
8164""""""""""
8165
8166The '``bitcast``' instruction takes a value to cast, which must be a
8167non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008168also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8169bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008170identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008171also be a pointer of the same size. This instruction supports bitwise
8172conversion of vectors to integers and to vectors of other types (as
8173long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008174
8175Semantics:
8176""""""""""
8177
Matt Arsenault24b49c42013-07-31 17:49:08 +00008178The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8179is always a *no-op cast* because no bits change with this
8180conversion. The conversion is done as if the ``value`` had been stored
8181to memory and read back as type ``ty2``. Pointer (or vector of
8182pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008183pointers) types with the same address space through this instruction.
8184To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8185or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008186
8187Example:
8188""""""""
8189
Renato Golin124f2592016-07-20 12:16:38 +00008190.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008191
8192 %X = bitcast i8 255 to i8 ; yields i8 :-1
8193 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8194 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8195 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8196
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008197.. _i_addrspacecast:
8198
8199'``addrspacecast .. to``' Instruction
8200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8201
8202Syntax:
8203"""""""
8204
8205::
8206
8207 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8208
8209Overview:
8210"""""""""
8211
8212The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8213address space ``n`` to type ``pty2`` in address space ``m``.
8214
8215Arguments:
8216""""""""""
8217
8218The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8219to cast and a pointer type to cast it to, which must have a different
8220address space.
8221
8222Semantics:
8223""""""""""
8224
8225The '``addrspacecast``' instruction converts the pointer value
8226``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008227value modification, depending on the target and the address space
8228pair. Pointer conversions within the same address space must be
8229performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008230conversion is legal then both result and operand refer to the same memory
8231location.
8232
8233Example:
8234""""""""
8235
8236.. code-block:: llvm
8237
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008238 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8239 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8240 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008241
Sean Silvab084af42012-12-07 10:36:55 +00008242.. _otherops:
8243
8244Other Operations
8245----------------
8246
8247The instructions in this category are the "miscellaneous" instructions,
8248which defy better classification.
8249
8250.. _i_icmp:
8251
8252'``icmp``' Instruction
8253^^^^^^^^^^^^^^^^^^^^^^
8254
8255Syntax:
8256"""""""
8257
8258::
8259
Tim Northover675a0962014-06-13 14:24:23 +00008260 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008261
8262Overview:
8263"""""""""
8264
8265The '``icmp``' instruction returns a boolean value or a vector of
8266boolean values based on comparison of its two integer, integer vector,
8267pointer, or pointer vector operands.
8268
8269Arguments:
8270""""""""""
8271
8272The '``icmp``' instruction takes three operands. The first operand is
8273the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008274not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008275
8276#. ``eq``: equal
8277#. ``ne``: not equal
8278#. ``ugt``: unsigned greater than
8279#. ``uge``: unsigned greater or equal
8280#. ``ult``: unsigned less than
8281#. ``ule``: unsigned less or equal
8282#. ``sgt``: signed greater than
8283#. ``sge``: signed greater or equal
8284#. ``slt``: signed less than
8285#. ``sle``: signed less or equal
8286
8287The remaining two arguments must be :ref:`integer <t_integer>` or
8288:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8289must also be identical types.
8290
8291Semantics:
8292""""""""""
8293
8294The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8295code given as ``cond``. The comparison performed always yields either an
8296:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8297
8298#. ``eq``: yields ``true`` if the operands are equal, ``false``
8299 otherwise. No sign interpretation is necessary or performed.
8300#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8301 otherwise. No sign interpretation is necessary or performed.
8302#. ``ugt``: interprets the operands as unsigned values and yields
8303 ``true`` if ``op1`` is greater than ``op2``.
8304#. ``uge``: interprets the operands as unsigned values and yields
8305 ``true`` if ``op1`` is greater than or equal to ``op2``.
8306#. ``ult``: interprets the operands as unsigned values and yields
8307 ``true`` if ``op1`` is less than ``op2``.
8308#. ``ule``: interprets the operands as unsigned values and yields
8309 ``true`` if ``op1`` is less than or equal to ``op2``.
8310#. ``sgt``: interprets the operands as signed values and yields ``true``
8311 if ``op1`` is greater than ``op2``.
8312#. ``sge``: interprets the operands as signed values and yields ``true``
8313 if ``op1`` is greater than or equal to ``op2``.
8314#. ``slt``: interprets the operands as signed values and yields ``true``
8315 if ``op1`` is less than ``op2``.
8316#. ``sle``: interprets the operands as signed values and yields ``true``
8317 if ``op1`` is less than or equal to ``op2``.
8318
8319If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8320are compared as if they were integers.
8321
8322If the operands are integer vectors, then they are compared element by
8323element. The result is an ``i1`` vector with the same number of elements
8324as the values being compared. Otherwise, the result is an ``i1``.
8325
8326Example:
8327""""""""
8328
Renato Golin124f2592016-07-20 12:16:38 +00008329.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008330
8331 <result> = icmp eq i32 4, 5 ; yields: result=false
8332 <result> = icmp ne float* %X, %X ; yields: result=false
8333 <result> = icmp ult i16 4, 5 ; yields: result=true
8334 <result> = icmp sgt i16 4, 5 ; yields: result=false
8335 <result> = icmp ule i16 -4, 5 ; yields: result=false
8336 <result> = icmp sge i16 4, 5 ; yields: result=false
8337
Sean Silvab084af42012-12-07 10:36:55 +00008338.. _i_fcmp:
8339
8340'``fcmp``' Instruction
8341^^^^^^^^^^^^^^^^^^^^^^
8342
8343Syntax:
8344"""""""
8345
8346::
8347
James Molloy88eb5352015-07-10 12:52:00 +00008348 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008349
8350Overview:
8351"""""""""
8352
8353The '``fcmp``' instruction returns a boolean value or vector of boolean
8354values based on comparison of its operands.
8355
8356If the operands are floating point scalars, then the result type is a
8357boolean (:ref:`i1 <t_integer>`).
8358
8359If the operands are floating point vectors, then the result type is a
8360vector of boolean with the same number of elements as the operands being
8361compared.
8362
8363Arguments:
8364""""""""""
8365
8366The '``fcmp``' instruction takes three operands. The first operand is
8367the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008368not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008369
8370#. ``false``: no comparison, always returns false
8371#. ``oeq``: ordered and equal
8372#. ``ogt``: ordered and greater than
8373#. ``oge``: ordered and greater than or equal
8374#. ``olt``: ordered and less than
8375#. ``ole``: ordered and less than or equal
8376#. ``one``: ordered and not equal
8377#. ``ord``: ordered (no nans)
8378#. ``ueq``: unordered or equal
8379#. ``ugt``: unordered or greater than
8380#. ``uge``: unordered or greater than or equal
8381#. ``ult``: unordered or less than
8382#. ``ule``: unordered or less than or equal
8383#. ``une``: unordered or not equal
8384#. ``uno``: unordered (either nans)
8385#. ``true``: no comparison, always returns true
8386
8387*Ordered* means that neither operand is a QNAN while *unordered* means
8388that either operand may be a QNAN.
8389
8390Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8391point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8392type. They must have identical types.
8393
8394Semantics:
8395""""""""""
8396
8397The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8398condition code given as ``cond``. If the operands are vectors, then the
8399vectors are compared element by element. Each comparison performed
8400always yields an :ref:`i1 <t_integer>` result, as follows:
8401
8402#. ``false``: always yields ``false``, regardless of operands.
8403#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8404 is equal to ``op2``.
8405#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8406 is greater than ``op2``.
8407#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8408 is greater than or equal to ``op2``.
8409#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8410 is less than ``op2``.
8411#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8412 is less than or equal to ``op2``.
8413#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8414 is not equal to ``op2``.
8415#. ``ord``: yields ``true`` if both operands are not a QNAN.
8416#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8417 equal to ``op2``.
8418#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8419 greater than ``op2``.
8420#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8421 greater than or equal to ``op2``.
8422#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8423 less than ``op2``.
8424#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8425 less than or equal to ``op2``.
8426#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8427 not equal to ``op2``.
8428#. ``uno``: yields ``true`` if either operand is a QNAN.
8429#. ``true``: always yields ``true``, regardless of operands.
8430
James Molloy88eb5352015-07-10 12:52:00 +00008431The ``fcmp`` instruction can also optionally take any number of
8432:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8433otherwise unsafe floating point optimizations.
8434
8435Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8436only flags that have any effect on its semantics are those that allow
8437assumptions to be made about the values of input arguments; namely
8438``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8439
Sean Silvab084af42012-12-07 10:36:55 +00008440Example:
8441""""""""
8442
Renato Golin124f2592016-07-20 12:16:38 +00008443.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008444
8445 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8446 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8447 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8448 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8449
Sean Silvab084af42012-12-07 10:36:55 +00008450.. _i_phi:
8451
8452'``phi``' Instruction
8453^^^^^^^^^^^^^^^^^^^^^
8454
8455Syntax:
8456"""""""
8457
8458::
8459
8460 <result> = phi <ty> [ <val0>, <label0>], ...
8461
8462Overview:
8463"""""""""
8464
8465The '``phi``' instruction is used to implement the φ node in the SSA
8466graph representing the function.
8467
8468Arguments:
8469""""""""""
8470
8471The type of the incoming values is specified with the first type field.
8472After this, the '``phi``' instruction takes a list of pairs as
8473arguments, with one pair for each predecessor basic block of the current
8474block. Only values of :ref:`first class <t_firstclass>` type may be used as
8475the value arguments to the PHI node. Only labels may be used as the
8476label arguments.
8477
8478There must be no non-phi instructions between the start of a basic block
8479and the PHI instructions: i.e. PHI instructions must be first in a basic
8480block.
8481
8482For the purposes of the SSA form, the use of each incoming value is
8483deemed to occur on the edge from the corresponding predecessor block to
8484the current block (but after any definition of an '``invoke``'
8485instruction's return value on the same edge).
8486
8487Semantics:
8488""""""""""
8489
8490At runtime, the '``phi``' instruction logically takes on the value
8491specified by the pair corresponding to the predecessor basic block that
8492executed just prior to the current block.
8493
8494Example:
8495""""""""
8496
8497.. code-block:: llvm
8498
8499 Loop: ; Infinite loop that counts from 0 on up...
8500 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8501 %nextindvar = add i32 %indvar, 1
8502 br label %Loop
8503
8504.. _i_select:
8505
8506'``select``' Instruction
8507^^^^^^^^^^^^^^^^^^^^^^^^
8508
8509Syntax:
8510"""""""
8511
8512::
8513
8514 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8515
8516 selty is either i1 or {<N x i1>}
8517
8518Overview:
8519"""""""""
8520
8521The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008522condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008523
8524Arguments:
8525""""""""""
8526
8527The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8528values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008529class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008530
8531Semantics:
8532""""""""""
8533
8534If the condition is an i1 and it evaluates to 1, the instruction returns
8535the first value argument; otherwise, it returns the second value
8536argument.
8537
8538If the condition is a vector of i1, then the value arguments must be
8539vectors of the same size, and the selection is done element by element.
8540
David Majnemer40a0b592015-03-03 22:45:47 +00008541If the condition is an i1 and the value arguments are vectors of the
8542same size, then an entire vector is selected.
8543
Sean Silvab084af42012-12-07 10:36:55 +00008544Example:
8545""""""""
8546
8547.. code-block:: llvm
8548
8549 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8550
8551.. _i_call:
8552
8553'``call``' Instruction
8554^^^^^^^^^^^^^^^^^^^^^^
8555
8556Syntax:
8557"""""""
8558
8559::
8560
David Blaikieb83cf102016-07-13 17:21:34 +00008561 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008562 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008563
8564Overview:
8565"""""""""
8566
8567The '``call``' instruction represents a simple function call.
8568
8569Arguments:
8570""""""""""
8571
8572This instruction requires several arguments:
8573
Reid Kleckner5772b772014-04-24 20:14:34 +00008574#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008575 should perform tail call optimization. The ``tail`` marker is a hint that
8576 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008577 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008578 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008579
8580 #. The call will not cause unbounded stack growth if it is part of a
8581 recursive cycle in the call graph.
8582 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8583 forwarded in place.
8584
8585 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008586 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008587 rules:
8588
8589 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8590 or a pointer bitcast followed by a ret instruction.
8591 - The ret instruction must return the (possibly bitcasted) value
8592 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008593 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008594 parameters or return types may differ in pointee type, but not
8595 in address space.
8596 - The calling conventions of the caller and callee must match.
8597 - All ABI-impacting function attributes, such as sret, byval, inreg,
8598 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008599 - The callee must be varargs iff the caller is varargs. Bitcasting a
8600 non-varargs function to the appropriate varargs type is legal so
8601 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008602
8603 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8604 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008605
8606 - Caller and callee both have the calling convention ``fastcc``.
8607 - The call is in tail position (ret immediately follows call and ret
8608 uses value of call or is void).
8609 - Option ``-tailcallopt`` is enabled, or
8610 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008611 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008612 met. <CodeGenerator.html#tailcallopt>`_
8613
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008614#. The optional ``notail`` marker indicates that the optimizers should not add
8615 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8616 call optimization from being performed on the call.
8617
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008618#. The optional ``fast-math flags`` marker indicates that the call has one or more
8619 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8620 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8621 for calls that return a floating-point scalar or vector type.
8622
Sean Silvab084af42012-12-07 10:36:55 +00008623#. The optional "cconv" marker indicates which :ref:`calling
8624 convention <callingconv>` the call should use. If none is
8625 specified, the call defaults to using C calling conventions. The
8626 calling convention of the call must match the calling convention of
8627 the target function, or else the behavior is undefined.
8628#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8629 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8630 are valid here.
8631#. '``ty``': the type of the call instruction itself which is also the
8632 type of the return value. Functions that return no value are marked
8633 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008634#. '``fnty``': shall be the signature of the function being called. The
8635 argument types must match the types implied by this signature. This
8636 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008637#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008638 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008639 indirect ``call``'s are just as possible, calling an arbitrary pointer
8640 to function value.
8641#. '``function args``': argument list whose types match the function
8642 signature argument types and parameter attributes. All arguments must
8643 be of :ref:`first class <t_firstclass>` type. If the function signature
8644 indicates the function accepts a variable number of arguments, the
8645 extra arguments can be specified.
8646#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008647 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8648 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008649#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008650
8651Semantics:
8652""""""""""
8653
8654The '``call``' instruction is used to cause control flow to transfer to
8655a specified function, with its incoming arguments bound to the specified
8656values. Upon a '``ret``' instruction in the called function, control
8657flow continues with the instruction after the function call, and the
8658return value of the function is bound to the result argument.
8659
8660Example:
8661""""""""
8662
8663.. code-block:: llvm
8664
8665 %retval = call i32 @test(i32 %argc)
8666 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8667 %X = tail call i32 @foo() ; yields i32
8668 %Y = tail call fastcc i32 @foo() ; yields i32
8669 call void %foo(i8 97 signext)
8670
8671 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008672 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008673 %gr = extractvalue %struct.A %r, 0 ; yields i32
8674 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8675 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8676 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8677
8678llvm treats calls to some functions with names and arguments that match
8679the standard C99 library as being the C99 library functions, and may
8680perform optimizations or generate code for them under that assumption.
8681This is something we'd like to change in the future to provide better
8682support for freestanding environments and non-C-based languages.
8683
8684.. _i_va_arg:
8685
8686'``va_arg``' Instruction
8687^^^^^^^^^^^^^^^^^^^^^^^^
8688
8689Syntax:
8690"""""""
8691
8692::
8693
8694 <resultval> = va_arg <va_list*> <arglist>, <argty>
8695
8696Overview:
8697"""""""""
8698
8699The '``va_arg``' instruction is used to access arguments passed through
8700the "variable argument" area of a function call. It is used to implement
8701the ``va_arg`` macro in C.
8702
8703Arguments:
8704""""""""""
8705
8706This instruction takes a ``va_list*`` value and the type of the
8707argument. It returns a value of the specified argument type and
8708increments the ``va_list`` to point to the next argument. The actual
8709type of ``va_list`` is target specific.
8710
8711Semantics:
8712""""""""""
8713
8714The '``va_arg``' instruction loads an argument of the specified type
8715from the specified ``va_list`` and causes the ``va_list`` to point to
8716the next argument. For more information, see the variable argument
8717handling :ref:`Intrinsic Functions <int_varargs>`.
8718
8719It is legal for this instruction to be called in a function which does
8720not take a variable number of arguments, for example, the ``vfprintf``
8721function.
8722
8723``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8724function <intrinsics>` because it takes a type as an argument.
8725
8726Example:
8727""""""""
8728
8729See the :ref:`variable argument processing <int_varargs>` section.
8730
8731Note that the code generator does not yet fully support va\_arg on many
8732targets. Also, it does not currently support va\_arg with aggregate
8733types on any target.
8734
8735.. _i_landingpad:
8736
8737'``landingpad``' Instruction
8738^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8739
8740Syntax:
8741"""""""
8742
8743::
8744
David Majnemer7fddecc2015-06-17 20:52:32 +00008745 <resultval> = landingpad <resultty> <clause>+
8746 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008747
8748 <clause> := catch <type> <value>
8749 <clause> := filter <array constant type> <array constant>
8750
8751Overview:
8752"""""""""
8753
8754The '``landingpad``' instruction is used by `LLVM's exception handling
8755system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008756is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008757code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008758defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008759re-entry to the function. The ``resultval`` has the type ``resultty``.
8760
8761Arguments:
8762""""""""""
8763
David Majnemer7fddecc2015-06-17 20:52:32 +00008764The optional
Sean Silvab084af42012-12-07 10:36:55 +00008765``cleanup`` flag indicates that the landing pad block is a cleanup.
8766
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008767A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008768contains the global variable representing the "type" that may be caught
8769or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8770clause takes an array constant as its argument. Use
8771"``[0 x i8**] undef``" for a filter which cannot throw. The
8772'``landingpad``' instruction must contain *at least* one ``clause`` or
8773the ``cleanup`` flag.
8774
8775Semantics:
8776""""""""""
8777
8778The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008779:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008780therefore the "result type" of the ``landingpad`` instruction. As with
8781calling conventions, how the personality function results are
8782represented in LLVM IR is target specific.
8783
8784The clauses are applied in order from top to bottom. If two
8785``landingpad`` instructions are merged together through inlining, the
8786clauses from the calling function are appended to the list of clauses.
8787When the call stack is being unwound due to an exception being thrown,
8788the exception is compared against each ``clause`` in turn. If it doesn't
8789match any of the clauses, and the ``cleanup`` flag is not set, then
8790unwinding continues further up the call stack.
8791
8792The ``landingpad`` instruction has several restrictions:
8793
8794- A landing pad block is a basic block which is the unwind destination
8795 of an '``invoke``' instruction.
8796- A landing pad block must have a '``landingpad``' instruction as its
8797 first non-PHI instruction.
8798- There can be only one '``landingpad``' instruction within the landing
8799 pad block.
8800- A basic block that is not a landing pad block may not include a
8801 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008802
8803Example:
8804""""""""
8805
8806.. code-block:: llvm
8807
8808 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008809 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008810 catch i8** @_ZTIi
8811 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008812 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008813 cleanup
8814 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008815 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008816 catch i8** @_ZTIi
8817 filter [1 x i8**] [@_ZTId]
8818
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008819.. _i_catchpad:
8820
8821'``catchpad``' Instruction
8822^^^^^^^^^^^^^^^^^^^^^^^^^^
8823
8824Syntax:
8825"""""""
8826
8827::
8828
8829 <resultval> = catchpad within <catchswitch> [<args>*]
8830
8831Overview:
8832"""""""""
8833
8834The '``catchpad``' instruction is used by `LLVM's exception handling
8835system <ExceptionHandling.html#overview>`_ to specify that a basic block
8836begins a catch handler --- one where a personality routine attempts to transfer
8837control to catch an exception.
8838
8839Arguments:
8840""""""""""
8841
8842The ``catchswitch`` operand must always be a token produced by a
8843:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8844ensures that each ``catchpad`` has exactly one predecessor block, and it always
8845terminates in a ``catchswitch``.
8846
8847The ``args`` correspond to whatever information the personality routine
8848requires to know if this is an appropriate handler for the exception. Control
8849will transfer to the ``catchpad`` if this is the first appropriate handler for
8850the exception.
8851
8852The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8853``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8854pads.
8855
8856Semantics:
8857""""""""""
8858
8859When the call stack is being unwound due to an exception being thrown, the
8860exception is compared against the ``args``. If it doesn't match, control will
8861not reach the ``catchpad`` instruction. The representation of ``args`` is
8862entirely target and personality function-specific.
8863
8864Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8865instruction must be the first non-phi of its parent basic block.
8866
8867The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8868instructions is described in the
8869`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8870
8871When a ``catchpad`` has been "entered" but not yet "exited" (as
8872described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8873it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8874that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8875
8876Example:
8877""""""""
8878
Renato Golin124f2592016-07-20 12:16:38 +00008879.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008880
8881 dispatch:
8882 %cs = catchswitch within none [label %handler0] unwind to caller
8883 ;; A catch block which can catch an integer.
8884 handler0:
8885 %tok = catchpad within %cs [i8** @_ZTIi]
8886
David Majnemer654e1302015-07-31 17:58:14 +00008887.. _i_cleanuppad:
8888
8889'``cleanuppad``' Instruction
8890^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8891
8892Syntax:
8893"""""""
8894
8895::
8896
David Majnemer8a1c45d2015-12-12 05:38:55 +00008897 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008898
8899Overview:
8900"""""""""
8901
8902The '``cleanuppad``' instruction is used by `LLVM's exception handling
8903system <ExceptionHandling.html#overview>`_ to specify that a basic block
8904is a cleanup block --- one where a personality routine attempts to
8905transfer control to run cleanup actions.
8906The ``args`` correspond to whatever additional
8907information the :ref:`personality function <personalityfn>` requires to
8908execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008909The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008910match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8911The ``parent`` argument is the token of the funclet that contains the
8912``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8913this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008914
8915Arguments:
8916""""""""""
8917
8918The instruction takes a list of arbitrary values which are interpreted
8919by the :ref:`personality function <personalityfn>`.
8920
8921Semantics:
8922""""""""""
8923
David Majnemer654e1302015-07-31 17:58:14 +00008924When the call stack is being unwound due to an exception being thrown,
8925the :ref:`personality function <personalityfn>` transfers control to the
8926``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008927As with calling conventions, how the personality function results are
8928represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008929
8930The ``cleanuppad`` instruction has several restrictions:
8931
8932- A cleanup block is a basic block which is the unwind destination of
8933 an exceptional instruction.
8934- A cleanup block must have a '``cleanuppad``' instruction as its
8935 first non-PHI instruction.
8936- There can be only one '``cleanuppad``' instruction within the
8937 cleanup block.
8938- A basic block that is not a cleanup block may not include a
8939 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008940
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008941When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8942described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8943it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8944that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008945
David Majnemer654e1302015-07-31 17:58:14 +00008946Example:
8947""""""""
8948
Renato Golin124f2592016-07-20 12:16:38 +00008949.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00008950
David Majnemer8a1c45d2015-12-12 05:38:55 +00008951 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008952
Sean Silvab084af42012-12-07 10:36:55 +00008953.. _intrinsics:
8954
8955Intrinsic Functions
8956===================
8957
8958LLVM supports the notion of an "intrinsic function". These functions
8959have well known names and semantics and are required to follow certain
8960restrictions. Overall, these intrinsics represent an extension mechanism
8961for the LLVM language that does not require changing all of the
8962transformations in LLVM when adding to the language (or the bitcode
8963reader/writer, the parser, etc...).
8964
8965Intrinsic function names must all start with an "``llvm.``" prefix. This
8966prefix is reserved in LLVM for intrinsic names; thus, function names may
8967not begin with this prefix. Intrinsic functions must always be external
8968functions: you cannot define the body of intrinsic functions. Intrinsic
8969functions may only be used in call or invoke instructions: it is illegal
8970to take the address of an intrinsic function. Additionally, because
8971intrinsic functions are part of the LLVM language, it is required if any
8972are added that they be documented here.
8973
8974Some intrinsic functions can be overloaded, i.e., the intrinsic
8975represents a family of functions that perform the same operation but on
8976different data types. Because LLVM can represent over 8 million
8977different integer types, overloading is used commonly to allow an
8978intrinsic function to operate on any integer type. One or more of the
8979argument types or the result type can be overloaded to accept any
8980integer type. Argument types may also be defined as exactly matching a
8981previous argument's type or the result type. This allows an intrinsic
8982function which accepts multiple arguments, but needs all of them to be
8983of the same type, to only be overloaded with respect to a single
8984argument or the result.
8985
8986Overloaded intrinsics will have the names of its overloaded argument
8987types encoded into its function name, each preceded by a period. Only
8988those types which are overloaded result in a name suffix. Arguments
8989whose type is matched against another type do not. For example, the
8990``llvm.ctpop`` function can take an integer of any width and returns an
8991integer of exactly the same integer width. This leads to a family of
8992functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8993``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8994overloaded, and only one type suffix is required. Because the argument's
8995type is matched against the return type, it does not require its own
8996name suffix.
8997
8998To learn how to add an intrinsic function, please see the `Extending
8999LLVM Guide <ExtendingLLVM.html>`_.
9000
9001.. _int_varargs:
9002
9003Variable Argument Handling Intrinsics
9004-------------------------------------
9005
9006Variable argument support is defined in LLVM with the
9007:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9008functions. These functions are related to the similarly named macros
9009defined in the ``<stdarg.h>`` header file.
9010
9011All of these functions operate on arguments that use a target-specific
9012value type "``va_list``". The LLVM assembly language reference manual
9013does not define what this type is, so all transformations should be
9014prepared to handle these functions regardless of the type used.
9015
9016This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9017variable argument handling intrinsic functions are used.
9018
9019.. code-block:: llvm
9020
Tim Northoverab60bb92014-11-02 01:21:51 +00009021 ; This struct is different for every platform. For most platforms,
9022 ; it is merely an i8*.
9023 %struct.va_list = type { i8* }
9024
9025 ; For Unix x86_64 platforms, va_list is the following struct:
9026 ; %struct.va_list = type { i32, i32, i8*, i8* }
9027
Sean Silvab084af42012-12-07 10:36:55 +00009028 define i32 @test(i32 %X, ...) {
9029 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009030 %ap = alloca %struct.va_list
9031 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009032 call void @llvm.va_start(i8* %ap2)
9033
9034 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009035 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009036
9037 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9038 %aq = alloca i8*
9039 %aq2 = bitcast i8** %aq to i8*
9040 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9041 call void @llvm.va_end(i8* %aq2)
9042
9043 ; Stop processing of arguments.
9044 call void @llvm.va_end(i8* %ap2)
9045 ret i32 %tmp
9046 }
9047
9048 declare void @llvm.va_start(i8*)
9049 declare void @llvm.va_copy(i8*, i8*)
9050 declare void @llvm.va_end(i8*)
9051
9052.. _int_va_start:
9053
9054'``llvm.va_start``' Intrinsic
9055^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9056
9057Syntax:
9058"""""""
9059
9060::
9061
Nick Lewycky04f6de02013-09-11 22:04:52 +00009062 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009063
9064Overview:
9065"""""""""
9066
9067The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9068subsequent use by ``va_arg``.
9069
9070Arguments:
9071""""""""""
9072
9073The argument is a pointer to a ``va_list`` element to initialize.
9074
9075Semantics:
9076""""""""""
9077
9078The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9079available in C. In a target-dependent way, it initializes the
9080``va_list`` element to which the argument points, so that the next call
9081to ``va_arg`` will produce the first variable argument passed to the
9082function. Unlike the C ``va_start`` macro, this intrinsic does not need
9083to know the last argument of the function as the compiler can figure
9084that out.
9085
9086'``llvm.va_end``' Intrinsic
9087^^^^^^^^^^^^^^^^^^^^^^^^^^^
9088
9089Syntax:
9090"""""""
9091
9092::
9093
9094 declare void @llvm.va_end(i8* <arglist>)
9095
9096Overview:
9097"""""""""
9098
9099The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9100initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9101
9102Arguments:
9103""""""""""
9104
9105The argument is a pointer to a ``va_list`` to destroy.
9106
9107Semantics:
9108""""""""""
9109
9110The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9111available in C. In a target-dependent way, it destroys the ``va_list``
9112element to which the argument points. Calls to
9113:ref:`llvm.va_start <int_va_start>` and
9114:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9115``llvm.va_end``.
9116
9117.. _int_va_copy:
9118
9119'``llvm.va_copy``' Intrinsic
9120^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9121
9122Syntax:
9123"""""""
9124
9125::
9126
9127 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9128
9129Overview:
9130"""""""""
9131
9132The '``llvm.va_copy``' intrinsic copies the current argument position
9133from the source argument list to the destination argument list.
9134
9135Arguments:
9136""""""""""
9137
9138The first argument is a pointer to a ``va_list`` element to initialize.
9139The second argument is a pointer to a ``va_list`` element to copy from.
9140
9141Semantics:
9142""""""""""
9143
9144The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9145available in C. In a target-dependent way, it copies the source
9146``va_list`` element into the destination ``va_list`` element. This
9147intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9148arbitrarily complex and require, for example, memory allocation.
9149
9150Accurate Garbage Collection Intrinsics
9151--------------------------------------
9152
Philip Reamesc5b0f562015-02-25 23:52:06 +00009153LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009154(GC) requires the frontend to generate code containing appropriate intrinsic
9155calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009156intrinsics in a manner which is appropriate for the target collector.
9157
Sean Silvab084af42012-12-07 10:36:55 +00009158These intrinsics allow identification of :ref:`GC roots on the
9159stack <int_gcroot>`, as well as garbage collector implementations that
9160require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009161Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009162these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009163details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009164
Philip Reamesf80bbff2015-02-25 23:45:20 +00009165Experimental Statepoint Intrinsics
9166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9167
9168LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009169collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009170to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009171:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009172differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009173<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009174described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009175
9176.. _int_gcroot:
9177
9178'``llvm.gcroot``' Intrinsic
9179^^^^^^^^^^^^^^^^^^^^^^^^^^^
9180
9181Syntax:
9182"""""""
9183
9184::
9185
9186 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9187
9188Overview:
9189"""""""""
9190
9191The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9192the code generator, and allows some metadata to be associated with it.
9193
9194Arguments:
9195""""""""""
9196
9197The first argument specifies the address of a stack object that contains
9198the root pointer. The second pointer (which must be either a constant or
9199a global value address) contains the meta-data to be associated with the
9200root.
9201
9202Semantics:
9203""""""""""
9204
9205At runtime, a call to this intrinsic stores a null pointer into the
9206"ptrloc" location. At compile-time, the code generator generates
9207information to allow the runtime to find the pointer at GC safe points.
9208The '``llvm.gcroot``' intrinsic may only be used in a function which
9209:ref:`specifies a GC algorithm <gc>`.
9210
9211.. _int_gcread:
9212
9213'``llvm.gcread``' Intrinsic
9214^^^^^^^^^^^^^^^^^^^^^^^^^^^
9215
9216Syntax:
9217"""""""
9218
9219::
9220
9221 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9222
9223Overview:
9224"""""""""
9225
9226The '``llvm.gcread``' intrinsic identifies reads of references from heap
9227locations, allowing garbage collector implementations that require read
9228barriers.
9229
9230Arguments:
9231""""""""""
9232
9233The second argument is the address to read from, which should be an
9234address allocated from the garbage collector. The first object is a
9235pointer to the start of the referenced object, if needed by the language
9236runtime (otherwise null).
9237
9238Semantics:
9239""""""""""
9240
9241The '``llvm.gcread``' intrinsic has the same semantics as a load
9242instruction, but may be replaced with substantially more complex code by
9243the garbage collector runtime, as needed. The '``llvm.gcread``'
9244intrinsic may only be used in a function which :ref:`specifies a GC
9245algorithm <gc>`.
9246
9247.. _int_gcwrite:
9248
9249'``llvm.gcwrite``' Intrinsic
9250^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9251
9252Syntax:
9253"""""""
9254
9255::
9256
9257 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9258
9259Overview:
9260"""""""""
9261
9262The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9263locations, allowing garbage collector implementations that require write
9264barriers (such as generational or reference counting collectors).
9265
9266Arguments:
9267""""""""""
9268
9269The first argument is the reference to store, the second is the start of
9270the object to store it to, and the third is the address of the field of
9271Obj to store to. If the runtime does not require a pointer to the
9272object, Obj may be null.
9273
9274Semantics:
9275""""""""""
9276
9277The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9278instruction, but may be replaced with substantially more complex code by
9279the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9280intrinsic may only be used in a function which :ref:`specifies a GC
9281algorithm <gc>`.
9282
9283Code Generator Intrinsics
9284-------------------------
9285
9286These intrinsics are provided by LLVM to expose special features that
9287may only be implemented with code generator support.
9288
9289'``llvm.returnaddress``' Intrinsic
9290^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9291
9292Syntax:
9293"""""""
9294
9295::
9296
9297 declare i8 *@llvm.returnaddress(i32 <level>)
9298
9299Overview:
9300"""""""""
9301
9302The '``llvm.returnaddress``' intrinsic attempts to compute a
9303target-specific value indicating the return address of the current
9304function or one of its callers.
9305
9306Arguments:
9307""""""""""
9308
9309The argument to this intrinsic indicates which function to return the
9310address for. Zero indicates the calling function, one indicates its
9311caller, etc. The argument is **required** to be a constant integer
9312value.
9313
9314Semantics:
9315""""""""""
9316
9317The '``llvm.returnaddress``' intrinsic either returns a pointer
9318indicating the return address of the specified call frame, or zero if it
9319cannot be identified. The value returned by this intrinsic is likely to
9320be incorrect or 0 for arguments other than zero, so it should only be
9321used for debugging purposes.
9322
9323Note that calling this intrinsic does not prevent function inlining or
9324other aggressive transformations, so the value returned may not be that
9325of the obvious source-language caller.
9326
Albert Gutowski795d7d62016-10-12 22:13:19 +00009327'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009329
9330Syntax:
9331"""""""
9332
9333::
9334
9335 declare i8 *@llvm.addressofreturnaddress()
9336
9337Overview:
9338"""""""""
9339
9340The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9341pointer to the place in the stack frame where the return address of the
9342current function is stored.
9343
9344Semantics:
9345""""""""""
9346
9347Note that calling this intrinsic does not prevent function inlining or
9348other aggressive transformations, so the value returned may not be that
9349of the obvious source-language caller.
9350
9351This intrinsic is only implemented for x86.
9352
Sean Silvab084af42012-12-07 10:36:55 +00009353'``llvm.frameaddress``' Intrinsic
9354^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9355
9356Syntax:
9357"""""""
9358
9359::
9360
9361 declare i8* @llvm.frameaddress(i32 <level>)
9362
9363Overview:
9364"""""""""
9365
9366The '``llvm.frameaddress``' intrinsic attempts to return the
9367target-specific frame pointer value for the specified stack frame.
9368
9369Arguments:
9370""""""""""
9371
9372The argument to this intrinsic indicates which function to return the
9373frame pointer for. Zero indicates the calling function, one indicates
9374its caller, etc. The argument is **required** to be a constant integer
9375value.
9376
9377Semantics:
9378""""""""""
9379
9380The '``llvm.frameaddress``' intrinsic either returns a pointer
9381indicating the frame address of the specified call frame, or zero if it
9382cannot be identified. The value returned by this intrinsic is likely to
9383be incorrect or 0 for arguments other than zero, so it should only be
9384used for debugging purposes.
9385
9386Note that calling this intrinsic does not prevent function inlining or
9387other aggressive transformations, so the value returned may not be that
9388of the obvious source-language caller.
9389
Reid Kleckner60381792015-07-07 22:25:32 +00009390'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009391^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9392
9393Syntax:
9394"""""""
9395
9396::
9397
Reid Kleckner60381792015-07-07 22:25:32 +00009398 declare void @llvm.localescape(...)
9399 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009400
9401Overview:
9402"""""""""
9403
Reid Kleckner60381792015-07-07 22:25:32 +00009404The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9405allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009406live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009407computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009408
9409Arguments:
9410""""""""""
9411
Reid Kleckner60381792015-07-07 22:25:32 +00009412All arguments to '``llvm.localescape``' must be pointers to static allocas or
9413casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009414once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009415
Reid Kleckner60381792015-07-07 22:25:32 +00009416The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009417bitcasted pointer to a function defined in the current module. The code
9418generator cannot determine the frame allocation offset of functions defined in
9419other modules.
9420
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009421The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9422call frame that is currently live. The return value of '``llvm.localaddress``'
9423is one way to produce such a value, but various runtimes also expose a suitable
9424pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009425
Reid Kleckner60381792015-07-07 22:25:32 +00009426The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9427'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009428
Reid Klecknere9b89312015-01-13 00:48:10 +00009429Semantics:
9430""""""""""
9431
Reid Kleckner60381792015-07-07 22:25:32 +00009432These intrinsics allow a group of functions to share access to a set of local
9433stack allocations of a one parent function. The parent function may call the
9434'``llvm.localescape``' intrinsic once from the function entry block, and the
9435child functions can use '``llvm.localrecover``' to access the escaped allocas.
9436The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9437the escaped allocas are allocated, which would break attempts to use
9438'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009439
Renato Golinc7aea402014-05-06 16:51:25 +00009440.. _int_read_register:
9441.. _int_write_register:
9442
9443'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9444^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9445
9446Syntax:
9447"""""""
9448
9449::
9450
9451 declare i32 @llvm.read_register.i32(metadata)
9452 declare i64 @llvm.read_register.i64(metadata)
9453 declare void @llvm.write_register.i32(metadata, i32 @value)
9454 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009455 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009456
9457Overview:
9458"""""""""
9459
9460The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9461provides access to the named register. The register must be valid on
9462the architecture being compiled to. The type needs to be compatible
9463with the register being read.
9464
9465Semantics:
9466""""""""""
9467
9468The '``llvm.read_register``' intrinsic returns the current value of the
9469register, where possible. The '``llvm.write_register``' intrinsic sets
9470the current value of the register, where possible.
9471
9472This is useful to implement named register global variables that need
9473to always be mapped to a specific register, as is common practice on
9474bare-metal programs including OS kernels.
9475
9476The compiler doesn't check for register availability or use of the used
9477register in surrounding code, including inline assembly. Because of that,
9478allocatable registers are not supported.
9479
9480Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009481architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009482work is needed to support other registers and even more so, allocatable
9483registers.
9484
Sean Silvab084af42012-12-07 10:36:55 +00009485.. _int_stacksave:
9486
9487'``llvm.stacksave``' Intrinsic
9488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9489
9490Syntax:
9491"""""""
9492
9493::
9494
9495 declare i8* @llvm.stacksave()
9496
9497Overview:
9498"""""""""
9499
9500The '``llvm.stacksave``' intrinsic is used to remember the current state
9501of the function stack, for use with
9502:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9503implementing language features like scoped automatic variable sized
9504arrays in C99.
9505
9506Semantics:
9507""""""""""
9508
9509This intrinsic returns a opaque pointer value that can be passed to
9510:ref:`llvm.stackrestore <int_stackrestore>`. When an
9511``llvm.stackrestore`` intrinsic is executed with a value saved from
9512``llvm.stacksave``, it effectively restores the state of the stack to
9513the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9514practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9515were allocated after the ``llvm.stacksave`` was executed.
9516
9517.. _int_stackrestore:
9518
9519'``llvm.stackrestore``' Intrinsic
9520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9521
9522Syntax:
9523"""""""
9524
9525::
9526
9527 declare void @llvm.stackrestore(i8* %ptr)
9528
9529Overview:
9530"""""""""
9531
9532The '``llvm.stackrestore``' intrinsic is used to restore the state of
9533the function stack to the state it was in when the corresponding
9534:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9535useful for implementing language features like scoped automatic variable
9536sized arrays in C99.
9537
9538Semantics:
9539""""""""""
9540
9541See the description for :ref:`llvm.stacksave <int_stacksave>`.
9542
Yury Gribovd7dbb662015-12-01 11:40:55 +00009543.. _int_get_dynamic_area_offset:
9544
9545'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009546^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009547
9548Syntax:
9549"""""""
9550
9551::
9552
9553 declare i32 @llvm.get.dynamic.area.offset.i32()
9554 declare i64 @llvm.get.dynamic.area.offset.i64()
9555
Lang Hames10239932016-10-08 00:20:42 +00009556Overview:
9557"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009558
9559 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9560 get the offset from native stack pointer to the address of the most
9561 recent dynamic alloca on the caller's stack. These intrinsics are
9562 intendend for use in combination with
9563 :ref:`llvm.stacksave <int_stacksave>` to get a
9564 pointer to the most recent dynamic alloca. This is useful, for example,
9565 for AddressSanitizer's stack unpoisoning routines.
9566
9567Semantics:
9568""""""""""
9569
9570 These intrinsics return a non-negative integer value that can be used to
9571 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9572 on the caller's stack. In particular, for targets where stack grows downwards,
9573 adding this offset to the native stack pointer would get the address of the most
9574 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009575 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009576 one past the end of the most recent dynamic alloca.
9577
9578 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9579 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9580 compile-time-known constant value.
9581
9582 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9583 must match the target's generic address space's (address space 0) pointer type.
9584
Sean Silvab084af42012-12-07 10:36:55 +00009585'``llvm.prefetch``' Intrinsic
9586^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9587
9588Syntax:
9589"""""""
9590
9591::
9592
9593 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9594
9595Overview:
9596"""""""""
9597
9598The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9599insert a prefetch instruction if supported; otherwise, it is a noop.
9600Prefetches have no effect on the behavior of the program but can change
9601its performance characteristics.
9602
9603Arguments:
9604""""""""""
9605
9606``address`` is the address to be prefetched, ``rw`` is the specifier
9607determining if the fetch should be for a read (0) or write (1), and
9608``locality`` is a temporal locality specifier ranging from (0) - no
9609locality, to (3) - extremely local keep in cache. The ``cache type``
9610specifies whether the prefetch is performed on the data (1) or
9611instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9612arguments must be constant integers.
9613
9614Semantics:
9615""""""""""
9616
9617This intrinsic does not modify the behavior of the program. In
9618particular, prefetches cannot trap and do not produce a value. On
9619targets that support this intrinsic, the prefetch can provide hints to
9620the processor cache for better performance.
9621
9622'``llvm.pcmarker``' Intrinsic
9623^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9624
9625Syntax:
9626"""""""
9627
9628::
9629
9630 declare void @llvm.pcmarker(i32 <id>)
9631
9632Overview:
9633"""""""""
9634
9635The '``llvm.pcmarker``' intrinsic is a method to export a Program
9636Counter (PC) in a region of code to simulators and other tools. The
9637method is target specific, but it is expected that the marker will use
9638exported symbols to transmit the PC of the marker. The marker makes no
9639guarantees that it will remain with any specific instruction after
9640optimizations. It is possible that the presence of a marker will inhibit
9641optimizations. The intended use is to be inserted after optimizations to
9642allow correlations of simulation runs.
9643
9644Arguments:
9645""""""""""
9646
9647``id`` is a numerical id identifying the marker.
9648
9649Semantics:
9650""""""""""
9651
9652This intrinsic does not modify the behavior of the program. Backends
9653that do not support this intrinsic may ignore it.
9654
9655'``llvm.readcyclecounter``' Intrinsic
9656^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9657
9658Syntax:
9659"""""""
9660
9661::
9662
9663 declare i64 @llvm.readcyclecounter()
9664
9665Overview:
9666"""""""""
9667
9668The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9669counter register (or similar low latency, high accuracy clocks) on those
9670targets that support it. On X86, it should map to RDTSC. On Alpha, it
9671should map to RPCC. As the backing counters overflow quickly (on the
9672order of 9 seconds on alpha), this should only be used for small
9673timings.
9674
9675Semantics:
9676""""""""""
9677
9678When directly supported, reading the cycle counter should not modify any
9679memory. Implementations are allowed to either return a application
9680specific value or a system wide value. On backends without support, this
9681is lowered to a constant 0.
9682
Tim Northoverbc933082013-05-23 19:11:20 +00009683Note that runtime support may be conditional on the privilege-level code is
9684running at and the host platform.
9685
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009686'``llvm.clear_cache``' Intrinsic
9687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9688
9689Syntax:
9690"""""""
9691
9692::
9693
9694 declare void @llvm.clear_cache(i8*, i8*)
9695
9696Overview:
9697"""""""""
9698
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009699The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9700in the specified range to the execution unit of the processor. On
9701targets with non-unified instruction and data cache, the implementation
9702flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009703
9704Semantics:
9705""""""""""
9706
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009707On platforms with coherent instruction and data caches (e.g. x86), this
9708intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009709cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009710instructions or a system call, if cache flushing requires special
9711privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009712
Sean Silvad02bf3e2014-04-07 22:29:53 +00009713The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009714time library.
Renato Golin93010e62014-03-26 14:01:32 +00009715
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009716This instrinsic does *not* empty the instruction pipeline. Modifications
9717of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009718
Justin Bogner61ba2e32014-12-08 18:02:35 +00009719'``llvm.instrprof_increment``' Intrinsic
9720^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9721
9722Syntax:
9723"""""""
9724
9725::
9726
9727 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9728 i32 <num-counters>, i32 <index>)
9729
9730Overview:
9731"""""""""
9732
9733The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9734frontend for use with instrumentation based profiling. These will be
9735lowered by the ``-instrprof`` pass to generate execution counts of a
9736program at runtime.
9737
9738Arguments:
9739""""""""""
9740
9741The first argument is a pointer to a global variable containing the
9742name of the entity being instrumented. This should generally be the
9743(mangled) function name for a set of counters.
9744
9745The second argument is a hash value that can be used by the consumer
9746of the profile data to detect changes to the instrumented source, and
9747the third is the number of counters associated with ``name``. It is an
9748error if ``hash`` or ``num-counters`` differ between two instances of
9749``instrprof_increment`` that refer to the same name.
9750
9751The last argument refers to which of the counters for ``name`` should
9752be incremented. It should be a value between 0 and ``num-counters``.
9753
9754Semantics:
9755""""""""""
9756
9757This intrinsic represents an increment of a profiling counter. It will
9758cause the ``-instrprof`` pass to generate the appropriate data
9759structures and the code to increment the appropriate value, in a
9760format that can be written out by a compiler runtime and consumed via
9761the ``llvm-profdata`` tool.
9762
Xinliang David Li4ca17332016-09-18 18:34:07 +00009763'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +00009764^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +00009765
9766Syntax:
9767"""""""
9768
9769::
9770
9771 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
9772 i32 <num-counters>,
9773 i32 <index>, i64 <step>)
9774
9775Overview:
9776"""""""""
9777
9778The '``llvm.instrprof_increment_step``' intrinsic is an extension to
9779the '``llvm.instrprof_increment``' intrinsic with an additional fifth
9780argument to specify the step of the increment.
9781
9782Arguments:
9783""""""""""
9784The first four arguments are the same as '``llvm.instrprof_increment``'
9785instrinsic.
9786
9787The last argument specifies the value of the increment of the counter variable.
9788
9789Semantics:
9790""""""""""
9791See description of '``llvm.instrprof_increment``' instrinsic.
9792
9793
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009794'``llvm.instrprof_value_profile``' Intrinsic
9795^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9796
9797Syntax:
9798"""""""
9799
9800::
9801
9802 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9803 i64 <value>, i32 <value_kind>,
9804 i32 <index>)
9805
9806Overview:
9807"""""""""
9808
9809The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9810frontend for use with instrumentation based profiling. This will be
9811lowered by the ``-instrprof`` pass to find out the target values,
9812instrumented expressions take in a program at runtime.
9813
9814Arguments:
9815""""""""""
9816
9817The first argument is a pointer to a global variable containing the
9818name of the entity being instrumented. ``name`` should generally be the
9819(mangled) function name for a set of counters.
9820
9821The second argument is a hash value that can be used by the consumer
9822of the profile data to detect changes to the instrumented source. It
9823is an error if ``hash`` differs between two instances of
9824``llvm.instrprof_*`` that refer to the same name.
9825
9826The third argument is the value of the expression being profiled. The profiled
9827expression's value should be representable as an unsigned 64-bit value. The
9828fourth argument represents the kind of value profiling that is being done. The
9829supported value profiling kinds are enumerated through the
9830``InstrProfValueKind`` type declared in the
9831``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9832index of the instrumented expression within ``name``. It should be >= 0.
9833
9834Semantics:
9835""""""""""
9836
9837This intrinsic represents the point where a call to a runtime routine
9838should be inserted for value profiling of target expressions. ``-instrprof``
9839pass will generate the appropriate data structures and replace the
9840``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9841runtime library with proper arguments.
9842
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009843'``llvm.thread.pointer``' Intrinsic
9844^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9845
9846Syntax:
9847"""""""
9848
9849::
9850
9851 declare i8* @llvm.thread.pointer()
9852
9853Overview:
9854"""""""""
9855
9856The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9857pointer.
9858
9859Semantics:
9860""""""""""
9861
9862The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9863for the current thread. The exact semantics of this value are target
9864specific: it may point to the start of TLS area, to the end, or somewhere
9865in the middle. Depending on the target, this intrinsic may read a register,
9866call a helper function, read from an alternate memory space, or perform
9867other operations necessary to locate the TLS area. Not all targets support
9868this intrinsic.
9869
Sean Silvab084af42012-12-07 10:36:55 +00009870Standard C Library Intrinsics
9871-----------------------------
9872
9873LLVM provides intrinsics for a few important standard C library
9874functions. These intrinsics allow source-language front-ends to pass
9875information about the alignment of the pointer arguments to the code
9876generator, providing opportunity for more efficient code generation.
9877
9878.. _int_memcpy:
9879
9880'``llvm.memcpy``' Intrinsic
9881^^^^^^^^^^^^^^^^^^^^^^^^^^^
9882
9883Syntax:
9884"""""""
9885
9886This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9887integer bit width and for different address spaces. Not all targets
9888support all bit widths however.
9889
9890::
9891
9892 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9893 i32 <len>, i32 <align>, i1 <isvolatile>)
9894 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9895 i64 <len>, i32 <align>, i1 <isvolatile>)
9896
9897Overview:
9898"""""""""
9899
9900The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9901source location to the destination location.
9902
9903Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9904intrinsics do not return a value, takes extra alignment/isvolatile
9905arguments and the pointers can be in specified address spaces.
9906
9907Arguments:
9908""""""""""
9909
9910The first argument is a pointer to the destination, the second is a
9911pointer to the source. The third argument is an integer argument
9912specifying the number of bytes to copy, the fourth argument is the
9913alignment of the source and destination locations, and the fifth is a
9914boolean indicating a volatile access.
9915
9916If the call to this intrinsic has an alignment value that is not 0 or 1,
9917then the caller guarantees that both the source and destination pointers
9918are aligned to that boundary.
9919
9920If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9921a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9922very cleanly specified and it is unwise to depend on it.
9923
9924Semantics:
9925""""""""""
9926
9927The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9928source location to the destination location, which are not allowed to
9929overlap. It copies "len" bytes of memory over. If the argument is known
9930to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009931argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009932
9933'``llvm.memmove``' Intrinsic
9934^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9935
9936Syntax:
9937"""""""
9938
9939This is an overloaded intrinsic. You can use llvm.memmove on any integer
9940bit width and for different address space. Not all targets support all
9941bit widths however.
9942
9943::
9944
9945 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9946 i32 <len>, i32 <align>, i1 <isvolatile>)
9947 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9948 i64 <len>, i32 <align>, i1 <isvolatile>)
9949
9950Overview:
9951"""""""""
9952
9953The '``llvm.memmove.*``' intrinsics move a block of memory from the
9954source location to the destination location. It is similar to the
9955'``llvm.memcpy``' intrinsic but allows the two memory locations to
9956overlap.
9957
9958Note that, unlike the standard libc function, the ``llvm.memmove.*``
9959intrinsics do not return a value, takes extra alignment/isvolatile
9960arguments and the pointers can be in specified address spaces.
9961
9962Arguments:
9963""""""""""
9964
9965The first argument is a pointer to the destination, the second is a
9966pointer to the source. The third argument is an integer argument
9967specifying the number of bytes to copy, the fourth argument is the
9968alignment of the source and destination locations, and the fifth is a
9969boolean indicating a volatile access.
9970
9971If the call to this intrinsic has an alignment value that is not 0 or 1,
9972then the caller guarantees that the source and destination pointers are
9973aligned to that boundary.
9974
9975If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9976is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9977not very cleanly specified and it is unwise to depend on it.
9978
9979Semantics:
9980""""""""""
9981
9982The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9983source location to the destination location, which may overlap. It
9984copies "len" bytes of memory over. If the argument is known to be
9985aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009986otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009987
9988'``llvm.memset.*``' Intrinsics
9989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9990
9991Syntax:
9992"""""""
9993
9994This is an overloaded intrinsic. You can use llvm.memset on any integer
9995bit width and for different address spaces. However, not all targets
9996support all bit widths.
9997
9998::
9999
10000 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10001 i32 <len>, i32 <align>, i1 <isvolatile>)
10002 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10003 i64 <len>, i32 <align>, i1 <isvolatile>)
10004
10005Overview:
10006"""""""""
10007
10008The '``llvm.memset.*``' intrinsics fill a block of memory with a
10009particular byte value.
10010
10011Note that, unlike the standard libc function, the ``llvm.memset``
10012intrinsic does not return a value and takes extra alignment/volatile
10013arguments. Also, the destination can be in an arbitrary address space.
10014
10015Arguments:
10016""""""""""
10017
10018The first argument is a pointer to the destination to fill, the second
10019is the byte value with which to fill it, the third argument is an
10020integer argument specifying the number of bytes to fill, and the fourth
10021argument is the known alignment of the destination location.
10022
10023If the call to this intrinsic has an alignment value that is not 0 or 1,
10024then the caller guarantees that the destination pointer is aligned to
10025that boundary.
10026
10027If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10028a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10029very cleanly specified and it is unwise to depend on it.
10030
10031Semantics:
10032""""""""""
10033
10034The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10035at the destination location. If the argument is known to be aligned to
10036some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010037it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010038
10039'``llvm.sqrt.*``' Intrinsic
10040^^^^^^^^^^^^^^^^^^^^^^^^^^^
10041
10042Syntax:
10043"""""""
10044
10045This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10046floating point or vector of floating point type. Not all targets support
10047all types however.
10048
10049::
10050
10051 declare float @llvm.sqrt.f32(float %Val)
10052 declare double @llvm.sqrt.f64(double %Val)
10053 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10054 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10055 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10056
10057Overview:
10058"""""""""
10059
10060The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
10061returning the same value as the libm '``sqrt``' functions would. Unlike
10062``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
10063negative numbers other than -0.0 (which allows for better optimization,
10064because there is no need to worry about errno being set).
10065``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
10066
10067Arguments:
10068""""""""""
10069
10070The argument and return value are floating point numbers of the same
10071type.
10072
10073Semantics:
10074""""""""""
10075
10076This function returns the sqrt of the specified operand if it is a
10077nonnegative floating point number.
10078
10079'``llvm.powi.*``' Intrinsic
10080^^^^^^^^^^^^^^^^^^^^^^^^^^^
10081
10082Syntax:
10083"""""""
10084
10085This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10086floating point or vector of floating point type. Not all targets support
10087all types however.
10088
10089::
10090
10091 declare float @llvm.powi.f32(float %Val, i32 %power)
10092 declare double @llvm.powi.f64(double %Val, i32 %power)
10093 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10094 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10095 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10096
10097Overview:
10098"""""""""
10099
10100The '``llvm.powi.*``' intrinsics return the first operand raised to the
10101specified (positive or negative) power. The order of evaluation of
10102multiplications is not defined. When a vector of floating point type is
10103used, the second argument remains a scalar integer value.
10104
10105Arguments:
10106""""""""""
10107
10108The second argument is an integer power, and the first is a value to
10109raise to that power.
10110
10111Semantics:
10112""""""""""
10113
10114This function returns the first value raised to the second power with an
10115unspecified sequence of rounding operations.
10116
10117'``llvm.sin.*``' Intrinsic
10118^^^^^^^^^^^^^^^^^^^^^^^^^^
10119
10120Syntax:
10121"""""""
10122
10123This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10124floating point or vector of floating point type. Not all targets support
10125all types however.
10126
10127::
10128
10129 declare float @llvm.sin.f32(float %Val)
10130 declare double @llvm.sin.f64(double %Val)
10131 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10132 declare fp128 @llvm.sin.f128(fp128 %Val)
10133 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10134
10135Overview:
10136"""""""""
10137
10138The '``llvm.sin.*``' intrinsics return the sine of the operand.
10139
10140Arguments:
10141""""""""""
10142
10143The argument and return value are floating point numbers of the same
10144type.
10145
10146Semantics:
10147""""""""""
10148
10149This function returns the sine of the specified operand, returning the
10150same values as the libm ``sin`` functions would, and handles error
10151conditions in the same way.
10152
10153'``llvm.cos.*``' Intrinsic
10154^^^^^^^^^^^^^^^^^^^^^^^^^^
10155
10156Syntax:
10157"""""""
10158
10159This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10160floating point or vector of floating point type. Not all targets support
10161all types however.
10162
10163::
10164
10165 declare float @llvm.cos.f32(float %Val)
10166 declare double @llvm.cos.f64(double %Val)
10167 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10168 declare fp128 @llvm.cos.f128(fp128 %Val)
10169 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10170
10171Overview:
10172"""""""""
10173
10174The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10175
10176Arguments:
10177""""""""""
10178
10179The argument and return value are floating point numbers of the same
10180type.
10181
10182Semantics:
10183""""""""""
10184
10185This function returns the cosine of the specified operand, returning the
10186same values as the libm ``cos`` functions would, and handles error
10187conditions in the same way.
10188
10189'``llvm.pow.*``' Intrinsic
10190^^^^^^^^^^^^^^^^^^^^^^^^^^
10191
10192Syntax:
10193"""""""
10194
10195This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10196floating point or vector of floating point type. Not all targets support
10197all types however.
10198
10199::
10200
10201 declare float @llvm.pow.f32(float %Val, float %Power)
10202 declare double @llvm.pow.f64(double %Val, double %Power)
10203 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10204 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10205 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10206
10207Overview:
10208"""""""""
10209
10210The '``llvm.pow.*``' intrinsics return the first operand raised to the
10211specified (positive or negative) power.
10212
10213Arguments:
10214""""""""""
10215
10216The second argument is a floating point power, and the first is a value
10217to raise to that power.
10218
10219Semantics:
10220""""""""""
10221
10222This function returns the first value raised to the second power,
10223returning the same values as the libm ``pow`` functions would, and
10224handles error conditions in the same way.
10225
10226'``llvm.exp.*``' Intrinsic
10227^^^^^^^^^^^^^^^^^^^^^^^^^^
10228
10229Syntax:
10230"""""""
10231
10232This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10233floating point or vector of floating point type. Not all targets support
10234all types however.
10235
10236::
10237
10238 declare float @llvm.exp.f32(float %Val)
10239 declare double @llvm.exp.f64(double %Val)
10240 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10241 declare fp128 @llvm.exp.f128(fp128 %Val)
10242 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10243
10244Overview:
10245"""""""""
10246
10247The '``llvm.exp.*``' intrinsics perform the exp function.
10248
10249Arguments:
10250""""""""""
10251
10252The argument and return value are floating point numbers of the same
10253type.
10254
10255Semantics:
10256""""""""""
10257
10258This function returns the same values as the libm ``exp`` functions
10259would, and handles error conditions in the same way.
10260
10261'``llvm.exp2.*``' Intrinsic
10262^^^^^^^^^^^^^^^^^^^^^^^^^^^
10263
10264Syntax:
10265"""""""
10266
10267This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10268floating point or vector of floating point type. Not all targets support
10269all types however.
10270
10271::
10272
10273 declare float @llvm.exp2.f32(float %Val)
10274 declare double @llvm.exp2.f64(double %Val)
10275 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10276 declare fp128 @llvm.exp2.f128(fp128 %Val)
10277 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10278
10279Overview:
10280"""""""""
10281
10282The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10283
10284Arguments:
10285""""""""""
10286
10287The argument and return value are floating point numbers of the same
10288type.
10289
10290Semantics:
10291""""""""""
10292
10293This function returns the same values as the libm ``exp2`` functions
10294would, and handles error conditions in the same way.
10295
10296'``llvm.log.*``' Intrinsic
10297^^^^^^^^^^^^^^^^^^^^^^^^^^
10298
10299Syntax:
10300"""""""
10301
10302This is an overloaded intrinsic. You can use ``llvm.log`` on any
10303floating point or vector of floating point type. Not all targets support
10304all types however.
10305
10306::
10307
10308 declare float @llvm.log.f32(float %Val)
10309 declare double @llvm.log.f64(double %Val)
10310 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10311 declare fp128 @llvm.log.f128(fp128 %Val)
10312 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10313
10314Overview:
10315"""""""""
10316
10317The '``llvm.log.*``' intrinsics perform the log function.
10318
10319Arguments:
10320""""""""""
10321
10322The argument and return value are floating point numbers of the same
10323type.
10324
10325Semantics:
10326""""""""""
10327
10328This function returns the same values as the libm ``log`` functions
10329would, and handles error conditions in the same way.
10330
10331'``llvm.log10.*``' Intrinsic
10332^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10333
10334Syntax:
10335"""""""
10336
10337This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10338floating point or vector of floating point type. Not all targets support
10339all types however.
10340
10341::
10342
10343 declare float @llvm.log10.f32(float %Val)
10344 declare double @llvm.log10.f64(double %Val)
10345 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10346 declare fp128 @llvm.log10.f128(fp128 %Val)
10347 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10348
10349Overview:
10350"""""""""
10351
10352The '``llvm.log10.*``' intrinsics perform the log10 function.
10353
10354Arguments:
10355""""""""""
10356
10357The argument and return value are floating point numbers of the same
10358type.
10359
10360Semantics:
10361""""""""""
10362
10363This function returns the same values as the libm ``log10`` functions
10364would, and handles error conditions in the same way.
10365
10366'``llvm.log2.*``' Intrinsic
10367^^^^^^^^^^^^^^^^^^^^^^^^^^^
10368
10369Syntax:
10370"""""""
10371
10372This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10373floating point or vector of floating point type. Not all targets support
10374all types however.
10375
10376::
10377
10378 declare float @llvm.log2.f32(float %Val)
10379 declare double @llvm.log2.f64(double %Val)
10380 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10381 declare fp128 @llvm.log2.f128(fp128 %Val)
10382 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10383
10384Overview:
10385"""""""""
10386
10387The '``llvm.log2.*``' intrinsics perform the log2 function.
10388
10389Arguments:
10390""""""""""
10391
10392The argument and return value are floating point numbers of the same
10393type.
10394
10395Semantics:
10396""""""""""
10397
10398This function returns the same values as the libm ``log2`` functions
10399would, and handles error conditions in the same way.
10400
10401'``llvm.fma.*``' Intrinsic
10402^^^^^^^^^^^^^^^^^^^^^^^^^^
10403
10404Syntax:
10405"""""""
10406
10407This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10408floating point or vector of floating point type. Not all targets support
10409all types however.
10410
10411::
10412
10413 declare float @llvm.fma.f32(float %a, float %b, float %c)
10414 declare double @llvm.fma.f64(double %a, double %b, double %c)
10415 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10416 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10417 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10418
10419Overview:
10420"""""""""
10421
10422The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10423operation.
10424
10425Arguments:
10426""""""""""
10427
10428The argument and return value are floating point numbers of the same
10429type.
10430
10431Semantics:
10432""""""""""
10433
10434This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010435would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010436
10437'``llvm.fabs.*``' Intrinsic
10438^^^^^^^^^^^^^^^^^^^^^^^^^^^
10439
10440Syntax:
10441"""""""
10442
10443This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10444floating point or vector of floating point type. Not all targets support
10445all types however.
10446
10447::
10448
10449 declare float @llvm.fabs.f32(float %Val)
10450 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010451 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010452 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010453 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010454
10455Overview:
10456"""""""""
10457
10458The '``llvm.fabs.*``' intrinsics return the absolute value of the
10459operand.
10460
10461Arguments:
10462""""""""""
10463
10464The argument and return value are floating point numbers of the same
10465type.
10466
10467Semantics:
10468""""""""""
10469
10470This function returns the same values as the libm ``fabs`` functions
10471would, and handles error conditions in the same way.
10472
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010473'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010474^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010475
10476Syntax:
10477"""""""
10478
10479This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10480floating point or vector of floating point type. Not all targets support
10481all types however.
10482
10483::
10484
Matt Arsenault64313c92014-10-22 18:25:02 +000010485 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10486 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10487 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10488 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10489 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010490
10491Overview:
10492"""""""""
10493
10494The '``llvm.minnum.*``' intrinsics return the minimum of the two
10495arguments.
10496
10497
10498Arguments:
10499""""""""""
10500
10501The arguments and return value are floating point numbers of the same
10502type.
10503
10504Semantics:
10505""""""""""
10506
10507Follows the IEEE-754 semantics for minNum, which also match for libm's
10508fmin.
10509
10510If either operand is a NaN, returns the other non-NaN operand. Returns
10511NaN only if both operands are NaN. If the operands compare equal,
10512returns a value that compares equal to both operands. This means that
10513fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10514
10515'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010516^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010517
10518Syntax:
10519"""""""
10520
10521This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10522floating point or vector of floating point type. Not all targets support
10523all types however.
10524
10525::
10526
Matt Arsenault64313c92014-10-22 18:25:02 +000010527 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10528 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10529 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10530 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10531 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010532
10533Overview:
10534"""""""""
10535
10536The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10537arguments.
10538
10539
10540Arguments:
10541""""""""""
10542
10543The arguments and return value are floating point numbers of the same
10544type.
10545
10546Semantics:
10547""""""""""
10548Follows the IEEE-754 semantics for maxNum, which also match for libm's
10549fmax.
10550
10551If either operand is a NaN, returns the other non-NaN operand. Returns
10552NaN only if both operands are NaN. If the operands compare equal,
10553returns a value that compares equal to both operands. This means that
10554fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10555
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010556'``llvm.copysign.*``' Intrinsic
10557^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10558
10559Syntax:
10560"""""""
10561
10562This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10563floating point or vector of floating point type. Not all targets support
10564all types however.
10565
10566::
10567
10568 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10569 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10570 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10571 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10572 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10573
10574Overview:
10575"""""""""
10576
10577The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10578first operand and the sign of the second operand.
10579
10580Arguments:
10581""""""""""
10582
10583The arguments and return value are floating point numbers of the same
10584type.
10585
10586Semantics:
10587""""""""""
10588
10589This function returns the same values as the libm ``copysign``
10590functions would, and handles error conditions in the same way.
10591
Sean Silvab084af42012-12-07 10:36:55 +000010592'``llvm.floor.*``' Intrinsic
10593^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10594
10595Syntax:
10596"""""""
10597
10598This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10599floating point or vector of floating point type. Not all targets support
10600all types however.
10601
10602::
10603
10604 declare float @llvm.floor.f32(float %Val)
10605 declare double @llvm.floor.f64(double %Val)
10606 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10607 declare fp128 @llvm.floor.f128(fp128 %Val)
10608 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10609
10610Overview:
10611"""""""""
10612
10613The '``llvm.floor.*``' intrinsics return the floor of the operand.
10614
10615Arguments:
10616""""""""""
10617
10618The argument and return value are floating point numbers of the same
10619type.
10620
10621Semantics:
10622""""""""""
10623
10624This function returns the same values as the libm ``floor`` functions
10625would, and handles error conditions in the same way.
10626
10627'``llvm.ceil.*``' Intrinsic
10628^^^^^^^^^^^^^^^^^^^^^^^^^^^
10629
10630Syntax:
10631"""""""
10632
10633This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10634floating point or vector of floating point type. Not all targets support
10635all types however.
10636
10637::
10638
10639 declare float @llvm.ceil.f32(float %Val)
10640 declare double @llvm.ceil.f64(double %Val)
10641 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10642 declare fp128 @llvm.ceil.f128(fp128 %Val)
10643 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10644
10645Overview:
10646"""""""""
10647
10648The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10649
10650Arguments:
10651""""""""""
10652
10653The argument and return value are floating point numbers of the same
10654type.
10655
10656Semantics:
10657""""""""""
10658
10659This function returns the same values as the libm ``ceil`` functions
10660would, and handles error conditions in the same way.
10661
10662'``llvm.trunc.*``' Intrinsic
10663^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10664
10665Syntax:
10666"""""""
10667
10668This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10669floating point or vector of floating point type. Not all targets support
10670all types however.
10671
10672::
10673
10674 declare float @llvm.trunc.f32(float %Val)
10675 declare double @llvm.trunc.f64(double %Val)
10676 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10677 declare fp128 @llvm.trunc.f128(fp128 %Val)
10678 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10679
10680Overview:
10681"""""""""
10682
10683The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10684nearest integer not larger in magnitude than the operand.
10685
10686Arguments:
10687""""""""""
10688
10689The argument and return value are floating point numbers of the same
10690type.
10691
10692Semantics:
10693""""""""""
10694
10695This function returns the same values as the libm ``trunc`` functions
10696would, and handles error conditions in the same way.
10697
10698'``llvm.rint.*``' Intrinsic
10699^^^^^^^^^^^^^^^^^^^^^^^^^^^
10700
10701Syntax:
10702"""""""
10703
10704This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10705floating point or vector of floating point type. Not all targets support
10706all types however.
10707
10708::
10709
10710 declare float @llvm.rint.f32(float %Val)
10711 declare double @llvm.rint.f64(double %Val)
10712 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10713 declare fp128 @llvm.rint.f128(fp128 %Val)
10714 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10715
10716Overview:
10717"""""""""
10718
10719The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10720nearest integer. It may raise an inexact floating-point exception if the
10721operand isn't an integer.
10722
10723Arguments:
10724""""""""""
10725
10726The argument and return value are floating point numbers of the same
10727type.
10728
10729Semantics:
10730""""""""""
10731
10732This function returns the same values as the libm ``rint`` functions
10733would, and handles error conditions in the same way.
10734
10735'``llvm.nearbyint.*``' Intrinsic
10736^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10737
10738Syntax:
10739"""""""
10740
10741This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10742floating point or vector of floating point type. Not all targets support
10743all types however.
10744
10745::
10746
10747 declare float @llvm.nearbyint.f32(float %Val)
10748 declare double @llvm.nearbyint.f64(double %Val)
10749 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10750 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10751 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10752
10753Overview:
10754"""""""""
10755
10756The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10757nearest integer.
10758
10759Arguments:
10760""""""""""
10761
10762The argument and return value are floating point numbers of the same
10763type.
10764
10765Semantics:
10766""""""""""
10767
10768This function returns the same values as the libm ``nearbyint``
10769functions would, and handles error conditions in the same way.
10770
Hal Finkel171817e2013-08-07 22:49:12 +000010771'``llvm.round.*``' Intrinsic
10772^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10773
10774Syntax:
10775"""""""
10776
10777This is an overloaded intrinsic. You can use ``llvm.round`` on any
10778floating point or vector of floating point type. Not all targets support
10779all types however.
10780
10781::
10782
10783 declare float @llvm.round.f32(float %Val)
10784 declare double @llvm.round.f64(double %Val)
10785 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10786 declare fp128 @llvm.round.f128(fp128 %Val)
10787 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10788
10789Overview:
10790"""""""""
10791
10792The '``llvm.round.*``' intrinsics returns the operand rounded to the
10793nearest integer.
10794
10795Arguments:
10796""""""""""
10797
10798The argument and return value are floating point numbers of the same
10799type.
10800
10801Semantics:
10802""""""""""
10803
10804This function returns the same values as the libm ``round``
10805functions would, and handles error conditions in the same way.
10806
Sean Silvab084af42012-12-07 10:36:55 +000010807Bit Manipulation Intrinsics
10808---------------------------
10809
10810LLVM provides intrinsics for a few important bit manipulation
10811operations. These allow efficient code generation for some algorithms.
10812
James Molloy90111f72015-11-12 12:29:09 +000010813'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010814^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010815
10816Syntax:
10817"""""""
10818
10819This is an overloaded intrinsic function. You can use bitreverse on any
10820integer type.
10821
10822::
10823
10824 declare i16 @llvm.bitreverse.i16(i16 <id>)
10825 declare i32 @llvm.bitreverse.i32(i32 <id>)
10826 declare i64 @llvm.bitreverse.i64(i64 <id>)
10827
10828Overview:
10829"""""""""
10830
10831The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010832bitpattern of an integer value; for example ``0b10110110`` becomes
10833``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010834
10835Semantics:
10836""""""""""
10837
Yichao Yu5abf14b2016-11-23 16:25:31 +000010838The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000010839``M`` in the input moved to bit ``N-M`` in the output.
10840
Sean Silvab084af42012-12-07 10:36:55 +000010841'``llvm.bswap.*``' Intrinsics
10842^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10843
10844Syntax:
10845"""""""
10846
10847This is an overloaded intrinsic function. You can use bswap on any
10848integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10849
10850::
10851
10852 declare i16 @llvm.bswap.i16(i16 <id>)
10853 declare i32 @llvm.bswap.i32(i32 <id>)
10854 declare i64 @llvm.bswap.i64(i64 <id>)
10855
10856Overview:
10857"""""""""
10858
10859The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10860values with an even number of bytes (positive multiple of 16 bits).
10861These are useful for performing operations on data that is not in the
10862target's native byte order.
10863
10864Semantics:
10865""""""""""
10866
10867The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10868and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10869intrinsic returns an i32 value that has the four bytes of the input i32
10870swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10871returned i32 will have its bytes in 3, 2, 1, 0 order. The
10872``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10873concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10874respectively).
10875
10876'``llvm.ctpop.*``' Intrinsic
10877^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10878
10879Syntax:
10880"""""""
10881
10882This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10883bit width, or on any vector with integer elements. Not all targets
10884support all bit widths or vector types, however.
10885
10886::
10887
10888 declare i8 @llvm.ctpop.i8(i8 <src>)
10889 declare i16 @llvm.ctpop.i16(i16 <src>)
10890 declare i32 @llvm.ctpop.i32(i32 <src>)
10891 declare i64 @llvm.ctpop.i64(i64 <src>)
10892 declare i256 @llvm.ctpop.i256(i256 <src>)
10893 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10894
10895Overview:
10896"""""""""
10897
10898The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10899in a value.
10900
10901Arguments:
10902""""""""""
10903
10904The only argument is the value to be counted. The argument may be of any
10905integer type, or a vector with integer elements. The return type must
10906match the argument type.
10907
10908Semantics:
10909""""""""""
10910
10911The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10912each element of a vector.
10913
10914'``llvm.ctlz.*``' Intrinsic
10915^^^^^^^^^^^^^^^^^^^^^^^^^^^
10916
10917Syntax:
10918"""""""
10919
10920This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10921integer bit width, or any vector whose elements are integers. Not all
10922targets support all bit widths or vector types, however.
10923
10924::
10925
10926 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10927 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10928 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10929 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10930 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010931 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010932
10933Overview:
10934"""""""""
10935
10936The '``llvm.ctlz``' family of intrinsic functions counts the number of
10937leading zeros in a variable.
10938
10939Arguments:
10940""""""""""
10941
10942The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010943any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010944type must match the first argument type.
10945
10946The second argument must be a constant and is a flag to indicate whether
10947the intrinsic should ensure that a zero as the first argument produces a
10948defined result. Historically some architectures did not provide a
10949defined result for zero values as efficiently, and many algorithms are
10950now predicated on avoiding zero-value inputs.
10951
10952Semantics:
10953""""""""""
10954
10955The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10956zeros in a variable, or within each element of the vector. If
10957``src == 0`` then the result is the size in bits of the type of ``src``
10958if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10959``llvm.ctlz(i32 2) = 30``.
10960
10961'``llvm.cttz.*``' Intrinsic
10962^^^^^^^^^^^^^^^^^^^^^^^^^^^
10963
10964Syntax:
10965"""""""
10966
10967This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10968integer bit width, or any vector of integer elements. Not all targets
10969support all bit widths or vector types, however.
10970
10971::
10972
10973 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10974 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10975 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10976 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10977 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010978 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010979
10980Overview:
10981"""""""""
10982
10983The '``llvm.cttz``' family of intrinsic functions counts the number of
10984trailing zeros.
10985
10986Arguments:
10987""""""""""
10988
10989The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010990any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010991type must match the first argument type.
10992
10993The second argument must be a constant and is a flag to indicate whether
10994the intrinsic should ensure that a zero as the first argument produces a
10995defined result. Historically some architectures did not provide a
10996defined result for zero values as efficiently, and many algorithms are
10997now predicated on avoiding zero-value inputs.
10998
10999Semantics:
11000""""""""""
11001
11002The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11003zeros in a variable, or within each element of a vector. If ``src == 0``
11004then the result is the size in bits of the type of ``src`` if
11005``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11006``llvm.cttz(2) = 1``.
11007
Philip Reames34843ae2015-03-05 05:55:55 +000011008.. _int_overflow:
11009
Sean Silvab084af42012-12-07 10:36:55 +000011010Arithmetic with Overflow Intrinsics
11011-----------------------------------
11012
John Regehr6a493f22016-05-12 20:55:09 +000011013LLVM provides intrinsics for fast arithmetic overflow checking.
11014
11015Each of these intrinsics returns a two-element struct. The first
11016element of this struct contains the result of the corresponding
11017arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11018the result. Therefore, for example, the first element of the struct
11019returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11020result of a 32-bit ``add`` instruction with the same operands, where
11021the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11022
11023The second element of the result is an ``i1`` that is 1 if the
11024arithmetic operation overflowed and 0 otherwise. An operation
11025overflows if, for any values of its operands ``A`` and ``B`` and for
11026any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11027not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11028``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11029``op`` is the underlying arithmetic operation.
11030
11031The behavior of these intrinsics is well-defined for all argument
11032values.
Sean Silvab084af42012-12-07 10:36:55 +000011033
11034'``llvm.sadd.with.overflow.*``' Intrinsics
11035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11036
11037Syntax:
11038"""""""
11039
11040This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11041on any integer bit width.
11042
11043::
11044
11045 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11046 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11047 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11048
11049Overview:
11050"""""""""
11051
11052The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11053a signed addition of the two arguments, and indicate whether an overflow
11054occurred during the signed summation.
11055
11056Arguments:
11057""""""""""
11058
11059The arguments (%a and %b) and the first element of the result structure
11060may be of integer types of any bit width, but they must have the same
11061bit width. The second element of the result structure must be of type
11062``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11063addition.
11064
11065Semantics:
11066""""""""""
11067
11068The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011069a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011070first element of which is the signed summation, and the second element
11071of which is a bit specifying if the signed summation resulted in an
11072overflow.
11073
11074Examples:
11075"""""""""
11076
11077.. code-block:: llvm
11078
11079 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11080 %sum = extractvalue {i32, i1} %res, 0
11081 %obit = extractvalue {i32, i1} %res, 1
11082 br i1 %obit, label %overflow, label %normal
11083
11084'``llvm.uadd.with.overflow.*``' Intrinsics
11085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11086
11087Syntax:
11088"""""""
11089
11090This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11091on any integer bit width.
11092
11093::
11094
11095 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11096 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11097 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11098
11099Overview:
11100"""""""""
11101
11102The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11103an unsigned addition of the two arguments, and indicate whether a carry
11104occurred during the unsigned summation.
11105
11106Arguments:
11107""""""""""
11108
11109The arguments (%a and %b) and the first element of the result structure
11110may be of integer types of any bit width, but they must have the same
11111bit width. The second element of the result structure must be of type
11112``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11113addition.
11114
11115Semantics:
11116""""""""""
11117
11118The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011119an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011120first element of which is the sum, and the second element of which is a
11121bit specifying if the unsigned summation resulted in a carry.
11122
11123Examples:
11124"""""""""
11125
11126.. code-block:: llvm
11127
11128 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11129 %sum = extractvalue {i32, i1} %res, 0
11130 %obit = extractvalue {i32, i1} %res, 1
11131 br i1 %obit, label %carry, label %normal
11132
11133'``llvm.ssub.with.overflow.*``' Intrinsics
11134^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11135
11136Syntax:
11137"""""""
11138
11139This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11140on any integer bit width.
11141
11142::
11143
11144 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11145 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11146 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11147
11148Overview:
11149"""""""""
11150
11151The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11152a signed subtraction of the two arguments, and indicate whether an
11153overflow occurred during the signed subtraction.
11154
11155Arguments:
11156""""""""""
11157
11158The arguments (%a and %b) and the first element of the result structure
11159may be of integer types of any bit width, but they must have the same
11160bit width. The second element of the result structure must be of type
11161``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11162subtraction.
11163
11164Semantics:
11165""""""""""
11166
11167The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011168a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011169first element of which is the subtraction, and the second element of
11170which is a bit specifying if the signed subtraction resulted in an
11171overflow.
11172
11173Examples:
11174"""""""""
11175
11176.. code-block:: llvm
11177
11178 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11179 %sum = extractvalue {i32, i1} %res, 0
11180 %obit = extractvalue {i32, i1} %res, 1
11181 br i1 %obit, label %overflow, label %normal
11182
11183'``llvm.usub.with.overflow.*``' Intrinsics
11184^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11185
11186Syntax:
11187"""""""
11188
11189This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11190on any integer bit width.
11191
11192::
11193
11194 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11195 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11196 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11197
11198Overview:
11199"""""""""
11200
11201The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11202an unsigned subtraction of the two arguments, and indicate whether an
11203overflow occurred during the unsigned subtraction.
11204
11205Arguments:
11206""""""""""
11207
11208The arguments (%a and %b) and the first element of the result structure
11209may be of integer types of any bit width, but they must have the same
11210bit width. The second element of the result structure must be of type
11211``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11212subtraction.
11213
11214Semantics:
11215""""""""""
11216
11217The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011218an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011219the first element of which is the subtraction, and the second element of
11220which is a bit specifying if the unsigned subtraction resulted in an
11221overflow.
11222
11223Examples:
11224"""""""""
11225
11226.. code-block:: llvm
11227
11228 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11229 %sum = extractvalue {i32, i1} %res, 0
11230 %obit = extractvalue {i32, i1} %res, 1
11231 br i1 %obit, label %overflow, label %normal
11232
11233'``llvm.smul.with.overflow.*``' Intrinsics
11234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11235
11236Syntax:
11237"""""""
11238
11239This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11240on any integer bit width.
11241
11242::
11243
11244 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11245 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11246 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11247
11248Overview:
11249"""""""""
11250
11251The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11252a signed multiplication of the two arguments, and indicate whether an
11253overflow occurred during the signed multiplication.
11254
11255Arguments:
11256""""""""""
11257
11258The arguments (%a and %b) and the first element of the result structure
11259may be of integer types of any bit width, but they must have the same
11260bit width. The second element of the result structure must be of type
11261``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11262multiplication.
11263
11264Semantics:
11265""""""""""
11266
11267The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011268a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011269the first element of which is the multiplication, and the second element
11270of which is a bit specifying if the signed multiplication resulted in an
11271overflow.
11272
11273Examples:
11274"""""""""
11275
11276.. code-block:: llvm
11277
11278 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11279 %sum = extractvalue {i32, i1} %res, 0
11280 %obit = extractvalue {i32, i1} %res, 1
11281 br i1 %obit, label %overflow, label %normal
11282
11283'``llvm.umul.with.overflow.*``' Intrinsics
11284^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11285
11286Syntax:
11287"""""""
11288
11289This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11290on any integer bit width.
11291
11292::
11293
11294 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11295 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11296 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11297
11298Overview:
11299"""""""""
11300
11301The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11302a unsigned multiplication of the two arguments, and indicate whether an
11303overflow occurred during the unsigned multiplication.
11304
11305Arguments:
11306""""""""""
11307
11308The arguments (%a and %b) and the first element of the result structure
11309may be of integer types of any bit width, but they must have the same
11310bit width. The second element of the result structure must be of type
11311``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11312multiplication.
11313
11314Semantics:
11315""""""""""
11316
11317The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011318an unsigned multiplication of the two arguments. They return a structure ---
11319the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011320element of which is a bit specifying if the unsigned multiplication
11321resulted in an overflow.
11322
11323Examples:
11324"""""""""
11325
11326.. code-block:: llvm
11327
11328 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11329 %sum = extractvalue {i32, i1} %res, 0
11330 %obit = extractvalue {i32, i1} %res, 1
11331 br i1 %obit, label %overflow, label %normal
11332
11333Specialised Arithmetic Intrinsics
11334---------------------------------
11335
Owen Anderson1056a922015-07-11 07:01:27 +000011336'``llvm.canonicalize.*``' Intrinsic
11337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11338
11339Syntax:
11340"""""""
11341
11342::
11343
11344 declare float @llvm.canonicalize.f32(float %a)
11345 declare double @llvm.canonicalize.f64(double %b)
11346
11347Overview:
11348"""""""""
11349
11350The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011351encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011352implementing certain numeric primitives such as frexp. The canonical encoding is
11353defined by IEEE-754-2008 to be:
11354
11355::
11356
11357 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011358 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011359 numbers, infinities, and NaNs, especially in decimal formats.
11360
11361This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011362conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011363according to section 6.2.
11364
11365Examples of non-canonical encodings:
11366
Sean Silvaa1190322015-08-06 22:56:48 +000011367- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011368 converted to a canonical representation per hardware-specific protocol.
11369- Many normal decimal floating point numbers have non-canonical alternative
11370 encodings.
11371- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011372 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011373 a zero of the same sign by this operation.
11374
11375Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11376default exception handling must signal an invalid exception, and produce a
11377quiet NaN result.
11378
11379This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011380that the compiler does not constant fold the operation. Likewise, division by
113811.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011382-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11383
Sean Silvaa1190322015-08-06 22:56:48 +000011384``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011385
11386- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11387- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11388 to ``(x == y)``
11389
11390Additionally, the sign of zero must be conserved:
11391``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11392
11393The payload bits of a NaN must be conserved, with two exceptions.
11394First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011395must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011396usual methods.
11397
11398The canonicalization operation may be optimized away if:
11399
Sean Silvaa1190322015-08-06 22:56:48 +000011400- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011401 floating-point operation that is required by the standard to be canonical.
11402- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011403 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011404
Sean Silvab084af42012-12-07 10:36:55 +000011405'``llvm.fmuladd.*``' Intrinsic
11406^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11407
11408Syntax:
11409"""""""
11410
11411::
11412
11413 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11414 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11415
11416Overview:
11417"""""""""
11418
11419The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011420expressions that can be fused if the code generator determines that (a) the
11421target instruction set has support for a fused operation, and (b) that the
11422fused operation is more efficient than the equivalent, separate pair of mul
11423and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011424
11425Arguments:
11426""""""""""
11427
11428The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11429multiplicands, a and b, and an addend c.
11430
11431Semantics:
11432""""""""""
11433
11434The expression:
11435
11436::
11437
11438 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11439
11440is equivalent to the expression a \* b + c, except that rounding will
11441not be performed between the multiplication and addition steps if the
11442code generator fuses the operations. Fusion is not guaranteed, even if
11443the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011444corresponding llvm.fma.\* intrinsic function should be used
11445instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011446
11447Examples:
11448"""""""""
11449
11450.. code-block:: llvm
11451
Tim Northover675a0962014-06-13 14:24:23 +000011452 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011453
11454Half Precision Floating Point Intrinsics
11455----------------------------------------
11456
11457For most target platforms, half precision floating point is a
11458storage-only format. This means that it is a dense encoding (in memory)
11459but does not support computation in the format.
11460
11461This means that code must first load the half-precision floating point
11462value as an i16, then convert it to float with
11463:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11464then be performed on the float value (including extending to double
11465etc). To store the value back to memory, it is first converted to float
11466if needed, then converted to i16 with
11467:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11468i16 value.
11469
11470.. _int_convert_to_fp16:
11471
11472'``llvm.convert.to.fp16``' Intrinsic
11473^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11474
11475Syntax:
11476"""""""
11477
11478::
11479
Tim Northoverfd7e4242014-07-17 10:51:23 +000011480 declare i16 @llvm.convert.to.fp16.f32(float %a)
11481 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011482
11483Overview:
11484"""""""""
11485
Tim Northoverfd7e4242014-07-17 10:51:23 +000011486The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11487conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011488
11489Arguments:
11490""""""""""
11491
11492The intrinsic function contains single argument - the value to be
11493converted.
11494
11495Semantics:
11496""""""""""
11497
Tim Northoverfd7e4242014-07-17 10:51:23 +000011498The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11499conventional floating point format to half precision floating point format. The
11500return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011501
11502Examples:
11503"""""""""
11504
11505.. code-block:: llvm
11506
Tim Northoverfd7e4242014-07-17 10:51:23 +000011507 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011508 store i16 %res, i16* @x, align 2
11509
11510.. _int_convert_from_fp16:
11511
11512'``llvm.convert.from.fp16``' Intrinsic
11513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11514
11515Syntax:
11516"""""""
11517
11518::
11519
Tim Northoverfd7e4242014-07-17 10:51:23 +000011520 declare float @llvm.convert.from.fp16.f32(i16 %a)
11521 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011522
11523Overview:
11524"""""""""
11525
11526The '``llvm.convert.from.fp16``' intrinsic function performs a
11527conversion from half precision floating point format to single precision
11528floating point format.
11529
11530Arguments:
11531""""""""""
11532
11533The intrinsic function contains single argument - the value to be
11534converted.
11535
11536Semantics:
11537""""""""""
11538
11539The '``llvm.convert.from.fp16``' intrinsic function performs a
11540conversion from half single precision floating point format to single
11541precision floating point format. The input half-float value is
11542represented by an ``i16`` value.
11543
11544Examples:
11545"""""""""
11546
11547.. code-block:: llvm
11548
David Blaikiec7aabbb2015-03-04 22:06:14 +000011549 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011550 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011551
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011552.. _dbg_intrinsics:
11553
Sean Silvab084af42012-12-07 10:36:55 +000011554Debugger Intrinsics
11555-------------------
11556
11557The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11558prefix), are described in the `LLVM Source Level
11559Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11560document.
11561
11562Exception Handling Intrinsics
11563-----------------------------
11564
11565The LLVM exception handling intrinsics (which all start with
11566``llvm.eh.`` prefix), are described in the `LLVM Exception
11567Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11568
11569.. _int_trampoline:
11570
11571Trampoline Intrinsics
11572---------------------
11573
11574These intrinsics make it possible to excise one parameter, marked with
11575the :ref:`nest <nest>` attribute, from a function. The result is a
11576callable function pointer lacking the nest parameter - the caller does
11577not need to provide a value for it. Instead, the value to use is stored
11578in advance in a "trampoline", a block of memory usually allocated on the
11579stack, which also contains code to splice the nest value into the
11580argument list. This is used to implement the GCC nested function address
11581extension.
11582
11583For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11584then the resulting function pointer has signature ``i32 (i32, i32)*``.
11585It can be created as follows:
11586
11587.. code-block:: llvm
11588
11589 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011590 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011591 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11592 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11593 %fp = bitcast i8* %p to i32 (i32, i32)*
11594
11595The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11596``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11597
11598.. _int_it:
11599
11600'``llvm.init.trampoline``' Intrinsic
11601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11602
11603Syntax:
11604"""""""
11605
11606::
11607
11608 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11609
11610Overview:
11611"""""""""
11612
11613This fills the memory pointed to by ``tramp`` with executable code,
11614turning it into a trampoline.
11615
11616Arguments:
11617""""""""""
11618
11619The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11620pointers. The ``tramp`` argument must point to a sufficiently large and
11621sufficiently aligned block of memory; this memory is written to by the
11622intrinsic. Note that the size and the alignment are target-specific -
11623LLVM currently provides no portable way of determining them, so a
11624front-end that generates this intrinsic needs to have some
11625target-specific knowledge. The ``func`` argument must hold a function
11626bitcast to an ``i8*``.
11627
11628Semantics:
11629""""""""""
11630
11631The block of memory pointed to by ``tramp`` is filled with target
11632dependent code, turning it into a function. Then ``tramp`` needs to be
11633passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11634be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11635function's signature is the same as that of ``func`` with any arguments
11636marked with the ``nest`` attribute removed. At most one such ``nest``
11637argument is allowed, and it must be of pointer type. Calling the new
11638function is equivalent to calling ``func`` with the same argument list,
11639but with ``nval`` used for the missing ``nest`` argument. If, after
11640calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11641modified, then the effect of any later call to the returned function
11642pointer is undefined.
11643
11644.. _int_at:
11645
11646'``llvm.adjust.trampoline``' Intrinsic
11647^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11648
11649Syntax:
11650"""""""
11651
11652::
11653
11654 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11655
11656Overview:
11657"""""""""
11658
11659This performs any required machine-specific adjustment to the address of
11660a trampoline (passed as ``tramp``).
11661
11662Arguments:
11663""""""""""
11664
11665``tramp`` must point to a block of memory which already has trampoline
11666code filled in by a previous call to
11667:ref:`llvm.init.trampoline <int_it>`.
11668
11669Semantics:
11670""""""""""
11671
11672On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011673different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011674intrinsic returns the executable address corresponding to ``tramp``
11675after performing the required machine specific adjustments. The pointer
11676returned can then be :ref:`bitcast and executed <int_trampoline>`.
11677
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011678.. _int_mload_mstore:
11679
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011680Masked Vector Load and Store Intrinsics
11681---------------------------------------
11682
11683LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11684
11685.. _int_mload:
11686
11687'``llvm.masked.load.*``' Intrinsics
11688^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11689
11690Syntax:
11691"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011692This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011693
11694::
11695
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011696 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11697 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011698 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011699 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011700 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011701 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011702
11703Overview:
11704"""""""""
11705
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011706Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011707
11708
11709Arguments:
11710""""""""""
11711
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011712The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011713
11714
11715Semantics:
11716""""""""""
11717
11718The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11719The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11720
11721
11722::
11723
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011724 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011725
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011726 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011727 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011728 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011729
11730.. _int_mstore:
11731
11732'``llvm.masked.store.*``' Intrinsics
11733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11734
11735Syntax:
11736"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011737This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011738
11739::
11740
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011741 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11742 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011743 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011744 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011745 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011746 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011747
11748Overview:
11749"""""""""
11750
11751Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11752
11753Arguments:
11754""""""""""
11755
11756The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11757
11758
11759Semantics:
11760""""""""""
11761
11762The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11763The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11764
11765::
11766
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011767 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011768
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011769 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011770 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011771 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11772 store <16 x float> %res, <16 x float>* %ptr, align 4
11773
11774
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011775Masked Vector Gather and Scatter Intrinsics
11776-------------------------------------------
11777
11778LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11779
11780.. _int_mgather:
11781
11782'``llvm.masked.gather.*``' Intrinsics
11783^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11784
11785Syntax:
11786"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011787This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011788
11789::
11790
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011791 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11792 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11793 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011794
11795Overview:
11796"""""""""
11797
11798Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11799
11800
11801Arguments:
11802""""""""""
11803
11804The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11805
11806
11807Semantics:
11808""""""""""
11809
11810The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11811The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11812
11813
11814::
11815
11816 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11817
11818 ;; The gather with all-true mask is equivalent to the following instruction sequence
11819 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11820 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11821 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11822 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11823
11824 %val0 = load double, double* %ptr0, align 8
11825 %val1 = load double, double* %ptr1, align 8
11826 %val2 = load double, double* %ptr2, align 8
11827 %val3 = load double, double* %ptr3, align 8
11828
11829 %vec0 = insertelement <4 x double>undef, %val0, 0
11830 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11831 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11832 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11833
11834.. _int_mscatter:
11835
11836'``llvm.masked.scatter.*``' Intrinsics
11837^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11838
11839Syntax:
11840"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011841This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011842
11843::
11844
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011845 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11846 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11847 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011848
11849Overview:
11850"""""""""
11851
11852Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11853
11854Arguments:
11855""""""""""
11856
11857The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11858
11859
11860Semantics:
11861""""""""""
11862
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011863The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011864
11865::
11866
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011867 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011868 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11869
11870 ;; It is equivalent to a list of scalar stores
11871 %val0 = extractelement <8 x i32> %value, i32 0
11872 %val1 = extractelement <8 x i32> %value, i32 1
11873 ..
11874 %val7 = extractelement <8 x i32> %value, i32 7
11875 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11876 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11877 ..
11878 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11879 ;; Note: the order of the following stores is important when they overlap:
11880 store i32 %val0, i32* %ptr0, align 4
11881 store i32 %val1, i32* %ptr1, align 4
11882 ..
11883 store i32 %val7, i32* %ptr7, align 4
11884
11885
Sean Silvab084af42012-12-07 10:36:55 +000011886Memory Use Markers
11887------------------
11888
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011889This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011890memory objects and ranges where variables are immutable.
11891
Reid Klecknera534a382013-12-19 02:14:12 +000011892.. _int_lifestart:
11893
Sean Silvab084af42012-12-07 10:36:55 +000011894'``llvm.lifetime.start``' Intrinsic
11895^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11896
11897Syntax:
11898"""""""
11899
11900::
11901
11902 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11903
11904Overview:
11905"""""""""
11906
11907The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11908object's lifetime.
11909
11910Arguments:
11911""""""""""
11912
11913The first argument is a constant integer representing the size of the
11914object, or -1 if it is variable sized. The second argument is a pointer
11915to the object.
11916
11917Semantics:
11918""""""""""
11919
11920This intrinsic indicates that before this point in the code, the value
11921of the memory pointed to by ``ptr`` is dead. This means that it is known
11922to never be used and has an undefined value. A load from the pointer
11923that precedes this intrinsic can be replaced with ``'undef'``.
11924
Reid Klecknera534a382013-12-19 02:14:12 +000011925.. _int_lifeend:
11926
Sean Silvab084af42012-12-07 10:36:55 +000011927'``llvm.lifetime.end``' Intrinsic
11928^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11929
11930Syntax:
11931"""""""
11932
11933::
11934
11935 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11936
11937Overview:
11938"""""""""
11939
11940The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11941object's lifetime.
11942
11943Arguments:
11944""""""""""
11945
11946The first argument is a constant integer representing the size of the
11947object, or -1 if it is variable sized. The second argument is a pointer
11948to the object.
11949
11950Semantics:
11951""""""""""
11952
11953This intrinsic indicates that after this point in the code, the value of
11954the memory pointed to by ``ptr`` is dead. This means that it is known to
11955never be used and has an undefined value. Any stores into the memory
11956object following this intrinsic may be removed as dead.
11957
11958'``llvm.invariant.start``' Intrinsic
11959^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11960
11961Syntax:
11962"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011963This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011964
11965::
11966
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011967 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011968
11969Overview:
11970"""""""""
11971
11972The '``llvm.invariant.start``' intrinsic specifies that the contents of
11973a memory object will not change.
11974
11975Arguments:
11976""""""""""
11977
11978The first argument is a constant integer representing the size of the
11979object, or -1 if it is variable sized. The second argument is a pointer
11980to the object.
11981
11982Semantics:
11983""""""""""
11984
11985This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11986the return value, the referenced memory location is constant and
11987unchanging.
11988
11989'``llvm.invariant.end``' Intrinsic
11990^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11991
11992Syntax:
11993"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011994This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011995
11996::
11997
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011998 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011999
12000Overview:
12001"""""""""
12002
12003The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12004memory object are mutable.
12005
12006Arguments:
12007""""""""""
12008
12009The first argument is the matching ``llvm.invariant.start`` intrinsic.
12010The second argument is a constant integer representing the size of the
12011object, or -1 if it is variable sized and the third argument is a
12012pointer to the object.
12013
12014Semantics:
12015""""""""""
12016
12017This intrinsic indicates that the memory is mutable again.
12018
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012019'``llvm.invariant.group.barrier``' Intrinsic
12020^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12021
12022Syntax:
12023"""""""
12024
12025::
12026
12027 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12028
12029Overview:
12030"""""""""
12031
12032The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12033established by invariant.group metadata no longer holds, to obtain a new pointer
12034value that does not carry the invariant information.
12035
12036
12037Arguments:
12038""""""""""
12039
12040The ``llvm.invariant.group.barrier`` takes only one argument, which is
12041the pointer to the memory for which the ``invariant.group`` no longer holds.
12042
12043Semantics:
12044""""""""""
12045
12046Returns another pointer that aliases its argument but which is considered different
12047for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12048
Sean Silvab084af42012-12-07 10:36:55 +000012049General Intrinsics
12050------------------
12051
12052This class of intrinsics is designed to be generic and has no specific
12053purpose.
12054
12055'``llvm.var.annotation``' Intrinsic
12056^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12057
12058Syntax:
12059"""""""
12060
12061::
12062
12063 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12064
12065Overview:
12066"""""""""
12067
12068The '``llvm.var.annotation``' intrinsic.
12069
12070Arguments:
12071""""""""""
12072
12073The first argument is a pointer to a value, the second is a pointer to a
12074global string, the third is a pointer to a global string which is the
12075source file name, and the last argument is the line number.
12076
12077Semantics:
12078""""""""""
12079
12080This intrinsic allows annotation of local variables with arbitrary
12081strings. This can be useful for special purpose optimizations that want
12082to look for these annotations. These have no other defined use; they are
12083ignored by code generation and optimization.
12084
Michael Gottesman88d18832013-03-26 00:34:27 +000012085'``llvm.ptr.annotation.*``' Intrinsic
12086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12087
12088Syntax:
12089"""""""
12090
12091This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12092pointer to an integer of any width. *NOTE* you must specify an address space for
12093the pointer. The identifier for the default address space is the integer
12094'``0``'.
12095
12096::
12097
12098 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12099 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12100 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12101 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12102 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12103
12104Overview:
12105"""""""""
12106
12107The '``llvm.ptr.annotation``' intrinsic.
12108
12109Arguments:
12110""""""""""
12111
12112The first argument is a pointer to an integer value of arbitrary bitwidth
12113(result of some expression), the second is a pointer to a global string, the
12114third is a pointer to a global string which is the source file name, and the
12115last argument is the line number. It returns the value of the first argument.
12116
12117Semantics:
12118""""""""""
12119
12120This intrinsic allows annotation of a pointer to an integer with arbitrary
12121strings. This can be useful for special purpose optimizations that want to look
12122for these annotations. These have no other defined use; they are ignored by code
12123generation and optimization.
12124
Sean Silvab084af42012-12-07 10:36:55 +000012125'``llvm.annotation.*``' Intrinsic
12126^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12127
12128Syntax:
12129"""""""
12130
12131This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12132any integer bit width.
12133
12134::
12135
12136 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12137 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12138 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12139 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12140 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12141
12142Overview:
12143"""""""""
12144
12145The '``llvm.annotation``' intrinsic.
12146
12147Arguments:
12148""""""""""
12149
12150The first argument is an integer value (result of some expression), the
12151second is a pointer to a global string, the third is a pointer to a
12152global string which is the source file name, and the last argument is
12153the line number. It returns the value of the first argument.
12154
12155Semantics:
12156""""""""""
12157
12158This intrinsic allows annotations to be put on arbitrary expressions
12159with arbitrary strings. This can be useful for special purpose
12160optimizations that want to look for these annotations. These have no
12161other defined use; they are ignored by code generation and optimization.
12162
12163'``llvm.trap``' Intrinsic
12164^^^^^^^^^^^^^^^^^^^^^^^^^
12165
12166Syntax:
12167"""""""
12168
12169::
12170
12171 declare void @llvm.trap() noreturn nounwind
12172
12173Overview:
12174"""""""""
12175
12176The '``llvm.trap``' intrinsic.
12177
12178Arguments:
12179""""""""""
12180
12181None.
12182
12183Semantics:
12184""""""""""
12185
12186This intrinsic is lowered to the target dependent trap instruction. If
12187the target does not have a trap instruction, this intrinsic will be
12188lowered to a call of the ``abort()`` function.
12189
12190'``llvm.debugtrap``' Intrinsic
12191^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12192
12193Syntax:
12194"""""""
12195
12196::
12197
12198 declare void @llvm.debugtrap() nounwind
12199
12200Overview:
12201"""""""""
12202
12203The '``llvm.debugtrap``' intrinsic.
12204
12205Arguments:
12206""""""""""
12207
12208None.
12209
12210Semantics:
12211""""""""""
12212
12213This intrinsic is lowered to code which is intended to cause an
12214execution trap with the intention of requesting the attention of a
12215debugger.
12216
12217'``llvm.stackprotector``' Intrinsic
12218^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12219
12220Syntax:
12221"""""""
12222
12223::
12224
12225 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12226
12227Overview:
12228"""""""""
12229
12230The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12231onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12232is placed on the stack before local variables.
12233
12234Arguments:
12235""""""""""
12236
12237The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12238The first argument is the value loaded from the stack guard
12239``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12240enough space to hold the value of the guard.
12241
12242Semantics:
12243""""""""""
12244
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012245This intrinsic causes the prologue/epilogue inserter to force the position of
12246the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12247to ensure that if a local variable on the stack is overwritten, it will destroy
12248the value of the guard. When the function exits, the guard on the stack is
12249checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12250different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12251calling the ``__stack_chk_fail()`` function.
12252
Tim Shene885d5e2016-04-19 19:40:37 +000012253'``llvm.stackguard``' Intrinsic
12254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12255
12256Syntax:
12257"""""""
12258
12259::
12260
12261 declare i8* @llvm.stackguard()
12262
12263Overview:
12264"""""""""
12265
12266The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12267
12268It should not be generated by frontends, since it is only for internal usage.
12269The reason why we create this intrinsic is that we still support IR form Stack
12270Protector in FastISel.
12271
12272Arguments:
12273""""""""""
12274
12275None.
12276
12277Semantics:
12278""""""""""
12279
12280On some platforms, the value returned by this intrinsic remains unchanged
12281between loads in the same thread. On other platforms, it returns the same
12282global variable value, if any, e.g. ``@__stack_chk_guard``.
12283
12284Currently some platforms have IR-level customized stack guard loading (e.g.
12285X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12286in the future.
12287
Sean Silvab084af42012-12-07 10:36:55 +000012288'``llvm.objectsize``' Intrinsic
12289^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12290
12291Syntax:
12292"""""""
12293
12294::
12295
12296 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12297 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12298
12299Overview:
12300"""""""""
12301
12302The ``llvm.objectsize`` intrinsic is designed to provide information to
12303the optimizers to determine at compile time whether a) an operation
12304(like memcpy) will overflow a buffer that corresponds to an object, or
12305b) that a runtime check for overflow isn't necessary. An object in this
12306context means an allocation of a specific class, structure, array, or
12307other object.
12308
12309Arguments:
12310""""""""""
12311
12312The ``llvm.objectsize`` intrinsic takes two arguments. The first
12313argument is a pointer to or into the ``object``. The second argument is
12314a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12315or -1 (if false) when the object size is unknown. The second argument
12316only accepts constants.
12317
12318Semantics:
12319""""""""""
12320
12321The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12322the size of the object concerned. If the size cannot be determined at
12323compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12324on the ``min`` argument).
12325
12326'``llvm.expect``' Intrinsic
12327^^^^^^^^^^^^^^^^^^^^^^^^^^^
12328
12329Syntax:
12330"""""""
12331
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012332This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12333integer bit width.
12334
Sean Silvab084af42012-12-07 10:36:55 +000012335::
12336
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012337 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012338 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12339 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12340
12341Overview:
12342"""""""""
12343
12344The ``llvm.expect`` intrinsic provides information about expected (the
12345most probable) value of ``val``, which can be used by optimizers.
12346
12347Arguments:
12348""""""""""
12349
12350The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12351a value. The second argument is an expected value, this needs to be a
12352constant value, variables are not allowed.
12353
12354Semantics:
12355""""""""""
12356
12357This intrinsic is lowered to the ``val``.
12358
Philip Reamese0e90832015-04-26 22:23:12 +000012359.. _int_assume:
12360
Hal Finkel93046912014-07-25 21:13:35 +000012361'``llvm.assume``' Intrinsic
12362^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12363
12364Syntax:
12365"""""""
12366
12367::
12368
12369 declare void @llvm.assume(i1 %cond)
12370
12371Overview:
12372"""""""""
12373
12374The ``llvm.assume`` allows the optimizer to assume that the provided
12375condition is true. This information can then be used in simplifying other parts
12376of the code.
12377
12378Arguments:
12379""""""""""
12380
12381The condition which the optimizer may assume is always true.
12382
12383Semantics:
12384""""""""""
12385
12386The intrinsic allows the optimizer to assume that the provided condition is
12387always true whenever the control flow reaches the intrinsic call. No code is
12388generated for this intrinsic, and instructions that contribute only to the
12389provided condition are not used for code generation. If the condition is
12390violated during execution, the behavior is undefined.
12391
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012392Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012393used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12394only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012395if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012396sufficient overall improvement in code quality. For this reason,
12397``llvm.assume`` should not be used to document basic mathematical invariants
12398that the optimizer can otherwise deduce or facts that are of little use to the
12399optimizer.
12400
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012401.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012402
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012403'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012404^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12405
12406Syntax:
12407"""""""
12408
12409::
12410
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012411 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012412
12413
12414Arguments:
12415""""""""""
12416
12417The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012418metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012419
12420Overview:
12421"""""""""
12422
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012423The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12424with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012425
Peter Collingbourne0312f612016-06-25 00:23:04 +000012426'``llvm.type.checked.load``' Intrinsic
12427^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12428
12429Syntax:
12430"""""""
12431
12432::
12433
12434 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12435
12436
12437Arguments:
12438""""""""""
12439
12440The first argument is a pointer from which to load a function pointer. The
12441second argument is the byte offset from which to load the function pointer. The
12442third argument is a metadata object representing a :doc:`type identifier
12443<TypeMetadata>`.
12444
12445Overview:
12446"""""""""
12447
12448The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12449virtual table pointer using type metadata. This intrinsic is used to implement
12450control flow integrity in conjunction with virtual call optimization. The
12451virtual call optimization pass will optimize away ``llvm.type.checked.load``
12452intrinsics associated with devirtualized calls, thereby removing the type
12453check in cases where it is not needed to enforce the control flow integrity
12454constraint.
12455
12456If the given pointer is associated with a type metadata identifier, this
12457function returns true as the second element of its return value. (Note that
12458the function may also return true if the given pointer is not associated
12459with a type metadata identifier.) If the function's return value's second
12460element is true, the following rules apply to the first element:
12461
12462- If the given pointer is associated with the given type metadata identifier,
12463 it is the function pointer loaded from the given byte offset from the given
12464 pointer.
12465
12466- If the given pointer is not associated with the given type metadata
12467 identifier, it is one of the following (the choice of which is unspecified):
12468
12469 1. The function pointer that would have been loaded from an arbitrarily chosen
12470 (through an unspecified mechanism) pointer associated with the type
12471 metadata.
12472
12473 2. If the function has a non-void return type, a pointer to a function that
12474 returns an unspecified value without causing side effects.
12475
12476If the function's return value's second element is false, the value of the
12477first element is undefined.
12478
12479
Sean Silvab084af42012-12-07 10:36:55 +000012480'``llvm.donothing``' Intrinsic
12481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12482
12483Syntax:
12484"""""""
12485
12486::
12487
12488 declare void @llvm.donothing() nounwind readnone
12489
12490Overview:
12491"""""""""
12492
Juergen Ributzkac9161192014-10-23 22:36:13 +000012493The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012494three intrinsics (besides ``llvm.experimental.patchpoint`` and
12495``llvm.experimental.gc.statepoint``) that can be called with an invoke
12496instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012497
12498Arguments:
12499""""""""""
12500
12501None.
12502
12503Semantics:
12504""""""""""
12505
12506This intrinsic does nothing, and it's removed by optimizers and ignored
12507by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012508
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012509'``llvm.experimental.deoptimize``' Intrinsic
12510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12511
12512Syntax:
12513"""""""
12514
12515::
12516
12517 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12518
12519Overview:
12520"""""""""
12521
12522This intrinsic, together with :ref:`deoptimization operand bundles
12523<deopt_opbundles>`, allow frontends to express transfer of control and
12524frame-local state from the currently executing (typically more specialized,
12525hence faster) version of a function into another (typically more generic, hence
12526slower) version.
12527
12528In languages with a fully integrated managed runtime like Java and JavaScript
12529this intrinsic can be used to implement "uncommon trap" or "side exit" like
12530functionality. In unmanaged languages like C and C++, this intrinsic can be
12531used to represent the slow paths of specialized functions.
12532
12533
12534Arguments:
12535""""""""""
12536
12537The intrinsic takes an arbitrary number of arguments, whose meaning is
12538decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12539
12540Semantics:
12541""""""""""
12542
12543The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12544deoptimization continuation (denoted using a :ref:`deoptimization
12545operand bundle <deopt_opbundles>`) and returns the value returned by
12546the deoptimization continuation. Defining the semantic properties of
12547the continuation itself is out of scope of the language reference --
12548as far as LLVM is concerned, the deoptimization continuation can
12549invoke arbitrary side effects, including reading from and writing to
12550the entire heap.
12551
12552Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12553continue execution to the end of the physical frame containing them, so all
12554calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12555
12556 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12557 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12558 - The ``ret`` instruction must return the value produced by the
12559 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12560
12561Note that the above restrictions imply that the return type for a call to
12562``@llvm.experimental.deoptimize`` will match the return type of its immediate
12563caller.
12564
12565The inliner composes the ``"deopt"`` continuations of the caller into the
12566``"deopt"`` continuations present in the inlinee, and also updates calls to this
12567intrinsic to return directly from the frame of the function it inlined into.
12568
Sanjoy Dase0aa4142016-05-12 01:17:38 +000012569All declarations of ``@llvm.experimental.deoptimize`` must share the
12570same calling convention.
12571
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012572.. _deoptimize_lowering:
12573
12574Lowering:
12575"""""""""
12576
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012577Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12578symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12579ensure that this symbol is defined). The call arguments to
12580``@llvm.experimental.deoptimize`` are lowered as if they were formal
12581arguments of the specified types, and not as varargs.
12582
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012583
Sanjoy Das021de052016-03-31 00:18:46 +000012584'``llvm.experimental.guard``' Intrinsic
12585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12586
12587Syntax:
12588"""""""
12589
12590::
12591
12592 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12593
12594Overview:
12595"""""""""
12596
12597This intrinsic, together with :ref:`deoptimization operand bundles
12598<deopt_opbundles>`, allows frontends to express guards or checks on
12599optimistic assumptions made during compilation. The semantics of
12600``@llvm.experimental.guard`` is defined in terms of
12601``@llvm.experimental.deoptimize`` -- its body is defined to be
12602equivalent to:
12603
Renato Golin124f2592016-07-20 12:16:38 +000012604.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000012605
Renato Golin124f2592016-07-20 12:16:38 +000012606 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12607 %realPred = and i1 %pred, undef
12608 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000012609
Renato Golin124f2592016-07-20 12:16:38 +000012610 leave:
12611 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12612 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000012613
Renato Golin124f2592016-07-20 12:16:38 +000012614 continue:
12615 ret void
12616 }
Sanjoy Das021de052016-03-31 00:18:46 +000012617
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012618
12619with the optional ``[, !make.implicit !{}]`` present if and only if it
12620is present on the call site. For more details on ``!make.implicit``,
12621see :doc:`FaultMaps`.
12622
Sanjoy Das021de052016-03-31 00:18:46 +000012623In words, ``@llvm.experimental.guard`` executes the attached
12624``"deopt"`` continuation if (but **not** only if) its first argument
12625is ``false``. Since the optimizer is allowed to replace the ``undef``
12626with an arbitrary value, it can optimize guard to fail "spuriously",
12627i.e. without the original condition being false (hence the "not only
12628if"); and this allows for "check widening" type optimizations.
12629
12630``@llvm.experimental.guard`` cannot be invoked.
12631
12632
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012633'``llvm.load.relative``' Intrinsic
12634^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12635
12636Syntax:
12637"""""""
12638
12639::
12640
12641 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12642
12643Overview:
12644"""""""""
12645
12646This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12647adds ``%ptr`` to that value and returns it. The constant folder specifically
12648recognizes the form of this intrinsic and the constant initializers it may
12649load from; if a loaded constant initializer is known to have the form
12650``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12651
12652LLVM provides that the calculation of such a constant initializer will
12653not overflow at link time under the medium code model if ``x`` is an
12654``unnamed_addr`` function. However, it does not provide this guarantee for
12655a constant initializer folded into a function body. This intrinsic can be
12656used to avoid the possibility of overflows when loading from such a constant.
12657
Andrew Trick5e029ce2013-12-24 02:57:25 +000012658Stack Map Intrinsics
12659--------------------
12660
12661LLVM provides experimental intrinsics to support runtime patching
12662mechanisms commonly desired in dynamic language JITs. These intrinsics
12663are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000012664
12665Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000012666-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000012667
12668These intrinsics are similar to the standard library memory intrinsics except
12669that they perform memory transfer as a sequence of atomic memory accesses.
12670
12671.. _int_memcpy_element_atomic:
12672
12673'``llvm.memcpy.element.atomic``' Intrinsic
Igor Laevskyfedab152016-12-29 15:08:57 +000012674^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000012675
12676Syntax:
12677"""""""
12678
12679This is an overloaded intrinsic. You can use ``llvm.memcpy.element.atomic`` on
12680any integer bit width and for different address spaces. Not all targets
12681support all bit widths however.
12682
12683::
12684
12685 declare void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* <dest>, i8* <src>,
12686 i64 <num_elements>, i32 <element_size>)
12687
12688Overview:
12689"""""""""
12690
12691The '``llvm.memcpy.element.atomic.*``' intrinsic performs copy of a block of
12692memory from the source location to the destination location as a sequence of
12693unordered atomic memory accesses where each access is a multiple of
12694``element_size`` bytes wide and aligned at an element size boundary. For example
12695each element is accessed atomically in source and destination buffers.
12696
12697Arguments:
12698""""""""""
12699
12700The first argument is a pointer to the destination, the second is a
12701pointer to the source. The third argument is an integer argument
12702specifying the number of elements to copy, the fourth argument is size of
12703the single element in bytes.
12704
12705``element_size`` should be a power of two, greater than zero and less than
12706a target-specific atomic access size limit.
12707
12708For each of the input pointers ``align`` parameter attribute must be specified.
12709It must be a power of two and greater than or equal to the ``element_size``.
12710Caller guarantees that both the source and destination pointers are aligned to
12711that boundary.
12712
12713Semantics:
12714""""""""""
12715
12716The '``llvm.memcpy.element.atomic.*``' intrinsic copies
12717'``num_elements`` * ``element_size``' bytes of memory from the source location to
12718the destination location. These locations are not allowed to overlap. Memory copy
12719is performed as a sequence of unordered atomic memory accesses where each access
12720is guaranteed to be a multiple of ``element_size`` bytes wide and aligned at an
12721element size boundary.
12722
12723The order of the copy is unspecified. The same value may be read from the source
12724buffer many times, but only one write is issued to the destination buffer per
12725element. It is well defined to have concurrent reads and writes to both source
12726and destination provided those reads and writes are at least unordered atomic.
12727
12728This intrinsic does not provide any additional ordering guarantees over those
12729provided by a set of unordered loads from the source location and stores to the
12730destination.
12731
12732Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000012733"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000012734
12735In the most general case call to the '``llvm.memcpy.element.atomic.*``' is lowered
12736to a call to the symbol ``__llvm_memcpy_element_atomic_*``. Where '*' is replaced
12737with an actual element size.
12738
12739Optimizer is allowed to inline memory copy when it's profitable to do so.