blob: ba15713429f810e8dcb91ba6c4e16ecb5358f54e [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
645an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000646
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000647Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000648:ref:`Thread Local Storage Model <tls_model>`.
649
Nico Rieck7157bb72014-01-14 15:22:47 +0000650Syntax::
651
Rafael Espindola32483a72016-05-10 18:22:45 +0000652 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000653 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
654 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000655 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000656 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000657 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659For example, the following defines a global in a numbered address space
660with an initializer, section, and alignment:
661
662.. code-block:: llvm
663
664 @G = addrspace(5) constant float 1.0, section "foo", align 4
665
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000666The following example just declares a global variable
667
668.. code-block:: llvm
669
670 @G = external global i32
671
Sean Silvab084af42012-12-07 10:36:55 +0000672The following example defines a thread-local global with the
673``initialexec`` TLS model:
674
675.. code-block:: llvm
676
677 @G = thread_local(initialexec) global i32 0, align 4
678
679.. _functionstructure:
680
681Functions
682---------
683
684LLVM function definitions consist of the "``define``" keyword, an
685optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000686style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
687an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000688an optional ``unnamed_addr`` attribute, a return type, an optional
689:ref:`parameter attribute <paramattrs>` for the return type, a function
690name, a (possibly empty) argument list (each with optional :ref:`parameter
691attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000692an optional section, an optional alignment,
693an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000694an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000695an optional :ref:`prologue <prologuedata>`,
696an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000697an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000698an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000699
700LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000701optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
702<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
703optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
704or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
705attribute <paramattrs>` for the return type, a function name, a possibly
706empty list of arguments, an optional alignment, an optional :ref:`garbage
707collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
708:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000709
Bill Wendling6822ecb2013-10-27 05:09:12 +0000710A function definition contains a list of basic blocks, forming the CFG (Control
711Flow Graph) for the function. Each basic block may optionally start with a label
712(giving the basic block a symbol table entry), contains a list of instructions,
713and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
714function return). If an explicit label is not provided, a block is assigned an
715implicit numbered label, using the next value from the same counter as used for
716unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
717entry block does not have an explicit label, it will be assigned label "%0",
718then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000719
720The first basic block in a function is special in two ways: it is
721immediately executed on entrance to the function, and it is not allowed
722to have predecessor basic blocks (i.e. there can not be any branches to
723the entry block of a function). Because the block can have no
724predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
725
726LLVM allows an explicit section to be specified for functions. If the
727target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000728Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730An explicit alignment may be specified for a function. If not present,
731or if the alignment is set to zero, the alignment of the function is set
732by the target to whatever it feels convenient. If an explicit alignment
733is specified, the function is forced to have at least that much
734alignment. All alignments must be a power of 2.
735
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000736If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000737be significant and two identical functions can be merged.
738
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000739If the ``local_unnamed_addr`` attribute is given, the address is known to
740not be significant within the module.
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Syntax::
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000745 [cconv] [ret attrs]
746 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000747 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
748 [comdat [($name)]] [align N] [gc] [prefix Constant]
749 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000750
Sean Silva706fba52015-08-06 22:56:24 +0000751The argument list is a comma separated sequence of arguments where each
752argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000753
754Syntax::
755
756 <type> [parameter Attrs] [name]
757
758
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000759.. _langref_aliases:
760
Sean Silvab084af42012-12-07 10:36:55 +0000761Aliases
762-------
763
Rafael Espindola64c1e182014-06-03 02:41:57 +0000764Aliases, unlike function or variables, don't create any new data. They
765are just a new symbol and metadata for an existing position.
766
767Aliases have a name and an aliasee that is either a global value or a
768constant expression.
769
Nico Rieck7157bb72014-01-14 15:22:47 +0000770Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000771:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
772<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000773
774Syntax::
775
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000776 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000777
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000778The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000779``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000780might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000781
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000782Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000783the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
784to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000785
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000786If the ``local_unnamed_addr`` attribute is given, the address is known to
787not be significant within the module.
788
Rafael Espindola64c1e182014-06-03 02:41:57 +0000789Since aliases are only a second name, some restrictions apply, of which
790some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000791
Rafael Espindola64c1e182014-06-03 02:41:57 +0000792* The expression defining the aliasee must be computable at assembly
793 time. Since it is just a name, no relocations can be used.
794
795* No alias in the expression can be weak as the possibility of the
796 intermediate alias being overridden cannot be represented in an
797 object file.
798
799* No global value in the expression can be a declaration, since that
800 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000801
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000802.. _langref_ifunc:
803
804IFuncs
805-------
806
807IFuncs, like as aliases, don't create any new data or func. They are just a new
808symbol that dynamic linker resolves at runtime by calling a resolver function.
809
810IFuncs have a name and a resolver that is a function called by dynamic linker
811that returns address of another function associated with the name.
812
813IFunc may have an optional :ref:`linkage type <linkage>` and an optional
814:ref:`visibility style <visibility>`.
815
816Syntax::
817
818 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821.. _langref_comdats:
822
823Comdats
824-------
825
826Comdat IR provides access to COFF and ELF object file COMDAT functionality.
827
Sean Silvaa1190322015-08-06 22:56:48 +0000828Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000829specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000830that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000831aliasee computes to, if any.
832
833Comdats have a selection kind to provide input on how the linker should
834choose between keys in two different object files.
835
836Syntax::
837
838 $<Name> = comdat SelectionKind
839
840The selection kind must be one of the following:
841
842``any``
843 The linker may choose any COMDAT key, the choice is arbitrary.
844``exactmatch``
845 The linker may choose any COMDAT key but the sections must contain the
846 same data.
847``largest``
848 The linker will choose the section containing the largest COMDAT key.
849``noduplicates``
850 The linker requires that only section with this COMDAT key exist.
851``samesize``
852 The linker may choose any COMDAT key but the sections must contain the
853 same amount of data.
854
855Note that the Mach-O platform doesn't support COMDATs and ELF only supports
856``any`` as a selection kind.
857
858Here is an example of a COMDAT group where a function will only be selected if
859the COMDAT key's section is the largest:
860
Renato Golin124f2592016-07-20 12:16:38 +0000861.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000862
863 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000864 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000865
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000867 ret void
868 }
869
Rafael Espindola83a362c2015-01-06 22:55:16 +0000870As a syntactic sugar the ``$name`` can be omitted if the name is the same as
871the global name:
872
Renato Golin124f2592016-07-20 12:16:38 +0000873.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000874
875 $foo = comdat any
876 @foo = global i32 2, comdat
877
878
David Majnemerdad0a642014-06-27 18:19:56 +0000879In a COFF object file, this will create a COMDAT section with selection kind
880``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
881and another COMDAT section with selection kind
882``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000883section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885There are some restrictions on the properties of the global object.
886It, or an alias to it, must have the same name as the COMDAT group when
887targeting COFF.
888The contents and size of this object may be used during link-time to determine
889which COMDAT groups get selected depending on the selection kind.
890Because the name of the object must match the name of the COMDAT group, the
891linkage of the global object must not be local; local symbols can get renamed
892if a collision occurs in the symbol table.
893
894The combined use of COMDATS and section attributes may yield surprising results.
895For example:
896
Renato Golin124f2592016-07-20 12:16:38 +0000897.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000898
899 $foo = comdat any
900 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901 @g1 = global i32 42, section "sec", comdat($foo)
902 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000903
904From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000905with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000906COMDAT groups and COMDATs, at the object file level, are represented by
907sections.
908
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000909Note that certain IR constructs like global variables and functions may
910create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000911COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000912in individual sections (e.g. when `-data-sections` or `-function-sections`
913is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000914
Sean Silvab084af42012-12-07 10:36:55 +0000915.. _namedmetadatastructure:
916
917Named Metadata
918--------------
919
920Named metadata is a collection of metadata. :ref:`Metadata
921nodes <metadata>` (but not metadata strings) are the only valid
922operands for a named metadata.
923
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000924#. Named metadata are represented as a string of characters with the
925 metadata prefix. The rules for metadata names are the same as for
926 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
927 are still valid, which allows any character to be part of a name.
928
Sean Silvab084af42012-12-07 10:36:55 +0000929Syntax::
930
931 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000932 !0 = !{!"zero"}
933 !1 = !{!"one"}
934 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000935 ; A named metadata.
936 !name = !{!0, !1, !2}
937
938.. _paramattrs:
939
940Parameter Attributes
941--------------------
942
943The return type and each parameter of a function type may have a set of
944*parameter attributes* associated with them. Parameter attributes are
945used to communicate additional information about the result or
946parameters of a function. Parameter attributes are considered to be part
947of the function, not of the function type, so functions with different
948parameter attributes can have the same function type.
949
950Parameter attributes are simple keywords that follow the type specified.
951If multiple parameter attributes are needed, they are space separated.
952For example:
953
954.. code-block:: llvm
955
956 declare i32 @printf(i8* noalias nocapture, ...)
957 declare i32 @atoi(i8 zeroext)
958 declare signext i8 @returns_signed_char()
959
960Note that any attributes for the function result (``nounwind``,
961``readonly``) come immediately after the argument list.
962
963Currently, only the following parameter attributes are defined:
964
965``zeroext``
966 This indicates to the code generator that the parameter or return
967 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000968 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000969``signext``
970 This indicates to the code generator that the parameter or return
971 value should be sign-extended to the extent required by the target's
972 ABI (which is usually 32-bits) by the caller (for a parameter) or
973 the callee (for a return value).
974``inreg``
975 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000976 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000977 a function call or return (usually, by putting it in a register as
978 opposed to memory, though some targets use it to distinguish between
979 two different kinds of registers). Use of this attribute is
980 target-specific.
981``byval``
982 This indicates that the pointer parameter should really be passed by
983 value to the function. The attribute implies that a hidden copy of
984 the pointee is made between the caller and the callee, so the callee
985 is unable to modify the value in the caller. This attribute is only
986 valid on LLVM pointer arguments. It is generally used to pass
987 structs and arrays by value, but is also valid on pointers to
988 scalars. The copy is considered to belong to the caller not the
989 callee (for example, ``readonly`` functions should not write to
990 ``byval`` parameters). This is not a valid attribute for return
991 values.
992
993 The byval attribute also supports specifying an alignment with the
994 align attribute. It indicates the alignment of the stack slot to
995 form and the known alignment of the pointer specified to the call
996 site. If the alignment is not specified, then the code generator
997 makes a target-specific assumption.
998
Reid Klecknera534a382013-12-19 02:14:12 +0000999.. _attr_inalloca:
1000
1001``inalloca``
1002
Reid Kleckner60d3a832014-01-16 22:59:24 +00001003 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001004 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001005 be a pointer to stack memory produced by an ``alloca`` instruction.
1006 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001007 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001008 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001009
Reid Kleckner436c42e2014-01-17 23:58:17 +00001010 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001011 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001012 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001013 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001014 ``inalloca`` attribute also disables LLVM's implicit lowering of
1015 large aggregate return values, which means that frontend authors
1016 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001017
Reid Kleckner60d3a832014-01-16 22:59:24 +00001018 When the call site is reached, the argument allocation must have
1019 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001020 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001021 space after an argument allocation and before its call site, but it
1022 must be cleared off with :ref:`llvm.stackrestore
1023 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001024
1025 See :doc:`InAlloca` for more information on how to use this
1026 attribute.
1027
Sean Silvab084af42012-12-07 10:36:55 +00001028``sret``
1029 This indicates that the pointer parameter specifies the address of a
1030 structure that is the return value of the function in the source
1031 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001032 loads and stores to the structure may be assumed by the callee not
1033 to trap and to be properly aligned. This is not a valid attribute
1034 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001035
Hal Finkelccc70902014-07-22 16:58:55 +00001036``align <n>``
1037 This indicates that the pointer value may be assumed by the optimizer to
1038 have the specified alignment.
1039
1040 Note that this attribute has additional semantics when combined with the
1041 ``byval`` attribute.
1042
Sean Silva1703e702014-04-08 21:06:22 +00001043.. _noalias:
1044
Sean Silvab084af42012-12-07 10:36:55 +00001045``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001046 This indicates that objects accessed via pointer values
1047 :ref:`based <pointeraliasing>` on the argument or return value are not also
1048 accessed, during the execution of the function, via pointer values not
1049 *based* on the argument or return value. The attribute on a return value
1050 also has additional semantics described below. The caller shares the
1051 responsibility with the callee for ensuring that these requirements are met.
1052 For further details, please see the discussion of the NoAlias response in
1053 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001054
1055 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001056 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001057
1058 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001059 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1060 attribute on return values are stronger than the semantics of the attribute
1061 when used on function arguments. On function return values, the ``noalias``
1062 attribute indicates that the function acts like a system memory allocation
1063 function, returning a pointer to allocated storage disjoint from the
1064 storage for any other object accessible to the caller.
1065
Sean Silvab084af42012-12-07 10:36:55 +00001066``nocapture``
1067 This indicates that the callee does not make any copies of the
1068 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001069 attribute for return values. Addresses used in volatile operations
1070 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001071
1072.. _nest:
1073
1074``nest``
1075 This indicates that the pointer parameter can be excised using the
1076 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001077 attribute for return values and can only be applied to one parameter.
1078
1079``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001080 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001081 value. This is a hint to the optimizer and code generator used when
1082 generating the caller, allowing value propagation, tail call optimization,
1083 and omission of register saves and restores in some cases; it is not
1084 checked or enforced when generating the callee. The parameter and the
1085 function return type must be valid operands for the
1086 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1087 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001088
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001089``nonnull``
1090 This indicates that the parameter or return pointer is not null. This
1091 attribute may only be applied to pointer typed parameters. This is not
1092 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001093 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001094 is non-null.
1095
Hal Finkelb0407ba2014-07-18 15:51:28 +00001096``dereferenceable(<n>)``
1097 This indicates that the parameter or return pointer is dereferenceable. This
1098 attribute may only be applied to pointer typed parameters. A pointer that
1099 is dereferenceable can be loaded from speculatively without a risk of
1100 trapping. The number of bytes known to be dereferenceable must be provided
1101 in parentheses. It is legal for the number of bytes to be less than the
1102 size of the pointee type. The ``nonnull`` attribute does not imply
1103 dereferenceability (consider a pointer to one element past the end of an
1104 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1105 ``addrspace(0)`` (which is the default address space).
1106
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001107``dereferenceable_or_null(<n>)``
1108 This indicates that the parameter or return value isn't both
1109 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001110 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001111 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1112 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1113 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1114 and in other address spaces ``dereferenceable_or_null(<n>)``
1115 implies that a pointer is at least one of ``dereferenceable(<n>)``
1116 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001117 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001118 pointer typed parameters.
1119
Manman Renf46262e2016-03-29 17:37:21 +00001120``swiftself``
1121 This indicates that the parameter is the self/context parameter. This is not
1122 a valid attribute for return values and can only be applied to one
1123 parameter.
1124
Manman Ren9bfd0d02016-04-01 21:41:15 +00001125``swifterror``
1126 This attribute is motivated to model and optimize Swift error handling. It
1127 can be applied to a parameter with pointer to pointer type or a
1128 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001129 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1130 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1131 the parameter or the alloca) can only be loaded and stored from, or used as
1132 a ``swifterror`` argument. This is not a valid attribute for return values
1133 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001134
1135 These constraints allow the calling convention to optimize access to
1136 ``swifterror`` variables by associating them with a specific register at
1137 call boundaries rather than placing them in memory. Since this does change
1138 the calling convention, a function which uses the ``swifterror`` attribute
1139 on a parameter is not ABI-compatible with one which does not.
1140
1141 These constraints also allow LLVM to assume that a ``swifterror`` argument
1142 does not alias any other memory visible within a function and that a
1143 ``swifterror`` alloca passed as an argument does not escape.
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _gc:
1146
Philip Reamesf80bbff2015-02-25 23:45:20 +00001147Garbage Collector Strategy Names
1148--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001149
Philip Reamesf80bbff2015-02-25 23:45:20 +00001150Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001151string:
1152
1153.. code-block:: llvm
1154
1155 define void @f() gc "name" { ... }
1156
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001157The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001158<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001159strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001160named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001161garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001162which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001163
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001164.. _prefixdata:
1165
1166Prefix Data
1167-----------
1168
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001169Prefix data is data associated with a function which the code
1170generator will emit immediately before the function's entrypoint.
1171The purpose of this feature is to allow frontends to associate
1172language-specific runtime metadata with specific functions and make it
1173available through the function pointer while still allowing the
1174function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001175
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001176To access the data for a given function, a program may bitcast the
1177function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001178index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001179the prefix data. For instance, take the example of a function annotated
1180with a single ``i32``,
1181
1182.. code-block:: llvm
1183
1184 define void @f() prefix i32 123 { ... }
1185
1186The prefix data can be referenced as,
1187
1188.. code-block:: llvm
1189
David Blaikie16a97eb2015-03-04 22:02:58 +00001190 %0 = bitcast void* () @f to i32*
1191 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001192 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001193
1194Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001195of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001196beginning of the prefix data is aligned. This means that if the size
1197of the prefix data is not a multiple of the alignment size, the
1198function's entrypoint will not be aligned. If alignment of the
1199function's entrypoint is desired, padding must be added to the prefix
1200data.
1201
Sean Silvaa1190322015-08-06 22:56:48 +00001202A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001203to the ``available_externally`` linkage in that the data may be used by the
1204optimizers but will not be emitted in the object file.
1205
1206.. _prologuedata:
1207
1208Prologue Data
1209-------------
1210
1211The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1212be inserted prior to the function body. This can be used for enabling
1213function hot-patching and instrumentation.
1214
1215To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001216have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001217bytes which decode to a sequence of machine instructions, valid for the
1218module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001219the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001221definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001222makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001223
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001225which encodes the ``nop`` instruction:
1226
Renato Golin124f2592016-07-20 12:16:38 +00001227.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001228
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001230
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231Generally prologue data can be formed by encoding a relative branch instruction
1232which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001233x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1234
Renato Golin124f2592016-07-20 12:16:38 +00001235.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001236
1237 %0 = type <{ i8, i8, i8* }>
1238
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001239 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001240
Sean Silvaa1190322015-08-06 22:56:48 +00001241A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001242to the ``available_externally`` linkage in that the data may be used by the
1243optimizers but will not be emitted in the object file.
1244
David Majnemer7fddecc2015-06-17 20:52:32 +00001245.. _personalityfn:
1246
1247Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001248--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001249
1250The ``personality`` attribute permits functions to specify what function
1251to use for exception handling.
1252
Bill Wendling63b88192013-02-06 06:52:58 +00001253.. _attrgrp:
1254
1255Attribute Groups
1256----------------
1257
1258Attribute groups are groups of attributes that are referenced by objects within
1259the IR. They are important for keeping ``.ll`` files readable, because a lot of
1260functions will use the same set of attributes. In the degenerative case of a
1261``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1262group will capture the important command line flags used to build that file.
1263
1264An attribute group is a module-level object. To use an attribute group, an
1265object references the attribute group's ID (e.g. ``#37``). An object may refer
1266to more than one attribute group. In that situation, the attributes from the
1267different groups are merged.
1268
1269Here is an example of attribute groups for a function that should always be
1270inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1271
1272.. code-block:: llvm
1273
1274 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001275 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001276
1277 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001278 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001279
1280 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1281 define void @f() #0 #1 { ... }
1282
Sean Silvab084af42012-12-07 10:36:55 +00001283.. _fnattrs:
1284
1285Function Attributes
1286-------------------
1287
1288Function attributes are set to communicate additional information about
1289a function. Function attributes are considered to be part of the
1290function, not of the function type, so functions with different function
1291attributes can have the same function type.
1292
1293Function attributes are simple keywords that follow the type specified.
1294If multiple attributes are needed, they are space separated. For
1295example:
1296
1297.. code-block:: llvm
1298
1299 define void @f() noinline { ... }
1300 define void @f() alwaysinline { ... }
1301 define void @f() alwaysinline optsize { ... }
1302 define void @f() optsize { ... }
1303
Sean Silvab084af42012-12-07 10:36:55 +00001304``alignstack(<n>)``
1305 This attribute indicates that, when emitting the prologue and
1306 epilogue, the backend should forcibly align the stack pointer.
1307 Specify the desired alignment, which must be a power of two, in
1308 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001309``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1310 This attribute indicates that the annotated function will always return at
1311 least a given number of bytes (or null). Its arguments are zero-indexed
1312 parameter numbers; if one argument is provided, then it's assumed that at
1313 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1314 returned pointer. If two are provided, then it's assumed that
1315 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1316 available. The referenced parameters must be integer types. No assumptions
1317 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001318``alwaysinline``
1319 This attribute indicates that the inliner should attempt to inline
1320 this function into callers whenever possible, ignoring any active
1321 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001322``builtin``
1323 This indicates that the callee function at a call site should be
1324 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001325 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001326 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001327 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001328``cold``
1329 This attribute indicates that this function is rarely called. When
1330 computing edge weights, basic blocks post-dominated by a cold
1331 function call are also considered to be cold; and, thus, given low
1332 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001333``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001334 In some parallel execution models, there exist operations that cannot be
1335 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001336 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001337
Justin Lebar58535b12016-02-17 17:46:41 +00001338 The ``convergent`` attribute may appear on functions or call/invoke
1339 instructions. When it appears on a function, it indicates that calls to
1340 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001341 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001342 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001343 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001344
Justin Lebar58535b12016-02-17 17:46:41 +00001345 When it appears on a call/invoke, the ``convergent`` attribute indicates
1346 that we should treat the call as though we're calling a convergent
1347 function. This is particularly useful on indirect calls; without this we
1348 may treat such calls as though the target is non-convergent.
1349
1350 The optimizer may remove the ``convergent`` attribute on functions when it
1351 can prove that the function does not execute any convergent operations.
1352 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1353 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001354``inaccessiblememonly``
1355 This attribute indicates that the function may only access memory that
1356 is not accessible by the module being compiled. This is a weaker form
1357 of ``readnone``.
1358``inaccessiblemem_or_argmemonly``
1359 This attribute indicates that the function may only access memory that is
1360 either not accessible by the module being compiled, or is pointed to
1361 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001362``inlinehint``
1363 This attribute indicates that the source code contained a hint that
1364 inlining this function is desirable (such as the "inline" keyword in
1365 C/C++). It is just a hint; it imposes no requirements on the
1366 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001367``jumptable``
1368 This attribute indicates that the function should be added to a
1369 jump-instruction table at code-generation time, and that all address-taken
1370 references to this function should be replaced with a reference to the
1371 appropriate jump-instruction-table function pointer. Note that this creates
1372 a new pointer for the original function, which means that code that depends
1373 on function-pointer identity can break. So, any function annotated with
1374 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001375``minsize``
1376 This attribute suggests that optimization passes and code generator
1377 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001378 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001379 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001380``naked``
1381 This attribute disables prologue / epilogue emission for the
1382 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001383``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001384 This indicates that the callee function at a call site is not recognized as
1385 a built-in function. LLVM will retain the original call and not replace it
1386 with equivalent code based on the semantics of the built-in function, unless
1387 the call site uses the ``builtin`` attribute. This is valid at call sites
1388 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001389``noduplicate``
1390 This attribute indicates that calls to the function cannot be
1391 duplicated. A call to a ``noduplicate`` function may be moved
1392 within its parent function, but may not be duplicated within
1393 its parent function.
1394
1395 A function containing a ``noduplicate`` call may still
1396 be an inlining candidate, provided that the call is not
1397 duplicated by inlining. That implies that the function has
1398 internal linkage and only has one call site, so the original
1399 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001400``noimplicitfloat``
1401 This attributes disables implicit floating point instructions.
1402``noinline``
1403 This attribute indicates that the inliner should never inline this
1404 function in any situation. This attribute may not be used together
1405 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001406``nonlazybind``
1407 This attribute suppresses lazy symbol binding for the function. This
1408 may make calls to the function faster, at the cost of extra program
1409 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001410``noredzone``
1411 This attribute indicates that the code generator should not use a
1412 red zone, even if the target-specific ABI normally permits it.
1413``noreturn``
1414 This function attribute indicates that the function never returns
1415 normally. This produces undefined behavior at runtime if the
1416 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001417``norecurse``
1418 This function attribute indicates that the function does not call itself
1419 either directly or indirectly down any possible call path. This produces
1420 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001421``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001422 This function attribute indicates that the function never raises an
1423 exception. If the function does raise an exception, its runtime
1424 behavior is undefined. However, functions marked nounwind may still
1425 trap or generate asynchronous exceptions. Exception handling schemes
1426 that are recognized by LLVM to handle asynchronous exceptions, such
1427 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001428``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001429 This function attribute indicates that most optimization passes will skip
1430 this function, with the exception of interprocedural optimization passes.
1431 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001432 This attribute cannot be used together with the ``alwaysinline``
1433 attribute; this attribute is also incompatible
1434 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001435
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001436 This attribute requires the ``noinline`` attribute to be specified on
1437 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001438 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001439 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001440``optsize``
1441 This attribute suggests that optimization passes and code generator
1442 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001443 and otherwise do optimizations specifically to reduce code size as
1444 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001445``"patchable-function"``
1446 This attribute tells the code generator that the code
1447 generated for this function needs to follow certain conventions that
1448 make it possible for a runtime function to patch over it later.
1449 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001450 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001451
1452 * ``"prologue-short-redirect"`` - This style of patchable
1453 function is intended to support patching a function prologue to
1454 redirect control away from the function in a thread safe
1455 manner. It guarantees that the first instruction of the
1456 function will be large enough to accommodate a short jump
1457 instruction, and will be sufficiently aligned to allow being
1458 fully changed via an atomic compare-and-swap instruction.
1459 While the first requirement can be satisfied by inserting large
1460 enough NOP, LLVM can and will try to re-purpose an existing
1461 instruction (i.e. one that would have to be emitted anyway) as
1462 the patchable instruction larger than a short jump.
1463
1464 ``"prologue-short-redirect"`` is currently only supported on
1465 x86-64.
1466
1467 This attribute by itself does not imply restrictions on
1468 inter-procedural optimizations. All of the semantic effects the
1469 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001470``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001471 On a function, this attribute indicates that the function computes its
1472 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001473 without dereferencing any pointer arguments or otherwise accessing
1474 any mutable state (e.g. memory, control registers, etc) visible to
1475 caller functions. It does not write through any pointer arguments
1476 (including ``byval`` arguments) and never changes any state visible
1477 to callers. This means that it cannot unwind exceptions by calling
1478 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001479
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001480 On an argument, this attribute indicates that the function does not
1481 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001482 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001483``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001484 On a function, this attribute indicates that the function does not write
1485 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001486 modify any state (e.g. memory, control registers, etc) visible to
1487 caller functions. It may dereference pointer arguments and read
1488 state that may be set in the caller. A readonly function always
1489 returns the same value (or unwinds an exception identically) when
1490 called with the same set of arguments and global state. It cannot
1491 unwind an exception by calling the ``C++`` exception throwing
1492 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001493
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001494 On an argument, this attribute indicates that the function does not write
1495 through this pointer argument, even though it may write to the memory that
1496 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001497``writeonly``
1498 On a function, this attribute indicates that the function may write to but
1499 does not read from memory.
1500
1501 On an argument, this attribute indicates that the function may write to but
1502 does not read through this pointer argument (even though it may read from
1503 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001504``argmemonly``
1505 This attribute indicates that the only memory accesses inside function are
1506 loads and stores from objects pointed to by its pointer-typed arguments,
1507 with arbitrary offsets. Or in other words, all memory operations in the
1508 function can refer to memory only using pointers based on its function
1509 arguments.
1510 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1511 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001512``returns_twice``
1513 This attribute indicates that this function can return twice. The C
1514 ``setjmp`` is an example of such a function. The compiler disables
1515 some optimizations (like tail calls) in the caller of these
1516 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001517``safestack``
1518 This attribute indicates that
1519 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1520 protection is enabled for this function.
1521
1522 If a function that has a ``safestack`` attribute is inlined into a
1523 function that doesn't have a ``safestack`` attribute or which has an
1524 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1525 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001526``sanitize_address``
1527 This attribute indicates that AddressSanitizer checks
1528 (dynamic address safety analysis) are enabled for this function.
1529``sanitize_memory``
1530 This attribute indicates that MemorySanitizer checks (dynamic detection
1531 of accesses to uninitialized memory) are enabled for this function.
1532``sanitize_thread``
1533 This attribute indicates that ThreadSanitizer checks
1534 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001535``ssp``
1536 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001537 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001538 placed on the stack before the local variables that's checked upon
1539 return from the function to see if it has been overwritten. A
1540 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001541 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001542
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001543 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1544 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1545 - Calls to alloca() with variable sizes or constant sizes greater than
1546 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001547
Josh Magee24c7f062014-02-01 01:36:16 +00001548 Variables that are identified as requiring a protector will be arranged
1549 on the stack such that they are adjacent to the stack protector guard.
1550
Sean Silvab084af42012-12-07 10:36:55 +00001551 If a function that has an ``ssp`` attribute is inlined into a
1552 function that doesn't have an ``ssp`` attribute, then the resulting
1553 function will have an ``ssp`` attribute.
1554``sspreq``
1555 This attribute indicates that the function should *always* emit a
1556 stack smashing protector. This overrides the ``ssp`` function
1557 attribute.
1558
Josh Magee24c7f062014-02-01 01:36:16 +00001559 Variables that are identified as requiring a protector will be arranged
1560 on the stack such that they are adjacent to the stack protector guard.
1561 The specific layout rules are:
1562
1563 #. Large arrays and structures containing large arrays
1564 (``>= ssp-buffer-size``) are closest to the stack protector.
1565 #. Small arrays and structures containing small arrays
1566 (``< ssp-buffer-size``) are 2nd closest to the protector.
1567 #. Variables that have had their address taken are 3rd closest to the
1568 protector.
1569
Sean Silvab084af42012-12-07 10:36:55 +00001570 If a function that has an ``sspreq`` attribute is inlined into a
1571 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001572 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1573 an ``sspreq`` attribute.
1574``sspstrong``
1575 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001576 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001577 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001578 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001579
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001580 - Arrays of any size and type
1581 - Aggregates containing an array of any size and type.
1582 - Calls to alloca().
1583 - Local variables that have had their address taken.
1584
Josh Magee24c7f062014-02-01 01:36:16 +00001585 Variables that are identified as requiring a protector will be arranged
1586 on the stack such that they are adjacent to the stack protector guard.
1587 The specific layout rules are:
1588
1589 #. Large arrays and structures containing large arrays
1590 (``>= ssp-buffer-size``) are closest to the stack protector.
1591 #. Small arrays and structures containing small arrays
1592 (``< ssp-buffer-size``) are 2nd closest to the protector.
1593 #. Variables that have had their address taken are 3rd closest to the
1594 protector.
1595
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001596 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001597
1598 If a function that has an ``sspstrong`` attribute is inlined into a
1599 function that doesn't have an ``sspstrong`` attribute, then the
1600 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001601``"thunk"``
1602 This attribute indicates that the function will delegate to some other
1603 function with a tail call. The prototype of a thunk should not be used for
1604 optimization purposes. The caller is expected to cast the thunk prototype to
1605 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001606``uwtable``
1607 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001608 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001609 show that no exceptions passes by it. This is normally the case for
1610 the ELF x86-64 abi, but it can be disabled for some compilation
1611 units.
Sean Silvab084af42012-12-07 10:36:55 +00001612
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001613
1614.. _opbundles:
1615
1616Operand Bundles
1617---------------
1618
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001619Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001620with certain LLVM instructions (currently only ``call`` s and
1621``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001622incorrect and will change program semantics.
1623
1624Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001625
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001626 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001627 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1628 bundle operand ::= SSA value
1629 tag ::= string constant
1630
1631Operand bundles are **not** part of a function's signature, and a
1632given function may be called from multiple places with different kinds
1633of operand bundles. This reflects the fact that the operand bundles
1634are conceptually a part of the ``call`` (or ``invoke``), not the
1635callee being dispatched to.
1636
1637Operand bundles are a generic mechanism intended to support
1638runtime-introspection-like functionality for managed languages. While
1639the exact semantics of an operand bundle depend on the bundle tag,
1640there are certain limitations to how much the presence of an operand
1641bundle can influence the semantics of a program. These restrictions
1642are described as the semantics of an "unknown" operand bundle. As
1643long as the behavior of an operand bundle is describable within these
1644restrictions, LLVM does not need to have special knowledge of the
1645operand bundle to not miscompile programs containing it.
1646
David Majnemer34cacb42015-10-22 01:46:38 +00001647- The bundle operands for an unknown operand bundle escape in unknown
1648 ways before control is transferred to the callee or invokee.
1649- Calls and invokes with operand bundles have unknown read / write
1650 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001651 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001652 callsite specific attributes.
1653- An operand bundle at a call site cannot change the implementation
1654 of the called function. Inter-procedural optimizations work as
1655 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001656
Sanjoy Dascdafd842015-11-11 21:38:02 +00001657More specific types of operand bundles are described below.
1658
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001659.. _deopt_opbundles:
1660
Sanjoy Dascdafd842015-11-11 21:38:02 +00001661Deoptimization Operand Bundles
1662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1663
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001664Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001665operand bundle tag. These operand bundles represent an alternate
1666"safe" continuation for the call site they're attached to, and can be
1667used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001668specified call site. There can be at most one ``"deopt"`` operand
1669bundle attached to a call site. Exact details of deoptimization is
1670out of scope for the language reference, but it usually involves
1671rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001672
1673From the compiler's perspective, deoptimization operand bundles make
1674the call sites they're attached to at least ``readonly``. They read
1675through all of their pointer typed operands (even if they're not
1676otherwise escaped) and the entire visible heap. Deoptimization
1677operand bundles do not capture their operands except during
1678deoptimization, in which case control will not be returned to the
1679compiled frame.
1680
Sanjoy Das2d161452015-11-18 06:23:38 +00001681The inliner knows how to inline through calls that have deoptimization
1682operand bundles. Just like inlining through a normal call site
1683involves composing the normal and exceptional continuations, inlining
1684through a call site with a deoptimization operand bundle needs to
1685appropriately compose the "safe" deoptimization continuation. The
1686inliner does this by prepending the parent's deoptimization
1687continuation to every deoptimization continuation in the inlined body.
1688E.g. inlining ``@f`` into ``@g`` in the following example
1689
1690.. code-block:: llvm
1691
1692 define void @f() {
1693 call void @x() ;; no deopt state
1694 call void @y() [ "deopt"(i32 10) ]
1695 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1696 ret void
1697 }
1698
1699 define void @g() {
1700 call void @f() [ "deopt"(i32 20) ]
1701 ret void
1702 }
1703
1704will result in
1705
1706.. code-block:: llvm
1707
1708 define void @g() {
1709 call void @x() ;; still no deopt state
1710 call void @y() [ "deopt"(i32 20, i32 10) ]
1711 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1712 ret void
1713 }
1714
1715It is the frontend's responsibility to structure or encode the
1716deoptimization state in a way that syntactically prepending the
1717caller's deoptimization state to the callee's deoptimization state is
1718semantically equivalent to composing the caller's deoptimization
1719continuation after the callee's deoptimization continuation.
1720
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001721.. _ob_funclet:
1722
David Majnemer3bb88c02015-12-15 21:27:27 +00001723Funclet Operand Bundles
1724^^^^^^^^^^^^^^^^^^^^^^^
1725
1726Funclet operand bundles are characterized by the ``"funclet"``
1727operand bundle tag. These operand bundles indicate that a call site
1728is within a particular funclet. There can be at most one
1729``"funclet"`` operand bundle attached to a call site and it must have
1730exactly one bundle operand.
1731
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001732If any funclet EH pads have been "entered" but not "exited" (per the
1733`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1734it is undefined behavior to execute a ``call`` or ``invoke`` which:
1735
1736* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1737 intrinsic, or
1738* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1739 not-yet-exited funclet EH pad.
1740
1741Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1742executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1743
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001744GC Transition Operand Bundles
1745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1746
1747GC transition operand bundles are characterized by the
1748``"gc-transition"`` operand bundle tag. These operand bundles mark a
1749call as a transition between a function with one GC strategy to a
1750function with a different GC strategy. If coordinating the transition
1751between GC strategies requires additional code generation at the call
1752site, these bundles may contain any values that are needed by the
1753generated code. For more details, see :ref:`GC Transitions
1754<gc_transition_args>`.
1755
Sean Silvab084af42012-12-07 10:36:55 +00001756.. _moduleasm:
1757
1758Module-Level Inline Assembly
1759----------------------------
1760
1761Modules may contain "module-level inline asm" blocks, which corresponds
1762to the GCC "file scope inline asm" blocks. These blocks are internally
1763concatenated by LLVM and treated as a single unit, but may be separated
1764in the ``.ll`` file if desired. The syntax is very simple:
1765
1766.. code-block:: llvm
1767
1768 module asm "inline asm code goes here"
1769 module asm "more can go here"
1770
1771The strings can contain any character by escaping non-printable
1772characters. The escape sequence used is simply "\\xx" where "xx" is the
1773two digit hex code for the number.
1774
James Y Knightbc832ed2015-07-08 18:08:36 +00001775Note that the assembly string *must* be parseable by LLVM's integrated assembler
1776(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001777
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001778.. _langref_datalayout:
1779
Sean Silvab084af42012-12-07 10:36:55 +00001780Data Layout
1781-----------
1782
1783A module may specify a target specific data layout string that specifies
1784how data is to be laid out in memory. The syntax for the data layout is
1785simply:
1786
1787.. code-block:: llvm
1788
1789 target datalayout = "layout specification"
1790
1791The *layout specification* consists of a list of specifications
1792separated by the minus sign character ('-'). Each specification starts
1793with a letter and may include other information after the letter to
1794define some aspect of the data layout. The specifications accepted are
1795as follows:
1796
1797``E``
1798 Specifies that the target lays out data in big-endian form. That is,
1799 the bits with the most significance have the lowest address
1800 location.
1801``e``
1802 Specifies that the target lays out data in little-endian form. That
1803 is, the bits with the least significance have the lowest address
1804 location.
1805``S<size>``
1806 Specifies the natural alignment of the stack in bits. Alignment
1807 promotion of stack variables is limited to the natural stack
1808 alignment to avoid dynamic stack realignment. The stack alignment
1809 must be a multiple of 8-bits. If omitted, the natural stack
1810 alignment defaults to "unspecified", which does not prevent any
1811 alignment promotions.
1812``p[n]:<size>:<abi>:<pref>``
1813 This specifies the *size* of a pointer and its ``<abi>`` and
1814 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001815 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001816 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001817 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001818``i<size>:<abi>:<pref>``
1819 This specifies the alignment for an integer type of a given bit
1820 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1821``v<size>:<abi>:<pref>``
1822 This specifies the alignment for a vector type of a given bit
1823 ``<size>``.
1824``f<size>:<abi>:<pref>``
1825 This specifies the alignment for a floating point type of a given bit
1826 ``<size>``. Only values of ``<size>`` that are supported by the target
1827 will work. 32 (float) and 64 (double) are supported on all targets; 80
1828 or 128 (different flavors of long double) are also supported on some
1829 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001830``a:<abi>:<pref>``
1831 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001832``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001833 If present, specifies that llvm names are mangled in the output. The
1834 options are
1835
1836 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1837 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1838 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1839 symbols get a ``_`` prefix.
1840 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1841 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001842 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1843 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001844``n<size1>:<size2>:<size3>...``
1845 This specifies a set of native integer widths for the target CPU in
1846 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1847 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1848 this set are considered to support most general arithmetic operations
1849 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001850``ni:<address space0>:<address space1>:<address space2>...``
1851 This specifies pointer types with the specified address spaces
1852 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1853 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001854
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001855On every specification that takes a ``<abi>:<pref>``, specifying the
1856``<pref>`` alignment is optional. If omitted, the preceding ``:``
1857should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1858
Sean Silvab084af42012-12-07 10:36:55 +00001859When constructing the data layout for a given target, LLVM starts with a
1860default set of specifications which are then (possibly) overridden by
1861the specifications in the ``datalayout`` keyword. The default
1862specifications are given in this list:
1863
1864- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001865- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1866- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1867 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001868- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001869- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1870- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1871- ``i16:16:16`` - i16 is 16-bit aligned
1872- ``i32:32:32`` - i32 is 32-bit aligned
1873- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1874 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001875- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001876- ``f32:32:32`` - float is 32-bit aligned
1877- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001878- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001879- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1880- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001881- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001882
1883When LLVM is determining the alignment for a given type, it uses the
1884following rules:
1885
1886#. If the type sought is an exact match for one of the specifications,
1887 that specification is used.
1888#. If no match is found, and the type sought is an integer type, then
1889 the smallest integer type that is larger than the bitwidth of the
1890 sought type is used. If none of the specifications are larger than
1891 the bitwidth then the largest integer type is used. For example,
1892 given the default specifications above, the i7 type will use the
1893 alignment of i8 (next largest) while both i65 and i256 will use the
1894 alignment of i64 (largest specified).
1895#. If no match is found, and the type sought is a vector type, then the
1896 largest vector type that is smaller than the sought vector type will
1897 be used as a fall back. This happens because <128 x double> can be
1898 implemented in terms of 64 <2 x double>, for example.
1899
1900The function of the data layout string may not be what you expect.
1901Notably, this is not a specification from the frontend of what alignment
1902the code generator should use.
1903
1904Instead, if specified, the target data layout is required to match what
1905the ultimate *code generator* expects. This string is used by the
1906mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001907what the ultimate code generator uses. There is no way to generate IR
1908that does not embed this target-specific detail into the IR. If you
1909don't specify the string, the default specifications will be used to
1910generate a Data Layout and the optimization phases will operate
1911accordingly and introduce target specificity into the IR with respect to
1912these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001913
Bill Wendling5cc90842013-10-18 23:41:25 +00001914.. _langref_triple:
1915
1916Target Triple
1917-------------
1918
1919A module may specify a target triple string that describes the target
1920host. The syntax for the target triple is simply:
1921
1922.. code-block:: llvm
1923
1924 target triple = "x86_64-apple-macosx10.7.0"
1925
1926The *target triple* string consists of a series of identifiers delimited
1927by the minus sign character ('-'). The canonical forms are:
1928
1929::
1930
1931 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1932 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1933
1934This information is passed along to the backend so that it generates
1935code for the proper architecture. It's possible to override this on the
1936command line with the ``-mtriple`` command line option.
1937
Sean Silvab084af42012-12-07 10:36:55 +00001938.. _pointeraliasing:
1939
1940Pointer Aliasing Rules
1941----------------------
1942
1943Any memory access must be done through a pointer value associated with
1944an address range of the memory access, otherwise the behavior is
1945undefined. Pointer values are associated with address ranges according
1946to the following rules:
1947
1948- A pointer value is associated with the addresses associated with any
1949 value it is *based* on.
1950- An address of a global variable is associated with the address range
1951 of the variable's storage.
1952- The result value of an allocation instruction is associated with the
1953 address range of the allocated storage.
1954- A null pointer in the default address-space is associated with no
1955 address.
1956- An integer constant other than zero or a pointer value returned from
1957 a function not defined within LLVM may be associated with address
1958 ranges allocated through mechanisms other than those provided by
1959 LLVM. Such ranges shall not overlap with any ranges of addresses
1960 allocated by mechanisms provided by LLVM.
1961
1962A pointer value is *based* on another pointer value according to the
1963following rules:
1964
1965- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001966 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001967- The result value of a ``bitcast`` is *based* on the operand of the
1968 ``bitcast``.
1969- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1970 values that contribute (directly or indirectly) to the computation of
1971 the pointer's value.
1972- The "*based* on" relationship is transitive.
1973
1974Note that this definition of *"based"* is intentionally similar to the
1975definition of *"based"* in C99, though it is slightly weaker.
1976
1977LLVM IR does not associate types with memory. The result type of a
1978``load`` merely indicates the size and alignment of the memory from
1979which to load, as well as the interpretation of the value. The first
1980operand type of a ``store`` similarly only indicates the size and
1981alignment of the store.
1982
1983Consequently, type-based alias analysis, aka TBAA, aka
1984``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1985:ref:`Metadata <metadata>` may be used to encode additional information
1986which specialized optimization passes may use to implement type-based
1987alias analysis.
1988
1989.. _volatile:
1990
1991Volatile Memory Accesses
1992------------------------
1993
1994Certain memory accesses, such as :ref:`load <i_load>`'s,
1995:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1996marked ``volatile``. The optimizers must not change the number of
1997volatile operations or change their order of execution relative to other
1998volatile operations. The optimizers *may* change the order of volatile
1999operations relative to non-volatile operations. This is not Java's
2000"volatile" and has no cross-thread synchronization behavior.
2001
Andrew Trick89fc5a62013-01-30 21:19:35 +00002002IR-level volatile loads and stores cannot safely be optimized into
2003llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2004flagged volatile. Likewise, the backend should never split or merge
2005target-legal volatile load/store instructions.
2006
Andrew Trick7e6f9282013-01-31 00:49:39 +00002007.. admonition:: Rationale
2008
2009 Platforms may rely on volatile loads and stores of natively supported
2010 data width to be executed as single instruction. For example, in C
2011 this holds for an l-value of volatile primitive type with native
2012 hardware support, but not necessarily for aggregate types. The
2013 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002014 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002015 do not violate the frontend's contract with the language.
2016
Sean Silvab084af42012-12-07 10:36:55 +00002017.. _memmodel:
2018
2019Memory Model for Concurrent Operations
2020--------------------------------------
2021
2022The LLVM IR does not define any way to start parallel threads of
2023execution or to register signal handlers. Nonetheless, there are
2024platform-specific ways to create them, and we define LLVM IR's behavior
2025in their presence. This model is inspired by the C++0x memory model.
2026
2027For a more informal introduction to this model, see the :doc:`Atomics`.
2028
2029We define a *happens-before* partial order as the least partial order
2030that
2031
2032- Is a superset of single-thread program order, and
2033- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2034 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2035 techniques, like pthread locks, thread creation, thread joining,
2036 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2037 Constraints <ordering>`).
2038
2039Note that program order does not introduce *happens-before* edges
2040between a thread and signals executing inside that thread.
2041
2042Every (defined) read operation (load instructions, memcpy, atomic
2043loads/read-modify-writes, etc.) R reads a series of bytes written by
2044(defined) write operations (store instructions, atomic
2045stores/read-modify-writes, memcpy, etc.). For the purposes of this
2046section, initialized globals are considered to have a write of the
2047initializer which is atomic and happens before any other read or write
2048of the memory in question. For each byte of a read R, R\ :sub:`byte`
2049may see any write to the same byte, except:
2050
2051- If write\ :sub:`1` happens before write\ :sub:`2`, and
2052 write\ :sub:`2` happens before R\ :sub:`byte`, then
2053 R\ :sub:`byte` does not see write\ :sub:`1`.
2054- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2055 R\ :sub:`byte` does not see write\ :sub:`3`.
2056
2057Given that definition, R\ :sub:`byte` is defined as follows:
2058
2059- If R is volatile, the result is target-dependent. (Volatile is
2060 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002061 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002062 like normal memory. It does not generally provide cross-thread
2063 synchronization.)
2064- Otherwise, if there is no write to the same byte that happens before
2065 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2066- Otherwise, if R\ :sub:`byte` may see exactly one write,
2067 R\ :sub:`byte` returns the value written by that write.
2068- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2069 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2070 Memory Ordering Constraints <ordering>` section for additional
2071 constraints on how the choice is made.
2072- Otherwise R\ :sub:`byte` returns ``undef``.
2073
2074R returns the value composed of the series of bytes it read. This
2075implies that some bytes within the value may be ``undef`` **without**
2076the entire value being ``undef``. Note that this only defines the
2077semantics of the operation; it doesn't mean that targets will emit more
2078than one instruction to read the series of bytes.
2079
2080Note that in cases where none of the atomic intrinsics are used, this
2081model places only one restriction on IR transformations on top of what
2082is required for single-threaded execution: introducing a store to a byte
2083which might not otherwise be stored is not allowed in general.
2084(Specifically, in the case where another thread might write to and read
2085from an address, introducing a store can change a load that may see
2086exactly one write into a load that may see multiple writes.)
2087
2088.. _ordering:
2089
2090Atomic Memory Ordering Constraints
2091----------------------------------
2092
2093Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2094:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2095:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002096ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002097the same address they *synchronize with*. These semantics are borrowed
2098from Java and C++0x, but are somewhat more colloquial. If these
2099descriptions aren't precise enough, check those specs (see spec
2100references in the :doc:`atomics guide <Atomics>`).
2101:ref:`fence <i_fence>` instructions treat these orderings somewhat
2102differently since they don't take an address. See that instruction's
2103documentation for details.
2104
2105For a simpler introduction to the ordering constraints, see the
2106:doc:`Atomics`.
2107
2108``unordered``
2109 The set of values that can be read is governed by the happens-before
2110 partial order. A value cannot be read unless some operation wrote
2111 it. This is intended to provide a guarantee strong enough to model
2112 Java's non-volatile shared variables. This ordering cannot be
2113 specified for read-modify-write operations; it is not strong enough
2114 to make them atomic in any interesting way.
2115``monotonic``
2116 In addition to the guarantees of ``unordered``, there is a single
2117 total order for modifications by ``monotonic`` operations on each
2118 address. All modification orders must be compatible with the
2119 happens-before order. There is no guarantee that the modification
2120 orders can be combined to a global total order for the whole program
2121 (and this often will not be possible). The read in an atomic
2122 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2123 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2124 order immediately before the value it writes. If one atomic read
2125 happens before another atomic read of the same address, the later
2126 read must see the same value or a later value in the address's
2127 modification order. This disallows reordering of ``monotonic`` (or
2128 stronger) operations on the same address. If an address is written
2129 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2130 read that address repeatedly, the other threads must eventually see
2131 the write. This corresponds to the C++0x/C1x
2132 ``memory_order_relaxed``.
2133``acquire``
2134 In addition to the guarantees of ``monotonic``, a
2135 *synchronizes-with* edge may be formed with a ``release`` operation.
2136 This is intended to model C++'s ``memory_order_acquire``.
2137``release``
2138 In addition to the guarantees of ``monotonic``, if this operation
2139 writes a value which is subsequently read by an ``acquire``
2140 operation, it *synchronizes-with* that operation. (This isn't a
2141 complete description; see the C++0x definition of a release
2142 sequence.) This corresponds to the C++0x/C1x
2143 ``memory_order_release``.
2144``acq_rel`` (acquire+release)
2145 Acts as both an ``acquire`` and ``release`` operation on its
2146 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2147``seq_cst`` (sequentially consistent)
2148 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002149 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002150 writes), there is a global total order on all
2151 sequentially-consistent operations on all addresses, which is
2152 consistent with the *happens-before* partial order and with the
2153 modification orders of all the affected addresses. Each
2154 sequentially-consistent read sees the last preceding write to the
2155 same address in this global order. This corresponds to the C++0x/C1x
2156 ``memory_order_seq_cst`` and Java volatile.
2157
2158.. _singlethread:
2159
2160If an atomic operation is marked ``singlethread``, it only *synchronizes
2161with* or participates in modification and seq\_cst total orderings with
2162other operations running in the same thread (for example, in signal
2163handlers).
2164
2165.. _fastmath:
2166
2167Fast-Math Flags
2168---------------
2169
2170LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2171:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002172:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
2173instructions have the following flags that can be set to enable
2174otherwise unsafe floating point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002175
2176``nnan``
2177 No NaNs - Allow optimizations to assume the arguments and result are not
2178 NaN. Such optimizations are required to retain defined behavior over
2179 NaNs, but the value of the result is undefined.
2180
2181``ninf``
2182 No Infs - Allow optimizations to assume the arguments and result are not
2183 +/-Inf. Such optimizations are required to retain defined behavior over
2184 +/-Inf, but the value of the result is undefined.
2185
2186``nsz``
2187 No Signed Zeros - Allow optimizations to treat the sign of a zero
2188 argument or result as insignificant.
2189
2190``arcp``
2191 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2192 argument rather than perform division.
2193
2194``fast``
2195 Fast - Allow algebraically equivalent transformations that may
2196 dramatically change results in floating point (e.g. reassociate). This
2197 flag implies all the others.
2198
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002199.. _uselistorder:
2200
2201Use-list Order Directives
2202-------------------------
2203
2204Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002205order to be recreated. ``<order-indexes>`` is a comma-separated list of
2206indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002207value's use-list is immediately sorted by these indexes.
2208
Sean Silvaa1190322015-08-06 22:56:48 +00002209Use-list directives may appear at function scope or global scope. They are not
2210instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002211function scope, they must appear after the terminator of the final basic block.
2212
2213If basic blocks have their address taken via ``blockaddress()`` expressions,
2214``uselistorder_bb`` can be used to reorder their use-lists from outside their
2215function's scope.
2216
2217:Syntax:
2218
2219::
2220
2221 uselistorder <ty> <value>, { <order-indexes> }
2222 uselistorder_bb @function, %block { <order-indexes> }
2223
2224:Examples:
2225
2226::
2227
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002228 define void @foo(i32 %arg1, i32 %arg2) {
2229 entry:
2230 ; ... instructions ...
2231 bb:
2232 ; ... instructions ...
2233
2234 ; At function scope.
2235 uselistorder i32 %arg1, { 1, 0, 2 }
2236 uselistorder label %bb, { 1, 0 }
2237 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002238
2239 ; At global scope.
2240 uselistorder i32* @global, { 1, 2, 0 }
2241 uselistorder i32 7, { 1, 0 }
2242 uselistorder i32 (i32) @bar, { 1, 0 }
2243 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2244
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002245.. _source_filename:
2246
2247Source Filename
2248---------------
2249
2250The *source filename* string is set to the original module identifier,
2251which will be the name of the compiled source file when compiling from
2252source through the clang front end, for example. It is then preserved through
2253the IR and bitcode.
2254
2255This is currently necessary to generate a consistent unique global
2256identifier for local functions used in profile data, which prepends the
2257source file name to the local function name.
2258
2259The syntax for the source file name is simply:
2260
Renato Golin124f2592016-07-20 12:16:38 +00002261.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002262
2263 source_filename = "/path/to/source.c"
2264
Sean Silvab084af42012-12-07 10:36:55 +00002265.. _typesystem:
2266
2267Type System
2268===========
2269
2270The LLVM type system is one of the most important features of the
2271intermediate representation. Being typed enables a number of
2272optimizations to be performed on the intermediate representation
2273directly, without having to do extra analyses on the side before the
2274transformation. A strong type system makes it easier to read the
2275generated code and enables novel analyses and transformations that are
2276not feasible to perform on normal three address code representations.
2277
Rafael Espindola08013342013-12-07 19:34:20 +00002278.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002279
Rafael Espindola08013342013-12-07 19:34:20 +00002280Void Type
2281---------
Sean Silvab084af42012-12-07 10:36:55 +00002282
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002283:Overview:
2284
Rafael Espindola08013342013-12-07 19:34:20 +00002285
2286The void type does not represent any value and has no size.
2287
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002288:Syntax:
2289
Rafael Espindola08013342013-12-07 19:34:20 +00002290
2291::
2292
2293 void
Sean Silvab084af42012-12-07 10:36:55 +00002294
2295
Rafael Espindola08013342013-12-07 19:34:20 +00002296.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002297
Rafael Espindola08013342013-12-07 19:34:20 +00002298Function Type
2299-------------
Sean Silvab084af42012-12-07 10:36:55 +00002300
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002301:Overview:
2302
Sean Silvab084af42012-12-07 10:36:55 +00002303
Rafael Espindola08013342013-12-07 19:34:20 +00002304The function type can be thought of as a function signature. It consists of a
2305return type and a list of formal parameter types. The return type of a function
2306type is a void type or first class type --- except for :ref:`label <t_label>`
2307and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002308
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002309:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002310
Rafael Espindola08013342013-12-07 19:34:20 +00002311::
Sean Silvab084af42012-12-07 10:36:55 +00002312
Rafael Espindola08013342013-12-07 19:34:20 +00002313 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002314
Rafael Espindola08013342013-12-07 19:34:20 +00002315...where '``<parameter list>``' is a comma-separated list of type
2316specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002317indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002318argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002319handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002320except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002321
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002322:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002323
Rafael Espindola08013342013-12-07 19:34:20 +00002324+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2325| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2326+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2327| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2328+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2329| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2330+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2331| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2332+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2333
2334.. _t_firstclass:
2335
2336First Class Types
2337-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002338
2339The :ref:`first class <t_firstclass>` types are perhaps the most important.
2340Values of these types are the only ones which can be produced by
2341instructions.
2342
Rafael Espindola08013342013-12-07 19:34:20 +00002343.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002344
Rafael Espindola08013342013-12-07 19:34:20 +00002345Single Value Types
2346^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002347
Rafael Espindola08013342013-12-07 19:34:20 +00002348These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002349
2350.. _t_integer:
2351
2352Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002353""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002354
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002355:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002356
2357The integer type is a very simple type that simply specifies an
2358arbitrary bit width for the integer type desired. Any bit width from 1
2359bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2360
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002361:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002362
2363::
2364
2365 iN
2366
2367The number of bits the integer will occupy is specified by the ``N``
2368value.
2369
2370Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002371*********
Sean Silvab084af42012-12-07 10:36:55 +00002372
2373+----------------+------------------------------------------------+
2374| ``i1`` | a single-bit integer. |
2375+----------------+------------------------------------------------+
2376| ``i32`` | a 32-bit integer. |
2377+----------------+------------------------------------------------+
2378| ``i1942652`` | a really big integer of over 1 million bits. |
2379+----------------+------------------------------------------------+
2380
2381.. _t_floating:
2382
2383Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002384""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002385
2386.. list-table::
2387 :header-rows: 1
2388
2389 * - Type
2390 - Description
2391
2392 * - ``half``
2393 - 16-bit floating point value
2394
2395 * - ``float``
2396 - 32-bit floating point value
2397
2398 * - ``double``
2399 - 64-bit floating point value
2400
2401 * - ``fp128``
2402 - 128-bit floating point value (112-bit mantissa)
2403
2404 * - ``x86_fp80``
2405 - 80-bit floating point value (X87)
2406
2407 * - ``ppc_fp128``
2408 - 128-bit floating point value (two 64-bits)
2409
Reid Kleckner9a16d082014-03-05 02:41:37 +00002410X86_mmx Type
2411""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002412
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002413:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002414
Reid Kleckner9a16d082014-03-05 02:41:37 +00002415The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002416machine. The operations allowed on it are quite limited: parameters and
2417return values, load and store, and bitcast. User-specified MMX
2418instructions are represented as intrinsic or asm calls with arguments
2419and/or results of this type. There are no arrays, vectors or constants
2420of this type.
2421
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002422:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002423
2424::
2425
Reid Kleckner9a16d082014-03-05 02:41:37 +00002426 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002427
Sean Silvab084af42012-12-07 10:36:55 +00002428
Rafael Espindola08013342013-12-07 19:34:20 +00002429.. _t_pointer:
2430
2431Pointer Type
2432""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002433
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002434:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002435
Rafael Espindola08013342013-12-07 19:34:20 +00002436The pointer type is used to specify memory locations. Pointers are
2437commonly used to reference objects in memory.
2438
2439Pointer types may have an optional address space attribute defining the
2440numbered address space where the pointed-to object resides. The default
2441address space is number zero. The semantics of non-zero address spaces
2442are target-specific.
2443
2444Note that LLVM does not permit pointers to void (``void*``) nor does it
2445permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002446
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002447:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002448
2449::
2450
Rafael Espindola08013342013-12-07 19:34:20 +00002451 <type> *
2452
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002453:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002454
2455+-------------------------+--------------------------------------------------------------------------------------------------------------+
2456| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2457+-------------------------+--------------------------------------------------------------------------------------------------------------+
2458| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2459+-------------------------+--------------------------------------------------------------------------------------------------------------+
2460| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2461+-------------------------+--------------------------------------------------------------------------------------------------------------+
2462
2463.. _t_vector:
2464
2465Vector Type
2466"""""""""""
2467
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002468:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002469
2470A vector type is a simple derived type that represents a vector of
2471elements. Vector types are used when multiple primitive data are
2472operated in parallel using a single instruction (SIMD). A vector type
2473requires a size (number of elements) and an underlying primitive data
2474type. Vector types are considered :ref:`first class <t_firstclass>`.
2475
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002476:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002477
2478::
2479
2480 < <# elements> x <elementtype> >
2481
2482The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002483elementtype may be any integer, floating point or pointer type. Vectors
2484of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002485
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002486:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002487
2488+-------------------+--------------------------------------------------+
2489| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2490+-------------------+--------------------------------------------------+
2491| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2492+-------------------+--------------------------------------------------+
2493| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2494+-------------------+--------------------------------------------------+
2495| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2496+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002497
2498.. _t_label:
2499
2500Label Type
2501^^^^^^^^^^
2502
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002503:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002504
2505The label type represents code labels.
2506
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002507:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002508
2509::
2510
2511 label
2512
David Majnemerb611e3f2015-08-14 05:09:07 +00002513.. _t_token:
2514
2515Token Type
2516^^^^^^^^^^
2517
2518:Overview:
2519
2520The token type is used when a value is associated with an instruction
2521but all uses of the value must not attempt to introspect or obscure it.
2522As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2523:ref:`select <i_select>` of type token.
2524
2525:Syntax:
2526
2527::
2528
2529 token
2530
2531
2532
Sean Silvab084af42012-12-07 10:36:55 +00002533.. _t_metadata:
2534
2535Metadata Type
2536^^^^^^^^^^^^^
2537
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002538:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002539
2540The metadata type represents embedded metadata. No derived types may be
2541created from metadata except for :ref:`function <t_function>` arguments.
2542
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002543:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002544
2545::
2546
2547 metadata
2548
Sean Silvab084af42012-12-07 10:36:55 +00002549.. _t_aggregate:
2550
2551Aggregate Types
2552^^^^^^^^^^^^^^^
2553
2554Aggregate Types are a subset of derived types that can contain multiple
2555member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2556aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2557aggregate types.
2558
2559.. _t_array:
2560
2561Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002562""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002563
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002564:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002565
2566The array type is a very simple derived type that arranges elements
2567sequentially in memory. The array type requires a size (number of
2568elements) and an underlying data type.
2569
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002570:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002571
2572::
2573
2574 [<# elements> x <elementtype>]
2575
2576The number of elements is a constant integer value; ``elementtype`` may
2577be any type with a size.
2578
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002579:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002580
2581+------------------+--------------------------------------+
2582| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2583+------------------+--------------------------------------+
2584| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2585+------------------+--------------------------------------+
2586| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2587+------------------+--------------------------------------+
2588
2589Here are some examples of multidimensional arrays:
2590
2591+-----------------------------+----------------------------------------------------------+
2592| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2593+-----------------------------+----------------------------------------------------------+
2594| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2595+-----------------------------+----------------------------------------------------------+
2596| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2597+-----------------------------+----------------------------------------------------------+
2598
2599There is no restriction on indexing beyond the end of the array implied
2600by a static type (though there are restrictions on indexing beyond the
2601bounds of an allocated object in some cases). This means that
2602single-dimension 'variable sized array' addressing can be implemented in
2603LLVM with a zero length array type. An implementation of 'pascal style
2604arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2605example.
2606
Sean Silvab084af42012-12-07 10:36:55 +00002607.. _t_struct:
2608
2609Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002610""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002611
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002612:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002613
2614The structure type is used to represent a collection of data members
2615together in memory. The elements of a structure may be any type that has
2616a size.
2617
2618Structures in memory are accessed using '``load``' and '``store``' by
2619getting a pointer to a field with the '``getelementptr``' instruction.
2620Structures in registers are accessed using the '``extractvalue``' and
2621'``insertvalue``' instructions.
2622
2623Structures may optionally be "packed" structures, which indicate that
2624the alignment of the struct is one byte, and that there is no padding
2625between the elements. In non-packed structs, padding between field types
2626is inserted as defined by the DataLayout string in the module, which is
2627required to match what the underlying code generator expects.
2628
2629Structures can either be "literal" or "identified". A literal structure
2630is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2631identified types are always defined at the top level with a name.
2632Literal types are uniqued by their contents and can never be recursive
2633or opaque since there is no way to write one. Identified types can be
2634recursive, can be opaqued, and are never uniqued.
2635
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002636:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002637
2638::
2639
2640 %T1 = type { <type list> } ; Identified normal struct type
2641 %T2 = type <{ <type list> }> ; Identified packed struct type
2642
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002643:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002644
2645+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2646| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2647+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002648| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002649+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2650| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2651+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2652
2653.. _t_opaque:
2654
2655Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002656""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002657
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002658:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002659
2660Opaque structure types are used to represent named structure types that
2661do not have a body specified. This corresponds (for example) to the C
2662notion of a forward declared structure.
2663
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002664:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002665
2666::
2667
2668 %X = type opaque
2669 %52 = type opaque
2670
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002671:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002672
2673+--------------+-------------------+
2674| ``opaque`` | An opaque type. |
2675+--------------+-------------------+
2676
Sean Silva1703e702014-04-08 21:06:22 +00002677.. _constants:
2678
Sean Silvab084af42012-12-07 10:36:55 +00002679Constants
2680=========
2681
2682LLVM has several different basic types of constants. This section
2683describes them all and their syntax.
2684
2685Simple Constants
2686----------------
2687
2688**Boolean constants**
2689 The two strings '``true``' and '``false``' are both valid constants
2690 of the ``i1`` type.
2691**Integer constants**
2692 Standard integers (such as '4') are constants of the
2693 :ref:`integer <t_integer>` type. Negative numbers may be used with
2694 integer types.
2695**Floating point constants**
2696 Floating point constants use standard decimal notation (e.g.
2697 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2698 hexadecimal notation (see below). The assembler requires the exact
2699 decimal value of a floating-point constant. For example, the
2700 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2701 decimal in binary. Floating point constants must have a :ref:`floating
2702 point <t_floating>` type.
2703**Null pointer constants**
2704 The identifier '``null``' is recognized as a null pointer constant
2705 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002706**Token constants**
2707 The identifier '``none``' is recognized as an empty token constant
2708 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002709
2710The one non-intuitive notation for constants is the hexadecimal form of
2711floating point constants. For example, the form
2712'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2713than) '``double 4.5e+15``'. The only time hexadecimal floating point
2714constants are required (and the only time that they are generated by the
2715disassembler) is when a floating point constant must be emitted but it
2716cannot be represented as a decimal floating point number in a reasonable
2717number of digits. For example, NaN's, infinities, and other special
2718values are represented in their IEEE hexadecimal format so that assembly
2719and disassembly do not cause any bits to change in the constants.
2720
2721When using the hexadecimal form, constants of types half, float, and
2722double are represented using the 16-digit form shown above (which
2723matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002724must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002725precision, respectively. Hexadecimal format is always used for long
2726double, and there are three forms of long double. The 80-bit format used
2727by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2728128-bit format used by PowerPC (two adjacent doubles) is represented by
2729``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002730represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2731will only work if they match the long double format on your target.
2732The IEEE 16-bit format (half precision) is represented by ``0xH``
2733followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2734(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002735
Reid Kleckner9a16d082014-03-05 02:41:37 +00002736There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002737
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002738.. _complexconstants:
2739
Sean Silvab084af42012-12-07 10:36:55 +00002740Complex Constants
2741-----------------
2742
2743Complex constants are a (potentially recursive) combination of simple
2744constants and smaller complex constants.
2745
2746**Structure constants**
2747 Structure constants are represented with notation similar to
2748 structure type definitions (a comma separated list of elements,
2749 surrounded by braces (``{}``)). For example:
2750 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2751 "``@G = external global i32``". Structure constants must have
2752 :ref:`structure type <t_struct>`, and the number and types of elements
2753 must match those specified by the type.
2754**Array constants**
2755 Array constants are represented with notation similar to array type
2756 definitions (a comma separated list of elements, surrounded by
2757 square brackets (``[]``)). For example:
2758 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2759 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002760 match those specified by the type. As a special case, character array
2761 constants may also be represented as a double-quoted string using the ``c``
2762 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002763**Vector constants**
2764 Vector constants are represented with notation similar to vector
2765 type definitions (a comma separated list of elements, surrounded by
2766 less-than/greater-than's (``<>``)). For example:
2767 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2768 must have :ref:`vector type <t_vector>`, and the number and types of
2769 elements must match those specified by the type.
2770**Zero initialization**
2771 The string '``zeroinitializer``' can be used to zero initialize a
2772 value to zero of *any* type, including scalar and
2773 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2774 having to print large zero initializers (e.g. for large arrays) and
2775 is always exactly equivalent to using explicit zero initializers.
2776**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002777 A metadata node is a constant tuple without types. For example:
2778 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002779 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2780 Unlike other typed constants that are meant to be interpreted as part of
2781 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002782 information such as debug info.
2783
2784Global Variable and Function Addresses
2785--------------------------------------
2786
2787The addresses of :ref:`global variables <globalvars>` and
2788:ref:`functions <functionstructure>` are always implicitly valid
2789(link-time) constants. These constants are explicitly referenced when
2790the :ref:`identifier for the global <identifiers>` is used and always have
2791:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2792file:
2793
2794.. code-block:: llvm
2795
2796 @X = global i32 17
2797 @Y = global i32 42
2798 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2799
2800.. _undefvalues:
2801
2802Undefined Values
2803----------------
2804
2805The string '``undef``' can be used anywhere a constant is expected, and
2806indicates that the user of the value may receive an unspecified
2807bit-pattern. Undefined values may be of any type (other than '``label``'
2808or '``void``') and be used anywhere a constant is permitted.
2809
2810Undefined values are useful because they indicate to the compiler that
2811the program is well defined no matter what value is used. This gives the
2812compiler more freedom to optimize. Here are some examples of
2813(potentially surprising) transformations that are valid (in pseudo IR):
2814
2815.. code-block:: llvm
2816
2817 %A = add %X, undef
2818 %B = sub %X, undef
2819 %C = xor %X, undef
2820 Safe:
2821 %A = undef
2822 %B = undef
2823 %C = undef
2824
2825This is safe because all of the output bits are affected by the undef
2826bits. Any output bit can have a zero or one depending on the input bits.
2827
2828.. code-block:: llvm
2829
2830 %A = or %X, undef
2831 %B = and %X, undef
2832 Safe:
2833 %A = -1
2834 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002835 Safe:
2836 %A = %X ;; By choosing undef as 0
2837 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002838 Unsafe:
2839 %A = undef
2840 %B = undef
2841
2842These logical operations have bits that are not always affected by the
2843input. For example, if ``%X`` has a zero bit, then the output of the
2844'``and``' operation will always be a zero for that bit, no matter what
2845the corresponding bit from the '``undef``' is. As such, it is unsafe to
2846optimize or assume that the result of the '``and``' is '``undef``'.
2847However, it is safe to assume that all bits of the '``undef``' could be
28480, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2849all the bits of the '``undef``' operand to the '``or``' could be set,
2850allowing the '``or``' to be folded to -1.
2851
2852.. code-block:: llvm
2853
2854 %A = select undef, %X, %Y
2855 %B = select undef, 42, %Y
2856 %C = select %X, %Y, undef
2857 Safe:
2858 %A = %X (or %Y)
2859 %B = 42 (or %Y)
2860 %C = %Y
2861 Unsafe:
2862 %A = undef
2863 %B = undef
2864 %C = undef
2865
2866This set of examples shows that undefined '``select``' (and conditional
2867branch) conditions can go *either way*, but they have to come from one
2868of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2869both known to have a clear low bit, then ``%A`` would have to have a
2870cleared low bit. However, in the ``%C`` example, the optimizer is
2871allowed to assume that the '``undef``' operand could be the same as
2872``%Y``, allowing the whole '``select``' to be eliminated.
2873
Renato Golin124f2592016-07-20 12:16:38 +00002874.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002875
2876 %A = xor undef, undef
2877
2878 %B = undef
2879 %C = xor %B, %B
2880
2881 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002882 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002883 %F = icmp gte %D, 4
2884
2885 Safe:
2886 %A = undef
2887 %B = undef
2888 %C = undef
2889 %D = undef
2890 %E = undef
2891 %F = undef
2892
2893This example points out that two '``undef``' operands are not
2894necessarily the same. This can be surprising to people (and also matches
2895C semantics) where they assume that "``X^X``" is always zero, even if
2896``X`` is undefined. This isn't true for a number of reasons, but the
2897short answer is that an '``undef``' "variable" can arbitrarily change
2898its value over its "live range". This is true because the variable
2899doesn't actually *have a live range*. Instead, the value is logically
2900read from arbitrary registers that happen to be around when needed, so
2901the value is not necessarily consistent over time. In fact, ``%A`` and
2902``%C`` need to have the same semantics or the core LLVM "replace all
2903uses with" concept would not hold.
2904
2905.. code-block:: llvm
2906
2907 %A = fdiv undef, %X
2908 %B = fdiv %X, undef
2909 Safe:
2910 %A = undef
2911 b: unreachable
2912
2913These examples show the crucial difference between an *undefined value*
2914and *undefined behavior*. An undefined value (like '``undef``') is
2915allowed to have an arbitrary bit-pattern. This means that the ``%A``
2916operation can be constant folded to '``undef``', because the '``undef``'
2917could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2918However, in the second example, we can make a more aggressive
2919assumption: because the ``undef`` is allowed to be an arbitrary value,
2920we are allowed to assume that it could be zero. Since a divide by zero
2921has *undefined behavior*, we are allowed to assume that the operation
2922does not execute at all. This allows us to delete the divide and all
2923code after it. Because the undefined operation "can't happen", the
2924optimizer can assume that it occurs in dead code.
2925
Renato Golin124f2592016-07-20 12:16:38 +00002926.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002927
2928 a: store undef -> %X
2929 b: store %X -> undef
2930 Safe:
2931 a: <deleted>
2932 b: unreachable
2933
2934These examples reiterate the ``fdiv`` example: a store *of* an undefined
2935value can be assumed to not have any effect; we can assume that the
2936value is overwritten with bits that happen to match what was already
2937there. However, a store *to* an undefined location could clobber
2938arbitrary memory, therefore, it has undefined behavior.
2939
2940.. _poisonvalues:
2941
2942Poison Values
2943-------------
2944
2945Poison values are similar to :ref:`undef values <undefvalues>`, however
2946they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002947that cannot evoke side effects has nevertheless detected a condition
2948that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002949
2950There is currently no way of representing a poison value in the IR; they
2951only exist when produced by operations such as :ref:`add <i_add>` with
2952the ``nsw`` flag.
2953
2954Poison value behavior is defined in terms of value *dependence*:
2955
2956- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2957- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2958 their dynamic predecessor basic block.
2959- Function arguments depend on the corresponding actual argument values
2960 in the dynamic callers of their functions.
2961- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2962 instructions that dynamically transfer control back to them.
2963- :ref:`Invoke <i_invoke>` instructions depend on the
2964 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2965 call instructions that dynamically transfer control back to them.
2966- Non-volatile loads and stores depend on the most recent stores to all
2967 of the referenced memory addresses, following the order in the IR
2968 (including loads and stores implied by intrinsics such as
2969 :ref:`@llvm.memcpy <int_memcpy>`.)
2970- An instruction with externally visible side effects depends on the
2971 most recent preceding instruction with externally visible side
2972 effects, following the order in the IR. (This includes :ref:`volatile
2973 operations <volatile>`.)
2974- An instruction *control-depends* on a :ref:`terminator
2975 instruction <terminators>` if the terminator instruction has
2976 multiple successors and the instruction is always executed when
2977 control transfers to one of the successors, and may not be executed
2978 when control is transferred to another.
2979- Additionally, an instruction also *control-depends* on a terminator
2980 instruction if the set of instructions it otherwise depends on would
2981 be different if the terminator had transferred control to a different
2982 successor.
2983- Dependence is transitive.
2984
Richard Smith32dbdf62014-07-31 04:25:36 +00002985Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2986with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002987on a poison value has undefined behavior.
2988
2989Here are some examples:
2990
2991.. code-block:: llvm
2992
2993 entry:
2994 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2995 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002996 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002997 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2998
2999 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003000 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003001
3002 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3003
3004 %narrowaddr = bitcast i32* @g to i16*
3005 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003006 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3007 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003008
3009 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3010 br i1 %cmp, label %true, label %end ; Branch to either destination.
3011
3012 true:
3013 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3014 ; it has undefined behavior.
3015 br label %end
3016
3017 end:
3018 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3019 ; Both edges into this PHI are
3020 ; control-dependent on %cmp, so this
3021 ; always results in a poison value.
3022
3023 store volatile i32 0, i32* @g ; This would depend on the store in %true
3024 ; if %cmp is true, or the store in %entry
3025 ; otherwise, so this is undefined behavior.
3026
3027 br i1 %cmp, label %second_true, label %second_end
3028 ; The same branch again, but this time the
3029 ; true block doesn't have side effects.
3030
3031 second_true:
3032 ; No side effects!
3033 ret void
3034
3035 second_end:
3036 store volatile i32 0, i32* @g ; This time, the instruction always depends
3037 ; on the store in %end. Also, it is
3038 ; control-equivalent to %end, so this is
3039 ; well-defined (ignoring earlier undefined
3040 ; behavior in this example).
3041
3042.. _blockaddress:
3043
3044Addresses of Basic Blocks
3045-------------------------
3046
3047``blockaddress(@function, %block)``
3048
3049The '``blockaddress``' constant computes the address of the specified
3050basic block in the specified function, and always has an ``i8*`` type.
3051Taking the address of the entry block is illegal.
3052
3053This value only has defined behavior when used as an operand to the
3054':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3055against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003056undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003057no label is equal to the null pointer. This may be passed around as an
3058opaque pointer sized value as long as the bits are not inspected. This
3059allows ``ptrtoint`` and arithmetic to be performed on these values so
3060long as the original value is reconstituted before the ``indirectbr``
3061instruction.
3062
3063Finally, some targets may provide defined semantics when using the value
3064as the operand to an inline assembly, but that is target specific.
3065
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003066.. _constantexprs:
3067
Sean Silvab084af42012-12-07 10:36:55 +00003068Constant Expressions
3069--------------------
3070
3071Constant expressions are used to allow expressions involving other
3072constants to be used as constants. Constant expressions may be of any
3073:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3074that does not have side effects (e.g. load and call are not supported).
3075The following is the syntax for constant expressions:
3076
3077``trunc (CST to TYPE)``
3078 Truncate a constant to another type. The bit size of CST must be
3079 larger than the bit size of TYPE. Both types must be integers.
3080``zext (CST to TYPE)``
3081 Zero extend a constant to another type. The bit size of CST must be
3082 smaller than the bit size of TYPE. Both types must be integers.
3083``sext (CST to TYPE)``
3084 Sign extend a constant to another type. The bit size of CST must be
3085 smaller than the bit size of TYPE. Both types must be integers.
3086``fptrunc (CST to TYPE)``
3087 Truncate a floating point constant to another floating point type.
3088 The size of CST must be larger than the size of TYPE. Both types
3089 must be floating point.
3090``fpext (CST to TYPE)``
3091 Floating point extend a constant to another type. The size of CST
3092 must be smaller or equal to the size of TYPE. Both types must be
3093 floating point.
3094``fptoui (CST to TYPE)``
3095 Convert a floating point constant to the corresponding unsigned
3096 integer constant. TYPE must be a scalar or vector integer type. CST
3097 must be of scalar or vector floating point type. Both CST and TYPE
3098 must be scalars, or vectors of the same number of elements. If the
3099 value won't fit in the integer type, the results are undefined.
3100``fptosi (CST to TYPE)``
3101 Convert a floating point constant to the corresponding signed
3102 integer constant. TYPE must be a scalar or vector integer type. CST
3103 must be of scalar or vector floating point type. Both CST and TYPE
3104 must be scalars, or vectors of the same number of elements. If the
3105 value won't fit in the integer type, the results are undefined.
3106``uitofp (CST to TYPE)``
3107 Convert an unsigned integer constant to the corresponding floating
3108 point constant. TYPE must be a scalar or vector floating point type.
3109 CST must be of scalar or vector integer type. Both CST and TYPE must
3110 be scalars, or vectors of the same number of elements. If the value
3111 won't fit in the floating point type, the results are undefined.
3112``sitofp (CST to TYPE)``
3113 Convert a signed integer constant to the corresponding floating
3114 point constant. TYPE must be a scalar or vector floating point type.
3115 CST must be of scalar or vector integer type. Both CST and TYPE must
3116 be scalars, or vectors of the same number of elements. If the value
3117 won't fit in the floating point type, the results are undefined.
3118``ptrtoint (CST to TYPE)``
3119 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003120 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003121 pointer type. The ``CST`` value is zero extended, truncated, or
3122 unchanged to make it fit in ``TYPE``.
3123``inttoptr (CST to TYPE)``
3124 Convert an integer constant to a pointer constant. TYPE must be a
3125 pointer type. CST must be of integer type. The CST value is zero
3126 extended, truncated, or unchanged to make it fit in a pointer size.
3127 This one is *really* dangerous!
3128``bitcast (CST to TYPE)``
3129 Convert a constant, CST, to another TYPE. The constraints of the
3130 operands are the same as those for the :ref:`bitcast
3131 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003132``addrspacecast (CST to TYPE)``
3133 Convert a constant pointer or constant vector of pointer, CST, to another
3134 TYPE in a different address space. The constraints of the operands are the
3135 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003136``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003137 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3138 constants. As with the :ref:`getelementptr <i_getelementptr>`
3139 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003140 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003141``select (COND, VAL1, VAL2)``
3142 Perform the :ref:`select operation <i_select>` on constants.
3143``icmp COND (VAL1, VAL2)``
3144 Performs the :ref:`icmp operation <i_icmp>` on constants.
3145``fcmp COND (VAL1, VAL2)``
3146 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3147``extractelement (VAL, IDX)``
3148 Perform the :ref:`extractelement operation <i_extractelement>` on
3149 constants.
3150``insertelement (VAL, ELT, IDX)``
3151 Perform the :ref:`insertelement operation <i_insertelement>` on
3152 constants.
3153``shufflevector (VEC1, VEC2, IDXMASK)``
3154 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3155 constants.
3156``extractvalue (VAL, IDX0, IDX1, ...)``
3157 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3158 constants. The index list is interpreted in a similar manner as
3159 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3160 least one index value must be specified.
3161``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3162 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3163 The index list is interpreted in a similar manner as indices in a
3164 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3165 value must be specified.
3166``OPCODE (LHS, RHS)``
3167 Perform the specified operation of the LHS and RHS constants. OPCODE
3168 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3169 binary <bitwiseops>` operations. The constraints on operands are
3170 the same as those for the corresponding instruction (e.g. no bitwise
3171 operations on floating point values are allowed).
3172
3173Other Values
3174============
3175
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003176.. _inlineasmexprs:
3177
Sean Silvab084af42012-12-07 10:36:55 +00003178Inline Assembler Expressions
3179----------------------------
3180
3181LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003182Inline Assembly <moduleasm>`) through the use of a special value. This value
3183represents the inline assembler as a template string (containing the
3184instructions to emit), a list of operand constraints (stored as a string), a
3185flag that indicates whether or not the inline asm expression has side effects,
3186and a flag indicating whether the function containing the asm needs to align its
3187stack conservatively.
3188
3189The template string supports argument substitution of the operands using "``$``"
3190followed by a number, to indicate substitution of the given register/memory
3191location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3192be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3193operand (See :ref:`inline-asm-modifiers`).
3194
3195A literal "``$``" may be included by using "``$$``" in the template. To include
3196other special characters into the output, the usual "``\XX``" escapes may be
3197used, just as in other strings. Note that after template substitution, the
3198resulting assembly string is parsed by LLVM's integrated assembler unless it is
3199disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3200syntax known to LLVM.
3201
3202LLVM's support for inline asm is modeled closely on the requirements of Clang's
3203GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3204modifier codes listed here are similar or identical to those in GCC's inline asm
3205support. However, to be clear, the syntax of the template and constraint strings
3206described here is *not* the same as the syntax accepted by GCC and Clang, and,
3207while most constraint letters are passed through as-is by Clang, some get
3208translated to other codes when converting from the C source to the LLVM
3209assembly.
3210
3211An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003212
3213.. code-block:: llvm
3214
3215 i32 (i32) asm "bswap $0", "=r,r"
3216
3217Inline assembler expressions may **only** be used as the callee operand
3218of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3219Thus, typically we have:
3220
3221.. code-block:: llvm
3222
3223 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3224
3225Inline asms with side effects not visible in the constraint list must be
3226marked as having side effects. This is done through the use of the
3227'``sideeffect``' keyword, like so:
3228
3229.. code-block:: llvm
3230
3231 call void asm sideeffect "eieio", ""()
3232
3233In some cases inline asms will contain code that will not work unless
3234the stack is aligned in some way, such as calls or SSE instructions on
3235x86, yet will not contain code that does that alignment within the asm.
3236The compiler should make conservative assumptions about what the asm
3237might contain and should generate its usual stack alignment code in the
3238prologue if the '``alignstack``' keyword is present:
3239
3240.. code-block:: llvm
3241
3242 call void asm alignstack "eieio", ""()
3243
3244Inline asms also support using non-standard assembly dialects. The
3245assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3246the inline asm is using the Intel dialect. Currently, ATT and Intel are
3247the only supported dialects. An example is:
3248
3249.. code-block:: llvm
3250
3251 call void asm inteldialect "eieio", ""()
3252
3253If multiple keywords appear the '``sideeffect``' keyword must come
3254first, the '``alignstack``' keyword second and the '``inteldialect``'
3255keyword last.
3256
James Y Knightbc832ed2015-07-08 18:08:36 +00003257Inline Asm Constraint String
3258^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3259
3260The constraint list is a comma-separated string, each element containing one or
3261more constraint codes.
3262
3263For each element in the constraint list an appropriate register or memory
3264operand will be chosen, and it will be made available to assembly template
3265string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3266second, etc.
3267
3268There are three different types of constraints, which are distinguished by a
3269prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3270constraints must always be given in that order: outputs first, then inputs, then
3271clobbers. They cannot be intermingled.
3272
3273There are also three different categories of constraint codes:
3274
3275- Register constraint. This is either a register class, or a fixed physical
3276 register. This kind of constraint will allocate a register, and if necessary,
3277 bitcast the argument or result to the appropriate type.
3278- Memory constraint. This kind of constraint is for use with an instruction
3279 taking a memory operand. Different constraints allow for different addressing
3280 modes used by the target.
3281- Immediate value constraint. This kind of constraint is for an integer or other
3282 immediate value which can be rendered directly into an instruction. The
3283 various target-specific constraints allow the selection of a value in the
3284 proper range for the instruction you wish to use it with.
3285
3286Output constraints
3287""""""""""""""""""
3288
3289Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3290indicates that the assembly will write to this operand, and the operand will
3291then be made available as a return value of the ``asm`` expression. Output
3292constraints do not consume an argument from the call instruction. (Except, see
3293below about indirect outputs).
3294
3295Normally, it is expected that no output locations are written to by the assembly
3296expression until *all* of the inputs have been read. As such, LLVM may assign
3297the same register to an output and an input. If this is not safe (e.g. if the
3298assembly contains two instructions, where the first writes to one output, and
3299the second reads an input and writes to a second output), then the "``&``"
3300modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003301"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003302will not use the same register for any inputs (other than an input tied to this
3303output).
3304
3305Input constraints
3306"""""""""""""""""
3307
3308Input constraints do not have a prefix -- just the constraint codes. Each input
3309constraint will consume one argument from the call instruction. It is not
3310permitted for the asm to write to any input register or memory location (unless
3311that input is tied to an output). Note also that multiple inputs may all be
3312assigned to the same register, if LLVM can determine that they necessarily all
3313contain the same value.
3314
3315Instead of providing a Constraint Code, input constraints may also "tie"
3316themselves to an output constraint, by providing an integer as the constraint
3317string. Tied inputs still consume an argument from the call instruction, and
3318take up a position in the asm template numbering as is usual -- they will simply
3319be constrained to always use the same register as the output they've been tied
3320to. For example, a constraint string of "``=r,0``" says to assign a register for
3321output, and use that register as an input as well (it being the 0'th
3322constraint).
3323
3324It is permitted to tie an input to an "early-clobber" output. In that case, no
3325*other* input may share the same register as the input tied to the early-clobber
3326(even when the other input has the same value).
3327
3328You may only tie an input to an output which has a register constraint, not a
3329memory constraint. Only a single input may be tied to an output.
3330
3331There is also an "interesting" feature which deserves a bit of explanation: if a
3332register class constraint allocates a register which is too small for the value
3333type operand provided as input, the input value will be split into multiple
3334registers, and all of them passed to the inline asm.
3335
3336However, this feature is often not as useful as you might think.
3337
3338Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3339architectures that have instructions which operate on multiple consecutive
3340instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3341SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3342hardware then loads into both the named register, and the next register. This
3343feature of inline asm would not be useful to support that.)
3344
3345A few of the targets provide a template string modifier allowing explicit access
3346to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3347``D``). On such an architecture, you can actually access the second allocated
3348register (yet, still, not any subsequent ones). But, in that case, you're still
3349probably better off simply splitting the value into two separate operands, for
3350clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3351despite existing only for use with this feature, is not really a good idea to
3352use)
3353
3354Indirect inputs and outputs
3355"""""""""""""""""""""""""""
3356
3357Indirect output or input constraints can be specified by the "``*``" modifier
3358(which goes after the "``=``" in case of an output). This indicates that the asm
3359will write to or read from the contents of an *address* provided as an input
3360argument. (Note that in this way, indirect outputs act more like an *input* than
3361an output: just like an input, they consume an argument of the call expression,
3362rather than producing a return value. An indirect output constraint is an
3363"output" only in that the asm is expected to write to the contents of the input
3364memory location, instead of just read from it).
3365
3366This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3367address of a variable as a value.
3368
3369It is also possible to use an indirect *register* constraint, but only on output
3370(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3371value normally, and then, separately emit a store to the address provided as
3372input, after the provided inline asm. (It's not clear what value this
3373functionality provides, compared to writing the store explicitly after the asm
3374statement, and it can only produce worse code, since it bypasses many
3375optimization passes. I would recommend not using it.)
3376
3377
3378Clobber constraints
3379"""""""""""""""""""
3380
3381A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3382consume an input operand, nor generate an output. Clobbers cannot use any of the
3383general constraint code letters -- they may use only explicit register
3384constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3385"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3386memory locations -- not only the memory pointed to by a declared indirect
3387output.
3388
Peter Zotov00257232016-08-30 10:48:31 +00003389Note that clobbering named registers that are also present in output
3390constraints is not legal.
3391
James Y Knightbc832ed2015-07-08 18:08:36 +00003392
3393Constraint Codes
3394""""""""""""""""
3395After a potential prefix comes constraint code, or codes.
3396
3397A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3398followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3399(e.g. "``{eax}``").
3400
3401The one and two letter constraint codes are typically chosen to be the same as
3402GCC's constraint codes.
3403
3404A single constraint may include one or more than constraint code in it, leaving
3405it up to LLVM to choose which one to use. This is included mainly for
3406compatibility with the translation of GCC inline asm coming from clang.
3407
3408There are two ways to specify alternatives, and either or both may be used in an
3409inline asm constraint list:
3410
34111) Append the codes to each other, making a constraint code set. E.g. "``im``"
3412 or "``{eax}m``". This means "choose any of the options in the set". The
3413 choice of constraint is made independently for each constraint in the
3414 constraint list.
3415
34162) Use "``|``" between constraint code sets, creating alternatives. Every
3417 constraint in the constraint list must have the same number of alternative
3418 sets. With this syntax, the same alternative in *all* of the items in the
3419 constraint list will be chosen together.
3420
3421Putting those together, you might have a two operand constraint string like
3422``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3423operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3424may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3425
3426However, the use of either of the alternatives features is *NOT* recommended, as
3427LLVM is not able to make an intelligent choice about which one to use. (At the
3428point it currently needs to choose, not enough information is available to do so
3429in a smart way.) Thus, it simply tries to make a choice that's most likely to
3430compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3431always choose to use memory, not registers). And, if given multiple registers,
3432or multiple register classes, it will simply choose the first one. (In fact, it
3433doesn't currently even ensure explicitly specified physical registers are
3434unique, so specifying multiple physical registers as alternatives, like
3435``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3436intended.)
3437
3438Supported Constraint Code List
3439""""""""""""""""""""""""""""""
3440
3441The constraint codes are, in general, expected to behave the same way they do in
3442GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3443inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3444and GCC likely indicates a bug in LLVM.
3445
3446Some constraint codes are typically supported by all targets:
3447
3448- ``r``: A register in the target's general purpose register class.
3449- ``m``: A memory address operand. It is target-specific what addressing modes
3450 are supported, typical examples are register, or register + register offset,
3451 or register + immediate offset (of some target-specific size).
3452- ``i``: An integer constant (of target-specific width). Allows either a simple
3453 immediate, or a relocatable value.
3454- ``n``: An integer constant -- *not* including relocatable values.
3455- ``s``: An integer constant, but allowing *only* relocatable values.
3456- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3457 useful to pass a label for an asm branch or call.
3458
3459 .. FIXME: but that surely isn't actually okay to jump out of an asm
3460 block without telling llvm about the control transfer???)
3461
3462- ``{register-name}``: Requires exactly the named physical register.
3463
3464Other constraints are target-specific:
3465
3466AArch64:
3467
3468- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3469- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3470 i.e. 0 to 4095 with optional shift by 12.
3471- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3472 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3473- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3474 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3475- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3476 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3477- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3478 32-bit register. This is a superset of ``K``: in addition to the bitmask
3479 immediate, also allows immediate integers which can be loaded with a single
3480 ``MOVZ`` or ``MOVL`` instruction.
3481- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3482 64-bit register. This is a superset of ``L``.
3483- ``Q``: Memory address operand must be in a single register (no
3484 offsets). (However, LLVM currently does this for the ``m`` constraint as
3485 well.)
3486- ``r``: A 32 or 64-bit integer register (W* or X*).
3487- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3488- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3489
3490AMDGPU:
3491
3492- ``r``: A 32 or 64-bit integer register.
3493- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3494- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3495
3496
3497All ARM modes:
3498
3499- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3500 operand. Treated the same as operand ``m``, at the moment.
3501
3502ARM and ARM's Thumb2 mode:
3503
3504- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3505- ``I``: An immediate integer valid for a data-processing instruction.
3506- ``J``: An immediate integer between -4095 and 4095.
3507- ``K``: An immediate integer whose bitwise inverse is valid for a
3508 data-processing instruction. (Can be used with template modifier "``B``" to
3509 print the inverted value).
3510- ``L``: An immediate integer whose negation is valid for a data-processing
3511 instruction. (Can be used with template modifier "``n``" to print the negated
3512 value).
3513- ``M``: A power of two or a integer between 0 and 32.
3514- ``N``: Invalid immediate constraint.
3515- ``O``: Invalid immediate constraint.
3516- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3517- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3518 as ``r``.
3519- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3520 invalid.
3521- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3522 ``d0-d31``, or ``q0-q15``.
3523- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3524 ``d0-d7``, or ``q0-q3``.
3525- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3526 ``s0-s31``.
3527
3528ARM's Thumb1 mode:
3529
3530- ``I``: An immediate integer between 0 and 255.
3531- ``J``: An immediate integer between -255 and -1.
3532- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3533 some amount.
3534- ``L``: An immediate integer between -7 and 7.
3535- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3536- ``N``: An immediate integer between 0 and 31.
3537- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3538- ``r``: A low 32-bit GPR register (``r0-r7``).
3539- ``l``: A low 32-bit GPR register (``r0-r7``).
3540- ``h``: A high GPR register (``r0-r7``).
3541- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3542 ``d0-d31``, or ``q0-q15``.
3543- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3544 ``d0-d7``, or ``q0-q3``.
3545- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3546 ``s0-s31``.
3547
3548
3549Hexagon:
3550
3551- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3552 at the moment.
3553- ``r``: A 32 or 64-bit register.
3554
3555MSP430:
3556
3557- ``r``: An 8 or 16-bit register.
3558
3559MIPS:
3560
3561- ``I``: An immediate signed 16-bit integer.
3562- ``J``: An immediate integer zero.
3563- ``K``: An immediate unsigned 16-bit integer.
3564- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3565- ``N``: An immediate integer between -65535 and -1.
3566- ``O``: An immediate signed 15-bit integer.
3567- ``P``: An immediate integer between 1 and 65535.
3568- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3569 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3570- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3571 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3572 ``m``.
3573- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3574 ``sc`` instruction on the given subtarget (details vary).
3575- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3576- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003577 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3578 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003579- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3580 ``25``).
3581- ``l``: The ``lo`` register, 32 or 64-bit.
3582- ``x``: Invalid.
3583
3584NVPTX:
3585
3586- ``b``: A 1-bit integer register.
3587- ``c`` or ``h``: A 16-bit integer register.
3588- ``r``: A 32-bit integer register.
3589- ``l`` or ``N``: A 64-bit integer register.
3590- ``f``: A 32-bit float register.
3591- ``d``: A 64-bit float register.
3592
3593
3594PowerPC:
3595
3596- ``I``: An immediate signed 16-bit integer.
3597- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3598- ``K``: An immediate unsigned 16-bit integer.
3599- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3600- ``M``: An immediate integer greater than 31.
3601- ``N``: An immediate integer that is an exact power of 2.
3602- ``O``: The immediate integer constant 0.
3603- ``P``: An immediate integer constant whose negation is a signed 16-bit
3604 constant.
3605- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3606 treated the same as ``m``.
3607- ``r``: A 32 or 64-bit integer register.
3608- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3609 ``R1-R31``).
3610- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3611 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3612- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3613 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3614 altivec vector register (``V0-V31``).
3615
3616 .. FIXME: is this a bug that v accepts QPX registers? I think this
3617 is supposed to only use the altivec vector registers?
3618
3619- ``y``: Condition register (``CR0-CR7``).
3620- ``wc``: An individual CR bit in a CR register.
3621- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3622 register set (overlapping both the floating-point and vector register files).
3623- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3624 set.
3625
3626Sparc:
3627
3628- ``I``: An immediate 13-bit signed integer.
3629- ``r``: A 32-bit integer register.
3630
3631SystemZ:
3632
3633- ``I``: An immediate unsigned 8-bit integer.
3634- ``J``: An immediate unsigned 12-bit integer.
3635- ``K``: An immediate signed 16-bit integer.
3636- ``L``: An immediate signed 20-bit integer.
3637- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003638- ``Q``: A memory address operand with a base address and a 12-bit immediate
3639 unsigned displacement.
3640- ``R``: A memory address operand with a base address, a 12-bit immediate
3641 unsigned displacement, and an index register.
3642- ``S``: A memory address operand with a base address and a 20-bit immediate
3643 signed displacement.
3644- ``T``: A memory address operand with a base address, a 20-bit immediate
3645 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003646- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3647- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3648 address context evaluates as zero).
3649- ``h``: A 32-bit value in the high part of a 64bit data register
3650 (LLVM-specific)
3651- ``f``: A 32, 64, or 128-bit floating point register.
3652
3653X86:
3654
3655- ``I``: An immediate integer between 0 and 31.
3656- ``J``: An immediate integer between 0 and 64.
3657- ``K``: An immediate signed 8-bit integer.
3658- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3659 0xffffffff.
3660- ``M``: An immediate integer between 0 and 3.
3661- ``N``: An immediate unsigned 8-bit integer.
3662- ``O``: An immediate integer between 0 and 127.
3663- ``e``: An immediate 32-bit signed integer.
3664- ``Z``: An immediate 32-bit unsigned integer.
3665- ``o``, ``v``: Treated the same as ``m``, at the moment.
3666- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3667 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3668 registers, and on X86-64, it is all of the integer registers.
3669- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3670 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3671- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3672- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3673 existed since i386, and can be accessed without the REX prefix.
3674- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3675- ``y``: A 64-bit MMX register, if MMX is enabled.
3676- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3677 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3678 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3679 512-bit vector operand in an AVX512 register, Otherwise, an error.
3680- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3681- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3682 32-bit mode, a 64-bit integer operand will get split into two registers). It
3683 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3684 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3685 you're better off splitting it yourself, before passing it to the asm
3686 statement.
3687
3688XCore:
3689
3690- ``r``: A 32-bit integer register.
3691
3692
3693.. _inline-asm-modifiers:
3694
3695Asm template argument modifiers
3696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3697
3698In the asm template string, modifiers can be used on the operand reference, like
3699"``${0:n}``".
3700
3701The modifiers are, in general, expected to behave the same way they do in
3702GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3703inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3704and GCC likely indicates a bug in LLVM.
3705
3706Target-independent:
3707
Sean Silvaa1190322015-08-06 22:56:48 +00003708- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003709 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3710- ``n``: Negate and print immediate integer constant unadorned, without the
3711 target-specific immediate punctuation (e.g. no ``$`` prefix).
3712- ``l``: Print as an unadorned label, without the target-specific label
3713 punctuation (e.g. no ``$`` prefix).
3714
3715AArch64:
3716
3717- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3718 instead of ``x30``, print ``w30``.
3719- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3720- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3721 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3722 ``v*``.
3723
3724AMDGPU:
3725
3726- ``r``: No effect.
3727
3728ARM:
3729
3730- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3731 register).
3732- ``P``: No effect.
3733- ``q``: No effect.
3734- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3735 as ``d4[1]`` instead of ``s9``)
3736- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3737 prefix.
3738- ``L``: Print the low 16-bits of an immediate integer constant.
3739- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3740 register operands subsequent to the specified one (!), so use carefully.
3741- ``Q``: Print the low-order register of a register-pair, or the low-order
3742 register of a two-register operand.
3743- ``R``: Print the high-order register of a register-pair, or the high-order
3744 register of a two-register operand.
3745- ``H``: Print the second register of a register-pair. (On a big-endian system,
3746 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3747 to ``R``.)
3748
3749 .. FIXME: H doesn't currently support printing the second register
3750 of a two-register operand.
3751
3752- ``e``: Print the low doubleword register of a NEON quad register.
3753- ``f``: Print the high doubleword register of a NEON quad register.
3754- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3755 adornment.
3756
3757Hexagon:
3758
3759- ``L``: Print the second register of a two-register operand. Requires that it
3760 has been allocated consecutively to the first.
3761
3762 .. FIXME: why is it restricted to consecutive ones? And there's
3763 nothing that ensures that happens, is there?
3764
3765- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3766 nothing. Used to print 'addi' vs 'add' instructions.
3767
3768MSP430:
3769
3770No additional modifiers.
3771
3772MIPS:
3773
3774- ``X``: Print an immediate integer as hexadecimal
3775- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3776- ``d``: Print an immediate integer as decimal.
3777- ``m``: Subtract one and print an immediate integer as decimal.
3778- ``z``: Print $0 if an immediate zero, otherwise print normally.
3779- ``L``: Print the low-order register of a two-register operand, or prints the
3780 address of the low-order word of a double-word memory operand.
3781
3782 .. FIXME: L seems to be missing memory operand support.
3783
3784- ``M``: Print the high-order register of a two-register operand, or prints the
3785 address of the high-order word of a double-word memory operand.
3786
3787 .. FIXME: M seems to be missing memory operand support.
3788
3789- ``D``: Print the second register of a two-register operand, or prints the
3790 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3791 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3792 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003793- ``w``: No effect. Provided for compatibility with GCC which requires this
3794 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3795 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003796
3797NVPTX:
3798
3799- ``r``: No effect.
3800
3801PowerPC:
3802
3803- ``L``: Print the second register of a two-register operand. Requires that it
3804 has been allocated consecutively to the first.
3805
3806 .. FIXME: why is it restricted to consecutive ones? And there's
3807 nothing that ensures that happens, is there?
3808
3809- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3810 nothing. Used to print 'addi' vs 'add' instructions.
3811- ``y``: For a memory operand, prints formatter for a two-register X-form
3812 instruction. (Currently always prints ``r0,OPERAND``).
3813- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3814 otherwise. (NOTE: LLVM does not support update form, so this will currently
3815 always print nothing)
3816- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3817 not support indexed form, so this will currently always print nothing)
3818
3819Sparc:
3820
3821- ``r``: No effect.
3822
3823SystemZ:
3824
3825SystemZ implements only ``n``, and does *not* support any of the other
3826target-independent modifiers.
3827
3828X86:
3829
3830- ``c``: Print an unadorned integer or symbol name. (The latter is
3831 target-specific behavior for this typically target-independent modifier).
3832- ``A``: Print a register name with a '``*``' before it.
3833- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3834 operand.
3835- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3836 memory operand.
3837- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3838 operand.
3839- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3840 operand.
3841- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3842 available, otherwise the 32-bit register name; do nothing on a memory operand.
3843- ``n``: Negate and print an unadorned integer, or, for operands other than an
3844 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3845 the operand. (The behavior for relocatable symbol expressions is a
3846 target-specific behavior for this typically target-independent modifier)
3847- ``H``: Print a memory reference with additional offset +8.
3848- ``P``: Print a memory reference or operand for use as the argument of a call
3849 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3850
3851XCore:
3852
3853No additional modifiers.
3854
3855
Sean Silvab084af42012-12-07 10:36:55 +00003856Inline Asm Metadata
3857^^^^^^^^^^^^^^^^^^^
3858
3859The call instructions that wrap inline asm nodes may have a
3860"``!srcloc``" MDNode attached to it that contains a list of constant
3861integers. If present, the code generator will use the integer as the
3862location cookie value when report errors through the ``LLVMContext``
3863error reporting mechanisms. This allows a front-end to correlate backend
3864errors that occur with inline asm back to the source code that produced
3865it. For example:
3866
3867.. code-block:: llvm
3868
3869 call void asm sideeffect "something bad", ""(), !srcloc !42
3870 ...
3871 !42 = !{ i32 1234567 }
3872
3873It is up to the front-end to make sense of the magic numbers it places
3874in the IR. If the MDNode contains multiple constants, the code generator
3875will use the one that corresponds to the line of the asm that the error
3876occurs on.
3877
3878.. _metadata:
3879
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003880Metadata
3881========
Sean Silvab084af42012-12-07 10:36:55 +00003882
3883LLVM IR allows metadata to be attached to instructions in the program
3884that can convey extra information about the code to the optimizers and
3885code generator. One example application of metadata is source-level
3886debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003887
Sean Silvaa1190322015-08-06 22:56:48 +00003888Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003889``call`` instruction, it uses the ``metadata`` type.
3890
3891All metadata are identified in syntax by a exclamation point ('``!``').
3892
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003893.. _metadata-string:
3894
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003895Metadata Nodes and Metadata Strings
3896-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003897
3898A metadata string is a string surrounded by double quotes. It can
3899contain any character by escaping non-printable characters with
3900"``\xx``" where "``xx``" is the two digit hex code. For example:
3901"``!"test\00"``".
3902
3903Metadata nodes are represented with notation similar to structure
3904constants (a comma separated list of elements, surrounded by braces and
3905preceded by an exclamation point). Metadata nodes can have any values as
3906their operand. For example:
3907
3908.. code-block:: llvm
3909
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003910 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003911
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003912Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3913
Renato Golin124f2592016-07-20 12:16:38 +00003914.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003915
3916 !0 = distinct !{!"test\00", i32 10}
3917
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003918``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003919content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003920when metadata operands change.
3921
Sean Silvab084af42012-12-07 10:36:55 +00003922A :ref:`named metadata <namedmetadatastructure>` is a collection of
3923metadata nodes, which can be looked up in the module symbol table. For
3924example:
3925
3926.. code-block:: llvm
3927
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003928 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003929
3930Metadata can be used as function arguments. Here ``llvm.dbg.value``
3931function is using two metadata arguments:
3932
3933.. code-block:: llvm
3934
3935 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3936
Peter Collingbourne50108682015-11-06 02:41:02 +00003937Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3938to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003939
3940.. code-block:: llvm
3941
3942 %indvar.next = add i64 %indvar, 1, !dbg !21
3943
Peter Collingbourne50108682015-11-06 02:41:02 +00003944Metadata can also be attached to a function definition. Here metadata ``!22``
3945is attached to the ``foo`` function using the ``!dbg`` identifier:
3946
3947.. code-block:: llvm
3948
3949 define void @foo() !dbg !22 {
3950 ret void
3951 }
3952
Sean Silvab084af42012-12-07 10:36:55 +00003953More information about specific metadata nodes recognized by the
3954optimizers and code generator is found below.
3955
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003956.. _specialized-metadata:
3957
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003958Specialized Metadata Nodes
3959^^^^^^^^^^^^^^^^^^^^^^^^^^
3960
3961Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003962to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003963order.
3964
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003965These aren't inherently debug info centric, but currently all the specialized
3966metadata nodes are related to debug info.
3967
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003968.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003969
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003970DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003971"""""""""""""
3972
Sean Silvaa1190322015-08-06 22:56:48 +00003973``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003974``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3975fields are tuples containing the debug info to be emitted along with the compile
3976unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003977references to them from instructions).
3978
Renato Golin124f2592016-07-20 12:16:38 +00003979.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003980
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003981 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003982 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003983 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003984 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003985 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003986
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003987Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003988specific compilation unit. File descriptors are defined using this scope.
3989These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003990keep track of subprograms, global variables, type information, and imported
3991entities (declarations and namespaces).
3992
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003993.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003994
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003995DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003996""""""
3997
Sean Silvaa1190322015-08-06 22:56:48 +00003998``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003999
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004000.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004001
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004002 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4003 checksumkind: CSK_MD5,
4004 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004005
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004006Files are sometimes used in ``scope:`` fields, and are the only valid target
4007for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004008Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004009
Michael Kuperstein605308a2015-05-14 10:58:59 +00004010.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004011
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004012DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004013"""""""""""
4014
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004015``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004016``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004017
Renato Golin124f2592016-07-20 12:16:38 +00004018.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004019
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004020 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004021 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004022 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004023
Sean Silvaa1190322015-08-06 22:56:48 +00004024The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004025following:
4026
Renato Golin124f2592016-07-20 12:16:38 +00004027.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004028
4029 DW_ATE_address = 1
4030 DW_ATE_boolean = 2
4031 DW_ATE_float = 4
4032 DW_ATE_signed = 5
4033 DW_ATE_signed_char = 6
4034 DW_ATE_unsigned = 7
4035 DW_ATE_unsigned_char = 8
4036
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004037.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004038
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004039DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004040""""""""""""""""
4041
Sean Silvaa1190322015-08-06 22:56:48 +00004042``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004043refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004044types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004045represents a function with no return value (such as ``void foo() {}`` in C++).
4046
Renato Golin124f2592016-07-20 12:16:38 +00004047.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048
4049 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4050 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004051 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004052
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004053.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004054
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004055DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004056"""""""""""""
4057
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004058``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004059qualified types.
4060
Renato Golin124f2592016-07-20 12:16:38 +00004061.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004062
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004063 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004064 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004065 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004066 align: 32)
4067
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004068The following ``tag:`` values are valid:
4069
Renato Golin124f2592016-07-20 12:16:38 +00004070.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004071
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004072 DW_TAG_member = 13
4073 DW_TAG_pointer_type = 15
4074 DW_TAG_reference_type = 16
4075 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004076 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004077 DW_TAG_ptr_to_member_type = 31
4078 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004079 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004080 DW_TAG_volatile_type = 53
4081 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004082 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004083
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004084.. _DIDerivedTypeMember:
4085
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004086``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004087<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004088``offset:`` is the member's bit offset. If the composite type has an ODR
4089``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4090uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004091
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004092``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4093field of :ref:`composite types <DICompositeType>` to describe parents and
4094friends.
4095
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004096``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4097
4098``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004099``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4100are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004101
4102Note that the ``void *`` type is expressed as a type derived from NULL.
4103
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004104.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004105
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004106DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004107"""""""""""""""
4108
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004109``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004110structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004111
4112If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004113identifier used for type merging between modules. When specified,
4114:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4115derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4116``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004117
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004118For a given ``identifier:``, there should only be a single composite type that
4119does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4120together will unique such definitions at parse time via the ``identifier:``
4121field, even if the nodes are ``distinct``.
4122
Renato Golin124f2592016-07-20 12:16:38 +00004123.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004124
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004125 !0 = !DIEnumerator(name: "SixKind", value: 7)
4126 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4127 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4128 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004129 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4130 elements: !{!0, !1, !2})
4131
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004132The following ``tag:`` values are valid:
4133
Renato Golin124f2592016-07-20 12:16:38 +00004134.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004135
4136 DW_TAG_array_type = 1
4137 DW_TAG_class_type = 2
4138 DW_TAG_enumeration_type = 4
4139 DW_TAG_structure_type = 19
4140 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004141
4142For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004143descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004144level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004145array type is a native packed vector.
4146
4147For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004148descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004149value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004150``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004151
4152For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4153``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004154<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4155``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4156``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004157
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004158.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004159
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004160DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004161""""""""""
4162
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004163``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004164:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004165
4166.. code-block:: llvm
4167
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004168 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4169 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4170 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004171
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004172.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004173
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004174DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004175""""""""""""
4176
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004177``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4178variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004179
4180.. code-block:: llvm
4181
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004182 !0 = !DIEnumerator(name: "SixKind", value: 7)
4183 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4184 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004185
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004186DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004187"""""""""""""""""""""""
4188
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004189``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004190language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004191:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004192
4193.. code-block:: llvm
4194
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004195 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004196
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004197DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004198""""""""""""""""""""""""
4199
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004200``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004201language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004202but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004203``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004204:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004205
4206.. code-block:: llvm
4207
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004208 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004209
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004210DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004211"""""""""""
4212
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004213``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004214
4215.. code-block:: llvm
4216
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004217 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004218
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004219DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004220""""""""""""""""
4221
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004222``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004223
4224.. code-block:: llvm
4225
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004226 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004227 file: !2, line: 7, type: !3, isLocal: true,
4228 isDefinition: false, variable: i32* @foo,
4229 declaration: !4)
4230
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004231All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004232:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004233
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004234.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004235
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004236DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004237""""""""""""
4238
Peter Collingbourne50108682015-11-06 02:41:02 +00004239``DISubprogram`` nodes represent functions from the source language. A
4240``DISubprogram`` may be attached to a function definition using ``!dbg``
4241metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4242that must be retained, even if their IR counterparts are optimized out of
4243the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004244
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004245.. _DISubprogramDeclaration:
4246
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004247When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004248tree as opposed to a definition of a function. If the scope is a composite
4249type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4250then the subprogram declaration is uniqued based only on its ``linkageName:``
4251and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004252
Renato Golin124f2592016-07-20 12:16:38 +00004253.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004254
Peter Collingbourne50108682015-11-06 02:41:02 +00004255 define void @_Z3foov() !dbg !0 {
4256 ...
4257 }
4258
4259 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4260 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004261 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004262 containingType: !4,
4263 virtuality: DW_VIRTUALITY_pure_virtual,
4264 virtualIndex: 10, flags: DIFlagPrototyped,
4265 isOptimized: true, templateParams: !5,
4266 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004267
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004268.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004270DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004271""""""""""""""
4272
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004273``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004274<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004275two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004276fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004277
Renato Golin124f2592016-07-20 12:16:38 +00004278.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004279
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004280 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004281
4282Usually lexical blocks are ``distinct`` to prevent node merging based on
4283operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004284
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004285.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004286
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004287DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004288""""""""""""""""""
4289
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004290``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004291:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004292indicate textual inclusion, or the ``discriminator:`` field can be used to
4293discriminate between control flow within a single block in the source language.
4294
4295.. code-block:: llvm
4296
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004297 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4298 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4299 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004300
Michael Kuperstein605308a2015-05-14 10:58:59 +00004301.. _DILocation:
4302
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004303DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004304""""""""""
4305
Sean Silvaa1190322015-08-06 22:56:48 +00004306``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004307mandatory, and points at an :ref:`DILexicalBlockFile`, an
4308:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004309
4310.. code-block:: llvm
4311
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004312 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004313
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004314.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004315
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004316DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004317"""""""""""""""
4318
Sean Silvaa1190322015-08-06 22:56:48 +00004319``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004320the ``arg:`` field is set to non-zero, then this variable is a subprogram
4321parameter, and it will be included in the ``variables:`` field of its
4322:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004323
Renato Golin124f2592016-07-20 12:16:38 +00004324.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004325
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004326 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4327 type: !3, flags: DIFlagArtificial)
4328 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4329 type: !3)
4330 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004331
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004332DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004333""""""""""""
4334
Sean Silvaa1190322015-08-06 22:56:48 +00004335``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004336:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4337describe how the referenced LLVM variable relates to the source language
4338variable.
4339
4340The current supported vocabulary is limited:
4341
4342- ``DW_OP_deref`` dereferences the working expression.
4343- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4344- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4345 here, respectively) of the variable piece from the working expression.
4346
Renato Golin124f2592016-07-20 12:16:38 +00004347.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004348
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004349 !0 = !DIExpression(DW_OP_deref)
4350 !1 = !DIExpression(DW_OP_plus, 3)
4351 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4352 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004353
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004354DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004355""""""""""""""
4356
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004357``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004358
4359.. code-block:: llvm
4360
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004361 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004362 getter: "getFoo", attributes: 7, type: !2)
4363
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004364DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004365""""""""""""""""
4366
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004367``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004368compile unit.
4369
Renato Golin124f2592016-07-20 12:16:38 +00004370.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004371
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004372 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004373 entity: !1, line: 7)
4374
Amjad Abouda9bcf162015-12-10 12:56:35 +00004375DIMacro
4376"""""""
4377
4378``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4379The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004380defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004381used to expand the macro identifier.
4382
Renato Golin124f2592016-07-20 12:16:38 +00004383.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004384
4385 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4386 value: "((x) + 1)")
4387 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4388
4389DIMacroFile
4390"""""""""""
4391
4392``DIMacroFile`` nodes represent inclusion of source files.
4393The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4394appear in the included source file.
4395
Renato Golin124f2592016-07-20 12:16:38 +00004396.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004397
4398 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4399 nodes: !3)
4400
Sean Silvab084af42012-12-07 10:36:55 +00004401'``tbaa``' Metadata
4402^^^^^^^^^^^^^^^^^^^
4403
4404In LLVM IR, memory does not have types, so LLVM's own type system is not
4405suitable for doing TBAA. Instead, metadata is added to the IR to
4406describe a type system of a higher level language. This can be used to
4407implement typical C/C++ TBAA, but it can also be used to implement
4408custom alias analysis behavior for other languages.
4409
4410The current metadata format is very simple. TBAA metadata nodes have up
4411to three fields, e.g.:
4412
4413.. code-block:: llvm
4414
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004415 !0 = !{ !"an example type tree" }
4416 !1 = !{ !"int", !0 }
4417 !2 = !{ !"float", !0 }
4418 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004419
4420The first field is an identity field. It can be any value, usually a
4421metadata string, which uniquely identifies the type. The most important
4422name in the tree is the name of the root node. Two trees with different
4423root node names are entirely disjoint, even if they have leaves with
4424common names.
4425
4426The second field identifies the type's parent node in the tree, or is
4427null or omitted for a root node. A type is considered to alias all of
4428its descendants and all of its ancestors in the tree. Also, a type is
4429considered to alias all types in other trees, so that bitcode produced
4430from multiple front-ends is handled conservatively.
4431
4432If the third field is present, it's an integer which if equal to 1
4433indicates that the type is "constant" (meaning
4434``pointsToConstantMemory`` should return true; see `other useful
4435AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4436
4437'``tbaa.struct``' Metadata
4438^^^^^^^^^^^^^^^^^^^^^^^^^^
4439
4440The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4441aggregate assignment operations in C and similar languages, however it
4442is defined to copy a contiguous region of memory, which is more than
4443strictly necessary for aggregate types which contain holes due to
4444padding. Also, it doesn't contain any TBAA information about the fields
4445of the aggregate.
4446
4447``!tbaa.struct`` metadata can describe which memory subregions in a
4448memcpy are padding and what the TBAA tags of the struct are.
4449
4450The current metadata format is very simple. ``!tbaa.struct`` metadata
4451nodes are a list of operands which are in conceptual groups of three.
4452For each group of three, the first operand gives the byte offset of a
4453field in bytes, the second gives its size in bytes, and the third gives
4454its tbaa tag. e.g.:
4455
4456.. code-block:: llvm
4457
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004458 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004459
4460This describes a struct with two fields. The first is at offset 0 bytes
4461with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4462and has size 4 bytes and has tbaa tag !2.
4463
4464Note that the fields need not be contiguous. In this example, there is a
44654 byte gap between the two fields. This gap represents padding which
4466does not carry useful data and need not be preserved.
4467
Hal Finkel94146652014-07-24 14:25:39 +00004468'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004469^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004470
4471``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4472noalias memory-access sets. This means that some collection of memory access
4473instructions (loads, stores, memory-accessing calls, etc.) that carry
4474``noalias`` metadata can specifically be specified not to alias with some other
4475collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004476Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004477a domain.
4478
4479When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004480of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004481subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004482instruction's ``noalias`` list, then the two memory accesses are assumed not to
4483alias.
Hal Finkel94146652014-07-24 14:25:39 +00004484
Adam Nemet569a5b32016-04-27 00:52:48 +00004485Because scopes in one domain don't affect scopes in other domains, separate
4486domains can be used to compose multiple independent noalias sets. This is
4487used for example during inlining. As the noalias function parameters are
4488turned into noalias scope metadata, a new domain is used every time the
4489function is inlined.
4490
Hal Finkel029cde62014-07-25 15:50:02 +00004491The metadata identifying each domain is itself a list containing one or two
4492entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004493string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004494self-reference can be used to create globally unique domain names. A
4495descriptive string may optionally be provided as a second list entry.
4496
4497The metadata identifying each scope is also itself a list containing two or
4498three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004499is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004500self-reference can be used to create globally unique scope names. A metadata
4501reference to the scope's domain is the second entry. A descriptive string may
4502optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004503
4504For example,
4505
4506.. code-block:: llvm
4507
Hal Finkel029cde62014-07-25 15:50:02 +00004508 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004509 !0 = !{!0}
4510 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004511
Hal Finkel029cde62014-07-25 15:50:02 +00004512 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004513 !2 = !{!2, !0}
4514 !3 = !{!3, !0}
4515 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004516
Hal Finkel029cde62014-07-25 15:50:02 +00004517 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004518 !5 = !{!4} ; A list containing only scope !4
4519 !6 = !{!4, !3, !2}
4520 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004521
4522 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004523 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004524 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004525
Hal Finkel029cde62014-07-25 15:50:02 +00004526 ; These two instructions also don't alias (for domain !1, the set of scopes
4527 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004528 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004529 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004530
Adam Nemet0a8416f2015-05-11 08:30:28 +00004531 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004532 ; the !noalias list is not a superset of, or equal to, the scopes in the
4533 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004534 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004535 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004536
Sean Silvab084af42012-12-07 10:36:55 +00004537'``fpmath``' Metadata
4538^^^^^^^^^^^^^^^^^^^^^
4539
4540``fpmath`` metadata may be attached to any instruction of floating point
4541type. It can be used to express the maximum acceptable error in the
4542result of that instruction, in ULPs, thus potentially allowing the
4543compiler to use a more efficient but less accurate method of computing
4544it. ULP is defined as follows:
4545
4546 If ``x`` is a real number that lies between two finite consecutive
4547 floating-point numbers ``a`` and ``b``, without being equal to one
4548 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4549 distance between the two non-equal finite floating-point numbers
4550 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4551
Matt Arsenault82f41512016-06-27 19:43:15 +00004552The metadata node shall consist of a single positive float type number
4553representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004554
4555.. code-block:: llvm
4556
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004557 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004558
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004559.. _range-metadata:
4560
Sean Silvab084af42012-12-07 10:36:55 +00004561'``range``' Metadata
4562^^^^^^^^^^^^^^^^^^^^
4563
Jingyue Wu37fcb592014-06-19 16:50:16 +00004564``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4565integer types. It expresses the possible ranges the loaded value or the value
4566returned by the called function at this call site is in. The ranges are
4567represented with a flattened list of integers. The loaded value or the value
4568returned is known to be in the union of the ranges defined by each consecutive
4569pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004570
4571- The type must match the type loaded by the instruction.
4572- The pair ``a,b`` represents the range ``[a,b)``.
4573- Both ``a`` and ``b`` are constants.
4574- The range is allowed to wrap.
4575- The range should not represent the full or empty set. That is,
4576 ``a!=b``.
4577
4578In addition, the pairs must be in signed order of the lower bound and
4579they must be non-contiguous.
4580
4581Examples:
4582
4583.. code-block:: llvm
4584
David Blaikiec7aabbb2015-03-04 22:06:14 +00004585 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4586 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004587 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4588 %d = invoke i8 @bar() to label %cont
4589 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004590 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004591 !0 = !{ i8 0, i8 2 }
4592 !1 = !{ i8 255, i8 2 }
4593 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4594 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004595
Peter Collingbourne235c2752016-12-08 19:01:00 +00004596'``absolute_symbol``' Metadata
4597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4598
4599``absolute_symbol`` metadata may be attached to a global variable
4600declaration. It marks the declaration as a reference to an absolute symbol,
4601which causes the backend to use absolute relocations for the symbol even
4602in position independent code, and expresses the possible ranges that the
4603global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004604``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4605may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004606
Peter Collingbourned88f9282017-01-20 21:56:37 +00004607Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004608
4609.. code-block:: llvm
4610
4611 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004612 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004613
4614 ...
4615 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004616 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004617
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004618'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004619^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004620
4621``unpredictable`` metadata may be attached to any branch or switch
4622instruction. It can be used to express the unpredictability of control
4623flow. Similar to the llvm.expect intrinsic, it may be used to alter
4624optimizations related to compare and branch instructions. The metadata
4625is treated as a boolean value; if it exists, it signals that the branch
4626or switch that it is attached to is completely unpredictable.
4627
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004628'``llvm.loop``'
4629^^^^^^^^^^^^^^^
4630
4631It is sometimes useful to attach information to loop constructs. Currently,
4632loop metadata is implemented as metadata attached to the branch instruction
4633in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004634guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004635specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004636
4637The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004638itself to avoid merging it with any other identifier metadata, e.g.,
4639during module linkage or function inlining. That is, each loop should refer
4640to their own identification metadata even if they reside in separate functions.
4641The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004642constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004643
4644.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004645
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004646 !0 = !{!0}
4647 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004648
Mark Heffernan893752a2014-07-18 19:24:51 +00004649The loop identifier metadata can be used to specify additional
4650per-loop metadata. Any operands after the first operand can be treated
4651as user-defined metadata. For example the ``llvm.loop.unroll.count``
4652suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004653
Paul Redmond5fdf8362013-05-28 20:00:34 +00004654.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004655
Paul Redmond5fdf8362013-05-28 20:00:34 +00004656 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4657 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004658 !0 = !{!0, !1}
4659 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004660
Mark Heffernan9d20e422014-07-21 23:11:03 +00004661'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004663
Mark Heffernan9d20e422014-07-21 23:11:03 +00004664Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4665used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004666vectorization width and interleave count. These metadata should be used in
4667conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004668``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4669optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004670it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004671which contains information about loop-carried memory dependencies can be helpful
4672in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004673
Mark Heffernan9d20e422014-07-21 23:11:03 +00004674'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4676
Mark Heffernan9d20e422014-07-21 23:11:03 +00004677This metadata suggests an interleave count to the loop interleaver.
4678The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004679second operand is an integer specifying the interleave count. For
4680example:
4681
4682.. code-block:: llvm
4683
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004684 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004685
Mark Heffernan9d20e422014-07-21 23:11:03 +00004686Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004687multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004688then the interleave count will be determined automatically.
4689
4690'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004692
4693This metadata selectively enables or disables vectorization for the loop. The
4694first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004695is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000046960 disables vectorization:
4697
4698.. code-block:: llvm
4699
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004700 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4701 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004702
4703'``llvm.loop.vectorize.width``' Metadata
4704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4705
4706This metadata sets the target width of the vectorizer. The first
4707operand is the string ``llvm.loop.vectorize.width`` and the second
4708operand is an integer specifying the width. For example:
4709
4710.. code-block:: llvm
4711
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004712 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004713
4714Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004715vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000047160 or if the loop does not have this metadata the width will be
4717determined automatically.
4718
4719'``llvm.loop.unroll``'
4720^^^^^^^^^^^^^^^^^^^^^^
4721
4722Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4723optimization hints such as the unroll factor. ``llvm.loop.unroll``
4724metadata should be used in conjunction with ``llvm.loop`` loop
4725identification metadata. The ``llvm.loop.unroll`` metadata are only
4726optimization hints and the unrolling will only be performed if the
4727optimizer believes it is safe to do so.
4728
Mark Heffernan893752a2014-07-18 19:24:51 +00004729'``llvm.loop.unroll.count``' Metadata
4730^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4731
4732This metadata suggests an unroll factor to the loop unroller. The
4733first operand is the string ``llvm.loop.unroll.count`` and the second
4734operand is a positive integer specifying the unroll factor. For
4735example:
4736
4737.. code-block:: llvm
4738
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004739 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004740
4741If the trip count of the loop is less than the unroll count the loop
4742will be partially unrolled.
4743
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004744'``llvm.loop.unroll.disable``' Metadata
4745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4746
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004747This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004748which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004749
4750.. code-block:: llvm
4751
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004752 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004753
Kevin Qin715b01e2015-03-09 06:14:18 +00004754'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004755^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004756
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004757This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004758operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004759
4760.. code-block:: llvm
4761
4762 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4763
Mark Heffernan89391542015-08-10 17:28:08 +00004764'``llvm.loop.unroll.enable``' Metadata
4765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4766
4767This metadata suggests that the loop should be fully unrolled if the trip count
4768is known at compile time and partially unrolled if the trip count is not known
4769at compile time. The metadata has a single operand which is the string
4770``llvm.loop.unroll.enable``. For example:
4771
4772.. code-block:: llvm
4773
4774 !0 = !{!"llvm.loop.unroll.enable"}
4775
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004776'``llvm.loop.unroll.full``' Metadata
4777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4778
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004779This metadata suggests that the loop should be unrolled fully. The
4780metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004781For example:
4782
4783.. code-block:: llvm
4784
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004785 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004786
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004787'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004788^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004789
4790This metadata indicates that the loop should not be versioned for the purpose
4791of enabling loop-invariant code motion (LICM). The metadata has a single operand
4792which is the string ``llvm.loop.licm_versioning.disable``. For example:
4793
4794.. code-block:: llvm
4795
4796 !0 = !{!"llvm.loop.licm_versioning.disable"}
4797
Adam Nemetd2fa4142016-04-27 05:28:18 +00004798'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004800
4801Loop distribution allows splitting a loop into multiple loops. Currently,
4802this is only performed if the entire loop cannot be vectorized due to unsafe
4803memory dependencies. The transformation will atempt to isolate the unsafe
4804dependencies into their own loop.
4805
4806This metadata can be used to selectively enable or disable distribution of the
4807loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4808second operand is a bit. If the bit operand value is 1 distribution is
4809enabled. A value of 0 disables distribution:
4810
4811.. code-block:: llvm
4812
4813 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4814 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4815
4816This metadata should be used in conjunction with ``llvm.loop`` loop
4817identification metadata.
4818
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004819'``llvm.mem``'
4820^^^^^^^^^^^^^^^
4821
4822Metadata types used to annotate memory accesses with information helpful
4823for optimizations are prefixed with ``llvm.mem``.
4824
4825'``llvm.mem.parallel_loop_access``' Metadata
4826^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4827
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004828The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4829or metadata containing a list of loop identifiers for nested loops.
4830The metadata is attached to memory accessing instructions and denotes that
4831no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004832with the same loop identifier. The metadata on memory reads also implies that
4833if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004834
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004835Precisely, given two instructions ``m1`` and ``m2`` that both have the
4836``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4837set of loops associated with that metadata, respectively, then there is no loop
4838carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004839``L2``.
4840
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004841As a special case, if all memory accessing instructions in a loop have
4842``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4843loop has no loop carried memory dependences and is considered to be a parallel
4844loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004845
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004846Note that if not all memory access instructions have such metadata referring to
4847the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004848memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004849safe mechanism, this causes loops that were originally parallel to be considered
4850sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004851insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004852
4853Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004854both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004855metadata types that refer to the same loop identifier metadata.
4856
4857.. code-block:: llvm
4858
4859 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004860 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004861 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004862 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004863 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004864 ...
4865 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004866
4867 for.end:
4868 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004869 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004870
4871It is also possible to have nested parallel loops. In that case the
4872memory accesses refer to a list of loop identifier metadata nodes instead of
4873the loop identifier metadata node directly:
4874
4875.. code-block:: llvm
4876
4877 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004878 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004879 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004880 ...
4881 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004882
4883 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004884 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004885 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004886 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004887 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004888 ...
4889 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004890
4891 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004892 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004893 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004894 ...
4895 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004896
4897 outer.for.end: ; preds = %for.body
4898 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004899 !0 = !{!1, !2} ; a list of loop identifiers
4900 !1 = !{!1} ; an identifier for the inner loop
4901 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004902
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004903'``invariant.group``' Metadata
4904^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4905
4906The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4907The existence of the ``invariant.group`` metadata on the instruction tells
4908the optimizer that every ``load`` and ``store`` to the same pointer operand
4909within the same invariant group can be assumed to load or store the same
4910value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00004911when two pointers are considered the same). Pointers returned by bitcast or
4912getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004913
4914Examples:
4915
4916.. code-block:: llvm
4917
4918 @unknownPtr = external global i8
4919 ...
4920 %ptr = alloca i8
4921 store i8 42, i8* %ptr, !invariant.group !0
4922 call void @foo(i8* %ptr)
4923
4924 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4925 call void @foo(i8* %ptr)
4926 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4927
4928 %newPtr = call i8* @getPointer(i8* %ptr)
4929 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4930
4931 %unknownValue = load i8, i8* @unknownPtr
4932 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4933
4934 call void @foo(i8* %ptr)
4935 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4936 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4937
4938 ...
4939 declare void @foo(i8*)
4940 declare i8* @getPointer(i8*)
4941 declare i8* @llvm.invariant.group.barrier(i8*)
4942
4943 !0 = !{!"magic ptr"}
4944 !1 = !{!"other ptr"}
4945
Peter Collingbournea333db82016-07-26 22:31:30 +00004946'``type``' Metadata
4947^^^^^^^^^^^^^^^^^^^
4948
4949See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004950
4951
Sean Silvab084af42012-12-07 10:36:55 +00004952Module Flags Metadata
4953=====================
4954
4955Information about the module as a whole is difficult to convey to LLVM's
4956subsystems. The LLVM IR isn't sufficient to transmit this information.
4957The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004958this. These flags are in the form of key / value pairs --- much like a
4959dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004960look it up.
4961
4962The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4963Each triplet has the following form:
4964
4965- The first element is a *behavior* flag, which specifies the behavior
4966 when two (or more) modules are merged together, and it encounters two
4967 (or more) metadata with the same ID. The supported behaviors are
4968 described below.
4969- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004970 metadata. Each module may only have one flag entry for each unique ID (not
4971 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004972- The third element is the value of the flag.
4973
4974When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004975``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4976each unique metadata ID string, there will be exactly one entry in the merged
4977modules ``llvm.module.flags`` metadata table, and the value for that entry will
4978be determined by the merge behavior flag, as described below. The only exception
4979is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004980
4981The following behaviors are supported:
4982
4983.. list-table::
4984 :header-rows: 1
4985 :widths: 10 90
4986
4987 * - Value
4988 - Behavior
4989
4990 * - 1
4991 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004992 Emits an error if two values disagree, otherwise the resulting value
4993 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004994
4995 * - 2
4996 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004997 Emits a warning if two values disagree. The result value will be the
4998 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004999
5000 * - 3
5001 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005002 Adds a requirement that another module flag be present and have a
5003 specified value after linking is performed. The value must be a
5004 metadata pair, where the first element of the pair is the ID of the
5005 module flag to be restricted, and the second element of the pair is
5006 the value the module flag should be restricted to. This behavior can
5007 be used to restrict the allowable results (via triggering of an
5008 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005009
5010 * - 4
5011 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005012 Uses the specified value, regardless of the behavior or value of the
5013 other module. If both modules specify **Override**, but the values
5014 differ, an error will be emitted.
5015
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005016 * - 5
5017 - **Append**
5018 Appends the two values, which are required to be metadata nodes.
5019
5020 * - 6
5021 - **AppendUnique**
5022 Appends the two values, which are required to be metadata
5023 nodes. However, duplicate entries in the second list are dropped
5024 during the append operation.
5025
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005026It is an error for a particular unique flag ID to have multiple behaviors,
5027except in the case of **Require** (which adds restrictions on another metadata
5028value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005029
5030An example of module flags:
5031
5032.. code-block:: llvm
5033
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005034 !0 = !{ i32 1, !"foo", i32 1 }
5035 !1 = !{ i32 4, !"bar", i32 37 }
5036 !2 = !{ i32 2, !"qux", i32 42 }
5037 !3 = !{ i32 3, !"qux",
5038 !{
5039 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005040 }
5041 }
5042 !llvm.module.flags = !{ !0, !1, !2, !3 }
5043
5044- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5045 if two or more ``!"foo"`` flags are seen is to emit an error if their
5046 values are not equal.
5047
5048- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5049 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005050 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005051
5052- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5053 behavior if two or more ``!"qux"`` flags are seen is to emit a
5054 warning if their values are not equal.
5055
5056- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5057
5058 ::
5059
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005060 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005061
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005062 The behavior is to emit an error if the ``llvm.module.flags`` does not
5063 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5064 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005065
5066Objective-C Garbage Collection Module Flags Metadata
5067----------------------------------------------------
5068
5069On the Mach-O platform, Objective-C stores metadata about garbage
5070collection in a special section called "image info". The metadata
5071consists of a version number and a bitmask specifying what types of
5072garbage collection are supported (if any) by the file. If two or more
5073modules are linked together their garbage collection metadata needs to
5074be merged rather than appended together.
5075
5076The Objective-C garbage collection module flags metadata consists of the
5077following key-value pairs:
5078
5079.. list-table::
5080 :header-rows: 1
5081 :widths: 30 70
5082
5083 * - Key
5084 - Value
5085
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005086 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005087 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005088
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005089 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005090 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005091 always 0.
5092
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005093 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005094 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005095 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5096 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5097 Objective-C ABI version 2.
5098
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005099 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005100 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005101 not. Valid values are 0, for no garbage collection, and 2, for garbage
5102 collection supported.
5103
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005104 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005105 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005106 If present, its value must be 6. This flag requires that the
5107 ``Objective-C Garbage Collection`` flag have the value 2.
5108
5109Some important flag interactions:
5110
5111- If a module with ``Objective-C Garbage Collection`` set to 0 is
5112 merged with a module with ``Objective-C Garbage Collection`` set to
5113 2, then the resulting module has the
5114 ``Objective-C Garbage Collection`` flag set to 0.
5115- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5116 merged with a module with ``Objective-C GC Only`` set to 6.
5117
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005118Automatic Linker Flags Module Flags Metadata
5119--------------------------------------------
5120
5121Some targets support embedding flags to the linker inside individual object
5122files. Typically this is used in conjunction with language extensions which
5123allow source files to explicitly declare the libraries they depend on, and have
5124these automatically be transmitted to the linker via object files.
5125
5126These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005127using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005128to be ``AppendUnique``, and the value for the key is expected to be a metadata
5129node which should be a list of other metadata nodes, each of which should be a
5130list of metadata strings defining linker options.
5131
5132For example, the following metadata section specifies two separate sets of
5133linker options, presumably to link against ``libz`` and the ``Cocoa``
5134framework::
5135
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005136 !0 = !{ i32 6, !"Linker Options",
5137 !{
5138 !{ !"-lz" },
5139 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005140 !llvm.module.flags = !{ !0 }
5141
5142The metadata encoding as lists of lists of options, as opposed to a collapsed
5143list of options, is chosen so that the IR encoding can use multiple option
5144strings to specify e.g., a single library, while still having that specifier be
5145preserved as an atomic element that can be recognized by a target specific
5146assembly writer or object file emitter.
5147
5148Each individual option is required to be either a valid option for the target's
5149linker, or an option that is reserved by the target specific assembly writer or
5150object file emitter. No other aspect of these options is defined by the IR.
5151
Oliver Stannard5dc29342014-06-20 10:08:11 +00005152C type width Module Flags Metadata
5153----------------------------------
5154
5155The ARM backend emits a section into each generated object file describing the
5156options that it was compiled with (in a compiler-independent way) to prevent
5157linking incompatible objects, and to allow automatic library selection. Some
5158of these options are not visible at the IR level, namely wchar_t width and enum
5159width.
5160
5161To pass this information to the backend, these options are encoded in module
5162flags metadata, using the following key-value pairs:
5163
5164.. list-table::
5165 :header-rows: 1
5166 :widths: 30 70
5167
5168 * - Key
5169 - Value
5170
5171 * - short_wchar
5172 - * 0 --- sizeof(wchar_t) == 4
5173 * 1 --- sizeof(wchar_t) == 2
5174
5175 * - short_enum
5176 - * 0 --- Enums are at least as large as an ``int``.
5177 * 1 --- Enums are stored in the smallest integer type which can
5178 represent all of its values.
5179
5180For example, the following metadata section specifies that the module was
5181compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5182enum is the smallest type which can represent all of its values::
5183
5184 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005185 !0 = !{i32 1, !"short_wchar", i32 1}
5186 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005187
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005188.. _intrinsicglobalvariables:
5189
Sean Silvab084af42012-12-07 10:36:55 +00005190Intrinsic Global Variables
5191==========================
5192
5193LLVM has a number of "magic" global variables that contain data that
5194affect code generation or other IR semantics. These are documented here.
5195All globals of this sort should have a section specified as
5196"``llvm.metadata``". This section and all globals that start with
5197"``llvm.``" are reserved for use by LLVM.
5198
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005199.. _gv_llvmused:
5200
Sean Silvab084af42012-12-07 10:36:55 +00005201The '``llvm.used``' Global Variable
5202-----------------------------------
5203
Rafael Espindola74f2e462013-04-22 14:58:02 +00005204The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005205:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005206pointers to named global variables, functions and aliases which may optionally
5207have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005208use of it is:
5209
5210.. code-block:: llvm
5211
5212 @X = global i8 4
5213 @Y = global i32 123
5214
5215 @llvm.used = appending global [2 x i8*] [
5216 i8* @X,
5217 i8* bitcast (i32* @Y to i8*)
5218 ], section "llvm.metadata"
5219
Rafael Espindola74f2e462013-04-22 14:58:02 +00005220If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5221and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005222symbol that it cannot see (which is why they have to be named). For example, if
5223a variable has internal linkage and no references other than that from the
5224``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5225references from inline asms and other things the compiler cannot "see", and
5226corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005227
5228On some targets, the code generator must emit a directive to the
5229assembler or object file to prevent the assembler and linker from
5230molesting the symbol.
5231
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005232.. _gv_llvmcompilerused:
5233
Sean Silvab084af42012-12-07 10:36:55 +00005234The '``llvm.compiler.used``' Global Variable
5235--------------------------------------------
5236
5237The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5238directive, except that it only prevents the compiler from touching the
5239symbol. On targets that support it, this allows an intelligent linker to
5240optimize references to the symbol without being impeded as it would be
5241by ``@llvm.used``.
5242
5243This is a rare construct that should only be used in rare circumstances,
5244and should not be exposed to source languages.
5245
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005246.. _gv_llvmglobalctors:
5247
Sean Silvab084af42012-12-07 10:36:55 +00005248The '``llvm.global_ctors``' Global Variable
5249-------------------------------------------
5250
5251.. code-block:: llvm
5252
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005253 %0 = type { i32, void ()*, i8* }
5254 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005255
5256The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005257functions, priorities, and an optional associated global or function.
5258The functions referenced by this array will be called in ascending order
5259of priority (i.e. lowest first) when the module is loaded. The order of
5260functions with the same priority is not defined.
5261
5262If the third field is present, non-null, and points to a global variable
5263or function, the initializer function will only run if the associated
5264data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005265
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005266.. _llvmglobaldtors:
5267
Sean Silvab084af42012-12-07 10:36:55 +00005268The '``llvm.global_dtors``' Global Variable
5269-------------------------------------------
5270
5271.. code-block:: llvm
5272
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005273 %0 = type { i32, void ()*, i8* }
5274 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005275
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005276The ``@llvm.global_dtors`` array contains a list of destructor
5277functions, priorities, and an optional associated global or function.
5278The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005279order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005280order of functions with the same priority is not defined.
5281
5282If the third field is present, non-null, and points to a global variable
5283or function, the destructor function will only run if the associated
5284data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005285
5286Instruction Reference
5287=====================
5288
5289The LLVM instruction set consists of several different classifications
5290of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5291instructions <binaryops>`, :ref:`bitwise binary
5292instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5293:ref:`other instructions <otherops>`.
5294
5295.. _terminators:
5296
5297Terminator Instructions
5298-----------------------
5299
5300As mentioned :ref:`previously <functionstructure>`, every basic block in a
5301program ends with a "Terminator" instruction, which indicates which
5302block should be executed after the current block is finished. These
5303terminator instructions typically yield a '``void``' value: they produce
5304control flow, not values (the one exception being the
5305':ref:`invoke <i_invoke>`' instruction).
5306
5307The terminator instructions are: ':ref:`ret <i_ret>`',
5308':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5309':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005310':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005311':ref:`catchret <i_catchret>`',
5312':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005313and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005314
5315.. _i_ret:
5316
5317'``ret``' Instruction
5318^^^^^^^^^^^^^^^^^^^^^
5319
5320Syntax:
5321"""""""
5322
5323::
5324
5325 ret <type> <value> ; Return a value from a non-void function
5326 ret void ; Return from void function
5327
5328Overview:
5329"""""""""
5330
5331The '``ret``' instruction is used to return control flow (and optionally
5332a value) from a function back to the caller.
5333
5334There are two forms of the '``ret``' instruction: one that returns a
5335value and then causes control flow, and one that just causes control
5336flow to occur.
5337
5338Arguments:
5339""""""""""
5340
5341The '``ret``' instruction optionally accepts a single argument, the
5342return value. The type of the return value must be a ':ref:`first
5343class <t_firstclass>`' type.
5344
5345A function is not :ref:`well formed <wellformed>` if it it has a non-void
5346return type and contains a '``ret``' instruction with no return value or
5347a return value with a type that does not match its type, or if it has a
5348void return type and contains a '``ret``' instruction with a return
5349value.
5350
5351Semantics:
5352""""""""""
5353
5354When the '``ret``' instruction is executed, control flow returns back to
5355the calling function's context. If the caller is a
5356":ref:`call <i_call>`" instruction, execution continues at the
5357instruction after the call. If the caller was an
5358":ref:`invoke <i_invoke>`" instruction, execution continues at the
5359beginning of the "normal" destination block. If the instruction returns
5360a value, that value shall set the call or invoke instruction's return
5361value.
5362
5363Example:
5364""""""""
5365
5366.. code-block:: llvm
5367
5368 ret i32 5 ; Return an integer value of 5
5369 ret void ; Return from a void function
5370 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5371
5372.. _i_br:
5373
5374'``br``' Instruction
5375^^^^^^^^^^^^^^^^^^^^
5376
5377Syntax:
5378"""""""
5379
5380::
5381
5382 br i1 <cond>, label <iftrue>, label <iffalse>
5383 br label <dest> ; Unconditional branch
5384
5385Overview:
5386"""""""""
5387
5388The '``br``' instruction is used to cause control flow to transfer to a
5389different basic block in the current function. There are two forms of
5390this instruction, corresponding to a conditional branch and an
5391unconditional branch.
5392
5393Arguments:
5394""""""""""
5395
5396The conditional branch form of the '``br``' instruction takes a single
5397'``i1``' value and two '``label``' values. The unconditional form of the
5398'``br``' instruction takes a single '``label``' value as a target.
5399
5400Semantics:
5401""""""""""
5402
5403Upon execution of a conditional '``br``' instruction, the '``i1``'
5404argument is evaluated. If the value is ``true``, control flows to the
5405'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5406to the '``iffalse``' ``label`` argument.
5407
5408Example:
5409""""""""
5410
5411.. code-block:: llvm
5412
5413 Test:
5414 %cond = icmp eq i32 %a, %b
5415 br i1 %cond, label %IfEqual, label %IfUnequal
5416 IfEqual:
5417 ret i32 1
5418 IfUnequal:
5419 ret i32 0
5420
5421.. _i_switch:
5422
5423'``switch``' Instruction
5424^^^^^^^^^^^^^^^^^^^^^^^^
5425
5426Syntax:
5427"""""""
5428
5429::
5430
5431 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5432
5433Overview:
5434"""""""""
5435
5436The '``switch``' instruction is used to transfer control flow to one of
5437several different places. It is a generalization of the '``br``'
5438instruction, allowing a branch to occur to one of many possible
5439destinations.
5440
5441Arguments:
5442""""""""""
5443
5444The '``switch``' instruction uses three parameters: an integer
5445comparison value '``value``', a default '``label``' destination, and an
5446array of pairs of comparison value constants and '``label``'s. The table
5447is not allowed to contain duplicate constant entries.
5448
5449Semantics:
5450""""""""""
5451
5452The ``switch`` instruction specifies a table of values and destinations.
5453When the '``switch``' instruction is executed, this table is searched
5454for the given value. If the value is found, control flow is transferred
5455to the corresponding destination; otherwise, control flow is transferred
5456to the default destination.
5457
5458Implementation:
5459"""""""""""""""
5460
5461Depending on properties of the target machine and the particular
5462``switch`` instruction, this instruction may be code generated in
5463different ways. For example, it could be generated as a series of
5464chained conditional branches or with a lookup table.
5465
5466Example:
5467""""""""
5468
5469.. code-block:: llvm
5470
5471 ; Emulate a conditional br instruction
5472 %Val = zext i1 %value to i32
5473 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5474
5475 ; Emulate an unconditional br instruction
5476 switch i32 0, label %dest [ ]
5477
5478 ; Implement a jump table:
5479 switch i32 %val, label %otherwise [ i32 0, label %onzero
5480 i32 1, label %onone
5481 i32 2, label %ontwo ]
5482
5483.. _i_indirectbr:
5484
5485'``indirectbr``' Instruction
5486^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5487
5488Syntax:
5489"""""""
5490
5491::
5492
5493 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5494
5495Overview:
5496"""""""""
5497
5498The '``indirectbr``' instruction implements an indirect branch to a
5499label within the current function, whose address is specified by
5500"``address``". Address must be derived from a
5501:ref:`blockaddress <blockaddress>` constant.
5502
5503Arguments:
5504""""""""""
5505
5506The '``address``' argument is the address of the label to jump to. The
5507rest of the arguments indicate the full set of possible destinations
5508that the address may point to. Blocks are allowed to occur multiple
5509times in the destination list, though this isn't particularly useful.
5510
5511This destination list is required so that dataflow analysis has an
5512accurate understanding of the CFG.
5513
5514Semantics:
5515""""""""""
5516
5517Control transfers to the block specified in the address argument. All
5518possible destination blocks must be listed in the label list, otherwise
5519this instruction has undefined behavior. This implies that jumps to
5520labels defined in other functions have undefined behavior as well.
5521
5522Implementation:
5523"""""""""""""""
5524
5525This is typically implemented with a jump through a register.
5526
5527Example:
5528""""""""
5529
5530.. code-block:: llvm
5531
5532 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5533
5534.. _i_invoke:
5535
5536'``invoke``' Instruction
5537^^^^^^^^^^^^^^^^^^^^^^^^
5538
5539Syntax:
5540"""""""
5541
5542::
5543
David Blaikieb83cf102016-07-13 17:21:34 +00005544 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005545 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005546
5547Overview:
5548"""""""""
5549
5550The '``invoke``' instruction causes control to transfer to a specified
5551function, with the possibility of control flow transfer to either the
5552'``normal``' label or the '``exception``' label. If the callee function
5553returns with the "``ret``" instruction, control flow will return to the
5554"normal" label. If the callee (or any indirect callees) returns via the
5555":ref:`resume <i_resume>`" instruction or other exception handling
5556mechanism, control is interrupted and continued at the dynamically
5557nearest "exception" label.
5558
5559The '``exception``' label is a `landing
5560pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5561'``exception``' label is required to have the
5562":ref:`landingpad <i_landingpad>`" instruction, which contains the
5563information about the behavior of the program after unwinding happens,
5564as its first non-PHI instruction. The restrictions on the
5565"``landingpad``" instruction's tightly couples it to the "``invoke``"
5566instruction, so that the important information contained within the
5567"``landingpad``" instruction can't be lost through normal code motion.
5568
5569Arguments:
5570""""""""""
5571
5572This instruction requires several arguments:
5573
5574#. The optional "cconv" marker indicates which :ref:`calling
5575 convention <callingconv>` the call should use. If none is
5576 specified, the call defaults to using C calling conventions.
5577#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5578 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5579 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005580#. '``ty``': the type of the call instruction itself which is also the
5581 type of the return value. Functions that return no value are marked
5582 ``void``.
5583#. '``fnty``': shall be the signature of the function being invoked. The
5584 argument types must match the types implied by this signature. This
5585 type can be omitted if the function is not varargs.
5586#. '``fnptrval``': An LLVM value containing a pointer to a function to
5587 be invoked. In most cases, this is a direct function invocation, but
5588 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5589 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005590#. '``function args``': argument list whose types match the function
5591 signature argument types and parameter attributes. All arguments must
5592 be of :ref:`first class <t_firstclass>` type. If the function signature
5593 indicates the function accepts a variable number of arguments, the
5594 extra arguments can be specified.
5595#. '``normal label``': the label reached when the called function
5596 executes a '``ret``' instruction.
5597#. '``exception label``': the label reached when a callee returns via
5598 the :ref:`resume <i_resume>` instruction or other exception handling
5599 mechanism.
5600#. The optional :ref:`function attributes <fnattrs>` list. Only
5601 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5602 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005603#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005604
5605Semantics:
5606""""""""""
5607
5608This instruction is designed to operate as a standard '``call``'
5609instruction in most regards. The primary difference is that it
5610establishes an association with a label, which is used by the runtime
5611library to unwind the stack.
5612
5613This instruction is used in languages with destructors to ensure that
5614proper cleanup is performed in the case of either a ``longjmp`` or a
5615thrown exception. Additionally, this is important for implementation of
5616'``catch``' clauses in high-level languages that support them.
5617
5618For the purposes of the SSA form, the definition of the value returned
5619by the '``invoke``' instruction is deemed to occur on the edge from the
5620current block to the "normal" label. If the callee unwinds then no
5621return value is available.
5622
5623Example:
5624""""""""
5625
5626.. code-block:: llvm
5627
5628 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005629 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005630 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005631 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005632
5633.. _i_resume:
5634
5635'``resume``' Instruction
5636^^^^^^^^^^^^^^^^^^^^^^^^
5637
5638Syntax:
5639"""""""
5640
5641::
5642
5643 resume <type> <value>
5644
5645Overview:
5646"""""""""
5647
5648The '``resume``' instruction is a terminator instruction that has no
5649successors.
5650
5651Arguments:
5652""""""""""
5653
5654The '``resume``' instruction requires one argument, which must have the
5655same type as the result of any '``landingpad``' instruction in the same
5656function.
5657
5658Semantics:
5659""""""""""
5660
5661The '``resume``' instruction resumes propagation of an existing
5662(in-flight) exception whose unwinding was interrupted with a
5663:ref:`landingpad <i_landingpad>` instruction.
5664
5665Example:
5666""""""""
5667
5668.. code-block:: llvm
5669
5670 resume { i8*, i32 } %exn
5671
David Majnemer8a1c45d2015-12-12 05:38:55 +00005672.. _i_catchswitch:
5673
5674'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005676
5677Syntax:
5678"""""""
5679
5680::
5681
5682 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5683 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5684
5685Overview:
5686"""""""""
5687
5688The '``catchswitch``' instruction is used by `LLVM's exception handling system
5689<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5690that may be executed by the :ref:`EH personality routine <personalityfn>`.
5691
5692Arguments:
5693""""""""""
5694
5695The ``parent`` argument is the token of the funclet that contains the
5696``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5697this operand may be the token ``none``.
5698
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005699The ``default`` argument is the label of another basic block beginning with
5700either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5701must be a legal target with respect to the ``parent`` links, as described in
5702the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005703
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005704The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005705:ref:`catchpad <i_catchpad>` instruction.
5706
5707Semantics:
5708""""""""""
5709
5710Executing this instruction transfers control to one of the successors in
5711``handlers``, if appropriate, or continues to unwind via the unwind label if
5712present.
5713
5714The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5715it must be both the first non-phi instruction and last instruction in the basic
5716block. Therefore, it must be the only non-phi instruction in the block.
5717
5718Example:
5719""""""""
5720
Renato Golin124f2592016-07-20 12:16:38 +00005721.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005722
5723 dispatch1:
5724 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5725 dispatch2:
5726 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5727
David Majnemer654e1302015-07-31 17:58:14 +00005728.. _i_catchret:
5729
5730'``catchret``' Instruction
5731^^^^^^^^^^^^^^^^^^^^^^^^^^
5732
5733Syntax:
5734"""""""
5735
5736::
5737
David Majnemer8a1c45d2015-12-12 05:38:55 +00005738 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005739
5740Overview:
5741"""""""""
5742
5743The '``catchret``' instruction is a terminator instruction that has a
5744single successor.
5745
5746
5747Arguments:
5748""""""""""
5749
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005750The first argument to a '``catchret``' indicates which ``catchpad`` it
5751exits. It must be a :ref:`catchpad <i_catchpad>`.
5752The second argument to a '``catchret``' specifies where control will
5753transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005754
5755Semantics:
5756""""""""""
5757
David Majnemer8a1c45d2015-12-12 05:38:55 +00005758The '``catchret``' instruction ends an existing (in-flight) exception whose
5759unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5760:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5761code to, for example, destroy the active exception. Control then transfers to
5762``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005763
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005764The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5765If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5766funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5767the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005768
5769Example:
5770""""""""
5771
Renato Golin124f2592016-07-20 12:16:38 +00005772.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005773
David Majnemer8a1c45d2015-12-12 05:38:55 +00005774 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005775
David Majnemer654e1302015-07-31 17:58:14 +00005776.. _i_cleanupret:
5777
5778'``cleanupret``' Instruction
5779^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5780
5781Syntax:
5782"""""""
5783
5784::
5785
David Majnemer8a1c45d2015-12-12 05:38:55 +00005786 cleanupret from <value> unwind label <continue>
5787 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005788
5789Overview:
5790"""""""""
5791
5792The '``cleanupret``' instruction is a terminator instruction that has
5793an optional successor.
5794
5795
5796Arguments:
5797""""""""""
5798
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005799The '``cleanupret``' instruction requires one argument, which indicates
5800which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005801If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5802funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5803the ``cleanupret``'s behavior is undefined.
5804
5805The '``cleanupret``' instruction also has an optional successor, ``continue``,
5806which must be the label of another basic block beginning with either a
5807``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5808be a legal target with respect to the ``parent`` links, as described in the
5809`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005810
5811Semantics:
5812""""""""""
5813
5814The '``cleanupret``' instruction indicates to the
5815:ref:`personality function <personalityfn>` that one
5816:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5817It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005818
David Majnemer654e1302015-07-31 17:58:14 +00005819Example:
5820""""""""
5821
Renato Golin124f2592016-07-20 12:16:38 +00005822.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005823
David Majnemer8a1c45d2015-12-12 05:38:55 +00005824 cleanupret from %cleanup unwind to caller
5825 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005826
Sean Silvab084af42012-12-07 10:36:55 +00005827.. _i_unreachable:
5828
5829'``unreachable``' Instruction
5830^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5831
5832Syntax:
5833"""""""
5834
5835::
5836
5837 unreachable
5838
5839Overview:
5840"""""""""
5841
5842The '``unreachable``' instruction has no defined semantics. This
5843instruction is used to inform the optimizer that a particular portion of
5844the code is not reachable. This can be used to indicate that the code
5845after a no-return function cannot be reached, and other facts.
5846
5847Semantics:
5848""""""""""
5849
5850The '``unreachable``' instruction has no defined semantics.
5851
5852.. _binaryops:
5853
5854Binary Operations
5855-----------------
5856
5857Binary operators are used to do most of the computation in a program.
5858They require two operands of the same type, execute an operation on
5859them, and produce a single value. The operands might represent multiple
5860data, as is the case with the :ref:`vector <t_vector>` data type. The
5861result value has the same type as its operands.
5862
5863There are several different binary operators:
5864
5865.. _i_add:
5866
5867'``add``' Instruction
5868^^^^^^^^^^^^^^^^^^^^^
5869
5870Syntax:
5871"""""""
5872
5873::
5874
Tim Northover675a0962014-06-13 14:24:23 +00005875 <result> = add <ty> <op1>, <op2> ; yields ty:result
5876 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5877 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5878 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005879
5880Overview:
5881"""""""""
5882
5883The '``add``' instruction returns the sum of its two operands.
5884
5885Arguments:
5886""""""""""
5887
5888The two arguments to the '``add``' instruction must be
5889:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5890arguments must have identical types.
5891
5892Semantics:
5893""""""""""
5894
5895The value produced is the integer sum of the two operands.
5896
5897If the sum has unsigned overflow, the result returned is the
5898mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5899the result.
5900
5901Because LLVM integers use a two's complement representation, this
5902instruction is appropriate for both signed and unsigned integers.
5903
5904``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5905respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5906result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5907unsigned and/or signed overflow, respectively, occurs.
5908
5909Example:
5910""""""""
5911
Renato Golin124f2592016-07-20 12:16:38 +00005912.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005913
Tim Northover675a0962014-06-13 14:24:23 +00005914 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005915
5916.. _i_fadd:
5917
5918'``fadd``' Instruction
5919^^^^^^^^^^^^^^^^^^^^^^
5920
5921Syntax:
5922"""""""
5923
5924::
5925
Tim Northover675a0962014-06-13 14:24:23 +00005926 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005927
5928Overview:
5929"""""""""
5930
5931The '``fadd``' instruction returns the sum of its two operands.
5932
5933Arguments:
5934""""""""""
5935
5936The two arguments to the '``fadd``' instruction must be :ref:`floating
5937point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5938Both arguments must have identical types.
5939
5940Semantics:
5941""""""""""
5942
5943The value produced is the floating point sum of the two operands. This
5944instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5945which are optimization hints to enable otherwise unsafe floating point
5946optimizations:
5947
5948Example:
5949""""""""
5950
Renato Golin124f2592016-07-20 12:16:38 +00005951.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005952
Tim Northover675a0962014-06-13 14:24:23 +00005953 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005954
5955'``sub``' Instruction
5956^^^^^^^^^^^^^^^^^^^^^
5957
5958Syntax:
5959"""""""
5960
5961::
5962
Tim Northover675a0962014-06-13 14:24:23 +00005963 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5964 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5965 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5966 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005967
5968Overview:
5969"""""""""
5970
5971The '``sub``' instruction returns the difference of its two operands.
5972
5973Note that the '``sub``' instruction is used to represent the '``neg``'
5974instruction present in most other intermediate representations.
5975
5976Arguments:
5977""""""""""
5978
5979The two arguments to the '``sub``' instruction must be
5980:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5981arguments must have identical types.
5982
5983Semantics:
5984""""""""""
5985
5986The value produced is the integer difference of the two operands.
5987
5988If the difference has unsigned overflow, the result returned is the
5989mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5990the result.
5991
5992Because LLVM integers use a two's complement representation, this
5993instruction is appropriate for both signed and unsigned integers.
5994
5995``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5996respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5997result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5998unsigned and/or signed overflow, respectively, occurs.
5999
6000Example:
6001""""""""
6002
Renato Golin124f2592016-07-20 12:16:38 +00006003.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006004
Tim Northover675a0962014-06-13 14:24:23 +00006005 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6006 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006007
6008.. _i_fsub:
6009
6010'``fsub``' Instruction
6011^^^^^^^^^^^^^^^^^^^^^^
6012
6013Syntax:
6014"""""""
6015
6016::
6017
Tim Northover675a0962014-06-13 14:24:23 +00006018 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006019
6020Overview:
6021"""""""""
6022
6023The '``fsub``' instruction returns the difference of its two operands.
6024
6025Note that the '``fsub``' instruction is used to represent the '``fneg``'
6026instruction present in most other intermediate representations.
6027
6028Arguments:
6029""""""""""
6030
6031The two arguments to the '``fsub``' instruction must be :ref:`floating
6032point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6033Both arguments must have identical types.
6034
6035Semantics:
6036""""""""""
6037
6038The value produced is the floating point difference of the two operands.
6039This instruction can also take any number of :ref:`fast-math
6040flags <fastmath>`, which are optimization hints to enable otherwise
6041unsafe floating point optimizations:
6042
6043Example:
6044""""""""
6045
Renato Golin124f2592016-07-20 12:16:38 +00006046.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006047
Tim Northover675a0962014-06-13 14:24:23 +00006048 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6049 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006050
6051'``mul``' Instruction
6052^^^^^^^^^^^^^^^^^^^^^
6053
6054Syntax:
6055"""""""
6056
6057::
6058
Tim Northover675a0962014-06-13 14:24:23 +00006059 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6060 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6061 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6062 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006063
6064Overview:
6065"""""""""
6066
6067The '``mul``' instruction returns the product of its two operands.
6068
6069Arguments:
6070""""""""""
6071
6072The two arguments to the '``mul``' instruction must be
6073:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6074arguments must have identical types.
6075
6076Semantics:
6077""""""""""
6078
6079The value produced is the integer product of the two operands.
6080
6081If the result of the multiplication has unsigned overflow, the result
6082returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6083bit width of the result.
6084
6085Because LLVM integers use a two's complement representation, and the
6086result is the same width as the operands, this instruction returns the
6087correct result for both signed and unsigned integers. If a full product
6088(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6089sign-extended or zero-extended as appropriate to the width of the full
6090product.
6091
6092``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6093respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6094result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6095unsigned and/or signed overflow, respectively, occurs.
6096
6097Example:
6098""""""""
6099
Renato Golin124f2592016-07-20 12:16:38 +00006100.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006101
Tim Northover675a0962014-06-13 14:24:23 +00006102 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006103
6104.. _i_fmul:
6105
6106'``fmul``' Instruction
6107^^^^^^^^^^^^^^^^^^^^^^
6108
6109Syntax:
6110"""""""
6111
6112::
6113
Tim Northover675a0962014-06-13 14:24:23 +00006114 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006115
6116Overview:
6117"""""""""
6118
6119The '``fmul``' instruction returns the product of its two operands.
6120
6121Arguments:
6122""""""""""
6123
6124The two arguments to the '``fmul``' instruction must be :ref:`floating
6125point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6126Both arguments must have identical types.
6127
6128Semantics:
6129""""""""""
6130
6131The value produced is the floating point product of the two operands.
6132This instruction can also take any number of :ref:`fast-math
6133flags <fastmath>`, which are optimization hints to enable otherwise
6134unsafe floating point optimizations:
6135
6136Example:
6137""""""""
6138
Renato Golin124f2592016-07-20 12:16:38 +00006139.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006140
Tim Northover675a0962014-06-13 14:24:23 +00006141 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006142
6143'``udiv``' Instruction
6144^^^^^^^^^^^^^^^^^^^^^^
6145
6146Syntax:
6147"""""""
6148
6149::
6150
Tim Northover675a0962014-06-13 14:24:23 +00006151 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6152 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006153
6154Overview:
6155"""""""""
6156
6157The '``udiv``' instruction returns the quotient of its two operands.
6158
6159Arguments:
6160""""""""""
6161
6162The two arguments to the '``udiv``' instruction must be
6163:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6164arguments must have identical types.
6165
6166Semantics:
6167""""""""""
6168
6169The value produced is the unsigned integer quotient of the two operands.
6170
6171Note that unsigned integer division and signed integer division are
6172distinct operations; for signed integer division, use '``sdiv``'.
6173
6174Division by zero leads to undefined behavior.
6175
6176If the ``exact`` keyword is present, the result value of the ``udiv`` is
6177a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6178such, "((a udiv exact b) mul b) == a").
6179
6180Example:
6181""""""""
6182
Renato Golin124f2592016-07-20 12:16:38 +00006183.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006184
Tim Northover675a0962014-06-13 14:24:23 +00006185 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006186
6187'``sdiv``' Instruction
6188^^^^^^^^^^^^^^^^^^^^^^
6189
6190Syntax:
6191"""""""
6192
6193::
6194
Tim Northover675a0962014-06-13 14:24:23 +00006195 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6196 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006197
6198Overview:
6199"""""""""
6200
6201The '``sdiv``' instruction returns the quotient of its two operands.
6202
6203Arguments:
6204""""""""""
6205
6206The two arguments to the '``sdiv``' instruction must be
6207:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6208arguments must have identical types.
6209
6210Semantics:
6211""""""""""
6212
6213The value produced is the signed integer quotient of the two operands
6214rounded towards zero.
6215
6216Note that signed integer division and unsigned integer division are
6217distinct operations; for unsigned integer division, use '``udiv``'.
6218
6219Division by zero leads to undefined behavior. Overflow also leads to
6220undefined behavior; this is a rare case, but can occur, for example, by
6221doing a 32-bit division of -2147483648 by -1.
6222
6223If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6224a :ref:`poison value <poisonvalues>` if the result would be rounded.
6225
6226Example:
6227""""""""
6228
Renato Golin124f2592016-07-20 12:16:38 +00006229.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006230
Tim Northover675a0962014-06-13 14:24:23 +00006231 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006232
6233.. _i_fdiv:
6234
6235'``fdiv``' Instruction
6236^^^^^^^^^^^^^^^^^^^^^^
6237
6238Syntax:
6239"""""""
6240
6241::
6242
Tim Northover675a0962014-06-13 14:24:23 +00006243 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006244
6245Overview:
6246"""""""""
6247
6248The '``fdiv``' instruction returns the quotient of its two operands.
6249
6250Arguments:
6251""""""""""
6252
6253The two arguments to the '``fdiv``' instruction must be :ref:`floating
6254point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6255Both arguments must have identical types.
6256
6257Semantics:
6258""""""""""
6259
6260The value produced is the floating point quotient of the two operands.
6261This instruction can also take any number of :ref:`fast-math
6262flags <fastmath>`, which are optimization hints to enable otherwise
6263unsafe floating point optimizations:
6264
6265Example:
6266""""""""
6267
Renato Golin124f2592016-07-20 12:16:38 +00006268.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006269
Tim Northover675a0962014-06-13 14:24:23 +00006270 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006271
6272'``urem``' Instruction
6273^^^^^^^^^^^^^^^^^^^^^^
6274
6275Syntax:
6276"""""""
6277
6278::
6279
Tim Northover675a0962014-06-13 14:24:23 +00006280 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006281
6282Overview:
6283"""""""""
6284
6285The '``urem``' instruction returns the remainder from the unsigned
6286division of its two arguments.
6287
6288Arguments:
6289""""""""""
6290
6291The two arguments to the '``urem``' instruction must be
6292:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6293arguments must have identical types.
6294
6295Semantics:
6296""""""""""
6297
6298This instruction returns the unsigned integer *remainder* of a division.
6299This instruction always performs an unsigned division to get the
6300remainder.
6301
6302Note that unsigned integer remainder and signed integer remainder are
6303distinct operations; for signed integer remainder, use '``srem``'.
6304
6305Taking the remainder of a division by zero leads to undefined behavior.
6306
6307Example:
6308""""""""
6309
Renato Golin124f2592016-07-20 12:16:38 +00006310.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006311
Tim Northover675a0962014-06-13 14:24:23 +00006312 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006313
6314'``srem``' Instruction
6315^^^^^^^^^^^^^^^^^^^^^^
6316
6317Syntax:
6318"""""""
6319
6320::
6321
Tim Northover675a0962014-06-13 14:24:23 +00006322 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006323
6324Overview:
6325"""""""""
6326
6327The '``srem``' instruction returns the remainder from the signed
6328division of its two operands. This instruction can also take
6329:ref:`vector <t_vector>` versions of the values in which case the elements
6330must be integers.
6331
6332Arguments:
6333""""""""""
6334
6335The two arguments to the '``srem``' instruction must be
6336:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6337arguments must have identical types.
6338
6339Semantics:
6340""""""""""
6341
6342This instruction returns the *remainder* of a division (where the result
6343is either zero or has the same sign as the dividend, ``op1``), not the
6344*modulo* operator (where the result is either zero or has the same sign
6345as the divisor, ``op2``) of a value. For more information about the
6346difference, see `The Math
6347Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6348table of how this is implemented in various languages, please see
6349`Wikipedia: modulo
6350operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6351
6352Note that signed integer remainder and unsigned integer remainder are
6353distinct operations; for unsigned integer remainder, use '``urem``'.
6354
6355Taking the remainder of a division by zero leads to undefined behavior.
6356Overflow also leads to undefined behavior; this is a rare case, but can
6357occur, for example, by taking the remainder of a 32-bit division of
6358-2147483648 by -1. (The remainder doesn't actually overflow, but this
6359rule lets srem be implemented using instructions that return both the
6360result of the division and the remainder.)
6361
6362Example:
6363""""""""
6364
Renato Golin124f2592016-07-20 12:16:38 +00006365.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006366
Tim Northover675a0962014-06-13 14:24:23 +00006367 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006368
6369.. _i_frem:
6370
6371'``frem``' Instruction
6372^^^^^^^^^^^^^^^^^^^^^^
6373
6374Syntax:
6375"""""""
6376
6377::
6378
Tim Northover675a0962014-06-13 14:24:23 +00006379 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006380
6381Overview:
6382"""""""""
6383
6384The '``frem``' instruction returns the remainder from the division of
6385its two operands.
6386
6387Arguments:
6388""""""""""
6389
6390The two arguments to the '``frem``' instruction must be :ref:`floating
6391point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6392Both arguments must have identical types.
6393
6394Semantics:
6395""""""""""
6396
6397This instruction returns the *remainder* of a division. The remainder
6398has the same sign as the dividend. This instruction can also take any
6399number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6400to enable otherwise unsafe floating point optimizations:
6401
6402Example:
6403""""""""
6404
Renato Golin124f2592016-07-20 12:16:38 +00006405.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006406
Tim Northover675a0962014-06-13 14:24:23 +00006407 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006408
6409.. _bitwiseops:
6410
6411Bitwise Binary Operations
6412-------------------------
6413
6414Bitwise binary operators are used to do various forms of bit-twiddling
6415in a program. They are generally very efficient instructions and can
6416commonly be strength reduced from other instructions. They require two
6417operands of the same type, execute an operation on them, and produce a
6418single value. The resulting value is the same type as its operands.
6419
6420'``shl``' Instruction
6421^^^^^^^^^^^^^^^^^^^^^
6422
6423Syntax:
6424"""""""
6425
6426::
6427
Tim Northover675a0962014-06-13 14:24:23 +00006428 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6429 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6430 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6431 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006432
6433Overview:
6434"""""""""
6435
6436The '``shl``' instruction returns the first operand shifted to the left
6437a specified number of bits.
6438
6439Arguments:
6440""""""""""
6441
6442Both arguments to the '``shl``' instruction must be the same
6443:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6444'``op2``' is treated as an unsigned value.
6445
6446Semantics:
6447""""""""""
6448
6449The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6450where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006451dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006452``op1``, the result is undefined. If the arguments are vectors, each
6453vector element of ``op1`` is shifted by the corresponding shift amount
6454in ``op2``.
6455
6456If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6457value <poisonvalues>` if it shifts out any non-zero bits. If the
6458``nsw`` keyword is present, then the shift produces a :ref:`poison
6459value <poisonvalues>` if it shifts out any bits that disagree with the
Sanjoy Dasdbc58d02016-11-13 23:40:40 +00006460resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006461
6462Example:
6463""""""""
6464
Renato Golin124f2592016-07-20 12:16:38 +00006465.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006466
Tim Northover675a0962014-06-13 14:24:23 +00006467 <result> = shl i32 4, %var ; yields i32: 4 << %var
6468 <result> = shl i32 4, 2 ; yields i32: 16
6469 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006470 <result> = shl i32 1, 32 ; undefined
6471 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6472
6473'``lshr``' Instruction
6474^^^^^^^^^^^^^^^^^^^^^^
6475
6476Syntax:
6477"""""""
6478
6479::
6480
Tim Northover675a0962014-06-13 14:24:23 +00006481 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6482 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006483
6484Overview:
6485"""""""""
6486
6487The '``lshr``' instruction (logical shift right) returns the first
6488operand shifted to the right a specified number of bits with zero fill.
6489
6490Arguments:
6491""""""""""
6492
6493Both arguments to the '``lshr``' instruction must be the same
6494:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6495'``op2``' is treated as an unsigned value.
6496
6497Semantics:
6498""""""""""
6499
6500This instruction always performs a logical shift right operation. The
6501most significant bits of the result will be filled with zero bits after
6502the shift. If ``op2`` is (statically or dynamically) equal to or larger
6503than the number of bits in ``op1``, the result is undefined. If the
6504arguments are vectors, each vector element of ``op1`` is shifted by the
6505corresponding shift amount in ``op2``.
6506
6507If the ``exact`` keyword is present, the result value of the ``lshr`` is
6508a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6509non-zero.
6510
6511Example:
6512""""""""
6513
Renato Golin124f2592016-07-20 12:16:38 +00006514.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006515
Tim Northover675a0962014-06-13 14:24:23 +00006516 <result> = lshr i32 4, 1 ; yields i32:result = 2
6517 <result> = lshr i32 4, 2 ; yields i32:result = 1
6518 <result> = lshr i8 4, 3 ; yields i8:result = 0
6519 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006520 <result> = lshr i32 1, 32 ; undefined
6521 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6522
6523'``ashr``' Instruction
6524^^^^^^^^^^^^^^^^^^^^^^
6525
6526Syntax:
6527"""""""
6528
6529::
6530
Tim Northover675a0962014-06-13 14:24:23 +00006531 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6532 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006533
6534Overview:
6535"""""""""
6536
6537The '``ashr``' instruction (arithmetic shift right) returns the first
6538operand shifted to the right a specified number of bits with sign
6539extension.
6540
6541Arguments:
6542""""""""""
6543
6544Both arguments to the '``ashr``' instruction must be the same
6545:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6546'``op2``' is treated as an unsigned value.
6547
6548Semantics:
6549""""""""""
6550
6551This instruction always performs an arithmetic shift right operation,
6552The most significant bits of the result will be filled with the sign bit
6553of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6554than the number of bits in ``op1``, the result is undefined. If the
6555arguments are vectors, each vector element of ``op1`` is shifted by the
6556corresponding shift amount in ``op2``.
6557
6558If the ``exact`` keyword is present, the result value of the ``ashr`` is
6559a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6560non-zero.
6561
6562Example:
6563""""""""
6564
Renato Golin124f2592016-07-20 12:16:38 +00006565.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006566
Tim Northover675a0962014-06-13 14:24:23 +00006567 <result> = ashr i32 4, 1 ; yields i32:result = 2
6568 <result> = ashr i32 4, 2 ; yields i32:result = 1
6569 <result> = ashr i8 4, 3 ; yields i8:result = 0
6570 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006571 <result> = ashr i32 1, 32 ; undefined
6572 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6573
6574'``and``' Instruction
6575^^^^^^^^^^^^^^^^^^^^^
6576
6577Syntax:
6578"""""""
6579
6580::
6581
Tim Northover675a0962014-06-13 14:24:23 +00006582 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006583
6584Overview:
6585"""""""""
6586
6587The '``and``' instruction returns the bitwise logical and of its two
6588operands.
6589
6590Arguments:
6591""""""""""
6592
6593The two arguments to the '``and``' instruction must be
6594:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6595arguments must have identical types.
6596
6597Semantics:
6598""""""""""
6599
6600The truth table used for the '``and``' instruction is:
6601
6602+-----+-----+-----+
6603| In0 | In1 | Out |
6604+-----+-----+-----+
6605| 0 | 0 | 0 |
6606+-----+-----+-----+
6607| 0 | 1 | 0 |
6608+-----+-----+-----+
6609| 1 | 0 | 0 |
6610+-----+-----+-----+
6611| 1 | 1 | 1 |
6612+-----+-----+-----+
6613
6614Example:
6615""""""""
6616
Renato Golin124f2592016-07-20 12:16:38 +00006617.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006618
Tim Northover675a0962014-06-13 14:24:23 +00006619 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6620 <result> = and i32 15, 40 ; yields i32:result = 8
6621 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006622
6623'``or``' Instruction
6624^^^^^^^^^^^^^^^^^^^^
6625
6626Syntax:
6627"""""""
6628
6629::
6630
Tim Northover675a0962014-06-13 14:24:23 +00006631 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006632
6633Overview:
6634"""""""""
6635
6636The '``or``' instruction returns the bitwise logical inclusive or of its
6637two operands.
6638
6639Arguments:
6640""""""""""
6641
6642The two arguments to the '``or``' instruction must be
6643:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6644arguments must have identical types.
6645
6646Semantics:
6647""""""""""
6648
6649The truth table used for the '``or``' instruction is:
6650
6651+-----+-----+-----+
6652| In0 | In1 | Out |
6653+-----+-----+-----+
6654| 0 | 0 | 0 |
6655+-----+-----+-----+
6656| 0 | 1 | 1 |
6657+-----+-----+-----+
6658| 1 | 0 | 1 |
6659+-----+-----+-----+
6660| 1 | 1 | 1 |
6661+-----+-----+-----+
6662
6663Example:
6664""""""""
6665
6666::
6667
Tim Northover675a0962014-06-13 14:24:23 +00006668 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6669 <result> = or i32 15, 40 ; yields i32:result = 47
6670 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006671
6672'``xor``' Instruction
6673^^^^^^^^^^^^^^^^^^^^^
6674
6675Syntax:
6676"""""""
6677
6678::
6679
Tim Northover675a0962014-06-13 14:24:23 +00006680 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006681
6682Overview:
6683"""""""""
6684
6685The '``xor``' instruction returns the bitwise logical exclusive or of
6686its two operands. The ``xor`` is used to implement the "one's
6687complement" operation, which is the "~" operator in C.
6688
6689Arguments:
6690""""""""""
6691
6692The two arguments to the '``xor``' instruction must be
6693:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6694arguments must have identical types.
6695
6696Semantics:
6697""""""""""
6698
6699The truth table used for the '``xor``' instruction is:
6700
6701+-----+-----+-----+
6702| In0 | In1 | Out |
6703+-----+-----+-----+
6704| 0 | 0 | 0 |
6705+-----+-----+-----+
6706| 0 | 1 | 1 |
6707+-----+-----+-----+
6708| 1 | 0 | 1 |
6709+-----+-----+-----+
6710| 1 | 1 | 0 |
6711+-----+-----+-----+
6712
6713Example:
6714""""""""
6715
Renato Golin124f2592016-07-20 12:16:38 +00006716.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006717
Tim Northover675a0962014-06-13 14:24:23 +00006718 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6719 <result> = xor i32 15, 40 ; yields i32:result = 39
6720 <result> = xor i32 4, 8 ; yields i32:result = 12
6721 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006722
6723Vector Operations
6724-----------------
6725
6726LLVM supports several instructions to represent vector operations in a
6727target-independent manner. These instructions cover the element-access
6728and vector-specific operations needed to process vectors effectively.
6729While LLVM does directly support these vector operations, many
6730sophisticated algorithms will want to use target-specific intrinsics to
6731take full advantage of a specific target.
6732
6733.. _i_extractelement:
6734
6735'``extractelement``' Instruction
6736^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6737
6738Syntax:
6739"""""""
6740
6741::
6742
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006743 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006744
6745Overview:
6746"""""""""
6747
6748The '``extractelement``' instruction extracts a single scalar element
6749from a vector at a specified index.
6750
6751Arguments:
6752""""""""""
6753
6754The first operand of an '``extractelement``' instruction is a value of
6755:ref:`vector <t_vector>` type. The second operand is an index indicating
6756the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006757variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006758
6759Semantics:
6760""""""""""
6761
6762The result is a scalar of the same type as the element type of ``val``.
6763Its value is the value at position ``idx`` of ``val``. If ``idx``
6764exceeds the length of ``val``, the results are undefined.
6765
6766Example:
6767""""""""
6768
Renato Golin124f2592016-07-20 12:16:38 +00006769.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006770
6771 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6772
6773.. _i_insertelement:
6774
6775'``insertelement``' Instruction
6776^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6777
6778Syntax:
6779"""""""
6780
6781::
6782
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006783 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006784
6785Overview:
6786"""""""""
6787
6788The '``insertelement``' instruction inserts a scalar element into a
6789vector at a specified index.
6790
6791Arguments:
6792""""""""""
6793
6794The first operand of an '``insertelement``' instruction is a value of
6795:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6796type must equal the element type of the first operand. The third operand
6797is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006798index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006799
6800Semantics:
6801""""""""""
6802
6803The result is a vector of the same type as ``val``. Its element values
6804are those of ``val`` except at position ``idx``, where it gets the value
6805``elt``. If ``idx`` exceeds the length of ``val``, the results are
6806undefined.
6807
6808Example:
6809""""""""
6810
Renato Golin124f2592016-07-20 12:16:38 +00006811.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006812
6813 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6814
6815.. _i_shufflevector:
6816
6817'``shufflevector``' Instruction
6818^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6819
6820Syntax:
6821"""""""
6822
6823::
6824
6825 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6826
6827Overview:
6828"""""""""
6829
6830The '``shufflevector``' instruction constructs a permutation of elements
6831from two input vectors, returning a vector with the same element type as
6832the input and length that is the same as the shuffle mask.
6833
6834Arguments:
6835""""""""""
6836
6837The first two operands of a '``shufflevector``' instruction are vectors
6838with the same type. The third argument is a shuffle mask whose element
6839type is always 'i32'. The result of the instruction is a vector whose
6840length is the same as the shuffle mask and whose element type is the
6841same as the element type of the first two operands.
6842
6843The shuffle mask operand is required to be a constant vector with either
6844constant integer or undef values.
6845
6846Semantics:
6847""""""""""
6848
6849The elements of the two input vectors are numbered from left to right
6850across both of the vectors. The shuffle mask operand specifies, for each
6851element of the result vector, which element of the two input vectors the
6852result element gets. The element selector may be undef (meaning "don't
6853care") and the second operand may be undef if performing a shuffle from
6854only one vector.
6855
6856Example:
6857""""""""
6858
Renato Golin124f2592016-07-20 12:16:38 +00006859.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006860
6861 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6862 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6863 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6864 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6865 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6866 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6867 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6868 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6869
6870Aggregate Operations
6871--------------------
6872
6873LLVM supports several instructions for working with
6874:ref:`aggregate <t_aggregate>` values.
6875
6876.. _i_extractvalue:
6877
6878'``extractvalue``' Instruction
6879^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6880
6881Syntax:
6882"""""""
6883
6884::
6885
6886 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6887
6888Overview:
6889"""""""""
6890
6891The '``extractvalue``' instruction extracts the value of a member field
6892from an :ref:`aggregate <t_aggregate>` value.
6893
6894Arguments:
6895""""""""""
6896
6897The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006898:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006899constant indices to specify which value to extract in a similar manner
6900as indices in a '``getelementptr``' instruction.
6901
6902The major differences to ``getelementptr`` indexing are:
6903
6904- Since the value being indexed is not a pointer, the first index is
6905 omitted and assumed to be zero.
6906- At least one index must be specified.
6907- Not only struct indices but also array indices must be in bounds.
6908
6909Semantics:
6910""""""""""
6911
6912The result is the value at the position in the aggregate specified by
6913the index operands.
6914
6915Example:
6916""""""""
6917
Renato Golin124f2592016-07-20 12:16:38 +00006918.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006919
6920 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6921
6922.. _i_insertvalue:
6923
6924'``insertvalue``' Instruction
6925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6926
6927Syntax:
6928"""""""
6929
6930::
6931
6932 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6933
6934Overview:
6935"""""""""
6936
6937The '``insertvalue``' instruction inserts a value into a member field in
6938an :ref:`aggregate <t_aggregate>` value.
6939
6940Arguments:
6941""""""""""
6942
6943The first operand of an '``insertvalue``' instruction is a value of
6944:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6945a first-class value to insert. The following operands are constant
6946indices indicating the position at which to insert the value in a
6947similar manner as indices in a '``extractvalue``' instruction. The value
6948to insert must have the same type as the value identified by the
6949indices.
6950
6951Semantics:
6952""""""""""
6953
6954The result is an aggregate of the same type as ``val``. Its value is
6955that of ``val`` except that the value at the position specified by the
6956indices is that of ``elt``.
6957
6958Example:
6959""""""""
6960
6961.. code-block:: llvm
6962
6963 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6964 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006965 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006966
6967.. _memoryops:
6968
6969Memory Access and Addressing Operations
6970---------------------------------------
6971
6972A key design point of an SSA-based representation is how it represents
6973memory. In LLVM, no memory locations are in SSA form, which makes things
6974very simple. This section describes how to read, write, and allocate
6975memory in LLVM.
6976
6977.. _i_alloca:
6978
6979'``alloca``' Instruction
6980^^^^^^^^^^^^^^^^^^^^^^^^
6981
6982Syntax:
6983"""""""
6984
6985::
6986
Tim Northover675a0962014-06-13 14:24:23 +00006987 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006988
6989Overview:
6990"""""""""
6991
6992The '``alloca``' instruction allocates memory on the stack frame of the
6993currently executing function, to be automatically released when this
6994function returns to its caller. The object is always allocated in the
6995generic address space (address space zero).
6996
6997Arguments:
6998""""""""""
6999
7000The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7001bytes of memory on the runtime stack, returning a pointer of the
7002appropriate type to the program. If "NumElements" is specified, it is
7003the number of elements allocated, otherwise "NumElements" is defaulted
7004to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007005allocation is guaranteed to be aligned to at least that boundary. The
7006alignment may not be greater than ``1 << 29``. If not specified, or if
7007zero, the target can choose to align the allocation on any convenient
7008boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007009
7010'``type``' may be any sized type.
7011
7012Semantics:
7013""""""""""
7014
7015Memory is allocated; a pointer is returned. The operation is undefined
7016if there is insufficient stack space for the allocation. '``alloca``'d
7017memory is automatically released when the function returns. The
7018'``alloca``' instruction is commonly used to represent automatic
7019variables that must have an address available. When the function returns
7020(either with the ``ret`` or ``resume`` instructions), the memory is
7021reclaimed. Allocating zero bytes is legal, but the result is undefined.
7022The order in which memory is allocated (ie., which way the stack grows)
7023is not specified.
7024
7025Example:
7026""""""""
7027
7028.. code-block:: llvm
7029
Tim Northover675a0962014-06-13 14:24:23 +00007030 %ptr = alloca i32 ; yields i32*:ptr
7031 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7032 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7033 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007034
7035.. _i_load:
7036
7037'``load``' Instruction
7038^^^^^^^^^^^^^^^^^^^^^^
7039
7040Syntax:
7041"""""""
7042
7043::
7044
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007045 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007046 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007047 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007048 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007049 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007050
7051Overview:
7052"""""""""
7053
7054The '``load``' instruction is used to read from memory.
7055
7056Arguments:
7057""""""""""
7058
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007059The argument to the ``load`` instruction specifies the memory address from which
7060to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7061known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7062the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7063modify the number or order of execution of this ``load`` with other
7064:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007065
JF Bastiend1fb5852015-12-17 22:09:19 +00007066If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7067<ordering>` and optional ``singlethread`` argument. The ``release`` and
7068``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7069produce :ref:`defined <memmodel>` results when they may see multiple atomic
7070stores. The type of the pointee must be an integer, pointer, or floating-point
7071type whose bit width is a power of two greater than or equal to eight and less
7072than or equal to a target-specific size limit. ``align`` must be explicitly
7073specified on atomic loads, and the load has undefined behavior if the alignment
7074is not set to a value which is at least the size in bytes of the
7075pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007076
7077The optional constant ``align`` argument specifies the alignment of the
7078operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007079or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007080alignment for the target. It is the responsibility of the code emitter
7081to ensure that the alignment information is correct. Overestimating the
7082alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007083may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007084maximum possible alignment is ``1 << 29``. An alignment value higher
7085than the size of the loaded type implies memory up to the alignment
7086value bytes can be safely loaded without trapping in the default
7087address space. Access of the high bytes can interfere with debugging
7088tools, so should not be accessed if the function has the
7089``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007090
7091The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007092metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007093``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007094metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007095that this load is not expected to be reused in the cache. The code
7096generator may select special instructions to save cache bandwidth, such
7097as the ``MOVNT`` instruction on x86.
7098
7099The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007100metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007101entries. If a load instruction tagged with the ``!invariant.load``
7102metadata is executed, the optimizer may assume the memory location
7103referenced by the load contains the same value at all points in the
7104program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007105
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007106The optional ``!invariant.group`` metadata must reference a single metadata name
7107 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7108
Philip Reamescdb72f32014-10-20 22:40:55 +00007109The optional ``!nonnull`` metadata must reference a single
7110metadata name ``<index>`` corresponding to a metadata node with no
7111entries. The existence of the ``!nonnull`` metadata on the
7112instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007113never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007114on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007115to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007116
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007117The optional ``!dereferenceable`` metadata must reference a single metadata
7118name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007119entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007120tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007121The number of bytes known to be dereferenceable is specified by the integer
7122value in the metadata node. This is analogous to the ''dereferenceable''
7123attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007124to loads of a pointer type.
7125
7126The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007127metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7128``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007129instruction tells the optimizer that the value loaded is known to be either
7130dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007131The number of bytes known to be dereferenceable is specified by the integer
7132value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7133attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007134to loads of a pointer type.
7135
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007136The optional ``!align`` metadata must reference a single metadata name
7137``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7138The existence of the ``!align`` metadata on the instruction tells the
7139optimizer that the value loaded is known to be aligned to a boundary specified
7140by the integer value in the metadata node. The alignment must be a power of 2.
7141This is analogous to the ''align'' attribute on parameters and return values.
7142This metadata can only be applied to loads of a pointer type.
7143
Sean Silvab084af42012-12-07 10:36:55 +00007144Semantics:
7145""""""""""
7146
7147The location of memory pointed to is loaded. If the value being loaded
7148is of scalar type then the number of bytes read does not exceed the
7149minimum number of bytes needed to hold all bits of the type. For
7150example, loading an ``i24`` reads at most three bytes. When loading a
7151value of a type like ``i20`` with a size that is not an integral number
7152of bytes, the result is undefined if the value was not originally
7153written using a store of the same type.
7154
7155Examples:
7156"""""""""
7157
7158.. code-block:: llvm
7159
Tim Northover675a0962014-06-13 14:24:23 +00007160 %ptr = alloca i32 ; yields i32*:ptr
7161 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007162 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007163
7164.. _i_store:
7165
7166'``store``' Instruction
7167^^^^^^^^^^^^^^^^^^^^^^^
7168
7169Syntax:
7170"""""""
7171
7172::
7173
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007174 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7175 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007176
7177Overview:
7178"""""""""
7179
7180The '``store``' instruction is used to write to memory.
7181
7182Arguments:
7183""""""""""
7184
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007185There are two arguments to the ``store`` instruction: a value to store and an
7186address at which to store it. The type of the ``<pointer>`` operand must be a
7187pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7188operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7189allowed to modify the number or order of execution of this ``store`` with other
7190:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7191<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7192structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007193
JF Bastiend1fb5852015-12-17 22:09:19 +00007194If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7195<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7196``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7197produce :ref:`defined <memmodel>` results when they may see multiple atomic
7198stores. The type of the pointee must be an integer, pointer, or floating-point
7199type whose bit width is a power of two greater than or equal to eight and less
7200than or equal to a target-specific size limit. ``align`` must be explicitly
7201specified on atomic stores, and the store has undefined behavior if the
7202alignment is not set to a value which is at least the size in bytes of the
7203pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007204
Eli Benderskyca380842013-04-17 17:17:20 +00007205The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007206operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007207or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007208alignment for the target. It is the responsibility of the code emitter
7209to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007210alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007211alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007212safe. The maximum possible alignment is ``1 << 29``. An alignment
7213value higher than the size of the stored type implies memory up to the
7214alignment value bytes can be stored to without trapping in the default
7215address space. Storing to the higher bytes however may result in data
7216races if another thread can access the same address. Introducing a
7217data race is not allowed. Storing to the extra bytes is not allowed
7218even in situations where a data race is known to not exist if the
7219function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007220
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007221The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007222name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007223value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007224tells the optimizer and code generator that this load is not expected to
7225be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007226instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007227x86.
7228
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007229The optional ``!invariant.group`` metadata must reference a
7230single metadata name ``<index>``. See ``invariant.group`` metadata.
7231
Sean Silvab084af42012-12-07 10:36:55 +00007232Semantics:
7233""""""""""
7234
Eli Benderskyca380842013-04-17 17:17:20 +00007235The contents of memory are updated to contain ``<value>`` at the
7236location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007237of scalar type then the number of bytes written does not exceed the
7238minimum number of bytes needed to hold all bits of the type. For
7239example, storing an ``i24`` writes at most three bytes. When writing a
7240value of a type like ``i20`` with a size that is not an integral number
7241of bytes, it is unspecified what happens to the extra bits that do not
7242belong to the type, but they will typically be overwritten.
7243
7244Example:
7245""""""""
7246
7247.. code-block:: llvm
7248
Tim Northover675a0962014-06-13 14:24:23 +00007249 %ptr = alloca i32 ; yields i32*:ptr
7250 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007251 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007252
7253.. _i_fence:
7254
7255'``fence``' Instruction
7256^^^^^^^^^^^^^^^^^^^^^^^
7257
7258Syntax:
7259"""""""
7260
7261::
7262
Tim Northover675a0962014-06-13 14:24:23 +00007263 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007264
7265Overview:
7266"""""""""
7267
7268The '``fence``' instruction is used to introduce happens-before edges
7269between operations.
7270
7271Arguments:
7272""""""""""
7273
7274'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7275defines what *synchronizes-with* edges they add. They can only be given
7276``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7277
7278Semantics:
7279""""""""""
7280
7281A fence A which has (at least) ``release`` ordering semantics
7282*synchronizes with* a fence B with (at least) ``acquire`` ordering
7283semantics if and only if there exist atomic operations X and Y, both
7284operating on some atomic object M, such that A is sequenced before X, X
7285modifies M (either directly or through some side effect of a sequence
7286headed by X), Y is sequenced before B, and Y observes M. This provides a
7287*happens-before* dependency between A and B. Rather than an explicit
7288``fence``, one (but not both) of the atomic operations X or Y might
7289provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7290still *synchronize-with* the explicit ``fence`` and establish the
7291*happens-before* edge.
7292
7293A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7294``acquire`` and ``release`` semantics specified above, participates in
7295the global program order of other ``seq_cst`` operations and/or fences.
7296
7297The optional ":ref:`singlethread <singlethread>`" argument specifies
7298that the fence only synchronizes with other fences in the same thread.
7299(This is useful for interacting with signal handlers.)
7300
7301Example:
7302""""""""
7303
7304.. code-block:: llvm
7305
Tim Northover675a0962014-06-13 14:24:23 +00007306 fence acquire ; yields void
7307 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007308
7309.. _i_cmpxchg:
7310
7311'``cmpxchg``' Instruction
7312^^^^^^^^^^^^^^^^^^^^^^^^^
7313
7314Syntax:
7315"""""""
7316
7317::
7318
Tim Northover675a0962014-06-13 14:24:23 +00007319 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007320
7321Overview:
7322"""""""""
7323
7324The '``cmpxchg``' instruction is used to atomically modify memory. It
7325loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007326equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007327
7328Arguments:
7329""""""""""
7330
7331There are three arguments to the '``cmpxchg``' instruction: an address
7332to operate on, a value to compare to the value currently be at that
7333address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007334are equal. The type of '<cmp>' must be an integer or pointer type whose
7335bit width is a power of two greater than or equal to eight and less
7336than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7337have the same type, and the type of '<pointer>' must be a pointer to
7338that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7339optimizer is not allowed to modify the number or order of execution of
7340this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007341
Tim Northovere94a5182014-03-11 10:48:52 +00007342The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007343``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7344must be at least ``monotonic``, the ordering constraint on failure must be no
7345stronger than that on success, and the failure ordering cannot be either
7346``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007347
7348The optional "``singlethread``" argument declares that the ``cmpxchg``
7349is only atomic with respect to code (usually signal handlers) running in
7350the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7351respect to all other code in the system.
7352
7353The pointer passed into cmpxchg must have alignment greater than or
7354equal to the size in memory of the operand.
7355
7356Semantics:
7357""""""""""
7358
Tim Northover420a2162014-06-13 14:24:07 +00007359The contents of memory at the location specified by the '``<pointer>``' operand
7360is read and compared to '``<cmp>``'; if the read value is the equal, the
7361'``<new>``' is written. The original value at the location is returned, together
7362with a flag indicating success (true) or failure (false).
7363
7364If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7365permitted: the operation may not write ``<new>`` even if the comparison
7366matched.
7367
7368If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7369if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007370
Tim Northovere94a5182014-03-11 10:48:52 +00007371A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7372identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7373load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007374
7375Example:
7376""""""""
7377
7378.. code-block:: llvm
7379
7380 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007381 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007382 br label %loop
7383
7384 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007385 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007386 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007387 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007388 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7389 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007390 br i1 %success, label %done, label %loop
7391
7392 done:
7393 ...
7394
7395.. _i_atomicrmw:
7396
7397'``atomicrmw``' Instruction
7398^^^^^^^^^^^^^^^^^^^^^^^^^^^
7399
7400Syntax:
7401"""""""
7402
7403::
7404
Tim Northover675a0962014-06-13 14:24:23 +00007405 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007406
7407Overview:
7408"""""""""
7409
7410The '``atomicrmw``' instruction is used to atomically modify memory.
7411
7412Arguments:
7413""""""""""
7414
7415There are three arguments to the '``atomicrmw``' instruction: an
7416operation to apply, an address whose value to modify, an argument to the
7417operation. The operation must be one of the following keywords:
7418
7419- xchg
7420- add
7421- sub
7422- and
7423- nand
7424- or
7425- xor
7426- max
7427- min
7428- umax
7429- umin
7430
7431The type of '<value>' must be an integer type whose bit width is a power
7432of two greater than or equal to eight and less than or equal to a
7433target-specific size limit. The type of the '``<pointer>``' operand must
7434be a pointer to that type. If the ``atomicrmw`` is marked as
7435``volatile``, then the optimizer is not allowed to modify the number or
7436order of execution of this ``atomicrmw`` with other :ref:`volatile
7437operations <volatile>`.
7438
7439Semantics:
7440""""""""""
7441
7442The contents of memory at the location specified by the '``<pointer>``'
7443operand are atomically read, modified, and written back. The original
7444value at the location is returned. The modification is specified by the
7445operation argument:
7446
7447- xchg: ``*ptr = val``
7448- add: ``*ptr = *ptr + val``
7449- sub: ``*ptr = *ptr - val``
7450- and: ``*ptr = *ptr & val``
7451- nand: ``*ptr = ~(*ptr & val)``
7452- or: ``*ptr = *ptr | val``
7453- xor: ``*ptr = *ptr ^ val``
7454- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7455- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7456- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7457 comparison)
7458- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7459 comparison)
7460
7461Example:
7462""""""""
7463
7464.. code-block:: llvm
7465
Tim Northover675a0962014-06-13 14:24:23 +00007466 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007467
7468.. _i_getelementptr:
7469
7470'``getelementptr``' Instruction
7471^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7472
7473Syntax:
7474"""""""
7475
7476::
7477
Peter Collingbourned93620b2016-11-10 22:34:55 +00007478 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7479 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7480 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007481
7482Overview:
7483"""""""""
7484
7485The '``getelementptr``' instruction is used to get the address of a
7486subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007487address calculation only and does not access memory. The instruction can also
7488be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007489
7490Arguments:
7491""""""""""
7492
David Blaikie16a97eb2015-03-04 22:02:58 +00007493The first argument is always a type used as the basis for the calculations.
7494The second argument is always a pointer or a vector of pointers, and is the
7495base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007496that indicate which of the elements of the aggregate object are indexed.
7497The interpretation of each index is dependent on the type being indexed
7498into. The first index always indexes the pointer value given as the
7499first argument, the second index indexes a value of the type pointed to
7500(not necessarily the value directly pointed to, since the first index
7501can be non-zero), etc. The first type indexed into must be a pointer
7502value, subsequent types can be arrays, vectors, and structs. Note that
7503subsequent types being indexed into can never be pointers, since that
7504would require loading the pointer before continuing calculation.
7505
7506The type of each index argument depends on the type it is indexing into.
7507When indexing into a (optionally packed) structure, only ``i32`` integer
7508**constants** are allowed (when using a vector of indices they must all
7509be the **same** ``i32`` integer constant). When indexing into an array,
7510pointer or vector, integers of any width are allowed, and they are not
7511required to be constant. These integers are treated as signed values
7512where relevant.
7513
7514For example, let's consider a C code fragment and how it gets compiled
7515to LLVM:
7516
7517.. code-block:: c
7518
7519 struct RT {
7520 char A;
7521 int B[10][20];
7522 char C;
7523 };
7524 struct ST {
7525 int X;
7526 double Y;
7527 struct RT Z;
7528 };
7529
7530 int *foo(struct ST *s) {
7531 return &s[1].Z.B[5][13];
7532 }
7533
7534The LLVM code generated by Clang is:
7535
7536.. code-block:: llvm
7537
7538 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7539 %struct.ST = type { i32, double, %struct.RT }
7540
7541 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7542 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007543 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007544 ret i32* %arrayidx
7545 }
7546
7547Semantics:
7548""""""""""
7549
7550In the example above, the first index is indexing into the
7551'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7552= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7553indexes into the third element of the structure, yielding a
7554'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7555structure. The third index indexes into the second element of the
7556structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7557dimensions of the array are subscripted into, yielding an '``i32``'
7558type. The '``getelementptr``' instruction returns a pointer to this
7559element, thus computing a value of '``i32*``' type.
7560
7561Note that it is perfectly legal to index partially through a structure,
7562returning a pointer to an inner element. Because of this, the LLVM code
7563for the given testcase is equivalent to:
7564
7565.. code-block:: llvm
7566
7567 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007568 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7569 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7570 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7571 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7572 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007573 ret i32* %t5
7574 }
7575
7576If the ``inbounds`` keyword is present, the result value of the
7577``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7578pointer is not an *in bounds* address of an allocated object, or if any
7579of the addresses that would be formed by successive addition of the
7580offsets implied by the indices to the base address with infinitely
7581precise signed arithmetic are not an *in bounds* address of that
7582allocated object. The *in bounds* addresses for an allocated object are
7583all the addresses that point into the object, plus the address one byte
7584past the end. In cases where the base is a vector of pointers the
7585``inbounds`` keyword applies to each of the computations element-wise.
7586
7587If the ``inbounds`` keyword is not present, the offsets are added to the
7588base address with silently-wrapping two's complement arithmetic. If the
7589offsets have a different width from the pointer, they are sign-extended
7590or truncated to the width of the pointer. The result value of the
7591``getelementptr`` may be outside the object pointed to by the base
7592pointer. The result value may not necessarily be used to access memory
7593though, even if it happens to point into allocated storage. See the
7594:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7595information.
7596
Peter Collingbourned93620b2016-11-10 22:34:55 +00007597If the ``inrange`` keyword is present before any index, loading from or
7598storing to any pointer derived from the ``getelementptr`` has undefined
7599behavior if the load or store would access memory outside of the bounds of
7600the element selected by the index marked as ``inrange``. The result of a
7601pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7602involving memory) involving a pointer derived from a ``getelementptr`` with
7603the ``inrange`` keyword is undefined, with the exception of comparisons
7604in the case where both operands are in the range of the element selected
7605by the ``inrange`` keyword, inclusive of the address one past the end of
7606that element. Note that the ``inrange`` keyword is currently only allowed
7607in constant ``getelementptr`` expressions.
7608
Sean Silvab084af42012-12-07 10:36:55 +00007609The getelementptr instruction is often confusing. For some more insight
7610into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7611
7612Example:
7613""""""""
7614
7615.. code-block:: llvm
7616
7617 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007618 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007619 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007620 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007621 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007622 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007623 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007624 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007625
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007626Vector of pointers:
7627"""""""""""""""""""
7628
7629The ``getelementptr`` returns a vector of pointers, instead of a single address,
7630when one or more of its arguments is a vector. In such cases, all vector
7631arguments should have the same number of elements, and every scalar argument
7632will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007633
7634.. code-block:: llvm
7635
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007636 ; All arguments are vectors:
7637 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7638 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007639
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007640 ; Add the same scalar offset to each pointer of a vector:
7641 ; A[i] = ptrs[i] + offset*sizeof(i8)
7642 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007643
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007644 ; Add distinct offsets to the same pointer:
7645 ; A[i] = ptr + offsets[i]*sizeof(i8)
7646 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007647
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007648 ; In all cases described above the type of the result is <4 x i8*>
7649
7650The two following instructions are equivalent:
7651
7652.. code-block:: llvm
7653
7654 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7655 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7656 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7657 <4 x i32> %ind4,
7658 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007659
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007660 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7661 i32 2, i32 1, <4 x i32> %ind4, i64 13
7662
7663Let's look at the C code, where the vector version of ``getelementptr``
7664makes sense:
7665
7666.. code-block:: c
7667
7668 // Let's assume that we vectorize the following loop:
7669 double *A, B; int *C;
7670 for (int i = 0; i < size; ++i) {
7671 A[i] = B[C[i]];
7672 }
7673
7674.. code-block:: llvm
7675
7676 ; get pointers for 8 elements from array B
7677 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7678 ; load 8 elements from array B into A
7679 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7680 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007681
7682Conversion Operations
7683---------------------
7684
7685The instructions in this category are the conversion instructions
7686(casting) which all take a single operand and a type. They perform
7687various bit conversions on the operand.
7688
7689'``trunc .. to``' Instruction
7690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7691
7692Syntax:
7693"""""""
7694
7695::
7696
7697 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7698
7699Overview:
7700"""""""""
7701
7702The '``trunc``' instruction truncates its operand to the type ``ty2``.
7703
7704Arguments:
7705""""""""""
7706
7707The '``trunc``' instruction takes a value to trunc, and a type to trunc
7708it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7709of the same number of integers. The bit size of the ``value`` must be
7710larger than the bit size of the destination type, ``ty2``. Equal sized
7711types are not allowed.
7712
7713Semantics:
7714""""""""""
7715
7716The '``trunc``' instruction truncates the high order bits in ``value``
7717and converts the remaining bits to ``ty2``. Since the source size must
7718be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7719It will always truncate bits.
7720
7721Example:
7722""""""""
7723
7724.. code-block:: llvm
7725
7726 %X = trunc i32 257 to i8 ; yields i8:1
7727 %Y = trunc i32 123 to i1 ; yields i1:true
7728 %Z = trunc i32 122 to i1 ; yields i1:false
7729 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7730
7731'``zext .. to``' Instruction
7732^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7733
7734Syntax:
7735"""""""
7736
7737::
7738
7739 <result> = zext <ty> <value> to <ty2> ; yields ty2
7740
7741Overview:
7742"""""""""
7743
7744The '``zext``' instruction zero extends its operand to type ``ty2``.
7745
7746Arguments:
7747""""""""""
7748
7749The '``zext``' instruction takes a value to cast, and a type to cast it
7750to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7751the same number of integers. The bit size of the ``value`` must be
7752smaller than the bit size of the destination type, ``ty2``.
7753
7754Semantics:
7755""""""""""
7756
7757The ``zext`` fills the high order bits of the ``value`` with zero bits
7758until it reaches the size of the destination type, ``ty2``.
7759
7760When zero extending from i1, the result will always be either 0 or 1.
7761
7762Example:
7763""""""""
7764
7765.. code-block:: llvm
7766
7767 %X = zext i32 257 to i64 ; yields i64:257
7768 %Y = zext i1 true to i32 ; yields i32:1
7769 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7770
7771'``sext .. to``' Instruction
7772^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7773
7774Syntax:
7775"""""""
7776
7777::
7778
7779 <result> = sext <ty> <value> to <ty2> ; yields ty2
7780
7781Overview:
7782"""""""""
7783
7784The '``sext``' sign extends ``value`` to the type ``ty2``.
7785
7786Arguments:
7787""""""""""
7788
7789The '``sext``' instruction takes a value to cast, and a type to cast it
7790to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7791the same number of integers. The bit size of the ``value`` must be
7792smaller than the bit size of the destination type, ``ty2``.
7793
7794Semantics:
7795""""""""""
7796
7797The '``sext``' instruction performs a sign extension by copying the sign
7798bit (highest order bit) of the ``value`` until it reaches the bit size
7799of the type ``ty2``.
7800
7801When sign extending from i1, the extension always results in -1 or 0.
7802
7803Example:
7804""""""""
7805
7806.. code-block:: llvm
7807
7808 %X = sext i8 -1 to i16 ; yields i16 :65535
7809 %Y = sext i1 true to i32 ; yields i32:-1
7810 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7811
7812'``fptrunc .. to``' Instruction
7813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7814
7815Syntax:
7816"""""""
7817
7818::
7819
7820 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7821
7822Overview:
7823"""""""""
7824
7825The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7826
7827Arguments:
7828""""""""""
7829
7830The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7831value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7832The size of ``value`` must be larger than the size of ``ty2``. This
7833implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7834
7835Semantics:
7836""""""""""
7837
Dan Liew50456fb2015-09-03 18:43:56 +00007838The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007839:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007840point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7841destination type, ``ty2``, then the results are undefined. If the cast produces
7842an inexact result, how rounding is performed (e.g. truncation, also known as
7843round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007844
7845Example:
7846""""""""
7847
7848.. code-block:: llvm
7849
7850 %X = fptrunc double 123.0 to float ; yields float:123.0
7851 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7852
7853'``fpext .. to``' Instruction
7854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7855
7856Syntax:
7857"""""""
7858
7859::
7860
7861 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7862
7863Overview:
7864"""""""""
7865
7866The '``fpext``' extends a floating point ``value`` to a larger floating
7867point value.
7868
7869Arguments:
7870""""""""""
7871
7872The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7873``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7874to. The source type must be smaller than the destination type.
7875
7876Semantics:
7877""""""""""
7878
7879The '``fpext``' instruction extends the ``value`` from a smaller
7880:ref:`floating point <t_floating>` type to a larger :ref:`floating
7881point <t_floating>` type. The ``fpext`` cannot be used to make a
7882*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7883*no-op cast* for a floating point cast.
7884
7885Example:
7886""""""""
7887
7888.. code-block:: llvm
7889
7890 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7891 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7892
7893'``fptoui .. to``' Instruction
7894^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7895
7896Syntax:
7897"""""""
7898
7899::
7900
7901 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7902
7903Overview:
7904"""""""""
7905
7906The '``fptoui``' converts a floating point ``value`` to its unsigned
7907integer equivalent of type ``ty2``.
7908
7909Arguments:
7910""""""""""
7911
7912The '``fptoui``' instruction takes a value to cast, which must be a
7913scalar or vector :ref:`floating point <t_floating>` value, and a type to
7914cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7915``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7916type with the same number of elements as ``ty``
7917
7918Semantics:
7919""""""""""
7920
7921The '``fptoui``' instruction converts its :ref:`floating
7922point <t_floating>` operand into the nearest (rounding towards zero)
7923unsigned integer value. If the value cannot fit in ``ty2``, the results
7924are undefined.
7925
7926Example:
7927""""""""
7928
7929.. code-block:: llvm
7930
7931 %X = fptoui double 123.0 to i32 ; yields i32:123
7932 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7933 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7934
7935'``fptosi .. to``' Instruction
7936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7937
7938Syntax:
7939"""""""
7940
7941::
7942
7943 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7944
7945Overview:
7946"""""""""
7947
7948The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7949``value`` to type ``ty2``.
7950
7951Arguments:
7952""""""""""
7953
7954The '``fptosi``' instruction takes a value to cast, which must be a
7955scalar or vector :ref:`floating point <t_floating>` value, and a type to
7956cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7957``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7958type with the same number of elements as ``ty``
7959
7960Semantics:
7961""""""""""
7962
7963The '``fptosi``' instruction converts its :ref:`floating
7964point <t_floating>` operand into the nearest (rounding towards zero)
7965signed integer value. If the value cannot fit in ``ty2``, the results
7966are undefined.
7967
7968Example:
7969""""""""
7970
7971.. code-block:: llvm
7972
7973 %X = fptosi double -123.0 to i32 ; yields i32:-123
7974 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7975 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7976
7977'``uitofp .. to``' Instruction
7978^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7979
7980Syntax:
7981"""""""
7982
7983::
7984
7985 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7986
7987Overview:
7988"""""""""
7989
7990The '``uitofp``' instruction regards ``value`` as an unsigned integer
7991and converts that value to the ``ty2`` type.
7992
7993Arguments:
7994""""""""""
7995
7996The '``uitofp``' instruction takes a value to cast, which must be a
7997scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7998``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7999``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8000type with the same number of elements as ``ty``
8001
8002Semantics:
8003""""""""""
8004
8005The '``uitofp``' instruction interprets its operand as an unsigned
8006integer quantity and converts it to the corresponding floating point
8007value. If the value cannot fit in the floating point value, the results
8008are undefined.
8009
8010Example:
8011""""""""
8012
8013.. code-block:: llvm
8014
8015 %X = uitofp i32 257 to float ; yields float:257.0
8016 %Y = uitofp i8 -1 to double ; yields double:255.0
8017
8018'``sitofp .. to``' Instruction
8019^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8020
8021Syntax:
8022"""""""
8023
8024::
8025
8026 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8027
8028Overview:
8029"""""""""
8030
8031The '``sitofp``' instruction regards ``value`` as a signed integer and
8032converts that value to the ``ty2`` type.
8033
8034Arguments:
8035""""""""""
8036
8037The '``sitofp``' instruction takes a value to cast, which must be a
8038scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8039``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8040``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8041type with the same number of elements as ``ty``
8042
8043Semantics:
8044""""""""""
8045
8046The '``sitofp``' instruction interprets its operand as a signed integer
8047quantity and converts it to the corresponding floating point value. If
8048the value cannot fit in the floating point value, the results are
8049undefined.
8050
8051Example:
8052""""""""
8053
8054.. code-block:: llvm
8055
8056 %X = sitofp i32 257 to float ; yields float:257.0
8057 %Y = sitofp i8 -1 to double ; yields double:-1.0
8058
8059.. _i_ptrtoint:
8060
8061'``ptrtoint .. to``' Instruction
8062^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8063
8064Syntax:
8065"""""""
8066
8067::
8068
8069 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8070
8071Overview:
8072"""""""""
8073
8074The '``ptrtoint``' instruction converts the pointer or a vector of
8075pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8076
8077Arguments:
8078""""""""""
8079
8080The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008081a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008082type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8083a vector of integers type.
8084
8085Semantics:
8086""""""""""
8087
8088The '``ptrtoint``' instruction converts ``value`` to integer type
8089``ty2`` by interpreting the pointer value as an integer and either
8090truncating or zero extending that value to the size of the integer type.
8091If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8092``value`` is larger than ``ty2`` then a truncation is done. If they are
8093the same size, then nothing is done (*no-op cast*) other than a type
8094change.
8095
8096Example:
8097""""""""
8098
8099.. code-block:: llvm
8100
8101 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8102 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8103 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8104
8105.. _i_inttoptr:
8106
8107'``inttoptr .. to``' Instruction
8108^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8109
8110Syntax:
8111"""""""
8112
8113::
8114
8115 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8116
8117Overview:
8118"""""""""
8119
8120The '``inttoptr``' instruction converts an integer ``value`` to a
8121pointer type, ``ty2``.
8122
8123Arguments:
8124""""""""""
8125
8126The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8127cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8128type.
8129
8130Semantics:
8131""""""""""
8132
8133The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8134applying either a zero extension or a truncation depending on the size
8135of the integer ``value``. If ``value`` is larger than the size of a
8136pointer then a truncation is done. If ``value`` is smaller than the size
8137of a pointer then a zero extension is done. If they are the same size,
8138nothing is done (*no-op cast*).
8139
8140Example:
8141""""""""
8142
8143.. code-block:: llvm
8144
8145 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8146 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8147 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8148 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8149
8150.. _i_bitcast:
8151
8152'``bitcast .. to``' Instruction
8153^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8154
8155Syntax:
8156"""""""
8157
8158::
8159
8160 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8161
8162Overview:
8163"""""""""
8164
8165The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8166changing any bits.
8167
8168Arguments:
8169""""""""""
8170
8171The '``bitcast``' instruction takes a value to cast, which must be a
8172non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008173also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8174bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008175identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008176also be a pointer of the same size. This instruction supports bitwise
8177conversion of vectors to integers and to vectors of other types (as
8178long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008179
8180Semantics:
8181""""""""""
8182
Matt Arsenault24b49c42013-07-31 17:49:08 +00008183The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8184is always a *no-op cast* because no bits change with this
8185conversion. The conversion is done as if the ``value`` had been stored
8186to memory and read back as type ``ty2``. Pointer (or vector of
8187pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008188pointers) types with the same address space through this instruction.
8189To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8190or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008191
8192Example:
8193""""""""
8194
Renato Golin124f2592016-07-20 12:16:38 +00008195.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008196
8197 %X = bitcast i8 255 to i8 ; yields i8 :-1
8198 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8199 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8200 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8201
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008202.. _i_addrspacecast:
8203
8204'``addrspacecast .. to``' Instruction
8205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8206
8207Syntax:
8208"""""""
8209
8210::
8211
8212 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8213
8214Overview:
8215"""""""""
8216
8217The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8218address space ``n`` to type ``pty2`` in address space ``m``.
8219
8220Arguments:
8221""""""""""
8222
8223The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8224to cast and a pointer type to cast it to, which must have a different
8225address space.
8226
8227Semantics:
8228""""""""""
8229
8230The '``addrspacecast``' instruction converts the pointer value
8231``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008232value modification, depending on the target and the address space
8233pair. Pointer conversions within the same address space must be
8234performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008235conversion is legal then both result and operand refer to the same memory
8236location.
8237
8238Example:
8239""""""""
8240
8241.. code-block:: llvm
8242
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008243 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8244 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8245 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008246
Sean Silvab084af42012-12-07 10:36:55 +00008247.. _otherops:
8248
8249Other Operations
8250----------------
8251
8252The instructions in this category are the "miscellaneous" instructions,
8253which defy better classification.
8254
8255.. _i_icmp:
8256
8257'``icmp``' Instruction
8258^^^^^^^^^^^^^^^^^^^^^^
8259
8260Syntax:
8261"""""""
8262
8263::
8264
Tim Northover675a0962014-06-13 14:24:23 +00008265 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008266
8267Overview:
8268"""""""""
8269
8270The '``icmp``' instruction returns a boolean value or a vector of
8271boolean values based on comparison of its two integer, integer vector,
8272pointer, or pointer vector operands.
8273
8274Arguments:
8275""""""""""
8276
8277The '``icmp``' instruction takes three operands. The first operand is
8278the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008279not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008280
8281#. ``eq``: equal
8282#. ``ne``: not equal
8283#. ``ugt``: unsigned greater than
8284#. ``uge``: unsigned greater or equal
8285#. ``ult``: unsigned less than
8286#. ``ule``: unsigned less or equal
8287#. ``sgt``: signed greater than
8288#. ``sge``: signed greater or equal
8289#. ``slt``: signed less than
8290#. ``sle``: signed less or equal
8291
8292The remaining two arguments must be :ref:`integer <t_integer>` or
8293:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8294must also be identical types.
8295
8296Semantics:
8297""""""""""
8298
8299The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8300code given as ``cond``. The comparison performed always yields either an
8301:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8302
8303#. ``eq``: yields ``true`` if the operands are equal, ``false``
8304 otherwise. No sign interpretation is necessary or performed.
8305#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8306 otherwise. No sign interpretation is necessary or performed.
8307#. ``ugt``: interprets the operands as unsigned values and yields
8308 ``true`` if ``op1`` is greater than ``op2``.
8309#. ``uge``: interprets the operands as unsigned values and yields
8310 ``true`` if ``op1`` is greater than or equal to ``op2``.
8311#. ``ult``: interprets the operands as unsigned values and yields
8312 ``true`` if ``op1`` is less than ``op2``.
8313#. ``ule``: interprets the operands as unsigned values and yields
8314 ``true`` if ``op1`` is less than or equal to ``op2``.
8315#. ``sgt``: interprets the operands as signed values and yields ``true``
8316 if ``op1`` is greater than ``op2``.
8317#. ``sge``: interprets the operands as signed values and yields ``true``
8318 if ``op1`` is greater than or equal to ``op2``.
8319#. ``slt``: interprets the operands as signed values and yields ``true``
8320 if ``op1`` is less than ``op2``.
8321#. ``sle``: interprets the operands as signed values and yields ``true``
8322 if ``op1`` is less than or equal to ``op2``.
8323
8324If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8325are compared as if they were integers.
8326
8327If the operands are integer vectors, then they are compared element by
8328element. The result is an ``i1`` vector with the same number of elements
8329as the values being compared. Otherwise, the result is an ``i1``.
8330
8331Example:
8332""""""""
8333
Renato Golin124f2592016-07-20 12:16:38 +00008334.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008335
8336 <result> = icmp eq i32 4, 5 ; yields: result=false
8337 <result> = icmp ne float* %X, %X ; yields: result=false
8338 <result> = icmp ult i16 4, 5 ; yields: result=true
8339 <result> = icmp sgt i16 4, 5 ; yields: result=false
8340 <result> = icmp ule i16 -4, 5 ; yields: result=false
8341 <result> = icmp sge i16 4, 5 ; yields: result=false
8342
Sean Silvab084af42012-12-07 10:36:55 +00008343.. _i_fcmp:
8344
8345'``fcmp``' Instruction
8346^^^^^^^^^^^^^^^^^^^^^^
8347
8348Syntax:
8349"""""""
8350
8351::
8352
James Molloy88eb5352015-07-10 12:52:00 +00008353 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008354
8355Overview:
8356"""""""""
8357
8358The '``fcmp``' instruction returns a boolean value or vector of boolean
8359values based on comparison of its operands.
8360
8361If the operands are floating point scalars, then the result type is a
8362boolean (:ref:`i1 <t_integer>`).
8363
8364If the operands are floating point vectors, then the result type is a
8365vector of boolean with the same number of elements as the operands being
8366compared.
8367
8368Arguments:
8369""""""""""
8370
8371The '``fcmp``' instruction takes three operands. The first operand is
8372the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008373not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008374
8375#. ``false``: no comparison, always returns false
8376#. ``oeq``: ordered and equal
8377#. ``ogt``: ordered and greater than
8378#. ``oge``: ordered and greater than or equal
8379#. ``olt``: ordered and less than
8380#. ``ole``: ordered and less than or equal
8381#. ``one``: ordered and not equal
8382#. ``ord``: ordered (no nans)
8383#. ``ueq``: unordered or equal
8384#. ``ugt``: unordered or greater than
8385#. ``uge``: unordered or greater than or equal
8386#. ``ult``: unordered or less than
8387#. ``ule``: unordered or less than or equal
8388#. ``une``: unordered or not equal
8389#. ``uno``: unordered (either nans)
8390#. ``true``: no comparison, always returns true
8391
8392*Ordered* means that neither operand is a QNAN while *unordered* means
8393that either operand may be a QNAN.
8394
8395Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8396point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8397type. They must have identical types.
8398
8399Semantics:
8400""""""""""
8401
8402The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8403condition code given as ``cond``. If the operands are vectors, then the
8404vectors are compared element by element. Each comparison performed
8405always yields an :ref:`i1 <t_integer>` result, as follows:
8406
8407#. ``false``: always yields ``false``, regardless of operands.
8408#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8409 is equal to ``op2``.
8410#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8411 is greater than ``op2``.
8412#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8413 is greater than or equal to ``op2``.
8414#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8415 is less than ``op2``.
8416#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8417 is less than or equal to ``op2``.
8418#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8419 is not equal to ``op2``.
8420#. ``ord``: yields ``true`` if both operands are not a QNAN.
8421#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8422 equal to ``op2``.
8423#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8424 greater than ``op2``.
8425#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8426 greater than or equal to ``op2``.
8427#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8428 less than ``op2``.
8429#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8430 less than or equal to ``op2``.
8431#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8432 not equal to ``op2``.
8433#. ``uno``: yields ``true`` if either operand is a QNAN.
8434#. ``true``: always yields ``true``, regardless of operands.
8435
James Molloy88eb5352015-07-10 12:52:00 +00008436The ``fcmp`` instruction can also optionally take any number of
8437:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8438otherwise unsafe floating point optimizations.
8439
8440Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8441only flags that have any effect on its semantics are those that allow
8442assumptions to be made about the values of input arguments; namely
8443``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8444
Sean Silvab084af42012-12-07 10:36:55 +00008445Example:
8446""""""""
8447
Renato Golin124f2592016-07-20 12:16:38 +00008448.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008449
8450 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8451 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8452 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8453 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8454
Sean Silvab084af42012-12-07 10:36:55 +00008455.. _i_phi:
8456
8457'``phi``' Instruction
8458^^^^^^^^^^^^^^^^^^^^^
8459
8460Syntax:
8461"""""""
8462
8463::
8464
8465 <result> = phi <ty> [ <val0>, <label0>], ...
8466
8467Overview:
8468"""""""""
8469
8470The '``phi``' instruction is used to implement the φ node in the SSA
8471graph representing the function.
8472
8473Arguments:
8474""""""""""
8475
8476The type of the incoming values is specified with the first type field.
8477After this, the '``phi``' instruction takes a list of pairs as
8478arguments, with one pair for each predecessor basic block of the current
8479block. Only values of :ref:`first class <t_firstclass>` type may be used as
8480the value arguments to the PHI node. Only labels may be used as the
8481label arguments.
8482
8483There must be no non-phi instructions between the start of a basic block
8484and the PHI instructions: i.e. PHI instructions must be first in a basic
8485block.
8486
8487For the purposes of the SSA form, the use of each incoming value is
8488deemed to occur on the edge from the corresponding predecessor block to
8489the current block (but after any definition of an '``invoke``'
8490instruction's return value on the same edge).
8491
8492Semantics:
8493""""""""""
8494
8495At runtime, the '``phi``' instruction logically takes on the value
8496specified by the pair corresponding to the predecessor basic block that
8497executed just prior to the current block.
8498
8499Example:
8500""""""""
8501
8502.. code-block:: llvm
8503
8504 Loop: ; Infinite loop that counts from 0 on up...
8505 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8506 %nextindvar = add i32 %indvar, 1
8507 br label %Loop
8508
8509.. _i_select:
8510
8511'``select``' Instruction
8512^^^^^^^^^^^^^^^^^^^^^^^^
8513
8514Syntax:
8515"""""""
8516
8517::
8518
8519 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8520
8521 selty is either i1 or {<N x i1>}
8522
8523Overview:
8524"""""""""
8525
8526The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008527condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008528
8529Arguments:
8530""""""""""
8531
8532The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8533values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008534class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008535
8536Semantics:
8537""""""""""
8538
8539If the condition is an i1 and it evaluates to 1, the instruction returns
8540the first value argument; otherwise, it returns the second value
8541argument.
8542
8543If the condition is a vector of i1, then the value arguments must be
8544vectors of the same size, and the selection is done element by element.
8545
David Majnemer40a0b592015-03-03 22:45:47 +00008546If the condition is an i1 and the value arguments are vectors of the
8547same size, then an entire vector is selected.
8548
Sean Silvab084af42012-12-07 10:36:55 +00008549Example:
8550""""""""
8551
8552.. code-block:: llvm
8553
8554 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8555
8556.. _i_call:
8557
8558'``call``' Instruction
8559^^^^^^^^^^^^^^^^^^^^^^
8560
8561Syntax:
8562"""""""
8563
8564::
8565
David Blaikieb83cf102016-07-13 17:21:34 +00008566 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008567 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008568
8569Overview:
8570"""""""""
8571
8572The '``call``' instruction represents a simple function call.
8573
8574Arguments:
8575""""""""""
8576
8577This instruction requires several arguments:
8578
Reid Kleckner5772b772014-04-24 20:14:34 +00008579#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008580 should perform tail call optimization. The ``tail`` marker is a hint that
8581 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008582 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008583 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008584
8585 #. The call will not cause unbounded stack growth if it is part of a
8586 recursive cycle in the call graph.
8587 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8588 forwarded in place.
8589
8590 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008591 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008592 rules:
8593
8594 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8595 or a pointer bitcast followed by a ret instruction.
8596 - The ret instruction must return the (possibly bitcasted) value
8597 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008598 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008599 parameters or return types may differ in pointee type, but not
8600 in address space.
8601 - The calling conventions of the caller and callee must match.
8602 - All ABI-impacting function attributes, such as sret, byval, inreg,
8603 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008604 - The callee must be varargs iff the caller is varargs. Bitcasting a
8605 non-varargs function to the appropriate varargs type is legal so
8606 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008607
8608 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8609 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008610
8611 - Caller and callee both have the calling convention ``fastcc``.
8612 - The call is in tail position (ret immediately follows call and ret
8613 uses value of call or is void).
8614 - Option ``-tailcallopt`` is enabled, or
8615 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008616 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008617 met. <CodeGenerator.html#tailcallopt>`_
8618
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008619#. The optional ``notail`` marker indicates that the optimizers should not add
8620 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8621 call optimization from being performed on the call.
8622
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008623#. The optional ``fast-math flags`` marker indicates that the call has one or more
8624 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8625 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8626 for calls that return a floating-point scalar or vector type.
8627
Sean Silvab084af42012-12-07 10:36:55 +00008628#. The optional "cconv" marker indicates which :ref:`calling
8629 convention <callingconv>` the call should use. If none is
8630 specified, the call defaults to using C calling conventions. The
8631 calling convention of the call must match the calling convention of
8632 the target function, or else the behavior is undefined.
8633#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8634 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8635 are valid here.
8636#. '``ty``': the type of the call instruction itself which is also the
8637 type of the return value. Functions that return no value are marked
8638 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008639#. '``fnty``': shall be the signature of the function being called. The
8640 argument types must match the types implied by this signature. This
8641 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008642#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008643 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008644 indirect ``call``'s are just as possible, calling an arbitrary pointer
8645 to function value.
8646#. '``function args``': argument list whose types match the function
8647 signature argument types and parameter attributes. All arguments must
8648 be of :ref:`first class <t_firstclass>` type. If the function signature
8649 indicates the function accepts a variable number of arguments, the
8650 extra arguments can be specified.
8651#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008652 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8653 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008654#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008655
8656Semantics:
8657""""""""""
8658
8659The '``call``' instruction is used to cause control flow to transfer to
8660a specified function, with its incoming arguments bound to the specified
8661values. Upon a '``ret``' instruction in the called function, control
8662flow continues with the instruction after the function call, and the
8663return value of the function is bound to the result argument.
8664
8665Example:
8666""""""""
8667
8668.. code-block:: llvm
8669
8670 %retval = call i32 @test(i32 %argc)
8671 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8672 %X = tail call i32 @foo() ; yields i32
8673 %Y = tail call fastcc i32 @foo() ; yields i32
8674 call void %foo(i8 97 signext)
8675
8676 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008677 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008678 %gr = extractvalue %struct.A %r, 0 ; yields i32
8679 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8680 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8681 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8682
8683llvm treats calls to some functions with names and arguments that match
8684the standard C99 library as being the C99 library functions, and may
8685perform optimizations or generate code for them under that assumption.
8686This is something we'd like to change in the future to provide better
8687support for freestanding environments and non-C-based languages.
8688
8689.. _i_va_arg:
8690
8691'``va_arg``' Instruction
8692^^^^^^^^^^^^^^^^^^^^^^^^
8693
8694Syntax:
8695"""""""
8696
8697::
8698
8699 <resultval> = va_arg <va_list*> <arglist>, <argty>
8700
8701Overview:
8702"""""""""
8703
8704The '``va_arg``' instruction is used to access arguments passed through
8705the "variable argument" area of a function call. It is used to implement
8706the ``va_arg`` macro in C.
8707
8708Arguments:
8709""""""""""
8710
8711This instruction takes a ``va_list*`` value and the type of the
8712argument. It returns a value of the specified argument type and
8713increments the ``va_list`` to point to the next argument. The actual
8714type of ``va_list`` is target specific.
8715
8716Semantics:
8717""""""""""
8718
8719The '``va_arg``' instruction loads an argument of the specified type
8720from the specified ``va_list`` and causes the ``va_list`` to point to
8721the next argument. For more information, see the variable argument
8722handling :ref:`Intrinsic Functions <int_varargs>`.
8723
8724It is legal for this instruction to be called in a function which does
8725not take a variable number of arguments, for example, the ``vfprintf``
8726function.
8727
8728``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8729function <intrinsics>` because it takes a type as an argument.
8730
8731Example:
8732""""""""
8733
8734See the :ref:`variable argument processing <int_varargs>` section.
8735
8736Note that the code generator does not yet fully support va\_arg on many
8737targets. Also, it does not currently support va\_arg with aggregate
8738types on any target.
8739
8740.. _i_landingpad:
8741
8742'``landingpad``' Instruction
8743^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8744
8745Syntax:
8746"""""""
8747
8748::
8749
David Majnemer7fddecc2015-06-17 20:52:32 +00008750 <resultval> = landingpad <resultty> <clause>+
8751 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008752
8753 <clause> := catch <type> <value>
8754 <clause> := filter <array constant type> <array constant>
8755
8756Overview:
8757"""""""""
8758
8759The '``landingpad``' instruction is used by `LLVM's exception handling
8760system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008761is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008762code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008763defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008764re-entry to the function. The ``resultval`` has the type ``resultty``.
8765
8766Arguments:
8767""""""""""
8768
David Majnemer7fddecc2015-06-17 20:52:32 +00008769The optional
Sean Silvab084af42012-12-07 10:36:55 +00008770``cleanup`` flag indicates that the landing pad block is a cleanup.
8771
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008772A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008773contains the global variable representing the "type" that may be caught
8774or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8775clause takes an array constant as its argument. Use
8776"``[0 x i8**] undef``" for a filter which cannot throw. The
8777'``landingpad``' instruction must contain *at least* one ``clause`` or
8778the ``cleanup`` flag.
8779
8780Semantics:
8781""""""""""
8782
8783The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008784:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008785therefore the "result type" of the ``landingpad`` instruction. As with
8786calling conventions, how the personality function results are
8787represented in LLVM IR is target specific.
8788
8789The clauses are applied in order from top to bottom. If two
8790``landingpad`` instructions are merged together through inlining, the
8791clauses from the calling function are appended to the list of clauses.
8792When the call stack is being unwound due to an exception being thrown,
8793the exception is compared against each ``clause`` in turn. If it doesn't
8794match any of the clauses, and the ``cleanup`` flag is not set, then
8795unwinding continues further up the call stack.
8796
8797The ``landingpad`` instruction has several restrictions:
8798
8799- A landing pad block is a basic block which is the unwind destination
8800 of an '``invoke``' instruction.
8801- A landing pad block must have a '``landingpad``' instruction as its
8802 first non-PHI instruction.
8803- There can be only one '``landingpad``' instruction within the landing
8804 pad block.
8805- A basic block that is not a landing pad block may not include a
8806 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008807
8808Example:
8809""""""""
8810
8811.. code-block:: llvm
8812
8813 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008814 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008815 catch i8** @_ZTIi
8816 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008817 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008818 cleanup
8819 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008820 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008821 catch i8** @_ZTIi
8822 filter [1 x i8**] [@_ZTId]
8823
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008824.. _i_catchpad:
8825
8826'``catchpad``' Instruction
8827^^^^^^^^^^^^^^^^^^^^^^^^^^
8828
8829Syntax:
8830"""""""
8831
8832::
8833
8834 <resultval> = catchpad within <catchswitch> [<args>*]
8835
8836Overview:
8837"""""""""
8838
8839The '``catchpad``' instruction is used by `LLVM's exception handling
8840system <ExceptionHandling.html#overview>`_ to specify that a basic block
8841begins a catch handler --- one where a personality routine attempts to transfer
8842control to catch an exception.
8843
8844Arguments:
8845""""""""""
8846
8847The ``catchswitch`` operand must always be a token produced by a
8848:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8849ensures that each ``catchpad`` has exactly one predecessor block, and it always
8850terminates in a ``catchswitch``.
8851
8852The ``args`` correspond to whatever information the personality routine
8853requires to know if this is an appropriate handler for the exception. Control
8854will transfer to the ``catchpad`` if this is the first appropriate handler for
8855the exception.
8856
8857The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8858``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8859pads.
8860
8861Semantics:
8862""""""""""
8863
8864When the call stack is being unwound due to an exception being thrown, the
8865exception is compared against the ``args``. If it doesn't match, control will
8866not reach the ``catchpad`` instruction. The representation of ``args`` is
8867entirely target and personality function-specific.
8868
8869Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8870instruction must be the first non-phi of its parent basic block.
8871
8872The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8873instructions is described in the
8874`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8875
8876When a ``catchpad`` has been "entered" but not yet "exited" (as
8877described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8878it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8879that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8880
8881Example:
8882""""""""
8883
Renato Golin124f2592016-07-20 12:16:38 +00008884.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008885
8886 dispatch:
8887 %cs = catchswitch within none [label %handler0] unwind to caller
8888 ;; A catch block which can catch an integer.
8889 handler0:
8890 %tok = catchpad within %cs [i8** @_ZTIi]
8891
David Majnemer654e1302015-07-31 17:58:14 +00008892.. _i_cleanuppad:
8893
8894'``cleanuppad``' Instruction
8895^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8896
8897Syntax:
8898"""""""
8899
8900::
8901
David Majnemer8a1c45d2015-12-12 05:38:55 +00008902 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008903
8904Overview:
8905"""""""""
8906
8907The '``cleanuppad``' instruction is used by `LLVM's exception handling
8908system <ExceptionHandling.html#overview>`_ to specify that a basic block
8909is a cleanup block --- one where a personality routine attempts to
8910transfer control to run cleanup actions.
8911The ``args`` correspond to whatever additional
8912information the :ref:`personality function <personalityfn>` requires to
8913execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008914The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008915match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8916The ``parent`` argument is the token of the funclet that contains the
8917``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8918this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008919
8920Arguments:
8921""""""""""
8922
8923The instruction takes a list of arbitrary values which are interpreted
8924by the :ref:`personality function <personalityfn>`.
8925
8926Semantics:
8927""""""""""
8928
David Majnemer654e1302015-07-31 17:58:14 +00008929When the call stack is being unwound due to an exception being thrown,
8930the :ref:`personality function <personalityfn>` transfers control to the
8931``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008932As with calling conventions, how the personality function results are
8933represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008934
8935The ``cleanuppad`` instruction has several restrictions:
8936
8937- A cleanup block is a basic block which is the unwind destination of
8938 an exceptional instruction.
8939- A cleanup block must have a '``cleanuppad``' instruction as its
8940 first non-PHI instruction.
8941- There can be only one '``cleanuppad``' instruction within the
8942 cleanup block.
8943- A basic block that is not a cleanup block may not include a
8944 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008945
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008946When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8947described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8948it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8949that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008950
David Majnemer654e1302015-07-31 17:58:14 +00008951Example:
8952""""""""
8953
Renato Golin124f2592016-07-20 12:16:38 +00008954.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00008955
David Majnemer8a1c45d2015-12-12 05:38:55 +00008956 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008957
Sean Silvab084af42012-12-07 10:36:55 +00008958.. _intrinsics:
8959
8960Intrinsic Functions
8961===================
8962
8963LLVM supports the notion of an "intrinsic function". These functions
8964have well known names and semantics and are required to follow certain
8965restrictions. Overall, these intrinsics represent an extension mechanism
8966for the LLVM language that does not require changing all of the
8967transformations in LLVM when adding to the language (or the bitcode
8968reader/writer, the parser, etc...).
8969
8970Intrinsic function names must all start with an "``llvm.``" prefix. This
8971prefix is reserved in LLVM for intrinsic names; thus, function names may
8972not begin with this prefix. Intrinsic functions must always be external
8973functions: you cannot define the body of intrinsic functions. Intrinsic
8974functions may only be used in call or invoke instructions: it is illegal
8975to take the address of an intrinsic function. Additionally, because
8976intrinsic functions are part of the LLVM language, it is required if any
8977are added that they be documented here.
8978
8979Some intrinsic functions can be overloaded, i.e., the intrinsic
8980represents a family of functions that perform the same operation but on
8981different data types. Because LLVM can represent over 8 million
8982different integer types, overloading is used commonly to allow an
8983intrinsic function to operate on any integer type. One or more of the
8984argument types or the result type can be overloaded to accept any
8985integer type. Argument types may also be defined as exactly matching a
8986previous argument's type or the result type. This allows an intrinsic
8987function which accepts multiple arguments, but needs all of them to be
8988of the same type, to only be overloaded with respect to a single
8989argument or the result.
8990
8991Overloaded intrinsics will have the names of its overloaded argument
8992types encoded into its function name, each preceded by a period. Only
8993those types which are overloaded result in a name suffix. Arguments
8994whose type is matched against another type do not. For example, the
8995``llvm.ctpop`` function can take an integer of any width and returns an
8996integer of exactly the same integer width. This leads to a family of
8997functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8998``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8999overloaded, and only one type suffix is required. Because the argument's
9000type is matched against the return type, it does not require its own
9001name suffix.
9002
9003To learn how to add an intrinsic function, please see the `Extending
9004LLVM Guide <ExtendingLLVM.html>`_.
9005
9006.. _int_varargs:
9007
9008Variable Argument Handling Intrinsics
9009-------------------------------------
9010
9011Variable argument support is defined in LLVM with the
9012:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9013functions. These functions are related to the similarly named macros
9014defined in the ``<stdarg.h>`` header file.
9015
9016All of these functions operate on arguments that use a target-specific
9017value type "``va_list``". The LLVM assembly language reference manual
9018does not define what this type is, so all transformations should be
9019prepared to handle these functions regardless of the type used.
9020
9021This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9022variable argument handling intrinsic functions are used.
9023
9024.. code-block:: llvm
9025
Tim Northoverab60bb92014-11-02 01:21:51 +00009026 ; This struct is different for every platform. For most platforms,
9027 ; it is merely an i8*.
9028 %struct.va_list = type { i8* }
9029
9030 ; For Unix x86_64 platforms, va_list is the following struct:
9031 ; %struct.va_list = type { i32, i32, i8*, i8* }
9032
Sean Silvab084af42012-12-07 10:36:55 +00009033 define i32 @test(i32 %X, ...) {
9034 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009035 %ap = alloca %struct.va_list
9036 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009037 call void @llvm.va_start(i8* %ap2)
9038
9039 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009040 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009041
9042 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9043 %aq = alloca i8*
9044 %aq2 = bitcast i8** %aq to i8*
9045 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9046 call void @llvm.va_end(i8* %aq2)
9047
9048 ; Stop processing of arguments.
9049 call void @llvm.va_end(i8* %ap2)
9050 ret i32 %tmp
9051 }
9052
9053 declare void @llvm.va_start(i8*)
9054 declare void @llvm.va_copy(i8*, i8*)
9055 declare void @llvm.va_end(i8*)
9056
9057.. _int_va_start:
9058
9059'``llvm.va_start``' Intrinsic
9060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9061
9062Syntax:
9063"""""""
9064
9065::
9066
Nick Lewycky04f6de02013-09-11 22:04:52 +00009067 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009068
9069Overview:
9070"""""""""
9071
9072The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9073subsequent use by ``va_arg``.
9074
9075Arguments:
9076""""""""""
9077
9078The argument is a pointer to a ``va_list`` element to initialize.
9079
9080Semantics:
9081""""""""""
9082
9083The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9084available in C. In a target-dependent way, it initializes the
9085``va_list`` element to which the argument points, so that the next call
9086to ``va_arg`` will produce the first variable argument passed to the
9087function. Unlike the C ``va_start`` macro, this intrinsic does not need
9088to know the last argument of the function as the compiler can figure
9089that out.
9090
9091'``llvm.va_end``' Intrinsic
9092^^^^^^^^^^^^^^^^^^^^^^^^^^^
9093
9094Syntax:
9095"""""""
9096
9097::
9098
9099 declare void @llvm.va_end(i8* <arglist>)
9100
9101Overview:
9102"""""""""
9103
9104The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9105initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9106
9107Arguments:
9108""""""""""
9109
9110The argument is a pointer to a ``va_list`` to destroy.
9111
9112Semantics:
9113""""""""""
9114
9115The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9116available in C. In a target-dependent way, it destroys the ``va_list``
9117element to which the argument points. Calls to
9118:ref:`llvm.va_start <int_va_start>` and
9119:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9120``llvm.va_end``.
9121
9122.. _int_va_copy:
9123
9124'``llvm.va_copy``' Intrinsic
9125^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9126
9127Syntax:
9128"""""""
9129
9130::
9131
9132 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9133
9134Overview:
9135"""""""""
9136
9137The '``llvm.va_copy``' intrinsic copies the current argument position
9138from the source argument list to the destination argument list.
9139
9140Arguments:
9141""""""""""
9142
9143The first argument is a pointer to a ``va_list`` element to initialize.
9144The second argument is a pointer to a ``va_list`` element to copy from.
9145
9146Semantics:
9147""""""""""
9148
9149The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9150available in C. In a target-dependent way, it copies the source
9151``va_list`` element into the destination ``va_list`` element. This
9152intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9153arbitrarily complex and require, for example, memory allocation.
9154
9155Accurate Garbage Collection Intrinsics
9156--------------------------------------
9157
Philip Reamesc5b0f562015-02-25 23:52:06 +00009158LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009159(GC) requires the frontend to generate code containing appropriate intrinsic
9160calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009161intrinsics in a manner which is appropriate for the target collector.
9162
Sean Silvab084af42012-12-07 10:36:55 +00009163These intrinsics allow identification of :ref:`GC roots on the
9164stack <int_gcroot>`, as well as garbage collector implementations that
9165require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009166Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009167these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009168details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009169
Philip Reamesf80bbff2015-02-25 23:45:20 +00009170Experimental Statepoint Intrinsics
9171^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9172
9173LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009174collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009175to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009176:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009177differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009178<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009179described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009180
9181.. _int_gcroot:
9182
9183'``llvm.gcroot``' Intrinsic
9184^^^^^^^^^^^^^^^^^^^^^^^^^^^
9185
9186Syntax:
9187"""""""
9188
9189::
9190
9191 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9192
9193Overview:
9194"""""""""
9195
9196The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9197the code generator, and allows some metadata to be associated with it.
9198
9199Arguments:
9200""""""""""
9201
9202The first argument specifies the address of a stack object that contains
9203the root pointer. The second pointer (which must be either a constant or
9204a global value address) contains the meta-data to be associated with the
9205root.
9206
9207Semantics:
9208""""""""""
9209
9210At runtime, a call to this intrinsic stores a null pointer into the
9211"ptrloc" location. At compile-time, the code generator generates
9212information to allow the runtime to find the pointer at GC safe points.
9213The '``llvm.gcroot``' intrinsic may only be used in a function which
9214:ref:`specifies a GC algorithm <gc>`.
9215
9216.. _int_gcread:
9217
9218'``llvm.gcread``' Intrinsic
9219^^^^^^^^^^^^^^^^^^^^^^^^^^^
9220
9221Syntax:
9222"""""""
9223
9224::
9225
9226 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9227
9228Overview:
9229"""""""""
9230
9231The '``llvm.gcread``' intrinsic identifies reads of references from heap
9232locations, allowing garbage collector implementations that require read
9233barriers.
9234
9235Arguments:
9236""""""""""
9237
9238The second argument is the address to read from, which should be an
9239address allocated from the garbage collector. The first object is a
9240pointer to the start of the referenced object, if needed by the language
9241runtime (otherwise null).
9242
9243Semantics:
9244""""""""""
9245
9246The '``llvm.gcread``' intrinsic has the same semantics as a load
9247instruction, but may be replaced with substantially more complex code by
9248the garbage collector runtime, as needed. The '``llvm.gcread``'
9249intrinsic may only be used in a function which :ref:`specifies a GC
9250algorithm <gc>`.
9251
9252.. _int_gcwrite:
9253
9254'``llvm.gcwrite``' Intrinsic
9255^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9256
9257Syntax:
9258"""""""
9259
9260::
9261
9262 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9263
9264Overview:
9265"""""""""
9266
9267The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9268locations, allowing garbage collector implementations that require write
9269barriers (such as generational or reference counting collectors).
9270
9271Arguments:
9272""""""""""
9273
9274The first argument is the reference to store, the second is the start of
9275the object to store it to, and the third is the address of the field of
9276Obj to store to. If the runtime does not require a pointer to the
9277object, Obj may be null.
9278
9279Semantics:
9280""""""""""
9281
9282The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9283instruction, but may be replaced with substantially more complex code by
9284the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9285intrinsic may only be used in a function which :ref:`specifies a GC
9286algorithm <gc>`.
9287
9288Code Generator Intrinsics
9289-------------------------
9290
9291These intrinsics are provided by LLVM to expose special features that
9292may only be implemented with code generator support.
9293
9294'``llvm.returnaddress``' Intrinsic
9295^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9296
9297Syntax:
9298"""""""
9299
9300::
9301
9302 declare i8 *@llvm.returnaddress(i32 <level>)
9303
9304Overview:
9305"""""""""
9306
9307The '``llvm.returnaddress``' intrinsic attempts to compute a
9308target-specific value indicating the return address of the current
9309function or one of its callers.
9310
9311Arguments:
9312""""""""""
9313
9314The argument to this intrinsic indicates which function to return the
9315address for. Zero indicates the calling function, one indicates its
9316caller, etc. The argument is **required** to be a constant integer
9317value.
9318
9319Semantics:
9320""""""""""
9321
9322The '``llvm.returnaddress``' intrinsic either returns a pointer
9323indicating the return address of the specified call frame, or zero if it
9324cannot be identified. The value returned by this intrinsic is likely to
9325be incorrect or 0 for arguments other than zero, so it should only be
9326used for debugging purposes.
9327
9328Note that calling this intrinsic does not prevent function inlining or
9329other aggressive transformations, so the value returned may not be that
9330of the obvious source-language caller.
9331
Albert Gutowski795d7d62016-10-12 22:13:19 +00009332'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009333^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009334
9335Syntax:
9336"""""""
9337
9338::
9339
9340 declare i8 *@llvm.addressofreturnaddress()
9341
9342Overview:
9343"""""""""
9344
9345The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9346pointer to the place in the stack frame where the return address of the
9347current function is stored.
9348
9349Semantics:
9350""""""""""
9351
9352Note that calling this intrinsic does not prevent function inlining or
9353other aggressive transformations, so the value returned may not be that
9354of the obvious source-language caller.
9355
9356This intrinsic is only implemented for x86.
9357
Sean Silvab084af42012-12-07 10:36:55 +00009358'``llvm.frameaddress``' Intrinsic
9359^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9360
9361Syntax:
9362"""""""
9363
9364::
9365
9366 declare i8* @llvm.frameaddress(i32 <level>)
9367
9368Overview:
9369"""""""""
9370
9371The '``llvm.frameaddress``' intrinsic attempts to return the
9372target-specific frame pointer value for the specified stack frame.
9373
9374Arguments:
9375""""""""""
9376
9377The argument to this intrinsic indicates which function to return the
9378frame pointer for. Zero indicates the calling function, one indicates
9379its caller, etc. The argument is **required** to be a constant integer
9380value.
9381
9382Semantics:
9383""""""""""
9384
9385The '``llvm.frameaddress``' intrinsic either returns a pointer
9386indicating the frame address of the specified call frame, or zero if it
9387cannot be identified. The value returned by this intrinsic is likely to
9388be incorrect or 0 for arguments other than zero, so it should only be
9389used for debugging purposes.
9390
9391Note that calling this intrinsic does not prevent function inlining or
9392other aggressive transformations, so the value returned may not be that
9393of the obvious source-language caller.
9394
Reid Kleckner60381792015-07-07 22:25:32 +00009395'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009396^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9397
9398Syntax:
9399"""""""
9400
9401::
9402
Reid Kleckner60381792015-07-07 22:25:32 +00009403 declare void @llvm.localescape(...)
9404 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009405
9406Overview:
9407"""""""""
9408
Reid Kleckner60381792015-07-07 22:25:32 +00009409The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9410allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009411live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009412computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009413
9414Arguments:
9415""""""""""
9416
Reid Kleckner60381792015-07-07 22:25:32 +00009417All arguments to '``llvm.localescape``' must be pointers to static allocas or
9418casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009419once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009420
Reid Kleckner60381792015-07-07 22:25:32 +00009421The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009422bitcasted pointer to a function defined in the current module. The code
9423generator cannot determine the frame allocation offset of functions defined in
9424other modules.
9425
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009426The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9427call frame that is currently live. The return value of '``llvm.localaddress``'
9428is one way to produce such a value, but various runtimes also expose a suitable
9429pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009430
Reid Kleckner60381792015-07-07 22:25:32 +00009431The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9432'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009433
Reid Klecknere9b89312015-01-13 00:48:10 +00009434Semantics:
9435""""""""""
9436
Reid Kleckner60381792015-07-07 22:25:32 +00009437These intrinsics allow a group of functions to share access to a set of local
9438stack allocations of a one parent function. The parent function may call the
9439'``llvm.localescape``' intrinsic once from the function entry block, and the
9440child functions can use '``llvm.localrecover``' to access the escaped allocas.
9441The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9442the escaped allocas are allocated, which would break attempts to use
9443'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009444
Renato Golinc7aea402014-05-06 16:51:25 +00009445.. _int_read_register:
9446.. _int_write_register:
9447
9448'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9450
9451Syntax:
9452"""""""
9453
9454::
9455
9456 declare i32 @llvm.read_register.i32(metadata)
9457 declare i64 @llvm.read_register.i64(metadata)
9458 declare void @llvm.write_register.i32(metadata, i32 @value)
9459 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009460 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009461
9462Overview:
9463"""""""""
9464
9465The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9466provides access to the named register. The register must be valid on
9467the architecture being compiled to. The type needs to be compatible
9468with the register being read.
9469
9470Semantics:
9471""""""""""
9472
9473The '``llvm.read_register``' intrinsic returns the current value of the
9474register, where possible. The '``llvm.write_register``' intrinsic sets
9475the current value of the register, where possible.
9476
9477This is useful to implement named register global variables that need
9478to always be mapped to a specific register, as is common practice on
9479bare-metal programs including OS kernels.
9480
9481The compiler doesn't check for register availability or use of the used
9482register in surrounding code, including inline assembly. Because of that,
9483allocatable registers are not supported.
9484
9485Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009486architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009487work is needed to support other registers and even more so, allocatable
9488registers.
9489
Sean Silvab084af42012-12-07 10:36:55 +00009490.. _int_stacksave:
9491
9492'``llvm.stacksave``' Intrinsic
9493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9494
9495Syntax:
9496"""""""
9497
9498::
9499
9500 declare i8* @llvm.stacksave()
9501
9502Overview:
9503"""""""""
9504
9505The '``llvm.stacksave``' intrinsic is used to remember the current state
9506of the function stack, for use with
9507:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9508implementing language features like scoped automatic variable sized
9509arrays in C99.
9510
9511Semantics:
9512""""""""""
9513
9514This intrinsic returns a opaque pointer value that can be passed to
9515:ref:`llvm.stackrestore <int_stackrestore>`. When an
9516``llvm.stackrestore`` intrinsic is executed with a value saved from
9517``llvm.stacksave``, it effectively restores the state of the stack to
9518the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9519practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9520were allocated after the ``llvm.stacksave`` was executed.
9521
9522.. _int_stackrestore:
9523
9524'``llvm.stackrestore``' Intrinsic
9525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9526
9527Syntax:
9528"""""""
9529
9530::
9531
9532 declare void @llvm.stackrestore(i8* %ptr)
9533
9534Overview:
9535"""""""""
9536
9537The '``llvm.stackrestore``' intrinsic is used to restore the state of
9538the function stack to the state it was in when the corresponding
9539:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9540useful for implementing language features like scoped automatic variable
9541sized arrays in C99.
9542
9543Semantics:
9544""""""""""
9545
9546See the description for :ref:`llvm.stacksave <int_stacksave>`.
9547
Yury Gribovd7dbb662015-12-01 11:40:55 +00009548.. _int_get_dynamic_area_offset:
9549
9550'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009551^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009552
9553Syntax:
9554"""""""
9555
9556::
9557
9558 declare i32 @llvm.get.dynamic.area.offset.i32()
9559 declare i64 @llvm.get.dynamic.area.offset.i64()
9560
Lang Hames10239932016-10-08 00:20:42 +00009561Overview:
9562"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009563
9564 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9565 get the offset from native stack pointer to the address of the most
9566 recent dynamic alloca on the caller's stack. These intrinsics are
9567 intendend for use in combination with
9568 :ref:`llvm.stacksave <int_stacksave>` to get a
9569 pointer to the most recent dynamic alloca. This is useful, for example,
9570 for AddressSanitizer's stack unpoisoning routines.
9571
9572Semantics:
9573""""""""""
9574
9575 These intrinsics return a non-negative integer value that can be used to
9576 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9577 on the caller's stack. In particular, for targets where stack grows downwards,
9578 adding this offset to the native stack pointer would get the address of the most
9579 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009580 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009581 one past the end of the most recent dynamic alloca.
9582
9583 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9584 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9585 compile-time-known constant value.
9586
9587 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9588 must match the target's generic address space's (address space 0) pointer type.
9589
Sean Silvab084af42012-12-07 10:36:55 +00009590'``llvm.prefetch``' Intrinsic
9591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9592
9593Syntax:
9594"""""""
9595
9596::
9597
9598 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9599
9600Overview:
9601"""""""""
9602
9603The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9604insert a prefetch instruction if supported; otherwise, it is a noop.
9605Prefetches have no effect on the behavior of the program but can change
9606its performance characteristics.
9607
9608Arguments:
9609""""""""""
9610
9611``address`` is the address to be prefetched, ``rw`` is the specifier
9612determining if the fetch should be for a read (0) or write (1), and
9613``locality`` is a temporal locality specifier ranging from (0) - no
9614locality, to (3) - extremely local keep in cache. The ``cache type``
9615specifies whether the prefetch is performed on the data (1) or
9616instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9617arguments must be constant integers.
9618
9619Semantics:
9620""""""""""
9621
9622This intrinsic does not modify the behavior of the program. In
9623particular, prefetches cannot trap and do not produce a value. On
9624targets that support this intrinsic, the prefetch can provide hints to
9625the processor cache for better performance.
9626
9627'``llvm.pcmarker``' Intrinsic
9628^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9629
9630Syntax:
9631"""""""
9632
9633::
9634
9635 declare void @llvm.pcmarker(i32 <id>)
9636
9637Overview:
9638"""""""""
9639
9640The '``llvm.pcmarker``' intrinsic is a method to export a Program
9641Counter (PC) in a region of code to simulators and other tools. The
9642method is target specific, but it is expected that the marker will use
9643exported symbols to transmit the PC of the marker. The marker makes no
9644guarantees that it will remain with any specific instruction after
9645optimizations. It is possible that the presence of a marker will inhibit
9646optimizations. The intended use is to be inserted after optimizations to
9647allow correlations of simulation runs.
9648
9649Arguments:
9650""""""""""
9651
9652``id`` is a numerical id identifying the marker.
9653
9654Semantics:
9655""""""""""
9656
9657This intrinsic does not modify the behavior of the program. Backends
9658that do not support this intrinsic may ignore it.
9659
9660'``llvm.readcyclecounter``' Intrinsic
9661^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9662
9663Syntax:
9664"""""""
9665
9666::
9667
9668 declare i64 @llvm.readcyclecounter()
9669
9670Overview:
9671"""""""""
9672
9673The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9674counter register (or similar low latency, high accuracy clocks) on those
9675targets that support it. On X86, it should map to RDTSC. On Alpha, it
9676should map to RPCC. As the backing counters overflow quickly (on the
9677order of 9 seconds on alpha), this should only be used for small
9678timings.
9679
9680Semantics:
9681""""""""""
9682
9683When directly supported, reading the cycle counter should not modify any
9684memory. Implementations are allowed to either return a application
9685specific value or a system wide value. On backends without support, this
9686is lowered to a constant 0.
9687
Tim Northoverbc933082013-05-23 19:11:20 +00009688Note that runtime support may be conditional on the privilege-level code is
9689running at and the host platform.
9690
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009691'``llvm.clear_cache``' Intrinsic
9692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9693
9694Syntax:
9695"""""""
9696
9697::
9698
9699 declare void @llvm.clear_cache(i8*, i8*)
9700
9701Overview:
9702"""""""""
9703
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009704The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9705in the specified range to the execution unit of the processor. On
9706targets with non-unified instruction and data cache, the implementation
9707flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009708
9709Semantics:
9710""""""""""
9711
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009712On platforms with coherent instruction and data caches (e.g. x86), this
9713intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009714cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009715instructions or a system call, if cache flushing requires special
9716privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009717
Sean Silvad02bf3e2014-04-07 22:29:53 +00009718The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009719time library.
Renato Golin93010e62014-03-26 14:01:32 +00009720
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009721This instrinsic does *not* empty the instruction pipeline. Modifications
9722of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009723
Justin Bogner61ba2e32014-12-08 18:02:35 +00009724'``llvm.instrprof_increment``' Intrinsic
9725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9726
9727Syntax:
9728"""""""
9729
9730::
9731
9732 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9733 i32 <num-counters>, i32 <index>)
9734
9735Overview:
9736"""""""""
9737
9738The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9739frontend for use with instrumentation based profiling. These will be
9740lowered by the ``-instrprof`` pass to generate execution counts of a
9741program at runtime.
9742
9743Arguments:
9744""""""""""
9745
9746The first argument is a pointer to a global variable containing the
9747name of the entity being instrumented. This should generally be the
9748(mangled) function name for a set of counters.
9749
9750The second argument is a hash value that can be used by the consumer
9751of the profile data to detect changes to the instrumented source, and
9752the third is the number of counters associated with ``name``. It is an
9753error if ``hash`` or ``num-counters`` differ between two instances of
9754``instrprof_increment`` that refer to the same name.
9755
9756The last argument refers to which of the counters for ``name`` should
9757be incremented. It should be a value between 0 and ``num-counters``.
9758
9759Semantics:
9760""""""""""
9761
9762This intrinsic represents an increment of a profiling counter. It will
9763cause the ``-instrprof`` pass to generate the appropriate data
9764structures and the code to increment the appropriate value, in a
9765format that can be written out by a compiler runtime and consumed via
9766the ``llvm-profdata`` tool.
9767
Xinliang David Li4ca17332016-09-18 18:34:07 +00009768'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +00009769^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +00009770
9771Syntax:
9772"""""""
9773
9774::
9775
9776 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
9777 i32 <num-counters>,
9778 i32 <index>, i64 <step>)
9779
9780Overview:
9781"""""""""
9782
9783The '``llvm.instrprof_increment_step``' intrinsic is an extension to
9784the '``llvm.instrprof_increment``' intrinsic with an additional fifth
9785argument to specify the step of the increment.
9786
9787Arguments:
9788""""""""""
9789The first four arguments are the same as '``llvm.instrprof_increment``'
9790instrinsic.
9791
9792The last argument specifies the value of the increment of the counter variable.
9793
9794Semantics:
9795""""""""""
9796See description of '``llvm.instrprof_increment``' instrinsic.
9797
9798
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009799'``llvm.instrprof_value_profile``' Intrinsic
9800^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9801
9802Syntax:
9803"""""""
9804
9805::
9806
9807 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9808 i64 <value>, i32 <value_kind>,
9809 i32 <index>)
9810
9811Overview:
9812"""""""""
9813
9814The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9815frontend for use with instrumentation based profiling. This will be
9816lowered by the ``-instrprof`` pass to find out the target values,
9817instrumented expressions take in a program at runtime.
9818
9819Arguments:
9820""""""""""
9821
9822The first argument is a pointer to a global variable containing the
9823name of the entity being instrumented. ``name`` should generally be the
9824(mangled) function name for a set of counters.
9825
9826The second argument is a hash value that can be used by the consumer
9827of the profile data to detect changes to the instrumented source. It
9828is an error if ``hash`` differs between two instances of
9829``llvm.instrprof_*`` that refer to the same name.
9830
9831The third argument is the value of the expression being profiled. The profiled
9832expression's value should be representable as an unsigned 64-bit value. The
9833fourth argument represents the kind of value profiling that is being done. The
9834supported value profiling kinds are enumerated through the
9835``InstrProfValueKind`` type declared in the
9836``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9837index of the instrumented expression within ``name``. It should be >= 0.
9838
9839Semantics:
9840""""""""""
9841
9842This intrinsic represents the point where a call to a runtime routine
9843should be inserted for value profiling of target expressions. ``-instrprof``
9844pass will generate the appropriate data structures and replace the
9845``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9846runtime library with proper arguments.
9847
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009848'``llvm.thread.pointer``' Intrinsic
9849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9850
9851Syntax:
9852"""""""
9853
9854::
9855
9856 declare i8* @llvm.thread.pointer()
9857
9858Overview:
9859"""""""""
9860
9861The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9862pointer.
9863
9864Semantics:
9865""""""""""
9866
9867The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9868for the current thread. The exact semantics of this value are target
9869specific: it may point to the start of TLS area, to the end, or somewhere
9870in the middle. Depending on the target, this intrinsic may read a register,
9871call a helper function, read from an alternate memory space, or perform
9872other operations necessary to locate the TLS area. Not all targets support
9873this intrinsic.
9874
Sean Silvab084af42012-12-07 10:36:55 +00009875Standard C Library Intrinsics
9876-----------------------------
9877
9878LLVM provides intrinsics for a few important standard C library
9879functions. These intrinsics allow source-language front-ends to pass
9880information about the alignment of the pointer arguments to the code
9881generator, providing opportunity for more efficient code generation.
9882
9883.. _int_memcpy:
9884
9885'``llvm.memcpy``' Intrinsic
9886^^^^^^^^^^^^^^^^^^^^^^^^^^^
9887
9888Syntax:
9889"""""""
9890
9891This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9892integer bit width and for different address spaces. Not all targets
9893support all bit widths however.
9894
9895::
9896
9897 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9898 i32 <len>, i32 <align>, i1 <isvolatile>)
9899 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9900 i64 <len>, i32 <align>, i1 <isvolatile>)
9901
9902Overview:
9903"""""""""
9904
9905The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9906source location to the destination location.
9907
9908Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9909intrinsics do not return a value, takes extra alignment/isvolatile
9910arguments and the pointers can be in specified address spaces.
9911
9912Arguments:
9913""""""""""
9914
9915The first argument is a pointer to the destination, the second is a
9916pointer to the source. The third argument is an integer argument
9917specifying the number of bytes to copy, the fourth argument is the
9918alignment of the source and destination locations, and the fifth is a
9919boolean indicating a volatile access.
9920
9921If the call to this intrinsic has an alignment value that is not 0 or 1,
9922then the caller guarantees that both the source and destination pointers
9923are aligned to that boundary.
9924
9925If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9926a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9927very cleanly specified and it is unwise to depend on it.
9928
9929Semantics:
9930""""""""""
9931
9932The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9933source location to the destination location, which are not allowed to
9934overlap. It copies "len" bytes of memory over. If the argument is known
9935to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009936argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009937
9938'``llvm.memmove``' Intrinsic
9939^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9940
9941Syntax:
9942"""""""
9943
9944This is an overloaded intrinsic. You can use llvm.memmove on any integer
9945bit width and for different address space. Not all targets support all
9946bit widths however.
9947
9948::
9949
9950 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9951 i32 <len>, i32 <align>, i1 <isvolatile>)
9952 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9953 i64 <len>, i32 <align>, i1 <isvolatile>)
9954
9955Overview:
9956"""""""""
9957
9958The '``llvm.memmove.*``' intrinsics move a block of memory from the
9959source location to the destination location. It is similar to the
9960'``llvm.memcpy``' intrinsic but allows the two memory locations to
9961overlap.
9962
9963Note that, unlike the standard libc function, the ``llvm.memmove.*``
9964intrinsics do not return a value, takes extra alignment/isvolatile
9965arguments and the pointers can be in specified address spaces.
9966
9967Arguments:
9968""""""""""
9969
9970The first argument is a pointer to the destination, the second is a
9971pointer to the source. The third argument is an integer argument
9972specifying the number of bytes to copy, the fourth argument is the
9973alignment of the source and destination locations, and the fifth is a
9974boolean indicating a volatile access.
9975
9976If the call to this intrinsic has an alignment value that is not 0 or 1,
9977then the caller guarantees that the source and destination pointers are
9978aligned to that boundary.
9979
9980If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9981is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9982not very cleanly specified and it is unwise to depend on it.
9983
9984Semantics:
9985""""""""""
9986
9987The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9988source location to the destination location, which may overlap. It
9989copies "len" bytes of memory over. If the argument is known to be
9990aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009991otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009992
9993'``llvm.memset.*``' Intrinsics
9994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9995
9996Syntax:
9997"""""""
9998
9999This is an overloaded intrinsic. You can use llvm.memset on any integer
10000bit width and for different address spaces. However, not all targets
10001support all bit widths.
10002
10003::
10004
10005 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10006 i32 <len>, i32 <align>, i1 <isvolatile>)
10007 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10008 i64 <len>, i32 <align>, i1 <isvolatile>)
10009
10010Overview:
10011"""""""""
10012
10013The '``llvm.memset.*``' intrinsics fill a block of memory with a
10014particular byte value.
10015
10016Note that, unlike the standard libc function, the ``llvm.memset``
10017intrinsic does not return a value and takes extra alignment/volatile
10018arguments. Also, the destination can be in an arbitrary address space.
10019
10020Arguments:
10021""""""""""
10022
10023The first argument is a pointer to the destination to fill, the second
10024is the byte value with which to fill it, the third argument is an
10025integer argument specifying the number of bytes to fill, and the fourth
10026argument is the known alignment of the destination location.
10027
10028If the call to this intrinsic has an alignment value that is not 0 or 1,
10029then the caller guarantees that the destination pointer is aligned to
10030that boundary.
10031
10032If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10033a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10034very cleanly specified and it is unwise to depend on it.
10035
10036Semantics:
10037""""""""""
10038
10039The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10040at the destination location. If the argument is known to be aligned to
10041some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010042it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010043
10044'``llvm.sqrt.*``' Intrinsic
10045^^^^^^^^^^^^^^^^^^^^^^^^^^^
10046
10047Syntax:
10048"""""""
10049
10050This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10051floating point or vector of floating point type. Not all targets support
10052all types however.
10053
10054::
10055
10056 declare float @llvm.sqrt.f32(float %Val)
10057 declare double @llvm.sqrt.f64(double %Val)
10058 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10059 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10060 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10061
10062Overview:
10063"""""""""
10064
10065The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
10066returning the same value as the libm '``sqrt``' functions would. Unlike
10067``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
10068negative numbers other than -0.0 (which allows for better optimization,
10069because there is no need to worry about errno being set).
10070``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
10071
10072Arguments:
10073""""""""""
10074
10075The argument and return value are floating point numbers of the same
10076type.
10077
10078Semantics:
10079""""""""""
10080
10081This function returns the sqrt of the specified operand if it is a
10082nonnegative floating point number.
10083
10084'``llvm.powi.*``' Intrinsic
10085^^^^^^^^^^^^^^^^^^^^^^^^^^^
10086
10087Syntax:
10088"""""""
10089
10090This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10091floating point or vector of floating point type. Not all targets support
10092all types however.
10093
10094::
10095
10096 declare float @llvm.powi.f32(float %Val, i32 %power)
10097 declare double @llvm.powi.f64(double %Val, i32 %power)
10098 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10099 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10100 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10101
10102Overview:
10103"""""""""
10104
10105The '``llvm.powi.*``' intrinsics return the first operand raised to the
10106specified (positive or negative) power. The order of evaluation of
10107multiplications is not defined. When a vector of floating point type is
10108used, the second argument remains a scalar integer value.
10109
10110Arguments:
10111""""""""""
10112
10113The second argument is an integer power, and the first is a value to
10114raise to that power.
10115
10116Semantics:
10117""""""""""
10118
10119This function returns the first value raised to the second power with an
10120unspecified sequence of rounding operations.
10121
10122'``llvm.sin.*``' Intrinsic
10123^^^^^^^^^^^^^^^^^^^^^^^^^^
10124
10125Syntax:
10126"""""""
10127
10128This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10129floating point or vector of floating point type. Not all targets support
10130all types however.
10131
10132::
10133
10134 declare float @llvm.sin.f32(float %Val)
10135 declare double @llvm.sin.f64(double %Val)
10136 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10137 declare fp128 @llvm.sin.f128(fp128 %Val)
10138 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10139
10140Overview:
10141"""""""""
10142
10143The '``llvm.sin.*``' intrinsics return the sine of the operand.
10144
10145Arguments:
10146""""""""""
10147
10148The argument and return value are floating point numbers of the same
10149type.
10150
10151Semantics:
10152""""""""""
10153
10154This function returns the sine of the specified operand, returning the
10155same values as the libm ``sin`` functions would, and handles error
10156conditions in the same way.
10157
10158'``llvm.cos.*``' Intrinsic
10159^^^^^^^^^^^^^^^^^^^^^^^^^^
10160
10161Syntax:
10162"""""""
10163
10164This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10165floating point or vector of floating point type. Not all targets support
10166all types however.
10167
10168::
10169
10170 declare float @llvm.cos.f32(float %Val)
10171 declare double @llvm.cos.f64(double %Val)
10172 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10173 declare fp128 @llvm.cos.f128(fp128 %Val)
10174 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10175
10176Overview:
10177"""""""""
10178
10179The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10180
10181Arguments:
10182""""""""""
10183
10184The argument and return value are floating point numbers of the same
10185type.
10186
10187Semantics:
10188""""""""""
10189
10190This function returns the cosine of the specified operand, returning the
10191same values as the libm ``cos`` functions would, and handles error
10192conditions in the same way.
10193
10194'``llvm.pow.*``' Intrinsic
10195^^^^^^^^^^^^^^^^^^^^^^^^^^
10196
10197Syntax:
10198"""""""
10199
10200This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10201floating point or vector of floating point type. Not all targets support
10202all types however.
10203
10204::
10205
10206 declare float @llvm.pow.f32(float %Val, float %Power)
10207 declare double @llvm.pow.f64(double %Val, double %Power)
10208 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10209 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10210 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10211
10212Overview:
10213"""""""""
10214
10215The '``llvm.pow.*``' intrinsics return the first operand raised to the
10216specified (positive or negative) power.
10217
10218Arguments:
10219""""""""""
10220
10221The second argument is a floating point power, and the first is a value
10222to raise to that power.
10223
10224Semantics:
10225""""""""""
10226
10227This function returns the first value raised to the second power,
10228returning the same values as the libm ``pow`` functions would, and
10229handles error conditions in the same way.
10230
10231'``llvm.exp.*``' Intrinsic
10232^^^^^^^^^^^^^^^^^^^^^^^^^^
10233
10234Syntax:
10235"""""""
10236
10237This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10238floating point or vector of floating point type. Not all targets support
10239all types however.
10240
10241::
10242
10243 declare float @llvm.exp.f32(float %Val)
10244 declare double @llvm.exp.f64(double %Val)
10245 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10246 declare fp128 @llvm.exp.f128(fp128 %Val)
10247 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10248
10249Overview:
10250"""""""""
10251
10252The '``llvm.exp.*``' intrinsics perform the exp function.
10253
10254Arguments:
10255""""""""""
10256
10257The argument and return value are floating point numbers of the same
10258type.
10259
10260Semantics:
10261""""""""""
10262
10263This function returns the same values as the libm ``exp`` functions
10264would, and handles error conditions in the same way.
10265
10266'``llvm.exp2.*``' Intrinsic
10267^^^^^^^^^^^^^^^^^^^^^^^^^^^
10268
10269Syntax:
10270"""""""
10271
10272This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10273floating point or vector of floating point type. Not all targets support
10274all types however.
10275
10276::
10277
10278 declare float @llvm.exp2.f32(float %Val)
10279 declare double @llvm.exp2.f64(double %Val)
10280 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10281 declare fp128 @llvm.exp2.f128(fp128 %Val)
10282 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10283
10284Overview:
10285"""""""""
10286
10287The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10288
10289Arguments:
10290""""""""""
10291
10292The argument and return value are floating point numbers of the same
10293type.
10294
10295Semantics:
10296""""""""""
10297
10298This function returns the same values as the libm ``exp2`` functions
10299would, and handles error conditions in the same way.
10300
10301'``llvm.log.*``' Intrinsic
10302^^^^^^^^^^^^^^^^^^^^^^^^^^
10303
10304Syntax:
10305"""""""
10306
10307This is an overloaded intrinsic. You can use ``llvm.log`` on any
10308floating point or vector of floating point type. Not all targets support
10309all types however.
10310
10311::
10312
10313 declare float @llvm.log.f32(float %Val)
10314 declare double @llvm.log.f64(double %Val)
10315 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10316 declare fp128 @llvm.log.f128(fp128 %Val)
10317 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10318
10319Overview:
10320"""""""""
10321
10322The '``llvm.log.*``' intrinsics perform the log function.
10323
10324Arguments:
10325""""""""""
10326
10327The argument and return value are floating point numbers of the same
10328type.
10329
10330Semantics:
10331""""""""""
10332
10333This function returns the same values as the libm ``log`` functions
10334would, and handles error conditions in the same way.
10335
10336'``llvm.log10.*``' Intrinsic
10337^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10338
10339Syntax:
10340"""""""
10341
10342This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10343floating point or vector of floating point type. Not all targets support
10344all types however.
10345
10346::
10347
10348 declare float @llvm.log10.f32(float %Val)
10349 declare double @llvm.log10.f64(double %Val)
10350 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10351 declare fp128 @llvm.log10.f128(fp128 %Val)
10352 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10353
10354Overview:
10355"""""""""
10356
10357The '``llvm.log10.*``' intrinsics perform the log10 function.
10358
10359Arguments:
10360""""""""""
10361
10362The argument and return value are floating point numbers of the same
10363type.
10364
10365Semantics:
10366""""""""""
10367
10368This function returns the same values as the libm ``log10`` functions
10369would, and handles error conditions in the same way.
10370
10371'``llvm.log2.*``' Intrinsic
10372^^^^^^^^^^^^^^^^^^^^^^^^^^^
10373
10374Syntax:
10375"""""""
10376
10377This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10378floating point or vector of floating point type. Not all targets support
10379all types however.
10380
10381::
10382
10383 declare float @llvm.log2.f32(float %Val)
10384 declare double @llvm.log2.f64(double %Val)
10385 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10386 declare fp128 @llvm.log2.f128(fp128 %Val)
10387 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10388
10389Overview:
10390"""""""""
10391
10392The '``llvm.log2.*``' intrinsics perform the log2 function.
10393
10394Arguments:
10395""""""""""
10396
10397The argument and return value are floating point numbers of the same
10398type.
10399
10400Semantics:
10401""""""""""
10402
10403This function returns the same values as the libm ``log2`` functions
10404would, and handles error conditions in the same way.
10405
10406'``llvm.fma.*``' Intrinsic
10407^^^^^^^^^^^^^^^^^^^^^^^^^^
10408
10409Syntax:
10410"""""""
10411
10412This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10413floating point or vector of floating point type. Not all targets support
10414all types however.
10415
10416::
10417
10418 declare float @llvm.fma.f32(float %a, float %b, float %c)
10419 declare double @llvm.fma.f64(double %a, double %b, double %c)
10420 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10421 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10422 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10423
10424Overview:
10425"""""""""
10426
10427The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10428operation.
10429
10430Arguments:
10431""""""""""
10432
10433The argument and return value are floating point numbers of the same
10434type.
10435
10436Semantics:
10437""""""""""
10438
10439This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010440would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010441
10442'``llvm.fabs.*``' Intrinsic
10443^^^^^^^^^^^^^^^^^^^^^^^^^^^
10444
10445Syntax:
10446"""""""
10447
10448This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10449floating point or vector of floating point type. Not all targets support
10450all types however.
10451
10452::
10453
10454 declare float @llvm.fabs.f32(float %Val)
10455 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010456 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010457 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010458 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010459
10460Overview:
10461"""""""""
10462
10463The '``llvm.fabs.*``' intrinsics return the absolute value of the
10464operand.
10465
10466Arguments:
10467""""""""""
10468
10469The argument and return value are floating point numbers of the same
10470type.
10471
10472Semantics:
10473""""""""""
10474
10475This function returns the same values as the libm ``fabs`` functions
10476would, and handles error conditions in the same way.
10477
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010478'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010479^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010480
10481Syntax:
10482"""""""
10483
10484This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10485floating point or vector of floating point type. Not all targets support
10486all types however.
10487
10488::
10489
Matt Arsenault64313c92014-10-22 18:25:02 +000010490 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10491 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10492 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10493 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10494 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010495
10496Overview:
10497"""""""""
10498
10499The '``llvm.minnum.*``' intrinsics return the minimum of the two
10500arguments.
10501
10502
10503Arguments:
10504""""""""""
10505
10506The arguments and return value are floating point numbers of the same
10507type.
10508
10509Semantics:
10510""""""""""
10511
10512Follows the IEEE-754 semantics for minNum, which also match for libm's
10513fmin.
10514
10515If either operand is a NaN, returns the other non-NaN operand. Returns
10516NaN only if both operands are NaN. If the operands compare equal,
10517returns a value that compares equal to both operands. This means that
10518fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10519
10520'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010521^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010522
10523Syntax:
10524"""""""
10525
10526This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10527floating point or vector of floating point type. Not all targets support
10528all types however.
10529
10530::
10531
Matt Arsenault64313c92014-10-22 18:25:02 +000010532 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10533 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10534 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10535 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10536 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010537
10538Overview:
10539"""""""""
10540
10541The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10542arguments.
10543
10544
10545Arguments:
10546""""""""""
10547
10548The arguments and return value are floating point numbers of the same
10549type.
10550
10551Semantics:
10552""""""""""
10553Follows the IEEE-754 semantics for maxNum, which also match for libm's
10554fmax.
10555
10556If either operand is a NaN, returns the other non-NaN operand. Returns
10557NaN only if both operands are NaN. If the operands compare equal,
10558returns a value that compares equal to both operands. This means that
10559fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10560
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010561'``llvm.copysign.*``' Intrinsic
10562^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10563
10564Syntax:
10565"""""""
10566
10567This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10568floating point or vector of floating point type. Not all targets support
10569all types however.
10570
10571::
10572
10573 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10574 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10575 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10576 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10577 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10578
10579Overview:
10580"""""""""
10581
10582The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10583first operand and the sign of the second operand.
10584
10585Arguments:
10586""""""""""
10587
10588The arguments and return value are floating point numbers of the same
10589type.
10590
10591Semantics:
10592""""""""""
10593
10594This function returns the same values as the libm ``copysign``
10595functions would, and handles error conditions in the same way.
10596
Sean Silvab084af42012-12-07 10:36:55 +000010597'``llvm.floor.*``' Intrinsic
10598^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10599
10600Syntax:
10601"""""""
10602
10603This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10604floating point or vector of floating point type. Not all targets support
10605all types however.
10606
10607::
10608
10609 declare float @llvm.floor.f32(float %Val)
10610 declare double @llvm.floor.f64(double %Val)
10611 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10612 declare fp128 @llvm.floor.f128(fp128 %Val)
10613 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10614
10615Overview:
10616"""""""""
10617
10618The '``llvm.floor.*``' intrinsics return the floor of the operand.
10619
10620Arguments:
10621""""""""""
10622
10623The argument and return value are floating point numbers of the same
10624type.
10625
10626Semantics:
10627""""""""""
10628
10629This function returns the same values as the libm ``floor`` functions
10630would, and handles error conditions in the same way.
10631
10632'``llvm.ceil.*``' Intrinsic
10633^^^^^^^^^^^^^^^^^^^^^^^^^^^
10634
10635Syntax:
10636"""""""
10637
10638This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10639floating point or vector of floating point type. Not all targets support
10640all types however.
10641
10642::
10643
10644 declare float @llvm.ceil.f32(float %Val)
10645 declare double @llvm.ceil.f64(double %Val)
10646 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10647 declare fp128 @llvm.ceil.f128(fp128 %Val)
10648 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10649
10650Overview:
10651"""""""""
10652
10653The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10654
10655Arguments:
10656""""""""""
10657
10658The argument and return value are floating point numbers of the same
10659type.
10660
10661Semantics:
10662""""""""""
10663
10664This function returns the same values as the libm ``ceil`` functions
10665would, and handles error conditions in the same way.
10666
10667'``llvm.trunc.*``' Intrinsic
10668^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10669
10670Syntax:
10671"""""""
10672
10673This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10674floating point or vector of floating point type. Not all targets support
10675all types however.
10676
10677::
10678
10679 declare float @llvm.trunc.f32(float %Val)
10680 declare double @llvm.trunc.f64(double %Val)
10681 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10682 declare fp128 @llvm.trunc.f128(fp128 %Val)
10683 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10684
10685Overview:
10686"""""""""
10687
10688The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10689nearest integer not larger in magnitude than the operand.
10690
10691Arguments:
10692""""""""""
10693
10694The argument and return value are floating point numbers of the same
10695type.
10696
10697Semantics:
10698""""""""""
10699
10700This function returns the same values as the libm ``trunc`` functions
10701would, and handles error conditions in the same way.
10702
10703'``llvm.rint.*``' Intrinsic
10704^^^^^^^^^^^^^^^^^^^^^^^^^^^
10705
10706Syntax:
10707"""""""
10708
10709This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10710floating point or vector of floating point type. Not all targets support
10711all types however.
10712
10713::
10714
10715 declare float @llvm.rint.f32(float %Val)
10716 declare double @llvm.rint.f64(double %Val)
10717 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10718 declare fp128 @llvm.rint.f128(fp128 %Val)
10719 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10720
10721Overview:
10722"""""""""
10723
10724The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10725nearest integer. It may raise an inexact floating-point exception if the
10726operand isn't an integer.
10727
10728Arguments:
10729""""""""""
10730
10731The argument and return value are floating point numbers of the same
10732type.
10733
10734Semantics:
10735""""""""""
10736
10737This function returns the same values as the libm ``rint`` functions
10738would, and handles error conditions in the same way.
10739
10740'``llvm.nearbyint.*``' Intrinsic
10741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10742
10743Syntax:
10744"""""""
10745
10746This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10747floating point or vector of floating point type. Not all targets support
10748all types however.
10749
10750::
10751
10752 declare float @llvm.nearbyint.f32(float %Val)
10753 declare double @llvm.nearbyint.f64(double %Val)
10754 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10755 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10756 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10757
10758Overview:
10759"""""""""
10760
10761The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10762nearest integer.
10763
10764Arguments:
10765""""""""""
10766
10767The argument and return value are floating point numbers of the same
10768type.
10769
10770Semantics:
10771""""""""""
10772
10773This function returns the same values as the libm ``nearbyint``
10774functions would, and handles error conditions in the same way.
10775
Hal Finkel171817e2013-08-07 22:49:12 +000010776'``llvm.round.*``' Intrinsic
10777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10778
10779Syntax:
10780"""""""
10781
10782This is an overloaded intrinsic. You can use ``llvm.round`` on any
10783floating point or vector of floating point type. Not all targets support
10784all types however.
10785
10786::
10787
10788 declare float @llvm.round.f32(float %Val)
10789 declare double @llvm.round.f64(double %Val)
10790 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10791 declare fp128 @llvm.round.f128(fp128 %Val)
10792 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10793
10794Overview:
10795"""""""""
10796
10797The '``llvm.round.*``' intrinsics returns the operand rounded to the
10798nearest integer.
10799
10800Arguments:
10801""""""""""
10802
10803The argument and return value are floating point numbers of the same
10804type.
10805
10806Semantics:
10807""""""""""
10808
10809This function returns the same values as the libm ``round``
10810functions would, and handles error conditions in the same way.
10811
Sean Silvab084af42012-12-07 10:36:55 +000010812Bit Manipulation Intrinsics
10813---------------------------
10814
10815LLVM provides intrinsics for a few important bit manipulation
10816operations. These allow efficient code generation for some algorithms.
10817
James Molloy90111f72015-11-12 12:29:09 +000010818'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010819^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010820
10821Syntax:
10822"""""""
10823
10824This is an overloaded intrinsic function. You can use bitreverse on any
10825integer type.
10826
10827::
10828
10829 declare i16 @llvm.bitreverse.i16(i16 <id>)
10830 declare i32 @llvm.bitreverse.i32(i32 <id>)
10831 declare i64 @llvm.bitreverse.i64(i64 <id>)
10832
10833Overview:
10834"""""""""
10835
10836The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010837bitpattern of an integer value; for example ``0b10110110`` becomes
10838``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010839
10840Semantics:
10841""""""""""
10842
Yichao Yu5abf14b2016-11-23 16:25:31 +000010843The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000010844``M`` in the input moved to bit ``N-M`` in the output.
10845
Sean Silvab084af42012-12-07 10:36:55 +000010846'``llvm.bswap.*``' Intrinsics
10847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10848
10849Syntax:
10850"""""""
10851
10852This is an overloaded intrinsic function. You can use bswap on any
10853integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10854
10855::
10856
10857 declare i16 @llvm.bswap.i16(i16 <id>)
10858 declare i32 @llvm.bswap.i32(i32 <id>)
10859 declare i64 @llvm.bswap.i64(i64 <id>)
10860
10861Overview:
10862"""""""""
10863
10864The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10865values with an even number of bytes (positive multiple of 16 bits).
10866These are useful for performing operations on data that is not in the
10867target's native byte order.
10868
10869Semantics:
10870""""""""""
10871
10872The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10873and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10874intrinsic returns an i32 value that has the four bytes of the input i32
10875swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10876returned i32 will have its bytes in 3, 2, 1, 0 order. The
10877``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10878concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10879respectively).
10880
10881'``llvm.ctpop.*``' Intrinsic
10882^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10883
10884Syntax:
10885"""""""
10886
10887This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10888bit width, or on any vector with integer elements. Not all targets
10889support all bit widths or vector types, however.
10890
10891::
10892
10893 declare i8 @llvm.ctpop.i8(i8 <src>)
10894 declare i16 @llvm.ctpop.i16(i16 <src>)
10895 declare i32 @llvm.ctpop.i32(i32 <src>)
10896 declare i64 @llvm.ctpop.i64(i64 <src>)
10897 declare i256 @llvm.ctpop.i256(i256 <src>)
10898 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10899
10900Overview:
10901"""""""""
10902
10903The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10904in a value.
10905
10906Arguments:
10907""""""""""
10908
10909The only argument is the value to be counted. The argument may be of any
10910integer type, or a vector with integer elements. The return type must
10911match the argument type.
10912
10913Semantics:
10914""""""""""
10915
10916The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10917each element of a vector.
10918
10919'``llvm.ctlz.*``' Intrinsic
10920^^^^^^^^^^^^^^^^^^^^^^^^^^^
10921
10922Syntax:
10923"""""""
10924
10925This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10926integer bit width, or any vector whose elements are integers. Not all
10927targets support all bit widths or vector types, however.
10928
10929::
10930
10931 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10932 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10933 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10934 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10935 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010936 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010937
10938Overview:
10939"""""""""
10940
10941The '``llvm.ctlz``' family of intrinsic functions counts the number of
10942leading zeros in a variable.
10943
10944Arguments:
10945""""""""""
10946
10947The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010948any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010949type must match the first argument type.
10950
10951The second argument must be a constant and is a flag to indicate whether
10952the intrinsic should ensure that a zero as the first argument produces a
10953defined result. Historically some architectures did not provide a
10954defined result for zero values as efficiently, and many algorithms are
10955now predicated on avoiding zero-value inputs.
10956
10957Semantics:
10958""""""""""
10959
10960The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10961zeros in a variable, or within each element of the vector. If
10962``src == 0`` then the result is the size in bits of the type of ``src``
10963if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10964``llvm.ctlz(i32 2) = 30``.
10965
10966'``llvm.cttz.*``' Intrinsic
10967^^^^^^^^^^^^^^^^^^^^^^^^^^^
10968
10969Syntax:
10970"""""""
10971
10972This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10973integer bit width, or any vector of integer elements. Not all targets
10974support all bit widths or vector types, however.
10975
10976::
10977
10978 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10979 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10980 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10981 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10982 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010983 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010984
10985Overview:
10986"""""""""
10987
10988The '``llvm.cttz``' family of intrinsic functions counts the number of
10989trailing zeros.
10990
10991Arguments:
10992""""""""""
10993
10994The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010995any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010996type must match the first argument type.
10997
10998The second argument must be a constant and is a flag to indicate whether
10999the intrinsic should ensure that a zero as the first argument produces a
11000defined result. Historically some architectures did not provide a
11001defined result for zero values as efficiently, and many algorithms are
11002now predicated on avoiding zero-value inputs.
11003
11004Semantics:
11005""""""""""
11006
11007The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11008zeros in a variable, or within each element of a vector. If ``src == 0``
11009then the result is the size in bits of the type of ``src`` if
11010``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11011``llvm.cttz(2) = 1``.
11012
Philip Reames34843ae2015-03-05 05:55:55 +000011013.. _int_overflow:
11014
Sean Silvab084af42012-12-07 10:36:55 +000011015Arithmetic with Overflow Intrinsics
11016-----------------------------------
11017
John Regehr6a493f22016-05-12 20:55:09 +000011018LLVM provides intrinsics for fast arithmetic overflow checking.
11019
11020Each of these intrinsics returns a two-element struct. The first
11021element of this struct contains the result of the corresponding
11022arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11023the result. Therefore, for example, the first element of the struct
11024returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11025result of a 32-bit ``add`` instruction with the same operands, where
11026the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11027
11028The second element of the result is an ``i1`` that is 1 if the
11029arithmetic operation overflowed and 0 otherwise. An operation
11030overflows if, for any values of its operands ``A`` and ``B`` and for
11031any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11032not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11033``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11034``op`` is the underlying arithmetic operation.
11035
11036The behavior of these intrinsics is well-defined for all argument
11037values.
Sean Silvab084af42012-12-07 10:36:55 +000011038
11039'``llvm.sadd.with.overflow.*``' Intrinsics
11040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11041
11042Syntax:
11043"""""""
11044
11045This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11046on any integer bit width.
11047
11048::
11049
11050 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11051 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11052 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11053
11054Overview:
11055"""""""""
11056
11057The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11058a signed addition of the two arguments, and indicate whether an overflow
11059occurred during the signed summation.
11060
11061Arguments:
11062""""""""""
11063
11064The arguments (%a and %b) and the first element of the result structure
11065may be of integer types of any bit width, but they must have the same
11066bit width. The second element of the result structure must be of type
11067``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11068addition.
11069
11070Semantics:
11071""""""""""
11072
11073The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011074a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011075first element of which is the signed summation, and the second element
11076of which is a bit specifying if the signed summation resulted in an
11077overflow.
11078
11079Examples:
11080"""""""""
11081
11082.. code-block:: llvm
11083
11084 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11085 %sum = extractvalue {i32, i1} %res, 0
11086 %obit = extractvalue {i32, i1} %res, 1
11087 br i1 %obit, label %overflow, label %normal
11088
11089'``llvm.uadd.with.overflow.*``' Intrinsics
11090^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11091
11092Syntax:
11093"""""""
11094
11095This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11096on any integer bit width.
11097
11098::
11099
11100 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11101 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11102 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11103
11104Overview:
11105"""""""""
11106
11107The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11108an unsigned addition of the two arguments, and indicate whether a carry
11109occurred during the unsigned summation.
11110
11111Arguments:
11112""""""""""
11113
11114The arguments (%a and %b) and the first element of the result structure
11115may be of integer types of any bit width, but they must have the same
11116bit width. The second element of the result structure must be of type
11117``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11118addition.
11119
11120Semantics:
11121""""""""""
11122
11123The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011124an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011125first element of which is the sum, and the second element of which is a
11126bit specifying if the unsigned summation resulted in a carry.
11127
11128Examples:
11129"""""""""
11130
11131.. code-block:: llvm
11132
11133 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11134 %sum = extractvalue {i32, i1} %res, 0
11135 %obit = extractvalue {i32, i1} %res, 1
11136 br i1 %obit, label %carry, label %normal
11137
11138'``llvm.ssub.with.overflow.*``' Intrinsics
11139^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11140
11141Syntax:
11142"""""""
11143
11144This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11145on any integer bit width.
11146
11147::
11148
11149 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11150 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11151 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11152
11153Overview:
11154"""""""""
11155
11156The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11157a signed subtraction of the two arguments, and indicate whether an
11158overflow occurred during the signed subtraction.
11159
11160Arguments:
11161""""""""""
11162
11163The arguments (%a and %b) and the first element of the result structure
11164may be of integer types of any bit width, but they must have the same
11165bit width. The second element of the result structure must be of type
11166``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11167subtraction.
11168
11169Semantics:
11170""""""""""
11171
11172The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011173a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011174first element of which is the subtraction, and the second element of
11175which is a bit specifying if the signed subtraction resulted in an
11176overflow.
11177
11178Examples:
11179"""""""""
11180
11181.. code-block:: llvm
11182
11183 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11184 %sum = extractvalue {i32, i1} %res, 0
11185 %obit = extractvalue {i32, i1} %res, 1
11186 br i1 %obit, label %overflow, label %normal
11187
11188'``llvm.usub.with.overflow.*``' Intrinsics
11189^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11190
11191Syntax:
11192"""""""
11193
11194This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11195on any integer bit width.
11196
11197::
11198
11199 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11200 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11201 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11202
11203Overview:
11204"""""""""
11205
11206The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11207an unsigned subtraction of the two arguments, and indicate whether an
11208overflow occurred during the unsigned subtraction.
11209
11210Arguments:
11211""""""""""
11212
11213The arguments (%a and %b) and the first element of the result structure
11214may be of integer types of any bit width, but they must have the same
11215bit width. The second element of the result structure must be of type
11216``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11217subtraction.
11218
11219Semantics:
11220""""""""""
11221
11222The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011223an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011224the first element of which is the subtraction, and the second element of
11225which is a bit specifying if the unsigned subtraction resulted in an
11226overflow.
11227
11228Examples:
11229"""""""""
11230
11231.. code-block:: llvm
11232
11233 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11234 %sum = extractvalue {i32, i1} %res, 0
11235 %obit = extractvalue {i32, i1} %res, 1
11236 br i1 %obit, label %overflow, label %normal
11237
11238'``llvm.smul.with.overflow.*``' Intrinsics
11239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11240
11241Syntax:
11242"""""""
11243
11244This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11245on any integer bit width.
11246
11247::
11248
11249 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11250 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11251 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11252
11253Overview:
11254"""""""""
11255
11256The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11257a signed multiplication of the two arguments, and indicate whether an
11258overflow occurred during the signed multiplication.
11259
11260Arguments:
11261""""""""""
11262
11263The arguments (%a and %b) and the first element of the result structure
11264may be of integer types of any bit width, but they must have the same
11265bit width. The second element of the result structure must be of type
11266``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11267multiplication.
11268
11269Semantics:
11270""""""""""
11271
11272The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011273a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011274the first element of which is the multiplication, and the second element
11275of which is a bit specifying if the signed multiplication resulted in an
11276overflow.
11277
11278Examples:
11279"""""""""
11280
11281.. code-block:: llvm
11282
11283 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11284 %sum = extractvalue {i32, i1} %res, 0
11285 %obit = extractvalue {i32, i1} %res, 1
11286 br i1 %obit, label %overflow, label %normal
11287
11288'``llvm.umul.with.overflow.*``' Intrinsics
11289^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11290
11291Syntax:
11292"""""""
11293
11294This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11295on any integer bit width.
11296
11297::
11298
11299 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11300 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11301 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11302
11303Overview:
11304"""""""""
11305
11306The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11307a unsigned multiplication of the two arguments, and indicate whether an
11308overflow occurred during the unsigned multiplication.
11309
11310Arguments:
11311""""""""""
11312
11313The arguments (%a and %b) and the first element of the result structure
11314may be of integer types of any bit width, but they must have the same
11315bit width. The second element of the result structure must be of type
11316``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11317multiplication.
11318
11319Semantics:
11320""""""""""
11321
11322The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011323an unsigned multiplication of the two arguments. They return a structure ---
11324the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011325element of which is a bit specifying if the unsigned multiplication
11326resulted in an overflow.
11327
11328Examples:
11329"""""""""
11330
11331.. code-block:: llvm
11332
11333 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11334 %sum = extractvalue {i32, i1} %res, 0
11335 %obit = extractvalue {i32, i1} %res, 1
11336 br i1 %obit, label %overflow, label %normal
11337
11338Specialised Arithmetic Intrinsics
11339---------------------------------
11340
Owen Anderson1056a922015-07-11 07:01:27 +000011341'``llvm.canonicalize.*``' Intrinsic
11342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11343
11344Syntax:
11345"""""""
11346
11347::
11348
11349 declare float @llvm.canonicalize.f32(float %a)
11350 declare double @llvm.canonicalize.f64(double %b)
11351
11352Overview:
11353"""""""""
11354
11355The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011356encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011357implementing certain numeric primitives such as frexp. The canonical encoding is
11358defined by IEEE-754-2008 to be:
11359
11360::
11361
11362 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011363 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011364 numbers, infinities, and NaNs, especially in decimal formats.
11365
11366This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011367conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011368according to section 6.2.
11369
11370Examples of non-canonical encodings:
11371
Sean Silvaa1190322015-08-06 22:56:48 +000011372- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011373 converted to a canonical representation per hardware-specific protocol.
11374- Many normal decimal floating point numbers have non-canonical alternative
11375 encodings.
11376- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011377 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011378 a zero of the same sign by this operation.
11379
11380Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11381default exception handling must signal an invalid exception, and produce a
11382quiet NaN result.
11383
11384This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011385that the compiler does not constant fold the operation. Likewise, division by
113861.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011387-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11388
Sean Silvaa1190322015-08-06 22:56:48 +000011389``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011390
11391- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11392- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11393 to ``(x == y)``
11394
11395Additionally, the sign of zero must be conserved:
11396``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11397
11398The payload bits of a NaN must be conserved, with two exceptions.
11399First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011400must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011401usual methods.
11402
11403The canonicalization operation may be optimized away if:
11404
Sean Silvaa1190322015-08-06 22:56:48 +000011405- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011406 floating-point operation that is required by the standard to be canonical.
11407- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011408 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011409
Sean Silvab084af42012-12-07 10:36:55 +000011410'``llvm.fmuladd.*``' Intrinsic
11411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11412
11413Syntax:
11414"""""""
11415
11416::
11417
11418 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11419 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11420
11421Overview:
11422"""""""""
11423
11424The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011425expressions that can be fused if the code generator determines that (a) the
11426target instruction set has support for a fused operation, and (b) that the
11427fused operation is more efficient than the equivalent, separate pair of mul
11428and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011429
11430Arguments:
11431""""""""""
11432
11433The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11434multiplicands, a and b, and an addend c.
11435
11436Semantics:
11437""""""""""
11438
11439The expression:
11440
11441::
11442
11443 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11444
11445is equivalent to the expression a \* b + c, except that rounding will
11446not be performed between the multiplication and addition steps if the
11447code generator fuses the operations. Fusion is not guaranteed, even if
11448the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011449corresponding llvm.fma.\* intrinsic function should be used
11450instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011451
11452Examples:
11453"""""""""
11454
11455.. code-block:: llvm
11456
Tim Northover675a0962014-06-13 14:24:23 +000011457 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011458
11459Half Precision Floating Point Intrinsics
11460----------------------------------------
11461
11462For most target platforms, half precision floating point is a
11463storage-only format. This means that it is a dense encoding (in memory)
11464but does not support computation in the format.
11465
11466This means that code must first load the half-precision floating point
11467value as an i16, then convert it to float with
11468:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11469then be performed on the float value (including extending to double
11470etc). To store the value back to memory, it is first converted to float
11471if needed, then converted to i16 with
11472:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11473i16 value.
11474
11475.. _int_convert_to_fp16:
11476
11477'``llvm.convert.to.fp16``' Intrinsic
11478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11479
11480Syntax:
11481"""""""
11482
11483::
11484
Tim Northoverfd7e4242014-07-17 10:51:23 +000011485 declare i16 @llvm.convert.to.fp16.f32(float %a)
11486 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011487
11488Overview:
11489"""""""""
11490
Tim Northoverfd7e4242014-07-17 10:51:23 +000011491The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11492conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011493
11494Arguments:
11495""""""""""
11496
11497The intrinsic function contains single argument - the value to be
11498converted.
11499
11500Semantics:
11501""""""""""
11502
Tim Northoverfd7e4242014-07-17 10:51:23 +000011503The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11504conventional floating point format to half precision floating point format. The
11505return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011506
11507Examples:
11508"""""""""
11509
11510.. code-block:: llvm
11511
Tim Northoverfd7e4242014-07-17 10:51:23 +000011512 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011513 store i16 %res, i16* @x, align 2
11514
11515.. _int_convert_from_fp16:
11516
11517'``llvm.convert.from.fp16``' Intrinsic
11518^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11519
11520Syntax:
11521"""""""
11522
11523::
11524
Tim Northoverfd7e4242014-07-17 10:51:23 +000011525 declare float @llvm.convert.from.fp16.f32(i16 %a)
11526 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011527
11528Overview:
11529"""""""""
11530
11531The '``llvm.convert.from.fp16``' intrinsic function performs a
11532conversion from half precision floating point format to single precision
11533floating point format.
11534
11535Arguments:
11536""""""""""
11537
11538The intrinsic function contains single argument - the value to be
11539converted.
11540
11541Semantics:
11542""""""""""
11543
11544The '``llvm.convert.from.fp16``' intrinsic function performs a
11545conversion from half single precision floating point format to single
11546precision floating point format. The input half-float value is
11547represented by an ``i16`` value.
11548
11549Examples:
11550"""""""""
11551
11552.. code-block:: llvm
11553
David Blaikiec7aabbb2015-03-04 22:06:14 +000011554 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011555 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011556
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011557.. _dbg_intrinsics:
11558
Sean Silvab084af42012-12-07 10:36:55 +000011559Debugger Intrinsics
11560-------------------
11561
11562The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11563prefix), are described in the `LLVM Source Level
11564Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11565document.
11566
11567Exception Handling Intrinsics
11568-----------------------------
11569
11570The LLVM exception handling intrinsics (which all start with
11571``llvm.eh.`` prefix), are described in the `LLVM Exception
11572Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11573
11574.. _int_trampoline:
11575
11576Trampoline Intrinsics
11577---------------------
11578
11579These intrinsics make it possible to excise one parameter, marked with
11580the :ref:`nest <nest>` attribute, from a function. The result is a
11581callable function pointer lacking the nest parameter - the caller does
11582not need to provide a value for it. Instead, the value to use is stored
11583in advance in a "trampoline", a block of memory usually allocated on the
11584stack, which also contains code to splice the nest value into the
11585argument list. This is used to implement the GCC nested function address
11586extension.
11587
11588For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11589then the resulting function pointer has signature ``i32 (i32, i32)*``.
11590It can be created as follows:
11591
11592.. code-block:: llvm
11593
11594 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011595 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011596 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11597 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11598 %fp = bitcast i8* %p to i32 (i32, i32)*
11599
11600The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11601``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11602
11603.. _int_it:
11604
11605'``llvm.init.trampoline``' Intrinsic
11606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11607
11608Syntax:
11609"""""""
11610
11611::
11612
11613 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11614
11615Overview:
11616"""""""""
11617
11618This fills the memory pointed to by ``tramp`` with executable code,
11619turning it into a trampoline.
11620
11621Arguments:
11622""""""""""
11623
11624The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11625pointers. The ``tramp`` argument must point to a sufficiently large and
11626sufficiently aligned block of memory; this memory is written to by the
11627intrinsic. Note that the size and the alignment are target-specific -
11628LLVM currently provides no portable way of determining them, so a
11629front-end that generates this intrinsic needs to have some
11630target-specific knowledge. The ``func`` argument must hold a function
11631bitcast to an ``i8*``.
11632
11633Semantics:
11634""""""""""
11635
11636The block of memory pointed to by ``tramp`` is filled with target
11637dependent code, turning it into a function. Then ``tramp`` needs to be
11638passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11639be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11640function's signature is the same as that of ``func`` with any arguments
11641marked with the ``nest`` attribute removed. At most one such ``nest``
11642argument is allowed, and it must be of pointer type. Calling the new
11643function is equivalent to calling ``func`` with the same argument list,
11644but with ``nval`` used for the missing ``nest`` argument. If, after
11645calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11646modified, then the effect of any later call to the returned function
11647pointer is undefined.
11648
11649.. _int_at:
11650
11651'``llvm.adjust.trampoline``' Intrinsic
11652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11653
11654Syntax:
11655"""""""
11656
11657::
11658
11659 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11660
11661Overview:
11662"""""""""
11663
11664This performs any required machine-specific adjustment to the address of
11665a trampoline (passed as ``tramp``).
11666
11667Arguments:
11668""""""""""
11669
11670``tramp`` must point to a block of memory which already has trampoline
11671code filled in by a previous call to
11672:ref:`llvm.init.trampoline <int_it>`.
11673
11674Semantics:
11675""""""""""
11676
11677On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011678different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011679intrinsic returns the executable address corresponding to ``tramp``
11680after performing the required machine specific adjustments. The pointer
11681returned can then be :ref:`bitcast and executed <int_trampoline>`.
11682
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011683.. _int_mload_mstore:
11684
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011685Masked Vector Load and Store Intrinsics
11686---------------------------------------
11687
11688LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11689
11690.. _int_mload:
11691
11692'``llvm.masked.load.*``' Intrinsics
11693^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11694
11695Syntax:
11696"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011697This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011698
11699::
11700
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011701 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11702 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011703 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011704 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011705 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011706 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011707
11708Overview:
11709"""""""""
11710
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011711Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011712
11713
11714Arguments:
11715""""""""""
11716
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011717The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011718
11719
11720Semantics:
11721""""""""""
11722
11723The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11724The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11725
11726
11727::
11728
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011729 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011730
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011731 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011732 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011733 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011734
11735.. _int_mstore:
11736
11737'``llvm.masked.store.*``' Intrinsics
11738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11739
11740Syntax:
11741"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011742This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011743
11744::
11745
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011746 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11747 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011748 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011749 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011750 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011751 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011752
11753Overview:
11754"""""""""
11755
11756Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11757
11758Arguments:
11759""""""""""
11760
11761The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11762
11763
11764Semantics:
11765""""""""""
11766
11767The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11768The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11769
11770::
11771
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011772 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011773
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011774 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011775 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011776 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11777 store <16 x float> %res, <16 x float>* %ptr, align 4
11778
11779
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011780Masked Vector Gather and Scatter Intrinsics
11781-------------------------------------------
11782
11783LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11784
11785.. _int_mgather:
11786
11787'``llvm.masked.gather.*``' Intrinsics
11788^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11789
11790Syntax:
11791"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011792This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011793
11794::
11795
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011796 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11797 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11798 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011799
11800Overview:
11801"""""""""
11802
11803Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11804
11805
11806Arguments:
11807""""""""""
11808
11809The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11810
11811
11812Semantics:
11813""""""""""
11814
11815The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11816The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11817
11818
11819::
11820
11821 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11822
11823 ;; The gather with all-true mask is equivalent to the following instruction sequence
11824 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11825 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11826 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11827 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11828
11829 %val0 = load double, double* %ptr0, align 8
11830 %val1 = load double, double* %ptr1, align 8
11831 %val2 = load double, double* %ptr2, align 8
11832 %val3 = load double, double* %ptr3, align 8
11833
11834 %vec0 = insertelement <4 x double>undef, %val0, 0
11835 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11836 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11837 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11838
11839.. _int_mscatter:
11840
11841'``llvm.masked.scatter.*``' Intrinsics
11842^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11843
11844Syntax:
11845"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011846This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011847
11848::
11849
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011850 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11851 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11852 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011853
11854Overview:
11855"""""""""
11856
11857Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11858
11859Arguments:
11860""""""""""
11861
11862The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11863
11864
11865Semantics:
11866""""""""""
11867
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011868The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011869
11870::
11871
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011872 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011873 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11874
11875 ;; It is equivalent to a list of scalar stores
11876 %val0 = extractelement <8 x i32> %value, i32 0
11877 %val1 = extractelement <8 x i32> %value, i32 1
11878 ..
11879 %val7 = extractelement <8 x i32> %value, i32 7
11880 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11881 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11882 ..
11883 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11884 ;; Note: the order of the following stores is important when they overlap:
11885 store i32 %val0, i32* %ptr0, align 4
11886 store i32 %val1, i32* %ptr1, align 4
11887 ..
11888 store i32 %val7, i32* %ptr7, align 4
11889
11890
Sean Silvab084af42012-12-07 10:36:55 +000011891Memory Use Markers
11892------------------
11893
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011894This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011895memory objects and ranges where variables are immutable.
11896
Reid Klecknera534a382013-12-19 02:14:12 +000011897.. _int_lifestart:
11898
Sean Silvab084af42012-12-07 10:36:55 +000011899'``llvm.lifetime.start``' Intrinsic
11900^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11901
11902Syntax:
11903"""""""
11904
11905::
11906
11907 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11908
11909Overview:
11910"""""""""
11911
11912The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11913object's lifetime.
11914
11915Arguments:
11916""""""""""
11917
11918The first argument is a constant integer representing the size of the
11919object, or -1 if it is variable sized. The second argument is a pointer
11920to the object.
11921
11922Semantics:
11923""""""""""
11924
11925This intrinsic indicates that before this point in the code, the value
11926of the memory pointed to by ``ptr`` is dead. This means that it is known
11927to never be used and has an undefined value. A load from the pointer
11928that precedes this intrinsic can be replaced with ``'undef'``.
11929
Reid Klecknera534a382013-12-19 02:14:12 +000011930.. _int_lifeend:
11931
Sean Silvab084af42012-12-07 10:36:55 +000011932'``llvm.lifetime.end``' Intrinsic
11933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11934
11935Syntax:
11936"""""""
11937
11938::
11939
11940 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11941
11942Overview:
11943"""""""""
11944
11945The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11946object's lifetime.
11947
11948Arguments:
11949""""""""""
11950
11951The first argument is a constant integer representing the size of the
11952object, or -1 if it is variable sized. The second argument is a pointer
11953to the object.
11954
11955Semantics:
11956""""""""""
11957
11958This intrinsic indicates that after this point in the code, the value of
11959the memory pointed to by ``ptr`` is dead. This means that it is known to
11960never be used and has an undefined value. Any stores into the memory
11961object following this intrinsic may be removed as dead.
11962
11963'``llvm.invariant.start``' Intrinsic
11964^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11965
11966Syntax:
11967"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011968This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011969
11970::
11971
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011972 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011973
11974Overview:
11975"""""""""
11976
11977The '``llvm.invariant.start``' intrinsic specifies that the contents of
11978a memory object will not change.
11979
11980Arguments:
11981""""""""""
11982
11983The first argument is a constant integer representing the size of the
11984object, or -1 if it is variable sized. The second argument is a pointer
11985to the object.
11986
11987Semantics:
11988""""""""""
11989
11990This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11991the return value, the referenced memory location is constant and
11992unchanging.
11993
11994'``llvm.invariant.end``' Intrinsic
11995^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11996
11997Syntax:
11998"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011999This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012000
12001::
12002
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012003 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012004
12005Overview:
12006"""""""""
12007
12008The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12009memory object are mutable.
12010
12011Arguments:
12012""""""""""
12013
12014The first argument is the matching ``llvm.invariant.start`` intrinsic.
12015The second argument is a constant integer representing the size of the
12016object, or -1 if it is variable sized and the third argument is a
12017pointer to the object.
12018
12019Semantics:
12020""""""""""
12021
12022This intrinsic indicates that the memory is mutable again.
12023
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012024'``llvm.invariant.group.barrier``' Intrinsic
12025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12026
12027Syntax:
12028"""""""
12029
12030::
12031
12032 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12033
12034Overview:
12035"""""""""
12036
12037The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12038established by invariant.group metadata no longer holds, to obtain a new pointer
12039value that does not carry the invariant information.
12040
12041
12042Arguments:
12043""""""""""
12044
12045The ``llvm.invariant.group.barrier`` takes only one argument, which is
12046the pointer to the memory for which the ``invariant.group`` no longer holds.
12047
12048Semantics:
12049""""""""""
12050
12051Returns another pointer that aliases its argument but which is considered different
12052for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12053
Sean Silvab084af42012-12-07 10:36:55 +000012054General Intrinsics
12055------------------
12056
12057This class of intrinsics is designed to be generic and has no specific
12058purpose.
12059
12060'``llvm.var.annotation``' Intrinsic
12061^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12062
12063Syntax:
12064"""""""
12065
12066::
12067
12068 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12069
12070Overview:
12071"""""""""
12072
12073The '``llvm.var.annotation``' intrinsic.
12074
12075Arguments:
12076""""""""""
12077
12078The first argument is a pointer to a value, the second is a pointer to a
12079global string, the third is a pointer to a global string which is the
12080source file name, and the last argument is the line number.
12081
12082Semantics:
12083""""""""""
12084
12085This intrinsic allows annotation of local variables with arbitrary
12086strings. This can be useful for special purpose optimizations that want
12087to look for these annotations. These have no other defined use; they are
12088ignored by code generation and optimization.
12089
Michael Gottesman88d18832013-03-26 00:34:27 +000012090'``llvm.ptr.annotation.*``' Intrinsic
12091^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12092
12093Syntax:
12094"""""""
12095
12096This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12097pointer to an integer of any width. *NOTE* you must specify an address space for
12098the pointer. The identifier for the default address space is the integer
12099'``0``'.
12100
12101::
12102
12103 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12104 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12105 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12106 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12107 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12108
12109Overview:
12110"""""""""
12111
12112The '``llvm.ptr.annotation``' intrinsic.
12113
12114Arguments:
12115""""""""""
12116
12117The first argument is a pointer to an integer value of arbitrary bitwidth
12118(result of some expression), the second is a pointer to a global string, the
12119third is a pointer to a global string which is the source file name, and the
12120last argument is the line number. It returns the value of the first argument.
12121
12122Semantics:
12123""""""""""
12124
12125This intrinsic allows annotation of a pointer to an integer with arbitrary
12126strings. This can be useful for special purpose optimizations that want to look
12127for these annotations. These have no other defined use; they are ignored by code
12128generation and optimization.
12129
Sean Silvab084af42012-12-07 10:36:55 +000012130'``llvm.annotation.*``' Intrinsic
12131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12132
12133Syntax:
12134"""""""
12135
12136This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12137any integer bit width.
12138
12139::
12140
12141 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12142 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12143 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12144 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12145 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12146
12147Overview:
12148"""""""""
12149
12150The '``llvm.annotation``' intrinsic.
12151
12152Arguments:
12153""""""""""
12154
12155The first argument is an integer value (result of some expression), the
12156second is a pointer to a global string, the third is a pointer to a
12157global string which is the source file name, and the last argument is
12158the line number. It returns the value of the first argument.
12159
12160Semantics:
12161""""""""""
12162
12163This intrinsic allows annotations to be put on arbitrary expressions
12164with arbitrary strings. This can be useful for special purpose
12165optimizations that want to look for these annotations. These have no
12166other defined use; they are ignored by code generation and optimization.
12167
12168'``llvm.trap``' Intrinsic
12169^^^^^^^^^^^^^^^^^^^^^^^^^
12170
12171Syntax:
12172"""""""
12173
12174::
12175
12176 declare void @llvm.trap() noreturn nounwind
12177
12178Overview:
12179"""""""""
12180
12181The '``llvm.trap``' intrinsic.
12182
12183Arguments:
12184""""""""""
12185
12186None.
12187
12188Semantics:
12189""""""""""
12190
12191This intrinsic is lowered to the target dependent trap instruction. If
12192the target does not have a trap instruction, this intrinsic will be
12193lowered to a call of the ``abort()`` function.
12194
12195'``llvm.debugtrap``' Intrinsic
12196^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12197
12198Syntax:
12199"""""""
12200
12201::
12202
12203 declare void @llvm.debugtrap() nounwind
12204
12205Overview:
12206"""""""""
12207
12208The '``llvm.debugtrap``' intrinsic.
12209
12210Arguments:
12211""""""""""
12212
12213None.
12214
12215Semantics:
12216""""""""""
12217
12218This intrinsic is lowered to code which is intended to cause an
12219execution trap with the intention of requesting the attention of a
12220debugger.
12221
12222'``llvm.stackprotector``' Intrinsic
12223^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12224
12225Syntax:
12226"""""""
12227
12228::
12229
12230 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12231
12232Overview:
12233"""""""""
12234
12235The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12236onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12237is placed on the stack before local variables.
12238
12239Arguments:
12240""""""""""
12241
12242The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12243The first argument is the value loaded from the stack guard
12244``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12245enough space to hold the value of the guard.
12246
12247Semantics:
12248""""""""""
12249
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012250This intrinsic causes the prologue/epilogue inserter to force the position of
12251the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12252to ensure that if a local variable on the stack is overwritten, it will destroy
12253the value of the guard. When the function exits, the guard on the stack is
12254checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12255different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12256calling the ``__stack_chk_fail()`` function.
12257
Tim Shene885d5e2016-04-19 19:40:37 +000012258'``llvm.stackguard``' Intrinsic
12259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12260
12261Syntax:
12262"""""""
12263
12264::
12265
12266 declare i8* @llvm.stackguard()
12267
12268Overview:
12269"""""""""
12270
12271The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12272
12273It should not be generated by frontends, since it is only for internal usage.
12274The reason why we create this intrinsic is that we still support IR form Stack
12275Protector in FastISel.
12276
12277Arguments:
12278""""""""""
12279
12280None.
12281
12282Semantics:
12283""""""""""
12284
12285On some platforms, the value returned by this intrinsic remains unchanged
12286between loads in the same thread. On other platforms, it returns the same
12287global variable value, if any, e.g. ``@__stack_chk_guard``.
12288
12289Currently some platforms have IR-level customized stack guard loading (e.g.
12290X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12291in the future.
12292
Sean Silvab084af42012-12-07 10:36:55 +000012293'``llvm.objectsize``' Intrinsic
12294^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12295
12296Syntax:
12297"""""""
12298
12299::
12300
12301 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12302 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12303
12304Overview:
12305"""""""""
12306
12307The ``llvm.objectsize`` intrinsic is designed to provide information to
12308the optimizers to determine at compile time whether a) an operation
12309(like memcpy) will overflow a buffer that corresponds to an object, or
12310b) that a runtime check for overflow isn't necessary. An object in this
12311context means an allocation of a specific class, structure, array, or
12312other object.
12313
12314Arguments:
12315""""""""""
12316
12317The ``llvm.objectsize`` intrinsic takes two arguments. The first
12318argument is a pointer to or into the ``object``. The second argument is
12319a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12320or -1 (if false) when the object size is unknown. The second argument
12321only accepts constants.
12322
12323Semantics:
12324""""""""""
12325
12326The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12327the size of the object concerned. If the size cannot be determined at
12328compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12329on the ``min`` argument).
12330
12331'``llvm.expect``' Intrinsic
12332^^^^^^^^^^^^^^^^^^^^^^^^^^^
12333
12334Syntax:
12335"""""""
12336
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012337This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12338integer bit width.
12339
Sean Silvab084af42012-12-07 10:36:55 +000012340::
12341
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012342 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012343 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12344 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12345
12346Overview:
12347"""""""""
12348
12349The ``llvm.expect`` intrinsic provides information about expected (the
12350most probable) value of ``val``, which can be used by optimizers.
12351
12352Arguments:
12353""""""""""
12354
12355The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12356a value. The second argument is an expected value, this needs to be a
12357constant value, variables are not allowed.
12358
12359Semantics:
12360""""""""""
12361
12362This intrinsic is lowered to the ``val``.
12363
Philip Reamese0e90832015-04-26 22:23:12 +000012364.. _int_assume:
12365
Hal Finkel93046912014-07-25 21:13:35 +000012366'``llvm.assume``' Intrinsic
12367^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12368
12369Syntax:
12370"""""""
12371
12372::
12373
12374 declare void @llvm.assume(i1 %cond)
12375
12376Overview:
12377"""""""""
12378
12379The ``llvm.assume`` allows the optimizer to assume that the provided
12380condition is true. This information can then be used in simplifying other parts
12381of the code.
12382
12383Arguments:
12384""""""""""
12385
12386The condition which the optimizer may assume is always true.
12387
12388Semantics:
12389""""""""""
12390
12391The intrinsic allows the optimizer to assume that the provided condition is
12392always true whenever the control flow reaches the intrinsic call. No code is
12393generated for this intrinsic, and instructions that contribute only to the
12394provided condition are not used for code generation. If the condition is
12395violated during execution, the behavior is undefined.
12396
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012397Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012398used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12399only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012400if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012401sufficient overall improvement in code quality. For this reason,
12402``llvm.assume`` should not be used to document basic mathematical invariants
12403that the optimizer can otherwise deduce or facts that are of little use to the
12404optimizer.
12405
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012406.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012407
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012408'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012409^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12410
12411Syntax:
12412"""""""
12413
12414::
12415
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012416 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012417
12418
12419Arguments:
12420""""""""""
12421
12422The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012423metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012424
12425Overview:
12426"""""""""
12427
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012428The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12429with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012430
Peter Collingbourne0312f612016-06-25 00:23:04 +000012431'``llvm.type.checked.load``' Intrinsic
12432^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12433
12434Syntax:
12435"""""""
12436
12437::
12438
12439 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12440
12441
12442Arguments:
12443""""""""""
12444
12445The first argument is a pointer from which to load a function pointer. The
12446second argument is the byte offset from which to load the function pointer. The
12447third argument is a metadata object representing a :doc:`type identifier
12448<TypeMetadata>`.
12449
12450Overview:
12451"""""""""
12452
12453The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12454virtual table pointer using type metadata. This intrinsic is used to implement
12455control flow integrity in conjunction with virtual call optimization. The
12456virtual call optimization pass will optimize away ``llvm.type.checked.load``
12457intrinsics associated with devirtualized calls, thereby removing the type
12458check in cases where it is not needed to enforce the control flow integrity
12459constraint.
12460
12461If the given pointer is associated with a type metadata identifier, this
12462function returns true as the second element of its return value. (Note that
12463the function may also return true if the given pointer is not associated
12464with a type metadata identifier.) If the function's return value's second
12465element is true, the following rules apply to the first element:
12466
12467- If the given pointer is associated with the given type metadata identifier,
12468 it is the function pointer loaded from the given byte offset from the given
12469 pointer.
12470
12471- If the given pointer is not associated with the given type metadata
12472 identifier, it is one of the following (the choice of which is unspecified):
12473
12474 1. The function pointer that would have been loaded from an arbitrarily chosen
12475 (through an unspecified mechanism) pointer associated with the type
12476 metadata.
12477
12478 2. If the function has a non-void return type, a pointer to a function that
12479 returns an unspecified value without causing side effects.
12480
12481If the function's return value's second element is false, the value of the
12482first element is undefined.
12483
12484
Sean Silvab084af42012-12-07 10:36:55 +000012485'``llvm.donothing``' Intrinsic
12486^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12487
12488Syntax:
12489"""""""
12490
12491::
12492
12493 declare void @llvm.donothing() nounwind readnone
12494
12495Overview:
12496"""""""""
12497
Juergen Ributzkac9161192014-10-23 22:36:13 +000012498The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012499three intrinsics (besides ``llvm.experimental.patchpoint`` and
12500``llvm.experimental.gc.statepoint``) that can be called with an invoke
12501instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012502
12503Arguments:
12504""""""""""
12505
12506None.
12507
12508Semantics:
12509""""""""""
12510
12511This intrinsic does nothing, and it's removed by optimizers and ignored
12512by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012513
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012514'``llvm.experimental.deoptimize``' Intrinsic
12515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12516
12517Syntax:
12518"""""""
12519
12520::
12521
12522 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12523
12524Overview:
12525"""""""""
12526
12527This intrinsic, together with :ref:`deoptimization operand bundles
12528<deopt_opbundles>`, allow frontends to express transfer of control and
12529frame-local state from the currently executing (typically more specialized,
12530hence faster) version of a function into another (typically more generic, hence
12531slower) version.
12532
12533In languages with a fully integrated managed runtime like Java and JavaScript
12534this intrinsic can be used to implement "uncommon trap" or "side exit" like
12535functionality. In unmanaged languages like C and C++, this intrinsic can be
12536used to represent the slow paths of specialized functions.
12537
12538
12539Arguments:
12540""""""""""
12541
12542The intrinsic takes an arbitrary number of arguments, whose meaning is
12543decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12544
12545Semantics:
12546""""""""""
12547
12548The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12549deoptimization continuation (denoted using a :ref:`deoptimization
12550operand bundle <deopt_opbundles>`) and returns the value returned by
12551the deoptimization continuation. Defining the semantic properties of
12552the continuation itself is out of scope of the language reference --
12553as far as LLVM is concerned, the deoptimization continuation can
12554invoke arbitrary side effects, including reading from and writing to
12555the entire heap.
12556
12557Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12558continue execution to the end of the physical frame containing them, so all
12559calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12560
12561 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12562 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12563 - The ``ret`` instruction must return the value produced by the
12564 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12565
12566Note that the above restrictions imply that the return type for a call to
12567``@llvm.experimental.deoptimize`` will match the return type of its immediate
12568caller.
12569
12570The inliner composes the ``"deopt"`` continuations of the caller into the
12571``"deopt"`` continuations present in the inlinee, and also updates calls to this
12572intrinsic to return directly from the frame of the function it inlined into.
12573
Sanjoy Dase0aa4142016-05-12 01:17:38 +000012574All declarations of ``@llvm.experimental.deoptimize`` must share the
12575same calling convention.
12576
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012577.. _deoptimize_lowering:
12578
12579Lowering:
12580"""""""""
12581
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012582Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12583symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12584ensure that this symbol is defined). The call arguments to
12585``@llvm.experimental.deoptimize`` are lowered as if they were formal
12586arguments of the specified types, and not as varargs.
12587
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012588
Sanjoy Das021de052016-03-31 00:18:46 +000012589'``llvm.experimental.guard``' Intrinsic
12590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12591
12592Syntax:
12593"""""""
12594
12595::
12596
12597 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12598
12599Overview:
12600"""""""""
12601
12602This intrinsic, together with :ref:`deoptimization operand bundles
12603<deopt_opbundles>`, allows frontends to express guards or checks on
12604optimistic assumptions made during compilation. The semantics of
12605``@llvm.experimental.guard`` is defined in terms of
12606``@llvm.experimental.deoptimize`` -- its body is defined to be
12607equivalent to:
12608
Renato Golin124f2592016-07-20 12:16:38 +000012609.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000012610
Renato Golin124f2592016-07-20 12:16:38 +000012611 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12612 %realPred = and i1 %pred, undef
12613 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000012614
Renato Golin124f2592016-07-20 12:16:38 +000012615 leave:
12616 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12617 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000012618
Renato Golin124f2592016-07-20 12:16:38 +000012619 continue:
12620 ret void
12621 }
Sanjoy Das021de052016-03-31 00:18:46 +000012622
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012623
12624with the optional ``[, !make.implicit !{}]`` present if and only if it
12625is present on the call site. For more details on ``!make.implicit``,
12626see :doc:`FaultMaps`.
12627
Sanjoy Das021de052016-03-31 00:18:46 +000012628In words, ``@llvm.experimental.guard`` executes the attached
12629``"deopt"`` continuation if (but **not** only if) its first argument
12630is ``false``. Since the optimizer is allowed to replace the ``undef``
12631with an arbitrary value, it can optimize guard to fail "spuriously",
12632i.e. without the original condition being false (hence the "not only
12633if"); and this allows for "check widening" type optimizations.
12634
12635``@llvm.experimental.guard`` cannot be invoked.
12636
12637
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012638'``llvm.load.relative``' Intrinsic
12639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12640
12641Syntax:
12642"""""""
12643
12644::
12645
12646 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12647
12648Overview:
12649"""""""""
12650
12651This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12652adds ``%ptr`` to that value and returns it. The constant folder specifically
12653recognizes the form of this intrinsic and the constant initializers it may
12654load from; if a loaded constant initializer is known to have the form
12655``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12656
12657LLVM provides that the calculation of such a constant initializer will
12658not overflow at link time under the medium code model if ``x`` is an
12659``unnamed_addr`` function. However, it does not provide this guarantee for
12660a constant initializer folded into a function body. This intrinsic can be
12661used to avoid the possibility of overflows when loading from such a constant.
12662
Andrew Trick5e029ce2013-12-24 02:57:25 +000012663Stack Map Intrinsics
12664--------------------
12665
12666LLVM provides experimental intrinsics to support runtime patching
12667mechanisms commonly desired in dynamic language JITs. These intrinsics
12668are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000012669
12670Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000012671-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000012672
12673These intrinsics are similar to the standard library memory intrinsics except
12674that they perform memory transfer as a sequence of atomic memory accesses.
12675
12676.. _int_memcpy_element_atomic:
12677
12678'``llvm.memcpy.element.atomic``' Intrinsic
Igor Laevskyfedab152016-12-29 15:08:57 +000012679^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000012680
12681Syntax:
12682"""""""
12683
12684This is an overloaded intrinsic. You can use ``llvm.memcpy.element.atomic`` on
12685any integer bit width and for different address spaces. Not all targets
12686support all bit widths however.
12687
12688::
12689
12690 declare void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* <dest>, i8* <src>,
12691 i64 <num_elements>, i32 <element_size>)
12692
12693Overview:
12694"""""""""
12695
12696The '``llvm.memcpy.element.atomic.*``' intrinsic performs copy of a block of
12697memory from the source location to the destination location as a sequence of
12698unordered atomic memory accesses where each access is a multiple of
12699``element_size`` bytes wide and aligned at an element size boundary. For example
12700each element is accessed atomically in source and destination buffers.
12701
12702Arguments:
12703""""""""""
12704
12705The first argument is a pointer to the destination, the second is a
12706pointer to the source. The third argument is an integer argument
12707specifying the number of elements to copy, the fourth argument is size of
12708the single element in bytes.
12709
12710``element_size`` should be a power of two, greater than zero and less than
12711a target-specific atomic access size limit.
12712
12713For each of the input pointers ``align`` parameter attribute must be specified.
12714It must be a power of two and greater than or equal to the ``element_size``.
12715Caller guarantees that both the source and destination pointers are aligned to
12716that boundary.
12717
12718Semantics:
12719""""""""""
12720
12721The '``llvm.memcpy.element.atomic.*``' intrinsic copies
12722'``num_elements`` * ``element_size``' bytes of memory from the source location to
12723the destination location. These locations are not allowed to overlap. Memory copy
12724is performed as a sequence of unordered atomic memory accesses where each access
12725is guaranteed to be a multiple of ``element_size`` bytes wide and aligned at an
12726element size boundary.
12727
12728The order of the copy is unspecified. The same value may be read from the source
12729buffer many times, but only one write is issued to the destination buffer per
12730element. It is well defined to have concurrent reads and writes to both source
12731and destination provided those reads and writes are at least unordered atomic.
12732
12733This intrinsic does not provide any additional ordering guarantees over those
12734provided by a set of unordered loads from the source location and stores to the
12735destination.
12736
12737Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000012738"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000012739
12740In the most general case call to the '``llvm.memcpy.element.atomic.*``' is lowered
12741to a call to the symbol ``__llvm_memcpy_element_atomic_*``. Where '*' is replaced
12742with an actual element size.
12743
12744Optimizer is allowed to inline memory copy when it's profitable to do so.