blob: e93a02f6b023e7c638ad05bac39b6b25819466dd [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
645an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000646
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000647Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000648:ref:`Thread Local Storage Model <tls_model>`.
649
Nico Rieck7157bb72014-01-14 15:22:47 +0000650Syntax::
651
Rafael Espindola32483a72016-05-10 18:22:45 +0000652 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000653 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
654 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000655 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000656 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000657 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659For example, the following defines a global in a numbered address space
660with an initializer, section, and alignment:
661
662.. code-block:: llvm
663
664 @G = addrspace(5) constant float 1.0, section "foo", align 4
665
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000666The following example just declares a global variable
667
668.. code-block:: llvm
669
670 @G = external global i32
671
Sean Silvab084af42012-12-07 10:36:55 +0000672The following example defines a thread-local global with the
673``initialexec`` TLS model:
674
675.. code-block:: llvm
676
677 @G = thread_local(initialexec) global i32 0, align 4
678
679.. _functionstructure:
680
681Functions
682---------
683
684LLVM function definitions consist of the "``define``" keyword, an
685optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000686style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
687an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000688an optional ``unnamed_addr`` attribute, a return type, an optional
689:ref:`parameter attribute <paramattrs>` for the return type, a function
690name, a (possibly empty) argument list (each with optional :ref:`parameter
691attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000692an optional section, an optional alignment,
693an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000694an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000695an optional :ref:`prologue <prologuedata>`,
696an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000697an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000698an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000699
700LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000701optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
702<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
703optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
704or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
705attribute <paramattrs>` for the return type, a function name, a possibly
706empty list of arguments, an optional alignment, an optional :ref:`garbage
707collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
708:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000709
Bill Wendling6822ecb2013-10-27 05:09:12 +0000710A function definition contains a list of basic blocks, forming the CFG (Control
711Flow Graph) for the function. Each basic block may optionally start with a label
712(giving the basic block a symbol table entry), contains a list of instructions,
713and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
714function return). If an explicit label is not provided, a block is assigned an
715implicit numbered label, using the next value from the same counter as used for
716unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
717entry block does not have an explicit label, it will be assigned label "%0",
718then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000719
720The first basic block in a function is special in two ways: it is
721immediately executed on entrance to the function, and it is not allowed
722to have predecessor basic blocks (i.e. there can not be any branches to
723the entry block of a function). Because the block can have no
724predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
725
726LLVM allows an explicit section to be specified for functions. If the
727target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000728Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730An explicit alignment may be specified for a function. If not present,
731or if the alignment is set to zero, the alignment of the function is set
732by the target to whatever it feels convenient. If an explicit alignment
733is specified, the function is forced to have at least that much
734alignment. All alignments must be a power of 2.
735
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000736If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000737be significant and two identical functions can be merged.
738
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000739If the ``local_unnamed_addr`` attribute is given, the address is known to
740not be significant within the module.
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Syntax::
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000745 [cconv] [ret attrs]
746 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000747 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
748 [comdat [($name)]] [align N] [gc] [prefix Constant]
749 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000750
Sean Silva706fba52015-08-06 22:56:24 +0000751The argument list is a comma separated sequence of arguments where each
752argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000753
754Syntax::
755
756 <type> [parameter Attrs] [name]
757
758
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000759.. _langref_aliases:
760
Sean Silvab084af42012-12-07 10:36:55 +0000761Aliases
762-------
763
Rafael Espindola64c1e182014-06-03 02:41:57 +0000764Aliases, unlike function or variables, don't create any new data. They
765are just a new symbol and metadata for an existing position.
766
767Aliases have a name and an aliasee that is either a global value or a
768constant expression.
769
Nico Rieck7157bb72014-01-14 15:22:47 +0000770Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000771:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
772<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000773
774Syntax::
775
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000776 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000777
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000778The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000779``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000780might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000781
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000782Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000783the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
784to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000785
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000786If the ``local_unnamed_addr`` attribute is given, the address is known to
787not be significant within the module.
788
Rafael Espindola64c1e182014-06-03 02:41:57 +0000789Since aliases are only a second name, some restrictions apply, of which
790some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000791
Rafael Espindola64c1e182014-06-03 02:41:57 +0000792* The expression defining the aliasee must be computable at assembly
793 time. Since it is just a name, no relocations can be used.
794
795* No alias in the expression can be weak as the possibility of the
796 intermediate alias being overridden cannot be represented in an
797 object file.
798
799* No global value in the expression can be a declaration, since that
800 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000801
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000802.. _langref_ifunc:
803
804IFuncs
805-------
806
807IFuncs, like as aliases, don't create any new data or func. They are just a new
808symbol that dynamic linker resolves at runtime by calling a resolver function.
809
810IFuncs have a name and a resolver that is a function called by dynamic linker
811that returns address of another function associated with the name.
812
813IFunc may have an optional :ref:`linkage type <linkage>` and an optional
814:ref:`visibility style <visibility>`.
815
816Syntax::
817
818 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821.. _langref_comdats:
822
823Comdats
824-------
825
826Comdat IR provides access to COFF and ELF object file COMDAT functionality.
827
Sean Silvaa1190322015-08-06 22:56:48 +0000828Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000829specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000830that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000831aliasee computes to, if any.
832
833Comdats have a selection kind to provide input on how the linker should
834choose between keys in two different object files.
835
836Syntax::
837
838 $<Name> = comdat SelectionKind
839
840The selection kind must be one of the following:
841
842``any``
843 The linker may choose any COMDAT key, the choice is arbitrary.
844``exactmatch``
845 The linker may choose any COMDAT key but the sections must contain the
846 same data.
847``largest``
848 The linker will choose the section containing the largest COMDAT key.
849``noduplicates``
850 The linker requires that only section with this COMDAT key exist.
851``samesize``
852 The linker may choose any COMDAT key but the sections must contain the
853 same amount of data.
854
855Note that the Mach-O platform doesn't support COMDATs and ELF only supports
856``any`` as a selection kind.
857
858Here is an example of a COMDAT group where a function will only be selected if
859the COMDAT key's section is the largest:
860
Renato Golin124f2592016-07-20 12:16:38 +0000861.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000862
863 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000864 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000865
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000867 ret void
868 }
869
Rafael Espindola83a362c2015-01-06 22:55:16 +0000870As a syntactic sugar the ``$name`` can be omitted if the name is the same as
871the global name:
872
Renato Golin124f2592016-07-20 12:16:38 +0000873.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000874
875 $foo = comdat any
876 @foo = global i32 2, comdat
877
878
David Majnemerdad0a642014-06-27 18:19:56 +0000879In a COFF object file, this will create a COMDAT section with selection kind
880``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
881and another COMDAT section with selection kind
882``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000883section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885There are some restrictions on the properties of the global object.
886It, or an alias to it, must have the same name as the COMDAT group when
887targeting COFF.
888The contents and size of this object may be used during link-time to determine
889which COMDAT groups get selected depending on the selection kind.
890Because the name of the object must match the name of the COMDAT group, the
891linkage of the global object must not be local; local symbols can get renamed
892if a collision occurs in the symbol table.
893
894The combined use of COMDATS and section attributes may yield surprising results.
895For example:
896
Renato Golin124f2592016-07-20 12:16:38 +0000897.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000898
899 $foo = comdat any
900 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901 @g1 = global i32 42, section "sec", comdat($foo)
902 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000903
904From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000905with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000906COMDAT groups and COMDATs, at the object file level, are represented by
907sections.
908
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000909Note that certain IR constructs like global variables and functions may
910create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000911COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000912in individual sections (e.g. when `-data-sections` or `-function-sections`
913is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000914
Sean Silvab084af42012-12-07 10:36:55 +0000915.. _namedmetadatastructure:
916
917Named Metadata
918--------------
919
920Named metadata is a collection of metadata. :ref:`Metadata
921nodes <metadata>` (but not metadata strings) are the only valid
922operands for a named metadata.
923
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000924#. Named metadata are represented as a string of characters with the
925 metadata prefix. The rules for metadata names are the same as for
926 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
927 are still valid, which allows any character to be part of a name.
928
Sean Silvab084af42012-12-07 10:36:55 +0000929Syntax::
930
931 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000932 !0 = !{!"zero"}
933 !1 = !{!"one"}
934 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000935 ; A named metadata.
936 !name = !{!0, !1, !2}
937
938.. _paramattrs:
939
940Parameter Attributes
941--------------------
942
943The return type and each parameter of a function type may have a set of
944*parameter attributes* associated with them. Parameter attributes are
945used to communicate additional information about the result or
946parameters of a function. Parameter attributes are considered to be part
947of the function, not of the function type, so functions with different
948parameter attributes can have the same function type.
949
950Parameter attributes are simple keywords that follow the type specified.
951If multiple parameter attributes are needed, they are space separated.
952For example:
953
954.. code-block:: llvm
955
956 declare i32 @printf(i8* noalias nocapture, ...)
957 declare i32 @atoi(i8 zeroext)
958 declare signext i8 @returns_signed_char()
959
960Note that any attributes for the function result (``nounwind``,
961``readonly``) come immediately after the argument list.
962
963Currently, only the following parameter attributes are defined:
964
965``zeroext``
966 This indicates to the code generator that the parameter or return
967 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000968 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000969``signext``
970 This indicates to the code generator that the parameter or return
971 value should be sign-extended to the extent required by the target's
972 ABI (which is usually 32-bits) by the caller (for a parameter) or
973 the callee (for a return value).
974``inreg``
975 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000976 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000977 a function call or return (usually, by putting it in a register as
978 opposed to memory, though some targets use it to distinguish between
979 two different kinds of registers). Use of this attribute is
980 target-specific.
981``byval``
982 This indicates that the pointer parameter should really be passed by
983 value to the function. The attribute implies that a hidden copy of
984 the pointee is made between the caller and the callee, so the callee
985 is unable to modify the value in the caller. This attribute is only
986 valid on LLVM pointer arguments. It is generally used to pass
987 structs and arrays by value, but is also valid on pointers to
988 scalars. The copy is considered to belong to the caller not the
989 callee (for example, ``readonly`` functions should not write to
990 ``byval`` parameters). This is not a valid attribute for return
991 values.
992
993 The byval attribute also supports specifying an alignment with the
994 align attribute. It indicates the alignment of the stack slot to
995 form and the known alignment of the pointer specified to the call
996 site. If the alignment is not specified, then the code generator
997 makes a target-specific assumption.
998
Reid Klecknera534a382013-12-19 02:14:12 +0000999.. _attr_inalloca:
1000
1001``inalloca``
1002
Reid Kleckner60d3a832014-01-16 22:59:24 +00001003 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001004 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001005 be a pointer to stack memory produced by an ``alloca`` instruction.
1006 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001007 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001008 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001009
Reid Kleckner436c42e2014-01-17 23:58:17 +00001010 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001011 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001012 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001013 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001014 ``inalloca`` attribute also disables LLVM's implicit lowering of
1015 large aggregate return values, which means that frontend authors
1016 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001017
Reid Kleckner60d3a832014-01-16 22:59:24 +00001018 When the call site is reached, the argument allocation must have
1019 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001020 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001021 space after an argument allocation and before its call site, but it
1022 must be cleared off with :ref:`llvm.stackrestore
1023 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001024
1025 See :doc:`InAlloca` for more information on how to use this
1026 attribute.
1027
Sean Silvab084af42012-12-07 10:36:55 +00001028``sret``
1029 This indicates that the pointer parameter specifies the address of a
1030 structure that is the return value of the function in the source
1031 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001032 loads and stores to the structure may be assumed by the callee not
1033 to trap and to be properly aligned. This is not a valid attribute
1034 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001035
Hal Finkelccc70902014-07-22 16:58:55 +00001036``align <n>``
1037 This indicates that the pointer value may be assumed by the optimizer to
1038 have the specified alignment.
1039
1040 Note that this attribute has additional semantics when combined with the
1041 ``byval`` attribute.
1042
Sean Silva1703e702014-04-08 21:06:22 +00001043.. _noalias:
1044
Sean Silvab084af42012-12-07 10:36:55 +00001045``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001046 This indicates that objects accessed via pointer values
1047 :ref:`based <pointeraliasing>` on the argument or return value are not also
1048 accessed, during the execution of the function, via pointer values not
1049 *based* on the argument or return value. The attribute on a return value
1050 also has additional semantics described below. The caller shares the
1051 responsibility with the callee for ensuring that these requirements are met.
1052 For further details, please see the discussion of the NoAlias response in
1053 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001054
1055 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001056 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001057
1058 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001059 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1060 attribute on return values are stronger than the semantics of the attribute
1061 when used on function arguments. On function return values, the ``noalias``
1062 attribute indicates that the function acts like a system memory allocation
1063 function, returning a pointer to allocated storage disjoint from the
1064 storage for any other object accessible to the caller.
1065
Sean Silvab084af42012-12-07 10:36:55 +00001066``nocapture``
1067 This indicates that the callee does not make any copies of the
1068 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001069 attribute for return values. Addresses used in volatile operations
1070 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001071
1072.. _nest:
1073
1074``nest``
1075 This indicates that the pointer parameter can be excised using the
1076 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001077 attribute for return values and can only be applied to one parameter.
1078
1079``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001080 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001081 value. This is a hint to the optimizer and code generator used when
1082 generating the caller, allowing value propagation, tail call optimization,
1083 and omission of register saves and restores in some cases; it is not
1084 checked or enforced when generating the callee. The parameter and the
1085 function return type must be valid operands for the
1086 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1087 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001088
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001089``nonnull``
1090 This indicates that the parameter or return pointer is not null. This
1091 attribute may only be applied to pointer typed parameters. This is not
1092 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001093 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001094 is non-null.
1095
Hal Finkelb0407ba2014-07-18 15:51:28 +00001096``dereferenceable(<n>)``
1097 This indicates that the parameter or return pointer is dereferenceable. This
1098 attribute may only be applied to pointer typed parameters. A pointer that
1099 is dereferenceable can be loaded from speculatively without a risk of
1100 trapping. The number of bytes known to be dereferenceable must be provided
1101 in parentheses. It is legal for the number of bytes to be less than the
1102 size of the pointee type. The ``nonnull`` attribute does not imply
1103 dereferenceability (consider a pointer to one element past the end of an
1104 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1105 ``addrspace(0)`` (which is the default address space).
1106
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001107``dereferenceable_or_null(<n>)``
1108 This indicates that the parameter or return value isn't both
1109 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001110 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001111 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1112 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1113 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1114 and in other address spaces ``dereferenceable_or_null(<n>)``
1115 implies that a pointer is at least one of ``dereferenceable(<n>)``
1116 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001117 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001118 pointer typed parameters.
1119
Manman Renf46262e2016-03-29 17:37:21 +00001120``swiftself``
1121 This indicates that the parameter is the self/context parameter. This is not
1122 a valid attribute for return values and can only be applied to one
1123 parameter.
1124
Manman Ren9bfd0d02016-04-01 21:41:15 +00001125``swifterror``
1126 This attribute is motivated to model and optimize Swift error handling. It
1127 can be applied to a parameter with pointer to pointer type or a
1128 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001129 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1130 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1131 the parameter or the alloca) can only be loaded and stored from, or used as
1132 a ``swifterror`` argument. This is not a valid attribute for return values
1133 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001134
1135 These constraints allow the calling convention to optimize access to
1136 ``swifterror`` variables by associating them with a specific register at
1137 call boundaries rather than placing them in memory. Since this does change
1138 the calling convention, a function which uses the ``swifterror`` attribute
1139 on a parameter is not ABI-compatible with one which does not.
1140
1141 These constraints also allow LLVM to assume that a ``swifterror`` argument
1142 does not alias any other memory visible within a function and that a
1143 ``swifterror`` alloca passed as an argument does not escape.
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _gc:
1146
Philip Reamesf80bbff2015-02-25 23:45:20 +00001147Garbage Collector Strategy Names
1148--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001149
Philip Reamesf80bbff2015-02-25 23:45:20 +00001150Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001151string:
1152
1153.. code-block:: llvm
1154
1155 define void @f() gc "name" { ... }
1156
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001157The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001158<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001159strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001160named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001161garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001162which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001163
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001164.. _prefixdata:
1165
1166Prefix Data
1167-----------
1168
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001169Prefix data is data associated with a function which the code
1170generator will emit immediately before the function's entrypoint.
1171The purpose of this feature is to allow frontends to associate
1172language-specific runtime metadata with specific functions and make it
1173available through the function pointer while still allowing the
1174function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001175
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001176To access the data for a given function, a program may bitcast the
1177function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001178index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001179the prefix data. For instance, take the example of a function annotated
1180with a single ``i32``,
1181
1182.. code-block:: llvm
1183
1184 define void @f() prefix i32 123 { ... }
1185
1186The prefix data can be referenced as,
1187
1188.. code-block:: llvm
1189
David Blaikie16a97eb2015-03-04 22:02:58 +00001190 %0 = bitcast void* () @f to i32*
1191 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001192 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001193
1194Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001195of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001196beginning of the prefix data is aligned. This means that if the size
1197of the prefix data is not a multiple of the alignment size, the
1198function's entrypoint will not be aligned. If alignment of the
1199function's entrypoint is desired, padding must be added to the prefix
1200data.
1201
Sean Silvaa1190322015-08-06 22:56:48 +00001202A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001203to the ``available_externally`` linkage in that the data may be used by the
1204optimizers but will not be emitted in the object file.
1205
1206.. _prologuedata:
1207
1208Prologue Data
1209-------------
1210
1211The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1212be inserted prior to the function body. This can be used for enabling
1213function hot-patching and instrumentation.
1214
1215To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001216have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001217bytes which decode to a sequence of machine instructions, valid for the
1218module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001219the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001221definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001222makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001223
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001225which encodes the ``nop`` instruction:
1226
Renato Golin124f2592016-07-20 12:16:38 +00001227.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001228
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001230
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231Generally prologue data can be formed by encoding a relative branch instruction
1232which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001233x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1234
Renato Golin124f2592016-07-20 12:16:38 +00001235.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001236
1237 %0 = type <{ i8, i8, i8* }>
1238
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001239 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001240
Sean Silvaa1190322015-08-06 22:56:48 +00001241A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001242to the ``available_externally`` linkage in that the data may be used by the
1243optimizers but will not be emitted in the object file.
1244
David Majnemer7fddecc2015-06-17 20:52:32 +00001245.. _personalityfn:
1246
1247Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001248--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001249
1250The ``personality`` attribute permits functions to specify what function
1251to use for exception handling.
1252
Bill Wendling63b88192013-02-06 06:52:58 +00001253.. _attrgrp:
1254
1255Attribute Groups
1256----------------
1257
1258Attribute groups are groups of attributes that are referenced by objects within
1259the IR. They are important for keeping ``.ll`` files readable, because a lot of
1260functions will use the same set of attributes. In the degenerative case of a
1261``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1262group will capture the important command line flags used to build that file.
1263
1264An attribute group is a module-level object. To use an attribute group, an
1265object references the attribute group's ID (e.g. ``#37``). An object may refer
1266to more than one attribute group. In that situation, the attributes from the
1267different groups are merged.
1268
1269Here is an example of attribute groups for a function that should always be
1270inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1271
1272.. code-block:: llvm
1273
1274 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001275 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001276
1277 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001278 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001279
1280 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1281 define void @f() #0 #1 { ... }
1282
Sean Silvab084af42012-12-07 10:36:55 +00001283.. _fnattrs:
1284
1285Function Attributes
1286-------------------
1287
1288Function attributes are set to communicate additional information about
1289a function. Function attributes are considered to be part of the
1290function, not of the function type, so functions with different function
1291attributes can have the same function type.
1292
1293Function attributes are simple keywords that follow the type specified.
1294If multiple attributes are needed, they are space separated. For
1295example:
1296
1297.. code-block:: llvm
1298
1299 define void @f() noinline { ... }
1300 define void @f() alwaysinline { ... }
1301 define void @f() alwaysinline optsize { ... }
1302 define void @f() optsize { ... }
1303
Sean Silvab084af42012-12-07 10:36:55 +00001304``alignstack(<n>)``
1305 This attribute indicates that, when emitting the prologue and
1306 epilogue, the backend should forcibly align the stack pointer.
1307 Specify the desired alignment, which must be a power of two, in
1308 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001309``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1310 This attribute indicates that the annotated function will always return at
1311 least a given number of bytes (or null). Its arguments are zero-indexed
1312 parameter numbers; if one argument is provided, then it's assumed that at
1313 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1314 returned pointer. If two are provided, then it's assumed that
1315 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1316 available. The referenced parameters must be integer types. No assumptions
1317 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001318``alwaysinline``
1319 This attribute indicates that the inliner should attempt to inline
1320 this function into callers whenever possible, ignoring any active
1321 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001322``builtin``
1323 This indicates that the callee function at a call site should be
1324 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001325 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001326 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001327 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001328``cold``
1329 This attribute indicates that this function is rarely called. When
1330 computing edge weights, basic blocks post-dominated by a cold
1331 function call are also considered to be cold; and, thus, given low
1332 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001333``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001334 In some parallel execution models, there exist operations that cannot be
1335 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001336 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001337
Justin Lebar58535b12016-02-17 17:46:41 +00001338 The ``convergent`` attribute may appear on functions or call/invoke
1339 instructions. When it appears on a function, it indicates that calls to
1340 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001341 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001342 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001343 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001344
Justin Lebar58535b12016-02-17 17:46:41 +00001345 When it appears on a call/invoke, the ``convergent`` attribute indicates
1346 that we should treat the call as though we're calling a convergent
1347 function. This is particularly useful on indirect calls; without this we
1348 may treat such calls as though the target is non-convergent.
1349
1350 The optimizer may remove the ``convergent`` attribute on functions when it
1351 can prove that the function does not execute any convergent operations.
1352 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1353 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001354``inaccessiblememonly``
1355 This attribute indicates that the function may only access memory that
1356 is not accessible by the module being compiled. This is a weaker form
1357 of ``readnone``.
1358``inaccessiblemem_or_argmemonly``
1359 This attribute indicates that the function may only access memory that is
1360 either not accessible by the module being compiled, or is pointed to
1361 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001362``inlinehint``
1363 This attribute indicates that the source code contained a hint that
1364 inlining this function is desirable (such as the "inline" keyword in
1365 C/C++). It is just a hint; it imposes no requirements on the
1366 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001367``jumptable``
1368 This attribute indicates that the function should be added to a
1369 jump-instruction table at code-generation time, and that all address-taken
1370 references to this function should be replaced with a reference to the
1371 appropriate jump-instruction-table function pointer. Note that this creates
1372 a new pointer for the original function, which means that code that depends
1373 on function-pointer identity can break. So, any function annotated with
1374 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001375``minsize``
1376 This attribute suggests that optimization passes and code generator
1377 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001378 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001379 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001380``naked``
1381 This attribute disables prologue / epilogue emission for the
1382 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001383``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001384 This indicates that the callee function at a call site is not recognized as
1385 a built-in function. LLVM will retain the original call and not replace it
1386 with equivalent code based on the semantics of the built-in function, unless
1387 the call site uses the ``builtin`` attribute. This is valid at call sites
1388 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001389``noduplicate``
1390 This attribute indicates that calls to the function cannot be
1391 duplicated. A call to a ``noduplicate`` function may be moved
1392 within its parent function, but may not be duplicated within
1393 its parent function.
1394
1395 A function containing a ``noduplicate`` call may still
1396 be an inlining candidate, provided that the call is not
1397 duplicated by inlining. That implies that the function has
1398 internal linkage and only has one call site, so the original
1399 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001400``noimplicitfloat``
1401 This attributes disables implicit floating point instructions.
1402``noinline``
1403 This attribute indicates that the inliner should never inline this
1404 function in any situation. This attribute may not be used together
1405 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001406``nonlazybind``
1407 This attribute suppresses lazy symbol binding for the function. This
1408 may make calls to the function faster, at the cost of extra program
1409 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001410``noredzone``
1411 This attribute indicates that the code generator should not use a
1412 red zone, even if the target-specific ABI normally permits it.
1413``noreturn``
1414 This function attribute indicates that the function never returns
1415 normally. This produces undefined behavior at runtime if the
1416 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001417``norecurse``
1418 This function attribute indicates that the function does not call itself
1419 either directly or indirectly down any possible call path. This produces
1420 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001421``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001422 This function attribute indicates that the function never raises an
1423 exception. If the function does raise an exception, its runtime
1424 behavior is undefined. However, functions marked nounwind may still
1425 trap or generate asynchronous exceptions. Exception handling schemes
1426 that are recognized by LLVM to handle asynchronous exceptions, such
1427 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001428``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001429 This function attribute indicates that most optimization passes will skip
1430 this function, with the exception of interprocedural optimization passes.
1431 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001432 This attribute cannot be used together with the ``alwaysinline``
1433 attribute; this attribute is also incompatible
1434 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001435
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001436 This attribute requires the ``noinline`` attribute to be specified on
1437 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001438 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001439 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001440``optsize``
1441 This attribute suggests that optimization passes and code generator
1442 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001443 and otherwise do optimizations specifically to reduce code size as
1444 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001445``"patchable-function"``
1446 This attribute tells the code generator that the code
1447 generated for this function needs to follow certain conventions that
1448 make it possible for a runtime function to patch over it later.
1449 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001450 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001451
1452 * ``"prologue-short-redirect"`` - This style of patchable
1453 function is intended to support patching a function prologue to
1454 redirect control away from the function in a thread safe
1455 manner. It guarantees that the first instruction of the
1456 function will be large enough to accommodate a short jump
1457 instruction, and will be sufficiently aligned to allow being
1458 fully changed via an atomic compare-and-swap instruction.
1459 While the first requirement can be satisfied by inserting large
1460 enough NOP, LLVM can and will try to re-purpose an existing
1461 instruction (i.e. one that would have to be emitted anyway) as
1462 the patchable instruction larger than a short jump.
1463
1464 ``"prologue-short-redirect"`` is currently only supported on
1465 x86-64.
1466
1467 This attribute by itself does not imply restrictions on
1468 inter-procedural optimizations. All of the semantic effects the
1469 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001470``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001471 On a function, this attribute indicates that the function computes its
1472 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001473 without dereferencing any pointer arguments or otherwise accessing
1474 any mutable state (e.g. memory, control registers, etc) visible to
1475 caller functions. It does not write through any pointer arguments
1476 (including ``byval`` arguments) and never changes any state visible
1477 to callers. This means that it cannot unwind exceptions by calling
1478 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001479
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001480 On an argument, this attribute indicates that the function does not
1481 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001482 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001483``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001484 On a function, this attribute indicates that the function does not write
1485 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001486 modify any state (e.g. memory, control registers, etc) visible to
1487 caller functions. It may dereference pointer arguments and read
1488 state that may be set in the caller. A readonly function always
1489 returns the same value (or unwinds an exception identically) when
1490 called with the same set of arguments and global state. It cannot
1491 unwind an exception by calling the ``C++`` exception throwing
1492 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001493
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001494 On an argument, this attribute indicates that the function does not write
1495 through this pointer argument, even though it may write to the memory that
1496 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001497``writeonly``
1498 On a function, this attribute indicates that the function may write to but
1499 does not read from memory.
1500
1501 On an argument, this attribute indicates that the function may write to but
1502 does not read through this pointer argument (even though it may read from
1503 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001504``argmemonly``
1505 This attribute indicates that the only memory accesses inside function are
1506 loads and stores from objects pointed to by its pointer-typed arguments,
1507 with arbitrary offsets. Or in other words, all memory operations in the
1508 function can refer to memory only using pointers based on its function
1509 arguments.
1510 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1511 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001512``returns_twice``
1513 This attribute indicates that this function can return twice. The C
1514 ``setjmp`` is an example of such a function. The compiler disables
1515 some optimizations (like tail calls) in the caller of these
1516 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001517``safestack``
1518 This attribute indicates that
1519 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1520 protection is enabled for this function.
1521
1522 If a function that has a ``safestack`` attribute is inlined into a
1523 function that doesn't have a ``safestack`` attribute or which has an
1524 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1525 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001526``sanitize_address``
1527 This attribute indicates that AddressSanitizer checks
1528 (dynamic address safety analysis) are enabled for this function.
1529``sanitize_memory``
1530 This attribute indicates that MemorySanitizer checks (dynamic detection
1531 of accesses to uninitialized memory) are enabled for this function.
1532``sanitize_thread``
1533 This attribute indicates that ThreadSanitizer checks
1534 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001535``ssp``
1536 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001537 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001538 placed on the stack before the local variables that's checked upon
1539 return from the function to see if it has been overwritten. A
1540 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001541 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001542
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001543 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1544 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1545 - Calls to alloca() with variable sizes or constant sizes greater than
1546 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001547
Josh Magee24c7f062014-02-01 01:36:16 +00001548 Variables that are identified as requiring a protector will be arranged
1549 on the stack such that they are adjacent to the stack protector guard.
1550
Sean Silvab084af42012-12-07 10:36:55 +00001551 If a function that has an ``ssp`` attribute is inlined into a
1552 function that doesn't have an ``ssp`` attribute, then the resulting
1553 function will have an ``ssp`` attribute.
1554``sspreq``
1555 This attribute indicates that the function should *always* emit a
1556 stack smashing protector. This overrides the ``ssp`` function
1557 attribute.
1558
Josh Magee24c7f062014-02-01 01:36:16 +00001559 Variables that are identified as requiring a protector will be arranged
1560 on the stack such that they are adjacent to the stack protector guard.
1561 The specific layout rules are:
1562
1563 #. Large arrays and structures containing large arrays
1564 (``>= ssp-buffer-size``) are closest to the stack protector.
1565 #. Small arrays and structures containing small arrays
1566 (``< ssp-buffer-size``) are 2nd closest to the protector.
1567 #. Variables that have had their address taken are 3rd closest to the
1568 protector.
1569
Sean Silvab084af42012-12-07 10:36:55 +00001570 If a function that has an ``sspreq`` attribute is inlined into a
1571 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001572 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1573 an ``sspreq`` attribute.
1574``sspstrong``
1575 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001576 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001577 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001578 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001579
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001580 - Arrays of any size and type
1581 - Aggregates containing an array of any size and type.
1582 - Calls to alloca().
1583 - Local variables that have had their address taken.
1584
Josh Magee24c7f062014-02-01 01:36:16 +00001585 Variables that are identified as requiring a protector will be arranged
1586 on the stack such that they are adjacent to the stack protector guard.
1587 The specific layout rules are:
1588
1589 #. Large arrays and structures containing large arrays
1590 (``>= ssp-buffer-size``) are closest to the stack protector.
1591 #. Small arrays and structures containing small arrays
1592 (``< ssp-buffer-size``) are 2nd closest to the protector.
1593 #. Variables that have had their address taken are 3rd closest to the
1594 protector.
1595
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001596 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001597
1598 If a function that has an ``sspstrong`` attribute is inlined into a
1599 function that doesn't have an ``sspstrong`` attribute, then the
1600 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001601``"thunk"``
1602 This attribute indicates that the function will delegate to some other
1603 function with a tail call. The prototype of a thunk should not be used for
1604 optimization purposes. The caller is expected to cast the thunk prototype to
1605 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001606``uwtable``
1607 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001608 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001609 show that no exceptions passes by it. This is normally the case for
1610 the ELF x86-64 abi, but it can be disabled for some compilation
1611 units.
Sean Silvab084af42012-12-07 10:36:55 +00001612
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001613
1614.. _opbundles:
1615
1616Operand Bundles
1617---------------
1618
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001619Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001620with certain LLVM instructions (currently only ``call`` s and
1621``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001622incorrect and will change program semantics.
1623
1624Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001625
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001626 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001627 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1628 bundle operand ::= SSA value
1629 tag ::= string constant
1630
1631Operand bundles are **not** part of a function's signature, and a
1632given function may be called from multiple places with different kinds
1633of operand bundles. This reflects the fact that the operand bundles
1634are conceptually a part of the ``call`` (or ``invoke``), not the
1635callee being dispatched to.
1636
1637Operand bundles are a generic mechanism intended to support
1638runtime-introspection-like functionality for managed languages. While
1639the exact semantics of an operand bundle depend on the bundle tag,
1640there are certain limitations to how much the presence of an operand
1641bundle can influence the semantics of a program. These restrictions
1642are described as the semantics of an "unknown" operand bundle. As
1643long as the behavior of an operand bundle is describable within these
1644restrictions, LLVM does not need to have special knowledge of the
1645operand bundle to not miscompile programs containing it.
1646
David Majnemer34cacb42015-10-22 01:46:38 +00001647- The bundle operands for an unknown operand bundle escape in unknown
1648 ways before control is transferred to the callee or invokee.
1649- Calls and invokes with operand bundles have unknown read / write
1650 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001651 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001652 callsite specific attributes.
1653- An operand bundle at a call site cannot change the implementation
1654 of the called function. Inter-procedural optimizations work as
1655 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001656
Sanjoy Dascdafd842015-11-11 21:38:02 +00001657More specific types of operand bundles are described below.
1658
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001659.. _deopt_opbundles:
1660
Sanjoy Dascdafd842015-11-11 21:38:02 +00001661Deoptimization Operand Bundles
1662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1663
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001664Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001665operand bundle tag. These operand bundles represent an alternate
1666"safe" continuation for the call site they're attached to, and can be
1667used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001668specified call site. There can be at most one ``"deopt"`` operand
1669bundle attached to a call site. Exact details of deoptimization is
1670out of scope for the language reference, but it usually involves
1671rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001672
1673From the compiler's perspective, deoptimization operand bundles make
1674the call sites they're attached to at least ``readonly``. They read
1675through all of their pointer typed operands (even if they're not
1676otherwise escaped) and the entire visible heap. Deoptimization
1677operand bundles do not capture their operands except during
1678deoptimization, in which case control will not be returned to the
1679compiled frame.
1680
Sanjoy Das2d161452015-11-18 06:23:38 +00001681The inliner knows how to inline through calls that have deoptimization
1682operand bundles. Just like inlining through a normal call site
1683involves composing the normal and exceptional continuations, inlining
1684through a call site with a deoptimization operand bundle needs to
1685appropriately compose the "safe" deoptimization continuation. The
1686inliner does this by prepending the parent's deoptimization
1687continuation to every deoptimization continuation in the inlined body.
1688E.g. inlining ``@f`` into ``@g`` in the following example
1689
1690.. code-block:: llvm
1691
1692 define void @f() {
1693 call void @x() ;; no deopt state
1694 call void @y() [ "deopt"(i32 10) ]
1695 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1696 ret void
1697 }
1698
1699 define void @g() {
1700 call void @f() [ "deopt"(i32 20) ]
1701 ret void
1702 }
1703
1704will result in
1705
1706.. code-block:: llvm
1707
1708 define void @g() {
1709 call void @x() ;; still no deopt state
1710 call void @y() [ "deopt"(i32 20, i32 10) ]
1711 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1712 ret void
1713 }
1714
1715It is the frontend's responsibility to structure or encode the
1716deoptimization state in a way that syntactically prepending the
1717caller's deoptimization state to the callee's deoptimization state is
1718semantically equivalent to composing the caller's deoptimization
1719continuation after the callee's deoptimization continuation.
1720
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001721.. _ob_funclet:
1722
David Majnemer3bb88c02015-12-15 21:27:27 +00001723Funclet Operand Bundles
1724^^^^^^^^^^^^^^^^^^^^^^^
1725
1726Funclet operand bundles are characterized by the ``"funclet"``
1727operand bundle tag. These operand bundles indicate that a call site
1728is within a particular funclet. There can be at most one
1729``"funclet"`` operand bundle attached to a call site and it must have
1730exactly one bundle operand.
1731
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001732If any funclet EH pads have been "entered" but not "exited" (per the
1733`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1734it is undefined behavior to execute a ``call`` or ``invoke`` which:
1735
1736* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1737 intrinsic, or
1738* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1739 not-yet-exited funclet EH pad.
1740
1741Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1742executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1743
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001744GC Transition Operand Bundles
1745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1746
1747GC transition operand bundles are characterized by the
1748``"gc-transition"`` operand bundle tag. These operand bundles mark a
1749call as a transition between a function with one GC strategy to a
1750function with a different GC strategy. If coordinating the transition
1751between GC strategies requires additional code generation at the call
1752site, these bundles may contain any values that are needed by the
1753generated code. For more details, see :ref:`GC Transitions
1754<gc_transition_args>`.
1755
Sean Silvab084af42012-12-07 10:36:55 +00001756.. _moduleasm:
1757
1758Module-Level Inline Assembly
1759----------------------------
1760
1761Modules may contain "module-level inline asm" blocks, which corresponds
1762to the GCC "file scope inline asm" blocks. These blocks are internally
1763concatenated by LLVM and treated as a single unit, but may be separated
1764in the ``.ll`` file if desired. The syntax is very simple:
1765
1766.. code-block:: llvm
1767
1768 module asm "inline asm code goes here"
1769 module asm "more can go here"
1770
1771The strings can contain any character by escaping non-printable
1772characters. The escape sequence used is simply "\\xx" where "xx" is the
1773two digit hex code for the number.
1774
James Y Knightbc832ed2015-07-08 18:08:36 +00001775Note that the assembly string *must* be parseable by LLVM's integrated assembler
1776(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001777
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001778.. _langref_datalayout:
1779
Sean Silvab084af42012-12-07 10:36:55 +00001780Data Layout
1781-----------
1782
1783A module may specify a target specific data layout string that specifies
1784how data is to be laid out in memory. The syntax for the data layout is
1785simply:
1786
1787.. code-block:: llvm
1788
1789 target datalayout = "layout specification"
1790
1791The *layout specification* consists of a list of specifications
1792separated by the minus sign character ('-'). Each specification starts
1793with a letter and may include other information after the letter to
1794define some aspect of the data layout. The specifications accepted are
1795as follows:
1796
1797``E``
1798 Specifies that the target lays out data in big-endian form. That is,
1799 the bits with the most significance have the lowest address
1800 location.
1801``e``
1802 Specifies that the target lays out data in little-endian form. That
1803 is, the bits with the least significance have the lowest address
1804 location.
1805``S<size>``
1806 Specifies the natural alignment of the stack in bits. Alignment
1807 promotion of stack variables is limited to the natural stack
1808 alignment to avoid dynamic stack realignment. The stack alignment
1809 must be a multiple of 8-bits. If omitted, the natural stack
1810 alignment defaults to "unspecified", which does not prevent any
1811 alignment promotions.
1812``p[n]:<size>:<abi>:<pref>``
1813 This specifies the *size* of a pointer and its ``<abi>`` and
1814 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001815 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001816 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001817 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001818``i<size>:<abi>:<pref>``
1819 This specifies the alignment for an integer type of a given bit
1820 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1821``v<size>:<abi>:<pref>``
1822 This specifies the alignment for a vector type of a given bit
1823 ``<size>``.
1824``f<size>:<abi>:<pref>``
1825 This specifies the alignment for a floating point type of a given bit
1826 ``<size>``. Only values of ``<size>`` that are supported by the target
1827 will work. 32 (float) and 64 (double) are supported on all targets; 80
1828 or 128 (different flavors of long double) are also supported on some
1829 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001830``a:<abi>:<pref>``
1831 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001832``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001833 If present, specifies that llvm names are mangled in the output. The
1834 options are
1835
1836 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1837 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1838 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1839 symbols get a ``_`` prefix.
1840 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1841 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001842 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1843 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001844``n<size1>:<size2>:<size3>...``
1845 This specifies a set of native integer widths for the target CPU in
1846 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1847 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1848 this set are considered to support most general arithmetic operations
1849 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001850``ni:<address space0>:<address space1>:<address space2>...``
1851 This specifies pointer types with the specified address spaces
1852 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1853 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001854
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001855On every specification that takes a ``<abi>:<pref>``, specifying the
1856``<pref>`` alignment is optional. If omitted, the preceding ``:``
1857should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1858
Sean Silvab084af42012-12-07 10:36:55 +00001859When constructing the data layout for a given target, LLVM starts with a
1860default set of specifications which are then (possibly) overridden by
1861the specifications in the ``datalayout`` keyword. The default
1862specifications are given in this list:
1863
1864- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001865- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1866- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1867 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001868- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001869- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1870- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1871- ``i16:16:16`` - i16 is 16-bit aligned
1872- ``i32:32:32`` - i32 is 32-bit aligned
1873- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1874 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001875- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001876- ``f32:32:32`` - float is 32-bit aligned
1877- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001878- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001879- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1880- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001881- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001882
1883When LLVM is determining the alignment for a given type, it uses the
1884following rules:
1885
1886#. If the type sought is an exact match for one of the specifications,
1887 that specification is used.
1888#. If no match is found, and the type sought is an integer type, then
1889 the smallest integer type that is larger than the bitwidth of the
1890 sought type is used. If none of the specifications are larger than
1891 the bitwidth then the largest integer type is used. For example,
1892 given the default specifications above, the i7 type will use the
1893 alignment of i8 (next largest) while both i65 and i256 will use the
1894 alignment of i64 (largest specified).
1895#. If no match is found, and the type sought is a vector type, then the
1896 largest vector type that is smaller than the sought vector type will
1897 be used as a fall back. This happens because <128 x double> can be
1898 implemented in terms of 64 <2 x double>, for example.
1899
1900The function of the data layout string may not be what you expect.
1901Notably, this is not a specification from the frontend of what alignment
1902the code generator should use.
1903
1904Instead, if specified, the target data layout is required to match what
1905the ultimate *code generator* expects. This string is used by the
1906mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001907what the ultimate code generator uses. There is no way to generate IR
1908that does not embed this target-specific detail into the IR. If you
1909don't specify the string, the default specifications will be used to
1910generate a Data Layout and the optimization phases will operate
1911accordingly and introduce target specificity into the IR with respect to
1912these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001913
Bill Wendling5cc90842013-10-18 23:41:25 +00001914.. _langref_triple:
1915
1916Target Triple
1917-------------
1918
1919A module may specify a target triple string that describes the target
1920host. The syntax for the target triple is simply:
1921
1922.. code-block:: llvm
1923
1924 target triple = "x86_64-apple-macosx10.7.0"
1925
1926The *target triple* string consists of a series of identifiers delimited
1927by the minus sign character ('-'). The canonical forms are:
1928
1929::
1930
1931 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1932 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1933
1934This information is passed along to the backend so that it generates
1935code for the proper architecture. It's possible to override this on the
1936command line with the ``-mtriple`` command line option.
1937
Sean Silvab084af42012-12-07 10:36:55 +00001938.. _pointeraliasing:
1939
1940Pointer Aliasing Rules
1941----------------------
1942
1943Any memory access must be done through a pointer value associated with
1944an address range of the memory access, otherwise the behavior is
1945undefined. Pointer values are associated with address ranges according
1946to the following rules:
1947
1948- A pointer value is associated with the addresses associated with any
1949 value it is *based* on.
1950- An address of a global variable is associated with the address range
1951 of the variable's storage.
1952- The result value of an allocation instruction is associated with the
1953 address range of the allocated storage.
1954- A null pointer in the default address-space is associated with no
1955 address.
1956- An integer constant other than zero or a pointer value returned from
1957 a function not defined within LLVM may be associated with address
1958 ranges allocated through mechanisms other than those provided by
1959 LLVM. Such ranges shall not overlap with any ranges of addresses
1960 allocated by mechanisms provided by LLVM.
1961
1962A pointer value is *based* on another pointer value according to the
1963following rules:
1964
1965- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001966 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001967- The result value of a ``bitcast`` is *based* on the operand of the
1968 ``bitcast``.
1969- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1970 values that contribute (directly or indirectly) to the computation of
1971 the pointer's value.
1972- The "*based* on" relationship is transitive.
1973
1974Note that this definition of *"based"* is intentionally similar to the
1975definition of *"based"* in C99, though it is slightly weaker.
1976
1977LLVM IR does not associate types with memory. The result type of a
1978``load`` merely indicates the size and alignment of the memory from
1979which to load, as well as the interpretation of the value. The first
1980operand type of a ``store`` similarly only indicates the size and
1981alignment of the store.
1982
1983Consequently, type-based alias analysis, aka TBAA, aka
1984``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1985:ref:`Metadata <metadata>` may be used to encode additional information
1986which specialized optimization passes may use to implement type-based
1987alias analysis.
1988
1989.. _volatile:
1990
1991Volatile Memory Accesses
1992------------------------
1993
1994Certain memory accesses, such as :ref:`load <i_load>`'s,
1995:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1996marked ``volatile``. The optimizers must not change the number of
1997volatile operations or change their order of execution relative to other
1998volatile operations. The optimizers *may* change the order of volatile
1999operations relative to non-volatile operations. This is not Java's
2000"volatile" and has no cross-thread synchronization behavior.
2001
Andrew Trick89fc5a62013-01-30 21:19:35 +00002002IR-level volatile loads and stores cannot safely be optimized into
2003llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2004flagged volatile. Likewise, the backend should never split or merge
2005target-legal volatile load/store instructions.
2006
Andrew Trick7e6f9282013-01-31 00:49:39 +00002007.. admonition:: Rationale
2008
2009 Platforms may rely on volatile loads and stores of natively supported
2010 data width to be executed as single instruction. For example, in C
2011 this holds for an l-value of volatile primitive type with native
2012 hardware support, but not necessarily for aggregate types. The
2013 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002014 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002015 do not violate the frontend's contract with the language.
2016
Sean Silvab084af42012-12-07 10:36:55 +00002017.. _memmodel:
2018
2019Memory Model for Concurrent Operations
2020--------------------------------------
2021
2022The LLVM IR does not define any way to start parallel threads of
2023execution or to register signal handlers. Nonetheless, there are
2024platform-specific ways to create them, and we define LLVM IR's behavior
2025in their presence. This model is inspired by the C++0x memory model.
2026
2027For a more informal introduction to this model, see the :doc:`Atomics`.
2028
2029We define a *happens-before* partial order as the least partial order
2030that
2031
2032- Is a superset of single-thread program order, and
2033- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2034 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2035 techniques, like pthread locks, thread creation, thread joining,
2036 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2037 Constraints <ordering>`).
2038
2039Note that program order does not introduce *happens-before* edges
2040between a thread and signals executing inside that thread.
2041
2042Every (defined) read operation (load instructions, memcpy, atomic
2043loads/read-modify-writes, etc.) R reads a series of bytes written by
2044(defined) write operations (store instructions, atomic
2045stores/read-modify-writes, memcpy, etc.). For the purposes of this
2046section, initialized globals are considered to have a write of the
2047initializer which is atomic and happens before any other read or write
2048of the memory in question. For each byte of a read R, R\ :sub:`byte`
2049may see any write to the same byte, except:
2050
2051- If write\ :sub:`1` happens before write\ :sub:`2`, and
2052 write\ :sub:`2` happens before R\ :sub:`byte`, then
2053 R\ :sub:`byte` does not see write\ :sub:`1`.
2054- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2055 R\ :sub:`byte` does not see write\ :sub:`3`.
2056
2057Given that definition, R\ :sub:`byte` is defined as follows:
2058
2059- If R is volatile, the result is target-dependent. (Volatile is
2060 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002061 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002062 like normal memory. It does not generally provide cross-thread
2063 synchronization.)
2064- Otherwise, if there is no write to the same byte that happens before
2065 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2066- Otherwise, if R\ :sub:`byte` may see exactly one write,
2067 R\ :sub:`byte` returns the value written by that write.
2068- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2069 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2070 Memory Ordering Constraints <ordering>` section for additional
2071 constraints on how the choice is made.
2072- Otherwise R\ :sub:`byte` returns ``undef``.
2073
2074R returns the value composed of the series of bytes it read. This
2075implies that some bytes within the value may be ``undef`` **without**
2076the entire value being ``undef``. Note that this only defines the
2077semantics of the operation; it doesn't mean that targets will emit more
2078than one instruction to read the series of bytes.
2079
2080Note that in cases where none of the atomic intrinsics are used, this
2081model places only one restriction on IR transformations on top of what
2082is required for single-threaded execution: introducing a store to a byte
2083which might not otherwise be stored is not allowed in general.
2084(Specifically, in the case where another thread might write to and read
2085from an address, introducing a store can change a load that may see
2086exactly one write into a load that may see multiple writes.)
2087
2088.. _ordering:
2089
2090Atomic Memory Ordering Constraints
2091----------------------------------
2092
2093Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2094:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2095:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002096ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002097the same address they *synchronize with*. These semantics are borrowed
2098from Java and C++0x, but are somewhat more colloquial. If these
2099descriptions aren't precise enough, check those specs (see spec
2100references in the :doc:`atomics guide <Atomics>`).
2101:ref:`fence <i_fence>` instructions treat these orderings somewhat
2102differently since they don't take an address. See that instruction's
2103documentation for details.
2104
2105For a simpler introduction to the ordering constraints, see the
2106:doc:`Atomics`.
2107
2108``unordered``
2109 The set of values that can be read is governed by the happens-before
2110 partial order. A value cannot be read unless some operation wrote
2111 it. This is intended to provide a guarantee strong enough to model
2112 Java's non-volatile shared variables. This ordering cannot be
2113 specified for read-modify-write operations; it is not strong enough
2114 to make them atomic in any interesting way.
2115``monotonic``
2116 In addition to the guarantees of ``unordered``, there is a single
2117 total order for modifications by ``monotonic`` operations on each
2118 address. All modification orders must be compatible with the
2119 happens-before order. There is no guarantee that the modification
2120 orders can be combined to a global total order for the whole program
2121 (and this often will not be possible). The read in an atomic
2122 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2123 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2124 order immediately before the value it writes. If one atomic read
2125 happens before another atomic read of the same address, the later
2126 read must see the same value or a later value in the address's
2127 modification order. This disallows reordering of ``monotonic`` (or
2128 stronger) operations on the same address. If an address is written
2129 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2130 read that address repeatedly, the other threads must eventually see
2131 the write. This corresponds to the C++0x/C1x
2132 ``memory_order_relaxed``.
2133``acquire``
2134 In addition to the guarantees of ``monotonic``, a
2135 *synchronizes-with* edge may be formed with a ``release`` operation.
2136 This is intended to model C++'s ``memory_order_acquire``.
2137``release``
2138 In addition to the guarantees of ``monotonic``, if this operation
2139 writes a value which is subsequently read by an ``acquire``
2140 operation, it *synchronizes-with* that operation. (This isn't a
2141 complete description; see the C++0x definition of a release
2142 sequence.) This corresponds to the C++0x/C1x
2143 ``memory_order_release``.
2144``acq_rel`` (acquire+release)
2145 Acts as both an ``acquire`` and ``release`` operation on its
2146 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2147``seq_cst`` (sequentially consistent)
2148 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002149 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002150 writes), there is a global total order on all
2151 sequentially-consistent operations on all addresses, which is
2152 consistent with the *happens-before* partial order and with the
2153 modification orders of all the affected addresses. Each
2154 sequentially-consistent read sees the last preceding write to the
2155 same address in this global order. This corresponds to the C++0x/C1x
2156 ``memory_order_seq_cst`` and Java volatile.
2157
2158.. _singlethread:
2159
2160If an atomic operation is marked ``singlethread``, it only *synchronizes
2161with* or participates in modification and seq\_cst total orderings with
2162other operations running in the same thread (for example, in signal
2163handlers).
2164
2165.. _fastmath:
2166
2167Fast-Math Flags
2168---------------
2169
2170LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2171:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002172:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
2173instructions have the following flags that can be set to enable
2174otherwise unsafe floating point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002175
2176``nnan``
2177 No NaNs - Allow optimizations to assume the arguments and result are not
2178 NaN. Such optimizations are required to retain defined behavior over
2179 NaNs, but the value of the result is undefined.
2180
2181``ninf``
2182 No Infs - Allow optimizations to assume the arguments and result are not
2183 +/-Inf. Such optimizations are required to retain defined behavior over
2184 +/-Inf, but the value of the result is undefined.
2185
2186``nsz``
2187 No Signed Zeros - Allow optimizations to treat the sign of a zero
2188 argument or result as insignificant.
2189
2190``arcp``
2191 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2192 argument rather than perform division.
2193
2194``fast``
2195 Fast - Allow algebraically equivalent transformations that may
2196 dramatically change results in floating point (e.g. reassociate). This
2197 flag implies all the others.
2198
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002199.. _uselistorder:
2200
2201Use-list Order Directives
2202-------------------------
2203
2204Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002205order to be recreated. ``<order-indexes>`` is a comma-separated list of
2206indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002207value's use-list is immediately sorted by these indexes.
2208
Sean Silvaa1190322015-08-06 22:56:48 +00002209Use-list directives may appear at function scope or global scope. They are not
2210instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002211function scope, they must appear after the terminator of the final basic block.
2212
2213If basic blocks have their address taken via ``blockaddress()`` expressions,
2214``uselistorder_bb`` can be used to reorder their use-lists from outside their
2215function's scope.
2216
2217:Syntax:
2218
2219::
2220
2221 uselistorder <ty> <value>, { <order-indexes> }
2222 uselistorder_bb @function, %block { <order-indexes> }
2223
2224:Examples:
2225
2226::
2227
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002228 define void @foo(i32 %arg1, i32 %arg2) {
2229 entry:
2230 ; ... instructions ...
2231 bb:
2232 ; ... instructions ...
2233
2234 ; At function scope.
2235 uselistorder i32 %arg1, { 1, 0, 2 }
2236 uselistorder label %bb, { 1, 0 }
2237 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002238
2239 ; At global scope.
2240 uselistorder i32* @global, { 1, 2, 0 }
2241 uselistorder i32 7, { 1, 0 }
2242 uselistorder i32 (i32) @bar, { 1, 0 }
2243 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2244
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002245.. _source_filename:
2246
2247Source Filename
2248---------------
2249
2250The *source filename* string is set to the original module identifier,
2251which will be the name of the compiled source file when compiling from
2252source through the clang front end, for example. It is then preserved through
2253the IR and bitcode.
2254
2255This is currently necessary to generate a consistent unique global
2256identifier for local functions used in profile data, which prepends the
2257source file name to the local function name.
2258
2259The syntax for the source file name is simply:
2260
Renato Golin124f2592016-07-20 12:16:38 +00002261.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002262
2263 source_filename = "/path/to/source.c"
2264
Sean Silvab084af42012-12-07 10:36:55 +00002265.. _typesystem:
2266
2267Type System
2268===========
2269
2270The LLVM type system is one of the most important features of the
2271intermediate representation. Being typed enables a number of
2272optimizations to be performed on the intermediate representation
2273directly, without having to do extra analyses on the side before the
2274transformation. A strong type system makes it easier to read the
2275generated code and enables novel analyses and transformations that are
2276not feasible to perform on normal three address code representations.
2277
Rafael Espindola08013342013-12-07 19:34:20 +00002278.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002279
Rafael Espindola08013342013-12-07 19:34:20 +00002280Void Type
2281---------
Sean Silvab084af42012-12-07 10:36:55 +00002282
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002283:Overview:
2284
Rafael Espindola08013342013-12-07 19:34:20 +00002285
2286The void type does not represent any value and has no size.
2287
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002288:Syntax:
2289
Rafael Espindola08013342013-12-07 19:34:20 +00002290
2291::
2292
2293 void
Sean Silvab084af42012-12-07 10:36:55 +00002294
2295
Rafael Espindola08013342013-12-07 19:34:20 +00002296.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002297
Rafael Espindola08013342013-12-07 19:34:20 +00002298Function Type
2299-------------
Sean Silvab084af42012-12-07 10:36:55 +00002300
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002301:Overview:
2302
Sean Silvab084af42012-12-07 10:36:55 +00002303
Rafael Espindola08013342013-12-07 19:34:20 +00002304The function type can be thought of as a function signature. It consists of a
2305return type and a list of formal parameter types. The return type of a function
2306type is a void type or first class type --- except for :ref:`label <t_label>`
2307and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002308
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002309:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002310
Rafael Espindola08013342013-12-07 19:34:20 +00002311::
Sean Silvab084af42012-12-07 10:36:55 +00002312
Rafael Espindola08013342013-12-07 19:34:20 +00002313 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002314
Rafael Espindola08013342013-12-07 19:34:20 +00002315...where '``<parameter list>``' is a comma-separated list of type
2316specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002317indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002318argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002319handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002320except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002321
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002322:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002323
Rafael Espindola08013342013-12-07 19:34:20 +00002324+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2325| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2326+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2327| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2328+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2329| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2330+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2331| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2332+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2333
2334.. _t_firstclass:
2335
2336First Class Types
2337-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002338
2339The :ref:`first class <t_firstclass>` types are perhaps the most important.
2340Values of these types are the only ones which can be produced by
2341instructions.
2342
Rafael Espindola08013342013-12-07 19:34:20 +00002343.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002344
Rafael Espindola08013342013-12-07 19:34:20 +00002345Single Value Types
2346^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002347
Rafael Espindola08013342013-12-07 19:34:20 +00002348These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002349
2350.. _t_integer:
2351
2352Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002353""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002354
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002355:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002356
2357The integer type is a very simple type that simply specifies an
2358arbitrary bit width for the integer type desired. Any bit width from 1
2359bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2360
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002361:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002362
2363::
2364
2365 iN
2366
2367The number of bits the integer will occupy is specified by the ``N``
2368value.
2369
2370Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002371*********
Sean Silvab084af42012-12-07 10:36:55 +00002372
2373+----------------+------------------------------------------------+
2374| ``i1`` | a single-bit integer. |
2375+----------------+------------------------------------------------+
2376| ``i32`` | a 32-bit integer. |
2377+----------------+------------------------------------------------+
2378| ``i1942652`` | a really big integer of over 1 million bits. |
2379+----------------+------------------------------------------------+
2380
2381.. _t_floating:
2382
2383Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002384""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002385
2386.. list-table::
2387 :header-rows: 1
2388
2389 * - Type
2390 - Description
2391
2392 * - ``half``
2393 - 16-bit floating point value
2394
2395 * - ``float``
2396 - 32-bit floating point value
2397
2398 * - ``double``
2399 - 64-bit floating point value
2400
2401 * - ``fp128``
2402 - 128-bit floating point value (112-bit mantissa)
2403
2404 * - ``x86_fp80``
2405 - 80-bit floating point value (X87)
2406
2407 * - ``ppc_fp128``
2408 - 128-bit floating point value (two 64-bits)
2409
Reid Kleckner9a16d082014-03-05 02:41:37 +00002410X86_mmx Type
2411""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002412
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002413:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002414
Reid Kleckner9a16d082014-03-05 02:41:37 +00002415The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002416machine. The operations allowed on it are quite limited: parameters and
2417return values, load and store, and bitcast. User-specified MMX
2418instructions are represented as intrinsic or asm calls with arguments
2419and/or results of this type. There are no arrays, vectors or constants
2420of this type.
2421
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002422:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002423
2424::
2425
Reid Kleckner9a16d082014-03-05 02:41:37 +00002426 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002427
Sean Silvab084af42012-12-07 10:36:55 +00002428
Rafael Espindola08013342013-12-07 19:34:20 +00002429.. _t_pointer:
2430
2431Pointer Type
2432""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002433
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002434:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002435
Rafael Espindola08013342013-12-07 19:34:20 +00002436The pointer type is used to specify memory locations. Pointers are
2437commonly used to reference objects in memory.
2438
2439Pointer types may have an optional address space attribute defining the
2440numbered address space where the pointed-to object resides. The default
2441address space is number zero. The semantics of non-zero address spaces
2442are target-specific.
2443
2444Note that LLVM does not permit pointers to void (``void*``) nor does it
2445permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002446
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002447:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002448
2449::
2450
Rafael Espindola08013342013-12-07 19:34:20 +00002451 <type> *
2452
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002453:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002454
2455+-------------------------+--------------------------------------------------------------------------------------------------------------+
2456| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2457+-------------------------+--------------------------------------------------------------------------------------------------------------+
2458| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2459+-------------------------+--------------------------------------------------------------------------------------------------------------+
2460| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2461+-------------------------+--------------------------------------------------------------------------------------------------------------+
2462
2463.. _t_vector:
2464
2465Vector Type
2466"""""""""""
2467
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002468:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002469
2470A vector type is a simple derived type that represents a vector of
2471elements. Vector types are used when multiple primitive data are
2472operated in parallel using a single instruction (SIMD). A vector type
2473requires a size (number of elements) and an underlying primitive data
2474type. Vector types are considered :ref:`first class <t_firstclass>`.
2475
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002476:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002477
2478::
2479
2480 < <# elements> x <elementtype> >
2481
2482The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002483elementtype may be any integer, floating point or pointer type. Vectors
2484of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002485
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002486:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002487
2488+-------------------+--------------------------------------------------+
2489| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2490+-------------------+--------------------------------------------------+
2491| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2492+-------------------+--------------------------------------------------+
2493| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2494+-------------------+--------------------------------------------------+
2495| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2496+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002497
2498.. _t_label:
2499
2500Label Type
2501^^^^^^^^^^
2502
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002503:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002504
2505The label type represents code labels.
2506
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002507:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002508
2509::
2510
2511 label
2512
David Majnemerb611e3f2015-08-14 05:09:07 +00002513.. _t_token:
2514
2515Token Type
2516^^^^^^^^^^
2517
2518:Overview:
2519
2520The token type is used when a value is associated with an instruction
2521but all uses of the value must not attempt to introspect or obscure it.
2522As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2523:ref:`select <i_select>` of type token.
2524
2525:Syntax:
2526
2527::
2528
2529 token
2530
2531
2532
Sean Silvab084af42012-12-07 10:36:55 +00002533.. _t_metadata:
2534
2535Metadata Type
2536^^^^^^^^^^^^^
2537
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002538:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002539
2540The metadata type represents embedded metadata. No derived types may be
2541created from metadata except for :ref:`function <t_function>` arguments.
2542
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002543:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002544
2545::
2546
2547 metadata
2548
Sean Silvab084af42012-12-07 10:36:55 +00002549.. _t_aggregate:
2550
2551Aggregate Types
2552^^^^^^^^^^^^^^^
2553
2554Aggregate Types are a subset of derived types that can contain multiple
2555member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2556aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2557aggregate types.
2558
2559.. _t_array:
2560
2561Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002562""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002563
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002564:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002565
2566The array type is a very simple derived type that arranges elements
2567sequentially in memory. The array type requires a size (number of
2568elements) and an underlying data type.
2569
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002570:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002571
2572::
2573
2574 [<# elements> x <elementtype>]
2575
2576The number of elements is a constant integer value; ``elementtype`` may
2577be any type with a size.
2578
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002579:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002580
2581+------------------+--------------------------------------+
2582| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2583+------------------+--------------------------------------+
2584| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2585+------------------+--------------------------------------+
2586| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2587+------------------+--------------------------------------+
2588
2589Here are some examples of multidimensional arrays:
2590
2591+-----------------------------+----------------------------------------------------------+
2592| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2593+-----------------------------+----------------------------------------------------------+
2594| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2595+-----------------------------+----------------------------------------------------------+
2596| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2597+-----------------------------+----------------------------------------------------------+
2598
2599There is no restriction on indexing beyond the end of the array implied
2600by a static type (though there are restrictions on indexing beyond the
2601bounds of an allocated object in some cases). This means that
2602single-dimension 'variable sized array' addressing can be implemented in
2603LLVM with a zero length array type. An implementation of 'pascal style
2604arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2605example.
2606
Sean Silvab084af42012-12-07 10:36:55 +00002607.. _t_struct:
2608
2609Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002610""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002611
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002612:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002613
2614The structure type is used to represent a collection of data members
2615together in memory. The elements of a structure may be any type that has
2616a size.
2617
2618Structures in memory are accessed using '``load``' and '``store``' by
2619getting a pointer to a field with the '``getelementptr``' instruction.
2620Structures in registers are accessed using the '``extractvalue``' and
2621'``insertvalue``' instructions.
2622
2623Structures may optionally be "packed" structures, which indicate that
2624the alignment of the struct is one byte, and that there is no padding
2625between the elements. In non-packed structs, padding between field types
2626is inserted as defined by the DataLayout string in the module, which is
2627required to match what the underlying code generator expects.
2628
2629Structures can either be "literal" or "identified". A literal structure
2630is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2631identified types are always defined at the top level with a name.
2632Literal types are uniqued by their contents and can never be recursive
2633or opaque since there is no way to write one. Identified types can be
2634recursive, can be opaqued, and are never uniqued.
2635
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002636:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002637
2638::
2639
2640 %T1 = type { <type list> } ; Identified normal struct type
2641 %T2 = type <{ <type list> }> ; Identified packed struct type
2642
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002643:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002644
2645+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2646| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2647+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002648| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002649+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2650| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2651+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2652
2653.. _t_opaque:
2654
2655Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002656""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002657
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002658:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002659
2660Opaque structure types are used to represent named structure types that
2661do not have a body specified. This corresponds (for example) to the C
2662notion of a forward declared structure.
2663
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002664:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002665
2666::
2667
2668 %X = type opaque
2669 %52 = type opaque
2670
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002671:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002672
2673+--------------+-------------------+
2674| ``opaque`` | An opaque type. |
2675+--------------+-------------------+
2676
Sean Silva1703e702014-04-08 21:06:22 +00002677.. _constants:
2678
Sean Silvab084af42012-12-07 10:36:55 +00002679Constants
2680=========
2681
2682LLVM has several different basic types of constants. This section
2683describes them all and their syntax.
2684
2685Simple Constants
2686----------------
2687
2688**Boolean constants**
2689 The two strings '``true``' and '``false``' are both valid constants
2690 of the ``i1`` type.
2691**Integer constants**
2692 Standard integers (such as '4') are constants of the
2693 :ref:`integer <t_integer>` type. Negative numbers may be used with
2694 integer types.
2695**Floating point constants**
2696 Floating point constants use standard decimal notation (e.g.
2697 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2698 hexadecimal notation (see below). The assembler requires the exact
2699 decimal value of a floating-point constant. For example, the
2700 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2701 decimal in binary. Floating point constants must have a :ref:`floating
2702 point <t_floating>` type.
2703**Null pointer constants**
2704 The identifier '``null``' is recognized as a null pointer constant
2705 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002706**Token constants**
2707 The identifier '``none``' is recognized as an empty token constant
2708 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002709
2710The one non-intuitive notation for constants is the hexadecimal form of
2711floating point constants. For example, the form
2712'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2713than) '``double 4.5e+15``'. The only time hexadecimal floating point
2714constants are required (and the only time that they are generated by the
2715disassembler) is when a floating point constant must be emitted but it
2716cannot be represented as a decimal floating point number in a reasonable
2717number of digits. For example, NaN's, infinities, and other special
2718values are represented in their IEEE hexadecimal format so that assembly
2719and disassembly do not cause any bits to change in the constants.
2720
2721When using the hexadecimal form, constants of types half, float, and
2722double are represented using the 16-digit form shown above (which
2723matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002724must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002725precision, respectively. Hexadecimal format is always used for long
2726double, and there are three forms of long double. The 80-bit format used
2727by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2728128-bit format used by PowerPC (two adjacent doubles) is represented by
2729``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002730represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2731will only work if they match the long double format on your target.
2732The IEEE 16-bit format (half precision) is represented by ``0xH``
2733followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2734(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002735
Reid Kleckner9a16d082014-03-05 02:41:37 +00002736There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002737
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002738.. _complexconstants:
2739
Sean Silvab084af42012-12-07 10:36:55 +00002740Complex Constants
2741-----------------
2742
2743Complex constants are a (potentially recursive) combination of simple
2744constants and smaller complex constants.
2745
2746**Structure constants**
2747 Structure constants are represented with notation similar to
2748 structure type definitions (a comma separated list of elements,
2749 surrounded by braces (``{}``)). For example:
2750 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2751 "``@G = external global i32``". Structure constants must have
2752 :ref:`structure type <t_struct>`, and the number and types of elements
2753 must match those specified by the type.
2754**Array constants**
2755 Array constants are represented with notation similar to array type
2756 definitions (a comma separated list of elements, surrounded by
2757 square brackets (``[]``)). For example:
2758 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2759 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002760 match those specified by the type. As a special case, character array
2761 constants may also be represented as a double-quoted string using the ``c``
2762 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002763**Vector constants**
2764 Vector constants are represented with notation similar to vector
2765 type definitions (a comma separated list of elements, surrounded by
2766 less-than/greater-than's (``<>``)). For example:
2767 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2768 must have :ref:`vector type <t_vector>`, and the number and types of
2769 elements must match those specified by the type.
2770**Zero initialization**
2771 The string '``zeroinitializer``' can be used to zero initialize a
2772 value to zero of *any* type, including scalar and
2773 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2774 having to print large zero initializers (e.g. for large arrays) and
2775 is always exactly equivalent to using explicit zero initializers.
2776**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002777 A metadata node is a constant tuple without types. For example:
2778 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002779 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2780 Unlike other typed constants that are meant to be interpreted as part of
2781 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002782 information such as debug info.
2783
2784Global Variable and Function Addresses
2785--------------------------------------
2786
2787The addresses of :ref:`global variables <globalvars>` and
2788:ref:`functions <functionstructure>` are always implicitly valid
2789(link-time) constants. These constants are explicitly referenced when
2790the :ref:`identifier for the global <identifiers>` is used and always have
2791:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2792file:
2793
2794.. code-block:: llvm
2795
2796 @X = global i32 17
2797 @Y = global i32 42
2798 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2799
2800.. _undefvalues:
2801
2802Undefined Values
2803----------------
2804
2805The string '``undef``' can be used anywhere a constant is expected, and
2806indicates that the user of the value may receive an unspecified
2807bit-pattern. Undefined values may be of any type (other than '``label``'
2808or '``void``') and be used anywhere a constant is permitted.
2809
2810Undefined values are useful because they indicate to the compiler that
2811the program is well defined no matter what value is used. This gives the
2812compiler more freedom to optimize. Here are some examples of
2813(potentially surprising) transformations that are valid (in pseudo IR):
2814
2815.. code-block:: llvm
2816
2817 %A = add %X, undef
2818 %B = sub %X, undef
2819 %C = xor %X, undef
2820 Safe:
2821 %A = undef
2822 %B = undef
2823 %C = undef
2824
2825This is safe because all of the output bits are affected by the undef
2826bits. Any output bit can have a zero or one depending on the input bits.
2827
2828.. code-block:: llvm
2829
2830 %A = or %X, undef
2831 %B = and %X, undef
2832 Safe:
2833 %A = -1
2834 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002835 Safe:
2836 %A = %X ;; By choosing undef as 0
2837 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002838 Unsafe:
2839 %A = undef
2840 %B = undef
2841
2842These logical operations have bits that are not always affected by the
2843input. For example, if ``%X`` has a zero bit, then the output of the
2844'``and``' operation will always be a zero for that bit, no matter what
2845the corresponding bit from the '``undef``' is. As such, it is unsafe to
2846optimize or assume that the result of the '``and``' is '``undef``'.
2847However, it is safe to assume that all bits of the '``undef``' could be
28480, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2849all the bits of the '``undef``' operand to the '``or``' could be set,
2850allowing the '``or``' to be folded to -1.
2851
2852.. code-block:: llvm
2853
2854 %A = select undef, %X, %Y
2855 %B = select undef, 42, %Y
2856 %C = select %X, %Y, undef
2857 Safe:
2858 %A = %X (or %Y)
2859 %B = 42 (or %Y)
2860 %C = %Y
2861 Unsafe:
2862 %A = undef
2863 %B = undef
2864 %C = undef
2865
2866This set of examples shows that undefined '``select``' (and conditional
2867branch) conditions can go *either way*, but they have to come from one
2868of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2869both known to have a clear low bit, then ``%A`` would have to have a
2870cleared low bit. However, in the ``%C`` example, the optimizer is
2871allowed to assume that the '``undef``' operand could be the same as
2872``%Y``, allowing the whole '``select``' to be eliminated.
2873
Renato Golin124f2592016-07-20 12:16:38 +00002874.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002875
2876 %A = xor undef, undef
2877
2878 %B = undef
2879 %C = xor %B, %B
2880
2881 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002882 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002883 %F = icmp gte %D, 4
2884
2885 Safe:
2886 %A = undef
2887 %B = undef
2888 %C = undef
2889 %D = undef
2890 %E = undef
2891 %F = undef
2892
2893This example points out that two '``undef``' operands are not
2894necessarily the same. This can be surprising to people (and also matches
2895C semantics) where they assume that "``X^X``" is always zero, even if
2896``X`` is undefined. This isn't true for a number of reasons, but the
2897short answer is that an '``undef``' "variable" can arbitrarily change
2898its value over its "live range". This is true because the variable
2899doesn't actually *have a live range*. Instead, the value is logically
2900read from arbitrary registers that happen to be around when needed, so
2901the value is not necessarily consistent over time. In fact, ``%A`` and
2902``%C`` need to have the same semantics or the core LLVM "replace all
2903uses with" concept would not hold.
2904
2905.. code-block:: llvm
2906
2907 %A = fdiv undef, %X
2908 %B = fdiv %X, undef
2909 Safe:
2910 %A = undef
2911 b: unreachable
2912
2913These examples show the crucial difference between an *undefined value*
2914and *undefined behavior*. An undefined value (like '``undef``') is
2915allowed to have an arbitrary bit-pattern. This means that the ``%A``
2916operation can be constant folded to '``undef``', because the '``undef``'
2917could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2918However, in the second example, we can make a more aggressive
2919assumption: because the ``undef`` is allowed to be an arbitrary value,
2920we are allowed to assume that it could be zero. Since a divide by zero
2921has *undefined behavior*, we are allowed to assume that the operation
2922does not execute at all. This allows us to delete the divide and all
2923code after it. Because the undefined operation "can't happen", the
2924optimizer can assume that it occurs in dead code.
2925
Renato Golin124f2592016-07-20 12:16:38 +00002926.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002927
2928 a: store undef -> %X
2929 b: store %X -> undef
2930 Safe:
2931 a: <deleted>
2932 b: unreachable
2933
2934These examples reiterate the ``fdiv`` example: a store *of* an undefined
2935value can be assumed to not have any effect; we can assume that the
2936value is overwritten with bits that happen to match what was already
2937there. However, a store *to* an undefined location could clobber
2938arbitrary memory, therefore, it has undefined behavior.
2939
2940.. _poisonvalues:
2941
2942Poison Values
2943-------------
2944
2945Poison values are similar to :ref:`undef values <undefvalues>`, however
2946they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002947that cannot evoke side effects has nevertheless detected a condition
2948that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002949
2950There is currently no way of representing a poison value in the IR; they
2951only exist when produced by operations such as :ref:`add <i_add>` with
2952the ``nsw`` flag.
2953
2954Poison value behavior is defined in terms of value *dependence*:
2955
2956- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2957- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2958 their dynamic predecessor basic block.
2959- Function arguments depend on the corresponding actual argument values
2960 in the dynamic callers of their functions.
2961- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2962 instructions that dynamically transfer control back to them.
2963- :ref:`Invoke <i_invoke>` instructions depend on the
2964 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2965 call instructions that dynamically transfer control back to them.
2966- Non-volatile loads and stores depend on the most recent stores to all
2967 of the referenced memory addresses, following the order in the IR
2968 (including loads and stores implied by intrinsics such as
2969 :ref:`@llvm.memcpy <int_memcpy>`.)
2970- An instruction with externally visible side effects depends on the
2971 most recent preceding instruction with externally visible side
2972 effects, following the order in the IR. (This includes :ref:`volatile
2973 operations <volatile>`.)
2974- An instruction *control-depends* on a :ref:`terminator
2975 instruction <terminators>` if the terminator instruction has
2976 multiple successors and the instruction is always executed when
2977 control transfers to one of the successors, and may not be executed
2978 when control is transferred to another.
2979- Additionally, an instruction also *control-depends* on a terminator
2980 instruction if the set of instructions it otherwise depends on would
2981 be different if the terminator had transferred control to a different
2982 successor.
2983- Dependence is transitive.
2984
Richard Smith32dbdf62014-07-31 04:25:36 +00002985Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2986with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002987on a poison value has undefined behavior.
2988
2989Here are some examples:
2990
2991.. code-block:: llvm
2992
2993 entry:
2994 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2995 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002996 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002997 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2998
2999 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003000 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003001
3002 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3003
3004 %narrowaddr = bitcast i32* @g to i16*
3005 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003006 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3007 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003008
3009 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3010 br i1 %cmp, label %true, label %end ; Branch to either destination.
3011
3012 true:
3013 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3014 ; it has undefined behavior.
3015 br label %end
3016
3017 end:
3018 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3019 ; Both edges into this PHI are
3020 ; control-dependent on %cmp, so this
3021 ; always results in a poison value.
3022
3023 store volatile i32 0, i32* @g ; This would depend on the store in %true
3024 ; if %cmp is true, or the store in %entry
3025 ; otherwise, so this is undefined behavior.
3026
3027 br i1 %cmp, label %second_true, label %second_end
3028 ; The same branch again, but this time the
3029 ; true block doesn't have side effects.
3030
3031 second_true:
3032 ; No side effects!
3033 ret void
3034
3035 second_end:
3036 store volatile i32 0, i32* @g ; This time, the instruction always depends
3037 ; on the store in %end. Also, it is
3038 ; control-equivalent to %end, so this is
3039 ; well-defined (ignoring earlier undefined
3040 ; behavior in this example).
3041
3042.. _blockaddress:
3043
3044Addresses of Basic Blocks
3045-------------------------
3046
3047``blockaddress(@function, %block)``
3048
3049The '``blockaddress``' constant computes the address of the specified
3050basic block in the specified function, and always has an ``i8*`` type.
3051Taking the address of the entry block is illegal.
3052
3053This value only has defined behavior when used as an operand to the
3054':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3055against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003056undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003057no label is equal to the null pointer. This may be passed around as an
3058opaque pointer sized value as long as the bits are not inspected. This
3059allows ``ptrtoint`` and arithmetic to be performed on these values so
3060long as the original value is reconstituted before the ``indirectbr``
3061instruction.
3062
3063Finally, some targets may provide defined semantics when using the value
3064as the operand to an inline assembly, but that is target specific.
3065
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003066.. _constantexprs:
3067
Sean Silvab084af42012-12-07 10:36:55 +00003068Constant Expressions
3069--------------------
3070
3071Constant expressions are used to allow expressions involving other
3072constants to be used as constants. Constant expressions may be of any
3073:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3074that does not have side effects (e.g. load and call are not supported).
3075The following is the syntax for constant expressions:
3076
3077``trunc (CST to TYPE)``
3078 Truncate a constant to another type. The bit size of CST must be
3079 larger than the bit size of TYPE. Both types must be integers.
3080``zext (CST to TYPE)``
3081 Zero extend a constant to another type. The bit size of CST must be
3082 smaller than the bit size of TYPE. Both types must be integers.
3083``sext (CST to TYPE)``
3084 Sign extend a constant to another type. The bit size of CST must be
3085 smaller than the bit size of TYPE. Both types must be integers.
3086``fptrunc (CST to TYPE)``
3087 Truncate a floating point constant to another floating point type.
3088 The size of CST must be larger than the size of TYPE. Both types
3089 must be floating point.
3090``fpext (CST to TYPE)``
3091 Floating point extend a constant to another type. The size of CST
3092 must be smaller or equal to the size of TYPE. Both types must be
3093 floating point.
3094``fptoui (CST to TYPE)``
3095 Convert a floating point constant to the corresponding unsigned
3096 integer constant. TYPE must be a scalar or vector integer type. CST
3097 must be of scalar or vector floating point type. Both CST and TYPE
3098 must be scalars, or vectors of the same number of elements. If the
3099 value won't fit in the integer type, the results are undefined.
3100``fptosi (CST to TYPE)``
3101 Convert a floating point constant to the corresponding signed
3102 integer constant. TYPE must be a scalar or vector integer type. CST
3103 must be of scalar or vector floating point type. Both CST and TYPE
3104 must be scalars, or vectors of the same number of elements. If the
3105 value won't fit in the integer type, the results are undefined.
3106``uitofp (CST to TYPE)``
3107 Convert an unsigned integer constant to the corresponding floating
3108 point constant. TYPE must be a scalar or vector floating point type.
3109 CST must be of scalar or vector integer type. Both CST and TYPE must
3110 be scalars, or vectors of the same number of elements. If the value
3111 won't fit in the floating point type, the results are undefined.
3112``sitofp (CST to TYPE)``
3113 Convert a signed integer constant to the corresponding floating
3114 point constant. TYPE must be a scalar or vector floating point type.
3115 CST must be of scalar or vector integer type. Both CST and TYPE must
3116 be scalars, or vectors of the same number of elements. If the value
3117 won't fit in the floating point type, the results are undefined.
3118``ptrtoint (CST to TYPE)``
3119 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003120 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003121 pointer type. The ``CST`` value is zero extended, truncated, or
3122 unchanged to make it fit in ``TYPE``.
3123``inttoptr (CST to TYPE)``
3124 Convert an integer constant to a pointer constant. TYPE must be a
3125 pointer type. CST must be of integer type. The CST value is zero
3126 extended, truncated, or unchanged to make it fit in a pointer size.
3127 This one is *really* dangerous!
3128``bitcast (CST to TYPE)``
3129 Convert a constant, CST, to another TYPE. The constraints of the
3130 operands are the same as those for the :ref:`bitcast
3131 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003132``addrspacecast (CST to TYPE)``
3133 Convert a constant pointer or constant vector of pointer, CST, to another
3134 TYPE in a different address space. The constraints of the operands are the
3135 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003136``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003137 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3138 constants. As with the :ref:`getelementptr <i_getelementptr>`
3139 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003140 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003141``select (COND, VAL1, VAL2)``
3142 Perform the :ref:`select operation <i_select>` on constants.
3143``icmp COND (VAL1, VAL2)``
3144 Performs the :ref:`icmp operation <i_icmp>` on constants.
3145``fcmp COND (VAL1, VAL2)``
3146 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3147``extractelement (VAL, IDX)``
3148 Perform the :ref:`extractelement operation <i_extractelement>` on
3149 constants.
3150``insertelement (VAL, ELT, IDX)``
3151 Perform the :ref:`insertelement operation <i_insertelement>` on
3152 constants.
3153``shufflevector (VEC1, VEC2, IDXMASK)``
3154 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3155 constants.
3156``extractvalue (VAL, IDX0, IDX1, ...)``
3157 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3158 constants. The index list is interpreted in a similar manner as
3159 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3160 least one index value must be specified.
3161``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3162 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3163 The index list is interpreted in a similar manner as indices in a
3164 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3165 value must be specified.
3166``OPCODE (LHS, RHS)``
3167 Perform the specified operation of the LHS and RHS constants. OPCODE
3168 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3169 binary <bitwiseops>` operations. The constraints on operands are
3170 the same as those for the corresponding instruction (e.g. no bitwise
3171 operations on floating point values are allowed).
3172
3173Other Values
3174============
3175
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003176.. _inlineasmexprs:
3177
Sean Silvab084af42012-12-07 10:36:55 +00003178Inline Assembler Expressions
3179----------------------------
3180
3181LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003182Inline Assembly <moduleasm>`) through the use of a special value. This value
3183represents the inline assembler as a template string (containing the
3184instructions to emit), a list of operand constraints (stored as a string), a
3185flag that indicates whether or not the inline asm expression has side effects,
3186and a flag indicating whether the function containing the asm needs to align its
3187stack conservatively.
3188
3189The template string supports argument substitution of the operands using "``$``"
3190followed by a number, to indicate substitution of the given register/memory
3191location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3192be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3193operand (See :ref:`inline-asm-modifiers`).
3194
3195A literal "``$``" may be included by using "``$$``" in the template. To include
3196other special characters into the output, the usual "``\XX``" escapes may be
3197used, just as in other strings. Note that after template substitution, the
3198resulting assembly string is parsed by LLVM's integrated assembler unless it is
3199disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3200syntax known to LLVM.
3201
3202LLVM's support for inline asm is modeled closely on the requirements of Clang's
3203GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3204modifier codes listed here are similar or identical to those in GCC's inline asm
3205support. However, to be clear, the syntax of the template and constraint strings
3206described here is *not* the same as the syntax accepted by GCC and Clang, and,
3207while most constraint letters are passed through as-is by Clang, some get
3208translated to other codes when converting from the C source to the LLVM
3209assembly.
3210
3211An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003212
3213.. code-block:: llvm
3214
3215 i32 (i32) asm "bswap $0", "=r,r"
3216
3217Inline assembler expressions may **only** be used as the callee operand
3218of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3219Thus, typically we have:
3220
3221.. code-block:: llvm
3222
3223 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3224
3225Inline asms with side effects not visible in the constraint list must be
3226marked as having side effects. This is done through the use of the
3227'``sideeffect``' keyword, like so:
3228
3229.. code-block:: llvm
3230
3231 call void asm sideeffect "eieio", ""()
3232
3233In some cases inline asms will contain code that will not work unless
3234the stack is aligned in some way, such as calls or SSE instructions on
3235x86, yet will not contain code that does that alignment within the asm.
3236The compiler should make conservative assumptions about what the asm
3237might contain and should generate its usual stack alignment code in the
3238prologue if the '``alignstack``' keyword is present:
3239
3240.. code-block:: llvm
3241
3242 call void asm alignstack "eieio", ""()
3243
3244Inline asms also support using non-standard assembly dialects. The
3245assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3246the inline asm is using the Intel dialect. Currently, ATT and Intel are
3247the only supported dialects. An example is:
3248
3249.. code-block:: llvm
3250
3251 call void asm inteldialect "eieio", ""()
3252
3253If multiple keywords appear the '``sideeffect``' keyword must come
3254first, the '``alignstack``' keyword second and the '``inteldialect``'
3255keyword last.
3256
James Y Knightbc832ed2015-07-08 18:08:36 +00003257Inline Asm Constraint String
3258^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3259
3260The constraint list is a comma-separated string, each element containing one or
3261more constraint codes.
3262
3263For each element in the constraint list an appropriate register or memory
3264operand will be chosen, and it will be made available to assembly template
3265string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3266second, etc.
3267
3268There are three different types of constraints, which are distinguished by a
3269prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3270constraints must always be given in that order: outputs first, then inputs, then
3271clobbers. They cannot be intermingled.
3272
3273There are also three different categories of constraint codes:
3274
3275- Register constraint. This is either a register class, or a fixed physical
3276 register. This kind of constraint will allocate a register, and if necessary,
3277 bitcast the argument or result to the appropriate type.
3278- Memory constraint. This kind of constraint is for use with an instruction
3279 taking a memory operand. Different constraints allow for different addressing
3280 modes used by the target.
3281- Immediate value constraint. This kind of constraint is for an integer or other
3282 immediate value which can be rendered directly into an instruction. The
3283 various target-specific constraints allow the selection of a value in the
3284 proper range for the instruction you wish to use it with.
3285
3286Output constraints
3287""""""""""""""""""
3288
3289Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3290indicates that the assembly will write to this operand, and the operand will
3291then be made available as a return value of the ``asm`` expression. Output
3292constraints do not consume an argument from the call instruction. (Except, see
3293below about indirect outputs).
3294
3295Normally, it is expected that no output locations are written to by the assembly
3296expression until *all* of the inputs have been read. As such, LLVM may assign
3297the same register to an output and an input. If this is not safe (e.g. if the
3298assembly contains two instructions, where the first writes to one output, and
3299the second reads an input and writes to a second output), then the "``&``"
3300modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003301"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003302will not use the same register for any inputs (other than an input tied to this
3303output).
3304
3305Input constraints
3306"""""""""""""""""
3307
3308Input constraints do not have a prefix -- just the constraint codes. Each input
3309constraint will consume one argument from the call instruction. It is not
3310permitted for the asm to write to any input register or memory location (unless
3311that input is tied to an output). Note also that multiple inputs may all be
3312assigned to the same register, if LLVM can determine that they necessarily all
3313contain the same value.
3314
3315Instead of providing a Constraint Code, input constraints may also "tie"
3316themselves to an output constraint, by providing an integer as the constraint
3317string. Tied inputs still consume an argument from the call instruction, and
3318take up a position in the asm template numbering as is usual -- they will simply
3319be constrained to always use the same register as the output they've been tied
3320to. For example, a constraint string of "``=r,0``" says to assign a register for
3321output, and use that register as an input as well (it being the 0'th
3322constraint).
3323
3324It is permitted to tie an input to an "early-clobber" output. In that case, no
3325*other* input may share the same register as the input tied to the early-clobber
3326(even when the other input has the same value).
3327
3328You may only tie an input to an output which has a register constraint, not a
3329memory constraint. Only a single input may be tied to an output.
3330
3331There is also an "interesting" feature which deserves a bit of explanation: if a
3332register class constraint allocates a register which is too small for the value
3333type operand provided as input, the input value will be split into multiple
3334registers, and all of them passed to the inline asm.
3335
3336However, this feature is often not as useful as you might think.
3337
3338Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3339architectures that have instructions which operate on multiple consecutive
3340instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3341SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3342hardware then loads into both the named register, and the next register. This
3343feature of inline asm would not be useful to support that.)
3344
3345A few of the targets provide a template string modifier allowing explicit access
3346to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3347``D``). On such an architecture, you can actually access the second allocated
3348register (yet, still, not any subsequent ones). But, in that case, you're still
3349probably better off simply splitting the value into two separate operands, for
3350clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3351despite existing only for use with this feature, is not really a good idea to
3352use)
3353
3354Indirect inputs and outputs
3355"""""""""""""""""""""""""""
3356
3357Indirect output or input constraints can be specified by the "``*``" modifier
3358(which goes after the "``=``" in case of an output). This indicates that the asm
3359will write to or read from the contents of an *address* provided as an input
3360argument. (Note that in this way, indirect outputs act more like an *input* than
3361an output: just like an input, they consume an argument of the call expression,
3362rather than producing a return value. An indirect output constraint is an
3363"output" only in that the asm is expected to write to the contents of the input
3364memory location, instead of just read from it).
3365
3366This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3367address of a variable as a value.
3368
3369It is also possible to use an indirect *register* constraint, but only on output
3370(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3371value normally, and then, separately emit a store to the address provided as
3372input, after the provided inline asm. (It's not clear what value this
3373functionality provides, compared to writing the store explicitly after the asm
3374statement, and it can only produce worse code, since it bypasses many
3375optimization passes. I would recommend not using it.)
3376
3377
3378Clobber constraints
3379"""""""""""""""""""
3380
3381A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3382consume an input operand, nor generate an output. Clobbers cannot use any of the
3383general constraint code letters -- they may use only explicit register
3384constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3385"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3386memory locations -- not only the memory pointed to by a declared indirect
3387output.
3388
Peter Zotov00257232016-08-30 10:48:31 +00003389Note that clobbering named registers that are also present in output
3390constraints is not legal.
3391
James Y Knightbc832ed2015-07-08 18:08:36 +00003392
3393Constraint Codes
3394""""""""""""""""
3395After a potential prefix comes constraint code, or codes.
3396
3397A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3398followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3399(e.g. "``{eax}``").
3400
3401The one and two letter constraint codes are typically chosen to be the same as
3402GCC's constraint codes.
3403
3404A single constraint may include one or more than constraint code in it, leaving
3405it up to LLVM to choose which one to use. This is included mainly for
3406compatibility with the translation of GCC inline asm coming from clang.
3407
3408There are two ways to specify alternatives, and either or both may be used in an
3409inline asm constraint list:
3410
34111) Append the codes to each other, making a constraint code set. E.g. "``im``"
3412 or "``{eax}m``". This means "choose any of the options in the set". The
3413 choice of constraint is made independently for each constraint in the
3414 constraint list.
3415
34162) Use "``|``" between constraint code sets, creating alternatives. Every
3417 constraint in the constraint list must have the same number of alternative
3418 sets. With this syntax, the same alternative in *all* of the items in the
3419 constraint list will be chosen together.
3420
3421Putting those together, you might have a two operand constraint string like
3422``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3423operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3424may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3425
3426However, the use of either of the alternatives features is *NOT* recommended, as
3427LLVM is not able to make an intelligent choice about which one to use. (At the
3428point it currently needs to choose, not enough information is available to do so
3429in a smart way.) Thus, it simply tries to make a choice that's most likely to
3430compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3431always choose to use memory, not registers). And, if given multiple registers,
3432or multiple register classes, it will simply choose the first one. (In fact, it
3433doesn't currently even ensure explicitly specified physical registers are
3434unique, so specifying multiple physical registers as alternatives, like
3435``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3436intended.)
3437
3438Supported Constraint Code List
3439""""""""""""""""""""""""""""""
3440
3441The constraint codes are, in general, expected to behave the same way they do in
3442GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3443inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3444and GCC likely indicates a bug in LLVM.
3445
3446Some constraint codes are typically supported by all targets:
3447
3448- ``r``: A register in the target's general purpose register class.
3449- ``m``: A memory address operand. It is target-specific what addressing modes
3450 are supported, typical examples are register, or register + register offset,
3451 or register + immediate offset (of some target-specific size).
3452- ``i``: An integer constant (of target-specific width). Allows either a simple
3453 immediate, or a relocatable value.
3454- ``n``: An integer constant -- *not* including relocatable values.
3455- ``s``: An integer constant, but allowing *only* relocatable values.
3456- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3457 useful to pass a label for an asm branch or call.
3458
3459 .. FIXME: but that surely isn't actually okay to jump out of an asm
3460 block without telling llvm about the control transfer???)
3461
3462- ``{register-name}``: Requires exactly the named physical register.
3463
3464Other constraints are target-specific:
3465
3466AArch64:
3467
3468- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3469- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3470 i.e. 0 to 4095 with optional shift by 12.
3471- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3472 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3473- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3474 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3475- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3476 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3477- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3478 32-bit register. This is a superset of ``K``: in addition to the bitmask
3479 immediate, also allows immediate integers which can be loaded with a single
3480 ``MOVZ`` or ``MOVL`` instruction.
3481- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3482 64-bit register. This is a superset of ``L``.
3483- ``Q``: Memory address operand must be in a single register (no
3484 offsets). (However, LLVM currently does this for the ``m`` constraint as
3485 well.)
3486- ``r``: A 32 or 64-bit integer register (W* or X*).
3487- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3488- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3489
3490AMDGPU:
3491
3492- ``r``: A 32 or 64-bit integer register.
3493- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3494- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3495
3496
3497All ARM modes:
3498
3499- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3500 operand. Treated the same as operand ``m``, at the moment.
3501
3502ARM and ARM's Thumb2 mode:
3503
3504- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3505- ``I``: An immediate integer valid for a data-processing instruction.
3506- ``J``: An immediate integer between -4095 and 4095.
3507- ``K``: An immediate integer whose bitwise inverse is valid for a
3508 data-processing instruction. (Can be used with template modifier "``B``" to
3509 print the inverted value).
3510- ``L``: An immediate integer whose negation is valid for a data-processing
3511 instruction. (Can be used with template modifier "``n``" to print the negated
3512 value).
3513- ``M``: A power of two or a integer between 0 and 32.
3514- ``N``: Invalid immediate constraint.
3515- ``O``: Invalid immediate constraint.
3516- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3517- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3518 as ``r``.
3519- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3520 invalid.
3521- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3522 ``d0-d31``, or ``q0-q15``.
3523- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3524 ``d0-d7``, or ``q0-q3``.
3525- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3526 ``s0-s31``.
3527
3528ARM's Thumb1 mode:
3529
3530- ``I``: An immediate integer between 0 and 255.
3531- ``J``: An immediate integer between -255 and -1.
3532- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3533 some amount.
3534- ``L``: An immediate integer between -7 and 7.
3535- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3536- ``N``: An immediate integer between 0 and 31.
3537- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3538- ``r``: A low 32-bit GPR register (``r0-r7``).
3539- ``l``: A low 32-bit GPR register (``r0-r7``).
3540- ``h``: A high GPR register (``r0-r7``).
3541- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3542 ``d0-d31``, or ``q0-q15``.
3543- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3544 ``d0-d7``, or ``q0-q3``.
3545- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3546 ``s0-s31``.
3547
3548
3549Hexagon:
3550
3551- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3552 at the moment.
3553- ``r``: A 32 or 64-bit register.
3554
3555MSP430:
3556
3557- ``r``: An 8 or 16-bit register.
3558
3559MIPS:
3560
3561- ``I``: An immediate signed 16-bit integer.
3562- ``J``: An immediate integer zero.
3563- ``K``: An immediate unsigned 16-bit integer.
3564- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3565- ``N``: An immediate integer between -65535 and -1.
3566- ``O``: An immediate signed 15-bit integer.
3567- ``P``: An immediate integer between 1 and 65535.
3568- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3569 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3570- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3571 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3572 ``m``.
3573- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3574 ``sc`` instruction on the given subtarget (details vary).
3575- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3576- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003577 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3578 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003579- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3580 ``25``).
3581- ``l``: The ``lo`` register, 32 or 64-bit.
3582- ``x``: Invalid.
3583
3584NVPTX:
3585
3586- ``b``: A 1-bit integer register.
3587- ``c`` or ``h``: A 16-bit integer register.
3588- ``r``: A 32-bit integer register.
3589- ``l`` or ``N``: A 64-bit integer register.
3590- ``f``: A 32-bit float register.
3591- ``d``: A 64-bit float register.
3592
3593
3594PowerPC:
3595
3596- ``I``: An immediate signed 16-bit integer.
3597- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3598- ``K``: An immediate unsigned 16-bit integer.
3599- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3600- ``M``: An immediate integer greater than 31.
3601- ``N``: An immediate integer that is an exact power of 2.
3602- ``O``: The immediate integer constant 0.
3603- ``P``: An immediate integer constant whose negation is a signed 16-bit
3604 constant.
3605- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3606 treated the same as ``m``.
3607- ``r``: A 32 or 64-bit integer register.
3608- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3609 ``R1-R31``).
3610- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3611 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3612- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3613 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3614 altivec vector register (``V0-V31``).
3615
3616 .. FIXME: is this a bug that v accepts QPX registers? I think this
3617 is supposed to only use the altivec vector registers?
3618
3619- ``y``: Condition register (``CR0-CR7``).
3620- ``wc``: An individual CR bit in a CR register.
3621- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3622 register set (overlapping both the floating-point and vector register files).
3623- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3624 set.
3625
3626Sparc:
3627
3628- ``I``: An immediate 13-bit signed integer.
3629- ``r``: A 32-bit integer register.
3630
3631SystemZ:
3632
3633- ``I``: An immediate unsigned 8-bit integer.
3634- ``J``: An immediate unsigned 12-bit integer.
3635- ``K``: An immediate signed 16-bit integer.
3636- ``L``: An immediate signed 20-bit integer.
3637- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003638- ``Q``: A memory address operand with a base address and a 12-bit immediate
3639 unsigned displacement.
3640- ``R``: A memory address operand with a base address, a 12-bit immediate
3641 unsigned displacement, and an index register.
3642- ``S``: A memory address operand with a base address and a 20-bit immediate
3643 signed displacement.
3644- ``T``: A memory address operand with a base address, a 20-bit immediate
3645 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003646- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3647- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3648 address context evaluates as zero).
3649- ``h``: A 32-bit value in the high part of a 64bit data register
3650 (LLVM-specific)
3651- ``f``: A 32, 64, or 128-bit floating point register.
3652
3653X86:
3654
3655- ``I``: An immediate integer between 0 and 31.
3656- ``J``: An immediate integer between 0 and 64.
3657- ``K``: An immediate signed 8-bit integer.
3658- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3659 0xffffffff.
3660- ``M``: An immediate integer between 0 and 3.
3661- ``N``: An immediate unsigned 8-bit integer.
3662- ``O``: An immediate integer between 0 and 127.
3663- ``e``: An immediate 32-bit signed integer.
3664- ``Z``: An immediate 32-bit unsigned integer.
3665- ``o``, ``v``: Treated the same as ``m``, at the moment.
3666- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3667 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3668 registers, and on X86-64, it is all of the integer registers.
3669- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3670 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3671- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3672- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3673 existed since i386, and can be accessed without the REX prefix.
3674- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3675- ``y``: A 64-bit MMX register, if MMX is enabled.
3676- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3677 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3678 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3679 512-bit vector operand in an AVX512 register, Otherwise, an error.
3680- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3681- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3682 32-bit mode, a 64-bit integer operand will get split into two registers). It
3683 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3684 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3685 you're better off splitting it yourself, before passing it to the asm
3686 statement.
3687
3688XCore:
3689
3690- ``r``: A 32-bit integer register.
3691
3692
3693.. _inline-asm-modifiers:
3694
3695Asm template argument modifiers
3696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3697
3698In the asm template string, modifiers can be used on the operand reference, like
3699"``${0:n}``".
3700
3701The modifiers are, in general, expected to behave the same way they do in
3702GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3703inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3704and GCC likely indicates a bug in LLVM.
3705
3706Target-independent:
3707
Sean Silvaa1190322015-08-06 22:56:48 +00003708- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003709 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3710- ``n``: Negate and print immediate integer constant unadorned, without the
3711 target-specific immediate punctuation (e.g. no ``$`` prefix).
3712- ``l``: Print as an unadorned label, without the target-specific label
3713 punctuation (e.g. no ``$`` prefix).
3714
3715AArch64:
3716
3717- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3718 instead of ``x30``, print ``w30``.
3719- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3720- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3721 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3722 ``v*``.
3723
3724AMDGPU:
3725
3726- ``r``: No effect.
3727
3728ARM:
3729
3730- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3731 register).
3732- ``P``: No effect.
3733- ``q``: No effect.
3734- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3735 as ``d4[1]`` instead of ``s9``)
3736- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3737 prefix.
3738- ``L``: Print the low 16-bits of an immediate integer constant.
3739- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3740 register operands subsequent to the specified one (!), so use carefully.
3741- ``Q``: Print the low-order register of a register-pair, or the low-order
3742 register of a two-register operand.
3743- ``R``: Print the high-order register of a register-pair, or the high-order
3744 register of a two-register operand.
3745- ``H``: Print the second register of a register-pair. (On a big-endian system,
3746 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3747 to ``R``.)
3748
3749 .. FIXME: H doesn't currently support printing the second register
3750 of a two-register operand.
3751
3752- ``e``: Print the low doubleword register of a NEON quad register.
3753- ``f``: Print the high doubleword register of a NEON quad register.
3754- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3755 adornment.
3756
3757Hexagon:
3758
3759- ``L``: Print the second register of a two-register operand. Requires that it
3760 has been allocated consecutively to the first.
3761
3762 .. FIXME: why is it restricted to consecutive ones? And there's
3763 nothing that ensures that happens, is there?
3764
3765- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3766 nothing. Used to print 'addi' vs 'add' instructions.
3767
3768MSP430:
3769
3770No additional modifiers.
3771
3772MIPS:
3773
3774- ``X``: Print an immediate integer as hexadecimal
3775- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3776- ``d``: Print an immediate integer as decimal.
3777- ``m``: Subtract one and print an immediate integer as decimal.
3778- ``z``: Print $0 if an immediate zero, otherwise print normally.
3779- ``L``: Print the low-order register of a two-register operand, or prints the
3780 address of the low-order word of a double-word memory operand.
3781
3782 .. FIXME: L seems to be missing memory operand support.
3783
3784- ``M``: Print the high-order register of a two-register operand, or prints the
3785 address of the high-order word of a double-word memory operand.
3786
3787 .. FIXME: M seems to be missing memory operand support.
3788
3789- ``D``: Print the second register of a two-register operand, or prints the
3790 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3791 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3792 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003793- ``w``: No effect. Provided for compatibility with GCC which requires this
3794 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3795 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003796
3797NVPTX:
3798
3799- ``r``: No effect.
3800
3801PowerPC:
3802
3803- ``L``: Print the second register of a two-register operand. Requires that it
3804 has been allocated consecutively to the first.
3805
3806 .. FIXME: why is it restricted to consecutive ones? And there's
3807 nothing that ensures that happens, is there?
3808
3809- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3810 nothing. Used to print 'addi' vs 'add' instructions.
3811- ``y``: For a memory operand, prints formatter for a two-register X-form
3812 instruction. (Currently always prints ``r0,OPERAND``).
3813- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3814 otherwise. (NOTE: LLVM does not support update form, so this will currently
3815 always print nothing)
3816- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3817 not support indexed form, so this will currently always print nothing)
3818
3819Sparc:
3820
3821- ``r``: No effect.
3822
3823SystemZ:
3824
3825SystemZ implements only ``n``, and does *not* support any of the other
3826target-independent modifiers.
3827
3828X86:
3829
3830- ``c``: Print an unadorned integer or symbol name. (The latter is
3831 target-specific behavior for this typically target-independent modifier).
3832- ``A``: Print a register name with a '``*``' before it.
3833- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3834 operand.
3835- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3836 memory operand.
3837- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3838 operand.
3839- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3840 operand.
3841- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3842 available, otherwise the 32-bit register name; do nothing on a memory operand.
3843- ``n``: Negate and print an unadorned integer, or, for operands other than an
3844 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3845 the operand. (The behavior for relocatable symbol expressions is a
3846 target-specific behavior for this typically target-independent modifier)
3847- ``H``: Print a memory reference with additional offset +8.
3848- ``P``: Print a memory reference or operand for use as the argument of a call
3849 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3850
3851XCore:
3852
3853No additional modifiers.
3854
3855
Sean Silvab084af42012-12-07 10:36:55 +00003856Inline Asm Metadata
3857^^^^^^^^^^^^^^^^^^^
3858
3859The call instructions that wrap inline asm nodes may have a
3860"``!srcloc``" MDNode attached to it that contains a list of constant
3861integers. If present, the code generator will use the integer as the
3862location cookie value when report errors through the ``LLVMContext``
3863error reporting mechanisms. This allows a front-end to correlate backend
3864errors that occur with inline asm back to the source code that produced
3865it. For example:
3866
3867.. code-block:: llvm
3868
3869 call void asm sideeffect "something bad", ""(), !srcloc !42
3870 ...
3871 !42 = !{ i32 1234567 }
3872
3873It is up to the front-end to make sense of the magic numbers it places
3874in the IR. If the MDNode contains multiple constants, the code generator
3875will use the one that corresponds to the line of the asm that the error
3876occurs on.
3877
3878.. _metadata:
3879
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003880Metadata
3881========
Sean Silvab084af42012-12-07 10:36:55 +00003882
3883LLVM IR allows metadata to be attached to instructions in the program
3884that can convey extra information about the code to the optimizers and
3885code generator. One example application of metadata is source-level
3886debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003887
Sean Silvaa1190322015-08-06 22:56:48 +00003888Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003889``call`` instruction, it uses the ``metadata`` type.
3890
3891All metadata are identified in syntax by a exclamation point ('``!``').
3892
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003893.. _metadata-string:
3894
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003895Metadata Nodes and Metadata Strings
3896-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003897
3898A metadata string is a string surrounded by double quotes. It can
3899contain any character by escaping non-printable characters with
3900"``\xx``" where "``xx``" is the two digit hex code. For example:
3901"``!"test\00"``".
3902
3903Metadata nodes are represented with notation similar to structure
3904constants (a comma separated list of elements, surrounded by braces and
3905preceded by an exclamation point). Metadata nodes can have any values as
3906their operand. For example:
3907
3908.. code-block:: llvm
3909
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003910 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003911
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003912Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3913
Renato Golin124f2592016-07-20 12:16:38 +00003914.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003915
3916 !0 = distinct !{!"test\00", i32 10}
3917
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003918``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003919content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003920when metadata operands change.
3921
Sean Silvab084af42012-12-07 10:36:55 +00003922A :ref:`named metadata <namedmetadatastructure>` is a collection of
3923metadata nodes, which can be looked up in the module symbol table. For
3924example:
3925
3926.. code-block:: llvm
3927
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003928 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003929
3930Metadata can be used as function arguments. Here ``llvm.dbg.value``
3931function is using two metadata arguments:
3932
3933.. code-block:: llvm
3934
3935 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3936
Peter Collingbourne50108682015-11-06 02:41:02 +00003937Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3938to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003939
3940.. code-block:: llvm
3941
3942 %indvar.next = add i64 %indvar, 1, !dbg !21
3943
Peter Collingbourne50108682015-11-06 02:41:02 +00003944Metadata can also be attached to a function definition. Here metadata ``!22``
3945is attached to the ``foo`` function using the ``!dbg`` identifier:
3946
3947.. code-block:: llvm
3948
3949 define void @foo() !dbg !22 {
3950 ret void
3951 }
3952
Sean Silvab084af42012-12-07 10:36:55 +00003953More information about specific metadata nodes recognized by the
3954optimizers and code generator is found below.
3955
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003956.. _specialized-metadata:
3957
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003958Specialized Metadata Nodes
3959^^^^^^^^^^^^^^^^^^^^^^^^^^
3960
3961Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003962to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003963order.
3964
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003965These aren't inherently debug info centric, but currently all the specialized
3966metadata nodes are related to debug info.
3967
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003968.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003969
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003970DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003971"""""""""""""
3972
Sean Silvaa1190322015-08-06 22:56:48 +00003973``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003974``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3975fields are tuples containing the debug info to be emitted along with the compile
3976unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003977references to them from instructions).
3978
Renato Golin124f2592016-07-20 12:16:38 +00003979.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003980
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003981 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003982 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003983 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003984 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003985 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003986
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003987Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003988specific compilation unit. File descriptors are defined using this scope.
3989These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003990keep track of subprograms, global variables, type information, and imported
3991entities (declarations and namespaces).
3992
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003993.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003994
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003995DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003996""""""
3997
Sean Silvaa1190322015-08-06 22:56:48 +00003998``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003999
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004000.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004001
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004002 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4003 checksumkind: CSK_MD5,
4004 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004005
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004006Files are sometimes used in ``scope:`` fields, and are the only valid target
4007for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004008Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004009
Michael Kuperstein605308a2015-05-14 10:58:59 +00004010.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004011
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004012DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004013"""""""""""
4014
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004015``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004016``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004017
Renato Golin124f2592016-07-20 12:16:38 +00004018.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004019
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004020 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004021 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004022 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004023
Sean Silvaa1190322015-08-06 22:56:48 +00004024The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004025following:
4026
Renato Golin124f2592016-07-20 12:16:38 +00004027.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004028
4029 DW_ATE_address = 1
4030 DW_ATE_boolean = 2
4031 DW_ATE_float = 4
4032 DW_ATE_signed = 5
4033 DW_ATE_signed_char = 6
4034 DW_ATE_unsigned = 7
4035 DW_ATE_unsigned_char = 8
4036
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004037.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004038
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004039DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004040""""""""""""""""
4041
Sean Silvaa1190322015-08-06 22:56:48 +00004042``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004043refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004044types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004045represents a function with no return value (such as ``void foo() {}`` in C++).
4046
Renato Golin124f2592016-07-20 12:16:38 +00004047.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048
4049 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4050 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004051 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004052
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004053.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004054
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004055DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004056"""""""""""""
4057
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004058``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004059qualified types.
4060
Renato Golin124f2592016-07-20 12:16:38 +00004061.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004062
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004063 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004064 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004065 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004066 align: 32)
4067
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004068The following ``tag:`` values are valid:
4069
Renato Golin124f2592016-07-20 12:16:38 +00004070.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004071
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004072 DW_TAG_member = 13
4073 DW_TAG_pointer_type = 15
4074 DW_TAG_reference_type = 16
4075 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004076 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004077 DW_TAG_ptr_to_member_type = 31
4078 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004079 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004080 DW_TAG_volatile_type = 53
4081 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004082 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004083
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004084.. _DIDerivedTypeMember:
4085
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004086``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004087<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004088``offset:`` is the member's bit offset. If the composite type has an ODR
4089``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4090uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004091
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004092``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4093field of :ref:`composite types <DICompositeType>` to describe parents and
4094friends.
4095
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004096``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4097
4098``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004099``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4100are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004101
4102Note that the ``void *`` type is expressed as a type derived from NULL.
4103
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004104.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004105
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004106DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004107"""""""""""""""
4108
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004109``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004110structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004111
4112If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004113identifier used for type merging between modules. When specified,
4114:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4115derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4116``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004117
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004118For a given ``identifier:``, there should only be a single composite type that
4119does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4120together will unique such definitions at parse time via the ``identifier:``
4121field, even if the nodes are ``distinct``.
4122
Renato Golin124f2592016-07-20 12:16:38 +00004123.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004124
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004125 !0 = !DIEnumerator(name: "SixKind", value: 7)
4126 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4127 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4128 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004129 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4130 elements: !{!0, !1, !2})
4131
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004132The following ``tag:`` values are valid:
4133
Renato Golin124f2592016-07-20 12:16:38 +00004134.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004135
4136 DW_TAG_array_type = 1
4137 DW_TAG_class_type = 2
4138 DW_TAG_enumeration_type = 4
4139 DW_TAG_structure_type = 19
4140 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004141
4142For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004143descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004144level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004145array type is a native packed vector.
4146
4147For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004148descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004149value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004150``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004151
4152For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4153``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004154<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4155``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4156``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004157
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004158.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004159
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004160DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004161""""""""""
4162
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004163``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004164:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004165
4166.. code-block:: llvm
4167
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004168 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4169 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4170 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004171
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004172.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004173
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004174DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004175""""""""""""
4176
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004177``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4178variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004179
4180.. code-block:: llvm
4181
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004182 !0 = !DIEnumerator(name: "SixKind", value: 7)
4183 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4184 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004185
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004186DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004187"""""""""""""""""""""""
4188
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004189``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004190language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004191:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004192
4193.. code-block:: llvm
4194
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004195 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004196
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004197DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004198""""""""""""""""""""""""
4199
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004200``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004201language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004202but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004203``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004204:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004205
4206.. code-block:: llvm
4207
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004208 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004209
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004210DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004211"""""""""""
4212
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004213``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004214
4215.. code-block:: llvm
4216
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004217 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004218
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004219DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004220""""""""""""""""
4221
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004222``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004223
4224.. code-block:: llvm
4225
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004226 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004227 file: !2, line: 7, type: !3, isLocal: true,
4228 isDefinition: false, variable: i32* @foo,
4229 declaration: !4)
4230
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004231All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004232:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004233
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004234.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004235
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004236DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004237""""""""""""
4238
Peter Collingbourne50108682015-11-06 02:41:02 +00004239``DISubprogram`` nodes represent functions from the source language. A
4240``DISubprogram`` may be attached to a function definition using ``!dbg``
4241metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4242that must be retained, even if their IR counterparts are optimized out of
4243the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004244
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004245.. _DISubprogramDeclaration:
4246
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004247When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004248tree as opposed to a definition of a function. If the scope is a composite
4249type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4250then the subprogram declaration is uniqued based only on its ``linkageName:``
4251and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004252
Renato Golin124f2592016-07-20 12:16:38 +00004253.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004254
Peter Collingbourne50108682015-11-06 02:41:02 +00004255 define void @_Z3foov() !dbg !0 {
4256 ...
4257 }
4258
4259 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4260 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004261 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004262 containingType: !4,
4263 virtuality: DW_VIRTUALITY_pure_virtual,
4264 virtualIndex: 10, flags: DIFlagPrototyped,
4265 isOptimized: true, templateParams: !5,
4266 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004267
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004268.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004270DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004271""""""""""""""
4272
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004273``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004274<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004275two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004276fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004277
Renato Golin124f2592016-07-20 12:16:38 +00004278.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004279
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004280 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004281
4282Usually lexical blocks are ``distinct`` to prevent node merging based on
4283operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004284
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004285.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004286
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004287DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004288""""""""""""""""""
4289
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004290``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004291:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004292indicate textual inclusion, or the ``discriminator:`` field can be used to
4293discriminate between control flow within a single block in the source language.
4294
4295.. code-block:: llvm
4296
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004297 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4298 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4299 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004300
Michael Kuperstein605308a2015-05-14 10:58:59 +00004301.. _DILocation:
4302
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004303DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004304""""""""""
4305
Sean Silvaa1190322015-08-06 22:56:48 +00004306``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004307mandatory, and points at an :ref:`DILexicalBlockFile`, an
4308:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004309
4310.. code-block:: llvm
4311
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004312 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004313
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004314.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004315
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004316DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004317"""""""""""""""
4318
Sean Silvaa1190322015-08-06 22:56:48 +00004319``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004320the ``arg:`` field is set to non-zero, then this variable is a subprogram
4321parameter, and it will be included in the ``variables:`` field of its
4322:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004323
Renato Golin124f2592016-07-20 12:16:38 +00004324.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004325
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004326 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4327 type: !3, flags: DIFlagArtificial)
4328 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4329 type: !3)
4330 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004331
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004332DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004333""""""""""""
4334
Sean Silvaa1190322015-08-06 22:56:48 +00004335``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004336:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4337describe how the referenced LLVM variable relates to the source language
4338variable.
4339
4340The current supported vocabulary is limited:
4341
4342- ``DW_OP_deref`` dereferences the working expression.
4343- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4344- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4345 here, respectively) of the variable piece from the working expression.
4346
Renato Golin124f2592016-07-20 12:16:38 +00004347.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004348
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004349 !0 = !DIExpression(DW_OP_deref)
4350 !1 = !DIExpression(DW_OP_plus, 3)
4351 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4352 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004353
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004354DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004355""""""""""""""
4356
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004357``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004358
4359.. code-block:: llvm
4360
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004361 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004362 getter: "getFoo", attributes: 7, type: !2)
4363
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004364DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004365""""""""""""""""
4366
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004367``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004368compile unit.
4369
Renato Golin124f2592016-07-20 12:16:38 +00004370.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004371
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004372 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004373 entity: !1, line: 7)
4374
Amjad Abouda9bcf162015-12-10 12:56:35 +00004375DIMacro
4376"""""""
4377
4378``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4379The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004380defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004381used to expand the macro identifier.
4382
Renato Golin124f2592016-07-20 12:16:38 +00004383.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004384
4385 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4386 value: "((x) + 1)")
4387 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4388
4389DIMacroFile
4390"""""""""""
4391
4392``DIMacroFile`` nodes represent inclusion of source files.
4393The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4394appear in the included source file.
4395
Renato Golin124f2592016-07-20 12:16:38 +00004396.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004397
4398 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4399 nodes: !3)
4400
Sean Silvab084af42012-12-07 10:36:55 +00004401'``tbaa``' Metadata
4402^^^^^^^^^^^^^^^^^^^
4403
4404In LLVM IR, memory does not have types, so LLVM's own type system is not
4405suitable for doing TBAA. Instead, metadata is added to the IR to
4406describe a type system of a higher level language. This can be used to
4407implement typical C/C++ TBAA, but it can also be used to implement
4408custom alias analysis behavior for other languages.
4409
4410The current metadata format is very simple. TBAA metadata nodes have up
4411to three fields, e.g.:
4412
4413.. code-block:: llvm
4414
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004415 !0 = !{ !"an example type tree" }
4416 !1 = !{ !"int", !0 }
4417 !2 = !{ !"float", !0 }
4418 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004419
4420The first field is an identity field. It can be any value, usually a
4421metadata string, which uniquely identifies the type. The most important
4422name in the tree is the name of the root node. Two trees with different
4423root node names are entirely disjoint, even if they have leaves with
4424common names.
4425
4426The second field identifies the type's parent node in the tree, or is
4427null or omitted for a root node. A type is considered to alias all of
4428its descendants and all of its ancestors in the tree. Also, a type is
4429considered to alias all types in other trees, so that bitcode produced
4430from multiple front-ends is handled conservatively.
4431
4432If the third field is present, it's an integer which if equal to 1
4433indicates that the type is "constant" (meaning
4434``pointsToConstantMemory`` should return true; see `other useful
4435AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4436
4437'``tbaa.struct``' Metadata
4438^^^^^^^^^^^^^^^^^^^^^^^^^^
4439
4440The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4441aggregate assignment operations in C and similar languages, however it
4442is defined to copy a contiguous region of memory, which is more than
4443strictly necessary for aggregate types which contain holes due to
4444padding. Also, it doesn't contain any TBAA information about the fields
4445of the aggregate.
4446
4447``!tbaa.struct`` metadata can describe which memory subregions in a
4448memcpy are padding and what the TBAA tags of the struct are.
4449
4450The current metadata format is very simple. ``!tbaa.struct`` metadata
4451nodes are a list of operands which are in conceptual groups of three.
4452For each group of three, the first operand gives the byte offset of a
4453field in bytes, the second gives its size in bytes, and the third gives
4454its tbaa tag. e.g.:
4455
4456.. code-block:: llvm
4457
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004458 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004459
4460This describes a struct with two fields. The first is at offset 0 bytes
4461with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4462and has size 4 bytes and has tbaa tag !2.
4463
4464Note that the fields need not be contiguous. In this example, there is a
44654 byte gap between the two fields. This gap represents padding which
4466does not carry useful data and need not be preserved.
4467
Hal Finkel94146652014-07-24 14:25:39 +00004468'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004469^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004470
4471``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4472noalias memory-access sets. This means that some collection of memory access
4473instructions (loads, stores, memory-accessing calls, etc.) that carry
4474``noalias`` metadata can specifically be specified not to alias with some other
4475collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004476Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004477a domain.
4478
4479When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004480of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004481subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004482instruction's ``noalias`` list, then the two memory accesses are assumed not to
4483alias.
Hal Finkel94146652014-07-24 14:25:39 +00004484
Adam Nemet569a5b32016-04-27 00:52:48 +00004485Because scopes in one domain don't affect scopes in other domains, separate
4486domains can be used to compose multiple independent noalias sets. This is
4487used for example during inlining. As the noalias function parameters are
4488turned into noalias scope metadata, a new domain is used every time the
4489function is inlined.
4490
Hal Finkel029cde62014-07-25 15:50:02 +00004491The metadata identifying each domain is itself a list containing one or two
4492entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004493string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004494self-reference can be used to create globally unique domain names. A
4495descriptive string may optionally be provided as a second list entry.
4496
4497The metadata identifying each scope is also itself a list containing two or
4498three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004499is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004500self-reference can be used to create globally unique scope names. A metadata
4501reference to the scope's domain is the second entry. A descriptive string may
4502optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004503
4504For example,
4505
4506.. code-block:: llvm
4507
Hal Finkel029cde62014-07-25 15:50:02 +00004508 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004509 !0 = !{!0}
4510 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004511
Hal Finkel029cde62014-07-25 15:50:02 +00004512 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004513 !2 = !{!2, !0}
4514 !3 = !{!3, !0}
4515 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004516
Hal Finkel029cde62014-07-25 15:50:02 +00004517 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004518 !5 = !{!4} ; A list containing only scope !4
4519 !6 = !{!4, !3, !2}
4520 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004521
4522 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004523 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004524 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004525
Hal Finkel029cde62014-07-25 15:50:02 +00004526 ; These two instructions also don't alias (for domain !1, the set of scopes
4527 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004528 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004529 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004530
Adam Nemet0a8416f2015-05-11 08:30:28 +00004531 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004532 ; the !noalias list is not a superset of, or equal to, the scopes in the
4533 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004534 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004535 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004536
Sean Silvab084af42012-12-07 10:36:55 +00004537'``fpmath``' Metadata
4538^^^^^^^^^^^^^^^^^^^^^
4539
4540``fpmath`` metadata may be attached to any instruction of floating point
4541type. It can be used to express the maximum acceptable error in the
4542result of that instruction, in ULPs, thus potentially allowing the
4543compiler to use a more efficient but less accurate method of computing
4544it. ULP is defined as follows:
4545
4546 If ``x`` is a real number that lies between two finite consecutive
4547 floating-point numbers ``a`` and ``b``, without being equal to one
4548 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4549 distance between the two non-equal finite floating-point numbers
4550 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4551
Matt Arsenault82f41512016-06-27 19:43:15 +00004552The metadata node shall consist of a single positive float type number
4553representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004554
4555.. code-block:: llvm
4556
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004557 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004558
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004559.. _range-metadata:
4560
Sean Silvab084af42012-12-07 10:36:55 +00004561'``range``' Metadata
4562^^^^^^^^^^^^^^^^^^^^
4563
Jingyue Wu37fcb592014-06-19 16:50:16 +00004564``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4565integer types. It expresses the possible ranges the loaded value or the value
4566returned by the called function at this call site is in. The ranges are
4567represented with a flattened list of integers. The loaded value or the value
4568returned is known to be in the union of the ranges defined by each consecutive
4569pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004570
4571- The type must match the type loaded by the instruction.
4572- The pair ``a,b`` represents the range ``[a,b)``.
4573- Both ``a`` and ``b`` are constants.
4574- The range is allowed to wrap.
4575- The range should not represent the full or empty set. That is,
4576 ``a!=b``.
4577
4578In addition, the pairs must be in signed order of the lower bound and
4579they must be non-contiguous.
4580
4581Examples:
4582
4583.. code-block:: llvm
4584
David Blaikiec7aabbb2015-03-04 22:06:14 +00004585 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4586 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004587 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4588 %d = invoke i8 @bar() to label %cont
4589 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004590 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004591 !0 = !{ i8 0, i8 2 }
4592 !1 = !{ i8 255, i8 2 }
4593 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4594 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004595
Peter Collingbourne235c2752016-12-08 19:01:00 +00004596'``absolute_symbol``' Metadata
4597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4598
4599``absolute_symbol`` metadata may be attached to a global variable
4600declaration. It marks the declaration as a reference to an absolute symbol,
4601which causes the backend to use absolute relocations for the symbol even
4602in position independent code, and expresses the possible ranges that the
4603global variable's *address* (not its value) is in, in the same format as
4604``range`` metadata.
4605
4606Example:
4607
4608.. code-block:: llvm
4609
4610 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
4611
4612 ...
4613 !0 = !{ i64 0, i64 256 }
4614
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004615'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004616^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004617
4618``unpredictable`` metadata may be attached to any branch or switch
4619instruction. It can be used to express the unpredictability of control
4620flow. Similar to the llvm.expect intrinsic, it may be used to alter
4621optimizations related to compare and branch instructions. The metadata
4622is treated as a boolean value; if it exists, it signals that the branch
4623or switch that it is attached to is completely unpredictable.
4624
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004625'``llvm.loop``'
4626^^^^^^^^^^^^^^^
4627
4628It is sometimes useful to attach information to loop constructs. Currently,
4629loop metadata is implemented as metadata attached to the branch instruction
4630in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004631guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004632specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004633
4634The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004635itself to avoid merging it with any other identifier metadata, e.g.,
4636during module linkage or function inlining. That is, each loop should refer
4637to their own identification metadata even if they reside in separate functions.
4638The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004639constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004640
4641.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004642
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004643 !0 = !{!0}
4644 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004645
Mark Heffernan893752a2014-07-18 19:24:51 +00004646The loop identifier metadata can be used to specify additional
4647per-loop metadata. Any operands after the first operand can be treated
4648as user-defined metadata. For example the ``llvm.loop.unroll.count``
4649suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004650
Paul Redmond5fdf8362013-05-28 20:00:34 +00004651.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004652
Paul Redmond5fdf8362013-05-28 20:00:34 +00004653 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4654 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004655 !0 = !{!0, !1}
4656 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004657
Mark Heffernan9d20e422014-07-21 23:11:03 +00004658'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004660
Mark Heffernan9d20e422014-07-21 23:11:03 +00004661Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4662used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004663vectorization width and interleave count. These metadata should be used in
4664conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004665``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4666optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004667it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004668which contains information about loop-carried memory dependencies can be helpful
4669in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004670
Mark Heffernan9d20e422014-07-21 23:11:03 +00004671'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004672^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4673
Mark Heffernan9d20e422014-07-21 23:11:03 +00004674This metadata suggests an interleave count to the loop interleaver.
4675The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004676second operand is an integer specifying the interleave count. For
4677example:
4678
4679.. code-block:: llvm
4680
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004681 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004682
Mark Heffernan9d20e422014-07-21 23:11:03 +00004683Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004684multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004685then the interleave count will be determined automatically.
4686
4687'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004688^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004689
4690This metadata selectively enables or disables vectorization for the loop. The
4691first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004692is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000046930 disables vectorization:
4694
4695.. code-block:: llvm
4696
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004697 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4698 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004699
4700'``llvm.loop.vectorize.width``' Metadata
4701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4702
4703This metadata sets the target width of the vectorizer. The first
4704operand is the string ``llvm.loop.vectorize.width`` and the second
4705operand is an integer specifying the width. For example:
4706
4707.. code-block:: llvm
4708
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004709 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004710
4711Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004712vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000047130 or if the loop does not have this metadata the width will be
4714determined automatically.
4715
4716'``llvm.loop.unroll``'
4717^^^^^^^^^^^^^^^^^^^^^^
4718
4719Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4720optimization hints such as the unroll factor. ``llvm.loop.unroll``
4721metadata should be used in conjunction with ``llvm.loop`` loop
4722identification metadata. The ``llvm.loop.unroll`` metadata are only
4723optimization hints and the unrolling will only be performed if the
4724optimizer believes it is safe to do so.
4725
Mark Heffernan893752a2014-07-18 19:24:51 +00004726'``llvm.loop.unroll.count``' Metadata
4727^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4728
4729This metadata suggests an unroll factor to the loop unroller. The
4730first operand is the string ``llvm.loop.unroll.count`` and the second
4731operand is a positive integer specifying the unroll factor. For
4732example:
4733
4734.. code-block:: llvm
4735
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004736 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004737
4738If the trip count of the loop is less than the unroll count the loop
4739will be partially unrolled.
4740
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004741'``llvm.loop.unroll.disable``' Metadata
4742^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4743
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004744This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004745which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004746
4747.. code-block:: llvm
4748
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004749 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004750
Kevin Qin715b01e2015-03-09 06:14:18 +00004751'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004752^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004753
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004754This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004755operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004756
4757.. code-block:: llvm
4758
4759 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4760
Mark Heffernan89391542015-08-10 17:28:08 +00004761'``llvm.loop.unroll.enable``' Metadata
4762^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4763
4764This metadata suggests that the loop should be fully unrolled if the trip count
4765is known at compile time and partially unrolled if the trip count is not known
4766at compile time. The metadata has a single operand which is the string
4767``llvm.loop.unroll.enable``. For example:
4768
4769.. code-block:: llvm
4770
4771 !0 = !{!"llvm.loop.unroll.enable"}
4772
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004773'``llvm.loop.unroll.full``' Metadata
4774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4775
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004776This metadata suggests that the loop should be unrolled fully. The
4777metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004778For example:
4779
4780.. code-block:: llvm
4781
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004782 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004783
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004784'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004785^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004786
4787This metadata indicates that the loop should not be versioned for the purpose
4788of enabling loop-invariant code motion (LICM). The metadata has a single operand
4789which is the string ``llvm.loop.licm_versioning.disable``. For example:
4790
4791.. code-block:: llvm
4792
4793 !0 = !{!"llvm.loop.licm_versioning.disable"}
4794
Adam Nemetd2fa4142016-04-27 05:28:18 +00004795'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004797
4798Loop distribution allows splitting a loop into multiple loops. Currently,
4799this is only performed if the entire loop cannot be vectorized due to unsafe
4800memory dependencies. The transformation will atempt to isolate the unsafe
4801dependencies into their own loop.
4802
4803This metadata can be used to selectively enable or disable distribution of the
4804loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4805second operand is a bit. If the bit operand value is 1 distribution is
4806enabled. A value of 0 disables distribution:
4807
4808.. code-block:: llvm
4809
4810 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4811 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4812
4813This metadata should be used in conjunction with ``llvm.loop`` loop
4814identification metadata.
4815
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004816'``llvm.mem``'
4817^^^^^^^^^^^^^^^
4818
4819Metadata types used to annotate memory accesses with information helpful
4820for optimizations are prefixed with ``llvm.mem``.
4821
4822'``llvm.mem.parallel_loop_access``' Metadata
4823^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4824
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004825The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4826or metadata containing a list of loop identifiers for nested loops.
4827The metadata is attached to memory accessing instructions and denotes that
4828no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004829with the same loop identifier. The metadata on memory reads also implies that
4830if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004831
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004832Precisely, given two instructions ``m1`` and ``m2`` that both have the
4833``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4834set of loops associated with that metadata, respectively, then there is no loop
4835carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004836``L2``.
4837
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004838As a special case, if all memory accessing instructions in a loop have
4839``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4840loop has no loop carried memory dependences and is considered to be a parallel
4841loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004842
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004843Note that if not all memory access instructions have such metadata referring to
4844the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004845memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004846safe mechanism, this causes loops that were originally parallel to be considered
4847sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004848insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004849
4850Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004851both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004852metadata types that refer to the same loop identifier metadata.
4853
4854.. code-block:: llvm
4855
4856 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004857 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004858 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004859 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004860 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004861 ...
4862 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004863
4864 for.end:
4865 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004866 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004867
4868It is also possible to have nested parallel loops. In that case the
4869memory accesses refer to a list of loop identifier metadata nodes instead of
4870the loop identifier metadata node directly:
4871
4872.. code-block:: llvm
4873
4874 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004875 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004876 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004877 ...
4878 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004879
4880 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004881 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004882 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004883 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004884 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004885 ...
4886 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004887
4888 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004889 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004890 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004891 ...
4892 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004893
4894 outer.for.end: ; preds = %for.body
4895 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004896 !0 = !{!1, !2} ; a list of loop identifiers
4897 !1 = !{!1} ; an identifier for the inner loop
4898 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004899
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004900'``invariant.group``' Metadata
4901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4902
4903The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4904The existence of the ``invariant.group`` metadata on the instruction tells
4905the optimizer that every ``load`` and ``store`` to the same pointer operand
4906within the same invariant group can be assumed to load or store the same
4907value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00004908when two pointers are considered the same). Pointers returned by bitcast or
4909getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004910
4911Examples:
4912
4913.. code-block:: llvm
4914
4915 @unknownPtr = external global i8
4916 ...
4917 %ptr = alloca i8
4918 store i8 42, i8* %ptr, !invariant.group !0
4919 call void @foo(i8* %ptr)
4920
4921 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4922 call void @foo(i8* %ptr)
4923 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4924
4925 %newPtr = call i8* @getPointer(i8* %ptr)
4926 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4927
4928 %unknownValue = load i8, i8* @unknownPtr
4929 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4930
4931 call void @foo(i8* %ptr)
4932 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4933 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4934
4935 ...
4936 declare void @foo(i8*)
4937 declare i8* @getPointer(i8*)
4938 declare i8* @llvm.invariant.group.barrier(i8*)
4939
4940 !0 = !{!"magic ptr"}
4941 !1 = !{!"other ptr"}
4942
Peter Collingbournea333db82016-07-26 22:31:30 +00004943'``type``' Metadata
4944^^^^^^^^^^^^^^^^^^^
4945
4946See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004947
4948
Sean Silvab084af42012-12-07 10:36:55 +00004949Module Flags Metadata
4950=====================
4951
4952Information about the module as a whole is difficult to convey to LLVM's
4953subsystems. The LLVM IR isn't sufficient to transmit this information.
4954The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004955this. These flags are in the form of key / value pairs --- much like a
4956dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004957look it up.
4958
4959The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4960Each triplet has the following form:
4961
4962- The first element is a *behavior* flag, which specifies the behavior
4963 when two (or more) modules are merged together, and it encounters two
4964 (or more) metadata with the same ID. The supported behaviors are
4965 described below.
4966- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004967 metadata. Each module may only have one flag entry for each unique ID (not
4968 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004969- The third element is the value of the flag.
4970
4971When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004972``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4973each unique metadata ID string, there will be exactly one entry in the merged
4974modules ``llvm.module.flags`` metadata table, and the value for that entry will
4975be determined by the merge behavior flag, as described below. The only exception
4976is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004977
4978The following behaviors are supported:
4979
4980.. list-table::
4981 :header-rows: 1
4982 :widths: 10 90
4983
4984 * - Value
4985 - Behavior
4986
4987 * - 1
4988 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004989 Emits an error if two values disagree, otherwise the resulting value
4990 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004991
4992 * - 2
4993 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004994 Emits a warning if two values disagree. The result value will be the
4995 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004996
4997 * - 3
4998 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004999 Adds a requirement that another module flag be present and have a
5000 specified value after linking is performed. The value must be a
5001 metadata pair, where the first element of the pair is the ID of the
5002 module flag to be restricted, and the second element of the pair is
5003 the value the module flag should be restricted to. This behavior can
5004 be used to restrict the allowable results (via triggering of an
5005 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005006
5007 * - 4
5008 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005009 Uses the specified value, regardless of the behavior or value of the
5010 other module. If both modules specify **Override**, but the values
5011 differ, an error will be emitted.
5012
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005013 * - 5
5014 - **Append**
5015 Appends the two values, which are required to be metadata nodes.
5016
5017 * - 6
5018 - **AppendUnique**
5019 Appends the two values, which are required to be metadata
5020 nodes. However, duplicate entries in the second list are dropped
5021 during the append operation.
5022
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005023It is an error for a particular unique flag ID to have multiple behaviors,
5024except in the case of **Require** (which adds restrictions on another metadata
5025value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005026
5027An example of module flags:
5028
5029.. code-block:: llvm
5030
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005031 !0 = !{ i32 1, !"foo", i32 1 }
5032 !1 = !{ i32 4, !"bar", i32 37 }
5033 !2 = !{ i32 2, !"qux", i32 42 }
5034 !3 = !{ i32 3, !"qux",
5035 !{
5036 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005037 }
5038 }
5039 !llvm.module.flags = !{ !0, !1, !2, !3 }
5040
5041- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5042 if two or more ``!"foo"`` flags are seen is to emit an error if their
5043 values are not equal.
5044
5045- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5046 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005047 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005048
5049- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5050 behavior if two or more ``!"qux"`` flags are seen is to emit a
5051 warning if their values are not equal.
5052
5053- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5054
5055 ::
5056
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005057 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005058
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005059 The behavior is to emit an error if the ``llvm.module.flags`` does not
5060 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5061 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005062
5063Objective-C Garbage Collection Module Flags Metadata
5064----------------------------------------------------
5065
5066On the Mach-O platform, Objective-C stores metadata about garbage
5067collection in a special section called "image info". The metadata
5068consists of a version number and a bitmask specifying what types of
5069garbage collection are supported (if any) by the file. If two or more
5070modules are linked together their garbage collection metadata needs to
5071be merged rather than appended together.
5072
5073The Objective-C garbage collection module flags metadata consists of the
5074following key-value pairs:
5075
5076.. list-table::
5077 :header-rows: 1
5078 :widths: 30 70
5079
5080 * - Key
5081 - Value
5082
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005083 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005084 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005085
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005086 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005087 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005088 always 0.
5089
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005090 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005091 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005092 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5093 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5094 Objective-C ABI version 2.
5095
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005096 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005097 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005098 not. Valid values are 0, for no garbage collection, and 2, for garbage
5099 collection supported.
5100
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005101 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005102 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005103 If present, its value must be 6. This flag requires that the
5104 ``Objective-C Garbage Collection`` flag have the value 2.
5105
5106Some important flag interactions:
5107
5108- If a module with ``Objective-C Garbage Collection`` set to 0 is
5109 merged with a module with ``Objective-C Garbage Collection`` set to
5110 2, then the resulting module has the
5111 ``Objective-C Garbage Collection`` flag set to 0.
5112- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5113 merged with a module with ``Objective-C GC Only`` set to 6.
5114
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005115Automatic Linker Flags Module Flags Metadata
5116--------------------------------------------
5117
5118Some targets support embedding flags to the linker inside individual object
5119files. Typically this is used in conjunction with language extensions which
5120allow source files to explicitly declare the libraries they depend on, and have
5121these automatically be transmitted to the linker via object files.
5122
5123These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005124using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005125to be ``AppendUnique``, and the value for the key is expected to be a metadata
5126node which should be a list of other metadata nodes, each of which should be a
5127list of metadata strings defining linker options.
5128
5129For example, the following metadata section specifies two separate sets of
5130linker options, presumably to link against ``libz`` and the ``Cocoa``
5131framework::
5132
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005133 !0 = !{ i32 6, !"Linker Options",
5134 !{
5135 !{ !"-lz" },
5136 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005137 !llvm.module.flags = !{ !0 }
5138
5139The metadata encoding as lists of lists of options, as opposed to a collapsed
5140list of options, is chosen so that the IR encoding can use multiple option
5141strings to specify e.g., a single library, while still having that specifier be
5142preserved as an atomic element that can be recognized by a target specific
5143assembly writer or object file emitter.
5144
5145Each individual option is required to be either a valid option for the target's
5146linker, or an option that is reserved by the target specific assembly writer or
5147object file emitter. No other aspect of these options is defined by the IR.
5148
Oliver Stannard5dc29342014-06-20 10:08:11 +00005149C type width Module Flags Metadata
5150----------------------------------
5151
5152The ARM backend emits a section into each generated object file describing the
5153options that it was compiled with (in a compiler-independent way) to prevent
5154linking incompatible objects, and to allow automatic library selection. Some
5155of these options are not visible at the IR level, namely wchar_t width and enum
5156width.
5157
5158To pass this information to the backend, these options are encoded in module
5159flags metadata, using the following key-value pairs:
5160
5161.. list-table::
5162 :header-rows: 1
5163 :widths: 30 70
5164
5165 * - Key
5166 - Value
5167
5168 * - short_wchar
5169 - * 0 --- sizeof(wchar_t) == 4
5170 * 1 --- sizeof(wchar_t) == 2
5171
5172 * - short_enum
5173 - * 0 --- Enums are at least as large as an ``int``.
5174 * 1 --- Enums are stored in the smallest integer type which can
5175 represent all of its values.
5176
5177For example, the following metadata section specifies that the module was
5178compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5179enum is the smallest type which can represent all of its values::
5180
5181 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005182 !0 = !{i32 1, !"short_wchar", i32 1}
5183 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005184
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005185.. _intrinsicglobalvariables:
5186
Sean Silvab084af42012-12-07 10:36:55 +00005187Intrinsic Global Variables
5188==========================
5189
5190LLVM has a number of "magic" global variables that contain data that
5191affect code generation or other IR semantics. These are documented here.
5192All globals of this sort should have a section specified as
5193"``llvm.metadata``". This section and all globals that start with
5194"``llvm.``" are reserved for use by LLVM.
5195
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005196.. _gv_llvmused:
5197
Sean Silvab084af42012-12-07 10:36:55 +00005198The '``llvm.used``' Global Variable
5199-----------------------------------
5200
Rafael Espindola74f2e462013-04-22 14:58:02 +00005201The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005202:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005203pointers to named global variables, functions and aliases which may optionally
5204have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005205use of it is:
5206
5207.. code-block:: llvm
5208
5209 @X = global i8 4
5210 @Y = global i32 123
5211
5212 @llvm.used = appending global [2 x i8*] [
5213 i8* @X,
5214 i8* bitcast (i32* @Y to i8*)
5215 ], section "llvm.metadata"
5216
Rafael Espindola74f2e462013-04-22 14:58:02 +00005217If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5218and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005219symbol that it cannot see (which is why they have to be named). For example, if
5220a variable has internal linkage and no references other than that from the
5221``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5222references from inline asms and other things the compiler cannot "see", and
5223corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005224
5225On some targets, the code generator must emit a directive to the
5226assembler or object file to prevent the assembler and linker from
5227molesting the symbol.
5228
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005229.. _gv_llvmcompilerused:
5230
Sean Silvab084af42012-12-07 10:36:55 +00005231The '``llvm.compiler.used``' Global Variable
5232--------------------------------------------
5233
5234The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5235directive, except that it only prevents the compiler from touching the
5236symbol. On targets that support it, this allows an intelligent linker to
5237optimize references to the symbol without being impeded as it would be
5238by ``@llvm.used``.
5239
5240This is a rare construct that should only be used in rare circumstances,
5241and should not be exposed to source languages.
5242
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005243.. _gv_llvmglobalctors:
5244
Sean Silvab084af42012-12-07 10:36:55 +00005245The '``llvm.global_ctors``' Global Variable
5246-------------------------------------------
5247
5248.. code-block:: llvm
5249
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005250 %0 = type { i32, void ()*, i8* }
5251 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005252
5253The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005254functions, priorities, and an optional associated global or function.
5255The functions referenced by this array will be called in ascending order
5256of priority (i.e. lowest first) when the module is loaded. The order of
5257functions with the same priority is not defined.
5258
5259If the third field is present, non-null, and points to a global variable
5260or function, the initializer function will only run if the associated
5261data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005262
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005263.. _llvmglobaldtors:
5264
Sean Silvab084af42012-12-07 10:36:55 +00005265The '``llvm.global_dtors``' Global Variable
5266-------------------------------------------
5267
5268.. code-block:: llvm
5269
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005270 %0 = type { i32, void ()*, i8* }
5271 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005272
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005273The ``@llvm.global_dtors`` array contains a list of destructor
5274functions, priorities, and an optional associated global or function.
5275The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005276order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005277order of functions with the same priority is not defined.
5278
5279If the third field is present, non-null, and points to a global variable
5280or function, the destructor function will only run if the associated
5281data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005282
5283Instruction Reference
5284=====================
5285
5286The LLVM instruction set consists of several different classifications
5287of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5288instructions <binaryops>`, :ref:`bitwise binary
5289instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5290:ref:`other instructions <otherops>`.
5291
5292.. _terminators:
5293
5294Terminator Instructions
5295-----------------------
5296
5297As mentioned :ref:`previously <functionstructure>`, every basic block in a
5298program ends with a "Terminator" instruction, which indicates which
5299block should be executed after the current block is finished. These
5300terminator instructions typically yield a '``void``' value: they produce
5301control flow, not values (the one exception being the
5302':ref:`invoke <i_invoke>`' instruction).
5303
5304The terminator instructions are: ':ref:`ret <i_ret>`',
5305':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5306':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005307':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005308':ref:`catchret <i_catchret>`',
5309':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005310and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005311
5312.. _i_ret:
5313
5314'``ret``' Instruction
5315^^^^^^^^^^^^^^^^^^^^^
5316
5317Syntax:
5318"""""""
5319
5320::
5321
5322 ret <type> <value> ; Return a value from a non-void function
5323 ret void ; Return from void function
5324
5325Overview:
5326"""""""""
5327
5328The '``ret``' instruction is used to return control flow (and optionally
5329a value) from a function back to the caller.
5330
5331There are two forms of the '``ret``' instruction: one that returns a
5332value and then causes control flow, and one that just causes control
5333flow to occur.
5334
5335Arguments:
5336""""""""""
5337
5338The '``ret``' instruction optionally accepts a single argument, the
5339return value. The type of the return value must be a ':ref:`first
5340class <t_firstclass>`' type.
5341
5342A function is not :ref:`well formed <wellformed>` if it it has a non-void
5343return type and contains a '``ret``' instruction with no return value or
5344a return value with a type that does not match its type, or if it has a
5345void return type and contains a '``ret``' instruction with a return
5346value.
5347
5348Semantics:
5349""""""""""
5350
5351When the '``ret``' instruction is executed, control flow returns back to
5352the calling function's context. If the caller is a
5353":ref:`call <i_call>`" instruction, execution continues at the
5354instruction after the call. If the caller was an
5355":ref:`invoke <i_invoke>`" instruction, execution continues at the
5356beginning of the "normal" destination block. If the instruction returns
5357a value, that value shall set the call or invoke instruction's return
5358value.
5359
5360Example:
5361""""""""
5362
5363.. code-block:: llvm
5364
5365 ret i32 5 ; Return an integer value of 5
5366 ret void ; Return from a void function
5367 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5368
5369.. _i_br:
5370
5371'``br``' Instruction
5372^^^^^^^^^^^^^^^^^^^^
5373
5374Syntax:
5375"""""""
5376
5377::
5378
5379 br i1 <cond>, label <iftrue>, label <iffalse>
5380 br label <dest> ; Unconditional branch
5381
5382Overview:
5383"""""""""
5384
5385The '``br``' instruction is used to cause control flow to transfer to a
5386different basic block in the current function. There are two forms of
5387this instruction, corresponding to a conditional branch and an
5388unconditional branch.
5389
5390Arguments:
5391""""""""""
5392
5393The conditional branch form of the '``br``' instruction takes a single
5394'``i1``' value and two '``label``' values. The unconditional form of the
5395'``br``' instruction takes a single '``label``' value as a target.
5396
5397Semantics:
5398""""""""""
5399
5400Upon execution of a conditional '``br``' instruction, the '``i1``'
5401argument is evaluated. If the value is ``true``, control flows to the
5402'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5403to the '``iffalse``' ``label`` argument.
5404
5405Example:
5406""""""""
5407
5408.. code-block:: llvm
5409
5410 Test:
5411 %cond = icmp eq i32 %a, %b
5412 br i1 %cond, label %IfEqual, label %IfUnequal
5413 IfEqual:
5414 ret i32 1
5415 IfUnequal:
5416 ret i32 0
5417
5418.. _i_switch:
5419
5420'``switch``' Instruction
5421^^^^^^^^^^^^^^^^^^^^^^^^
5422
5423Syntax:
5424"""""""
5425
5426::
5427
5428 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5429
5430Overview:
5431"""""""""
5432
5433The '``switch``' instruction is used to transfer control flow to one of
5434several different places. It is a generalization of the '``br``'
5435instruction, allowing a branch to occur to one of many possible
5436destinations.
5437
5438Arguments:
5439""""""""""
5440
5441The '``switch``' instruction uses three parameters: an integer
5442comparison value '``value``', a default '``label``' destination, and an
5443array of pairs of comparison value constants and '``label``'s. The table
5444is not allowed to contain duplicate constant entries.
5445
5446Semantics:
5447""""""""""
5448
5449The ``switch`` instruction specifies a table of values and destinations.
5450When the '``switch``' instruction is executed, this table is searched
5451for the given value. If the value is found, control flow is transferred
5452to the corresponding destination; otherwise, control flow is transferred
5453to the default destination.
5454
5455Implementation:
5456"""""""""""""""
5457
5458Depending on properties of the target machine and the particular
5459``switch`` instruction, this instruction may be code generated in
5460different ways. For example, it could be generated as a series of
5461chained conditional branches or with a lookup table.
5462
5463Example:
5464""""""""
5465
5466.. code-block:: llvm
5467
5468 ; Emulate a conditional br instruction
5469 %Val = zext i1 %value to i32
5470 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5471
5472 ; Emulate an unconditional br instruction
5473 switch i32 0, label %dest [ ]
5474
5475 ; Implement a jump table:
5476 switch i32 %val, label %otherwise [ i32 0, label %onzero
5477 i32 1, label %onone
5478 i32 2, label %ontwo ]
5479
5480.. _i_indirectbr:
5481
5482'``indirectbr``' Instruction
5483^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5484
5485Syntax:
5486"""""""
5487
5488::
5489
5490 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5491
5492Overview:
5493"""""""""
5494
5495The '``indirectbr``' instruction implements an indirect branch to a
5496label within the current function, whose address is specified by
5497"``address``". Address must be derived from a
5498:ref:`blockaddress <blockaddress>` constant.
5499
5500Arguments:
5501""""""""""
5502
5503The '``address``' argument is the address of the label to jump to. The
5504rest of the arguments indicate the full set of possible destinations
5505that the address may point to. Blocks are allowed to occur multiple
5506times in the destination list, though this isn't particularly useful.
5507
5508This destination list is required so that dataflow analysis has an
5509accurate understanding of the CFG.
5510
5511Semantics:
5512""""""""""
5513
5514Control transfers to the block specified in the address argument. All
5515possible destination blocks must be listed in the label list, otherwise
5516this instruction has undefined behavior. This implies that jumps to
5517labels defined in other functions have undefined behavior as well.
5518
5519Implementation:
5520"""""""""""""""
5521
5522This is typically implemented with a jump through a register.
5523
5524Example:
5525""""""""
5526
5527.. code-block:: llvm
5528
5529 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5530
5531.. _i_invoke:
5532
5533'``invoke``' Instruction
5534^^^^^^^^^^^^^^^^^^^^^^^^
5535
5536Syntax:
5537"""""""
5538
5539::
5540
David Blaikieb83cf102016-07-13 17:21:34 +00005541 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005542 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005543
5544Overview:
5545"""""""""
5546
5547The '``invoke``' instruction causes control to transfer to a specified
5548function, with the possibility of control flow transfer to either the
5549'``normal``' label or the '``exception``' label. If the callee function
5550returns with the "``ret``" instruction, control flow will return to the
5551"normal" label. If the callee (or any indirect callees) returns via the
5552":ref:`resume <i_resume>`" instruction or other exception handling
5553mechanism, control is interrupted and continued at the dynamically
5554nearest "exception" label.
5555
5556The '``exception``' label is a `landing
5557pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5558'``exception``' label is required to have the
5559":ref:`landingpad <i_landingpad>`" instruction, which contains the
5560information about the behavior of the program after unwinding happens,
5561as its first non-PHI instruction. The restrictions on the
5562"``landingpad``" instruction's tightly couples it to the "``invoke``"
5563instruction, so that the important information contained within the
5564"``landingpad``" instruction can't be lost through normal code motion.
5565
5566Arguments:
5567""""""""""
5568
5569This instruction requires several arguments:
5570
5571#. The optional "cconv" marker indicates which :ref:`calling
5572 convention <callingconv>` the call should use. If none is
5573 specified, the call defaults to using C calling conventions.
5574#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5575 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5576 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005577#. '``ty``': the type of the call instruction itself which is also the
5578 type of the return value. Functions that return no value are marked
5579 ``void``.
5580#. '``fnty``': shall be the signature of the function being invoked. The
5581 argument types must match the types implied by this signature. This
5582 type can be omitted if the function is not varargs.
5583#. '``fnptrval``': An LLVM value containing a pointer to a function to
5584 be invoked. In most cases, this is a direct function invocation, but
5585 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5586 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005587#. '``function args``': argument list whose types match the function
5588 signature argument types and parameter attributes. All arguments must
5589 be of :ref:`first class <t_firstclass>` type. If the function signature
5590 indicates the function accepts a variable number of arguments, the
5591 extra arguments can be specified.
5592#. '``normal label``': the label reached when the called function
5593 executes a '``ret``' instruction.
5594#. '``exception label``': the label reached when a callee returns via
5595 the :ref:`resume <i_resume>` instruction or other exception handling
5596 mechanism.
5597#. The optional :ref:`function attributes <fnattrs>` list. Only
5598 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5599 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005600#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005601
5602Semantics:
5603""""""""""
5604
5605This instruction is designed to operate as a standard '``call``'
5606instruction in most regards. The primary difference is that it
5607establishes an association with a label, which is used by the runtime
5608library to unwind the stack.
5609
5610This instruction is used in languages with destructors to ensure that
5611proper cleanup is performed in the case of either a ``longjmp`` or a
5612thrown exception. Additionally, this is important for implementation of
5613'``catch``' clauses in high-level languages that support them.
5614
5615For the purposes of the SSA form, the definition of the value returned
5616by the '``invoke``' instruction is deemed to occur on the edge from the
5617current block to the "normal" label. If the callee unwinds then no
5618return value is available.
5619
5620Example:
5621""""""""
5622
5623.. code-block:: llvm
5624
5625 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005626 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005627 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005628 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005629
5630.. _i_resume:
5631
5632'``resume``' Instruction
5633^^^^^^^^^^^^^^^^^^^^^^^^
5634
5635Syntax:
5636"""""""
5637
5638::
5639
5640 resume <type> <value>
5641
5642Overview:
5643"""""""""
5644
5645The '``resume``' instruction is a terminator instruction that has no
5646successors.
5647
5648Arguments:
5649""""""""""
5650
5651The '``resume``' instruction requires one argument, which must have the
5652same type as the result of any '``landingpad``' instruction in the same
5653function.
5654
5655Semantics:
5656""""""""""
5657
5658The '``resume``' instruction resumes propagation of an existing
5659(in-flight) exception whose unwinding was interrupted with a
5660:ref:`landingpad <i_landingpad>` instruction.
5661
5662Example:
5663""""""""
5664
5665.. code-block:: llvm
5666
5667 resume { i8*, i32 } %exn
5668
David Majnemer8a1c45d2015-12-12 05:38:55 +00005669.. _i_catchswitch:
5670
5671'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005672^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005673
5674Syntax:
5675"""""""
5676
5677::
5678
5679 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5680 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5681
5682Overview:
5683"""""""""
5684
5685The '``catchswitch``' instruction is used by `LLVM's exception handling system
5686<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5687that may be executed by the :ref:`EH personality routine <personalityfn>`.
5688
5689Arguments:
5690""""""""""
5691
5692The ``parent`` argument is the token of the funclet that contains the
5693``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5694this operand may be the token ``none``.
5695
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005696The ``default`` argument is the label of another basic block beginning with
5697either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5698must be a legal target with respect to the ``parent`` links, as described in
5699the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005700
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005701The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005702:ref:`catchpad <i_catchpad>` instruction.
5703
5704Semantics:
5705""""""""""
5706
5707Executing this instruction transfers control to one of the successors in
5708``handlers``, if appropriate, or continues to unwind via the unwind label if
5709present.
5710
5711The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5712it must be both the first non-phi instruction and last instruction in the basic
5713block. Therefore, it must be the only non-phi instruction in the block.
5714
5715Example:
5716""""""""
5717
Renato Golin124f2592016-07-20 12:16:38 +00005718.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005719
5720 dispatch1:
5721 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5722 dispatch2:
5723 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5724
David Majnemer654e1302015-07-31 17:58:14 +00005725.. _i_catchret:
5726
5727'``catchret``' Instruction
5728^^^^^^^^^^^^^^^^^^^^^^^^^^
5729
5730Syntax:
5731"""""""
5732
5733::
5734
David Majnemer8a1c45d2015-12-12 05:38:55 +00005735 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005736
5737Overview:
5738"""""""""
5739
5740The '``catchret``' instruction is a terminator instruction that has a
5741single successor.
5742
5743
5744Arguments:
5745""""""""""
5746
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005747The first argument to a '``catchret``' indicates which ``catchpad`` it
5748exits. It must be a :ref:`catchpad <i_catchpad>`.
5749The second argument to a '``catchret``' specifies where control will
5750transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005751
5752Semantics:
5753""""""""""
5754
David Majnemer8a1c45d2015-12-12 05:38:55 +00005755The '``catchret``' instruction ends an existing (in-flight) exception whose
5756unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5757:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5758code to, for example, destroy the active exception. Control then transfers to
5759``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005760
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005761The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5762If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5763funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5764the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005765
5766Example:
5767""""""""
5768
Renato Golin124f2592016-07-20 12:16:38 +00005769.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005770
David Majnemer8a1c45d2015-12-12 05:38:55 +00005771 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005772
David Majnemer654e1302015-07-31 17:58:14 +00005773.. _i_cleanupret:
5774
5775'``cleanupret``' Instruction
5776^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5777
5778Syntax:
5779"""""""
5780
5781::
5782
David Majnemer8a1c45d2015-12-12 05:38:55 +00005783 cleanupret from <value> unwind label <continue>
5784 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005785
5786Overview:
5787"""""""""
5788
5789The '``cleanupret``' instruction is a terminator instruction that has
5790an optional successor.
5791
5792
5793Arguments:
5794""""""""""
5795
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005796The '``cleanupret``' instruction requires one argument, which indicates
5797which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005798If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5799funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5800the ``cleanupret``'s behavior is undefined.
5801
5802The '``cleanupret``' instruction also has an optional successor, ``continue``,
5803which must be the label of another basic block beginning with either a
5804``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5805be a legal target with respect to the ``parent`` links, as described in the
5806`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005807
5808Semantics:
5809""""""""""
5810
5811The '``cleanupret``' instruction indicates to the
5812:ref:`personality function <personalityfn>` that one
5813:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5814It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005815
David Majnemer654e1302015-07-31 17:58:14 +00005816Example:
5817""""""""
5818
Renato Golin124f2592016-07-20 12:16:38 +00005819.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005820
David Majnemer8a1c45d2015-12-12 05:38:55 +00005821 cleanupret from %cleanup unwind to caller
5822 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005823
Sean Silvab084af42012-12-07 10:36:55 +00005824.. _i_unreachable:
5825
5826'``unreachable``' Instruction
5827^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5828
5829Syntax:
5830"""""""
5831
5832::
5833
5834 unreachable
5835
5836Overview:
5837"""""""""
5838
5839The '``unreachable``' instruction has no defined semantics. This
5840instruction is used to inform the optimizer that a particular portion of
5841the code is not reachable. This can be used to indicate that the code
5842after a no-return function cannot be reached, and other facts.
5843
5844Semantics:
5845""""""""""
5846
5847The '``unreachable``' instruction has no defined semantics.
5848
5849.. _binaryops:
5850
5851Binary Operations
5852-----------------
5853
5854Binary operators are used to do most of the computation in a program.
5855They require two operands of the same type, execute an operation on
5856them, and produce a single value. The operands might represent multiple
5857data, as is the case with the :ref:`vector <t_vector>` data type. The
5858result value has the same type as its operands.
5859
5860There are several different binary operators:
5861
5862.. _i_add:
5863
5864'``add``' Instruction
5865^^^^^^^^^^^^^^^^^^^^^
5866
5867Syntax:
5868"""""""
5869
5870::
5871
Tim Northover675a0962014-06-13 14:24:23 +00005872 <result> = add <ty> <op1>, <op2> ; yields ty:result
5873 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5874 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5875 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005876
5877Overview:
5878"""""""""
5879
5880The '``add``' instruction returns the sum of its two operands.
5881
5882Arguments:
5883""""""""""
5884
5885The two arguments to the '``add``' instruction must be
5886:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5887arguments must have identical types.
5888
5889Semantics:
5890""""""""""
5891
5892The value produced is the integer sum of the two operands.
5893
5894If the sum has unsigned overflow, the result returned is the
5895mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5896the result.
5897
5898Because LLVM integers use a two's complement representation, this
5899instruction is appropriate for both signed and unsigned integers.
5900
5901``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5902respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5903result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5904unsigned and/or signed overflow, respectively, occurs.
5905
5906Example:
5907""""""""
5908
Renato Golin124f2592016-07-20 12:16:38 +00005909.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005910
Tim Northover675a0962014-06-13 14:24:23 +00005911 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005912
5913.. _i_fadd:
5914
5915'``fadd``' Instruction
5916^^^^^^^^^^^^^^^^^^^^^^
5917
5918Syntax:
5919"""""""
5920
5921::
5922
Tim Northover675a0962014-06-13 14:24:23 +00005923 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005924
5925Overview:
5926"""""""""
5927
5928The '``fadd``' instruction returns the sum of its two operands.
5929
5930Arguments:
5931""""""""""
5932
5933The two arguments to the '``fadd``' instruction must be :ref:`floating
5934point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5935Both arguments must have identical types.
5936
5937Semantics:
5938""""""""""
5939
5940The value produced is the floating point sum of the two operands. This
5941instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5942which are optimization hints to enable otherwise unsafe floating point
5943optimizations:
5944
5945Example:
5946""""""""
5947
Renato Golin124f2592016-07-20 12:16:38 +00005948.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005949
Tim Northover675a0962014-06-13 14:24:23 +00005950 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005951
5952'``sub``' Instruction
5953^^^^^^^^^^^^^^^^^^^^^
5954
5955Syntax:
5956"""""""
5957
5958::
5959
Tim Northover675a0962014-06-13 14:24:23 +00005960 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5961 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5962 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5963 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005964
5965Overview:
5966"""""""""
5967
5968The '``sub``' instruction returns the difference of its two operands.
5969
5970Note that the '``sub``' instruction is used to represent the '``neg``'
5971instruction present in most other intermediate representations.
5972
5973Arguments:
5974""""""""""
5975
5976The two arguments to the '``sub``' instruction must be
5977:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5978arguments must have identical types.
5979
5980Semantics:
5981""""""""""
5982
5983The value produced is the integer difference of the two operands.
5984
5985If the difference has unsigned overflow, the result returned is the
5986mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5987the result.
5988
5989Because LLVM integers use a two's complement representation, this
5990instruction is appropriate for both signed and unsigned integers.
5991
5992``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5993respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5994result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5995unsigned and/or signed overflow, respectively, occurs.
5996
5997Example:
5998""""""""
5999
Renato Golin124f2592016-07-20 12:16:38 +00006000.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006001
Tim Northover675a0962014-06-13 14:24:23 +00006002 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6003 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006004
6005.. _i_fsub:
6006
6007'``fsub``' Instruction
6008^^^^^^^^^^^^^^^^^^^^^^
6009
6010Syntax:
6011"""""""
6012
6013::
6014
Tim Northover675a0962014-06-13 14:24:23 +00006015 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006016
6017Overview:
6018"""""""""
6019
6020The '``fsub``' instruction returns the difference of its two operands.
6021
6022Note that the '``fsub``' instruction is used to represent the '``fneg``'
6023instruction present in most other intermediate representations.
6024
6025Arguments:
6026""""""""""
6027
6028The two arguments to the '``fsub``' instruction must be :ref:`floating
6029point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6030Both arguments must have identical types.
6031
6032Semantics:
6033""""""""""
6034
6035The value produced is the floating point difference of the two operands.
6036This instruction can also take any number of :ref:`fast-math
6037flags <fastmath>`, which are optimization hints to enable otherwise
6038unsafe floating point optimizations:
6039
6040Example:
6041""""""""
6042
Renato Golin124f2592016-07-20 12:16:38 +00006043.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006044
Tim Northover675a0962014-06-13 14:24:23 +00006045 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6046 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006047
6048'``mul``' Instruction
6049^^^^^^^^^^^^^^^^^^^^^
6050
6051Syntax:
6052"""""""
6053
6054::
6055
Tim Northover675a0962014-06-13 14:24:23 +00006056 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6057 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6058 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6059 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006060
6061Overview:
6062"""""""""
6063
6064The '``mul``' instruction returns the product of its two operands.
6065
6066Arguments:
6067""""""""""
6068
6069The two arguments to the '``mul``' instruction must be
6070:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6071arguments must have identical types.
6072
6073Semantics:
6074""""""""""
6075
6076The value produced is the integer product of the two operands.
6077
6078If the result of the multiplication has unsigned overflow, the result
6079returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6080bit width of the result.
6081
6082Because LLVM integers use a two's complement representation, and the
6083result is the same width as the operands, this instruction returns the
6084correct result for both signed and unsigned integers. If a full product
6085(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6086sign-extended or zero-extended as appropriate to the width of the full
6087product.
6088
6089``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6090respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6091result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6092unsigned and/or signed overflow, respectively, occurs.
6093
6094Example:
6095""""""""
6096
Renato Golin124f2592016-07-20 12:16:38 +00006097.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006098
Tim Northover675a0962014-06-13 14:24:23 +00006099 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006100
6101.. _i_fmul:
6102
6103'``fmul``' Instruction
6104^^^^^^^^^^^^^^^^^^^^^^
6105
6106Syntax:
6107"""""""
6108
6109::
6110
Tim Northover675a0962014-06-13 14:24:23 +00006111 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006112
6113Overview:
6114"""""""""
6115
6116The '``fmul``' instruction returns the product of its two operands.
6117
6118Arguments:
6119""""""""""
6120
6121The two arguments to the '``fmul``' instruction must be :ref:`floating
6122point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6123Both arguments must have identical types.
6124
6125Semantics:
6126""""""""""
6127
6128The value produced is the floating point product of the two operands.
6129This instruction can also take any number of :ref:`fast-math
6130flags <fastmath>`, which are optimization hints to enable otherwise
6131unsafe floating point optimizations:
6132
6133Example:
6134""""""""
6135
Renato Golin124f2592016-07-20 12:16:38 +00006136.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006137
Tim Northover675a0962014-06-13 14:24:23 +00006138 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006139
6140'``udiv``' Instruction
6141^^^^^^^^^^^^^^^^^^^^^^
6142
6143Syntax:
6144"""""""
6145
6146::
6147
Tim Northover675a0962014-06-13 14:24:23 +00006148 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6149 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006150
6151Overview:
6152"""""""""
6153
6154The '``udiv``' instruction returns the quotient of its two operands.
6155
6156Arguments:
6157""""""""""
6158
6159The two arguments to the '``udiv``' instruction must be
6160:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6161arguments must have identical types.
6162
6163Semantics:
6164""""""""""
6165
6166The value produced is the unsigned integer quotient of the two operands.
6167
6168Note that unsigned integer division and signed integer division are
6169distinct operations; for signed integer division, use '``sdiv``'.
6170
6171Division by zero leads to undefined behavior.
6172
6173If the ``exact`` keyword is present, the result value of the ``udiv`` is
6174a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6175such, "((a udiv exact b) mul b) == a").
6176
6177Example:
6178""""""""
6179
Renato Golin124f2592016-07-20 12:16:38 +00006180.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006181
Tim Northover675a0962014-06-13 14:24:23 +00006182 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006183
6184'``sdiv``' Instruction
6185^^^^^^^^^^^^^^^^^^^^^^
6186
6187Syntax:
6188"""""""
6189
6190::
6191
Tim Northover675a0962014-06-13 14:24:23 +00006192 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6193 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006194
6195Overview:
6196"""""""""
6197
6198The '``sdiv``' instruction returns the quotient of its two operands.
6199
6200Arguments:
6201""""""""""
6202
6203The two arguments to the '``sdiv``' instruction must be
6204:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6205arguments must have identical types.
6206
6207Semantics:
6208""""""""""
6209
6210The value produced is the signed integer quotient of the two operands
6211rounded towards zero.
6212
6213Note that signed integer division and unsigned integer division are
6214distinct operations; for unsigned integer division, use '``udiv``'.
6215
6216Division by zero leads to undefined behavior. Overflow also leads to
6217undefined behavior; this is a rare case, but can occur, for example, by
6218doing a 32-bit division of -2147483648 by -1.
6219
6220If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6221a :ref:`poison value <poisonvalues>` if the result would be rounded.
6222
6223Example:
6224""""""""
6225
Renato Golin124f2592016-07-20 12:16:38 +00006226.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006227
Tim Northover675a0962014-06-13 14:24:23 +00006228 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006229
6230.. _i_fdiv:
6231
6232'``fdiv``' Instruction
6233^^^^^^^^^^^^^^^^^^^^^^
6234
6235Syntax:
6236"""""""
6237
6238::
6239
Tim Northover675a0962014-06-13 14:24:23 +00006240 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006241
6242Overview:
6243"""""""""
6244
6245The '``fdiv``' instruction returns the quotient of its two operands.
6246
6247Arguments:
6248""""""""""
6249
6250The two arguments to the '``fdiv``' instruction must be :ref:`floating
6251point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6252Both arguments must have identical types.
6253
6254Semantics:
6255""""""""""
6256
6257The value produced is the floating point quotient of the two operands.
6258This instruction can also take any number of :ref:`fast-math
6259flags <fastmath>`, which are optimization hints to enable otherwise
6260unsafe floating point optimizations:
6261
6262Example:
6263""""""""
6264
Renato Golin124f2592016-07-20 12:16:38 +00006265.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006266
Tim Northover675a0962014-06-13 14:24:23 +00006267 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006268
6269'``urem``' Instruction
6270^^^^^^^^^^^^^^^^^^^^^^
6271
6272Syntax:
6273"""""""
6274
6275::
6276
Tim Northover675a0962014-06-13 14:24:23 +00006277 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006278
6279Overview:
6280"""""""""
6281
6282The '``urem``' instruction returns the remainder from the unsigned
6283division of its two arguments.
6284
6285Arguments:
6286""""""""""
6287
6288The two arguments to the '``urem``' instruction must be
6289:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6290arguments must have identical types.
6291
6292Semantics:
6293""""""""""
6294
6295This instruction returns the unsigned integer *remainder* of a division.
6296This instruction always performs an unsigned division to get the
6297remainder.
6298
6299Note that unsigned integer remainder and signed integer remainder are
6300distinct operations; for signed integer remainder, use '``srem``'.
6301
6302Taking the remainder of a division by zero leads to undefined behavior.
6303
6304Example:
6305""""""""
6306
Renato Golin124f2592016-07-20 12:16:38 +00006307.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006308
Tim Northover675a0962014-06-13 14:24:23 +00006309 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006310
6311'``srem``' Instruction
6312^^^^^^^^^^^^^^^^^^^^^^
6313
6314Syntax:
6315"""""""
6316
6317::
6318
Tim Northover675a0962014-06-13 14:24:23 +00006319 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006320
6321Overview:
6322"""""""""
6323
6324The '``srem``' instruction returns the remainder from the signed
6325division of its two operands. This instruction can also take
6326:ref:`vector <t_vector>` versions of the values in which case the elements
6327must be integers.
6328
6329Arguments:
6330""""""""""
6331
6332The two arguments to the '``srem``' instruction must be
6333:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6334arguments must have identical types.
6335
6336Semantics:
6337""""""""""
6338
6339This instruction returns the *remainder* of a division (where the result
6340is either zero or has the same sign as the dividend, ``op1``), not the
6341*modulo* operator (where the result is either zero or has the same sign
6342as the divisor, ``op2``) of a value. For more information about the
6343difference, see `The Math
6344Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6345table of how this is implemented in various languages, please see
6346`Wikipedia: modulo
6347operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6348
6349Note that signed integer remainder and unsigned integer remainder are
6350distinct operations; for unsigned integer remainder, use '``urem``'.
6351
6352Taking the remainder of a division by zero leads to undefined behavior.
6353Overflow also leads to undefined behavior; this is a rare case, but can
6354occur, for example, by taking the remainder of a 32-bit division of
6355-2147483648 by -1. (The remainder doesn't actually overflow, but this
6356rule lets srem be implemented using instructions that return both the
6357result of the division and the remainder.)
6358
6359Example:
6360""""""""
6361
Renato Golin124f2592016-07-20 12:16:38 +00006362.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006363
Tim Northover675a0962014-06-13 14:24:23 +00006364 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006365
6366.. _i_frem:
6367
6368'``frem``' Instruction
6369^^^^^^^^^^^^^^^^^^^^^^
6370
6371Syntax:
6372"""""""
6373
6374::
6375
Tim Northover675a0962014-06-13 14:24:23 +00006376 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006377
6378Overview:
6379"""""""""
6380
6381The '``frem``' instruction returns the remainder from the division of
6382its two operands.
6383
6384Arguments:
6385""""""""""
6386
6387The two arguments to the '``frem``' instruction must be :ref:`floating
6388point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6389Both arguments must have identical types.
6390
6391Semantics:
6392""""""""""
6393
6394This instruction returns the *remainder* of a division. The remainder
6395has the same sign as the dividend. This instruction can also take any
6396number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6397to enable otherwise unsafe floating point optimizations:
6398
6399Example:
6400""""""""
6401
Renato Golin124f2592016-07-20 12:16:38 +00006402.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006403
Tim Northover675a0962014-06-13 14:24:23 +00006404 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006405
6406.. _bitwiseops:
6407
6408Bitwise Binary Operations
6409-------------------------
6410
6411Bitwise binary operators are used to do various forms of bit-twiddling
6412in a program. They are generally very efficient instructions and can
6413commonly be strength reduced from other instructions. They require two
6414operands of the same type, execute an operation on them, and produce a
6415single value. The resulting value is the same type as its operands.
6416
6417'``shl``' Instruction
6418^^^^^^^^^^^^^^^^^^^^^
6419
6420Syntax:
6421"""""""
6422
6423::
6424
Tim Northover675a0962014-06-13 14:24:23 +00006425 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6426 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6427 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6428 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006429
6430Overview:
6431"""""""""
6432
6433The '``shl``' instruction returns the first operand shifted to the left
6434a specified number of bits.
6435
6436Arguments:
6437""""""""""
6438
6439Both arguments to the '``shl``' instruction must be the same
6440:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6441'``op2``' is treated as an unsigned value.
6442
6443Semantics:
6444""""""""""
6445
6446The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6447where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006448dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006449``op1``, the result is undefined. If the arguments are vectors, each
6450vector element of ``op1`` is shifted by the corresponding shift amount
6451in ``op2``.
6452
6453If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6454value <poisonvalues>` if it shifts out any non-zero bits. If the
6455``nsw`` keyword is present, then the shift produces a :ref:`poison
6456value <poisonvalues>` if it shifts out any bits that disagree with the
Sanjoy Dasdbc58d02016-11-13 23:40:40 +00006457resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006458
6459Example:
6460""""""""
6461
Renato Golin124f2592016-07-20 12:16:38 +00006462.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006463
Tim Northover675a0962014-06-13 14:24:23 +00006464 <result> = shl i32 4, %var ; yields i32: 4 << %var
6465 <result> = shl i32 4, 2 ; yields i32: 16
6466 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006467 <result> = shl i32 1, 32 ; undefined
6468 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6469
6470'``lshr``' Instruction
6471^^^^^^^^^^^^^^^^^^^^^^
6472
6473Syntax:
6474"""""""
6475
6476::
6477
Tim Northover675a0962014-06-13 14:24:23 +00006478 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6479 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006480
6481Overview:
6482"""""""""
6483
6484The '``lshr``' instruction (logical shift right) returns the first
6485operand shifted to the right a specified number of bits with zero fill.
6486
6487Arguments:
6488""""""""""
6489
6490Both arguments to the '``lshr``' instruction must be the same
6491:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6492'``op2``' is treated as an unsigned value.
6493
6494Semantics:
6495""""""""""
6496
6497This instruction always performs a logical shift right operation. The
6498most significant bits of the result will be filled with zero bits after
6499the shift. If ``op2`` is (statically or dynamically) equal to or larger
6500than the number of bits in ``op1``, the result is undefined. If the
6501arguments are vectors, each vector element of ``op1`` is shifted by the
6502corresponding shift amount in ``op2``.
6503
6504If the ``exact`` keyword is present, the result value of the ``lshr`` is
6505a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6506non-zero.
6507
6508Example:
6509""""""""
6510
Renato Golin124f2592016-07-20 12:16:38 +00006511.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006512
Tim Northover675a0962014-06-13 14:24:23 +00006513 <result> = lshr i32 4, 1 ; yields i32:result = 2
6514 <result> = lshr i32 4, 2 ; yields i32:result = 1
6515 <result> = lshr i8 4, 3 ; yields i8:result = 0
6516 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006517 <result> = lshr i32 1, 32 ; undefined
6518 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6519
6520'``ashr``' Instruction
6521^^^^^^^^^^^^^^^^^^^^^^
6522
6523Syntax:
6524"""""""
6525
6526::
6527
Tim Northover675a0962014-06-13 14:24:23 +00006528 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6529 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006530
6531Overview:
6532"""""""""
6533
6534The '``ashr``' instruction (arithmetic shift right) returns the first
6535operand shifted to the right a specified number of bits with sign
6536extension.
6537
6538Arguments:
6539""""""""""
6540
6541Both arguments to the '``ashr``' instruction must be the same
6542:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6543'``op2``' is treated as an unsigned value.
6544
6545Semantics:
6546""""""""""
6547
6548This instruction always performs an arithmetic shift right operation,
6549The most significant bits of the result will be filled with the sign bit
6550of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6551than the number of bits in ``op1``, the result is undefined. If the
6552arguments are vectors, each vector element of ``op1`` is shifted by the
6553corresponding shift amount in ``op2``.
6554
6555If the ``exact`` keyword is present, the result value of the ``ashr`` is
6556a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6557non-zero.
6558
6559Example:
6560""""""""
6561
Renato Golin124f2592016-07-20 12:16:38 +00006562.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006563
Tim Northover675a0962014-06-13 14:24:23 +00006564 <result> = ashr i32 4, 1 ; yields i32:result = 2
6565 <result> = ashr i32 4, 2 ; yields i32:result = 1
6566 <result> = ashr i8 4, 3 ; yields i8:result = 0
6567 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006568 <result> = ashr i32 1, 32 ; undefined
6569 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6570
6571'``and``' Instruction
6572^^^^^^^^^^^^^^^^^^^^^
6573
6574Syntax:
6575"""""""
6576
6577::
6578
Tim Northover675a0962014-06-13 14:24:23 +00006579 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006580
6581Overview:
6582"""""""""
6583
6584The '``and``' instruction returns the bitwise logical and of its two
6585operands.
6586
6587Arguments:
6588""""""""""
6589
6590The two arguments to the '``and``' instruction must be
6591:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6592arguments must have identical types.
6593
6594Semantics:
6595""""""""""
6596
6597The truth table used for the '``and``' instruction is:
6598
6599+-----+-----+-----+
6600| In0 | In1 | Out |
6601+-----+-----+-----+
6602| 0 | 0 | 0 |
6603+-----+-----+-----+
6604| 0 | 1 | 0 |
6605+-----+-----+-----+
6606| 1 | 0 | 0 |
6607+-----+-----+-----+
6608| 1 | 1 | 1 |
6609+-----+-----+-----+
6610
6611Example:
6612""""""""
6613
Renato Golin124f2592016-07-20 12:16:38 +00006614.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006615
Tim Northover675a0962014-06-13 14:24:23 +00006616 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6617 <result> = and i32 15, 40 ; yields i32:result = 8
6618 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006619
6620'``or``' Instruction
6621^^^^^^^^^^^^^^^^^^^^
6622
6623Syntax:
6624"""""""
6625
6626::
6627
Tim Northover675a0962014-06-13 14:24:23 +00006628 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006629
6630Overview:
6631"""""""""
6632
6633The '``or``' instruction returns the bitwise logical inclusive or of its
6634two operands.
6635
6636Arguments:
6637""""""""""
6638
6639The two arguments to the '``or``' instruction must be
6640:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6641arguments must have identical types.
6642
6643Semantics:
6644""""""""""
6645
6646The truth table used for the '``or``' instruction is:
6647
6648+-----+-----+-----+
6649| In0 | In1 | Out |
6650+-----+-----+-----+
6651| 0 | 0 | 0 |
6652+-----+-----+-----+
6653| 0 | 1 | 1 |
6654+-----+-----+-----+
6655| 1 | 0 | 1 |
6656+-----+-----+-----+
6657| 1 | 1 | 1 |
6658+-----+-----+-----+
6659
6660Example:
6661""""""""
6662
6663::
6664
Tim Northover675a0962014-06-13 14:24:23 +00006665 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6666 <result> = or i32 15, 40 ; yields i32:result = 47
6667 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006668
6669'``xor``' Instruction
6670^^^^^^^^^^^^^^^^^^^^^
6671
6672Syntax:
6673"""""""
6674
6675::
6676
Tim Northover675a0962014-06-13 14:24:23 +00006677 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006678
6679Overview:
6680"""""""""
6681
6682The '``xor``' instruction returns the bitwise logical exclusive or of
6683its two operands. The ``xor`` is used to implement the "one's
6684complement" operation, which is the "~" operator in C.
6685
6686Arguments:
6687""""""""""
6688
6689The two arguments to the '``xor``' instruction must be
6690:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6691arguments must have identical types.
6692
6693Semantics:
6694""""""""""
6695
6696The truth table used for the '``xor``' instruction is:
6697
6698+-----+-----+-----+
6699| In0 | In1 | Out |
6700+-----+-----+-----+
6701| 0 | 0 | 0 |
6702+-----+-----+-----+
6703| 0 | 1 | 1 |
6704+-----+-----+-----+
6705| 1 | 0 | 1 |
6706+-----+-----+-----+
6707| 1 | 1 | 0 |
6708+-----+-----+-----+
6709
6710Example:
6711""""""""
6712
Renato Golin124f2592016-07-20 12:16:38 +00006713.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006714
Tim Northover675a0962014-06-13 14:24:23 +00006715 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6716 <result> = xor i32 15, 40 ; yields i32:result = 39
6717 <result> = xor i32 4, 8 ; yields i32:result = 12
6718 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006719
6720Vector Operations
6721-----------------
6722
6723LLVM supports several instructions to represent vector operations in a
6724target-independent manner. These instructions cover the element-access
6725and vector-specific operations needed to process vectors effectively.
6726While LLVM does directly support these vector operations, many
6727sophisticated algorithms will want to use target-specific intrinsics to
6728take full advantage of a specific target.
6729
6730.. _i_extractelement:
6731
6732'``extractelement``' Instruction
6733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6734
6735Syntax:
6736"""""""
6737
6738::
6739
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006740 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006741
6742Overview:
6743"""""""""
6744
6745The '``extractelement``' instruction extracts a single scalar element
6746from a vector at a specified index.
6747
6748Arguments:
6749""""""""""
6750
6751The first operand of an '``extractelement``' instruction is a value of
6752:ref:`vector <t_vector>` type. The second operand is an index indicating
6753the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006754variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006755
6756Semantics:
6757""""""""""
6758
6759The result is a scalar of the same type as the element type of ``val``.
6760Its value is the value at position ``idx`` of ``val``. If ``idx``
6761exceeds the length of ``val``, the results are undefined.
6762
6763Example:
6764""""""""
6765
Renato Golin124f2592016-07-20 12:16:38 +00006766.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006767
6768 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6769
6770.. _i_insertelement:
6771
6772'``insertelement``' Instruction
6773^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6774
6775Syntax:
6776"""""""
6777
6778::
6779
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006780 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006781
6782Overview:
6783"""""""""
6784
6785The '``insertelement``' instruction inserts a scalar element into a
6786vector at a specified index.
6787
6788Arguments:
6789""""""""""
6790
6791The first operand of an '``insertelement``' instruction is a value of
6792:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6793type must equal the element type of the first operand. The third operand
6794is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006795index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006796
6797Semantics:
6798""""""""""
6799
6800The result is a vector of the same type as ``val``. Its element values
6801are those of ``val`` except at position ``idx``, where it gets the value
6802``elt``. If ``idx`` exceeds the length of ``val``, the results are
6803undefined.
6804
6805Example:
6806""""""""
6807
Renato Golin124f2592016-07-20 12:16:38 +00006808.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006809
6810 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6811
6812.. _i_shufflevector:
6813
6814'``shufflevector``' Instruction
6815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6816
6817Syntax:
6818"""""""
6819
6820::
6821
6822 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6823
6824Overview:
6825"""""""""
6826
6827The '``shufflevector``' instruction constructs a permutation of elements
6828from two input vectors, returning a vector with the same element type as
6829the input and length that is the same as the shuffle mask.
6830
6831Arguments:
6832""""""""""
6833
6834The first two operands of a '``shufflevector``' instruction are vectors
6835with the same type. The third argument is a shuffle mask whose element
6836type is always 'i32'. The result of the instruction is a vector whose
6837length is the same as the shuffle mask and whose element type is the
6838same as the element type of the first two operands.
6839
6840The shuffle mask operand is required to be a constant vector with either
6841constant integer or undef values.
6842
6843Semantics:
6844""""""""""
6845
6846The elements of the two input vectors are numbered from left to right
6847across both of the vectors. The shuffle mask operand specifies, for each
6848element of the result vector, which element of the two input vectors the
6849result element gets. The element selector may be undef (meaning "don't
6850care") and the second operand may be undef if performing a shuffle from
6851only one vector.
6852
6853Example:
6854""""""""
6855
Renato Golin124f2592016-07-20 12:16:38 +00006856.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006857
6858 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6859 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6860 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6861 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6862 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6863 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6864 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6865 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6866
6867Aggregate Operations
6868--------------------
6869
6870LLVM supports several instructions for working with
6871:ref:`aggregate <t_aggregate>` values.
6872
6873.. _i_extractvalue:
6874
6875'``extractvalue``' Instruction
6876^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6877
6878Syntax:
6879"""""""
6880
6881::
6882
6883 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6884
6885Overview:
6886"""""""""
6887
6888The '``extractvalue``' instruction extracts the value of a member field
6889from an :ref:`aggregate <t_aggregate>` value.
6890
6891Arguments:
6892""""""""""
6893
6894The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006895:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006896constant indices to specify which value to extract in a similar manner
6897as indices in a '``getelementptr``' instruction.
6898
6899The major differences to ``getelementptr`` indexing are:
6900
6901- Since the value being indexed is not a pointer, the first index is
6902 omitted and assumed to be zero.
6903- At least one index must be specified.
6904- Not only struct indices but also array indices must be in bounds.
6905
6906Semantics:
6907""""""""""
6908
6909The result is the value at the position in the aggregate specified by
6910the index operands.
6911
6912Example:
6913""""""""
6914
Renato Golin124f2592016-07-20 12:16:38 +00006915.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006916
6917 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6918
6919.. _i_insertvalue:
6920
6921'``insertvalue``' Instruction
6922^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6923
6924Syntax:
6925"""""""
6926
6927::
6928
6929 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6930
6931Overview:
6932"""""""""
6933
6934The '``insertvalue``' instruction inserts a value into a member field in
6935an :ref:`aggregate <t_aggregate>` value.
6936
6937Arguments:
6938""""""""""
6939
6940The first operand of an '``insertvalue``' instruction is a value of
6941:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6942a first-class value to insert. The following operands are constant
6943indices indicating the position at which to insert the value in a
6944similar manner as indices in a '``extractvalue``' instruction. The value
6945to insert must have the same type as the value identified by the
6946indices.
6947
6948Semantics:
6949""""""""""
6950
6951The result is an aggregate of the same type as ``val``. Its value is
6952that of ``val`` except that the value at the position specified by the
6953indices is that of ``elt``.
6954
6955Example:
6956""""""""
6957
6958.. code-block:: llvm
6959
6960 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6961 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006962 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006963
6964.. _memoryops:
6965
6966Memory Access and Addressing Operations
6967---------------------------------------
6968
6969A key design point of an SSA-based representation is how it represents
6970memory. In LLVM, no memory locations are in SSA form, which makes things
6971very simple. This section describes how to read, write, and allocate
6972memory in LLVM.
6973
6974.. _i_alloca:
6975
6976'``alloca``' Instruction
6977^^^^^^^^^^^^^^^^^^^^^^^^
6978
6979Syntax:
6980"""""""
6981
6982::
6983
Tim Northover675a0962014-06-13 14:24:23 +00006984 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006985
6986Overview:
6987"""""""""
6988
6989The '``alloca``' instruction allocates memory on the stack frame of the
6990currently executing function, to be automatically released when this
6991function returns to its caller. The object is always allocated in the
6992generic address space (address space zero).
6993
6994Arguments:
6995""""""""""
6996
6997The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6998bytes of memory on the runtime stack, returning a pointer of the
6999appropriate type to the program. If "NumElements" is specified, it is
7000the number of elements allocated, otherwise "NumElements" is defaulted
7001to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007002allocation is guaranteed to be aligned to at least that boundary. The
7003alignment may not be greater than ``1 << 29``. If not specified, or if
7004zero, the target can choose to align the allocation on any convenient
7005boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007006
7007'``type``' may be any sized type.
7008
7009Semantics:
7010""""""""""
7011
7012Memory is allocated; a pointer is returned. The operation is undefined
7013if there is insufficient stack space for the allocation. '``alloca``'d
7014memory is automatically released when the function returns. The
7015'``alloca``' instruction is commonly used to represent automatic
7016variables that must have an address available. When the function returns
7017(either with the ``ret`` or ``resume`` instructions), the memory is
7018reclaimed. Allocating zero bytes is legal, but the result is undefined.
7019The order in which memory is allocated (ie., which way the stack grows)
7020is not specified.
7021
7022Example:
7023""""""""
7024
7025.. code-block:: llvm
7026
Tim Northover675a0962014-06-13 14:24:23 +00007027 %ptr = alloca i32 ; yields i32*:ptr
7028 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7029 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7030 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007031
7032.. _i_load:
7033
7034'``load``' Instruction
7035^^^^^^^^^^^^^^^^^^^^^^
7036
7037Syntax:
7038"""""""
7039
7040::
7041
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007042 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007043 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007044 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007045 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007046 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007047
7048Overview:
7049"""""""""
7050
7051The '``load``' instruction is used to read from memory.
7052
7053Arguments:
7054""""""""""
7055
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007056The argument to the ``load`` instruction specifies the memory address from which
7057to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7058known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7059the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7060modify the number or order of execution of this ``load`` with other
7061:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007062
JF Bastiend1fb5852015-12-17 22:09:19 +00007063If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7064<ordering>` and optional ``singlethread`` argument. The ``release`` and
7065``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7066produce :ref:`defined <memmodel>` results when they may see multiple atomic
7067stores. The type of the pointee must be an integer, pointer, or floating-point
7068type whose bit width is a power of two greater than or equal to eight and less
7069than or equal to a target-specific size limit. ``align`` must be explicitly
7070specified on atomic loads, and the load has undefined behavior if the alignment
7071is not set to a value which is at least the size in bytes of the
7072pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007073
7074The optional constant ``align`` argument specifies the alignment of the
7075operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007076or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007077alignment for the target. It is the responsibility of the code emitter
7078to ensure that the alignment information is correct. Overestimating the
7079alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007080may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007081maximum possible alignment is ``1 << 29``. An alignment value higher
7082than the size of the loaded type implies memory up to the alignment
7083value bytes can be safely loaded without trapping in the default
7084address space. Access of the high bytes can interfere with debugging
7085tools, so should not be accessed if the function has the
7086``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007087
7088The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007089metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007090``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007091metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007092that this load is not expected to be reused in the cache. The code
7093generator may select special instructions to save cache bandwidth, such
7094as the ``MOVNT`` instruction on x86.
7095
7096The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007097metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007098entries. If a load instruction tagged with the ``!invariant.load``
7099metadata is executed, the optimizer may assume the memory location
7100referenced by the load contains the same value at all points in the
7101program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007102
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007103The optional ``!invariant.group`` metadata must reference a single metadata name
7104 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7105
Philip Reamescdb72f32014-10-20 22:40:55 +00007106The optional ``!nonnull`` metadata must reference a single
7107metadata name ``<index>`` corresponding to a metadata node with no
7108entries. The existence of the ``!nonnull`` metadata on the
7109instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007110never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007111on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007112to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007113
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007114The optional ``!dereferenceable`` metadata must reference a single metadata
7115name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007116entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007117tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007118The number of bytes known to be dereferenceable is specified by the integer
7119value in the metadata node. This is analogous to the ''dereferenceable''
7120attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007121to loads of a pointer type.
7122
7123The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007124metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7125``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007126instruction tells the optimizer that the value loaded is known to be either
7127dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007128The number of bytes known to be dereferenceable is specified by the integer
7129value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7130attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007131to loads of a pointer type.
7132
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007133The optional ``!align`` metadata must reference a single metadata name
7134``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7135The existence of the ``!align`` metadata on the instruction tells the
7136optimizer that the value loaded is known to be aligned to a boundary specified
7137by the integer value in the metadata node. The alignment must be a power of 2.
7138This is analogous to the ''align'' attribute on parameters and return values.
7139This metadata can only be applied to loads of a pointer type.
7140
Sean Silvab084af42012-12-07 10:36:55 +00007141Semantics:
7142""""""""""
7143
7144The location of memory pointed to is loaded. If the value being loaded
7145is of scalar type then the number of bytes read does not exceed the
7146minimum number of bytes needed to hold all bits of the type. For
7147example, loading an ``i24`` reads at most three bytes. When loading a
7148value of a type like ``i20`` with a size that is not an integral number
7149of bytes, the result is undefined if the value was not originally
7150written using a store of the same type.
7151
7152Examples:
7153"""""""""
7154
7155.. code-block:: llvm
7156
Tim Northover675a0962014-06-13 14:24:23 +00007157 %ptr = alloca i32 ; yields i32*:ptr
7158 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007159 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007160
7161.. _i_store:
7162
7163'``store``' Instruction
7164^^^^^^^^^^^^^^^^^^^^^^^
7165
7166Syntax:
7167"""""""
7168
7169::
7170
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007171 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7172 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007173
7174Overview:
7175"""""""""
7176
7177The '``store``' instruction is used to write to memory.
7178
7179Arguments:
7180""""""""""
7181
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007182There are two arguments to the ``store`` instruction: a value to store and an
7183address at which to store it. The type of the ``<pointer>`` operand must be a
7184pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7185operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7186allowed to modify the number or order of execution of this ``store`` with other
7187:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7188<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7189structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007190
JF Bastiend1fb5852015-12-17 22:09:19 +00007191If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7192<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7193``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7194produce :ref:`defined <memmodel>` results when they may see multiple atomic
7195stores. The type of the pointee must be an integer, pointer, or floating-point
7196type whose bit width is a power of two greater than or equal to eight and less
7197than or equal to a target-specific size limit. ``align`` must be explicitly
7198specified on atomic stores, and the store has undefined behavior if the
7199alignment is not set to a value which is at least the size in bytes of the
7200pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007201
Eli Benderskyca380842013-04-17 17:17:20 +00007202The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007203operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007204or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007205alignment for the target. It is the responsibility of the code emitter
7206to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007207alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007208alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007209safe. The maximum possible alignment is ``1 << 29``. An alignment
7210value higher than the size of the stored type implies memory up to the
7211alignment value bytes can be stored to without trapping in the default
7212address space. Storing to the higher bytes however may result in data
7213races if another thread can access the same address. Introducing a
7214data race is not allowed. Storing to the extra bytes is not allowed
7215even in situations where a data race is known to not exist if the
7216function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007217
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007218The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007219name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007220value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007221tells the optimizer and code generator that this load is not expected to
7222be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007223instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007224x86.
7225
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007226The optional ``!invariant.group`` metadata must reference a
7227single metadata name ``<index>``. See ``invariant.group`` metadata.
7228
Sean Silvab084af42012-12-07 10:36:55 +00007229Semantics:
7230""""""""""
7231
Eli Benderskyca380842013-04-17 17:17:20 +00007232The contents of memory are updated to contain ``<value>`` at the
7233location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007234of scalar type then the number of bytes written does not exceed the
7235minimum number of bytes needed to hold all bits of the type. For
7236example, storing an ``i24`` writes at most three bytes. When writing a
7237value of a type like ``i20`` with a size that is not an integral number
7238of bytes, it is unspecified what happens to the extra bits that do not
7239belong to the type, but they will typically be overwritten.
7240
7241Example:
7242""""""""
7243
7244.. code-block:: llvm
7245
Tim Northover675a0962014-06-13 14:24:23 +00007246 %ptr = alloca i32 ; yields i32*:ptr
7247 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007248 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007249
7250.. _i_fence:
7251
7252'``fence``' Instruction
7253^^^^^^^^^^^^^^^^^^^^^^^
7254
7255Syntax:
7256"""""""
7257
7258::
7259
Tim Northover675a0962014-06-13 14:24:23 +00007260 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007261
7262Overview:
7263"""""""""
7264
7265The '``fence``' instruction is used to introduce happens-before edges
7266between operations.
7267
7268Arguments:
7269""""""""""
7270
7271'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7272defines what *synchronizes-with* edges they add. They can only be given
7273``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7274
7275Semantics:
7276""""""""""
7277
7278A fence A which has (at least) ``release`` ordering semantics
7279*synchronizes with* a fence B with (at least) ``acquire`` ordering
7280semantics if and only if there exist atomic operations X and Y, both
7281operating on some atomic object M, such that A is sequenced before X, X
7282modifies M (either directly or through some side effect of a sequence
7283headed by X), Y is sequenced before B, and Y observes M. This provides a
7284*happens-before* dependency between A and B. Rather than an explicit
7285``fence``, one (but not both) of the atomic operations X or Y might
7286provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7287still *synchronize-with* the explicit ``fence`` and establish the
7288*happens-before* edge.
7289
7290A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7291``acquire`` and ``release`` semantics specified above, participates in
7292the global program order of other ``seq_cst`` operations and/or fences.
7293
7294The optional ":ref:`singlethread <singlethread>`" argument specifies
7295that the fence only synchronizes with other fences in the same thread.
7296(This is useful for interacting with signal handlers.)
7297
7298Example:
7299""""""""
7300
7301.. code-block:: llvm
7302
Tim Northover675a0962014-06-13 14:24:23 +00007303 fence acquire ; yields void
7304 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007305
7306.. _i_cmpxchg:
7307
7308'``cmpxchg``' Instruction
7309^^^^^^^^^^^^^^^^^^^^^^^^^
7310
7311Syntax:
7312"""""""
7313
7314::
7315
Tim Northover675a0962014-06-13 14:24:23 +00007316 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007317
7318Overview:
7319"""""""""
7320
7321The '``cmpxchg``' instruction is used to atomically modify memory. It
7322loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007323equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007324
7325Arguments:
7326""""""""""
7327
7328There are three arguments to the '``cmpxchg``' instruction: an address
7329to operate on, a value to compare to the value currently be at that
7330address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007331are equal. The type of '<cmp>' must be an integer or pointer type whose
7332bit width is a power of two greater than or equal to eight and less
7333than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7334have the same type, and the type of '<pointer>' must be a pointer to
7335that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7336optimizer is not allowed to modify the number or order of execution of
7337this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007338
Tim Northovere94a5182014-03-11 10:48:52 +00007339The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007340``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7341must be at least ``monotonic``, the ordering constraint on failure must be no
7342stronger than that on success, and the failure ordering cannot be either
7343``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007344
7345The optional "``singlethread``" argument declares that the ``cmpxchg``
7346is only atomic with respect to code (usually signal handlers) running in
7347the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7348respect to all other code in the system.
7349
7350The pointer passed into cmpxchg must have alignment greater than or
7351equal to the size in memory of the operand.
7352
7353Semantics:
7354""""""""""
7355
Tim Northover420a2162014-06-13 14:24:07 +00007356The contents of memory at the location specified by the '``<pointer>``' operand
7357is read and compared to '``<cmp>``'; if the read value is the equal, the
7358'``<new>``' is written. The original value at the location is returned, together
7359with a flag indicating success (true) or failure (false).
7360
7361If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7362permitted: the operation may not write ``<new>`` even if the comparison
7363matched.
7364
7365If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7366if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007367
Tim Northovere94a5182014-03-11 10:48:52 +00007368A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7369identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7370load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007371
7372Example:
7373""""""""
7374
7375.. code-block:: llvm
7376
7377 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007378 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007379 br label %loop
7380
7381 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007382 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007383 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007384 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007385 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7386 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007387 br i1 %success, label %done, label %loop
7388
7389 done:
7390 ...
7391
7392.. _i_atomicrmw:
7393
7394'``atomicrmw``' Instruction
7395^^^^^^^^^^^^^^^^^^^^^^^^^^^
7396
7397Syntax:
7398"""""""
7399
7400::
7401
Tim Northover675a0962014-06-13 14:24:23 +00007402 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007403
7404Overview:
7405"""""""""
7406
7407The '``atomicrmw``' instruction is used to atomically modify memory.
7408
7409Arguments:
7410""""""""""
7411
7412There are three arguments to the '``atomicrmw``' instruction: an
7413operation to apply, an address whose value to modify, an argument to the
7414operation. The operation must be one of the following keywords:
7415
7416- xchg
7417- add
7418- sub
7419- and
7420- nand
7421- or
7422- xor
7423- max
7424- min
7425- umax
7426- umin
7427
7428The type of '<value>' must be an integer type whose bit width is a power
7429of two greater than or equal to eight and less than or equal to a
7430target-specific size limit. The type of the '``<pointer>``' operand must
7431be a pointer to that type. If the ``atomicrmw`` is marked as
7432``volatile``, then the optimizer is not allowed to modify the number or
7433order of execution of this ``atomicrmw`` with other :ref:`volatile
7434operations <volatile>`.
7435
7436Semantics:
7437""""""""""
7438
7439The contents of memory at the location specified by the '``<pointer>``'
7440operand are atomically read, modified, and written back. The original
7441value at the location is returned. The modification is specified by the
7442operation argument:
7443
7444- xchg: ``*ptr = val``
7445- add: ``*ptr = *ptr + val``
7446- sub: ``*ptr = *ptr - val``
7447- and: ``*ptr = *ptr & val``
7448- nand: ``*ptr = ~(*ptr & val)``
7449- or: ``*ptr = *ptr | val``
7450- xor: ``*ptr = *ptr ^ val``
7451- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7452- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7453- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7454 comparison)
7455- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7456 comparison)
7457
7458Example:
7459""""""""
7460
7461.. code-block:: llvm
7462
Tim Northover675a0962014-06-13 14:24:23 +00007463 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007464
7465.. _i_getelementptr:
7466
7467'``getelementptr``' Instruction
7468^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7469
7470Syntax:
7471"""""""
7472
7473::
7474
Peter Collingbourned93620b2016-11-10 22:34:55 +00007475 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7476 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7477 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007478
7479Overview:
7480"""""""""
7481
7482The '``getelementptr``' instruction is used to get the address of a
7483subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007484address calculation only and does not access memory. The instruction can also
7485be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007486
7487Arguments:
7488""""""""""
7489
David Blaikie16a97eb2015-03-04 22:02:58 +00007490The first argument is always a type used as the basis for the calculations.
7491The second argument is always a pointer or a vector of pointers, and is the
7492base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007493that indicate which of the elements of the aggregate object are indexed.
7494The interpretation of each index is dependent on the type being indexed
7495into. The first index always indexes the pointer value given as the
7496first argument, the second index indexes a value of the type pointed to
7497(not necessarily the value directly pointed to, since the first index
7498can be non-zero), etc. The first type indexed into must be a pointer
7499value, subsequent types can be arrays, vectors, and structs. Note that
7500subsequent types being indexed into can never be pointers, since that
7501would require loading the pointer before continuing calculation.
7502
7503The type of each index argument depends on the type it is indexing into.
7504When indexing into a (optionally packed) structure, only ``i32`` integer
7505**constants** are allowed (when using a vector of indices they must all
7506be the **same** ``i32`` integer constant). When indexing into an array,
7507pointer or vector, integers of any width are allowed, and they are not
7508required to be constant. These integers are treated as signed values
7509where relevant.
7510
7511For example, let's consider a C code fragment and how it gets compiled
7512to LLVM:
7513
7514.. code-block:: c
7515
7516 struct RT {
7517 char A;
7518 int B[10][20];
7519 char C;
7520 };
7521 struct ST {
7522 int X;
7523 double Y;
7524 struct RT Z;
7525 };
7526
7527 int *foo(struct ST *s) {
7528 return &s[1].Z.B[5][13];
7529 }
7530
7531The LLVM code generated by Clang is:
7532
7533.. code-block:: llvm
7534
7535 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7536 %struct.ST = type { i32, double, %struct.RT }
7537
7538 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7539 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007540 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007541 ret i32* %arrayidx
7542 }
7543
7544Semantics:
7545""""""""""
7546
7547In the example above, the first index is indexing into the
7548'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7549= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7550indexes into the third element of the structure, yielding a
7551'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7552structure. The third index indexes into the second element of the
7553structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7554dimensions of the array are subscripted into, yielding an '``i32``'
7555type. The '``getelementptr``' instruction returns a pointer to this
7556element, thus computing a value of '``i32*``' type.
7557
7558Note that it is perfectly legal to index partially through a structure,
7559returning a pointer to an inner element. Because of this, the LLVM code
7560for the given testcase is equivalent to:
7561
7562.. code-block:: llvm
7563
7564 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007565 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7566 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7567 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7568 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7569 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007570 ret i32* %t5
7571 }
7572
7573If the ``inbounds`` keyword is present, the result value of the
7574``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7575pointer is not an *in bounds* address of an allocated object, or if any
7576of the addresses that would be formed by successive addition of the
7577offsets implied by the indices to the base address with infinitely
7578precise signed arithmetic are not an *in bounds* address of that
7579allocated object. The *in bounds* addresses for an allocated object are
7580all the addresses that point into the object, plus the address one byte
7581past the end. In cases where the base is a vector of pointers the
7582``inbounds`` keyword applies to each of the computations element-wise.
7583
7584If the ``inbounds`` keyword is not present, the offsets are added to the
7585base address with silently-wrapping two's complement arithmetic. If the
7586offsets have a different width from the pointer, they are sign-extended
7587or truncated to the width of the pointer. The result value of the
7588``getelementptr`` may be outside the object pointed to by the base
7589pointer. The result value may not necessarily be used to access memory
7590though, even if it happens to point into allocated storage. See the
7591:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7592information.
7593
Peter Collingbourned93620b2016-11-10 22:34:55 +00007594If the ``inrange`` keyword is present before any index, loading from or
7595storing to any pointer derived from the ``getelementptr`` has undefined
7596behavior if the load or store would access memory outside of the bounds of
7597the element selected by the index marked as ``inrange``. The result of a
7598pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7599involving memory) involving a pointer derived from a ``getelementptr`` with
7600the ``inrange`` keyword is undefined, with the exception of comparisons
7601in the case where both operands are in the range of the element selected
7602by the ``inrange`` keyword, inclusive of the address one past the end of
7603that element. Note that the ``inrange`` keyword is currently only allowed
7604in constant ``getelementptr`` expressions.
7605
Sean Silvab084af42012-12-07 10:36:55 +00007606The getelementptr instruction is often confusing. For some more insight
7607into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7608
7609Example:
7610""""""""
7611
7612.. code-block:: llvm
7613
7614 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007615 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007616 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007617 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007618 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007619 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007620 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007621 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007622
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007623Vector of pointers:
7624"""""""""""""""""""
7625
7626The ``getelementptr`` returns a vector of pointers, instead of a single address,
7627when one or more of its arguments is a vector. In such cases, all vector
7628arguments should have the same number of elements, and every scalar argument
7629will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007630
7631.. code-block:: llvm
7632
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007633 ; All arguments are vectors:
7634 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7635 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007636
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007637 ; Add the same scalar offset to each pointer of a vector:
7638 ; A[i] = ptrs[i] + offset*sizeof(i8)
7639 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007640
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007641 ; Add distinct offsets to the same pointer:
7642 ; A[i] = ptr + offsets[i]*sizeof(i8)
7643 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007644
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007645 ; In all cases described above the type of the result is <4 x i8*>
7646
7647The two following instructions are equivalent:
7648
7649.. code-block:: llvm
7650
7651 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7652 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7653 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7654 <4 x i32> %ind4,
7655 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007656
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007657 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7658 i32 2, i32 1, <4 x i32> %ind4, i64 13
7659
7660Let's look at the C code, where the vector version of ``getelementptr``
7661makes sense:
7662
7663.. code-block:: c
7664
7665 // Let's assume that we vectorize the following loop:
7666 double *A, B; int *C;
7667 for (int i = 0; i < size; ++i) {
7668 A[i] = B[C[i]];
7669 }
7670
7671.. code-block:: llvm
7672
7673 ; get pointers for 8 elements from array B
7674 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7675 ; load 8 elements from array B into A
7676 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7677 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007678
7679Conversion Operations
7680---------------------
7681
7682The instructions in this category are the conversion instructions
7683(casting) which all take a single operand and a type. They perform
7684various bit conversions on the operand.
7685
7686'``trunc .. to``' Instruction
7687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7688
7689Syntax:
7690"""""""
7691
7692::
7693
7694 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7695
7696Overview:
7697"""""""""
7698
7699The '``trunc``' instruction truncates its operand to the type ``ty2``.
7700
7701Arguments:
7702""""""""""
7703
7704The '``trunc``' instruction takes a value to trunc, and a type to trunc
7705it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7706of the same number of integers. The bit size of the ``value`` must be
7707larger than the bit size of the destination type, ``ty2``. Equal sized
7708types are not allowed.
7709
7710Semantics:
7711""""""""""
7712
7713The '``trunc``' instruction truncates the high order bits in ``value``
7714and converts the remaining bits to ``ty2``. Since the source size must
7715be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7716It will always truncate bits.
7717
7718Example:
7719""""""""
7720
7721.. code-block:: llvm
7722
7723 %X = trunc i32 257 to i8 ; yields i8:1
7724 %Y = trunc i32 123 to i1 ; yields i1:true
7725 %Z = trunc i32 122 to i1 ; yields i1:false
7726 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7727
7728'``zext .. to``' Instruction
7729^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7730
7731Syntax:
7732"""""""
7733
7734::
7735
7736 <result> = zext <ty> <value> to <ty2> ; yields ty2
7737
7738Overview:
7739"""""""""
7740
7741The '``zext``' instruction zero extends its operand to type ``ty2``.
7742
7743Arguments:
7744""""""""""
7745
7746The '``zext``' instruction takes a value to cast, and a type to cast it
7747to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7748the same number of integers. The bit size of the ``value`` must be
7749smaller than the bit size of the destination type, ``ty2``.
7750
7751Semantics:
7752""""""""""
7753
7754The ``zext`` fills the high order bits of the ``value`` with zero bits
7755until it reaches the size of the destination type, ``ty2``.
7756
7757When zero extending from i1, the result will always be either 0 or 1.
7758
7759Example:
7760""""""""
7761
7762.. code-block:: llvm
7763
7764 %X = zext i32 257 to i64 ; yields i64:257
7765 %Y = zext i1 true to i32 ; yields i32:1
7766 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7767
7768'``sext .. to``' Instruction
7769^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7770
7771Syntax:
7772"""""""
7773
7774::
7775
7776 <result> = sext <ty> <value> to <ty2> ; yields ty2
7777
7778Overview:
7779"""""""""
7780
7781The '``sext``' sign extends ``value`` to the type ``ty2``.
7782
7783Arguments:
7784""""""""""
7785
7786The '``sext``' instruction takes a value to cast, and a type to cast it
7787to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7788the same number of integers. The bit size of the ``value`` must be
7789smaller than the bit size of the destination type, ``ty2``.
7790
7791Semantics:
7792""""""""""
7793
7794The '``sext``' instruction performs a sign extension by copying the sign
7795bit (highest order bit) of the ``value`` until it reaches the bit size
7796of the type ``ty2``.
7797
7798When sign extending from i1, the extension always results in -1 or 0.
7799
7800Example:
7801""""""""
7802
7803.. code-block:: llvm
7804
7805 %X = sext i8 -1 to i16 ; yields i16 :65535
7806 %Y = sext i1 true to i32 ; yields i32:-1
7807 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7808
7809'``fptrunc .. to``' Instruction
7810^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7811
7812Syntax:
7813"""""""
7814
7815::
7816
7817 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7818
7819Overview:
7820"""""""""
7821
7822The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7823
7824Arguments:
7825""""""""""
7826
7827The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7828value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7829The size of ``value`` must be larger than the size of ``ty2``. This
7830implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7831
7832Semantics:
7833""""""""""
7834
Dan Liew50456fb2015-09-03 18:43:56 +00007835The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007836:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007837point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7838destination type, ``ty2``, then the results are undefined. If the cast produces
7839an inexact result, how rounding is performed (e.g. truncation, also known as
7840round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007841
7842Example:
7843""""""""
7844
7845.. code-block:: llvm
7846
7847 %X = fptrunc double 123.0 to float ; yields float:123.0
7848 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7849
7850'``fpext .. to``' Instruction
7851^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7852
7853Syntax:
7854"""""""
7855
7856::
7857
7858 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7859
7860Overview:
7861"""""""""
7862
7863The '``fpext``' extends a floating point ``value`` to a larger floating
7864point value.
7865
7866Arguments:
7867""""""""""
7868
7869The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7870``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7871to. The source type must be smaller than the destination type.
7872
7873Semantics:
7874""""""""""
7875
7876The '``fpext``' instruction extends the ``value`` from a smaller
7877:ref:`floating point <t_floating>` type to a larger :ref:`floating
7878point <t_floating>` type. The ``fpext`` cannot be used to make a
7879*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7880*no-op cast* for a floating point cast.
7881
7882Example:
7883""""""""
7884
7885.. code-block:: llvm
7886
7887 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7888 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7889
7890'``fptoui .. to``' Instruction
7891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7892
7893Syntax:
7894"""""""
7895
7896::
7897
7898 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7899
7900Overview:
7901"""""""""
7902
7903The '``fptoui``' converts a floating point ``value`` to its unsigned
7904integer equivalent of type ``ty2``.
7905
7906Arguments:
7907""""""""""
7908
7909The '``fptoui``' instruction takes a value to cast, which must be a
7910scalar or vector :ref:`floating point <t_floating>` value, and a type to
7911cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7912``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7913type with the same number of elements as ``ty``
7914
7915Semantics:
7916""""""""""
7917
7918The '``fptoui``' instruction converts its :ref:`floating
7919point <t_floating>` operand into the nearest (rounding towards zero)
7920unsigned integer value. If the value cannot fit in ``ty2``, the results
7921are undefined.
7922
7923Example:
7924""""""""
7925
7926.. code-block:: llvm
7927
7928 %X = fptoui double 123.0 to i32 ; yields i32:123
7929 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7930 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7931
7932'``fptosi .. to``' Instruction
7933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7934
7935Syntax:
7936"""""""
7937
7938::
7939
7940 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7941
7942Overview:
7943"""""""""
7944
7945The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7946``value`` to type ``ty2``.
7947
7948Arguments:
7949""""""""""
7950
7951The '``fptosi``' instruction takes a value to cast, which must be a
7952scalar or vector :ref:`floating point <t_floating>` value, and a type to
7953cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7954``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7955type with the same number of elements as ``ty``
7956
7957Semantics:
7958""""""""""
7959
7960The '``fptosi``' instruction converts its :ref:`floating
7961point <t_floating>` operand into the nearest (rounding towards zero)
7962signed integer value. If the value cannot fit in ``ty2``, the results
7963are undefined.
7964
7965Example:
7966""""""""
7967
7968.. code-block:: llvm
7969
7970 %X = fptosi double -123.0 to i32 ; yields i32:-123
7971 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7972 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7973
7974'``uitofp .. to``' Instruction
7975^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7976
7977Syntax:
7978"""""""
7979
7980::
7981
7982 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7983
7984Overview:
7985"""""""""
7986
7987The '``uitofp``' instruction regards ``value`` as an unsigned integer
7988and converts that value to the ``ty2`` type.
7989
7990Arguments:
7991""""""""""
7992
7993The '``uitofp``' instruction takes a value to cast, which must be a
7994scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7995``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7996``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7997type with the same number of elements as ``ty``
7998
7999Semantics:
8000""""""""""
8001
8002The '``uitofp``' instruction interprets its operand as an unsigned
8003integer quantity and converts it to the corresponding floating point
8004value. If the value cannot fit in the floating point value, the results
8005are undefined.
8006
8007Example:
8008""""""""
8009
8010.. code-block:: llvm
8011
8012 %X = uitofp i32 257 to float ; yields float:257.0
8013 %Y = uitofp i8 -1 to double ; yields double:255.0
8014
8015'``sitofp .. to``' Instruction
8016^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8017
8018Syntax:
8019"""""""
8020
8021::
8022
8023 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8024
8025Overview:
8026"""""""""
8027
8028The '``sitofp``' instruction regards ``value`` as a signed integer and
8029converts that value to the ``ty2`` type.
8030
8031Arguments:
8032""""""""""
8033
8034The '``sitofp``' instruction takes a value to cast, which must be a
8035scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8036``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8037``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8038type with the same number of elements as ``ty``
8039
8040Semantics:
8041""""""""""
8042
8043The '``sitofp``' instruction interprets its operand as a signed integer
8044quantity and converts it to the corresponding floating point value. If
8045the value cannot fit in the floating point value, the results are
8046undefined.
8047
8048Example:
8049""""""""
8050
8051.. code-block:: llvm
8052
8053 %X = sitofp i32 257 to float ; yields float:257.0
8054 %Y = sitofp i8 -1 to double ; yields double:-1.0
8055
8056.. _i_ptrtoint:
8057
8058'``ptrtoint .. to``' Instruction
8059^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8060
8061Syntax:
8062"""""""
8063
8064::
8065
8066 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8067
8068Overview:
8069"""""""""
8070
8071The '``ptrtoint``' instruction converts the pointer or a vector of
8072pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8073
8074Arguments:
8075""""""""""
8076
8077The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008078a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008079type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8080a vector of integers type.
8081
8082Semantics:
8083""""""""""
8084
8085The '``ptrtoint``' instruction converts ``value`` to integer type
8086``ty2`` by interpreting the pointer value as an integer and either
8087truncating or zero extending that value to the size of the integer type.
8088If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8089``value`` is larger than ``ty2`` then a truncation is done. If they are
8090the same size, then nothing is done (*no-op cast*) other than a type
8091change.
8092
8093Example:
8094""""""""
8095
8096.. code-block:: llvm
8097
8098 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8099 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8100 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8101
8102.. _i_inttoptr:
8103
8104'``inttoptr .. to``' Instruction
8105^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8106
8107Syntax:
8108"""""""
8109
8110::
8111
8112 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8113
8114Overview:
8115"""""""""
8116
8117The '``inttoptr``' instruction converts an integer ``value`` to a
8118pointer type, ``ty2``.
8119
8120Arguments:
8121""""""""""
8122
8123The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8124cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8125type.
8126
8127Semantics:
8128""""""""""
8129
8130The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8131applying either a zero extension or a truncation depending on the size
8132of the integer ``value``. If ``value`` is larger than the size of a
8133pointer then a truncation is done. If ``value`` is smaller than the size
8134of a pointer then a zero extension is done. If they are the same size,
8135nothing is done (*no-op cast*).
8136
8137Example:
8138""""""""
8139
8140.. code-block:: llvm
8141
8142 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8143 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8144 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8145 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8146
8147.. _i_bitcast:
8148
8149'``bitcast .. to``' Instruction
8150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8151
8152Syntax:
8153"""""""
8154
8155::
8156
8157 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8158
8159Overview:
8160"""""""""
8161
8162The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8163changing any bits.
8164
8165Arguments:
8166""""""""""
8167
8168The '``bitcast``' instruction takes a value to cast, which must be a
8169non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008170also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8171bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008172identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008173also be a pointer of the same size. This instruction supports bitwise
8174conversion of vectors to integers and to vectors of other types (as
8175long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008176
8177Semantics:
8178""""""""""
8179
Matt Arsenault24b49c42013-07-31 17:49:08 +00008180The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8181is always a *no-op cast* because no bits change with this
8182conversion. The conversion is done as if the ``value`` had been stored
8183to memory and read back as type ``ty2``. Pointer (or vector of
8184pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008185pointers) types with the same address space through this instruction.
8186To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8187or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008188
8189Example:
8190""""""""
8191
Renato Golin124f2592016-07-20 12:16:38 +00008192.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008193
8194 %X = bitcast i8 255 to i8 ; yields i8 :-1
8195 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8196 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8197 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8198
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008199.. _i_addrspacecast:
8200
8201'``addrspacecast .. to``' Instruction
8202^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8203
8204Syntax:
8205"""""""
8206
8207::
8208
8209 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8210
8211Overview:
8212"""""""""
8213
8214The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8215address space ``n`` to type ``pty2`` in address space ``m``.
8216
8217Arguments:
8218""""""""""
8219
8220The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8221to cast and a pointer type to cast it to, which must have a different
8222address space.
8223
8224Semantics:
8225""""""""""
8226
8227The '``addrspacecast``' instruction converts the pointer value
8228``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008229value modification, depending on the target and the address space
8230pair. Pointer conversions within the same address space must be
8231performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008232conversion is legal then both result and operand refer to the same memory
8233location.
8234
8235Example:
8236""""""""
8237
8238.. code-block:: llvm
8239
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008240 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8241 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8242 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008243
Sean Silvab084af42012-12-07 10:36:55 +00008244.. _otherops:
8245
8246Other Operations
8247----------------
8248
8249The instructions in this category are the "miscellaneous" instructions,
8250which defy better classification.
8251
8252.. _i_icmp:
8253
8254'``icmp``' Instruction
8255^^^^^^^^^^^^^^^^^^^^^^
8256
8257Syntax:
8258"""""""
8259
8260::
8261
Tim Northover675a0962014-06-13 14:24:23 +00008262 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008263
8264Overview:
8265"""""""""
8266
8267The '``icmp``' instruction returns a boolean value or a vector of
8268boolean values based on comparison of its two integer, integer vector,
8269pointer, or pointer vector operands.
8270
8271Arguments:
8272""""""""""
8273
8274The '``icmp``' instruction takes three operands. The first operand is
8275the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008276not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008277
8278#. ``eq``: equal
8279#. ``ne``: not equal
8280#. ``ugt``: unsigned greater than
8281#. ``uge``: unsigned greater or equal
8282#. ``ult``: unsigned less than
8283#. ``ule``: unsigned less or equal
8284#. ``sgt``: signed greater than
8285#. ``sge``: signed greater or equal
8286#. ``slt``: signed less than
8287#. ``sle``: signed less or equal
8288
8289The remaining two arguments must be :ref:`integer <t_integer>` or
8290:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8291must also be identical types.
8292
8293Semantics:
8294""""""""""
8295
8296The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8297code given as ``cond``. The comparison performed always yields either an
8298:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8299
8300#. ``eq``: yields ``true`` if the operands are equal, ``false``
8301 otherwise. No sign interpretation is necessary or performed.
8302#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8303 otherwise. No sign interpretation is necessary or performed.
8304#. ``ugt``: interprets the operands as unsigned values and yields
8305 ``true`` if ``op1`` is greater than ``op2``.
8306#. ``uge``: interprets the operands as unsigned values and yields
8307 ``true`` if ``op1`` is greater than or equal to ``op2``.
8308#. ``ult``: interprets the operands as unsigned values and yields
8309 ``true`` if ``op1`` is less than ``op2``.
8310#. ``ule``: interprets the operands as unsigned values and yields
8311 ``true`` if ``op1`` is less than or equal to ``op2``.
8312#. ``sgt``: interprets the operands as signed values and yields ``true``
8313 if ``op1`` is greater than ``op2``.
8314#. ``sge``: interprets the operands as signed values and yields ``true``
8315 if ``op1`` is greater than or equal to ``op2``.
8316#. ``slt``: interprets the operands as signed values and yields ``true``
8317 if ``op1`` is less than ``op2``.
8318#. ``sle``: interprets the operands as signed values and yields ``true``
8319 if ``op1`` is less than or equal to ``op2``.
8320
8321If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8322are compared as if they were integers.
8323
8324If the operands are integer vectors, then they are compared element by
8325element. The result is an ``i1`` vector with the same number of elements
8326as the values being compared. Otherwise, the result is an ``i1``.
8327
8328Example:
8329""""""""
8330
Renato Golin124f2592016-07-20 12:16:38 +00008331.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008332
8333 <result> = icmp eq i32 4, 5 ; yields: result=false
8334 <result> = icmp ne float* %X, %X ; yields: result=false
8335 <result> = icmp ult i16 4, 5 ; yields: result=true
8336 <result> = icmp sgt i16 4, 5 ; yields: result=false
8337 <result> = icmp ule i16 -4, 5 ; yields: result=false
8338 <result> = icmp sge i16 4, 5 ; yields: result=false
8339
Sean Silvab084af42012-12-07 10:36:55 +00008340.. _i_fcmp:
8341
8342'``fcmp``' Instruction
8343^^^^^^^^^^^^^^^^^^^^^^
8344
8345Syntax:
8346"""""""
8347
8348::
8349
James Molloy88eb5352015-07-10 12:52:00 +00008350 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008351
8352Overview:
8353"""""""""
8354
8355The '``fcmp``' instruction returns a boolean value or vector of boolean
8356values based on comparison of its operands.
8357
8358If the operands are floating point scalars, then the result type is a
8359boolean (:ref:`i1 <t_integer>`).
8360
8361If the operands are floating point vectors, then the result type is a
8362vector of boolean with the same number of elements as the operands being
8363compared.
8364
8365Arguments:
8366""""""""""
8367
8368The '``fcmp``' instruction takes three operands. The first operand is
8369the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008370not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008371
8372#. ``false``: no comparison, always returns false
8373#. ``oeq``: ordered and equal
8374#. ``ogt``: ordered and greater than
8375#. ``oge``: ordered and greater than or equal
8376#. ``olt``: ordered and less than
8377#. ``ole``: ordered and less than or equal
8378#. ``one``: ordered and not equal
8379#. ``ord``: ordered (no nans)
8380#. ``ueq``: unordered or equal
8381#. ``ugt``: unordered or greater than
8382#. ``uge``: unordered or greater than or equal
8383#. ``ult``: unordered or less than
8384#. ``ule``: unordered or less than or equal
8385#. ``une``: unordered or not equal
8386#. ``uno``: unordered (either nans)
8387#. ``true``: no comparison, always returns true
8388
8389*Ordered* means that neither operand is a QNAN while *unordered* means
8390that either operand may be a QNAN.
8391
8392Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8393point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8394type. They must have identical types.
8395
8396Semantics:
8397""""""""""
8398
8399The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8400condition code given as ``cond``. If the operands are vectors, then the
8401vectors are compared element by element. Each comparison performed
8402always yields an :ref:`i1 <t_integer>` result, as follows:
8403
8404#. ``false``: always yields ``false``, regardless of operands.
8405#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8406 is equal to ``op2``.
8407#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8408 is greater than ``op2``.
8409#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8410 is greater than or equal to ``op2``.
8411#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8412 is less than ``op2``.
8413#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8414 is less than or equal to ``op2``.
8415#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8416 is not equal to ``op2``.
8417#. ``ord``: yields ``true`` if both operands are not a QNAN.
8418#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8419 equal to ``op2``.
8420#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8421 greater than ``op2``.
8422#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8423 greater than or equal to ``op2``.
8424#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8425 less than ``op2``.
8426#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8427 less than or equal to ``op2``.
8428#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8429 not equal to ``op2``.
8430#. ``uno``: yields ``true`` if either operand is a QNAN.
8431#. ``true``: always yields ``true``, regardless of operands.
8432
James Molloy88eb5352015-07-10 12:52:00 +00008433The ``fcmp`` instruction can also optionally take any number of
8434:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8435otherwise unsafe floating point optimizations.
8436
8437Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8438only flags that have any effect on its semantics are those that allow
8439assumptions to be made about the values of input arguments; namely
8440``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8441
Sean Silvab084af42012-12-07 10:36:55 +00008442Example:
8443""""""""
8444
Renato Golin124f2592016-07-20 12:16:38 +00008445.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008446
8447 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8448 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8449 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8450 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8451
Sean Silvab084af42012-12-07 10:36:55 +00008452.. _i_phi:
8453
8454'``phi``' Instruction
8455^^^^^^^^^^^^^^^^^^^^^
8456
8457Syntax:
8458"""""""
8459
8460::
8461
8462 <result> = phi <ty> [ <val0>, <label0>], ...
8463
8464Overview:
8465"""""""""
8466
8467The '``phi``' instruction is used to implement the φ node in the SSA
8468graph representing the function.
8469
8470Arguments:
8471""""""""""
8472
8473The type of the incoming values is specified with the first type field.
8474After this, the '``phi``' instruction takes a list of pairs as
8475arguments, with one pair for each predecessor basic block of the current
8476block. Only values of :ref:`first class <t_firstclass>` type may be used as
8477the value arguments to the PHI node. Only labels may be used as the
8478label arguments.
8479
8480There must be no non-phi instructions between the start of a basic block
8481and the PHI instructions: i.e. PHI instructions must be first in a basic
8482block.
8483
8484For the purposes of the SSA form, the use of each incoming value is
8485deemed to occur on the edge from the corresponding predecessor block to
8486the current block (but after any definition of an '``invoke``'
8487instruction's return value on the same edge).
8488
8489Semantics:
8490""""""""""
8491
8492At runtime, the '``phi``' instruction logically takes on the value
8493specified by the pair corresponding to the predecessor basic block that
8494executed just prior to the current block.
8495
8496Example:
8497""""""""
8498
8499.. code-block:: llvm
8500
8501 Loop: ; Infinite loop that counts from 0 on up...
8502 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8503 %nextindvar = add i32 %indvar, 1
8504 br label %Loop
8505
8506.. _i_select:
8507
8508'``select``' Instruction
8509^^^^^^^^^^^^^^^^^^^^^^^^
8510
8511Syntax:
8512"""""""
8513
8514::
8515
8516 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8517
8518 selty is either i1 or {<N x i1>}
8519
8520Overview:
8521"""""""""
8522
8523The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008524condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008525
8526Arguments:
8527""""""""""
8528
8529The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8530values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008531class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008532
8533Semantics:
8534""""""""""
8535
8536If the condition is an i1 and it evaluates to 1, the instruction returns
8537the first value argument; otherwise, it returns the second value
8538argument.
8539
8540If the condition is a vector of i1, then the value arguments must be
8541vectors of the same size, and the selection is done element by element.
8542
David Majnemer40a0b592015-03-03 22:45:47 +00008543If the condition is an i1 and the value arguments are vectors of the
8544same size, then an entire vector is selected.
8545
Sean Silvab084af42012-12-07 10:36:55 +00008546Example:
8547""""""""
8548
8549.. code-block:: llvm
8550
8551 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8552
8553.. _i_call:
8554
8555'``call``' Instruction
8556^^^^^^^^^^^^^^^^^^^^^^
8557
8558Syntax:
8559"""""""
8560
8561::
8562
David Blaikieb83cf102016-07-13 17:21:34 +00008563 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008564 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008565
8566Overview:
8567"""""""""
8568
8569The '``call``' instruction represents a simple function call.
8570
8571Arguments:
8572""""""""""
8573
8574This instruction requires several arguments:
8575
Reid Kleckner5772b772014-04-24 20:14:34 +00008576#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008577 should perform tail call optimization. The ``tail`` marker is a hint that
8578 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008579 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008580 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008581
8582 #. The call will not cause unbounded stack growth if it is part of a
8583 recursive cycle in the call graph.
8584 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8585 forwarded in place.
8586
8587 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008588 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008589 rules:
8590
8591 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8592 or a pointer bitcast followed by a ret instruction.
8593 - The ret instruction must return the (possibly bitcasted) value
8594 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008595 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008596 parameters or return types may differ in pointee type, but not
8597 in address space.
8598 - The calling conventions of the caller and callee must match.
8599 - All ABI-impacting function attributes, such as sret, byval, inreg,
8600 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008601 - The callee must be varargs iff the caller is varargs. Bitcasting a
8602 non-varargs function to the appropriate varargs type is legal so
8603 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008604
8605 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8606 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008607
8608 - Caller and callee both have the calling convention ``fastcc``.
8609 - The call is in tail position (ret immediately follows call and ret
8610 uses value of call or is void).
8611 - Option ``-tailcallopt`` is enabled, or
8612 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008613 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008614 met. <CodeGenerator.html#tailcallopt>`_
8615
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008616#. The optional ``notail`` marker indicates that the optimizers should not add
8617 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8618 call optimization from being performed on the call.
8619
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008620#. The optional ``fast-math flags`` marker indicates that the call has one or more
8621 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8622 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8623 for calls that return a floating-point scalar or vector type.
8624
Sean Silvab084af42012-12-07 10:36:55 +00008625#. The optional "cconv" marker indicates which :ref:`calling
8626 convention <callingconv>` the call should use. If none is
8627 specified, the call defaults to using C calling conventions. The
8628 calling convention of the call must match the calling convention of
8629 the target function, or else the behavior is undefined.
8630#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8631 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8632 are valid here.
8633#. '``ty``': the type of the call instruction itself which is also the
8634 type of the return value. Functions that return no value are marked
8635 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008636#. '``fnty``': shall be the signature of the function being called. The
8637 argument types must match the types implied by this signature. This
8638 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008639#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008640 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008641 indirect ``call``'s are just as possible, calling an arbitrary pointer
8642 to function value.
8643#. '``function args``': argument list whose types match the function
8644 signature argument types and parameter attributes. All arguments must
8645 be of :ref:`first class <t_firstclass>` type. If the function signature
8646 indicates the function accepts a variable number of arguments, the
8647 extra arguments can be specified.
8648#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008649 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8650 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008651#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008652
8653Semantics:
8654""""""""""
8655
8656The '``call``' instruction is used to cause control flow to transfer to
8657a specified function, with its incoming arguments bound to the specified
8658values. Upon a '``ret``' instruction in the called function, control
8659flow continues with the instruction after the function call, and the
8660return value of the function is bound to the result argument.
8661
8662Example:
8663""""""""
8664
8665.. code-block:: llvm
8666
8667 %retval = call i32 @test(i32 %argc)
8668 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8669 %X = tail call i32 @foo() ; yields i32
8670 %Y = tail call fastcc i32 @foo() ; yields i32
8671 call void %foo(i8 97 signext)
8672
8673 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008674 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008675 %gr = extractvalue %struct.A %r, 0 ; yields i32
8676 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8677 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8678 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8679
8680llvm treats calls to some functions with names and arguments that match
8681the standard C99 library as being the C99 library functions, and may
8682perform optimizations or generate code for them under that assumption.
8683This is something we'd like to change in the future to provide better
8684support for freestanding environments and non-C-based languages.
8685
8686.. _i_va_arg:
8687
8688'``va_arg``' Instruction
8689^^^^^^^^^^^^^^^^^^^^^^^^
8690
8691Syntax:
8692"""""""
8693
8694::
8695
8696 <resultval> = va_arg <va_list*> <arglist>, <argty>
8697
8698Overview:
8699"""""""""
8700
8701The '``va_arg``' instruction is used to access arguments passed through
8702the "variable argument" area of a function call. It is used to implement
8703the ``va_arg`` macro in C.
8704
8705Arguments:
8706""""""""""
8707
8708This instruction takes a ``va_list*`` value and the type of the
8709argument. It returns a value of the specified argument type and
8710increments the ``va_list`` to point to the next argument. The actual
8711type of ``va_list`` is target specific.
8712
8713Semantics:
8714""""""""""
8715
8716The '``va_arg``' instruction loads an argument of the specified type
8717from the specified ``va_list`` and causes the ``va_list`` to point to
8718the next argument. For more information, see the variable argument
8719handling :ref:`Intrinsic Functions <int_varargs>`.
8720
8721It is legal for this instruction to be called in a function which does
8722not take a variable number of arguments, for example, the ``vfprintf``
8723function.
8724
8725``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8726function <intrinsics>` because it takes a type as an argument.
8727
8728Example:
8729""""""""
8730
8731See the :ref:`variable argument processing <int_varargs>` section.
8732
8733Note that the code generator does not yet fully support va\_arg on many
8734targets. Also, it does not currently support va\_arg with aggregate
8735types on any target.
8736
8737.. _i_landingpad:
8738
8739'``landingpad``' Instruction
8740^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8741
8742Syntax:
8743"""""""
8744
8745::
8746
David Majnemer7fddecc2015-06-17 20:52:32 +00008747 <resultval> = landingpad <resultty> <clause>+
8748 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008749
8750 <clause> := catch <type> <value>
8751 <clause> := filter <array constant type> <array constant>
8752
8753Overview:
8754"""""""""
8755
8756The '``landingpad``' instruction is used by `LLVM's exception handling
8757system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008758is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008759code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008760defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008761re-entry to the function. The ``resultval`` has the type ``resultty``.
8762
8763Arguments:
8764""""""""""
8765
David Majnemer7fddecc2015-06-17 20:52:32 +00008766The optional
Sean Silvab084af42012-12-07 10:36:55 +00008767``cleanup`` flag indicates that the landing pad block is a cleanup.
8768
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008769A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008770contains the global variable representing the "type" that may be caught
8771or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8772clause takes an array constant as its argument. Use
8773"``[0 x i8**] undef``" for a filter which cannot throw. The
8774'``landingpad``' instruction must contain *at least* one ``clause`` or
8775the ``cleanup`` flag.
8776
8777Semantics:
8778""""""""""
8779
8780The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008781:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008782therefore the "result type" of the ``landingpad`` instruction. As with
8783calling conventions, how the personality function results are
8784represented in LLVM IR is target specific.
8785
8786The clauses are applied in order from top to bottom. If two
8787``landingpad`` instructions are merged together through inlining, the
8788clauses from the calling function are appended to the list of clauses.
8789When the call stack is being unwound due to an exception being thrown,
8790the exception is compared against each ``clause`` in turn. If it doesn't
8791match any of the clauses, and the ``cleanup`` flag is not set, then
8792unwinding continues further up the call stack.
8793
8794The ``landingpad`` instruction has several restrictions:
8795
8796- A landing pad block is a basic block which is the unwind destination
8797 of an '``invoke``' instruction.
8798- A landing pad block must have a '``landingpad``' instruction as its
8799 first non-PHI instruction.
8800- There can be only one '``landingpad``' instruction within the landing
8801 pad block.
8802- A basic block that is not a landing pad block may not include a
8803 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008804
8805Example:
8806""""""""
8807
8808.. code-block:: llvm
8809
8810 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008811 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008812 catch i8** @_ZTIi
8813 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008814 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008815 cleanup
8816 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008817 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008818 catch i8** @_ZTIi
8819 filter [1 x i8**] [@_ZTId]
8820
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008821.. _i_catchpad:
8822
8823'``catchpad``' Instruction
8824^^^^^^^^^^^^^^^^^^^^^^^^^^
8825
8826Syntax:
8827"""""""
8828
8829::
8830
8831 <resultval> = catchpad within <catchswitch> [<args>*]
8832
8833Overview:
8834"""""""""
8835
8836The '``catchpad``' instruction is used by `LLVM's exception handling
8837system <ExceptionHandling.html#overview>`_ to specify that a basic block
8838begins a catch handler --- one where a personality routine attempts to transfer
8839control to catch an exception.
8840
8841Arguments:
8842""""""""""
8843
8844The ``catchswitch`` operand must always be a token produced by a
8845:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8846ensures that each ``catchpad`` has exactly one predecessor block, and it always
8847terminates in a ``catchswitch``.
8848
8849The ``args`` correspond to whatever information the personality routine
8850requires to know if this is an appropriate handler for the exception. Control
8851will transfer to the ``catchpad`` if this is the first appropriate handler for
8852the exception.
8853
8854The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8855``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8856pads.
8857
8858Semantics:
8859""""""""""
8860
8861When the call stack is being unwound due to an exception being thrown, the
8862exception is compared against the ``args``. If it doesn't match, control will
8863not reach the ``catchpad`` instruction. The representation of ``args`` is
8864entirely target and personality function-specific.
8865
8866Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8867instruction must be the first non-phi of its parent basic block.
8868
8869The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8870instructions is described in the
8871`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8872
8873When a ``catchpad`` has been "entered" but not yet "exited" (as
8874described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8875it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8876that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8877
8878Example:
8879""""""""
8880
Renato Golin124f2592016-07-20 12:16:38 +00008881.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008882
8883 dispatch:
8884 %cs = catchswitch within none [label %handler0] unwind to caller
8885 ;; A catch block which can catch an integer.
8886 handler0:
8887 %tok = catchpad within %cs [i8** @_ZTIi]
8888
David Majnemer654e1302015-07-31 17:58:14 +00008889.. _i_cleanuppad:
8890
8891'``cleanuppad``' Instruction
8892^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8893
8894Syntax:
8895"""""""
8896
8897::
8898
David Majnemer8a1c45d2015-12-12 05:38:55 +00008899 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008900
8901Overview:
8902"""""""""
8903
8904The '``cleanuppad``' instruction is used by `LLVM's exception handling
8905system <ExceptionHandling.html#overview>`_ to specify that a basic block
8906is a cleanup block --- one where a personality routine attempts to
8907transfer control to run cleanup actions.
8908The ``args`` correspond to whatever additional
8909information the :ref:`personality function <personalityfn>` requires to
8910execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008911The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008912match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8913The ``parent`` argument is the token of the funclet that contains the
8914``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8915this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008916
8917Arguments:
8918""""""""""
8919
8920The instruction takes a list of arbitrary values which are interpreted
8921by the :ref:`personality function <personalityfn>`.
8922
8923Semantics:
8924""""""""""
8925
David Majnemer654e1302015-07-31 17:58:14 +00008926When the call stack is being unwound due to an exception being thrown,
8927the :ref:`personality function <personalityfn>` transfers control to the
8928``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008929As with calling conventions, how the personality function results are
8930represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008931
8932The ``cleanuppad`` instruction has several restrictions:
8933
8934- A cleanup block is a basic block which is the unwind destination of
8935 an exceptional instruction.
8936- A cleanup block must have a '``cleanuppad``' instruction as its
8937 first non-PHI instruction.
8938- There can be only one '``cleanuppad``' instruction within the
8939 cleanup block.
8940- A basic block that is not a cleanup block may not include a
8941 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008942
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008943When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8944described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8945it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8946that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008947
David Majnemer654e1302015-07-31 17:58:14 +00008948Example:
8949""""""""
8950
Renato Golin124f2592016-07-20 12:16:38 +00008951.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00008952
David Majnemer8a1c45d2015-12-12 05:38:55 +00008953 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008954
Sean Silvab084af42012-12-07 10:36:55 +00008955.. _intrinsics:
8956
8957Intrinsic Functions
8958===================
8959
8960LLVM supports the notion of an "intrinsic function". These functions
8961have well known names and semantics and are required to follow certain
8962restrictions. Overall, these intrinsics represent an extension mechanism
8963for the LLVM language that does not require changing all of the
8964transformations in LLVM when adding to the language (or the bitcode
8965reader/writer, the parser, etc...).
8966
8967Intrinsic function names must all start with an "``llvm.``" prefix. This
8968prefix is reserved in LLVM for intrinsic names; thus, function names may
8969not begin with this prefix. Intrinsic functions must always be external
8970functions: you cannot define the body of intrinsic functions. Intrinsic
8971functions may only be used in call or invoke instructions: it is illegal
8972to take the address of an intrinsic function. Additionally, because
8973intrinsic functions are part of the LLVM language, it is required if any
8974are added that they be documented here.
8975
8976Some intrinsic functions can be overloaded, i.e., the intrinsic
8977represents a family of functions that perform the same operation but on
8978different data types. Because LLVM can represent over 8 million
8979different integer types, overloading is used commonly to allow an
8980intrinsic function to operate on any integer type. One or more of the
8981argument types or the result type can be overloaded to accept any
8982integer type. Argument types may also be defined as exactly matching a
8983previous argument's type or the result type. This allows an intrinsic
8984function which accepts multiple arguments, but needs all of them to be
8985of the same type, to only be overloaded with respect to a single
8986argument or the result.
8987
8988Overloaded intrinsics will have the names of its overloaded argument
8989types encoded into its function name, each preceded by a period. Only
8990those types which are overloaded result in a name suffix. Arguments
8991whose type is matched against another type do not. For example, the
8992``llvm.ctpop`` function can take an integer of any width and returns an
8993integer of exactly the same integer width. This leads to a family of
8994functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8995``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8996overloaded, and only one type suffix is required. Because the argument's
8997type is matched against the return type, it does not require its own
8998name suffix.
8999
9000To learn how to add an intrinsic function, please see the `Extending
9001LLVM Guide <ExtendingLLVM.html>`_.
9002
9003.. _int_varargs:
9004
9005Variable Argument Handling Intrinsics
9006-------------------------------------
9007
9008Variable argument support is defined in LLVM with the
9009:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9010functions. These functions are related to the similarly named macros
9011defined in the ``<stdarg.h>`` header file.
9012
9013All of these functions operate on arguments that use a target-specific
9014value type "``va_list``". The LLVM assembly language reference manual
9015does not define what this type is, so all transformations should be
9016prepared to handle these functions regardless of the type used.
9017
9018This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9019variable argument handling intrinsic functions are used.
9020
9021.. code-block:: llvm
9022
Tim Northoverab60bb92014-11-02 01:21:51 +00009023 ; This struct is different for every platform. For most platforms,
9024 ; it is merely an i8*.
9025 %struct.va_list = type { i8* }
9026
9027 ; For Unix x86_64 platforms, va_list is the following struct:
9028 ; %struct.va_list = type { i32, i32, i8*, i8* }
9029
Sean Silvab084af42012-12-07 10:36:55 +00009030 define i32 @test(i32 %X, ...) {
9031 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009032 %ap = alloca %struct.va_list
9033 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009034 call void @llvm.va_start(i8* %ap2)
9035
9036 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009037 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009038
9039 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9040 %aq = alloca i8*
9041 %aq2 = bitcast i8** %aq to i8*
9042 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9043 call void @llvm.va_end(i8* %aq2)
9044
9045 ; Stop processing of arguments.
9046 call void @llvm.va_end(i8* %ap2)
9047 ret i32 %tmp
9048 }
9049
9050 declare void @llvm.va_start(i8*)
9051 declare void @llvm.va_copy(i8*, i8*)
9052 declare void @llvm.va_end(i8*)
9053
9054.. _int_va_start:
9055
9056'``llvm.va_start``' Intrinsic
9057^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9058
9059Syntax:
9060"""""""
9061
9062::
9063
Nick Lewycky04f6de02013-09-11 22:04:52 +00009064 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009065
9066Overview:
9067"""""""""
9068
9069The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9070subsequent use by ``va_arg``.
9071
9072Arguments:
9073""""""""""
9074
9075The argument is a pointer to a ``va_list`` element to initialize.
9076
9077Semantics:
9078""""""""""
9079
9080The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9081available in C. In a target-dependent way, it initializes the
9082``va_list`` element to which the argument points, so that the next call
9083to ``va_arg`` will produce the first variable argument passed to the
9084function. Unlike the C ``va_start`` macro, this intrinsic does not need
9085to know the last argument of the function as the compiler can figure
9086that out.
9087
9088'``llvm.va_end``' Intrinsic
9089^^^^^^^^^^^^^^^^^^^^^^^^^^^
9090
9091Syntax:
9092"""""""
9093
9094::
9095
9096 declare void @llvm.va_end(i8* <arglist>)
9097
9098Overview:
9099"""""""""
9100
9101The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9102initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9103
9104Arguments:
9105""""""""""
9106
9107The argument is a pointer to a ``va_list`` to destroy.
9108
9109Semantics:
9110""""""""""
9111
9112The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9113available in C. In a target-dependent way, it destroys the ``va_list``
9114element to which the argument points. Calls to
9115:ref:`llvm.va_start <int_va_start>` and
9116:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9117``llvm.va_end``.
9118
9119.. _int_va_copy:
9120
9121'``llvm.va_copy``' Intrinsic
9122^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9123
9124Syntax:
9125"""""""
9126
9127::
9128
9129 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9130
9131Overview:
9132"""""""""
9133
9134The '``llvm.va_copy``' intrinsic copies the current argument position
9135from the source argument list to the destination argument list.
9136
9137Arguments:
9138""""""""""
9139
9140The first argument is a pointer to a ``va_list`` element to initialize.
9141The second argument is a pointer to a ``va_list`` element to copy from.
9142
9143Semantics:
9144""""""""""
9145
9146The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9147available in C. In a target-dependent way, it copies the source
9148``va_list`` element into the destination ``va_list`` element. This
9149intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9150arbitrarily complex and require, for example, memory allocation.
9151
9152Accurate Garbage Collection Intrinsics
9153--------------------------------------
9154
Philip Reamesc5b0f562015-02-25 23:52:06 +00009155LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009156(GC) requires the frontend to generate code containing appropriate intrinsic
9157calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009158intrinsics in a manner which is appropriate for the target collector.
9159
Sean Silvab084af42012-12-07 10:36:55 +00009160These intrinsics allow identification of :ref:`GC roots on the
9161stack <int_gcroot>`, as well as garbage collector implementations that
9162require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009163Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009164these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009165details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009166
Philip Reamesf80bbff2015-02-25 23:45:20 +00009167Experimental Statepoint Intrinsics
9168^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9169
9170LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009171collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009172to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009173:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009174differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009175<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009176described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009177
9178.. _int_gcroot:
9179
9180'``llvm.gcroot``' Intrinsic
9181^^^^^^^^^^^^^^^^^^^^^^^^^^^
9182
9183Syntax:
9184"""""""
9185
9186::
9187
9188 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9189
9190Overview:
9191"""""""""
9192
9193The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9194the code generator, and allows some metadata to be associated with it.
9195
9196Arguments:
9197""""""""""
9198
9199The first argument specifies the address of a stack object that contains
9200the root pointer. The second pointer (which must be either a constant or
9201a global value address) contains the meta-data to be associated with the
9202root.
9203
9204Semantics:
9205""""""""""
9206
9207At runtime, a call to this intrinsic stores a null pointer into the
9208"ptrloc" location. At compile-time, the code generator generates
9209information to allow the runtime to find the pointer at GC safe points.
9210The '``llvm.gcroot``' intrinsic may only be used in a function which
9211:ref:`specifies a GC algorithm <gc>`.
9212
9213.. _int_gcread:
9214
9215'``llvm.gcread``' Intrinsic
9216^^^^^^^^^^^^^^^^^^^^^^^^^^^
9217
9218Syntax:
9219"""""""
9220
9221::
9222
9223 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9224
9225Overview:
9226"""""""""
9227
9228The '``llvm.gcread``' intrinsic identifies reads of references from heap
9229locations, allowing garbage collector implementations that require read
9230barriers.
9231
9232Arguments:
9233""""""""""
9234
9235The second argument is the address to read from, which should be an
9236address allocated from the garbage collector. The first object is a
9237pointer to the start of the referenced object, if needed by the language
9238runtime (otherwise null).
9239
9240Semantics:
9241""""""""""
9242
9243The '``llvm.gcread``' intrinsic has the same semantics as a load
9244instruction, but may be replaced with substantially more complex code by
9245the garbage collector runtime, as needed. The '``llvm.gcread``'
9246intrinsic may only be used in a function which :ref:`specifies a GC
9247algorithm <gc>`.
9248
9249.. _int_gcwrite:
9250
9251'``llvm.gcwrite``' Intrinsic
9252^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9253
9254Syntax:
9255"""""""
9256
9257::
9258
9259 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9260
9261Overview:
9262"""""""""
9263
9264The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9265locations, allowing garbage collector implementations that require write
9266barriers (such as generational or reference counting collectors).
9267
9268Arguments:
9269""""""""""
9270
9271The first argument is the reference to store, the second is the start of
9272the object to store it to, and the third is the address of the field of
9273Obj to store to. If the runtime does not require a pointer to the
9274object, Obj may be null.
9275
9276Semantics:
9277""""""""""
9278
9279The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9280instruction, but may be replaced with substantially more complex code by
9281the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9282intrinsic may only be used in a function which :ref:`specifies a GC
9283algorithm <gc>`.
9284
9285Code Generator Intrinsics
9286-------------------------
9287
9288These intrinsics are provided by LLVM to expose special features that
9289may only be implemented with code generator support.
9290
9291'``llvm.returnaddress``' Intrinsic
9292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9293
9294Syntax:
9295"""""""
9296
9297::
9298
9299 declare i8 *@llvm.returnaddress(i32 <level>)
9300
9301Overview:
9302"""""""""
9303
9304The '``llvm.returnaddress``' intrinsic attempts to compute a
9305target-specific value indicating the return address of the current
9306function or one of its callers.
9307
9308Arguments:
9309""""""""""
9310
9311The argument to this intrinsic indicates which function to return the
9312address for. Zero indicates the calling function, one indicates its
9313caller, etc. The argument is **required** to be a constant integer
9314value.
9315
9316Semantics:
9317""""""""""
9318
9319The '``llvm.returnaddress``' intrinsic either returns a pointer
9320indicating the return address of the specified call frame, or zero if it
9321cannot be identified. The value returned by this intrinsic is likely to
9322be incorrect or 0 for arguments other than zero, so it should only be
9323used for debugging purposes.
9324
9325Note that calling this intrinsic does not prevent function inlining or
9326other aggressive transformations, so the value returned may not be that
9327of the obvious source-language caller.
9328
Albert Gutowski795d7d62016-10-12 22:13:19 +00009329'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009331
9332Syntax:
9333"""""""
9334
9335::
9336
9337 declare i8 *@llvm.addressofreturnaddress()
9338
9339Overview:
9340"""""""""
9341
9342The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9343pointer to the place in the stack frame where the return address of the
9344current function is stored.
9345
9346Semantics:
9347""""""""""
9348
9349Note that calling this intrinsic does not prevent function inlining or
9350other aggressive transformations, so the value returned may not be that
9351of the obvious source-language caller.
9352
9353This intrinsic is only implemented for x86.
9354
Sean Silvab084af42012-12-07 10:36:55 +00009355'``llvm.frameaddress``' Intrinsic
9356^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9357
9358Syntax:
9359"""""""
9360
9361::
9362
9363 declare i8* @llvm.frameaddress(i32 <level>)
9364
9365Overview:
9366"""""""""
9367
9368The '``llvm.frameaddress``' intrinsic attempts to return the
9369target-specific frame pointer value for the specified stack frame.
9370
9371Arguments:
9372""""""""""
9373
9374The argument to this intrinsic indicates which function to return the
9375frame pointer for. Zero indicates the calling function, one indicates
9376its caller, etc. The argument is **required** to be a constant integer
9377value.
9378
9379Semantics:
9380""""""""""
9381
9382The '``llvm.frameaddress``' intrinsic either returns a pointer
9383indicating the frame address of the specified call frame, or zero if it
9384cannot be identified. The value returned by this intrinsic is likely to
9385be incorrect or 0 for arguments other than zero, so it should only be
9386used for debugging purposes.
9387
9388Note that calling this intrinsic does not prevent function inlining or
9389other aggressive transformations, so the value returned may not be that
9390of the obvious source-language caller.
9391
Reid Kleckner60381792015-07-07 22:25:32 +00009392'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009393^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9394
9395Syntax:
9396"""""""
9397
9398::
9399
Reid Kleckner60381792015-07-07 22:25:32 +00009400 declare void @llvm.localescape(...)
9401 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009402
9403Overview:
9404"""""""""
9405
Reid Kleckner60381792015-07-07 22:25:32 +00009406The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9407allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009408live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009409computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009410
9411Arguments:
9412""""""""""
9413
Reid Kleckner60381792015-07-07 22:25:32 +00009414All arguments to '``llvm.localescape``' must be pointers to static allocas or
9415casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009416once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009417
Reid Kleckner60381792015-07-07 22:25:32 +00009418The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009419bitcasted pointer to a function defined in the current module. The code
9420generator cannot determine the frame allocation offset of functions defined in
9421other modules.
9422
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009423The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9424call frame that is currently live. The return value of '``llvm.localaddress``'
9425is one way to produce such a value, but various runtimes also expose a suitable
9426pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009427
Reid Kleckner60381792015-07-07 22:25:32 +00009428The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9429'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009430
Reid Klecknere9b89312015-01-13 00:48:10 +00009431Semantics:
9432""""""""""
9433
Reid Kleckner60381792015-07-07 22:25:32 +00009434These intrinsics allow a group of functions to share access to a set of local
9435stack allocations of a one parent function. The parent function may call the
9436'``llvm.localescape``' intrinsic once from the function entry block, and the
9437child functions can use '``llvm.localrecover``' to access the escaped allocas.
9438The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9439the escaped allocas are allocated, which would break attempts to use
9440'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009441
Renato Golinc7aea402014-05-06 16:51:25 +00009442.. _int_read_register:
9443.. _int_write_register:
9444
9445'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9446^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9447
9448Syntax:
9449"""""""
9450
9451::
9452
9453 declare i32 @llvm.read_register.i32(metadata)
9454 declare i64 @llvm.read_register.i64(metadata)
9455 declare void @llvm.write_register.i32(metadata, i32 @value)
9456 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009457 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009458
9459Overview:
9460"""""""""
9461
9462The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9463provides access to the named register. The register must be valid on
9464the architecture being compiled to. The type needs to be compatible
9465with the register being read.
9466
9467Semantics:
9468""""""""""
9469
9470The '``llvm.read_register``' intrinsic returns the current value of the
9471register, where possible. The '``llvm.write_register``' intrinsic sets
9472the current value of the register, where possible.
9473
9474This is useful to implement named register global variables that need
9475to always be mapped to a specific register, as is common practice on
9476bare-metal programs including OS kernels.
9477
9478The compiler doesn't check for register availability or use of the used
9479register in surrounding code, including inline assembly. Because of that,
9480allocatable registers are not supported.
9481
9482Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009483architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009484work is needed to support other registers and even more so, allocatable
9485registers.
9486
Sean Silvab084af42012-12-07 10:36:55 +00009487.. _int_stacksave:
9488
9489'``llvm.stacksave``' Intrinsic
9490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9491
9492Syntax:
9493"""""""
9494
9495::
9496
9497 declare i8* @llvm.stacksave()
9498
9499Overview:
9500"""""""""
9501
9502The '``llvm.stacksave``' intrinsic is used to remember the current state
9503of the function stack, for use with
9504:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9505implementing language features like scoped automatic variable sized
9506arrays in C99.
9507
9508Semantics:
9509""""""""""
9510
9511This intrinsic returns a opaque pointer value that can be passed to
9512:ref:`llvm.stackrestore <int_stackrestore>`. When an
9513``llvm.stackrestore`` intrinsic is executed with a value saved from
9514``llvm.stacksave``, it effectively restores the state of the stack to
9515the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9516practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9517were allocated after the ``llvm.stacksave`` was executed.
9518
9519.. _int_stackrestore:
9520
9521'``llvm.stackrestore``' Intrinsic
9522^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9523
9524Syntax:
9525"""""""
9526
9527::
9528
9529 declare void @llvm.stackrestore(i8* %ptr)
9530
9531Overview:
9532"""""""""
9533
9534The '``llvm.stackrestore``' intrinsic is used to restore the state of
9535the function stack to the state it was in when the corresponding
9536:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9537useful for implementing language features like scoped automatic variable
9538sized arrays in C99.
9539
9540Semantics:
9541""""""""""
9542
9543See the description for :ref:`llvm.stacksave <int_stacksave>`.
9544
Yury Gribovd7dbb662015-12-01 11:40:55 +00009545.. _int_get_dynamic_area_offset:
9546
9547'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009548^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009549
9550Syntax:
9551"""""""
9552
9553::
9554
9555 declare i32 @llvm.get.dynamic.area.offset.i32()
9556 declare i64 @llvm.get.dynamic.area.offset.i64()
9557
Lang Hames10239932016-10-08 00:20:42 +00009558Overview:
9559"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009560
9561 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9562 get the offset from native stack pointer to the address of the most
9563 recent dynamic alloca on the caller's stack. These intrinsics are
9564 intendend for use in combination with
9565 :ref:`llvm.stacksave <int_stacksave>` to get a
9566 pointer to the most recent dynamic alloca. This is useful, for example,
9567 for AddressSanitizer's stack unpoisoning routines.
9568
9569Semantics:
9570""""""""""
9571
9572 These intrinsics return a non-negative integer value that can be used to
9573 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9574 on the caller's stack. In particular, for targets where stack grows downwards,
9575 adding this offset to the native stack pointer would get the address of the most
9576 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009577 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009578 one past the end of the most recent dynamic alloca.
9579
9580 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9581 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9582 compile-time-known constant value.
9583
9584 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9585 must match the target's generic address space's (address space 0) pointer type.
9586
Sean Silvab084af42012-12-07 10:36:55 +00009587'``llvm.prefetch``' Intrinsic
9588^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9589
9590Syntax:
9591"""""""
9592
9593::
9594
9595 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9596
9597Overview:
9598"""""""""
9599
9600The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9601insert a prefetch instruction if supported; otherwise, it is a noop.
9602Prefetches have no effect on the behavior of the program but can change
9603its performance characteristics.
9604
9605Arguments:
9606""""""""""
9607
9608``address`` is the address to be prefetched, ``rw`` is the specifier
9609determining if the fetch should be for a read (0) or write (1), and
9610``locality`` is a temporal locality specifier ranging from (0) - no
9611locality, to (3) - extremely local keep in cache. The ``cache type``
9612specifies whether the prefetch is performed on the data (1) or
9613instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9614arguments must be constant integers.
9615
9616Semantics:
9617""""""""""
9618
9619This intrinsic does not modify the behavior of the program. In
9620particular, prefetches cannot trap and do not produce a value. On
9621targets that support this intrinsic, the prefetch can provide hints to
9622the processor cache for better performance.
9623
9624'``llvm.pcmarker``' Intrinsic
9625^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9626
9627Syntax:
9628"""""""
9629
9630::
9631
9632 declare void @llvm.pcmarker(i32 <id>)
9633
9634Overview:
9635"""""""""
9636
9637The '``llvm.pcmarker``' intrinsic is a method to export a Program
9638Counter (PC) in a region of code to simulators and other tools. The
9639method is target specific, but it is expected that the marker will use
9640exported symbols to transmit the PC of the marker. The marker makes no
9641guarantees that it will remain with any specific instruction after
9642optimizations. It is possible that the presence of a marker will inhibit
9643optimizations. The intended use is to be inserted after optimizations to
9644allow correlations of simulation runs.
9645
9646Arguments:
9647""""""""""
9648
9649``id`` is a numerical id identifying the marker.
9650
9651Semantics:
9652""""""""""
9653
9654This intrinsic does not modify the behavior of the program. Backends
9655that do not support this intrinsic may ignore it.
9656
9657'``llvm.readcyclecounter``' Intrinsic
9658^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9659
9660Syntax:
9661"""""""
9662
9663::
9664
9665 declare i64 @llvm.readcyclecounter()
9666
9667Overview:
9668"""""""""
9669
9670The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9671counter register (or similar low latency, high accuracy clocks) on those
9672targets that support it. On X86, it should map to RDTSC. On Alpha, it
9673should map to RPCC. As the backing counters overflow quickly (on the
9674order of 9 seconds on alpha), this should only be used for small
9675timings.
9676
9677Semantics:
9678""""""""""
9679
9680When directly supported, reading the cycle counter should not modify any
9681memory. Implementations are allowed to either return a application
9682specific value or a system wide value. On backends without support, this
9683is lowered to a constant 0.
9684
Tim Northoverbc933082013-05-23 19:11:20 +00009685Note that runtime support may be conditional on the privilege-level code is
9686running at and the host platform.
9687
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009688'``llvm.clear_cache``' Intrinsic
9689^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9690
9691Syntax:
9692"""""""
9693
9694::
9695
9696 declare void @llvm.clear_cache(i8*, i8*)
9697
9698Overview:
9699"""""""""
9700
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009701The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9702in the specified range to the execution unit of the processor. On
9703targets with non-unified instruction and data cache, the implementation
9704flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009705
9706Semantics:
9707""""""""""
9708
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009709On platforms with coherent instruction and data caches (e.g. x86), this
9710intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009711cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009712instructions or a system call, if cache flushing requires special
9713privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009714
Sean Silvad02bf3e2014-04-07 22:29:53 +00009715The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009716time library.
Renato Golin93010e62014-03-26 14:01:32 +00009717
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009718This instrinsic does *not* empty the instruction pipeline. Modifications
9719of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009720
Justin Bogner61ba2e32014-12-08 18:02:35 +00009721'``llvm.instrprof_increment``' Intrinsic
9722^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9723
9724Syntax:
9725"""""""
9726
9727::
9728
9729 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9730 i32 <num-counters>, i32 <index>)
9731
9732Overview:
9733"""""""""
9734
9735The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9736frontend for use with instrumentation based profiling. These will be
9737lowered by the ``-instrprof`` pass to generate execution counts of a
9738program at runtime.
9739
9740Arguments:
9741""""""""""
9742
9743The first argument is a pointer to a global variable containing the
9744name of the entity being instrumented. This should generally be the
9745(mangled) function name for a set of counters.
9746
9747The second argument is a hash value that can be used by the consumer
9748of the profile data to detect changes to the instrumented source, and
9749the third is the number of counters associated with ``name``. It is an
9750error if ``hash`` or ``num-counters`` differ between two instances of
9751``instrprof_increment`` that refer to the same name.
9752
9753The last argument refers to which of the counters for ``name`` should
9754be incremented. It should be a value between 0 and ``num-counters``.
9755
9756Semantics:
9757""""""""""
9758
9759This intrinsic represents an increment of a profiling counter. It will
9760cause the ``-instrprof`` pass to generate the appropriate data
9761structures and the code to increment the appropriate value, in a
9762format that can be written out by a compiler runtime and consumed via
9763the ``llvm-profdata`` tool.
9764
Xinliang David Li4ca17332016-09-18 18:34:07 +00009765'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +00009766^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +00009767
9768Syntax:
9769"""""""
9770
9771::
9772
9773 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
9774 i32 <num-counters>,
9775 i32 <index>, i64 <step>)
9776
9777Overview:
9778"""""""""
9779
9780The '``llvm.instrprof_increment_step``' intrinsic is an extension to
9781the '``llvm.instrprof_increment``' intrinsic with an additional fifth
9782argument to specify the step of the increment.
9783
9784Arguments:
9785""""""""""
9786The first four arguments are the same as '``llvm.instrprof_increment``'
9787instrinsic.
9788
9789The last argument specifies the value of the increment of the counter variable.
9790
9791Semantics:
9792""""""""""
9793See description of '``llvm.instrprof_increment``' instrinsic.
9794
9795
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009796'``llvm.instrprof_value_profile``' Intrinsic
9797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9798
9799Syntax:
9800"""""""
9801
9802::
9803
9804 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9805 i64 <value>, i32 <value_kind>,
9806 i32 <index>)
9807
9808Overview:
9809"""""""""
9810
9811The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9812frontend for use with instrumentation based profiling. This will be
9813lowered by the ``-instrprof`` pass to find out the target values,
9814instrumented expressions take in a program at runtime.
9815
9816Arguments:
9817""""""""""
9818
9819The first argument is a pointer to a global variable containing the
9820name of the entity being instrumented. ``name`` should generally be the
9821(mangled) function name for a set of counters.
9822
9823The second argument is a hash value that can be used by the consumer
9824of the profile data to detect changes to the instrumented source. It
9825is an error if ``hash`` differs between two instances of
9826``llvm.instrprof_*`` that refer to the same name.
9827
9828The third argument is the value of the expression being profiled. The profiled
9829expression's value should be representable as an unsigned 64-bit value. The
9830fourth argument represents the kind of value profiling that is being done. The
9831supported value profiling kinds are enumerated through the
9832``InstrProfValueKind`` type declared in the
9833``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9834index of the instrumented expression within ``name``. It should be >= 0.
9835
9836Semantics:
9837""""""""""
9838
9839This intrinsic represents the point where a call to a runtime routine
9840should be inserted for value profiling of target expressions. ``-instrprof``
9841pass will generate the appropriate data structures and replace the
9842``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9843runtime library with proper arguments.
9844
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009845'``llvm.thread.pointer``' Intrinsic
9846^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9847
9848Syntax:
9849"""""""
9850
9851::
9852
9853 declare i8* @llvm.thread.pointer()
9854
9855Overview:
9856"""""""""
9857
9858The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9859pointer.
9860
9861Semantics:
9862""""""""""
9863
9864The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9865for the current thread. The exact semantics of this value are target
9866specific: it may point to the start of TLS area, to the end, or somewhere
9867in the middle. Depending on the target, this intrinsic may read a register,
9868call a helper function, read from an alternate memory space, or perform
9869other operations necessary to locate the TLS area. Not all targets support
9870this intrinsic.
9871
Sean Silvab084af42012-12-07 10:36:55 +00009872Standard C Library Intrinsics
9873-----------------------------
9874
9875LLVM provides intrinsics for a few important standard C library
9876functions. These intrinsics allow source-language front-ends to pass
9877information about the alignment of the pointer arguments to the code
9878generator, providing opportunity for more efficient code generation.
9879
9880.. _int_memcpy:
9881
9882'``llvm.memcpy``' Intrinsic
9883^^^^^^^^^^^^^^^^^^^^^^^^^^^
9884
9885Syntax:
9886"""""""
9887
9888This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9889integer bit width and for different address spaces. Not all targets
9890support all bit widths however.
9891
9892::
9893
9894 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9895 i32 <len>, i32 <align>, i1 <isvolatile>)
9896 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9897 i64 <len>, i32 <align>, i1 <isvolatile>)
9898
9899Overview:
9900"""""""""
9901
9902The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9903source location to the destination location.
9904
9905Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9906intrinsics do not return a value, takes extra alignment/isvolatile
9907arguments and the pointers can be in specified address spaces.
9908
9909Arguments:
9910""""""""""
9911
9912The first argument is a pointer to the destination, the second is a
9913pointer to the source. The third argument is an integer argument
9914specifying the number of bytes to copy, the fourth argument is the
9915alignment of the source and destination locations, and the fifth is a
9916boolean indicating a volatile access.
9917
9918If the call to this intrinsic has an alignment value that is not 0 or 1,
9919then the caller guarantees that both the source and destination pointers
9920are aligned to that boundary.
9921
9922If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9923a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9924very cleanly specified and it is unwise to depend on it.
9925
9926Semantics:
9927""""""""""
9928
9929The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9930source location to the destination location, which are not allowed to
9931overlap. It copies "len" bytes of memory over. If the argument is known
9932to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009933argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009934
9935'``llvm.memmove``' Intrinsic
9936^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9937
9938Syntax:
9939"""""""
9940
9941This is an overloaded intrinsic. You can use llvm.memmove on any integer
9942bit width and for different address space. Not all targets support all
9943bit widths however.
9944
9945::
9946
9947 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9948 i32 <len>, i32 <align>, i1 <isvolatile>)
9949 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9950 i64 <len>, i32 <align>, i1 <isvolatile>)
9951
9952Overview:
9953"""""""""
9954
9955The '``llvm.memmove.*``' intrinsics move a block of memory from the
9956source location to the destination location. It is similar to the
9957'``llvm.memcpy``' intrinsic but allows the two memory locations to
9958overlap.
9959
9960Note that, unlike the standard libc function, the ``llvm.memmove.*``
9961intrinsics do not return a value, takes extra alignment/isvolatile
9962arguments and the pointers can be in specified address spaces.
9963
9964Arguments:
9965""""""""""
9966
9967The first argument is a pointer to the destination, the second is a
9968pointer to the source. The third argument is an integer argument
9969specifying the number of bytes to copy, the fourth argument is the
9970alignment of the source and destination locations, and the fifth is a
9971boolean indicating a volatile access.
9972
9973If the call to this intrinsic has an alignment value that is not 0 or 1,
9974then the caller guarantees that the source and destination pointers are
9975aligned to that boundary.
9976
9977If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9978is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9979not very cleanly specified and it is unwise to depend on it.
9980
9981Semantics:
9982""""""""""
9983
9984The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9985source location to the destination location, which may overlap. It
9986copies "len" bytes of memory over. If the argument is known to be
9987aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009988otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009989
9990'``llvm.memset.*``' Intrinsics
9991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9992
9993Syntax:
9994"""""""
9995
9996This is an overloaded intrinsic. You can use llvm.memset on any integer
9997bit width and for different address spaces. However, not all targets
9998support all bit widths.
9999
10000::
10001
10002 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10003 i32 <len>, i32 <align>, i1 <isvolatile>)
10004 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10005 i64 <len>, i32 <align>, i1 <isvolatile>)
10006
10007Overview:
10008"""""""""
10009
10010The '``llvm.memset.*``' intrinsics fill a block of memory with a
10011particular byte value.
10012
10013Note that, unlike the standard libc function, the ``llvm.memset``
10014intrinsic does not return a value and takes extra alignment/volatile
10015arguments. Also, the destination can be in an arbitrary address space.
10016
10017Arguments:
10018""""""""""
10019
10020The first argument is a pointer to the destination to fill, the second
10021is the byte value with which to fill it, the third argument is an
10022integer argument specifying the number of bytes to fill, and the fourth
10023argument is the known alignment of the destination location.
10024
10025If the call to this intrinsic has an alignment value that is not 0 or 1,
10026then the caller guarantees that the destination pointer is aligned to
10027that boundary.
10028
10029If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10030a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10031very cleanly specified and it is unwise to depend on it.
10032
10033Semantics:
10034""""""""""
10035
10036The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10037at the destination location. If the argument is known to be aligned to
10038some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010039it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010040
10041'``llvm.sqrt.*``' Intrinsic
10042^^^^^^^^^^^^^^^^^^^^^^^^^^^
10043
10044Syntax:
10045"""""""
10046
10047This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10048floating point or vector of floating point type. Not all targets support
10049all types however.
10050
10051::
10052
10053 declare float @llvm.sqrt.f32(float %Val)
10054 declare double @llvm.sqrt.f64(double %Val)
10055 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10056 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10057 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10058
10059Overview:
10060"""""""""
10061
10062The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
10063returning the same value as the libm '``sqrt``' functions would. Unlike
10064``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
10065negative numbers other than -0.0 (which allows for better optimization,
10066because there is no need to worry about errno being set).
10067``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
10068
10069Arguments:
10070""""""""""
10071
10072The argument and return value are floating point numbers of the same
10073type.
10074
10075Semantics:
10076""""""""""
10077
10078This function returns the sqrt of the specified operand if it is a
10079nonnegative floating point number.
10080
10081'``llvm.powi.*``' Intrinsic
10082^^^^^^^^^^^^^^^^^^^^^^^^^^^
10083
10084Syntax:
10085"""""""
10086
10087This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10088floating point or vector of floating point type. Not all targets support
10089all types however.
10090
10091::
10092
10093 declare float @llvm.powi.f32(float %Val, i32 %power)
10094 declare double @llvm.powi.f64(double %Val, i32 %power)
10095 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10096 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10097 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10098
10099Overview:
10100"""""""""
10101
10102The '``llvm.powi.*``' intrinsics return the first operand raised to the
10103specified (positive or negative) power. The order of evaluation of
10104multiplications is not defined. When a vector of floating point type is
10105used, the second argument remains a scalar integer value.
10106
10107Arguments:
10108""""""""""
10109
10110The second argument is an integer power, and the first is a value to
10111raise to that power.
10112
10113Semantics:
10114""""""""""
10115
10116This function returns the first value raised to the second power with an
10117unspecified sequence of rounding operations.
10118
10119'``llvm.sin.*``' Intrinsic
10120^^^^^^^^^^^^^^^^^^^^^^^^^^
10121
10122Syntax:
10123"""""""
10124
10125This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10126floating point or vector of floating point type. Not all targets support
10127all types however.
10128
10129::
10130
10131 declare float @llvm.sin.f32(float %Val)
10132 declare double @llvm.sin.f64(double %Val)
10133 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10134 declare fp128 @llvm.sin.f128(fp128 %Val)
10135 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10136
10137Overview:
10138"""""""""
10139
10140The '``llvm.sin.*``' intrinsics return the sine of the operand.
10141
10142Arguments:
10143""""""""""
10144
10145The argument and return value are floating point numbers of the same
10146type.
10147
10148Semantics:
10149""""""""""
10150
10151This function returns the sine of the specified operand, returning the
10152same values as the libm ``sin`` functions would, and handles error
10153conditions in the same way.
10154
10155'``llvm.cos.*``' Intrinsic
10156^^^^^^^^^^^^^^^^^^^^^^^^^^
10157
10158Syntax:
10159"""""""
10160
10161This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10162floating point or vector of floating point type. Not all targets support
10163all types however.
10164
10165::
10166
10167 declare float @llvm.cos.f32(float %Val)
10168 declare double @llvm.cos.f64(double %Val)
10169 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10170 declare fp128 @llvm.cos.f128(fp128 %Val)
10171 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10172
10173Overview:
10174"""""""""
10175
10176The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10177
10178Arguments:
10179""""""""""
10180
10181The argument and return value are floating point numbers of the same
10182type.
10183
10184Semantics:
10185""""""""""
10186
10187This function returns the cosine of the specified operand, returning the
10188same values as the libm ``cos`` functions would, and handles error
10189conditions in the same way.
10190
10191'``llvm.pow.*``' Intrinsic
10192^^^^^^^^^^^^^^^^^^^^^^^^^^
10193
10194Syntax:
10195"""""""
10196
10197This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10198floating point or vector of floating point type. Not all targets support
10199all types however.
10200
10201::
10202
10203 declare float @llvm.pow.f32(float %Val, float %Power)
10204 declare double @llvm.pow.f64(double %Val, double %Power)
10205 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10206 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10207 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10208
10209Overview:
10210"""""""""
10211
10212The '``llvm.pow.*``' intrinsics return the first operand raised to the
10213specified (positive or negative) power.
10214
10215Arguments:
10216""""""""""
10217
10218The second argument is a floating point power, and the first is a value
10219to raise to that power.
10220
10221Semantics:
10222""""""""""
10223
10224This function returns the first value raised to the second power,
10225returning the same values as the libm ``pow`` functions would, and
10226handles error conditions in the same way.
10227
10228'``llvm.exp.*``' Intrinsic
10229^^^^^^^^^^^^^^^^^^^^^^^^^^
10230
10231Syntax:
10232"""""""
10233
10234This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10235floating point or vector of floating point type. Not all targets support
10236all types however.
10237
10238::
10239
10240 declare float @llvm.exp.f32(float %Val)
10241 declare double @llvm.exp.f64(double %Val)
10242 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10243 declare fp128 @llvm.exp.f128(fp128 %Val)
10244 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10245
10246Overview:
10247"""""""""
10248
10249The '``llvm.exp.*``' intrinsics perform the exp function.
10250
10251Arguments:
10252""""""""""
10253
10254The argument and return value are floating point numbers of the same
10255type.
10256
10257Semantics:
10258""""""""""
10259
10260This function returns the same values as the libm ``exp`` functions
10261would, and handles error conditions in the same way.
10262
10263'``llvm.exp2.*``' Intrinsic
10264^^^^^^^^^^^^^^^^^^^^^^^^^^^
10265
10266Syntax:
10267"""""""
10268
10269This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10270floating point or vector of floating point type. Not all targets support
10271all types however.
10272
10273::
10274
10275 declare float @llvm.exp2.f32(float %Val)
10276 declare double @llvm.exp2.f64(double %Val)
10277 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10278 declare fp128 @llvm.exp2.f128(fp128 %Val)
10279 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10280
10281Overview:
10282"""""""""
10283
10284The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10285
10286Arguments:
10287""""""""""
10288
10289The argument and return value are floating point numbers of the same
10290type.
10291
10292Semantics:
10293""""""""""
10294
10295This function returns the same values as the libm ``exp2`` functions
10296would, and handles error conditions in the same way.
10297
10298'``llvm.log.*``' Intrinsic
10299^^^^^^^^^^^^^^^^^^^^^^^^^^
10300
10301Syntax:
10302"""""""
10303
10304This is an overloaded intrinsic. You can use ``llvm.log`` on any
10305floating point or vector of floating point type. Not all targets support
10306all types however.
10307
10308::
10309
10310 declare float @llvm.log.f32(float %Val)
10311 declare double @llvm.log.f64(double %Val)
10312 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10313 declare fp128 @llvm.log.f128(fp128 %Val)
10314 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10315
10316Overview:
10317"""""""""
10318
10319The '``llvm.log.*``' intrinsics perform the log function.
10320
10321Arguments:
10322""""""""""
10323
10324The argument and return value are floating point numbers of the same
10325type.
10326
10327Semantics:
10328""""""""""
10329
10330This function returns the same values as the libm ``log`` functions
10331would, and handles error conditions in the same way.
10332
10333'``llvm.log10.*``' Intrinsic
10334^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10335
10336Syntax:
10337"""""""
10338
10339This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10340floating point or vector of floating point type. Not all targets support
10341all types however.
10342
10343::
10344
10345 declare float @llvm.log10.f32(float %Val)
10346 declare double @llvm.log10.f64(double %Val)
10347 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10348 declare fp128 @llvm.log10.f128(fp128 %Val)
10349 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10350
10351Overview:
10352"""""""""
10353
10354The '``llvm.log10.*``' intrinsics perform the log10 function.
10355
10356Arguments:
10357""""""""""
10358
10359The argument and return value are floating point numbers of the same
10360type.
10361
10362Semantics:
10363""""""""""
10364
10365This function returns the same values as the libm ``log10`` functions
10366would, and handles error conditions in the same way.
10367
10368'``llvm.log2.*``' Intrinsic
10369^^^^^^^^^^^^^^^^^^^^^^^^^^^
10370
10371Syntax:
10372"""""""
10373
10374This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10375floating point or vector of floating point type. Not all targets support
10376all types however.
10377
10378::
10379
10380 declare float @llvm.log2.f32(float %Val)
10381 declare double @llvm.log2.f64(double %Val)
10382 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10383 declare fp128 @llvm.log2.f128(fp128 %Val)
10384 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10385
10386Overview:
10387"""""""""
10388
10389The '``llvm.log2.*``' intrinsics perform the log2 function.
10390
10391Arguments:
10392""""""""""
10393
10394The argument and return value are floating point numbers of the same
10395type.
10396
10397Semantics:
10398""""""""""
10399
10400This function returns the same values as the libm ``log2`` functions
10401would, and handles error conditions in the same way.
10402
10403'``llvm.fma.*``' Intrinsic
10404^^^^^^^^^^^^^^^^^^^^^^^^^^
10405
10406Syntax:
10407"""""""
10408
10409This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10410floating point or vector of floating point type. Not all targets support
10411all types however.
10412
10413::
10414
10415 declare float @llvm.fma.f32(float %a, float %b, float %c)
10416 declare double @llvm.fma.f64(double %a, double %b, double %c)
10417 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10418 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10419 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10420
10421Overview:
10422"""""""""
10423
10424The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10425operation.
10426
10427Arguments:
10428""""""""""
10429
10430The argument and return value are floating point numbers of the same
10431type.
10432
10433Semantics:
10434""""""""""
10435
10436This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010437would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010438
10439'``llvm.fabs.*``' Intrinsic
10440^^^^^^^^^^^^^^^^^^^^^^^^^^^
10441
10442Syntax:
10443"""""""
10444
10445This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10446floating point or vector of floating point type. Not all targets support
10447all types however.
10448
10449::
10450
10451 declare float @llvm.fabs.f32(float %Val)
10452 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010453 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010454 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010455 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010456
10457Overview:
10458"""""""""
10459
10460The '``llvm.fabs.*``' intrinsics return the absolute value of the
10461operand.
10462
10463Arguments:
10464""""""""""
10465
10466The argument and return value are floating point numbers of the same
10467type.
10468
10469Semantics:
10470""""""""""
10471
10472This function returns the same values as the libm ``fabs`` functions
10473would, and handles error conditions in the same way.
10474
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010475'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010476^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010477
10478Syntax:
10479"""""""
10480
10481This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10482floating point or vector of floating point type. Not all targets support
10483all types however.
10484
10485::
10486
Matt Arsenault64313c92014-10-22 18:25:02 +000010487 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10488 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10489 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10490 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10491 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010492
10493Overview:
10494"""""""""
10495
10496The '``llvm.minnum.*``' intrinsics return the minimum of the two
10497arguments.
10498
10499
10500Arguments:
10501""""""""""
10502
10503The arguments and return value are floating point numbers of the same
10504type.
10505
10506Semantics:
10507""""""""""
10508
10509Follows the IEEE-754 semantics for minNum, which also match for libm's
10510fmin.
10511
10512If either operand is a NaN, returns the other non-NaN operand. Returns
10513NaN only if both operands are NaN. If the operands compare equal,
10514returns a value that compares equal to both operands. This means that
10515fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10516
10517'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010518^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010519
10520Syntax:
10521"""""""
10522
10523This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10524floating point or vector of floating point type. Not all targets support
10525all types however.
10526
10527::
10528
Matt Arsenault64313c92014-10-22 18:25:02 +000010529 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10530 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10531 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10532 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10533 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010534
10535Overview:
10536"""""""""
10537
10538The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10539arguments.
10540
10541
10542Arguments:
10543""""""""""
10544
10545The arguments and return value are floating point numbers of the same
10546type.
10547
10548Semantics:
10549""""""""""
10550Follows the IEEE-754 semantics for maxNum, which also match for libm's
10551fmax.
10552
10553If either operand is a NaN, returns the other non-NaN operand. Returns
10554NaN only if both operands are NaN. If the operands compare equal,
10555returns a value that compares equal to both operands. This means that
10556fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10557
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010558'``llvm.copysign.*``' Intrinsic
10559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10560
10561Syntax:
10562"""""""
10563
10564This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10565floating point or vector of floating point type. Not all targets support
10566all types however.
10567
10568::
10569
10570 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10571 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10572 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10573 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10574 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10575
10576Overview:
10577"""""""""
10578
10579The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10580first operand and the sign of the second operand.
10581
10582Arguments:
10583""""""""""
10584
10585The arguments and return value are floating point numbers of the same
10586type.
10587
10588Semantics:
10589""""""""""
10590
10591This function returns the same values as the libm ``copysign``
10592functions would, and handles error conditions in the same way.
10593
Sean Silvab084af42012-12-07 10:36:55 +000010594'``llvm.floor.*``' Intrinsic
10595^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10596
10597Syntax:
10598"""""""
10599
10600This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10601floating point or vector of floating point type. Not all targets support
10602all types however.
10603
10604::
10605
10606 declare float @llvm.floor.f32(float %Val)
10607 declare double @llvm.floor.f64(double %Val)
10608 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10609 declare fp128 @llvm.floor.f128(fp128 %Val)
10610 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10611
10612Overview:
10613"""""""""
10614
10615The '``llvm.floor.*``' intrinsics return the floor of the operand.
10616
10617Arguments:
10618""""""""""
10619
10620The argument and return value are floating point numbers of the same
10621type.
10622
10623Semantics:
10624""""""""""
10625
10626This function returns the same values as the libm ``floor`` functions
10627would, and handles error conditions in the same way.
10628
10629'``llvm.ceil.*``' Intrinsic
10630^^^^^^^^^^^^^^^^^^^^^^^^^^^
10631
10632Syntax:
10633"""""""
10634
10635This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10636floating point or vector of floating point type. Not all targets support
10637all types however.
10638
10639::
10640
10641 declare float @llvm.ceil.f32(float %Val)
10642 declare double @llvm.ceil.f64(double %Val)
10643 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10644 declare fp128 @llvm.ceil.f128(fp128 %Val)
10645 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10646
10647Overview:
10648"""""""""
10649
10650The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10651
10652Arguments:
10653""""""""""
10654
10655The argument and return value are floating point numbers of the same
10656type.
10657
10658Semantics:
10659""""""""""
10660
10661This function returns the same values as the libm ``ceil`` functions
10662would, and handles error conditions in the same way.
10663
10664'``llvm.trunc.*``' Intrinsic
10665^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10666
10667Syntax:
10668"""""""
10669
10670This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10671floating point or vector of floating point type. Not all targets support
10672all types however.
10673
10674::
10675
10676 declare float @llvm.trunc.f32(float %Val)
10677 declare double @llvm.trunc.f64(double %Val)
10678 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10679 declare fp128 @llvm.trunc.f128(fp128 %Val)
10680 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10681
10682Overview:
10683"""""""""
10684
10685The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10686nearest integer not larger in magnitude than the operand.
10687
10688Arguments:
10689""""""""""
10690
10691The argument and return value are floating point numbers of the same
10692type.
10693
10694Semantics:
10695""""""""""
10696
10697This function returns the same values as the libm ``trunc`` functions
10698would, and handles error conditions in the same way.
10699
10700'``llvm.rint.*``' Intrinsic
10701^^^^^^^^^^^^^^^^^^^^^^^^^^^
10702
10703Syntax:
10704"""""""
10705
10706This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10707floating point or vector of floating point type. Not all targets support
10708all types however.
10709
10710::
10711
10712 declare float @llvm.rint.f32(float %Val)
10713 declare double @llvm.rint.f64(double %Val)
10714 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10715 declare fp128 @llvm.rint.f128(fp128 %Val)
10716 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10717
10718Overview:
10719"""""""""
10720
10721The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10722nearest integer. It may raise an inexact floating-point exception if the
10723operand isn't an integer.
10724
10725Arguments:
10726""""""""""
10727
10728The argument and return value are floating point numbers of the same
10729type.
10730
10731Semantics:
10732""""""""""
10733
10734This function returns the same values as the libm ``rint`` functions
10735would, and handles error conditions in the same way.
10736
10737'``llvm.nearbyint.*``' Intrinsic
10738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10739
10740Syntax:
10741"""""""
10742
10743This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10744floating point or vector of floating point type. Not all targets support
10745all types however.
10746
10747::
10748
10749 declare float @llvm.nearbyint.f32(float %Val)
10750 declare double @llvm.nearbyint.f64(double %Val)
10751 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10752 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10753 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10754
10755Overview:
10756"""""""""
10757
10758The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10759nearest integer.
10760
10761Arguments:
10762""""""""""
10763
10764The argument and return value are floating point numbers of the same
10765type.
10766
10767Semantics:
10768""""""""""
10769
10770This function returns the same values as the libm ``nearbyint``
10771functions would, and handles error conditions in the same way.
10772
Hal Finkel171817e2013-08-07 22:49:12 +000010773'``llvm.round.*``' Intrinsic
10774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10775
10776Syntax:
10777"""""""
10778
10779This is an overloaded intrinsic. You can use ``llvm.round`` on any
10780floating point or vector of floating point type. Not all targets support
10781all types however.
10782
10783::
10784
10785 declare float @llvm.round.f32(float %Val)
10786 declare double @llvm.round.f64(double %Val)
10787 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10788 declare fp128 @llvm.round.f128(fp128 %Val)
10789 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10790
10791Overview:
10792"""""""""
10793
10794The '``llvm.round.*``' intrinsics returns the operand rounded to the
10795nearest integer.
10796
10797Arguments:
10798""""""""""
10799
10800The argument and return value are floating point numbers of the same
10801type.
10802
10803Semantics:
10804""""""""""
10805
10806This function returns the same values as the libm ``round``
10807functions would, and handles error conditions in the same way.
10808
Sean Silvab084af42012-12-07 10:36:55 +000010809Bit Manipulation Intrinsics
10810---------------------------
10811
10812LLVM provides intrinsics for a few important bit manipulation
10813operations. These allow efficient code generation for some algorithms.
10814
James Molloy90111f72015-11-12 12:29:09 +000010815'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010816^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010817
10818Syntax:
10819"""""""
10820
10821This is an overloaded intrinsic function. You can use bitreverse on any
10822integer type.
10823
10824::
10825
10826 declare i16 @llvm.bitreverse.i16(i16 <id>)
10827 declare i32 @llvm.bitreverse.i32(i32 <id>)
10828 declare i64 @llvm.bitreverse.i64(i64 <id>)
10829
10830Overview:
10831"""""""""
10832
10833The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010834bitpattern of an integer value; for example ``0b10110110`` becomes
10835``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010836
10837Semantics:
10838""""""""""
10839
Yichao Yu5abf14b2016-11-23 16:25:31 +000010840The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000010841``M`` in the input moved to bit ``N-M`` in the output.
10842
Sean Silvab084af42012-12-07 10:36:55 +000010843'``llvm.bswap.*``' Intrinsics
10844^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10845
10846Syntax:
10847"""""""
10848
10849This is an overloaded intrinsic function. You can use bswap on any
10850integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10851
10852::
10853
10854 declare i16 @llvm.bswap.i16(i16 <id>)
10855 declare i32 @llvm.bswap.i32(i32 <id>)
10856 declare i64 @llvm.bswap.i64(i64 <id>)
10857
10858Overview:
10859"""""""""
10860
10861The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10862values with an even number of bytes (positive multiple of 16 bits).
10863These are useful for performing operations on data that is not in the
10864target's native byte order.
10865
10866Semantics:
10867""""""""""
10868
10869The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10870and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10871intrinsic returns an i32 value that has the four bytes of the input i32
10872swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10873returned i32 will have its bytes in 3, 2, 1, 0 order. The
10874``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10875concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10876respectively).
10877
10878'``llvm.ctpop.*``' Intrinsic
10879^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10880
10881Syntax:
10882"""""""
10883
10884This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10885bit width, or on any vector with integer elements. Not all targets
10886support all bit widths or vector types, however.
10887
10888::
10889
10890 declare i8 @llvm.ctpop.i8(i8 <src>)
10891 declare i16 @llvm.ctpop.i16(i16 <src>)
10892 declare i32 @llvm.ctpop.i32(i32 <src>)
10893 declare i64 @llvm.ctpop.i64(i64 <src>)
10894 declare i256 @llvm.ctpop.i256(i256 <src>)
10895 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10896
10897Overview:
10898"""""""""
10899
10900The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10901in a value.
10902
10903Arguments:
10904""""""""""
10905
10906The only argument is the value to be counted. The argument may be of any
10907integer type, or a vector with integer elements. The return type must
10908match the argument type.
10909
10910Semantics:
10911""""""""""
10912
10913The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10914each element of a vector.
10915
10916'``llvm.ctlz.*``' Intrinsic
10917^^^^^^^^^^^^^^^^^^^^^^^^^^^
10918
10919Syntax:
10920"""""""
10921
10922This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10923integer bit width, or any vector whose elements are integers. Not all
10924targets support all bit widths or vector types, however.
10925
10926::
10927
10928 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10929 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10930 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10931 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10932 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010933 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010934
10935Overview:
10936"""""""""
10937
10938The '``llvm.ctlz``' family of intrinsic functions counts the number of
10939leading zeros in a variable.
10940
10941Arguments:
10942""""""""""
10943
10944The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010945any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010946type must match the first argument type.
10947
10948The second argument must be a constant and is a flag to indicate whether
10949the intrinsic should ensure that a zero as the first argument produces a
10950defined result. Historically some architectures did not provide a
10951defined result for zero values as efficiently, and many algorithms are
10952now predicated on avoiding zero-value inputs.
10953
10954Semantics:
10955""""""""""
10956
10957The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10958zeros in a variable, or within each element of the vector. If
10959``src == 0`` then the result is the size in bits of the type of ``src``
10960if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10961``llvm.ctlz(i32 2) = 30``.
10962
10963'``llvm.cttz.*``' Intrinsic
10964^^^^^^^^^^^^^^^^^^^^^^^^^^^
10965
10966Syntax:
10967"""""""
10968
10969This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10970integer bit width, or any vector of integer elements. Not all targets
10971support all bit widths or vector types, however.
10972
10973::
10974
10975 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10976 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10977 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10978 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10979 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010980 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010981
10982Overview:
10983"""""""""
10984
10985The '``llvm.cttz``' family of intrinsic functions counts the number of
10986trailing zeros.
10987
10988Arguments:
10989""""""""""
10990
10991The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010992any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010993type must match the first argument type.
10994
10995The second argument must be a constant and is a flag to indicate whether
10996the intrinsic should ensure that a zero as the first argument produces a
10997defined result. Historically some architectures did not provide a
10998defined result for zero values as efficiently, and many algorithms are
10999now predicated on avoiding zero-value inputs.
11000
11001Semantics:
11002""""""""""
11003
11004The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11005zeros in a variable, or within each element of a vector. If ``src == 0``
11006then the result is the size in bits of the type of ``src`` if
11007``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11008``llvm.cttz(2) = 1``.
11009
Philip Reames34843ae2015-03-05 05:55:55 +000011010.. _int_overflow:
11011
Sean Silvab084af42012-12-07 10:36:55 +000011012Arithmetic with Overflow Intrinsics
11013-----------------------------------
11014
John Regehr6a493f22016-05-12 20:55:09 +000011015LLVM provides intrinsics for fast arithmetic overflow checking.
11016
11017Each of these intrinsics returns a two-element struct. The first
11018element of this struct contains the result of the corresponding
11019arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11020the result. Therefore, for example, the first element of the struct
11021returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11022result of a 32-bit ``add`` instruction with the same operands, where
11023the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11024
11025The second element of the result is an ``i1`` that is 1 if the
11026arithmetic operation overflowed and 0 otherwise. An operation
11027overflows if, for any values of its operands ``A`` and ``B`` and for
11028any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11029not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11030``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11031``op`` is the underlying arithmetic operation.
11032
11033The behavior of these intrinsics is well-defined for all argument
11034values.
Sean Silvab084af42012-12-07 10:36:55 +000011035
11036'``llvm.sadd.with.overflow.*``' Intrinsics
11037^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11038
11039Syntax:
11040"""""""
11041
11042This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11043on any integer bit width.
11044
11045::
11046
11047 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11048 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11049 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11050
11051Overview:
11052"""""""""
11053
11054The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11055a signed addition of the two arguments, and indicate whether an overflow
11056occurred during the signed summation.
11057
11058Arguments:
11059""""""""""
11060
11061The arguments (%a and %b) and the first element of the result structure
11062may be of integer types of any bit width, but they must have the same
11063bit width. The second element of the result structure must be of type
11064``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11065addition.
11066
11067Semantics:
11068""""""""""
11069
11070The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011071a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011072first element of which is the signed summation, and the second element
11073of which is a bit specifying if the signed summation resulted in an
11074overflow.
11075
11076Examples:
11077"""""""""
11078
11079.. code-block:: llvm
11080
11081 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11082 %sum = extractvalue {i32, i1} %res, 0
11083 %obit = extractvalue {i32, i1} %res, 1
11084 br i1 %obit, label %overflow, label %normal
11085
11086'``llvm.uadd.with.overflow.*``' Intrinsics
11087^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11088
11089Syntax:
11090"""""""
11091
11092This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11093on any integer bit width.
11094
11095::
11096
11097 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11098 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11099 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11100
11101Overview:
11102"""""""""
11103
11104The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11105an unsigned addition of the two arguments, and indicate whether a carry
11106occurred during the unsigned summation.
11107
11108Arguments:
11109""""""""""
11110
11111The arguments (%a and %b) and the first element of the result structure
11112may be of integer types of any bit width, but they must have the same
11113bit width. The second element of the result structure must be of type
11114``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11115addition.
11116
11117Semantics:
11118""""""""""
11119
11120The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011121an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011122first element of which is the sum, and the second element of which is a
11123bit specifying if the unsigned summation resulted in a carry.
11124
11125Examples:
11126"""""""""
11127
11128.. code-block:: llvm
11129
11130 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11131 %sum = extractvalue {i32, i1} %res, 0
11132 %obit = extractvalue {i32, i1} %res, 1
11133 br i1 %obit, label %carry, label %normal
11134
11135'``llvm.ssub.with.overflow.*``' Intrinsics
11136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11137
11138Syntax:
11139"""""""
11140
11141This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11142on any integer bit width.
11143
11144::
11145
11146 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11147 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11148 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11149
11150Overview:
11151"""""""""
11152
11153The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11154a signed subtraction of the two arguments, and indicate whether an
11155overflow occurred during the signed subtraction.
11156
11157Arguments:
11158""""""""""
11159
11160The arguments (%a and %b) and the first element of the result structure
11161may be of integer types of any bit width, but they must have the same
11162bit width. The second element of the result structure must be of type
11163``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11164subtraction.
11165
11166Semantics:
11167""""""""""
11168
11169The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011170a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011171first element of which is the subtraction, and the second element of
11172which is a bit specifying if the signed subtraction resulted in an
11173overflow.
11174
11175Examples:
11176"""""""""
11177
11178.. code-block:: llvm
11179
11180 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11181 %sum = extractvalue {i32, i1} %res, 0
11182 %obit = extractvalue {i32, i1} %res, 1
11183 br i1 %obit, label %overflow, label %normal
11184
11185'``llvm.usub.with.overflow.*``' Intrinsics
11186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11187
11188Syntax:
11189"""""""
11190
11191This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11192on any integer bit width.
11193
11194::
11195
11196 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11197 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11198 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11199
11200Overview:
11201"""""""""
11202
11203The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11204an unsigned subtraction of the two arguments, and indicate whether an
11205overflow occurred during the unsigned subtraction.
11206
11207Arguments:
11208""""""""""
11209
11210The arguments (%a and %b) and the first element of the result structure
11211may be of integer types of any bit width, but they must have the same
11212bit width. The second element of the result structure must be of type
11213``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11214subtraction.
11215
11216Semantics:
11217""""""""""
11218
11219The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011220an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011221the first element of which is the subtraction, and the second element of
11222which is a bit specifying if the unsigned subtraction resulted in an
11223overflow.
11224
11225Examples:
11226"""""""""
11227
11228.. code-block:: llvm
11229
11230 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11231 %sum = extractvalue {i32, i1} %res, 0
11232 %obit = extractvalue {i32, i1} %res, 1
11233 br i1 %obit, label %overflow, label %normal
11234
11235'``llvm.smul.with.overflow.*``' Intrinsics
11236^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11237
11238Syntax:
11239"""""""
11240
11241This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11242on any integer bit width.
11243
11244::
11245
11246 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11247 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11248 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11249
11250Overview:
11251"""""""""
11252
11253The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11254a signed multiplication of the two arguments, and indicate whether an
11255overflow occurred during the signed multiplication.
11256
11257Arguments:
11258""""""""""
11259
11260The arguments (%a and %b) and the first element of the result structure
11261may be of integer types of any bit width, but they must have the same
11262bit width. The second element of the result structure must be of type
11263``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11264multiplication.
11265
11266Semantics:
11267""""""""""
11268
11269The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011270a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011271the first element of which is the multiplication, and the second element
11272of which is a bit specifying if the signed multiplication resulted in an
11273overflow.
11274
11275Examples:
11276"""""""""
11277
11278.. code-block:: llvm
11279
11280 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11281 %sum = extractvalue {i32, i1} %res, 0
11282 %obit = extractvalue {i32, i1} %res, 1
11283 br i1 %obit, label %overflow, label %normal
11284
11285'``llvm.umul.with.overflow.*``' Intrinsics
11286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11287
11288Syntax:
11289"""""""
11290
11291This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11292on any integer bit width.
11293
11294::
11295
11296 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11297 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11298 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11299
11300Overview:
11301"""""""""
11302
11303The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11304a unsigned multiplication of the two arguments, and indicate whether an
11305overflow occurred during the unsigned multiplication.
11306
11307Arguments:
11308""""""""""
11309
11310The arguments (%a and %b) and the first element of the result structure
11311may be of integer types of any bit width, but they must have the same
11312bit width. The second element of the result structure must be of type
11313``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11314multiplication.
11315
11316Semantics:
11317""""""""""
11318
11319The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011320an unsigned multiplication of the two arguments. They return a structure ---
11321the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011322element of which is a bit specifying if the unsigned multiplication
11323resulted in an overflow.
11324
11325Examples:
11326"""""""""
11327
11328.. code-block:: llvm
11329
11330 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11331 %sum = extractvalue {i32, i1} %res, 0
11332 %obit = extractvalue {i32, i1} %res, 1
11333 br i1 %obit, label %overflow, label %normal
11334
11335Specialised Arithmetic Intrinsics
11336---------------------------------
11337
Owen Anderson1056a922015-07-11 07:01:27 +000011338'``llvm.canonicalize.*``' Intrinsic
11339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11340
11341Syntax:
11342"""""""
11343
11344::
11345
11346 declare float @llvm.canonicalize.f32(float %a)
11347 declare double @llvm.canonicalize.f64(double %b)
11348
11349Overview:
11350"""""""""
11351
11352The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011353encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011354implementing certain numeric primitives such as frexp. The canonical encoding is
11355defined by IEEE-754-2008 to be:
11356
11357::
11358
11359 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011360 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011361 numbers, infinities, and NaNs, especially in decimal formats.
11362
11363This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011364conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011365according to section 6.2.
11366
11367Examples of non-canonical encodings:
11368
Sean Silvaa1190322015-08-06 22:56:48 +000011369- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011370 converted to a canonical representation per hardware-specific protocol.
11371- Many normal decimal floating point numbers have non-canonical alternative
11372 encodings.
11373- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011374 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011375 a zero of the same sign by this operation.
11376
11377Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11378default exception handling must signal an invalid exception, and produce a
11379quiet NaN result.
11380
11381This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011382that the compiler does not constant fold the operation. Likewise, division by
113831.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011384-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11385
Sean Silvaa1190322015-08-06 22:56:48 +000011386``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011387
11388- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11389- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11390 to ``(x == y)``
11391
11392Additionally, the sign of zero must be conserved:
11393``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11394
11395The payload bits of a NaN must be conserved, with two exceptions.
11396First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011397must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011398usual methods.
11399
11400The canonicalization operation may be optimized away if:
11401
Sean Silvaa1190322015-08-06 22:56:48 +000011402- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011403 floating-point operation that is required by the standard to be canonical.
11404- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011405 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011406
Sean Silvab084af42012-12-07 10:36:55 +000011407'``llvm.fmuladd.*``' Intrinsic
11408^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11409
11410Syntax:
11411"""""""
11412
11413::
11414
11415 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11416 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11417
11418Overview:
11419"""""""""
11420
11421The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011422expressions that can be fused if the code generator determines that (a) the
11423target instruction set has support for a fused operation, and (b) that the
11424fused operation is more efficient than the equivalent, separate pair of mul
11425and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011426
11427Arguments:
11428""""""""""
11429
11430The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11431multiplicands, a and b, and an addend c.
11432
11433Semantics:
11434""""""""""
11435
11436The expression:
11437
11438::
11439
11440 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11441
11442is equivalent to the expression a \* b + c, except that rounding will
11443not be performed between the multiplication and addition steps if the
11444code generator fuses the operations. Fusion is not guaranteed, even if
11445the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011446corresponding llvm.fma.\* intrinsic function should be used
11447instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011448
11449Examples:
11450"""""""""
11451
11452.. code-block:: llvm
11453
Tim Northover675a0962014-06-13 14:24:23 +000011454 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011455
11456Half Precision Floating Point Intrinsics
11457----------------------------------------
11458
11459For most target platforms, half precision floating point is a
11460storage-only format. This means that it is a dense encoding (in memory)
11461but does not support computation in the format.
11462
11463This means that code must first load the half-precision floating point
11464value as an i16, then convert it to float with
11465:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11466then be performed on the float value (including extending to double
11467etc). To store the value back to memory, it is first converted to float
11468if needed, then converted to i16 with
11469:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11470i16 value.
11471
11472.. _int_convert_to_fp16:
11473
11474'``llvm.convert.to.fp16``' Intrinsic
11475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11476
11477Syntax:
11478"""""""
11479
11480::
11481
Tim Northoverfd7e4242014-07-17 10:51:23 +000011482 declare i16 @llvm.convert.to.fp16.f32(float %a)
11483 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011484
11485Overview:
11486"""""""""
11487
Tim Northoverfd7e4242014-07-17 10:51:23 +000011488The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11489conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011490
11491Arguments:
11492""""""""""
11493
11494The intrinsic function contains single argument - the value to be
11495converted.
11496
11497Semantics:
11498""""""""""
11499
Tim Northoverfd7e4242014-07-17 10:51:23 +000011500The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11501conventional floating point format to half precision floating point format. The
11502return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011503
11504Examples:
11505"""""""""
11506
11507.. code-block:: llvm
11508
Tim Northoverfd7e4242014-07-17 10:51:23 +000011509 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011510 store i16 %res, i16* @x, align 2
11511
11512.. _int_convert_from_fp16:
11513
11514'``llvm.convert.from.fp16``' Intrinsic
11515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11516
11517Syntax:
11518"""""""
11519
11520::
11521
Tim Northoverfd7e4242014-07-17 10:51:23 +000011522 declare float @llvm.convert.from.fp16.f32(i16 %a)
11523 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011524
11525Overview:
11526"""""""""
11527
11528The '``llvm.convert.from.fp16``' intrinsic function performs a
11529conversion from half precision floating point format to single precision
11530floating point format.
11531
11532Arguments:
11533""""""""""
11534
11535The intrinsic function contains single argument - the value to be
11536converted.
11537
11538Semantics:
11539""""""""""
11540
11541The '``llvm.convert.from.fp16``' intrinsic function performs a
11542conversion from half single precision floating point format to single
11543precision floating point format. The input half-float value is
11544represented by an ``i16`` value.
11545
11546Examples:
11547"""""""""
11548
11549.. code-block:: llvm
11550
David Blaikiec7aabbb2015-03-04 22:06:14 +000011551 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011552 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011553
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011554.. _dbg_intrinsics:
11555
Sean Silvab084af42012-12-07 10:36:55 +000011556Debugger Intrinsics
11557-------------------
11558
11559The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11560prefix), are described in the `LLVM Source Level
11561Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11562document.
11563
11564Exception Handling Intrinsics
11565-----------------------------
11566
11567The LLVM exception handling intrinsics (which all start with
11568``llvm.eh.`` prefix), are described in the `LLVM Exception
11569Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11570
11571.. _int_trampoline:
11572
11573Trampoline Intrinsics
11574---------------------
11575
11576These intrinsics make it possible to excise one parameter, marked with
11577the :ref:`nest <nest>` attribute, from a function. The result is a
11578callable function pointer lacking the nest parameter - the caller does
11579not need to provide a value for it. Instead, the value to use is stored
11580in advance in a "trampoline", a block of memory usually allocated on the
11581stack, which also contains code to splice the nest value into the
11582argument list. This is used to implement the GCC nested function address
11583extension.
11584
11585For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11586then the resulting function pointer has signature ``i32 (i32, i32)*``.
11587It can be created as follows:
11588
11589.. code-block:: llvm
11590
11591 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011592 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011593 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11594 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11595 %fp = bitcast i8* %p to i32 (i32, i32)*
11596
11597The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11598``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11599
11600.. _int_it:
11601
11602'``llvm.init.trampoline``' Intrinsic
11603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11604
11605Syntax:
11606"""""""
11607
11608::
11609
11610 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11611
11612Overview:
11613"""""""""
11614
11615This fills the memory pointed to by ``tramp`` with executable code,
11616turning it into a trampoline.
11617
11618Arguments:
11619""""""""""
11620
11621The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11622pointers. The ``tramp`` argument must point to a sufficiently large and
11623sufficiently aligned block of memory; this memory is written to by the
11624intrinsic. Note that the size and the alignment are target-specific -
11625LLVM currently provides no portable way of determining them, so a
11626front-end that generates this intrinsic needs to have some
11627target-specific knowledge. The ``func`` argument must hold a function
11628bitcast to an ``i8*``.
11629
11630Semantics:
11631""""""""""
11632
11633The block of memory pointed to by ``tramp`` is filled with target
11634dependent code, turning it into a function. Then ``tramp`` needs to be
11635passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11636be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11637function's signature is the same as that of ``func`` with any arguments
11638marked with the ``nest`` attribute removed. At most one such ``nest``
11639argument is allowed, and it must be of pointer type. Calling the new
11640function is equivalent to calling ``func`` with the same argument list,
11641but with ``nval`` used for the missing ``nest`` argument. If, after
11642calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11643modified, then the effect of any later call to the returned function
11644pointer is undefined.
11645
11646.. _int_at:
11647
11648'``llvm.adjust.trampoline``' Intrinsic
11649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11650
11651Syntax:
11652"""""""
11653
11654::
11655
11656 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11657
11658Overview:
11659"""""""""
11660
11661This performs any required machine-specific adjustment to the address of
11662a trampoline (passed as ``tramp``).
11663
11664Arguments:
11665""""""""""
11666
11667``tramp`` must point to a block of memory which already has trampoline
11668code filled in by a previous call to
11669:ref:`llvm.init.trampoline <int_it>`.
11670
11671Semantics:
11672""""""""""
11673
11674On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011675different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011676intrinsic returns the executable address corresponding to ``tramp``
11677after performing the required machine specific adjustments. The pointer
11678returned can then be :ref:`bitcast and executed <int_trampoline>`.
11679
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011680.. _int_mload_mstore:
11681
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011682Masked Vector Load and Store Intrinsics
11683---------------------------------------
11684
11685LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11686
11687.. _int_mload:
11688
11689'``llvm.masked.load.*``' Intrinsics
11690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11691
11692Syntax:
11693"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011694This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011695
11696::
11697
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011698 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11699 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011700 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011701 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011702 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011703 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011704
11705Overview:
11706"""""""""
11707
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011708Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011709
11710
11711Arguments:
11712""""""""""
11713
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011714The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011715
11716
11717Semantics:
11718""""""""""
11719
11720The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11721The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11722
11723
11724::
11725
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011726 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011727
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011728 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011729 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011730 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011731
11732.. _int_mstore:
11733
11734'``llvm.masked.store.*``' Intrinsics
11735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11736
11737Syntax:
11738"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011739This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011740
11741::
11742
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011743 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11744 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011745 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011746 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011747 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011748 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011749
11750Overview:
11751"""""""""
11752
11753Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11754
11755Arguments:
11756""""""""""
11757
11758The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11759
11760
11761Semantics:
11762""""""""""
11763
11764The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11765The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11766
11767::
11768
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011769 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011770
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011771 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011772 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011773 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11774 store <16 x float> %res, <16 x float>* %ptr, align 4
11775
11776
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011777Masked Vector Gather and Scatter Intrinsics
11778-------------------------------------------
11779
11780LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11781
11782.. _int_mgather:
11783
11784'``llvm.masked.gather.*``' Intrinsics
11785^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11786
11787Syntax:
11788"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011789This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011790
11791::
11792
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011793 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11794 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11795 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011796
11797Overview:
11798"""""""""
11799
11800Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11801
11802
11803Arguments:
11804""""""""""
11805
11806The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11807
11808
11809Semantics:
11810""""""""""
11811
11812The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11813The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11814
11815
11816::
11817
11818 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11819
11820 ;; The gather with all-true mask is equivalent to the following instruction sequence
11821 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11822 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11823 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11824 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11825
11826 %val0 = load double, double* %ptr0, align 8
11827 %val1 = load double, double* %ptr1, align 8
11828 %val2 = load double, double* %ptr2, align 8
11829 %val3 = load double, double* %ptr3, align 8
11830
11831 %vec0 = insertelement <4 x double>undef, %val0, 0
11832 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11833 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11834 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11835
11836.. _int_mscatter:
11837
11838'``llvm.masked.scatter.*``' Intrinsics
11839^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11840
11841Syntax:
11842"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011843This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011844
11845::
11846
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011847 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11848 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11849 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011850
11851Overview:
11852"""""""""
11853
11854Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11855
11856Arguments:
11857""""""""""
11858
11859The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11860
11861
11862Semantics:
11863""""""""""
11864
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011865The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011866
11867::
11868
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011869 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011870 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11871
11872 ;; It is equivalent to a list of scalar stores
11873 %val0 = extractelement <8 x i32> %value, i32 0
11874 %val1 = extractelement <8 x i32> %value, i32 1
11875 ..
11876 %val7 = extractelement <8 x i32> %value, i32 7
11877 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11878 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11879 ..
11880 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11881 ;; Note: the order of the following stores is important when they overlap:
11882 store i32 %val0, i32* %ptr0, align 4
11883 store i32 %val1, i32* %ptr1, align 4
11884 ..
11885 store i32 %val7, i32* %ptr7, align 4
11886
11887
Sean Silvab084af42012-12-07 10:36:55 +000011888Memory Use Markers
11889------------------
11890
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011891This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011892memory objects and ranges where variables are immutable.
11893
Reid Klecknera534a382013-12-19 02:14:12 +000011894.. _int_lifestart:
11895
Sean Silvab084af42012-12-07 10:36:55 +000011896'``llvm.lifetime.start``' Intrinsic
11897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11898
11899Syntax:
11900"""""""
11901
11902::
11903
11904 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11905
11906Overview:
11907"""""""""
11908
11909The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11910object's lifetime.
11911
11912Arguments:
11913""""""""""
11914
11915The first argument is a constant integer representing the size of the
11916object, or -1 if it is variable sized. The second argument is a pointer
11917to the object.
11918
11919Semantics:
11920""""""""""
11921
11922This intrinsic indicates that before this point in the code, the value
11923of the memory pointed to by ``ptr`` is dead. This means that it is known
11924to never be used and has an undefined value. A load from the pointer
11925that precedes this intrinsic can be replaced with ``'undef'``.
11926
Reid Klecknera534a382013-12-19 02:14:12 +000011927.. _int_lifeend:
11928
Sean Silvab084af42012-12-07 10:36:55 +000011929'``llvm.lifetime.end``' Intrinsic
11930^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11931
11932Syntax:
11933"""""""
11934
11935::
11936
11937 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11938
11939Overview:
11940"""""""""
11941
11942The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11943object's lifetime.
11944
11945Arguments:
11946""""""""""
11947
11948The first argument is a constant integer representing the size of the
11949object, or -1 if it is variable sized. The second argument is a pointer
11950to the object.
11951
11952Semantics:
11953""""""""""
11954
11955This intrinsic indicates that after this point in the code, the value of
11956the memory pointed to by ``ptr`` is dead. This means that it is known to
11957never be used and has an undefined value. Any stores into the memory
11958object following this intrinsic may be removed as dead.
11959
11960'``llvm.invariant.start``' Intrinsic
11961^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11962
11963Syntax:
11964"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011965This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011966
11967::
11968
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011969 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011970
11971Overview:
11972"""""""""
11973
11974The '``llvm.invariant.start``' intrinsic specifies that the contents of
11975a memory object will not change.
11976
11977Arguments:
11978""""""""""
11979
11980The first argument is a constant integer representing the size of the
11981object, or -1 if it is variable sized. The second argument is a pointer
11982to the object.
11983
11984Semantics:
11985""""""""""
11986
11987This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11988the return value, the referenced memory location is constant and
11989unchanging.
11990
11991'``llvm.invariant.end``' Intrinsic
11992^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11993
11994Syntax:
11995"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011996This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011997
11998::
11999
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012000 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012001
12002Overview:
12003"""""""""
12004
12005The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12006memory object are mutable.
12007
12008Arguments:
12009""""""""""
12010
12011The first argument is the matching ``llvm.invariant.start`` intrinsic.
12012The second argument is a constant integer representing the size of the
12013object, or -1 if it is variable sized and the third argument is a
12014pointer to the object.
12015
12016Semantics:
12017""""""""""
12018
12019This intrinsic indicates that the memory is mutable again.
12020
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012021'``llvm.invariant.group.barrier``' Intrinsic
12022^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12023
12024Syntax:
12025"""""""
12026
12027::
12028
12029 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12030
12031Overview:
12032"""""""""
12033
12034The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12035established by invariant.group metadata no longer holds, to obtain a new pointer
12036value that does not carry the invariant information.
12037
12038
12039Arguments:
12040""""""""""
12041
12042The ``llvm.invariant.group.barrier`` takes only one argument, which is
12043the pointer to the memory for which the ``invariant.group`` no longer holds.
12044
12045Semantics:
12046""""""""""
12047
12048Returns another pointer that aliases its argument but which is considered different
12049for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12050
Sean Silvab084af42012-12-07 10:36:55 +000012051General Intrinsics
12052------------------
12053
12054This class of intrinsics is designed to be generic and has no specific
12055purpose.
12056
12057'``llvm.var.annotation``' Intrinsic
12058^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12059
12060Syntax:
12061"""""""
12062
12063::
12064
12065 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12066
12067Overview:
12068"""""""""
12069
12070The '``llvm.var.annotation``' intrinsic.
12071
12072Arguments:
12073""""""""""
12074
12075The first argument is a pointer to a value, the second is a pointer to a
12076global string, the third is a pointer to a global string which is the
12077source file name, and the last argument is the line number.
12078
12079Semantics:
12080""""""""""
12081
12082This intrinsic allows annotation of local variables with arbitrary
12083strings. This can be useful for special purpose optimizations that want
12084to look for these annotations. These have no other defined use; they are
12085ignored by code generation and optimization.
12086
Michael Gottesman88d18832013-03-26 00:34:27 +000012087'``llvm.ptr.annotation.*``' Intrinsic
12088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12089
12090Syntax:
12091"""""""
12092
12093This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12094pointer to an integer of any width. *NOTE* you must specify an address space for
12095the pointer. The identifier for the default address space is the integer
12096'``0``'.
12097
12098::
12099
12100 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12101 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12102 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12103 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12104 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12105
12106Overview:
12107"""""""""
12108
12109The '``llvm.ptr.annotation``' intrinsic.
12110
12111Arguments:
12112""""""""""
12113
12114The first argument is a pointer to an integer value of arbitrary bitwidth
12115(result of some expression), the second is a pointer to a global string, the
12116third is a pointer to a global string which is the source file name, and the
12117last argument is the line number. It returns the value of the first argument.
12118
12119Semantics:
12120""""""""""
12121
12122This intrinsic allows annotation of a pointer to an integer with arbitrary
12123strings. This can be useful for special purpose optimizations that want to look
12124for these annotations. These have no other defined use; they are ignored by code
12125generation and optimization.
12126
Sean Silvab084af42012-12-07 10:36:55 +000012127'``llvm.annotation.*``' Intrinsic
12128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12129
12130Syntax:
12131"""""""
12132
12133This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12134any integer bit width.
12135
12136::
12137
12138 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12139 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12140 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12141 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12142 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12143
12144Overview:
12145"""""""""
12146
12147The '``llvm.annotation``' intrinsic.
12148
12149Arguments:
12150""""""""""
12151
12152The first argument is an integer value (result of some expression), the
12153second is a pointer to a global string, the third is a pointer to a
12154global string which is the source file name, and the last argument is
12155the line number. It returns the value of the first argument.
12156
12157Semantics:
12158""""""""""
12159
12160This intrinsic allows annotations to be put on arbitrary expressions
12161with arbitrary strings. This can be useful for special purpose
12162optimizations that want to look for these annotations. These have no
12163other defined use; they are ignored by code generation and optimization.
12164
12165'``llvm.trap``' Intrinsic
12166^^^^^^^^^^^^^^^^^^^^^^^^^
12167
12168Syntax:
12169"""""""
12170
12171::
12172
12173 declare void @llvm.trap() noreturn nounwind
12174
12175Overview:
12176"""""""""
12177
12178The '``llvm.trap``' intrinsic.
12179
12180Arguments:
12181""""""""""
12182
12183None.
12184
12185Semantics:
12186""""""""""
12187
12188This intrinsic is lowered to the target dependent trap instruction. If
12189the target does not have a trap instruction, this intrinsic will be
12190lowered to a call of the ``abort()`` function.
12191
12192'``llvm.debugtrap``' Intrinsic
12193^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12194
12195Syntax:
12196"""""""
12197
12198::
12199
12200 declare void @llvm.debugtrap() nounwind
12201
12202Overview:
12203"""""""""
12204
12205The '``llvm.debugtrap``' intrinsic.
12206
12207Arguments:
12208""""""""""
12209
12210None.
12211
12212Semantics:
12213""""""""""
12214
12215This intrinsic is lowered to code which is intended to cause an
12216execution trap with the intention of requesting the attention of a
12217debugger.
12218
12219'``llvm.stackprotector``' Intrinsic
12220^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12221
12222Syntax:
12223"""""""
12224
12225::
12226
12227 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12228
12229Overview:
12230"""""""""
12231
12232The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12233onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12234is placed on the stack before local variables.
12235
12236Arguments:
12237""""""""""
12238
12239The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12240The first argument is the value loaded from the stack guard
12241``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12242enough space to hold the value of the guard.
12243
12244Semantics:
12245""""""""""
12246
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012247This intrinsic causes the prologue/epilogue inserter to force the position of
12248the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12249to ensure that if a local variable on the stack is overwritten, it will destroy
12250the value of the guard. When the function exits, the guard on the stack is
12251checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12252different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12253calling the ``__stack_chk_fail()`` function.
12254
Tim Shene885d5e2016-04-19 19:40:37 +000012255'``llvm.stackguard``' Intrinsic
12256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12257
12258Syntax:
12259"""""""
12260
12261::
12262
12263 declare i8* @llvm.stackguard()
12264
12265Overview:
12266"""""""""
12267
12268The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12269
12270It should not be generated by frontends, since it is only for internal usage.
12271The reason why we create this intrinsic is that we still support IR form Stack
12272Protector in FastISel.
12273
12274Arguments:
12275""""""""""
12276
12277None.
12278
12279Semantics:
12280""""""""""
12281
12282On some platforms, the value returned by this intrinsic remains unchanged
12283between loads in the same thread. On other platforms, it returns the same
12284global variable value, if any, e.g. ``@__stack_chk_guard``.
12285
12286Currently some platforms have IR-level customized stack guard loading (e.g.
12287X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12288in the future.
12289
Sean Silvab084af42012-12-07 10:36:55 +000012290'``llvm.objectsize``' Intrinsic
12291^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12292
12293Syntax:
12294"""""""
12295
12296::
12297
12298 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12299 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12300
12301Overview:
12302"""""""""
12303
12304The ``llvm.objectsize`` intrinsic is designed to provide information to
12305the optimizers to determine at compile time whether a) an operation
12306(like memcpy) will overflow a buffer that corresponds to an object, or
12307b) that a runtime check for overflow isn't necessary. An object in this
12308context means an allocation of a specific class, structure, array, or
12309other object.
12310
12311Arguments:
12312""""""""""
12313
12314The ``llvm.objectsize`` intrinsic takes two arguments. The first
12315argument is a pointer to or into the ``object``. The second argument is
12316a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12317or -1 (if false) when the object size is unknown. The second argument
12318only accepts constants.
12319
12320Semantics:
12321""""""""""
12322
12323The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12324the size of the object concerned. If the size cannot be determined at
12325compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12326on the ``min`` argument).
12327
12328'``llvm.expect``' Intrinsic
12329^^^^^^^^^^^^^^^^^^^^^^^^^^^
12330
12331Syntax:
12332"""""""
12333
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012334This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12335integer bit width.
12336
Sean Silvab084af42012-12-07 10:36:55 +000012337::
12338
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012339 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012340 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12341 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12342
12343Overview:
12344"""""""""
12345
12346The ``llvm.expect`` intrinsic provides information about expected (the
12347most probable) value of ``val``, which can be used by optimizers.
12348
12349Arguments:
12350""""""""""
12351
12352The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12353a value. The second argument is an expected value, this needs to be a
12354constant value, variables are not allowed.
12355
12356Semantics:
12357""""""""""
12358
12359This intrinsic is lowered to the ``val``.
12360
Philip Reamese0e90832015-04-26 22:23:12 +000012361.. _int_assume:
12362
Hal Finkel93046912014-07-25 21:13:35 +000012363'``llvm.assume``' Intrinsic
12364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12365
12366Syntax:
12367"""""""
12368
12369::
12370
12371 declare void @llvm.assume(i1 %cond)
12372
12373Overview:
12374"""""""""
12375
12376The ``llvm.assume`` allows the optimizer to assume that the provided
12377condition is true. This information can then be used in simplifying other parts
12378of the code.
12379
12380Arguments:
12381""""""""""
12382
12383The condition which the optimizer may assume is always true.
12384
12385Semantics:
12386""""""""""
12387
12388The intrinsic allows the optimizer to assume that the provided condition is
12389always true whenever the control flow reaches the intrinsic call. No code is
12390generated for this intrinsic, and instructions that contribute only to the
12391provided condition are not used for code generation. If the condition is
12392violated during execution, the behavior is undefined.
12393
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012394Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012395used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12396only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012397if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012398sufficient overall improvement in code quality. For this reason,
12399``llvm.assume`` should not be used to document basic mathematical invariants
12400that the optimizer can otherwise deduce or facts that are of little use to the
12401optimizer.
12402
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012403.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012404
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012405'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012406^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12407
12408Syntax:
12409"""""""
12410
12411::
12412
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012413 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012414
12415
12416Arguments:
12417""""""""""
12418
12419The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012420metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012421
12422Overview:
12423"""""""""
12424
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012425The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12426with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012427
Peter Collingbourne0312f612016-06-25 00:23:04 +000012428'``llvm.type.checked.load``' Intrinsic
12429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12430
12431Syntax:
12432"""""""
12433
12434::
12435
12436 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12437
12438
12439Arguments:
12440""""""""""
12441
12442The first argument is a pointer from which to load a function pointer. The
12443second argument is the byte offset from which to load the function pointer. The
12444third argument is a metadata object representing a :doc:`type identifier
12445<TypeMetadata>`.
12446
12447Overview:
12448"""""""""
12449
12450The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12451virtual table pointer using type metadata. This intrinsic is used to implement
12452control flow integrity in conjunction with virtual call optimization. The
12453virtual call optimization pass will optimize away ``llvm.type.checked.load``
12454intrinsics associated with devirtualized calls, thereby removing the type
12455check in cases where it is not needed to enforce the control flow integrity
12456constraint.
12457
12458If the given pointer is associated with a type metadata identifier, this
12459function returns true as the second element of its return value. (Note that
12460the function may also return true if the given pointer is not associated
12461with a type metadata identifier.) If the function's return value's second
12462element is true, the following rules apply to the first element:
12463
12464- If the given pointer is associated with the given type metadata identifier,
12465 it is the function pointer loaded from the given byte offset from the given
12466 pointer.
12467
12468- If the given pointer is not associated with the given type metadata
12469 identifier, it is one of the following (the choice of which is unspecified):
12470
12471 1. The function pointer that would have been loaded from an arbitrarily chosen
12472 (through an unspecified mechanism) pointer associated with the type
12473 metadata.
12474
12475 2. If the function has a non-void return type, a pointer to a function that
12476 returns an unspecified value without causing side effects.
12477
12478If the function's return value's second element is false, the value of the
12479first element is undefined.
12480
12481
Sean Silvab084af42012-12-07 10:36:55 +000012482'``llvm.donothing``' Intrinsic
12483^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12484
12485Syntax:
12486"""""""
12487
12488::
12489
12490 declare void @llvm.donothing() nounwind readnone
12491
12492Overview:
12493"""""""""
12494
Juergen Ributzkac9161192014-10-23 22:36:13 +000012495The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012496three intrinsics (besides ``llvm.experimental.patchpoint`` and
12497``llvm.experimental.gc.statepoint``) that can be called with an invoke
12498instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012499
12500Arguments:
12501""""""""""
12502
12503None.
12504
12505Semantics:
12506""""""""""
12507
12508This intrinsic does nothing, and it's removed by optimizers and ignored
12509by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012510
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012511'``llvm.experimental.deoptimize``' Intrinsic
12512^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12513
12514Syntax:
12515"""""""
12516
12517::
12518
12519 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12520
12521Overview:
12522"""""""""
12523
12524This intrinsic, together with :ref:`deoptimization operand bundles
12525<deopt_opbundles>`, allow frontends to express transfer of control and
12526frame-local state from the currently executing (typically more specialized,
12527hence faster) version of a function into another (typically more generic, hence
12528slower) version.
12529
12530In languages with a fully integrated managed runtime like Java and JavaScript
12531this intrinsic can be used to implement "uncommon trap" or "side exit" like
12532functionality. In unmanaged languages like C and C++, this intrinsic can be
12533used to represent the slow paths of specialized functions.
12534
12535
12536Arguments:
12537""""""""""
12538
12539The intrinsic takes an arbitrary number of arguments, whose meaning is
12540decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12541
12542Semantics:
12543""""""""""
12544
12545The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12546deoptimization continuation (denoted using a :ref:`deoptimization
12547operand bundle <deopt_opbundles>`) and returns the value returned by
12548the deoptimization continuation. Defining the semantic properties of
12549the continuation itself is out of scope of the language reference --
12550as far as LLVM is concerned, the deoptimization continuation can
12551invoke arbitrary side effects, including reading from and writing to
12552the entire heap.
12553
12554Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12555continue execution to the end of the physical frame containing them, so all
12556calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12557
12558 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12559 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12560 - The ``ret`` instruction must return the value produced by the
12561 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12562
12563Note that the above restrictions imply that the return type for a call to
12564``@llvm.experimental.deoptimize`` will match the return type of its immediate
12565caller.
12566
12567The inliner composes the ``"deopt"`` continuations of the caller into the
12568``"deopt"`` continuations present in the inlinee, and also updates calls to this
12569intrinsic to return directly from the frame of the function it inlined into.
12570
Sanjoy Dase0aa4142016-05-12 01:17:38 +000012571All declarations of ``@llvm.experimental.deoptimize`` must share the
12572same calling convention.
12573
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012574.. _deoptimize_lowering:
12575
12576Lowering:
12577"""""""""
12578
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012579Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12580symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12581ensure that this symbol is defined). The call arguments to
12582``@llvm.experimental.deoptimize`` are lowered as if they were formal
12583arguments of the specified types, and not as varargs.
12584
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012585
Sanjoy Das021de052016-03-31 00:18:46 +000012586'``llvm.experimental.guard``' Intrinsic
12587^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12588
12589Syntax:
12590"""""""
12591
12592::
12593
12594 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12595
12596Overview:
12597"""""""""
12598
12599This intrinsic, together with :ref:`deoptimization operand bundles
12600<deopt_opbundles>`, allows frontends to express guards or checks on
12601optimistic assumptions made during compilation. The semantics of
12602``@llvm.experimental.guard`` is defined in terms of
12603``@llvm.experimental.deoptimize`` -- its body is defined to be
12604equivalent to:
12605
Renato Golin124f2592016-07-20 12:16:38 +000012606.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000012607
Renato Golin124f2592016-07-20 12:16:38 +000012608 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12609 %realPred = and i1 %pred, undef
12610 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000012611
Renato Golin124f2592016-07-20 12:16:38 +000012612 leave:
12613 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12614 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000012615
Renato Golin124f2592016-07-20 12:16:38 +000012616 continue:
12617 ret void
12618 }
Sanjoy Das021de052016-03-31 00:18:46 +000012619
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012620
12621with the optional ``[, !make.implicit !{}]`` present if and only if it
12622is present on the call site. For more details on ``!make.implicit``,
12623see :doc:`FaultMaps`.
12624
Sanjoy Das021de052016-03-31 00:18:46 +000012625In words, ``@llvm.experimental.guard`` executes the attached
12626``"deopt"`` continuation if (but **not** only if) its first argument
12627is ``false``. Since the optimizer is allowed to replace the ``undef``
12628with an arbitrary value, it can optimize guard to fail "spuriously",
12629i.e. without the original condition being false (hence the "not only
12630if"); and this allows for "check widening" type optimizations.
12631
12632``@llvm.experimental.guard`` cannot be invoked.
12633
12634
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012635'``llvm.load.relative``' Intrinsic
12636^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12637
12638Syntax:
12639"""""""
12640
12641::
12642
12643 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12644
12645Overview:
12646"""""""""
12647
12648This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12649adds ``%ptr`` to that value and returns it. The constant folder specifically
12650recognizes the form of this intrinsic and the constant initializers it may
12651load from; if a loaded constant initializer is known to have the form
12652``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12653
12654LLVM provides that the calculation of such a constant initializer will
12655not overflow at link time under the medium code model if ``x`` is an
12656``unnamed_addr`` function. However, it does not provide this guarantee for
12657a constant initializer folded into a function body. This intrinsic can be
12658used to avoid the possibility of overflows when loading from such a constant.
12659
Andrew Trick5e029ce2013-12-24 02:57:25 +000012660Stack Map Intrinsics
12661--------------------
12662
12663LLVM provides experimental intrinsics to support runtime patching
12664mechanisms commonly desired in dynamic language JITs. These intrinsics
12665are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000012666
12667Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000012668-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000012669
12670These intrinsics are similar to the standard library memory intrinsics except
12671that they perform memory transfer as a sequence of atomic memory accesses.
12672
12673.. _int_memcpy_element_atomic:
12674
12675'``llvm.memcpy.element.atomic``' Intrinsic
Igor Laevskyfedab152016-12-29 15:08:57 +000012676^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000012677
12678Syntax:
12679"""""""
12680
12681This is an overloaded intrinsic. You can use ``llvm.memcpy.element.atomic`` on
12682any integer bit width and for different address spaces. Not all targets
12683support all bit widths however.
12684
12685::
12686
12687 declare void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* <dest>, i8* <src>,
12688 i64 <num_elements>, i32 <element_size>)
12689
12690Overview:
12691"""""""""
12692
12693The '``llvm.memcpy.element.atomic.*``' intrinsic performs copy of a block of
12694memory from the source location to the destination location as a sequence of
12695unordered atomic memory accesses where each access is a multiple of
12696``element_size`` bytes wide and aligned at an element size boundary. For example
12697each element is accessed atomically in source and destination buffers.
12698
12699Arguments:
12700""""""""""
12701
12702The first argument is a pointer to the destination, the second is a
12703pointer to the source. The third argument is an integer argument
12704specifying the number of elements to copy, the fourth argument is size of
12705the single element in bytes.
12706
12707``element_size`` should be a power of two, greater than zero and less than
12708a target-specific atomic access size limit.
12709
12710For each of the input pointers ``align`` parameter attribute must be specified.
12711It must be a power of two and greater than or equal to the ``element_size``.
12712Caller guarantees that both the source and destination pointers are aligned to
12713that boundary.
12714
12715Semantics:
12716""""""""""
12717
12718The '``llvm.memcpy.element.atomic.*``' intrinsic copies
12719'``num_elements`` * ``element_size``' bytes of memory from the source location to
12720the destination location. These locations are not allowed to overlap. Memory copy
12721is performed as a sequence of unordered atomic memory accesses where each access
12722is guaranteed to be a multiple of ``element_size`` bytes wide and aligned at an
12723element size boundary.
12724
12725The order of the copy is unspecified. The same value may be read from the source
12726buffer many times, but only one write is issued to the destination buffer per
12727element. It is well defined to have concurrent reads and writes to both source
12728and destination provided those reads and writes are at least unordered atomic.
12729
12730This intrinsic does not provide any additional ordering guarantees over those
12731provided by a set of unordered loads from the source location and stores to the
12732destination.
12733
12734Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000012735"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000012736
12737In the most general case call to the '``llvm.memcpy.element.atomic.*``' is lowered
12738to a call to the symbol ``__llvm_memcpy_element_atomic_*``. Where '*' is replaced
12739with an actual element size.
12740
12741Optimizer is allowed to inline memory copy when it's profitable to do so.