blob: 550e86b05020d4765165fa073343da3c0b495f98 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
645an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000646
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000647Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000648:ref:`Thread Local Storage Model <tls_model>`.
649
Nico Rieck7157bb72014-01-14 15:22:47 +0000650Syntax::
651
Rafael Espindola32483a72016-05-10 18:22:45 +0000652 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000653 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
654 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000655 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000656 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000657 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659For example, the following defines a global in a numbered address space
660with an initializer, section, and alignment:
661
662.. code-block:: llvm
663
664 @G = addrspace(5) constant float 1.0, section "foo", align 4
665
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000666The following example just declares a global variable
667
668.. code-block:: llvm
669
670 @G = external global i32
671
Sean Silvab084af42012-12-07 10:36:55 +0000672The following example defines a thread-local global with the
673``initialexec`` TLS model:
674
675.. code-block:: llvm
676
677 @G = thread_local(initialexec) global i32 0, align 4
678
679.. _functionstructure:
680
681Functions
682---------
683
684LLVM function definitions consist of the "``define``" keyword, an
685optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000686style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
687an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000688an optional ``unnamed_addr`` attribute, a return type, an optional
689:ref:`parameter attribute <paramattrs>` for the return type, a function
690name, a (possibly empty) argument list (each with optional :ref:`parameter
691attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000692an optional section, an optional alignment,
693an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000694an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000695an optional :ref:`prologue <prologuedata>`,
696an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000697an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000698an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000699
700LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000701optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
702<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
703optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
704or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
705attribute <paramattrs>` for the return type, a function name, a possibly
706empty list of arguments, an optional alignment, an optional :ref:`garbage
707collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
708:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000709
Bill Wendling6822ecb2013-10-27 05:09:12 +0000710A function definition contains a list of basic blocks, forming the CFG (Control
711Flow Graph) for the function. Each basic block may optionally start with a label
712(giving the basic block a symbol table entry), contains a list of instructions,
713and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
714function return). If an explicit label is not provided, a block is assigned an
715implicit numbered label, using the next value from the same counter as used for
716unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
717entry block does not have an explicit label, it will be assigned label "%0",
718then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000719
720The first basic block in a function is special in two ways: it is
721immediately executed on entrance to the function, and it is not allowed
722to have predecessor basic blocks (i.e. there can not be any branches to
723the entry block of a function). Because the block can have no
724predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
725
726LLVM allows an explicit section to be specified for functions. If the
727target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000728Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730An explicit alignment may be specified for a function. If not present,
731or if the alignment is set to zero, the alignment of the function is set
732by the target to whatever it feels convenient. If an explicit alignment
733is specified, the function is forced to have at least that much
734alignment. All alignments must be a power of 2.
735
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000736If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000737be significant and two identical functions can be merged.
738
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000739If the ``local_unnamed_addr`` attribute is given, the address is known to
740not be significant within the module.
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Syntax::
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000745 [cconv] [ret attrs]
746 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000747 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
748 [comdat [($name)]] [align N] [gc] [prefix Constant]
749 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000750
Sean Silva706fba52015-08-06 22:56:24 +0000751The argument list is a comma separated sequence of arguments where each
752argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000753
754Syntax::
755
756 <type> [parameter Attrs] [name]
757
758
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000759.. _langref_aliases:
760
Sean Silvab084af42012-12-07 10:36:55 +0000761Aliases
762-------
763
Rafael Espindola64c1e182014-06-03 02:41:57 +0000764Aliases, unlike function or variables, don't create any new data. They
765are just a new symbol and metadata for an existing position.
766
767Aliases have a name and an aliasee that is either a global value or a
768constant expression.
769
Nico Rieck7157bb72014-01-14 15:22:47 +0000770Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000771:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
772<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000773
774Syntax::
775
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000776 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000777
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000778The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000779``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000780might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000781
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000782Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000783the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
784to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000785
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000786If the ``local_unnamed_addr`` attribute is given, the address is known to
787not be significant within the module.
788
Rafael Espindola64c1e182014-06-03 02:41:57 +0000789Since aliases are only a second name, some restrictions apply, of which
790some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000791
Rafael Espindola64c1e182014-06-03 02:41:57 +0000792* The expression defining the aliasee must be computable at assembly
793 time. Since it is just a name, no relocations can be used.
794
795* No alias in the expression can be weak as the possibility of the
796 intermediate alias being overridden cannot be represented in an
797 object file.
798
799* No global value in the expression can be a declaration, since that
800 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000801
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000802.. _langref_ifunc:
803
804IFuncs
805-------
806
807IFuncs, like as aliases, don't create any new data or func. They are just a new
808symbol that dynamic linker resolves at runtime by calling a resolver function.
809
810IFuncs have a name and a resolver that is a function called by dynamic linker
811that returns address of another function associated with the name.
812
813IFunc may have an optional :ref:`linkage type <linkage>` and an optional
814:ref:`visibility style <visibility>`.
815
816Syntax::
817
818 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821.. _langref_comdats:
822
823Comdats
824-------
825
826Comdat IR provides access to COFF and ELF object file COMDAT functionality.
827
Sean Silvaa1190322015-08-06 22:56:48 +0000828Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000829specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000830that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000831aliasee computes to, if any.
832
833Comdats have a selection kind to provide input on how the linker should
834choose between keys in two different object files.
835
836Syntax::
837
838 $<Name> = comdat SelectionKind
839
840The selection kind must be one of the following:
841
842``any``
843 The linker may choose any COMDAT key, the choice is arbitrary.
844``exactmatch``
845 The linker may choose any COMDAT key but the sections must contain the
846 same data.
847``largest``
848 The linker will choose the section containing the largest COMDAT key.
849``noduplicates``
850 The linker requires that only section with this COMDAT key exist.
851``samesize``
852 The linker may choose any COMDAT key but the sections must contain the
853 same amount of data.
854
855Note that the Mach-O platform doesn't support COMDATs and ELF only supports
856``any`` as a selection kind.
857
858Here is an example of a COMDAT group where a function will only be selected if
859the COMDAT key's section is the largest:
860
Renato Golin124f2592016-07-20 12:16:38 +0000861.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000862
863 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000864 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000865
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000867 ret void
868 }
869
Rafael Espindola83a362c2015-01-06 22:55:16 +0000870As a syntactic sugar the ``$name`` can be omitted if the name is the same as
871the global name:
872
Renato Golin124f2592016-07-20 12:16:38 +0000873.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000874
875 $foo = comdat any
876 @foo = global i32 2, comdat
877
878
David Majnemerdad0a642014-06-27 18:19:56 +0000879In a COFF object file, this will create a COMDAT section with selection kind
880``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
881and another COMDAT section with selection kind
882``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000883section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885There are some restrictions on the properties of the global object.
886It, or an alias to it, must have the same name as the COMDAT group when
887targeting COFF.
888The contents and size of this object may be used during link-time to determine
889which COMDAT groups get selected depending on the selection kind.
890Because the name of the object must match the name of the COMDAT group, the
891linkage of the global object must not be local; local symbols can get renamed
892if a collision occurs in the symbol table.
893
894The combined use of COMDATS and section attributes may yield surprising results.
895For example:
896
Renato Golin124f2592016-07-20 12:16:38 +0000897.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000898
899 $foo = comdat any
900 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901 @g1 = global i32 42, section "sec", comdat($foo)
902 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000903
904From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000905with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000906COMDAT groups and COMDATs, at the object file level, are represented by
907sections.
908
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000909Note that certain IR constructs like global variables and functions may
910create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000911COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000912in individual sections (e.g. when `-data-sections` or `-function-sections`
913is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000914
Sean Silvab084af42012-12-07 10:36:55 +0000915.. _namedmetadatastructure:
916
917Named Metadata
918--------------
919
920Named metadata is a collection of metadata. :ref:`Metadata
921nodes <metadata>` (but not metadata strings) are the only valid
922operands for a named metadata.
923
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000924#. Named metadata are represented as a string of characters with the
925 metadata prefix. The rules for metadata names are the same as for
926 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
927 are still valid, which allows any character to be part of a name.
928
Sean Silvab084af42012-12-07 10:36:55 +0000929Syntax::
930
931 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000932 !0 = !{!"zero"}
933 !1 = !{!"one"}
934 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000935 ; A named metadata.
936 !name = !{!0, !1, !2}
937
938.. _paramattrs:
939
940Parameter Attributes
941--------------------
942
943The return type and each parameter of a function type may have a set of
944*parameter attributes* associated with them. Parameter attributes are
945used to communicate additional information about the result or
946parameters of a function. Parameter attributes are considered to be part
947of the function, not of the function type, so functions with different
948parameter attributes can have the same function type.
949
950Parameter attributes are simple keywords that follow the type specified.
951If multiple parameter attributes are needed, they are space separated.
952For example:
953
954.. code-block:: llvm
955
956 declare i32 @printf(i8* noalias nocapture, ...)
957 declare i32 @atoi(i8 zeroext)
958 declare signext i8 @returns_signed_char()
959
960Note that any attributes for the function result (``nounwind``,
961``readonly``) come immediately after the argument list.
962
963Currently, only the following parameter attributes are defined:
964
965``zeroext``
966 This indicates to the code generator that the parameter or return
967 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000968 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000969``signext``
970 This indicates to the code generator that the parameter or return
971 value should be sign-extended to the extent required by the target's
972 ABI (which is usually 32-bits) by the caller (for a parameter) or
973 the callee (for a return value).
974``inreg``
975 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000976 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000977 a function call or return (usually, by putting it in a register as
978 opposed to memory, though some targets use it to distinguish between
979 two different kinds of registers). Use of this attribute is
980 target-specific.
981``byval``
982 This indicates that the pointer parameter should really be passed by
983 value to the function. The attribute implies that a hidden copy of
984 the pointee is made between the caller and the callee, so the callee
985 is unable to modify the value in the caller. This attribute is only
986 valid on LLVM pointer arguments. It is generally used to pass
987 structs and arrays by value, but is also valid on pointers to
988 scalars. The copy is considered to belong to the caller not the
989 callee (for example, ``readonly`` functions should not write to
990 ``byval`` parameters). This is not a valid attribute for return
991 values.
992
993 The byval attribute also supports specifying an alignment with the
994 align attribute. It indicates the alignment of the stack slot to
995 form and the known alignment of the pointer specified to the call
996 site. If the alignment is not specified, then the code generator
997 makes a target-specific assumption.
998
Reid Klecknera534a382013-12-19 02:14:12 +0000999.. _attr_inalloca:
1000
1001``inalloca``
1002
Reid Kleckner60d3a832014-01-16 22:59:24 +00001003 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001004 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001005 be a pointer to stack memory produced by an ``alloca`` instruction.
1006 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001007 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001008 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001009
Reid Kleckner436c42e2014-01-17 23:58:17 +00001010 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001011 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001012 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001013 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001014 ``inalloca`` attribute also disables LLVM's implicit lowering of
1015 large aggregate return values, which means that frontend authors
1016 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001017
Reid Kleckner60d3a832014-01-16 22:59:24 +00001018 When the call site is reached, the argument allocation must have
1019 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001020 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001021 space after an argument allocation and before its call site, but it
1022 must be cleared off with :ref:`llvm.stackrestore
1023 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001024
1025 See :doc:`InAlloca` for more information on how to use this
1026 attribute.
1027
Sean Silvab084af42012-12-07 10:36:55 +00001028``sret``
1029 This indicates that the pointer parameter specifies the address of a
1030 structure that is the return value of the function in the source
1031 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001032 loads and stores to the structure may be assumed by the callee not
1033 to trap and to be properly aligned. This is not a valid attribute
1034 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001035
Hal Finkelccc70902014-07-22 16:58:55 +00001036``align <n>``
1037 This indicates that the pointer value may be assumed by the optimizer to
1038 have the specified alignment.
1039
1040 Note that this attribute has additional semantics when combined with the
1041 ``byval`` attribute.
1042
Sean Silva1703e702014-04-08 21:06:22 +00001043.. _noalias:
1044
Sean Silvab084af42012-12-07 10:36:55 +00001045``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001046 This indicates that objects accessed via pointer values
1047 :ref:`based <pointeraliasing>` on the argument or return value are not also
1048 accessed, during the execution of the function, via pointer values not
1049 *based* on the argument or return value. The attribute on a return value
1050 also has additional semantics described below. The caller shares the
1051 responsibility with the callee for ensuring that these requirements are met.
1052 For further details, please see the discussion of the NoAlias response in
1053 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001054
1055 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001056 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001057
1058 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001059 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1060 attribute on return values are stronger than the semantics of the attribute
1061 when used on function arguments. On function return values, the ``noalias``
1062 attribute indicates that the function acts like a system memory allocation
1063 function, returning a pointer to allocated storage disjoint from the
1064 storage for any other object accessible to the caller.
1065
Sean Silvab084af42012-12-07 10:36:55 +00001066``nocapture``
1067 This indicates that the callee does not make any copies of the
1068 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001069 attribute for return values. Addresses used in volatile operations
1070 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001071
1072.. _nest:
1073
1074``nest``
1075 This indicates that the pointer parameter can be excised using the
1076 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001077 attribute for return values and can only be applied to one parameter.
1078
1079``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001080 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001081 value. This is a hint to the optimizer and code generator used when
1082 generating the caller, allowing value propagation, tail call optimization,
1083 and omission of register saves and restores in some cases; it is not
1084 checked or enforced when generating the callee. The parameter and the
1085 function return type must be valid operands for the
1086 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1087 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001088
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001089``nonnull``
1090 This indicates that the parameter or return pointer is not null. This
1091 attribute may only be applied to pointer typed parameters. This is not
1092 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001093 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001094 is non-null.
1095
Hal Finkelb0407ba2014-07-18 15:51:28 +00001096``dereferenceable(<n>)``
1097 This indicates that the parameter or return pointer is dereferenceable. This
1098 attribute may only be applied to pointer typed parameters. A pointer that
1099 is dereferenceable can be loaded from speculatively without a risk of
1100 trapping. The number of bytes known to be dereferenceable must be provided
1101 in parentheses. It is legal for the number of bytes to be less than the
1102 size of the pointee type. The ``nonnull`` attribute does not imply
1103 dereferenceability (consider a pointer to one element past the end of an
1104 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1105 ``addrspace(0)`` (which is the default address space).
1106
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001107``dereferenceable_or_null(<n>)``
1108 This indicates that the parameter or return value isn't both
1109 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001110 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001111 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1112 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1113 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1114 and in other address spaces ``dereferenceable_or_null(<n>)``
1115 implies that a pointer is at least one of ``dereferenceable(<n>)``
1116 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001117 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001118 pointer typed parameters.
1119
Manman Renf46262e2016-03-29 17:37:21 +00001120``swiftself``
1121 This indicates that the parameter is the self/context parameter. This is not
1122 a valid attribute for return values and can only be applied to one
1123 parameter.
1124
Manman Ren9bfd0d02016-04-01 21:41:15 +00001125``swifterror``
1126 This attribute is motivated to model and optimize Swift error handling. It
1127 can be applied to a parameter with pointer to pointer type or a
1128 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001129 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1130 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1131 the parameter or the alloca) can only be loaded and stored from, or used as
1132 a ``swifterror`` argument. This is not a valid attribute for return values
1133 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001134
1135 These constraints allow the calling convention to optimize access to
1136 ``swifterror`` variables by associating them with a specific register at
1137 call boundaries rather than placing them in memory. Since this does change
1138 the calling convention, a function which uses the ``swifterror`` attribute
1139 on a parameter is not ABI-compatible with one which does not.
1140
1141 These constraints also allow LLVM to assume that a ``swifterror`` argument
1142 does not alias any other memory visible within a function and that a
1143 ``swifterror`` alloca passed as an argument does not escape.
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _gc:
1146
Philip Reamesf80bbff2015-02-25 23:45:20 +00001147Garbage Collector Strategy Names
1148--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001149
Philip Reamesf80bbff2015-02-25 23:45:20 +00001150Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001151string:
1152
1153.. code-block:: llvm
1154
1155 define void @f() gc "name" { ... }
1156
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001157The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001158<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001159strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001160named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001161garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001162which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001163
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001164.. _prefixdata:
1165
1166Prefix Data
1167-----------
1168
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001169Prefix data is data associated with a function which the code
1170generator will emit immediately before the function's entrypoint.
1171The purpose of this feature is to allow frontends to associate
1172language-specific runtime metadata with specific functions and make it
1173available through the function pointer while still allowing the
1174function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001175
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001176To access the data for a given function, a program may bitcast the
1177function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001178index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001179the prefix data. For instance, take the example of a function annotated
1180with a single ``i32``,
1181
1182.. code-block:: llvm
1183
1184 define void @f() prefix i32 123 { ... }
1185
1186The prefix data can be referenced as,
1187
1188.. code-block:: llvm
1189
David Blaikie16a97eb2015-03-04 22:02:58 +00001190 %0 = bitcast void* () @f to i32*
1191 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001192 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001193
1194Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001195of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001196beginning of the prefix data is aligned. This means that if the size
1197of the prefix data is not a multiple of the alignment size, the
1198function's entrypoint will not be aligned. If alignment of the
1199function's entrypoint is desired, padding must be added to the prefix
1200data.
1201
Sean Silvaa1190322015-08-06 22:56:48 +00001202A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001203to the ``available_externally`` linkage in that the data may be used by the
1204optimizers but will not be emitted in the object file.
1205
1206.. _prologuedata:
1207
1208Prologue Data
1209-------------
1210
1211The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1212be inserted prior to the function body. This can be used for enabling
1213function hot-patching and instrumentation.
1214
1215To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001216have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001217bytes which decode to a sequence of machine instructions, valid for the
1218module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001219the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001221definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001222makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001223
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001225which encodes the ``nop`` instruction:
1226
Renato Golin124f2592016-07-20 12:16:38 +00001227.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001228
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001230
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231Generally prologue data can be formed by encoding a relative branch instruction
1232which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001233x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1234
Renato Golin124f2592016-07-20 12:16:38 +00001235.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001236
1237 %0 = type <{ i8, i8, i8* }>
1238
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001239 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001240
Sean Silvaa1190322015-08-06 22:56:48 +00001241A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001242to the ``available_externally`` linkage in that the data may be used by the
1243optimizers but will not be emitted in the object file.
1244
David Majnemer7fddecc2015-06-17 20:52:32 +00001245.. _personalityfn:
1246
1247Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001248--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001249
1250The ``personality`` attribute permits functions to specify what function
1251to use for exception handling.
1252
Bill Wendling63b88192013-02-06 06:52:58 +00001253.. _attrgrp:
1254
1255Attribute Groups
1256----------------
1257
1258Attribute groups are groups of attributes that are referenced by objects within
1259the IR. They are important for keeping ``.ll`` files readable, because a lot of
1260functions will use the same set of attributes. In the degenerative case of a
1261``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1262group will capture the important command line flags used to build that file.
1263
1264An attribute group is a module-level object. To use an attribute group, an
1265object references the attribute group's ID (e.g. ``#37``). An object may refer
1266to more than one attribute group. In that situation, the attributes from the
1267different groups are merged.
1268
1269Here is an example of attribute groups for a function that should always be
1270inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1271
1272.. code-block:: llvm
1273
1274 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001275 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001276
1277 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001278 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001279
1280 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1281 define void @f() #0 #1 { ... }
1282
Sean Silvab084af42012-12-07 10:36:55 +00001283.. _fnattrs:
1284
1285Function Attributes
1286-------------------
1287
1288Function attributes are set to communicate additional information about
1289a function. Function attributes are considered to be part of the
1290function, not of the function type, so functions with different function
1291attributes can have the same function type.
1292
1293Function attributes are simple keywords that follow the type specified.
1294If multiple attributes are needed, they are space separated. For
1295example:
1296
1297.. code-block:: llvm
1298
1299 define void @f() noinline { ... }
1300 define void @f() alwaysinline { ... }
1301 define void @f() alwaysinline optsize { ... }
1302 define void @f() optsize { ... }
1303
Sean Silvab084af42012-12-07 10:36:55 +00001304``alignstack(<n>)``
1305 This attribute indicates that, when emitting the prologue and
1306 epilogue, the backend should forcibly align the stack pointer.
1307 Specify the desired alignment, which must be a power of two, in
1308 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001309``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1310 This attribute indicates that the annotated function will always return at
1311 least a given number of bytes (or null). Its arguments are zero-indexed
1312 parameter numbers; if one argument is provided, then it's assumed that at
1313 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1314 returned pointer. If two are provided, then it's assumed that
1315 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1316 available. The referenced parameters must be integer types. No assumptions
1317 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001318``alwaysinline``
1319 This attribute indicates that the inliner should attempt to inline
1320 this function into callers whenever possible, ignoring any active
1321 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001322``builtin``
1323 This indicates that the callee function at a call site should be
1324 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001325 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001326 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001327 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001328``cold``
1329 This attribute indicates that this function is rarely called. When
1330 computing edge weights, basic blocks post-dominated by a cold
1331 function call are also considered to be cold; and, thus, given low
1332 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001333``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001334 In some parallel execution models, there exist operations that cannot be
1335 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001336 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001337
Justin Lebar58535b12016-02-17 17:46:41 +00001338 The ``convergent`` attribute may appear on functions or call/invoke
1339 instructions. When it appears on a function, it indicates that calls to
1340 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001341 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001342 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001343 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001344
Justin Lebar58535b12016-02-17 17:46:41 +00001345 When it appears on a call/invoke, the ``convergent`` attribute indicates
1346 that we should treat the call as though we're calling a convergent
1347 function. This is particularly useful on indirect calls; without this we
1348 may treat such calls as though the target is non-convergent.
1349
1350 The optimizer may remove the ``convergent`` attribute on functions when it
1351 can prove that the function does not execute any convergent operations.
1352 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1353 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001354``inaccessiblememonly``
1355 This attribute indicates that the function may only access memory that
1356 is not accessible by the module being compiled. This is a weaker form
1357 of ``readnone``.
1358``inaccessiblemem_or_argmemonly``
1359 This attribute indicates that the function may only access memory that is
1360 either not accessible by the module being compiled, or is pointed to
1361 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001362``inlinehint``
1363 This attribute indicates that the source code contained a hint that
1364 inlining this function is desirable (such as the "inline" keyword in
1365 C/C++). It is just a hint; it imposes no requirements on the
1366 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001367``jumptable``
1368 This attribute indicates that the function should be added to a
1369 jump-instruction table at code-generation time, and that all address-taken
1370 references to this function should be replaced with a reference to the
1371 appropriate jump-instruction-table function pointer. Note that this creates
1372 a new pointer for the original function, which means that code that depends
1373 on function-pointer identity can break. So, any function annotated with
1374 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001375``minsize``
1376 This attribute suggests that optimization passes and code generator
1377 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001378 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001379 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001380``naked``
1381 This attribute disables prologue / epilogue emission for the
1382 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001383``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001384 This indicates that the callee function at a call site is not recognized as
1385 a built-in function. LLVM will retain the original call and not replace it
1386 with equivalent code based on the semantics of the built-in function, unless
1387 the call site uses the ``builtin`` attribute. This is valid at call sites
1388 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001389``noduplicate``
1390 This attribute indicates that calls to the function cannot be
1391 duplicated. A call to a ``noduplicate`` function may be moved
1392 within its parent function, but may not be duplicated within
1393 its parent function.
1394
1395 A function containing a ``noduplicate`` call may still
1396 be an inlining candidate, provided that the call is not
1397 duplicated by inlining. That implies that the function has
1398 internal linkage and only has one call site, so the original
1399 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001400``noimplicitfloat``
1401 This attributes disables implicit floating point instructions.
1402``noinline``
1403 This attribute indicates that the inliner should never inline this
1404 function in any situation. This attribute may not be used together
1405 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001406``nonlazybind``
1407 This attribute suppresses lazy symbol binding for the function. This
1408 may make calls to the function faster, at the cost of extra program
1409 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001410``noredzone``
1411 This attribute indicates that the code generator should not use a
1412 red zone, even if the target-specific ABI normally permits it.
1413``noreturn``
1414 This function attribute indicates that the function never returns
1415 normally. This produces undefined behavior at runtime if the
1416 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001417``norecurse``
1418 This function attribute indicates that the function does not call itself
1419 either directly or indirectly down any possible call path. This produces
1420 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001421``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001422 This function attribute indicates that the function never raises an
1423 exception. If the function does raise an exception, its runtime
1424 behavior is undefined. However, functions marked nounwind may still
1425 trap or generate asynchronous exceptions. Exception handling schemes
1426 that are recognized by LLVM to handle asynchronous exceptions, such
1427 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001428``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001429 This function attribute indicates that most optimization passes will skip
1430 this function, with the exception of interprocedural optimization passes.
1431 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001432 This attribute cannot be used together with the ``alwaysinline``
1433 attribute; this attribute is also incompatible
1434 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001435
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001436 This attribute requires the ``noinline`` attribute to be specified on
1437 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001438 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001439 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001440``optsize``
1441 This attribute suggests that optimization passes and code generator
1442 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001443 and otherwise do optimizations specifically to reduce code size as
1444 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001445``"patchable-function"``
1446 This attribute tells the code generator that the code
1447 generated for this function needs to follow certain conventions that
1448 make it possible for a runtime function to patch over it later.
1449 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001450 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001451
1452 * ``"prologue-short-redirect"`` - This style of patchable
1453 function is intended to support patching a function prologue to
1454 redirect control away from the function in a thread safe
1455 manner. It guarantees that the first instruction of the
1456 function will be large enough to accommodate a short jump
1457 instruction, and will be sufficiently aligned to allow being
1458 fully changed via an atomic compare-and-swap instruction.
1459 While the first requirement can be satisfied by inserting large
1460 enough NOP, LLVM can and will try to re-purpose an existing
1461 instruction (i.e. one that would have to be emitted anyway) as
1462 the patchable instruction larger than a short jump.
1463
1464 ``"prologue-short-redirect"`` is currently only supported on
1465 x86-64.
1466
1467 This attribute by itself does not imply restrictions on
1468 inter-procedural optimizations. All of the semantic effects the
1469 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001470``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001471 On a function, this attribute indicates that the function computes its
1472 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001473 without dereferencing any pointer arguments or otherwise accessing
1474 any mutable state (e.g. memory, control registers, etc) visible to
1475 caller functions. It does not write through any pointer arguments
1476 (including ``byval`` arguments) and never changes any state visible
1477 to callers. This means that it cannot unwind exceptions by calling
1478 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001479
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001480 On an argument, this attribute indicates that the function does not
1481 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001482 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001483``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001484 On a function, this attribute indicates that the function does not write
1485 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001486 modify any state (e.g. memory, control registers, etc) visible to
1487 caller functions. It may dereference pointer arguments and read
1488 state that may be set in the caller. A readonly function always
1489 returns the same value (or unwinds an exception identically) when
1490 called with the same set of arguments and global state. It cannot
1491 unwind an exception by calling the ``C++`` exception throwing
1492 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001493
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001494 On an argument, this attribute indicates that the function does not write
1495 through this pointer argument, even though it may write to the memory that
1496 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001497``writeonly``
1498 On a function, this attribute indicates that the function may write to but
1499 does not read from memory.
1500
1501 On an argument, this attribute indicates that the function may write to but
1502 does not read through this pointer argument (even though it may read from
1503 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001504``argmemonly``
1505 This attribute indicates that the only memory accesses inside function are
1506 loads and stores from objects pointed to by its pointer-typed arguments,
1507 with arbitrary offsets. Or in other words, all memory operations in the
1508 function can refer to memory only using pointers based on its function
1509 arguments.
1510 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1511 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001512``returns_twice``
1513 This attribute indicates that this function can return twice. The C
1514 ``setjmp`` is an example of such a function. The compiler disables
1515 some optimizations (like tail calls) in the caller of these
1516 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001517``safestack``
1518 This attribute indicates that
1519 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1520 protection is enabled for this function.
1521
1522 If a function that has a ``safestack`` attribute is inlined into a
1523 function that doesn't have a ``safestack`` attribute or which has an
1524 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1525 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001526``sanitize_address``
1527 This attribute indicates that AddressSanitizer checks
1528 (dynamic address safety analysis) are enabled for this function.
1529``sanitize_memory``
1530 This attribute indicates that MemorySanitizer checks (dynamic detection
1531 of accesses to uninitialized memory) are enabled for this function.
1532``sanitize_thread``
1533 This attribute indicates that ThreadSanitizer checks
1534 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001535``ssp``
1536 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001537 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001538 placed on the stack before the local variables that's checked upon
1539 return from the function to see if it has been overwritten. A
1540 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001541 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001542
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001543 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1544 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1545 - Calls to alloca() with variable sizes or constant sizes greater than
1546 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001547
Josh Magee24c7f062014-02-01 01:36:16 +00001548 Variables that are identified as requiring a protector will be arranged
1549 on the stack such that they are adjacent to the stack protector guard.
1550
Sean Silvab084af42012-12-07 10:36:55 +00001551 If a function that has an ``ssp`` attribute is inlined into a
1552 function that doesn't have an ``ssp`` attribute, then the resulting
1553 function will have an ``ssp`` attribute.
1554``sspreq``
1555 This attribute indicates that the function should *always* emit a
1556 stack smashing protector. This overrides the ``ssp`` function
1557 attribute.
1558
Josh Magee24c7f062014-02-01 01:36:16 +00001559 Variables that are identified as requiring a protector will be arranged
1560 on the stack such that they are adjacent to the stack protector guard.
1561 The specific layout rules are:
1562
1563 #. Large arrays and structures containing large arrays
1564 (``>= ssp-buffer-size``) are closest to the stack protector.
1565 #. Small arrays and structures containing small arrays
1566 (``< ssp-buffer-size``) are 2nd closest to the protector.
1567 #. Variables that have had their address taken are 3rd closest to the
1568 protector.
1569
Sean Silvab084af42012-12-07 10:36:55 +00001570 If a function that has an ``sspreq`` attribute is inlined into a
1571 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001572 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1573 an ``sspreq`` attribute.
1574``sspstrong``
1575 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001576 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001577 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001578 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001579
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001580 - Arrays of any size and type
1581 - Aggregates containing an array of any size and type.
1582 - Calls to alloca().
1583 - Local variables that have had their address taken.
1584
Josh Magee24c7f062014-02-01 01:36:16 +00001585 Variables that are identified as requiring a protector will be arranged
1586 on the stack such that they are adjacent to the stack protector guard.
1587 The specific layout rules are:
1588
1589 #. Large arrays and structures containing large arrays
1590 (``>= ssp-buffer-size``) are closest to the stack protector.
1591 #. Small arrays and structures containing small arrays
1592 (``< ssp-buffer-size``) are 2nd closest to the protector.
1593 #. Variables that have had their address taken are 3rd closest to the
1594 protector.
1595
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001596 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001597
1598 If a function that has an ``sspstrong`` attribute is inlined into a
1599 function that doesn't have an ``sspstrong`` attribute, then the
1600 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001601``"thunk"``
1602 This attribute indicates that the function will delegate to some other
1603 function with a tail call. The prototype of a thunk should not be used for
1604 optimization purposes. The caller is expected to cast the thunk prototype to
1605 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001606``uwtable``
1607 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001608 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001609 show that no exceptions passes by it. This is normally the case for
1610 the ELF x86-64 abi, but it can be disabled for some compilation
1611 units.
Sean Silvab084af42012-12-07 10:36:55 +00001612
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001613
1614.. _opbundles:
1615
1616Operand Bundles
1617---------------
1618
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001619Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001620with certain LLVM instructions (currently only ``call`` s and
1621``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001622incorrect and will change program semantics.
1623
1624Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001625
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001626 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001627 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1628 bundle operand ::= SSA value
1629 tag ::= string constant
1630
1631Operand bundles are **not** part of a function's signature, and a
1632given function may be called from multiple places with different kinds
1633of operand bundles. This reflects the fact that the operand bundles
1634are conceptually a part of the ``call`` (or ``invoke``), not the
1635callee being dispatched to.
1636
1637Operand bundles are a generic mechanism intended to support
1638runtime-introspection-like functionality for managed languages. While
1639the exact semantics of an operand bundle depend on the bundle tag,
1640there are certain limitations to how much the presence of an operand
1641bundle can influence the semantics of a program. These restrictions
1642are described as the semantics of an "unknown" operand bundle. As
1643long as the behavior of an operand bundle is describable within these
1644restrictions, LLVM does not need to have special knowledge of the
1645operand bundle to not miscompile programs containing it.
1646
David Majnemer34cacb42015-10-22 01:46:38 +00001647- The bundle operands for an unknown operand bundle escape in unknown
1648 ways before control is transferred to the callee or invokee.
1649- Calls and invokes with operand bundles have unknown read / write
1650 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001651 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001652 callsite specific attributes.
1653- An operand bundle at a call site cannot change the implementation
1654 of the called function. Inter-procedural optimizations work as
1655 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001656
Sanjoy Dascdafd842015-11-11 21:38:02 +00001657More specific types of operand bundles are described below.
1658
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001659.. _deopt_opbundles:
1660
Sanjoy Dascdafd842015-11-11 21:38:02 +00001661Deoptimization Operand Bundles
1662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1663
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001664Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001665operand bundle tag. These operand bundles represent an alternate
1666"safe" continuation for the call site they're attached to, and can be
1667used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001668specified call site. There can be at most one ``"deopt"`` operand
1669bundle attached to a call site. Exact details of deoptimization is
1670out of scope for the language reference, but it usually involves
1671rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001672
1673From the compiler's perspective, deoptimization operand bundles make
1674the call sites they're attached to at least ``readonly``. They read
1675through all of their pointer typed operands (even if they're not
1676otherwise escaped) and the entire visible heap. Deoptimization
1677operand bundles do not capture their operands except during
1678deoptimization, in which case control will not be returned to the
1679compiled frame.
1680
Sanjoy Das2d161452015-11-18 06:23:38 +00001681The inliner knows how to inline through calls that have deoptimization
1682operand bundles. Just like inlining through a normal call site
1683involves composing the normal and exceptional continuations, inlining
1684through a call site with a deoptimization operand bundle needs to
1685appropriately compose the "safe" deoptimization continuation. The
1686inliner does this by prepending the parent's deoptimization
1687continuation to every deoptimization continuation in the inlined body.
1688E.g. inlining ``@f`` into ``@g`` in the following example
1689
1690.. code-block:: llvm
1691
1692 define void @f() {
1693 call void @x() ;; no deopt state
1694 call void @y() [ "deopt"(i32 10) ]
1695 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1696 ret void
1697 }
1698
1699 define void @g() {
1700 call void @f() [ "deopt"(i32 20) ]
1701 ret void
1702 }
1703
1704will result in
1705
1706.. code-block:: llvm
1707
1708 define void @g() {
1709 call void @x() ;; still no deopt state
1710 call void @y() [ "deopt"(i32 20, i32 10) ]
1711 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1712 ret void
1713 }
1714
1715It is the frontend's responsibility to structure or encode the
1716deoptimization state in a way that syntactically prepending the
1717caller's deoptimization state to the callee's deoptimization state is
1718semantically equivalent to composing the caller's deoptimization
1719continuation after the callee's deoptimization continuation.
1720
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001721.. _ob_funclet:
1722
David Majnemer3bb88c02015-12-15 21:27:27 +00001723Funclet Operand Bundles
1724^^^^^^^^^^^^^^^^^^^^^^^
1725
1726Funclet operand bundles are characterized by the ``"funclet"``
1727operand bundle tag. These operand bundles indicate that a call site
1728is within a particular funclet. There can be at most one
1729``"funclet"`` operand bundle attached to a call site and it must have
1730exactly one bundle operand.
1731
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001732If any funclet EH pads have been "entered" but not "exited" (per the
1733`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1734it is undefined behavior to execute a ``call`` or ``invoke`` which:
1735
1736* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1737 intrinsic, or
1738* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1739 not-yet-exited funclet EH pad.
1740
1741Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1742executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1743
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001744GC Transition Operand Bundles
1745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1746
1747GC transition operand bundles are characterized by the
1748``"gc-transition"`` operand bundle tag. These operand bundles mark a
1749call as a transition between a function with one GC strategy to a
1750function with a different GC strategy. If coordinating the transition
1751between GC strategies requires additional code generation at the call
1752site, these bundles may contain any values that are needed by the
1753generated code. For more details, see :ref:`GC Transitions
1754<gc_transition_args>`.
1755
Sean Silvab084af42012-12-07 10:36:55 +00001756.. _moduleasm:
1757
1758Module-Level Inline Assembly
1759----------------------------
1760
1761Modules may contain "module-level inline asm" blocks, which corresponds
1762to the GCC "file scope inline asm" blocks. These blocks are internally
1763concatenated by LLVM and treated as a single unit, but may be separated
1764in the ``.ll`` file if desired. The syntax is very simple:
1765
1766.. code-block:: llvm
1767
1768 module asm "inline asm code goes here"
1769 module asm "more can go here"
1770
1771The strings can contain any character by escaping non-printable
1772characters. The escape sequence used is simply "\\xx" where "xx" is the
1773two digit hex code for the number.
1774
James Y Knightbc832ed2015-07-08 18:08:36 +00001775Note that the assembly string *must* be parseable by LLVM's integrated assembler
1776(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001777
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001778.. _langref_datalayout:
1779
Sean Silvab084af42012-12-07 10:36:55 +00001780Data Layout
1781-----------
1782
1783A module may specify a target specific data layout string that specifies
1784how data is to be laid out in memory. The syntax for the data layout is
1785simply:
1786
1787.. code-block:: llvm
1788
1789 target datalayout = "layout specification"
1790
1791The *layout specification* consists of a list of specifications
1792separated by the minus sign character ('-'). Each specification starts
1793with a letter and may include other information after the letter to
1794define some aspect of the data layout. The specifications accepted are
1795as follows:
1796
1797``E``
1798 Specifies that the target lays out data in big-endian form. That is,
1799 the bits with the most significance have the lowest address
1800 location.
1801``e``
1802 Specifies that the target lays out data in little-endian form. That
1803 is, the bits with the least significance have the lowest address
1804 location.
1805``S<size>``
1806 Specifies the natural alignment of the stack in bits. Alignment
1807 promotion of stack variables is limited to the natural stack
1808 alignment to avoid dynamic stack realignment. The stack alignment
1809 must be a multiple of 8-bits. If omitted, the natural stack
1810 alignment defaults to "unspecified", which does not prevent any
1811 alignment promotions.
1812``p[n]:<size>:<abi>:<pref>``
1813 This specifies the *size* of a pointer and its ``<abi>`` and
1814 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001815 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001816 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001817 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001818``i<size>:<abi>:<pref>``
1819 This specifies the alignment for an integer type of a given bit
1820 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1821``v<size>:<abi>:<pref>``
1822 This specifies the alignment for a vector type of a given bit
1823 ``<size>``.
1824``f<size>:<abi>:<pref>``
1825 This specifies the alignment for a floating point type of a given bit
1826 ``<size>``. Only values of ``<size>`` that are supported by the target
1827 will work. 32 (float) and 64 (double) are supported on all targets; 80
1828 or 128 (different flavors of long double) are also supported on some
1829 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001830``a:<abi>:<pref>``
1831 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001832``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001833 If present, specifies that llvm names are mangled in the output. The
1834 options are
1835
1836 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1837 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1838 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1839 symbols get a ``_`` prefix.
1840 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1841 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001842 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1843 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001844``n<size1>:<size2>:<size3>...``
1845 This specifies a set of native integer widths for the target CPU in
1846 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1847 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1848 this set are considered to support most general arithmetic operations
1849 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001850``ni:<address space0>:<address space1>:<address space2>...``
1851 This specifies pointer types with the specified address spaces
1852 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1853 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001854
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001855On every specification that takes a ``<abi>:<pref>``, specifying the
1856``<pref>`` alignment is optional. If omitted, the preceding ``:``
1857should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1858
Sean Silvab084af42012-12-07 10:36:55 +00001859When constructing the data layout for a given target, LLVM starts with a
1860default set of specifications which are then (possibly) overridden by
1861the specifications in the ``datalayout`` keyword. The default
1862specifications are given in this list:
1863
1864- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001865- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1866- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1867 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001868- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001869- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1870- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1871- ``i16:16:16`` - i16 is 16-bit aligned
1872- ``i32:32:32`` - i32 is 32-bit aligned
1873- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1874 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001875- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001876- ``f32:32:32`` - float is 32-bit aligned
1877- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001878- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001879- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1880- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001881- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001882
1883When LLVM is determining the alignment for a given type, it uses the
1884following rules:
1885
1886#. If the type sought is an exact match for one of the specifications,
1887 that specification is used.
1888#. If no match is found, and the type sought is an integer type, then
1889 the smallest integer type that is larger than the bitwidth of the
1890 sought type is used. If none of the specifications are larger than
1891 the bitwidth then the largest integer type is used. For example,
1892 given the default specifications above, the i7 type will use the
1893 alignment of i8 (next largest) while both i65 and i256 will use the
1894 alignment of i64 (largest specified).
1895#. If no match is found, and the type sought is a vector type, then the
1896 largest vector type that is smaller than the sought vector type will
1897 be used as a fall back. This happens because <128 x double> can be
1898 implemented in terms of 64 <2 x double>, for example.
1899
1900The function of the data layout string may not be what you expect.
1901Notably, this is not a specification from the frontend of what alignment
1902the code generator should use.
1903
1904Instead, if specified, the target data layout is required to match what
1905the ultimate *code generator* expects. This string is used by the
1906mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001907what the ultimate code generator uses. There is no way to generate IR
1908that does not embed this target-specific detail into the IR. If you
1909don't specify the string, the default specifications will be used to
1910generate a Data Layout and the optimization phases will operate
1911accordingly and introduce target specificity into the IR with respect to
1912these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001913
Bill Wendling5cc90842013-10-18 23:41:25 +00001914.. _langref_triple:
1915
1916Target Triple
1917-------------
1918
1919A module may specify a target triple string that describes the target
1920host. The syntax for the target triple is simply:
1921
1922.. code-block:: llvm
1923
1924 target triple = "x86_64-apple-macosx10.7.0"
1925
1926The *target triple* string consists of a series of identifiers delimited
1927by the minus sign character ('-'). The canonical forms are:
1928
1929::
1930
1931 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1932 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1933
1934This information is passed along to the backend so that it generates
1935code for the proper architecture. It's possible to override this on the
1936command line with the ``-mtriple`` command line option.
1937
Sean Silvab084af42012-12-07 10:36:55 +00001938.. _pointeraliasing:
1939
1940Pointer Aliasing Rules
1941----------------------
1942
1943Any memory access must be done through a pointer value associated with
1944an address range of the memory access, otherwise the behavior is
1945undefined. Pointer values are associated with address ranges according
1946to the following rules:
1947
1948- A pointer value is associated with the addresses associated with any
1949 value it is *based* on.
1950- An address of a global variable is associated with the address range
1951 of the variable's storage.
1952- The result value of an allocation instruction is associated with the
1953 address range of the allocated storage.
1954- A null pointer in the default address-space is associated with no
1955 address.
1956- An integer constant other than zero or a pointer value returned from
1957 a function not defined within LLVM may be associated with address
1958 ranges allocated through mechanisms other than those provided by
1959 LLVM. Such ranges shall not overlap with any ranges of addresses
1960 allocated by mechanisms provided by LLVM.
1961
1962A pointer value is *based* on another pointer value according to the
1963following rules:
1964
1965- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001966 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001967- The result value of a ``bitcast`` is *based* on the operand of the
1968 ``bitcast``.
1969- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1970 values that contribute (directly or indirectly) to the computation of
1971 the pointer's value.
1972- The "*based* on" relationship is transitive.
1973
1974Note that this definition of *"based"* is intentionally similar to the
1975definition of *"based"* in C99, though it is slightly weaker.
1976
1977LLVM IR does not associate types with memory. The result type of a
1978``load`` merely indicates the size and alignment of the memory from
1979which to load, as well as the interpretation of the value. The first
1980operand type of a ``store`` similarly only indicates the size and
1981alignment of the store.
1982
1983Consequently, type-based alias analysis, aka TBAA, aka
1984``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1985:ref:`Metadata <metadata>` may be used to encode additional information
1986which specialized optimization passes may use to implement type-based
1987alias analysis.
1988
1989.. _volatile:
1990
1991Volatile Memory Accesses
1992------------------------
1993
1994Certain memory accesses, such as :ref:`load <i_load>`'s,
1995:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1996marked ``volatile``. The optimizers must not change the number of
1997volatile operations or change their order of execution relative to other
1998volatile operations. The optimizers *may* change the order of volatile
1999operations relative to non-volatile operations. This is not Java's
2000"volatile" and has no cross-thread synchronization behavior.
2001
Andrew Trick89fc5a62013-01-30 21:19:35 +00002002IR-level volatile loads and stores cannot safely be optimized into
2003llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2004flagged volatile. Likewise, the backend should never split or merge
2005target-legal volatile load/store instructions.
2006
Andrew Trick7e6f9282013-01-31 00:49:39 +00002007.. admonition:: Rationale
2008
2009 Platforms may rely on volatile loads and stores of natively supported
2010 data width to be executed as single instruction. For example, in C
2011 this holds for an l-value of volatile primitive type with native
2012 hardware support, but not necessarily for aggregate types. The
2013 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002014 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002015 do not violate the frontend's contract with the language.
2016
Sean Silvab084af42012-12-07 10:36:55 +00002017.. _memmodel:
2018
2019Memory Model for Concurrent Operations
2020--------------------------------------
2021
2022The LLVM IR does not define any way to start parallel threads of
2023execution or to register signal handlers. Nonetheless, there are
2024platform-specific ways to create them, and we define LLVM IR's behavior
2025in their presence. This model is inspired by the C++0x memory model.
2026
2027For a more informal introduction to this model, see the :doc:`Atomics`.
2028
2029We define a *happens-before* partial order as the least partial order
2030that
2031
2032- Is a superset of single-thread program order, and
2033- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2034 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2035 techniques, like pthread locks, thread creation, thread joining,
2036 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2037 Constraints <ordering>`).
2038
2039Note that program order does not introduce *happens-before* edges
2040between a thread and signals executing inside that thread.
2041
2042Every (defined) read operation (load instructions, memcpy, atomic
2043loads/read-modify-writes, etc.) R reads a series of bytes written by
2044(defined) write operations (store instructions, atomic
2045stores/read-modify-writes, memcpy, etc.). For the purposes of this
2046section, initialized globals are considered to have a write of the
2047initializer which is atomic and happens before any other read or write
2048of the memory in question. For each byte of a read R, R\ :sub:`byte`
2049may see any write to the same byte, except:
2050
2051- If write\ :sub:`1` happens before write\ :sub:`2`, and
2052 write\ :sub:`2` happens before R\ :sub:`byte`, then
2053 R\ :sub:`byte` does not see write\ :sub:`1`.
2054- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2055 R\ :sub:`byte` does not see write\ :sub:`3`.
2056
2057Given that definition, R\ :sub:`byte` is defined as follows:
2058
2059- If R is volatile, the result is target-dependent. (Volatile is
2060 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002061 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002062 like normal memory. It does not generally provide cross-thread
2063 synchronization.)
2064- Otherwise, if there is no write to the same byte that happens before
2065 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2066- Otherwise, if R\ :sub:`byte` may see exactly one write,
2067 R\ :sub:`byte` returns the value written by that write.
2068- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2069 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2070 Memory Ordering Constraints <ordering>` section for additional
2071 constraints on how the choice is made.
2072- Otherwise R\ :sub:`byte` returns ``undef``.
2073
2074R returns the value composed of the series of bytes it read. This
2075implies that some bytes within the value may be ``undef`` **without**
2076the entire value being ``undef``. Note that this only defines the
2077semantics of the operation; it doesn't mean that targets will emit more
2078than one instruction to read the series of bytes.
2079
2080Note that in cases where none of the atomic intrinsics are used, this
2081model places only one restriction on IR transformations on top of what
2082is required for single-threaded execution: introducing a store to a byte
2083which might not otherwise be stored is not allowed in general.
2084(Specifically, in the case where another thread might write to and read
2085from an address, introducing a store can change a load that may see
2086exactly one write into a load that may see multiple writes.)
2087
2088.. _ordering:
2089
2090Atomic Memory Ordering Constraints
2091----------------------------------
2092
2093Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2094:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2095:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002096ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002097the same address they *synchronize with*. These semantics are borrowed
2098from Java and C++0x, but are somewhat more colloquial. If these
2099descriptions aren't precise enough, check those specs (see spec
2100references in the :doc:`atomics guide <Atomics>`).
2101:ref:`fence <i_fence>` instructions treat these orderings somewhat
2102differently since they don't take an address. See that instruction's
2103documentation for details.
2104
2105For a simpler introduction to the ordering constraints, see the
2106:doc:`Atomics`.
2107
2108``unordered``
2109 The set of values that can be read is governed by the happens-before
2110 partial order. A value cannot be read unless some operation wrote
2111 it. This is intended to provide a guarantee strong enough to model
2112 Java's non-volatile shared variables. This ordering cannot be
2113 specified for read-modify-write operations; it is not strong enough
2114 to make them atomic in any interesting way.
2115``monotonic``
2116 In addition to the guarantees of ``unordered``, there is a single
2117 total order for modifications by ``monotonic`` operations on each
2118 address. All modification orders must be compatible with the
2119 happens-before order. There is no guarantee that the modification
2120 orders can be combined to a global total order for the whole program
2121 (and this often will not be possible). The read in an atomic
2122 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2123 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2124 order immediately before the value it writes. If one atomic read
2125 happens before another atomic read of the same address, the later
2126 read must see the same value or a later value in the address's
2127 modification order. This disallows reordering of ``monotonic`` (or
2128 stronger) operations on the same address. If an address is written
2129 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2130 read that address repeatedly, the other threads must eventually see
2131 the write. This corresponds to the C++0x/C1x
2132 ``memory_order_relaxed``.
2133``acquire``
2134 In addition to the guarantees of ``monotonic``, a
2135 *synchronizes-with* edge may be formed with a ``release`` operation.
2136 This is intended to model C++'s ``memory_order_acquire``.
2137``release``
2138 In addition to the guarantees of ``monotonic``, if this operation
2139 writes a value which is subsequently read by an ``acquire``
2140 operation, it *synchronizes-with* that operation. (This isn't a
2141 complete description; see the C++0x definition of a release
2142 sequence.) This corresponds to the C++0x/C1x
2143 ``memory_order_release``.
2144``acq_rel`` (acquire+release)
2145 Acts as both an ``acquire`` and ``release`` operation on its
2146 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2147``seq_cst`` (sequentially consistent)
2148 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002149 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002150 writes), there is a global total order on all
2151 sequentially-consistent operations on all addresses, which is
2152 consistent with the *happens-before* partial order and with the
2153 modification orders of all the affected addresses. Each
2154 sequentially-consistent read sees the last preceding write to the
2155 same address in this global order. This corresponds to the C++0x/C1x
2156 ``memory_order_seq_cst`` and Java volatile.
2157
2158.. _singlethread:
2159
2160If an atomic operation is marked ``singlethread``, it only *synchronizes
2161with* or participates in modification and seq\_cst total orderings with
2162other operations running in the same thread (for example, in signal
2163handlers).
2164
2165.. _fastmath:
2166
2167Fast-Math Flags
2168---------------
2169
2170LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2171:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002172:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
2173instructions have the following flags that can be set to enable
2174otherwise unsafe floating point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002175
2176``nnan``
2177 No NaNs - Allow optimizations to assume the arguments and result are not
2178 NaN. Such optimizations are required to retain defined behavior over
2179 NaNs, but the value of the result is undefined.
2180
2181``ninf``
2182 No Infs - Allow optimizations to assume the arguments and result are not
2183 +/-Inf. Such optimizations are required to retain defined behavior over
2184 +/-Inf, but the value of the result is undefined.
2185
2186``nsz``
2187 No Signed Zeros - Allow optimizations to treat the sign of a zero
2188 argument or result as insignificant.
2189
2190``arcp``
2191 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2192 argument rather than perform division.
2193
2194``fast``
2195 Fast - Allow algebraically equivalent transformations that may
2196 dramatically change results in floating point (e.g. reassociate). This
2197 flag implies all the others.
2198
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002199.. _uselistorder:
2200
2201Use-list Order Directives
2202-------------------------
2203
2204Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002205order to be recreated. ``<order-indexes>`` is a comma-separated list of
2206indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002207value's use-list is immediately sorted by these indexes.
2208
Sean Silvaa1190322015-08-06 22:56:48 +00002209Use-list directives may appear at function scope or global scope. They are not
2210instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002211function scope, they must appear after the terminator of the final basic block.
2212
2213If basic blocks have their address taken via ``blockaddress()`` expressions,
2214``uselistorder_bb`` can be used to reorder their use-lists from outside their
2215function's scope.
2216
2217:Syntax:
2218
2219::
2220
2221 uselistorder <ty> <value>, { <order-indexes> }
2222 uselistorder_bb @function, %block { <order-indexes> }
2223
2224:Examples:
2225
2226::
2227
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002228 define void @foo(i32 %arg1, i32 %arg2) {
2229 entry:
2230 ; ... instructions ...
2231 bb:
2232 ; ... instructions ...
2233
2234 ; At function scope.
2235 uselistorder i32 %arg1, { 1, 0, 2 }
2236 uselistorder label %bb, { 1, 0 }
2237 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002238
2239 ; At global scope.
2240 uselistorder i32* @global, { 1, 2, 0 }
2241 uselistorder i32 7, { 1, 0 }
2242 uselistorder i32 (i32) @bar, { 1, 0 }
2243 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2244
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002245.. _source_filename:
2246
2247Source Filename
2248---------------
2249
2250The *source filename* string is set to the original module identifier,
2251which will be the name of the compiled source file when compiling from
2252source through the clang front end, for example. It is then preserved through
2253the IR and bitcode.
2254
2255This is currently necessary to generate a consistent unique global
2256identifier for local functions used in profile data, which prepends the
2257source file name to the local function name.
2258
2259The syntax for the source file name is simply:
2260
Renato Golin124f2592016-07-20 12:16:38 +00002261.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002262
2263 source_filename = "/path/to/source.c"
2264
Sean Silvab084af42012-12-07 10:36:55 +00002265.. _typesystem:
2266
2267Type System
2268===========
2269
2270The LLVM type system is one of the most important features of the
2271intermediate representation. Being typed enables a number of
2272optimizations to be performed on the intermediate representation
2273directly, without having to do extra analyses on the side before the
2274transformation. A strong type system makes it easier to read the
2275generated code and enables novel analyses and transformations that are
2276not feasible to perform on normal three address code representations.
2277
Rafael Espindola08013342013-12-07 19:34:20 +00002278.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002279
Rafael Espindola08013342013-12-07 19:34:20 +00002280Void Type
2281---------
Sean Silvab084af42012-12-07 10:36:55 +00002282
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002283:Overview:
2284
Rafael Espindola08013342013-12-07 19:34:20 +00002285
2286The void type does not represent any value and has no size.
2287
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002288:Syntax:
2289
Rafael Espindola08013342013-12-07 19:34:20 +00002290
2291::
2292
2293 void
Sean Silvab084af42012-12-07 10:36:55 +00002294
2295
Rafael Espindola08013342013-12-07 19:34:20 +00002296.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002297
Rafael Espindola08013342013-12-07 19:34:20 +00002298Function Type
2299-------------
Sean Silvab084af42012-12-07 10:36:55 +00002300
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002301:Overview:
2302
Sean Silvab084af42012-12-07 10:36:55 +00002303
Rafael Espindola08013342013-12-07 19:34:20 +00002304The function type can be thought of as a function signature. It consists of a
2305return type and a list of formal parameter types. The return type of a function
2306type is a void type or first class type --- except for :ref:`label <t_label>`
2307and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002308
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002309:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002310
Rafael Espindola08013342013-12-07 19:34:20 +00002311::
Sean Silvab084af42012-12-07 10:36:55 +00002312
Rafael Espindola08013342013-12-07 19:34:20 +00002313 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002314
Rafael Espindola08013342013-12-07 19:34:20 +00002315...where '``<parameter list>``' is a comma-separated list of type
2316specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002317indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002318argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002319handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002320except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002321
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002322:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002323
Rafael Espindola08013342013-12-07 19:34:20 +00002324+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2325| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2326+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2327| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2328+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2329| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2330+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2331| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2332+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2333
2334.. _t_firstclass:
2335
2336First Class Types
2337-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002338
2339The :ref:`first class <t_firstclass>` types are perhaps the most important.
2340Values of these types are the only ones which can be produced by
2341instructions.
2342
Rafael Espindola08013342013-12-07 19:34:20 +00002343.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002344
Rafael Espindola08013342013-12-07 19:34:20 +00002345Single Value Types
2346^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002347
Rafael Espindola08013342013-12-07 19:34:20 +00002348These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002349
2350.. _t_integer:
2351
2352Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002353""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002354
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002355:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002356
2357The integer type is a very simple type that simply specifies an
2358arbitrary bit width for the integer type desired. Any bit width from 1
2359bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2360
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002361:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002362
2363::
2364
2365 iN
2366
2367The number of bits the integer will occupy is specified by the ``N``
2368value.
2369
2370Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002371*********
Sean Silvab084af42012-12-07 10:36:55 +00002372
2373+----------------+------------------------------------------------+
2374| ``i1`` | a single-bit integer. |
2375+----------------+------------------------------------------------+
2376| ``i32`` | a 32-bit integer. |
2377+----------------+------------------------------------------------+
2378| ``i1942652`` | a really big integer of over 1 million bits. |
2379+----------------+------------------------------------------------+
2380
2381.. _t_floating:
2382
2383Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002384""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002385
2386.. list-table::
2387 :header-rows: 1
2388
2389 * - Type
2390 - Description
2391
2392 * - ``half``
2393 - 16-bit floating point value
2394
2395 * - ``float``
2396 - 32-bit floating point value
2397
2398 * - ``double``
2399 - 64-bit floating point value
2400
2401 * - ``fp128``
2402 - 128-bit floating point value (112-bit mantissa)
2403
2404 * - ``x86_fp80``
2405 - 80-bit floating point value (X87)
2406
2407 * - ``ppc_fp128``
2408 - 128-bit floating point value (two 64-bits)
2409
Reid Kleckner9a16d082014-03-05 02:41:37 +00002410X86_mmx Type
2411""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002412
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002413:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002414
Reid Kleckner9a16d082014-03-05 02:41:37 +00002415The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002416machine. The operations allowed on it are quite limited: parameters and
2417return values, load and store, and bitcast. User-specified MMX
2418instructions are represented as intrinsic or asm calls with arguments
2419and/or results of this type. There are no arrays, vectors or constants
2420of this type.
2421
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002422:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002423
2424::
2425
Reid Kleckner9a16d082014-03-05 02:41:37 +00002426 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002427
Sean Silvab084af42012-12-07 10:36:55 +00002428
Rafael Espindola08013342013-12-07 19:34:20 +00002429.. _t_pointer:
2430
2431Pointer Type
2432""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002433
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002434:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002435
Rafael Espindola08013342013-12-07 19:34:20 +00002436The pointer type is used to specify memory locations. Pointers are
2437commonly used to reference objects in memory.
2438
2439Pointer types may have an optional address space attribute defining the
2440numbered address space where the pointed-to object resides. The default
2441address space is number zero. The semantics of non-zero address spaces
2442are target-specific.
2443
2444Note that LLVM does not permit pointers to void (``void*``) nor does it
2445permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002446
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002447:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002448
2449::
2450
Rafael Espindola08013342013-12-07 19:34:20 +00002451 <type> *
2452
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002453:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002454
2455+-------------------------+--------------------------------------------------------------------------------------------------------------+
2456| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2457+-------------------------+--------------------------------------------------------------------------------------------------------------+
2458| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2459+-------------------------+--------------------------------------------------------------------------------------------------------------+
2460| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2461+-------------------------+--------------------------------------------------------------------------------------------------------------+
2462
2463.. _t_vector:
2464
2465Vector Type
2466"""""""""""
2467
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002468:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002469
2470A vector type is a simple derived type that represents a vector of
2471elements. Vector types are used when multiple primitive data are
2472operated in parallel using a single instruction (SIMD). A vector type
2473requires a size (number of elements) and an underlying primitive data
2474type. Vector types are considered :ref:`first class <t_firstclass>`.
2475
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002476:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002477
2478::
2479
2480 < <# elements> x <elementtype> >
2481
2482The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002483elementtype may be any integer, floating point or pointer type. Vectors
2484of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002485
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002486:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002487
2488+-------------------+--------------------------------------------------+
2489| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2490+-------------------+--------------------------------------------------+
2491| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2492+-------------------+--------------------------------------------------+
2493| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2494+-------------------+--------------------------------------------------+
2495| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2496+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002497
2498.. _t_label:
2499
2500Label Type
2501^^^^^^^^^^
2502
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002503:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002504
2505The label type represents code labels.
2506
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002507:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002508
2509::
2510
2511 label
2512
David Majnemerb611e3f2015-08-14 05:09:07 +00002513.. _t_token:
2514
2515Token Type
2516^^^^^^^^^^
2517
2518:Overview:
2519
2520The token type is used when a value is associated with an instruction
2521but all uses of the value must not attempt to introspect or obscure it.
2522As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2523:ref:`select <i_select>` of type token.
2524
2525:Syntax:
2526
2527::
2528
2529 token
2530
2531
2532
Sean Silvab084af42012-12-07 10:36:55 +00002533.. _t_metadata:
2534
2535Metadata Type
2536^^^^^^^^^^^^^
2537
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002538:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002539
2540The metadata type represents embedded metadata. No derived types may be
2541created from metadata except for :ref:`function <t_function>` arguments.
2542
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002543:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002544
2545::
2546
2547 metadata
2548
Sean Silvab084af42012-12-07 10:36:55 +00002549.. _t_aggregate:
2550
2551Aggregate Types
2552^^^^^^^^^^^^^^^
2553
2554Aggregate Types are a subset of derived types that can contain multiple
2555member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2556aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2557aggregate types.
2558
2559.. _t_array:
2560
2561Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002562""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002563
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002564:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002565
2566The array type is a very simple derived type that arranges elements
2567sequentially in memory. The array type requires a size (number of
2568elements) and an underlying data type.
2569
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002570:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002571
2572::
2573
2574 [<# elements> x <elementtype>]
2575
2576The number of elements is a constant integer value; ``elementtype`` may
2577be any type with a size.
2578
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002579:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002580
2581+------------------+--------------------------------------+
2582| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2583+------------------+--------------------------------------+
2584| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2585+------------------+--------------------------------------+
2586| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2587+------------------+--------------------------------------+
2588
2589Here are some examples of multidimensional arrays:
2590
2591+-----------------------------+----------------------------------------------------------+
2592| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2593+-----------------------------+----------------------------------------------------------+
2594| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2595+-----------------------------+----------------------------------------------------------+
2596| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2597+-----------------------------+----------------------------------------------------------+
2598
2599There is no restriction on indexing beyond the end of the array implied
2600by a static type (though there are restrictions on indexing beyond the
2601bounds of an allocated object in some cases). This means that
2602single-dimension 'variable sized array' addressing can be implemented in
2603LLVM with a zero length array type. An implementation of 'pascal style
2604arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2605example.
2606
Sean Silvab084af42012-12-07 10:36:55 +00002607.. _t_struct:
2608
2609Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002610""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002611
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002612:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002613
2614The structure type is used to represent a collection of data members
2615together in memory. The elements of a structure may be any type that has
2616a size.
2617
2618Structures in memory are accessed using '``load``' and '``store``' by
2619getting a pointer to a field with the '``getelementptr``' instruction.
2620Structures in registers are accessed using the '``extractvalue``' and
2621'``insertvalue``' instructions.
2622
2623Structures may optionally be "packed" structures, which indicate that
2624the alignment of the struct is one byte, and that there is no padding
2625between the elements. In non-packed structs, padding between field types
2626is inserted as defined by the DataLayout string in the module, which is
2627required to match what the underlying code generator expects.
2628
2629Structures can either be "literal" or "identified". A literal structure
2630is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2631identified types are always defined at the top level with a name.
2632Literal types are uniqued by their contents and can never be recursive
2633or opaque since there is no way to write one. Identified types can be
2634recursive, can be opaqued, and are never uniqued.
2635
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002636:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002637
2638::
2639
2640 %T1 = type { <type list> } ; Identified normal struct type
2641 %T2 = type <{ <type list> }> ; Identified packed struct type
2642
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002643:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002644
2645+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2646| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2647+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002648| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002649+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2650| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2651+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2652
2653.. _t_opaque:
2654
2655Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002656""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002657
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002658:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002659
2660Opaque structure types are used to represent named structure types that
2661do not have a body specified. This corresponds (for example) to the C
2662notion of a forward declared structure.
2663
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002664:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002665
2666::
2667
2668 %X = type opaque
2669 %52 = type opaque
2670
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002671:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002672
2673+--------------+-------------------+
2674| ``opaque`` | An opaque type. |
2675+--------------+-------------------+
2676
Sean Silva1703e702014-04-08 21:06:22 +00002677.. _constants:
2678
Sean Silvab084af42012-12-07 10:36:55 +00002679Constants
2680=========
2681
2682LLVM has several different basic types of constants. This section
2683describes them all and their syntax.
2684
2685Simple Constants
2686----------------
2687
2688**Boolean constants**
2689 The two strings '``true``' and '``false``' are both valid constants
2690 of the ``i1`` type.
2691**Integer constants**
2692 Standard integers (such as '4') are constants of the
2693 :ref:`integer <t_integer>` type. Negative numbers may be used with
2694 integer types.
2695**Floating point constants**
2696 Floating point constants use standard decimal notation (e.g.
2697 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2698 hexadecimal notation (see below). The assembler requires the exact
2699 decimal value of a floating-point constant. For example, the
2700 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2701 decimal in binary. Floating point constants must have a :ref:`floating
2702 point <t_floating>` type.
2703**Null pointer constants**
2704 The identifier '``null``' is recognized as a null pointer constant
2705 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002706**Token constants**
2707 The identifier '``none``' is recognized as an empty token constant
2708 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002709
2710The one non-intuitive notation for constants is the hexadecimal form of
2711floating point constants. For example, the form
2712'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2713than) '``double 4.5e+15``'. The only time hexadecimal floating point
2714constants are required (and the only time that they are generated by the
2715disassembler) is when a floating point constant must be emitted but it
2716cannot be represented as a decimal floating point number in a reasonable
2717number of digits. For example, NaN's, infinities, and other special
2718values are represented in their IEEE hexadecimal format so that assembly
2719and disassembly do not cause any bits to change in the constants.
2720
2721When using the hexadecimal form, constants of types half, float, and
2722double are represented using the 16-digit form shown above (which
2723matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002724must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002725precision, respectively. Hexadecimal format is always used for long
2726double, and there are three forms of long double. The 80-bit format used
2727by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2728128-bit format used by PowerPC (two adjacent doubles) is represented by
2729``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002730represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2731will only work if they match the long double format on your target.
2732The IEEE 16-bit format (half precision) is represented by ``0xH``
2733followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2734(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002735
Reid Kleckner9a16d082014-03-05 02:41:37 +00002736There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002737
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002738.. _complexconstants:
2739
Sean Silvab084af42012-12-07 10:36:55 +00002740Complex Constants
2741-----------------
2742
2743Complex constants are a (potentially recursive) combination of simple
2744constants and smaller complex constants.
2745
2746**Structure constants**
2747 Structure constants are represented with notation similar to
2748 structure type definitions (a comma separated list of elements,
2749 surrounded by braces (``{}``)). For example:
2750 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2751 "``@G = external global i32``". Structure constants must have
2752 :ref:`structure type <t_struct>`, and the number and types of elements
2753 must match those specified by the type.
2754**Array constants**
2755 Array constants are represented with notation similar to array type
2756 definitions (a comma separated list of elements, surrounded by
2757 square brackets (``[]``)). For example:
2758 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2759 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002760 match those specified by the type. As a special case, character array
2761 constants may also be represented as a double-quoted string using the ``c``
2762 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002763**Vector constants**
2764 Vector constants are represented with notation similar to vector
2765 type definitions (a comma separated list of elements, surrounded by
2766 less-than/greater-than's (``<>``)). For example:
2767 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2768 must have :ref:`vector type <t_vector>`, and the number and types of
2769 elements must match those specified by the type.
2770**Zero initialization**
2771 The string '``zeroinitializer``' can be used to zero initialize a
2772 value to zero of *any* type, including scalar and
2773 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2774 having to print large zero initializers (e.g. for large arrays) and
2775 is always exactly equivalent to using explicit zero initializers.
2776**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002777 A metadata node is a constant tuple without types. For example:
2778 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002779 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2780 Unlike other typed constants that are meant to be interpreted as part of
2781 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002782 information such as debug info.
2783
2784Global Variable and Function Addresses
2785--------------------------------------
2786
2787The addresses of :ref:`global variables <globalvars>` and
2788:ref:`functions <functionstructure>` are always implicitly valid
2789(link-time) constants. These constants are explicitly referenced when
2790the :ref:`identifier for the global <identifiers>` is used and always have
2791:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2792file:
2793
2794.. code-block:: llvm
2795
2796 @X = global i32 17
2797 @Y = global i32 42
2798 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2799
2800.. _undefvalues:
2801
2802Undefined Values
2803----------------
2804
2805The string '``undef``' can be used anywhere a constant is expected, and
2806indicates that the user of the value may receive an unspecified
2807bit-pattern. Undefined values may be of any type (other than '``label``'
2808or '``void``') and be used anywhere a constant is permitted.
2809
2810Undefined values are useful because they indicate to the compiler that
2811the program is well defined no matter what value is used. This gives the
2812compiler more freedom to optimize. Here are some examples of
2813(potentially surprising) transformations that are valid (in pseudo IR):
2814
2815.. code-block:: llvm
2816
2817 %A = add %X, undef
2818 %B = sub %X, undef
2819 %C = xor %X, undef
2820 Safe:
2821 %A = undef
2822 %B = undef
2823 %C = undef
2824
2825This is safe because all of the output bits are affected by the undef
2826bits. Any output bit can have a zero or one depending on the input bits.
2827
2828.. code-block:: llvm
2829
2830 %A = or %X, undef
2831 %B = and %X, undef
2832 Safe:
2833 %A = -1
2834 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002835 Safe:
2836 %A = %X ;; By choosing undef as 0
2837 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002838 Unsafe:
2839 %A = undef
2840 %B = undef
2841
2842These logical operations have bits that are not always affected by the
2843input. For example, if ``%X`` has a zero bit, then the output of the
2844'``and``' operation will always be a zero for that bit, no matter what
2845the corresponding bit from the '``undef``' is. As such, it is unsafe to
2846optimize or assume that the result of the '``and``' is '``undef``'.
2847However, it is safe to assume that all bits of the '``undef``' could be
28480, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2849all the bits of the '``undef``' operand to the '``or``' could be set,
2850allowing the '``or``' to be folded to -1.
2851
2852.. code-block:: llvm
2853
2854 %A = select undef, %X, %Y
2855 %B = select undef, 42, %Y
2856 %C = select %X, %Y, undef
2857 Safe:
2858 %A = %X (or %Y)
2859 %B = 42 (or %Y)
2860 %C = %Y
2861 Unsafe:
2862 %A = undef
2863 %B = undef
2864 %C = undef
2865
2866This set of examples shows that undefined '``select``' (and conditional
2867branch) conditions can go *either way*, but they have to come from one
2868of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2869both known to have a clear low bit, then ``%A`` would have to have a
2870cleared low bit. However, in the ``%C`` example, the optimizer is
2871allowed to assume that the '``undef``' operand could be the same as
2872``%Y``, allowing the whole '``select``' to be eliminated.
2873
Renato Golin124f2592016-07-20 12:16:38 +00002874.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002875
2876 %A = xor undef, undef
2877
2878 %B = undef
2879 %C = xor %B, %B
2880
2881 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002882 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002883 %F = icmp gte %D, 4
2884
2885 Safe:
2886 %A = undef
2887 %B = undef
2888 %C = undef
2889 %D = undef
2890 %E = undef
2891 %F = undef
2892
2893This example points out that two '``undef``' operands are not
2894necessarily the same. This can be surprising to people (and also matches
2895C semantics) where they assume that "``X^X``" is always zero, even if
2896``X`` is undefined. This isn't true for a number of reasons, but the
2897short answer is that an '``undef``' "variable" can arbitrarily change
2898its value over its "live range". This is true because the variable
2899doesn't actually *have a live range*. Instead, the value is logically
2900read from arbitrary registers that happen to be around when needed, so
2901the value is not necessarily consistent over time. In fact, ``%A`` and
2902``%C`` need to have the same semantics or the core LLVM "replace all
2903uses with" concept would not hold.
2904
2905.. code-block:: llvm
2906
2907 %A = fdiv undef, %X
2908 %B = fdiv %X, undef
2909 Safe:
2910 %A = undef
2911 b: unreachable
2912
2913These examples show the crucial difference between an *undefined value*
2914and *undefined behavior*. An undefined value (like '``undef``') is
2915allowed to have an arbitrary bit-pattern. This means that the ``%A``
2916operation can be constant folded to '``undef``', because the '``undef``'
2917could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2918However, in the second example, we can make a more aggressive
2919assumption: because the ``undef`` is allowed to be an arbitrary value,
2920we are allowed to assume that it could be zero. Since a divide by zero
2921has *undefined behavior*, we are allowed to assume that the operation
2922does not execute at all. This allows us to delete the divide and all
2923code after it. Because the undefined operation "can't happen", the
2924optimizer can assume that it occurs in dead code.
2925
Renato Golin124f2592016-07-20 12:16:38 +00002926.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002927
2928 a: store undef -> %X
2929 b: store %X -> undef
2930 Safe:
2931 a: <deleted>
2932 b: unreachable
2933
2934These examples reiterate the ``fdiv`` example: a store *of* an undefined
2935value can be assumed to not have any effect; we can assume that the
2936value is overwritten with bits that happen to match what was already
2937there. However, a store *to* an undefined location could clobber
2938arbitrary memory, therefore, it has undefined behavior.
2939
2940.. _poisonvalues:
2941
2942Poison Values
2943-------------
2944
2945Poison values are similar to :ref:`undef values <undefvalues>`, however
2946they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002947that cannot evoke side effects has nevertheless detected a condition
2948that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002949
2950There is currently no way of representing a poison value in the IR; they
2951only exist when produced by operations such as :ref:`add <i_add>` with
2952the ``nsw`` flag.
2953
2954Poison value behavior is defined in terms of value *dependence*:
2955
2956- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2957- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2958 their dynamic predecessor basic block.
2959- Function arguments depend on the corresponding actual argument values
2960 in the dynamic callers of their functions.
2961- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2962 instructions that dynamically transfer control back to them.
2963- :ref:`Invoke <i_invoke>` instructions depend on the
2964 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2965 call instructions that dynamically transfer control back to them.
2966- Non-volatile loads and stores depend on the most recent stores to all
2967 of the referenced memory addresses, following the order in the IR
2968 (including loads and stores implied by intrinsics such as
2969 :ref:`@llvm.memcpy <int_memcpy>`.)
2970- An instruction with externally visible side effects depends on the
2971 most recent preceding instruction with externally visible side
2972 effects, following the order in the IR. (This includes :ref:`volatile
2973 operations <volatile>`.)
2974- An instruction *control-depends* on a :ref:`terminator
2975 instruction <terminators>` if the terminator instruction has
2976 multiple successors and the instruction is always executed when
2977 control transfers to one of the successors, and may not be executed
2978 when control is transferred to another.
2979- Additionally, an instruction also *control-depends* on a terminator
2980 instruction if the set of instructions it otherwise depends on would
2981 be different if the terminator had transferred control to a different
2982 successor.
2983- Dependence is transitive.
2984
Richard Smith32dbdf62014-07-31 04:25:36 +00002985Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2986with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002987on a poison value has undefined behavior.
2988
2989Here are some examples:
2990
2991.. code-block:: llvm
2992
2993 entry:
2994 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2995 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002996 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002997 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2998
2999 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003000 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003001
3002 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3003
3004 %narrowaddr = bitcast i32* @g to i16*
3005 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003006 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3007 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003008
3009 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3010 br i1 %cmp, label %true, label %end ; Branch to either destination.
3011
3012 true:
3013 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3014 ; it has undefined behavior.
3015 br label %end
3016
3017 end:
3018 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3019 ; Both edges into this PHI are
3020 ; control-dependent on %cmp, so this
3021 ; always results in a poison value.
3022
3023 store volatile i32 0, i32* @g ; This would depend on the store in %true
3024 ; if %cmp is true, or the store in %entry
3025 ; otherwise, so this is undefined behavior.
3026
3027 br i1 %cmp, label %second_true, label %second_end
3028 ; The same branch again, but this time the
3029 ; true block doesn't have side effects.
3030
3031 second_true:
3032 ; No side effects!
3033 ret void
3034
3035 second_end:
3036 store volatile i32 0, i32* @g ; This time, the instruction always depends
3037 ; on the store in %end. Also, it is
3038 ; control-equivalent to %end, so this is
3039 ; well-defined (ignoring earlier undefined
3040 ; behavior in this example).
3041
3042.. _blockaddress:
3043
3044Addresses of Basic Blocks
3045-------------------------
3046
3047``blockaddress(@function, %block)``
3048
3049The '``blockaddress``' constant computes the address of the specified
3050basic block in the specified function, and always has an ``i8*`` type.
3051Taking the address of the entry block is illegal.
3052
3053This value only has defined behavior when used as an operand to the
3054':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3055against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003056undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003057no label is equal to the null pointer. This may be passed around as an
3058opaque pointer sized value as long as the bits are not inspected. This
3059allows ``ptrtoint`` and arithmetic to be performed on these values so
3060long as the original value is reconstituted before the ``indirectbr``
3061instruction.
3062
3063Finally, some targets may provide defined semantics when using the value
3064as the operand to an inline assembly, but that is target specific.
3065
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003066.. _constantexprs:
3067
Sean Silvab084af42012-12-07 10:36:55 +00003068Constant Expressions
3069--------------------
3070
3071Constant expressions are used to allow expressions involving other
3072constants to be used as constants. Constant expressions may be of any
3073:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3074that does not have side effects (e.g. load and call are not supported).
3075The following is the syntax for constant expressions:
3076
3077``trunc (CST to TYPE)``
3078 Truncate a constant to another type. The bit size of CST must be
3079 larger than the bit size of TYPE. Both types must be integers.
3080``zext (CST to TYPE)``
3081 Zero extend a constant to another type. The bit size of CST must be
3082 smaller than the bit size of TYPE. Both types must be integers.
3083``sext (CST to TYPE)``
3084 Sign extend a constant to another type. The bit size of CST must be
3085 smaller than the bit size of TYPE. Both types must be integers.
3086``fptrunc (CST to TYPE)``
3087 Truncate a floating point constant to another floating point type.
3088 The size of CST must be larger than the size of TYPE. Both types
3089 must be floating point.
3090``fpext (CST to TYPE)``
3091 Floating point extend a constant to another type. The size of CST
3092 must be smaller or equal to the size of TYPE. Both types must be
3093 floating point.
3094``fptoui (CST to TYPE)``
3095 Convert a floating point constant to the corresponding unsigned
3096 integer constant. TYPE must be a scalar or vector integer type. CST
3097 must be of scalar or vector floating point type. Both CST and TYPE
3098 must be scalars, or vectors of the same number of elements. If the
3099 value won't fit in the integer type, the results are undefined.
3100``fptosi (CST to TYPE)``
3101 Convert a floating point constant to the corresponding signed
3102 integer constant. TYPE must be a scalar or vector integer type. CST
3103 must be of scalar or vector floating point type. Both CST and TYPE
3104 must be scalars, or vectors of the same number of elements. If the
3105 value won't fit in the integer type, the results are undefined.
3106``uitofp (CST to TYPE)``
3107 Convert an unsigned integer constant to the corresponding floating
3108 point constant. TYPE must be a scalar or vector floating point type.
3109 CST must be of scalar or vector integer type. Both CST and TYPE must
3110 be scalars, or vectors of the same number of elements. If the value
3111 won't fit in the floating point type, the results are undefined.
3112``sitofp (CST to TYPE)``
3113 Convert a signed integer constant to the corresponding floating
3114 point constant. TYPE must be a scalar or vector floating point type.
3115 CST must be of scalar or vector integer type. Both CST and TYPE must
3116 be scalars, or vectors of the same number of elements. If the value
3117 won't fit in the floating point type, the results are undefined.
3118``ptrtoint (CST to TYPE)``
3119 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003120 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003121 pointer type. The ``CST`` value is zero extended, truncated, or
3122 unchanged to make it fit in ``TYPE``.
3123``inttoptr (CST to TYPE)``
3124 Convert an integer constant to a pointer constant. TYPE must be a
3125 pointer type. CST must be of integer type. The CST value is zero
3126 extended, truncated, or unchanged to make it fit in a pointer size.
3127 This one is *really* dangerous!
3128``bitcast (CST to TYPE)``
3129 Convert a constant, CST, to another TYPE. The constraints of the
3130 operands are the same as those for the :ref:`bitcast
3131 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003132``addrspacecast (CST to TYPE)``
3133 Convert a constant pointer or constant vector of pointer, CST, to another
3134 TYPE in a different address space. The constraints of the operands are the
3135 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003136``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003137 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3138 constants. As with the :ref:`getelementptr <i_getelementptr>`
3139 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003140 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003141``select (COND, VAL1, VAL2)``
3142 Perform the :ref:`select operation <i_select>` on constants.
3143``icmp COND (VAL1, VAL2)``
3144 Performs the :ref:`icmp operation <i_icmp>` on constants.
3145``fcmp COND (VAL1, VAL2)``
3146 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3147``extractelement (VAL, IDX)``
3148 Perform the :ref:`extractelement operation <i_extractelement>` on
3149 constants.
3150``insertelement (VAL, ELT, IDX)``
3151 Perform the :ref:`insertelement operation <i_insertelement>` on
3152 constants.
3153``shufflevector (VEC1, VEC2, IDXMASK)``
3154 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3155 constants.
3156``extractvalue (VAL, IDX0, IDX1, ...)``
3157 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3158 constants. The index list is interpreted in a similar manner as
3159 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3160 least one index value must be specified.
3161``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3162 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3163 The index list is interpreted in a similar manner as indices in a
3164 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3165 value must be specified.
3166``OPCODE (LHS, RHS)``
3167 Perform the specified operation of the LHS and RHS constants. OPCODE
3168 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3169 binary <bitwiseops>` operations. The constraints on operands are
3170 the same as those for the corresponding instruction (e.g. no bitwise
3171 operations on floating point values are allowed).
3172
3173Other Values
3174============
3175
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003176.. _inlineasmexprs:
3177
Sean Silvab084af42012-12-07 10:36:55 +00003178Inline Assembler Expressions
3179----------------------------
3180
3181LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003182Inline Assembly <moduleasm>`) through the use of a special value. This value
3183represents the inline assembler as a template string (containing the
3184instructions to emit), a list of operand constraints (stored as a string), a
3185flag that indicates whether or not the inline asm expression has side effects,
3186and a flag indicating whether the function containing the asm needs to align its
3187stack conservatively.
3188
3189The template string supports argument substitution of the operands using "``$``"
3190followed by a number, to indicate substitution of the given register/memory
3191location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3192be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3193operand (See :ref:`inline-asm-modifiers`).
3194
3195A literal "``$``" may be included by using "``$$``" in the template. To include
3196other special characters into the output, the usual "``\XX``" escapes may be
3197used, just as in other strings. Note that after template substitution, the
3198resulting assembly string is parsed by LLVM's integrated assembler unless it is
3199disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3200syntax known to LLVM.
3201
3202LLVM's support for inline asm is modeled closely on the requirements of Clang's
3203GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3204modifier codes listed here are similar or identical to those in GCC's inline asm
3205support. However, to be clear, the syntax of the template and constraint strings
3206described here is *not* the same as the syntax accepted by GCC and Clang, and,
3207while most constraint letters are passed through as-is by Clang, some get
3208translated to other codes when converting from the C source to the LLVM
3209assembly.
3210
3211An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003212
3213.. code-block:: llvm
3214
3215 i32 (i32) asm "bswap $0", "=r,r"
3216
3217Inline assembler expressions may **only** be used as the callee operand
3218of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3219Thus, typically we have:
3220
3221.. code-block:: llvm
3222
3223 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3224
3225Inline asms with side effects not visible in the constraint list must be
3226marked as having side effects. This is done through the use of the
3227'``sideeffect``' keyword, like so:
3228
3229.. code-block:: llvm
3230
3231 call void asm sideeffect "eieio", ""()
3232
3233In some cases inline asms will contain code that will not work unless
3234the stack is aligned in some way, such as calls or SSE instructions on
3235x86, yet will not contain code that does that alignment within the asm.
3236The compiler should make conservative assumptions about what the asm
3237might contain and should generate its usual stack alignment code in the
3238prologue if the '``alignstack``' keyword is present:
3239
3240.. code-block:: llvm
3241
3242 call void asm alignstack "eieio", ""()
3243
3244Inline asms also support using non-standard assembly dialects. The
3245assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3246the inline asm is using the Intel dialect. Currently, ATT and Intel are
3247the only supported dialects. An example is:
3248
3249.. code-block:: llvm
3250
3251 call void asm inteldialect "eieio", ""()
3252
3253If multiple keywords appear the '``sideeffect``' keyword must come
3254first, the '``alignstack``' keyword second and the '``inteldialect``'
3255keyword last.
3256
James Y Knightbc832ed2015-07-08 18:08:36 +00003257Inline Asm Constraint String
3258^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3259
3260The constraint list is a comma-separated string, each element containing one or
3261more constraint codes.
3262
3263For each element in the constraint list an appropriate register or memory
3264operand will be chosen, and it will be made available to assembly template
3265string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3266second, etc.
3267
3268There are three different types of constraints, which are distinguished by a
3269prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3270constraints must always be given in that order: outputs first, then inputs, then
3271clobbers. They cannot be intermingled.
3272
3273There are also three different categories of constraint codes:
3274
3275- Register constraint. This is either a register class, or a fixed physical
3276 register. This kind of constraint will allocate a register, and if necessary,
3277 bitcast the argument or result to the appropriate type.
3278- Memory constraint. This kind of constraint is for use with an instruction
3279 taking a memory operand. Different constraints allow for different addressing
3280 modes used by the target.
3281- Immediate value constraint. This kind of constraint is for an integer or other
3282 immediate value which can be rendered directly into an instruction. The
3283 various target-specific constraints allow the selection of a value in the
3284 proper range for the instruction you wish to use it with.
3285
3286Output constraints
3287""""""""""""""""""
3288
3289Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3290indicates that the assembly will write to this operand, and the operand will
3291then be made available as a return value of the ``asm`` expression. Output
3292constraints do not consume an argument from the call instruction. (Except, see
3293below about indirect outputs).
3294
3295Normally, it is expected that no output locations are written to by the assembly
3296expression until *all* of the inputs have been read. As such, LLVM may assign
3297the same register to an output and an input. If this is not safe (e.g. if the
3298assembly contains two instructions, where the first writes to one output, and
3299the second reads an input and writes to a second output), then the "``&``"
3300modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003301"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003302will not use the same register for any inputs (other than an input tied to this
3303output).
3304
3305Input constraints
3306"""""""""""""""""
3307
3308Input constraints do not have a prefix -- just the constraint codes. Each input
3309constraint will consume one argument from the call instruction. It is not
3310permitted for the asm to write to any input register or memory location (unless
3311that input is tied to an output). Note also that multiple inputs may all be
3312assigned to the same register, if LLVM can determine that they necessarily all
3313contain the same value.
3314
3315Instead of providing a Constraint Code, input constraints may also "tie"
3316themselves to an output constraint, by providing an integer as the constraint
3317string. Tied inputs still consume an argument from the call instruction, and
3318take up a position in the asm template numbering as is usual -- they will simply
3319be constrained to always use the same register as the output they've been tied
3320to. For example, a constraint string of "``=r,0``" says to assign a register for
3321output, and use that register as an input as well (it being the 0'th
3322constraint).
3323
3324It is permitted to tie an input to an "early-clobber" output. In that case, no
3325*other* input may share the same register as the input tied to the early-clobber
3326(even when the other input has the same value).
3327
3328You may only tie an input to an output which has a register constraint, not a
3329memory constraint. Only a single input may be tied to an output.
3330
3331There is also an "interesting" feature which deserves a bit of explanation: if a
3332register class constraint allocates a register which is too small for the value
3333type operand provided as input, the input value will be split into multiple
3334registers, and all of them passed to the inline asm.
3335
3336However, this feature is often not as useful as you might think.
3337
3338Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3339architectures that have instructions which operate on multiple consecutive
3340instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3341SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3342hardware then loads into both the named register, and the next register. This
3343feature of inline asm would not be useful to support that.)
3344
3345A few of the targets provide a template string modifier allowing explicit access
3346to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3347``D``). On such an architecture, you can actually access the second allocated
3348register (yet, still, not any subsequent ones). But, in that case, you're still
3349probably better off simply splitting the value into two separate operands, for
3350clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3351despite existing only for use with this feature, is not really a good idea to
3352use)
3353
3354Indirect inputs and outputs
3355"""""""""""""""""""""""""""
3356
3357Indirect output or input constraints can be specified by the "``*``" modifier
3358(which goes after the "``=``" in case of an output). This indicates that the asm
3359will write to or read from the contents of an *address* provided as an input
3360argument. (Note that in this way, indirect outputs act more like an *input* than
3361an output: just like an input, they consume an argument of the call expression,
3362rather than producing a return value. An indirect output constraint is an
3363"output" only in that the asm is expected to write to the contents of the input
3364memory location, instead of just read from it).
3365
3366This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3367address of a variable as a value.
3368
3369It is also possible to use an indirect *register* constraint, but only on output
3370(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3371value normally, and then, separately emit a store to the address provided as
3372input, after the provided inline asm. (It's not clear what value this
3373functionality provides, compared to writing the store explicitly after the asm
3374statement, and it can only produce worse code, since it bypasses many
3375optimization passes. I would recommend not using it.)
3376
3377
3378Clobber constraints
3379"""""""""""""""""""
3380
3381A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3382consume an input operand, nor generate an output. Clobbers cannot use any of the
3383general constraint code letters -- they may use only explicit register
3384constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3385"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3386memory locations -- not only the memory pointed to by a declared indirect
3387output.
3388
Peter Zotov00257232016-08-30 10:48:31 +00003389Note that clobbering named registers that are also present in output
3390constraints is not legal.
3391
James Y Knightbc832ed2015-07-08 18:08:36 +00003392
3393Constraint Codes
3394""""""""""""""""
3395After a potential prefix comes constraint code, or codes.
3396
3397A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3398followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3399(e.g. "``{eax}``").
3400
3401The one and two letter constraint codes are typically chosen to be the same as
3402GCC's constraint codes.
3403
3404A single constraint may include one or more than constraint code in it, leaving
3405it up to LLVM to choose which one to use. This is included mainly for
3406compatibility with the translation of GCC inline asm coming from clang.
3407
3408There are two ways to specify alternatives, and either or both may be used in an
3409inline asm constraint list:
3410
34111) Append the codes to each other, making a constraint code set. E.g. "``im``"
3412 or "``{eax}m``". This means "choose any of the options in the set". The
3413 choice of constraint is made independently for each constraint in the
3414 constraint list.
3415
34162) Use "``|``" between constraint code sets, creating alternatives. Every
3417 constraint in the constraint list must have the same number of alternative
3418 sets. With this syntax, the same alternative in *all* of the items in the
3419 constraint list will be chosen together.
3420
3421Putting those together, you might have a two operand constraint string like
3422``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3423operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3424may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3425
3426However, the use of either of the alternatives features is *NOT* recommended, as
3427LLVM is not able to make an intelligent choice about which one to use. (At the
3428point it currently needs to choose, not enough information is available to do so
3429in a smart way.) Thus, it simply tries to make a choice that's most likely to
3430compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3431always choose to use memory, not registers). And, if given multiple registers,
3432or multiple register classes, it will simply choose the first one. (In fact, it
3433doesn't currently even ensure explicitly specified physical registers are
3434unique, so specifying multiple physical registers as alternatives, like
3435``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3436intended.)
3437
3438Supported Constraint Code List
3439""""""""""""""""""""""""""""""
3440
3441The constraint codes are, in general, expected to behave the same way they do in
3442GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3443inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3444and GCC likely indicates a bug in LLVM.
3445
3446Some constraint codes are typically supported by all targets:
3447
3448- ``r``: A register in the target's general purpose register class.
3449- ``m``: A memory address operand. It is target-specific what addressing modes
3450 are supported, typical examples are register, or register + register offset,
3451 or register + immediate offset (of some target-specific size).
3452- ``i``: An integer constant (of target-specific width). Allows either a simple
3453 immediate, or a relocatable value.
3454- ``n``: An integer constant -- *not* including relocatable values.
3455- ``s``: An integer constant, but allowing *only* relocatable values.
3456- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3457 useful to pass a label for an asm branch or call.
3458
3459 .. FIXME: but that surely isn't actually okay to jump out of an asm
3460 block without telling llvm about the control transfer???)
3461
3462- ``{register-name}``: Requires exactly the named physical register.
3463
3464Other constraints are target-specific:
3465
3466AArch64:
3467
3468- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3469- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3470 i.e. 0 to 4095 with optional shift by 12.
3471- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3472 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3473- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3474 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3475- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3476 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3477- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3478 32-bit register. This is a superset of ``K``: in addition to the bitmask
3479 immediate, also allows immediate integers which can be loaded with a single
3480 ``MOVZ`` or ``MOVL`` instruction.
3481- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3482 64-bit register. This is a superset of ``L``.
3483- ``Q``: Memory address operand must be in a single register (no
3484 offsets). (However, LLVM currently does this for the ``m`` constraint as
3485 well.)
3486- ``r``: A 32 or 64-bit integer register (W* or X*).
3487- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3488- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3489
3490AMDGPU:
3491
3492- ``r``: A 32 or 64-bit integer register.
3493- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3494- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3495
3496
3497All ARM modes:
3498
3499- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3500 operand. Treated the same as operand ``m``, at the moment.
3501
3502ARM and ARM's Thumb2 mode:
3503
3504- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3505- ``I``: An immediate integer valid for a data-processing instruction.
3506- ``J``: An immediate integer between -4095 and 4095.
3507- ``K``: An immediate integer whose bitwise inverse is valid for a
3508 data-processing instruction. (Can be used with template modifier "``B``" to
3509 print the inverted value).
3510- ``L``: An immediate integer whose negation is valid for a data-processing
3511 instruction. (Can be used with template modifier "``n``" to print the negated
3512 value).
3513- ``M``: A power of two or a integer between 0 and 32.
3514- ``N``: Invalid immediate constraint.
3515- ``O``: Invalid immediate constraint.
3516- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3517- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3518 as ``r``.
3519- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3520 invalid.
3521- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3522 ``d0-d31``, or ``q0-q15``.
3523- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3524 ``d0-d7``, or ``q0-q3``.
3525- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3526 ``s0-s31``.
3527
3528ARM's Thumb1 mode:
3529
3530- ``I``: An immediate integer between 0 and 255.
3531- ``J``: An immediate integer between -255 and -1.
3532- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3533 some amount.
3534- ``L``: An immediate integer between -7 and 7.
3535- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3536- ``N``: An immediate integer between 0 and 31.
3537- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3538- ``r``: A low 32-bit GPR register (``r0-r7``).
3539- ``l``: A low 32-bit GPR register (``r0-r7``).
3540- ``h``: A high GPR register (``r0-r7``).
3541- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3542 ``d0-d31``, or ``q0-q15``.
3543- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3544 ``d0-d7``, or ``q0-q3``.
3545- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3546 ``s0-s31``.
3547
3548
3549Hexagon:
3550
3551- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3552 at the moment.
3553- ``r``: A 32 or 64-bit register.
3554
3555MSP430:
3556
3557- ``r``: An 8 or 16-bit register.
3558
3559MIPS:
3560
3561- ``I``: An immediate signed 16-bit integer.
3562- ``J``: An immediate integer zero.
3563- ``K``: An immediate unsigned 16-bit integer.
3564- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3565- ``N``: An immediate integer between -65535 and -1.
3566- ``O``: An immediate signed 15-bit integer.
3567- ``P``: An immediate integer between 1 and 65535.
3568- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3569 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3570- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3571 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3572 ``m``.
3573- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3574 ``sc`` instruction on the given subtarget (details vary).
3575- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3576- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003577 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3578 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003579- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3580 ``25``).
3581- ``l``: The ``lo`` register, 32 or 64-bit.
3582- ``x``: Invalid.
3583
3584NVPTX:
3585
3586- ``b``: A 1-bit integer register.
3587- ``c`` or ``h``: A 16-bit integer register.
3588- ``r``: A 32-bit integer register.
3589- ``l`` or ``N``: A 64-bit integer register.
3590- ``f``: A 32-bit float register.
3591- ``d``: A 64-bit float register.
3592
3593
3594PowerPC:
3595
3596- ``I``: An immediate signed 16-bit integer.
3597- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3598- ``K``: An immediate unsigned 16-bit integer.
3599- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3600- ``M``: An immediate integer greater than 31.
3601- ``N``: An immediate integer that is an exact power of 2.
3602- ``O``: The immediate integer constant 0.
3603- ``P``: An immediate integer constant whose negation is a signed 16-bit
3604 constant.
3605- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3606 treated the same as ``m``.
3607- ``r``: A 32 or 64-bit integer register.
3608- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3609 ``R1-R31``).
3610- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3611 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3612- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3613 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3614 altivec vector register (``V0-V31``).
3615
3616 .. FIXME: is this a bug that v accepts QPX registers? I think this
3617 is supposed to only use the altivec vector registers?
3618
3619- ``y``: Condition register (``CR0-CR7``).
3620- ``wc``: An individual CR bit in a CR register.
3621- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3622 register set (overlapping both the floating-point and vector register files).
3623- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3624 set.
3625
3626Sparc:
3627
3628- ``I``: An immediate 13-bit signed integer.
3629- ``r``: A 32-bit integer register.
3630
3631SystemZ:
3632
3633- ``I``: An immediate unsigned 8-bit integer.
3634- ``J``: An immediate unsigned 12-bit integer.
3635- ``K``: An immediate signed 16-bit integer.
3636- ``L``: An immediate signed 20-bit integer.
3637- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003638- ``Q``: A memory address operand with a base address and a 12-bit immediate
3639 unsigned displacement.
3640- ``R``: A memory address operand with a base address, a 12-bit immediate
3641 unsigned displacement, and an index register.
3642- ``S``: A memory address operand with a base address and a 20-bit immediate
3643 signed displacement.
3644- ``T``: A memory address operand with a base address, a 20-bit immediate
3645 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003646- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3647- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3648 address context evaluates as zero).
3649- ``h``: A 32-bit value in the high part of a 64bit data register
3650 (LLVM-specific)
3651- ``f``: A 32, 64, or 128-bit floating point register.
3652
3653X86:
3654
3655- ``I``: An immediate integer between 0 and 31.
3656- ``J``: An immediate integer between 0 and 64.
3657- ``K``: An immediate signed 8-bit integer.
3658- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3659 0xffffffff.
3660- ``M``: An immediate integer between 0 and 3.
3661- ``N``: An immediate unsigned 8-bit integer.
3662- ``O``: An immediate integer between 0 and 127.
3663- ``e``: An immediate 32-bit signed integer.
3664- ``Z``: An immediate 32-bit unsigned integer.
3665- ``o``, ``v``: Treated the same as ``m``, at the moment.
3666- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3667 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3668 registers, and on X86-64, it is all of the integer registers.
3669- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3670 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3671- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3672- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3673 existed since i386, and can be accessed without the REX prefix.
3674- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3675- ``y``: A 64-bit MMX register, if MMX is enabled.
3676- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3677 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3678 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3679 512-bit vector operand in an AVX512 register, Otherwise, an error.
3680- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3681- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3682 32-bit mode, a 64-bit integer operand will get split into two registers). It
3683 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3684 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3685 you're better off splitting it yourself, before passing it to the asm
3686 statement.
3687
3688XCore:
3689
3690- ``r``: A 32-bit integer register.
3691
3692
3693.. _inline-asm-modifiers:
3694
3695Asm template argument modifiers
3696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3697
3698In the asm template string, modifiers can be used on the operand reference, like
3699"``${0:n}``".
3700
3701The modifiers are, in general, expected to behave the same way they do in
3702GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3703inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3704and GCC likely indicates a bug in LLVM.
3705
3706Target-independent:
3707
Sean Silvaa1190322015-08-06 22:56:48 +00003708- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003709 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3710- ``n``: Negate and print immediate integer constant unadorned, without the
3711 target-specific immediate punctuation (e.g. no ``$`` prefix).
3712- ``l``: Print as an unadorned label, without the target-specific label
3713 punctuation (e.g. no ``$`` prefix).
3714
3715AArch64:
3716
3717- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3718 instead of ``x30``, print ``w30``.
3719- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3720- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3721 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3722 ``v*``.
3723
3724AMDGPU:
3725
3726- ``r``: No effect.
3727
3728ARM:
3729
3730- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3731 register).
3732- ``P``: No effect.
3733- ``q``: No effect.
3734- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3735 as ``d4[1]`` instead of ``s9``)
3736- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3737 prefix.
3738- ``L``: Print the low 16-bits of an immediate integer constant.
3739- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3740 register operands subsequent to the specified one (!), so use carefully.
3741- ``Q``: Print the low-order register of a register-pair, or the low-order
3742 register of a two-register operand.
3743- ``R``: Print the high-order register of a register-pair, or the high-order
3744 register of a two-register operand.
3745- ``H``: Print the second register of a register-pair. (On a big-endian system,
3746 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3747 to ``R``.)
3748
3749 .. FIXME: H doesn't currently support printing the second register
3750 of a two-register operand.
3751
3752- ``e``: Print the low doubleword register of a NEON quad register.
3753- ``f``: Print the high doubleword register of a NEON quad register.
3754- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3755 adornment.
3756
3757Hexagon:
3758
3759- ``L``: Print the second register of a two-register operand. Requires that it
3760 has been allocated consecutively to the first.
3761
3762 .. FIXME: why is it restricted to consecutive ones? And there's
3763 nothing that ensures that happens, is there?
3764
3765- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3766 nothing. Used to print 'addi' vs 'add' instructions.
3767
3768MSP430:
3769
3770No additional modifiers.
3771
3772MIPS:
3773
3774- ``X``: Print an immediate integer as hexadecimal
3775- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3776- ``d``: Print an immediate integer as decimal.
3777- ``m``: Subtract one and print an immediate integer as decimal.
3778- ``z``: Print $0 if an immediate zero, otherwise print normally.
3779- ``L``: Print the low-order register of a two-register operand, or prints the
3780 address of the low-order word of a double-word memory operand.
3781
3782 .. FIXME: L seems to be missing memory operand support.
3783
3784- ``M``: Print the high-order register of a two-register operand, or prints the
3785 address of the high-order word of a double-word memory operand.
3786
3787 .. FIXME: M seems to be missing memory operand support.
3788
3789- ``D``: Print the second register of a two-register operand, or prints the
3790 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3791 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3792 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003793- ``w``: No effect. Provided for compatibility with GCC which requires this
3794 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3795 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003796
3797NVPTX:
3798
3799- ``r``: No effect.
3800
3801PowerPC:
3802
3803- ``L``: Print the second register of a two-register operand. Requires that it
3804 has been allocated consecutively to the first.
3805
3806 .. FIXME: why is it restricted to consecutive ones? And there's
3807 nothing that ensures that happens, is there?
3808
3809- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3810 nothing. Used to print 'addi' vs 'add' instructions.
3811- ``y``: For a memory operand, prints formatter for a two-register X-form
3812 instruction. (Currently always prints ``r0,OPERAND``).
3813- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3814 otherwise. (NOTE: LLVM does not support update form, so this will currently
3815 always print nothing)
3816- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3817 not support indexed form, so this will currently always print nothing)
3818
3819Sparc:
3820
3821- ``r``: No effect.
3822
3823SystemZ:
3824
3825SystemZ implements only ``n``, and does *not* support any of the other
3826target-independent modifiers.
3827
3828X86:
3829
3830- ``c``: Print an unadorned integer or symbol name. (The latter is
3831 target-specific behavior for this typically target-independent modifier).
3832- ``A``: Print a register name with a '``*``' before it.
3833- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3834 operand.
3835- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3836 memory operand.
3837- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3838 operand.
3839- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3840 operand.
3841- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3842 available, otherwise the 32-bit register name; do nothing on a memory operand.
3843- ``n``: Negate and print an unadorned integer, or, for operands other than an
3844 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3845 the operand. (The behavior for relocatable symbol expressions is a
3846 target-specific behavior for this typically target-independent modifier)
3847- ``H``: Print a memory reference with additional offset +8.
3848- ``P``: Print a memory reference or operand for use as the argument of a call
3849 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3850
3851XCore:
3852
3853No additional modifiers.
3854
3855
Sean Silvab084af42012-12-07 10:36:55 +00003856Inline Asm Metadata
3857^^^^^^^^^^^^^^^^^^^
3858
3859The call instructions that wrap inline asm nodes may have a
3860"``!srcloc``" MDNode attached to it that contains a list of constant
3861integers. If present, the code generator will use the integer as the
3862location cookie value when report errors through the ``LLVMContext``
3863error reporting mechanisms. This allows a front-end to correlate backend
3864errors that occur with inline asm back to the source code that produced
3865it. For example:
3866
3867.. code-block:: llvm
3868
3869 call void asm sideeffect "something bad", ""(), !srcloc !42
3870 ...
3871 !42 = !{ i32 1234567 }
3872
3873It is up to the front-end to make sense of the magic numbers it places
3874in the IR. If the MDNode contains multiple constants, the code generator
3875will use the one that corresponds to the line of the asm that the error
3876occurs on.
3877
3878.. _metadata:
3879
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003880Metadata
3881========
Sean Silvab084af42012-12-07 10:36:55 +00003882
3883LLVM IR allows metadata to be attached to instructions in the program
3884that can convey extra information about the code to the optimizers and
3885code generator. One example application of metadata is source-level
3886debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003887
Sean Silvaa1190322015-08-06 22:56:48 +00003888Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003889``call`` instruction, it uses the ``metadata`` type.
3890
3891All metadata are identified in syntax by a exclamation point ('``!``').
3892
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003893.. _metadata-string:
3894
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003895Metadata Nodes and Metadata Strings
3896-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003897
3898A metadata string is a string surrounded by double quotes. It can
3899contain any character by escaping non-printable characters with
3900"``\xx``" where "``xx``" is the two digit hex code. For example:
3901"``!"test\00"``".
3902
3903Metadata nodes are represented with notation similar to structure
3904constants (a comma separated list of elements, surrounded by braces and
3905preceded by an exclamation point). Metadata nodes can have any values as
3906their operand. For example:
3907
3908.. code-block:: llvm
3909
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003910 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003911
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003912Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3913
Renato Golin124f2592016-07-20 12:16:38 +00003914.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003915
3916 !0 = distinct !{!"test\00", i32 10}
3917
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003918``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003919content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003920when metadata operands change.
3921
Sean Silvab084af42012-12-07 10:36:55 +00003922A :ref:`named metadata <namedmetadatastructure>` is a collection of
3923metadata nodes, which can be looked up in the module symbol table. For
3924example:
3925
3926.. code-block:: llvm
3927
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003928 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003929
3930Metadata can be used as function arguments. Here ``llvm.dbg.value``
3931function is using two metadata arguments:
3932
3933.. code-block:: llvm
3934
3935 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3936
Peter Collingbourne50108682015-11-06 02:41:02 +00003937Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3938to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003939
3940.. code-block:: llvm
3941
3942 %indvar.next = add i64 %indvar, 1, !dbg !21
3943
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003944Metadata can also be attached to a function or a global variable. Here metadata
3945``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
3946and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00003947
3948.. code-block:: llvm
3949
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003950 declare !dbg !22 void @f1()
3951 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00003952 ret void
3953 }
3954
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003955 @g1 = global i32 0, !dbg !22
3956 @g2 = external global i32, !dbg !22
3957
3958A transformation is required to drop any metadata attachment that it does not
3959know or know it can't preserve. Currently there is an exception for metadata
3960attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
3961unconditionally dropped unless the global is itself deleted.
3962
3963Metadata attached to a module using named metadata may not be dropped, with
3964the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
3965
Sean Silvab084af42012-12-07 10:36:55 +00003966More information about specific metadata nodes recognized by the
3967optimizers and code generator is found below.
3968
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003969.. _specialized-metadata:
3970
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003971Specialized Metadata Nodes
3972^^^^^^^^^^^^^^^^^^^^^^^^^^
3973
3974Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003975to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003976order.
3977
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003978These aren't inherently debug info centric, but currently all the specialized
3979metadata nodes are related to debug info.
3980
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003981.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003982
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003983DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003984"""""""""""""
3985
Sean Silvaa1190322015-08-06 22:56:48 +00003986``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003987``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3988fields are tuples containing the debug info to be emitted along with the compile
3989unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003990references to them from instructions).
3991
Renato Golin124f2592016-07-20 12:16:38 +00003992.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003993
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003994 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003995 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003996 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003997 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003998 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003999
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004000Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00004001specific compilation unit. File descriptors are defined using this scope.
4002These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004003keep track of subprograms, global variables, type information, and imported
4004entities (declarations and namespaces).
4005
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004006.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004007
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004008DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004009""""""
4010
Sean Silvaa1190322015-08-06 22:56:48 +00004011``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004012
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004013.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004014
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004015 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4016 checksumkind: CSK_MD5,
4017 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004018
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004019Files are sometimes used in ``scope:`` fields, and are the only valid target
4020for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004021Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004022
Michael Kuperstein605308a2015-05-14 10:58:59 +00004023.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004024
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004025DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004026"""""""""""
4027
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004028``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004029``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004030
Renato Golin124f2592016-07-20 12:16:38 +00004031.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004032
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004033 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004034 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004035 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004036
Sean Silvaa1190322015-08-06 22:56:48 +00004037The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004038following:
4039
Renato Golin124f2592016-07-20 12:16:38 +00004040.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004041
4042 DW_ATE_address = 1
4043 DW_ATE_boolean = 2
4044 DW_ATE_float = 4
4045 DW_ATE_signed = 5
4046 DW_ATE_signed_char = 6
4047 DW_ATE_unsigned = 7
4048 DW_ATE_unsigned_char = 8
4049
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004050.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004051
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004052DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004053""""""""""""""""
4054
Sean Silvaa1190322015-08-06 22:56:48 +00004055``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004056refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004057types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004058represents a function with no return value (such as ``void foo() {}`` in C++).
4059
Renato Golin124f2592016-07-20 12:16:38 +00004060.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004061
4062 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4063 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004064 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004065
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004066.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004067
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004068DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004069"""""""""""""
4070
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004071``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004072qualified types.
4073
Renato Golin124f2592016-07-20 12:16:38 +00004074.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004075
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004076 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004077 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004078 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004079 align: 32)
4080
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004081The following ``tag:`` values are valid:
4082
Renato Golin124f2592016-07-20 12:16:38 +00004083.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004084
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004085 DW_TAG_member = 13
4086 DW_TAG_pointer_type = 15
4087 DW_TAG_reference_type = 16
4088 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004089 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004090 DW_TAG_ptr_to_member_type = 31
4091 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004092 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004093 DW_TAG_volatile_type = 53
4094 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004095 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004096
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004097.. _DIDerivedTypeMember:
4098
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004099``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004100<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004101``offset:`` is the member's bit offset. If the composite type has an ODR
4102``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4103uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004104
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004105``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4106field of :ref:`composite types <DICompositeType>` to describe parents and
4107friends.
4108
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004109``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4110
4111``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004112``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4113are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004114
4115Note that the ``void *`` type is expressed as a type derived from NULL.
4116
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004117.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004118
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004119DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004120"""""""""""""""
4121
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004122``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004123structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004124
4125If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004126identifier used for type merging between modules. When specified,
4127:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4128derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4129``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004130
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004131For a given ``identifier:``, there should only be a single composite type that
4132does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4133together will unique such definitions at parse time via the ``identifier:``
4134field, even if the nodes are ``distinct``.
4135
Renato Golin124f2592016-07-20 12:16:38 +00004136.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004137
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004138 !0 = !DIEnumerator(name: "SixKind", value: 7)
4139 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4140 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4141 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004142 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4143 elements: !{!0, !1, !2})
4144
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004145The following ``tag:`` values are valid:
4146
Renato Golin124f2592016-07-20 12:16:38 +00004147.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004148
4149 DW_TAG_array_type = 1
4150 DW_TAG_class_type = 2
4151 DW_TAG_enumeration_type = 4
4152 DW_TAG_structure_type = 19
4153 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004154
4155For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004156descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004157level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004158array type is a native packed vector.
4159
4160For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004161descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004162value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004163``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004164
4165For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4166``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004167<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4168``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4169``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004170
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004171.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004172
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004173DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004174""""""""""
4175
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004176``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004177:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004178
4179.. code-block:: llvm
4180
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004181 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4182 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4183 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004184
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004185.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004186
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004187DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004188""""""""""""
4189
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004190``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4191variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004192
4193.. code-block:: llvm
4194
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004195 !0 = !DIEnumerator(name: "SixKind", value: 7)
4196 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4197 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004198
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004199DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004200"""""""""""""""""""""""
4201
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004202``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004203language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004204:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004205
4206.. code-block:: llvm
4207
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004208 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004209
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004210DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004211""""""""""""""""""""""""
4212
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004213``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004214language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004215but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004216``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004217:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004218
4219.. code-block:: llvm
4220
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004221 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004222
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004223DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004224"""""""""""
4225
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004226``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004227
4228.. code-block:: llvm
4229
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004230 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004231
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004232DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004233""""""""""""""""
4234
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004235``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004236
4237.. code-block:: llvm
4238
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004239 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004240 file: !2, line: 7, type: !3, isLocal: true,
4241 isDefinition: false, variable: i32* @foo,
4242 declaration: !4)
4243
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004244All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004245:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004246
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004247.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004248
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004249DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004250""""""""""""
4251
Peter Collingbourne50108682015-11-06 02:41:02 +00004252``DISubprogram`` nodes represent functions from the source language. A
4253``DISubprogram`` may be attached to a function definition using ``!dbg``
4254metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4255that must be retained, even if their IR counterparts are optimized out of
4256the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004257
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004258.. _DISubprogramDeclaration:
4259
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004260When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004261tree as opposed to a definition of a function. If the scope is a composite
4262type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4263then the subprogram declaration is uniqued based only on its ``linkageName:``
4264and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004265
Renato Golin124f2592016-07-20 12:16:38 +00004266.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004267
Peter Collingbourne50108682015-11-06 02:41:02 +00004268 define void @_Z3foov() !dbg !0 {
4269 ...
4270 }
4271
4272 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4273 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004274 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004275 containingType: !4,
4276 virtuality: DW_VIRTUALITY_pure_virtual,
4277 virtualIndex: 10, flags: DIFlagPrototyped,
4278 isOptimized: true, templateParams: !5,
4279 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004280
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004281.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004282
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004283DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004284""""""""""""""
4285
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004286``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004287<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004288two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004289fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004290
Renato Golin124f2592016-07-20 12:16:38 +00004291.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004292
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004293 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004294
4295Usually lexical blocks are ``distinct`` to prevent node merging based on
4296operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004297
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004298.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004299
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004300DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004301""""""""""""""""""
4302
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004303``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004304:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004305indicate textual inclusion, or the ``discriminator:`` field can be used to
4306discriminate between control flow within a single block in the source language.
4307
4308.. code-block:: llvm
4309
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004310 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4311 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4312 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004313
Michael Kuperstein605308a2015-05-14 10:58:59 +00004314.. _DILocation:
4315
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004316DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004317""""""""""
4318
Sean Silvaa1190322015-08-06 22:56:48 +00004319``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004320mandatory, and points at an :ref:`DILexicalBlockFile`, an
4321:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004322
4323.. code-block:: llvm
4324
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004325 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004326
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004327.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004328
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004329DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004330"""""""""""""""
4331
Sean Silvaa1190322015-08-06 22:56:48 +00004332``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004333the ``arg:`` field is set to non-zero, then this variable is a subprogram
4334parameter, and it will be included in the ``variables:`` field of its
4335:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004336
Renato Golin124f2592016-07-20 12:16:38 +00004337.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004338
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004339 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4340 type: !3, flags: DIFlagArtificial)
4341 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4342 type: !3)
4343 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004344
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004345DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004346""""""""""""
4347
Sean Silvaa1190322015-08-06 22:56:48 +00004348``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004349:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4350describe how the referenced LLVM variable relates to the source language
4351variable.
4352
4353The current supported vocabulary is limited:
4354
4355- ``DW_OP_deref`` dereferences the working expression.
4356- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4357- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4358 here, respectively) of the variable piece from the working expression.
4359
Renato Golin124f2592016-07-20 12:16:38 +00004360.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004361
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004362 !0 = !DIExpression(DW_OP_deref)
4363 !1 = !DIExpression(DW_OP_plus, 3)
4364 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4365 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004366
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004367DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004368""""""""""""""
4369
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004370``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004371
4372.. code-block:: llvm
4373
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004374 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004375 getter: "getFoo", attributes: 7, type: !2)
4376
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004377DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004378""""""""""""""""
4379
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004380``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004381compile unit.
4382
Renato Golin124f2592016-07-20 12:16:38 +00004383.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004384
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004385 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004386 entity: !1, line: 7)
4387
Amjad Abouda9bcf162015-12-10 12:56:35 +00004388DIMacro
4389"""""""
4390
4391``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4392The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004393defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004394used to expand the macro identifier.
4395
Renato Golin124f2592016-07-20 12:16:38 +00004396.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004397
4398 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4399 value: "((x) + 1)")
4400 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4401
4402DIMacroFile
4403"""""""""""
4404
4405``DIMacroFile`` nodes represent inclusion of source files.
4406The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4407appear in the included source file.
4408
Renato Golin124f2592016-07-20 12:16:38 +00004409.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004410
4411 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4412 nodes: !3)
4413
Sean Silvab084af42012-12-07 10:36:55 +00004414'``tbaa``' Metadata
4415^^^^^^^^^^^^^^^^^^^
4416
4417In LLVM IR, memory does not have types, so LLVM's own type system is not
4418suitable for doing TBAA. Instead, metadata is added to the IR to
4419describe a type system of a higher level language. This can be used to
4420implement typical C/C++ TBAA, but it can also be used to implement
4421custom alias analysis behavior for other languages.
4422
4423The current metadata format is very simple. TBAA metadata nodes have up
4424to three fields, e.g.:
4425
4426.. code-block:: llvm
4427
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004428 !0 = !{ !"an example type tree" }
4429 !1 = !{ !"int", !0 }
4430 !2 = !{ !"float", !0 }
4431 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004432
4433The first field is an identity field. It can be any value, usually a
4434metadata string, which uniquely identifies the type. The most important
4435name in the tree is the name of the root node. Two trees with different
4436root node names are entirely disjoint, even if they have leaves with
4437common names.
4438
4439The second field identifies the type's parent node in the tree, or is
4440null or omitted for a root node. A type is considered to alias all of
4441its descendants and all of its ancestors in the tree. Also, a type is
4442considered to alias all types in other trees, so that bitcode produced
4443from multiple front-ends is handled conservatively.
4444
4445If the third field is present, it's an integer which if equal to 1
4446indicates that the type is "constant" (meaning
4447``pointsToConstantMemory`` should return true; see `other useful
4448AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4449
4450'``tbaa.struct``' Metadata
4451^^^^^^^^^^^^^^^^^^^^^^^^^^
4452
4453The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4454aggregate assignment operations in C and similar languages, however it
4455is defined to copy a contiguous region of memory, which is more than
4456strictly necessary for aggregate types which contain holes due to
4457padding. Also, it doesn't contain any TBAA information about the fields
4458of the aggregate.
4459
4460``!tbaa.struct`` metadata can describe which memory subregions in a
4461memcpy are padding and what the TBAA tags of the struct are.
4462
4463The current metadata format is very simple. ``!tbaa.struct`` metadata
4464nodes are a list of operands which are in conceptual groups of three.
4465For each group of three, the first operand gives the byte offset of a
4466field in bytes, the second gives its size in bytes, and the third gives
4467its tbaa tag. e.g.:
4468
4469.. code-block:: llvm
4470
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004471 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004472
4473This describes a struct with two fields. The first is at offset 0 bytes
4474with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4475and has size 4 bytes and has tbaa tag !2.
4476
4477Note that the fields need not be contiguous. In this example, there is a
44784 byte gap between the two fields. This gap represents padding which
4479does not carry useful data and need not be preserved.
4480
Hal Finkel94146652014-07-24 14:25:39 +00004481'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004483
4484``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4485noalias memory-access sets. This means that some collection of memory access
4486instructions (loads, stores, memory-accessing calls, etc.) that carry
4487``noalias`` metadata can specifically be specified not to alias with some other
4488collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004489Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004490a domain.
4491
4492When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004493of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004494subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004495instruction's ``noalias`` list, then the two memory accesses are assumed not to
4496alias.
Hal Finkel94146652014-07-24 14:25:39 +00004497
Adam Nemet569a5b32016-04-27 00:52:48 +00004498Because scopes in one domain don't affect scopes in other domains, separate
4499domains can be used to compose multiple independent noalias sets. This is
4500used for example during inlining. As the noalias function parameters are
4501turned into noalias scope metadata, a new domain is used every time the
4502function is inlined.
4503
Hal Finkel029cde62014-07-25 15:50:02 +00004504The metadata identifying each domain is itself a list containing one or two
4505entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004506string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004507self-reference can be used to create globally unique domain names. A
4508descriptive string may optionally be provided as a second list entry.
4509
4510The metadata identifying each scope is also itself a list containing two or
4511three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004512is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004513self-reference can be used to create globally unique scope names. A metadata
4514reference to the scope's domain is the second entry. A descriptive string may
4515optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004516
4517For example,
4518
4519.. code-block:: llvm
4520
Hal Finkel029cde62014-07-25 15:50:02 +00004521 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004522 !0 = !{!0}
4523 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004524
Hal Finkel029cde62014-07-25 15:50:02 +00004525 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004526 !2 = !{!2, !0}
4527 !3 = !{!3, !0}
4528 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004529
Hal Finkel029cde62014-07-25 15:50:02 +00004530 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004531 !5 = !{!4} ; A list containing only scope !4
4532 !6 = !{!4, !3, !2}
4533 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004534
4535 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004536 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004537 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004538
Hal Finkel029cde62014-07-25 15:50:02 +00004539 ; These two instructions also don't alias (for domain !1, the set of scopes
4540 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004541 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004542 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004543
Adam Nemet0a8416f2015-05-11 08:30:28 +00004544 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004545 ; the !noalias list is not a superset of, or equal to, the scopes in the
4546 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004547 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004548 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004549
Sean Silvab084af42012-12-07 10:36:55 +00004550'``fpmath``' Metadata
4551^^^^^^^^^^^^^^^^^^^^^
4552
4553``fpmath`` metadata may be attached to any instruction of floating point
4554type. It can be used to express the maximum acceptable error in the
4555result of that instruction, in ULPs, thus potentially allowing the
4556compiler to use a more efficient but less accurate method of computing
4557it. ULP is defined as follows:
4558
4559 If ``x`` is a real number that lies between two finite consecutive
4560 floating-point numbers ``a`` and ``b``, without being equal to one
4561 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4562 distance between the two non-equal finite floating-point numbers
4563 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4564
Matt Arsenault82f41512016-06-27 19:43:15 +00004565The metadata node shall consist of a single positive float type number
4566representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004567
4568.. code-block:: llvm
4569
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004570 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004571
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004572.. _range-metadata:
4573
Sean Silvab084af42012-12-07 10:36:55 +00004574'``range``' Metadata
4575^^^^^^^^^^^^^^^^^^^^
4576
Jingyue Wu37fcb592014-06-19 16:50:16 +00004577``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4578integer types. It expresses the possible ranges the loaded value or the value
4579returned by the called function at this call site is in. The ranges are
4580represented with a flattened list of integers. The loaded value or the value
4581returned is known to be in the union of the ranges defined by each consecutive
4582pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004583
4584- The type must match the type loaded by the instruction.
4585- The pair ``a,b`` represents the range ``[a,b)``.
4586- Both ``a`` and ``b`` are constants.
4587- The range is allowed to wrap.
4588- The range should not represent the full or empty set. That is,
4589 ``a!=b``.
4590
4591In addition, the pairs must be in signed order of the lower bound and
4592they must be non-contiguous.
4593
4594Examples:
4595
4596.. code-block:: llvm
4597
David Blaikiec7aabbb2015-03-04 22:06:14 +00004598 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4599 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004600 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4601 %d = invoke i8 @bar() to label %cont
4602 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004603 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004604 !0 = !{ i8 0, i8 2 }
4605 !1 = !{ i8 255, i8 2 }
4606 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4607 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004608
Peter Collingbourne235c2752016-12-08 19:01:00 +00004609'``absolute_symbol``' Metadata
4610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4611
4612``absolute_symbol`` metadata may be attached to a global variable
4613declaration. It marks the declaration as a reference to an absolute symbol,
4614which causes the backend to use absolute relocations for the symbol even
4615in position independent code, and expresses the possible ranges that the
4616global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004617``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4618may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004619
Peter Collingbourned88f9282017-01-20 21:56:37 +00004620Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004621
4622.. code-block:: llvm
4623
4624 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004625 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004626
4627 ...
4628 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004629 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004630
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004631'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004632^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004633
4634``unpredictable`` metadata may be attached to any branch or switch
4635instruction. It can be used to express the unpredictability of control
4636flow. Similar to the llvm.expect intrinsic, it may be used to alter
4637optimizations related to compare and branch instructions. The metadata
4638is treated as a boolean value; if it exists, it signals that the branch
4639or switch that it is attached to is completely unpredictable.
4640
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004641'``llvm.loop``'
4642^^^^^^^^^^^^^^^
4643
4644It is sometimes useful to attach information to loop constructs. Currently,
4645loop metadata is implemented as metadata attached to the branch instruction
4646in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004647guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004648specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004649
4650The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004651itself to avoid merging it with any other identifier metadata, e.g.,
4652during module linkage or function inlining. That is, each loop should refer
4653to their own identification metadata even if they reside in separate functions.
4654The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004655constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004656
4657.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004658
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004659 !0 = !{!0}
4660 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004661
Mark Heffernan893752a2014-07-18 19:24:51 +00004662The loop identifier metadata can be used to specify additional
4663per-loop metadata. Any operands after the first operand can be treated
4664as user-defined metadata. For example the ``llvm.loop.unroll.count``
4665suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004666
Paul Redmond5fdf8362013-05-28 20:00:34 +00004667.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004668
Paul Redmond5fdf8362013-05-28 20:00:34 +00004669 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4670 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004671 !0 = !{!0, !1}
4672 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004673
Mark Heffernan9d20e422014-07-21 23:11:03 +00004674'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004676
Mark Heffernan9d20e422014-07-21 23:11:03 +00004677Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4678used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004679vectorization width and interleave count. These metadata should be used in
4680conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004681``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4682optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004683it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004684which contains information about loop-carried memory dependencies can be helpful
4685in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004686
Mark Heffernan9d20e422014-07-21 23:11:03 +00004687'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004688^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4689
Mark Heffernan9d20e422014-07-21 23:11:03 +00004690This metadata suggests an interleave count to the loop interleaver.
4691The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004692second operand is an integer specifying the interleave count. For
4693example:
4694
4695.. code-block:: llvm
4696
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004697 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004698
Mark Heffernan9d20e422014-07-21 23:11:03 +00004699Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004700multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004701then the interleave count will be determined automatically.
4702
4703'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004705
4706This metadata selectively enables or disables vectorization for the loop. The
4707first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004708is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000047090 disables vectorization:
4710
4711.. code-block:: llvm
4712
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004713 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4714 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004715
4716'``llvm.loop.vectorize.width``' Metadata
4717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4718
4719This metadata sets the target width of the vectorizer. The first
4720operand is the string ``llvm.loop.vectorize.width`` and the second
4721operand is an integer specifying the width. For example:
4722
4723.. code-block:: llvm
4724
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004725 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004726
4727Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004728vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000047290 or if the loop does not have this metadata the width will be
4730determined automatically.
4731
4732'``llvm.loop.unroll``'
4733^^^^^^^^^^^^^^^^^^^^^^
4734
4735Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4736optimization hints such as the unroll factor. ``llvm.loop.unroll``
4737metadata should be used in conjunction with ``llvm.loop`` loop
4738identification metadata. The ``llvm.loop.unroll`` metadata are only
4739optimization hints and the unrolling will only be performed if the
4740optimizer believes it is safe to do so.
4741
Mark Heffernan893752a2014-07-18 19:24:51 +00004742'``llvm.loop.unroll.count``' Metadata
4743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4744
4745This metadata suggests an unroll factor to the loop unroller. The
4746first operand is the string ``llvm.loop.unroll.count`` and the second
4747operand is a positive integer specifying the unroll factor. For
4748example:
4749
4750.. code-block:: llvm
4751
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004752 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004753
4754If the trip count of the loop is less than the unroll count the loop
4755will be partially unrolled.
4756
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004757'``llvm.loop.unroll.disable``' Metadata
4758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4759
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004760This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004761which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004762
4763.. code-block:: llvm
4764
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004765 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004766
Kevin Qin715b01e2015-03-09 06:14:18 +00004767'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004768^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004769
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004770This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004771operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004772
4773.. code-block:: llvm
4774
4775 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4776
Mark Heffernan89391542015-08-10 17:28:08 +00004777'``llvm.loop.unroll.enable``' Metadata
4778^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4779
4780This metadata suggests that the loop should be fully unrolled if the trip count
4781is known at compile time and partially unrolled if the trip count is not known
4782at compile time. The metadata has a single operand which is the string
4783``llvm.loop.unroll.enable``. For example:
4784
4785.. code-block:: llvm
4786
4787 !0 = !{!"llvm.loop.unroll.enable"}
4788
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004789'``llvm.loop.unroll.full``' Metadata
4790^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4791
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004792This metadata suggests that the loop should be unrolled fully. The
4793metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004794For example:
4795
4796.. code-block:: llvm
4797
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004798 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004799
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004800'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004801^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004802
4803This metadata indicates that the loop should not be versioned for the purpose
4804of enabling loop-invariant code motion (LICM). The metadata has a single operand
4805which is the string ``llvm.loop.licm_versioning.disable``. For example:
4806
4807.. code-block:: llvm
4808
4809 !0 = !{!"llvm.loop.licm_versioning.disable"}
4810
Adam Nemetd2fa4142016-04-27 05:28:18 +00004811'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004812^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004813
4814Loop distribution allows splitting a loop into multiple loops. Currently,
4815this is only performed if the entire loop cannot be vectorized due to unsafe
4816memory dependencies. The transformation will atempt to isolate the unsafe
4817dependencies into their own loop.
4818
4819This metadata can be used to selectively enable or disable distribution of the
4820loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4821second operand is a bit. If the bit operand value is 1 distribution is
4822enabled. A value of 0 disables distribution:
4823
4824.. code-block:: llvm
4825
4826 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4827 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4828
4829This metadata should be used in conjunction with ``llvm.loop`` loop
4830identification metadata.
4831
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004832'``llvm.mem``'
4833^^^^^^^^^^^^^^^
4834
4835Metadata types used to annotate memory accesses with information helpful
4836for optimizations are prefixed with ``llvm.mem``.
4837
4838'``llvm.mem.parallel_loop_access``' Metadata
4839^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4840
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004841The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4842or metadata containing a list of loop identifiers for nested loops.
4843The metadata is attached to memory accessing instructions and denotes that
4844no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004845with the same loop identifier. The metadata on memory reads also implies that
4846if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004847
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004848Precisely, given two instructions ``m1`` and ``m2`` that both have the
4849``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4850set of loops associated with that metadata, respectively, then there is no loop
4851carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004852``L2``.
4853
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004854As a special case, if all memory accessing instructions in a loop have
4855``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4856loop has no loop carried memory dependences and is considered to be a parallel
4857loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004858
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004859Note that if not all memory access instructions have such metadata referring to
4860the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004861memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004862safe mechanism, this causes loops that were originally parallel to be considered
4863sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004864insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004865
4866Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004867both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004868metadata types that refer to the same loop identifier metadata.
4869
4870.. code-block:: llvm
4871
4872 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004873 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004874 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004875 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004876 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004877 ...
4878 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004879
4880 for.end:
4881 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004882 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004883
4884It is also possible to have nested parallel loops. In that case the
4885memory accesses refer to a list of loop identifier metadata nodes instead of
4886the loop identifier metadata node directly:
4887
4888.. code-block:: llvm
4889
4890 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004891 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004892 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004893 ...
4894 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004895
4896 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004897 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004898 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004899 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004900 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004901 ...
4902 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004903
4904 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004905 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004906 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004907 ...
4908 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004909
4910 outer.for.end: ; preds = %for.body
4911 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004912 !0 = !{!1, !2} ; a list of loop identifiers
4913 !1 = !{!1} ; an identifier for the inner loop
4914 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004915
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004916'``invariant.group``' Metadata
4917^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4918
4919The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4920The existence of the ``invariant.group`` metadata on the instruction tells
4921the optimizer that every ``load`` and ``store`` to the same pointer operand
4922within the same invariant group can be assumed to load or store the same
4923value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00004924when two pointers are considered the same). Pointers returned by bitcast or
4925getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004926
4927Examples:
4928
4929.. code-block:: llvm
4930
4931 @unknownPtr = external global i8
4932 ...
4933 %ptr = alloca i8
4934 store i8 42, i8* %ptr, !invariant.group !0
4935 call void @foo(i8* %ptr)
4936
4937 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4938 call void @foo(i8* %ptr)
4939 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4940
4941 %newPtr = call i8* @getPointer(i8* %ptr)
4942 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4943
4944 %unknownValue = load i8, i8* @unknownPtr
4945 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4946
4947 call void @foo(i8* %ptr)
4948 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4949 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4950
4951 ...
4952 declare void @foo(i8*)
4953 declare i8* @getPointer(i8*)
4954 declare i8* @llvm.invariant.group.barrier(i8*)
4955
4956 !0 = !{!"magic ptr"}
4957 !1 = !{!"other ptr"}
4958
Peter Collingbournea333db82016-07-26 22:31:30 +00004959'``type``' Metadata
4960^^^^^^^^^^^^^^^^^^^
4961
4962See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004963
4964
Sean Silvab084af42012-12-07 10:36:55 +00004965Module Flags Metadata
4966=====================
4967
4968Information about the module as a whole is difficult to convey to LLVM's
4969subsystems. The LLVM IR isn't sufficient to transmit this information.
4970The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004971this. These flags are in the form of key / value pairs --- much like a
4972dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004973look it up.
4974
4975The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4976Each triplet has the following form:
4977
4978- The first element is a *behavior* flag, which specifies the behavior
4979 when two (or more) modules are merged together, and it encounters two
4980 (or more) metadata with the same ID. The supported behaviors are
4981 described below.
4982- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004983 metadata. Each module may only have one flag entry for each unique ID (not
4984 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004985- The third element is the value of the flag.
4986
4987When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004988``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4989each unique metadata ID string, there will be exactly one entry in the merged
4990modules ``llvm.module.flags`` metadata table, and the value for that entry will
4991be determined by the merge behavior flag, as described below. The only exception
4992is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004993
4994The following behaviors are supported:
4995
4996.. list-table::
4997 :header-rows: 1
4998 :widths: 10 90
4999
5000 * - Value
5001 - Behavior
5002
5003 * - 1
5004 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005005 Emits an error if two values disagree, otherwise the resulting value
5006 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005007
5008 * - 2
5009 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005010 Emits a warning if two values disagree. The result value will be the
5011 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005012
5013 * - 3
5014 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005015 Adds a requirement that another module flag be present and have a
5016 specified value after linking is performed. The value must be a
5017 metadata pair, where the first element of the pair is the ID of the
5018 module flag to be restricted, and the second element of the pair is
5019 the value the module flag should be restricted to. This behavior can
5020 be used to restrict the allowable results (via triggering of an
5021 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005022
5023 * - 4
5024 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005025 Uses the specified value, regardless of the behavior or value of the
5026 other module. If both modules specify **Override**, but the values
5027 differ, an error will be emitted.
5028
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005029 * - 5
5030 - **Append**
5031 Appends the two values, which are required to be metadata nodes.
5032
5033 * - 6
5034 - **AppendUnique**
5035 Appends the two values, which are required to be metadata
5036 nodes. However, duplicate entries in the second list are dropped
5037 during the append operation.
5038
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005039It is an error for a particular unique flag ID to have multiple behaviors,
5040except in the case of **Require** (which adds restrictions on another metadata
5041value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005042
5043An example of module flags:
5044
5045.. code-block:: llvm
5046
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005047 !0 = !{ i32 1, !"foo", i32 1 }
5048 !1 = !{ i32 4, !"bar", i32 37 }
5049 !2 = !{ i32 2, !"qux", i32 42 }
5050 !3 = !{ i32 3, !"qux",
5051 !{
5052 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005053 }
5054 }
5055 !llvm.module.flags = !{ !0, !1, !2, !3 }
5056
5057- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5058 if two or more ``!"foo"`` flags are seen is to emit an error if their
5059 values are not equal.
5060
5061- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5062 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005063 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005064
5065- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5066 behavior if two or more ``!"qux"`` flags are seen is to emit a
5067 warning if their values are not equal.
5068
5069- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5070
5071 ::
5072
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005073 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005074
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005075 The behavior is to emit an error if the ``llvm.module.flags`` does not
5076 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5077 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005078
5079Objective-C Garbage Collection Module Flags Metadata
5080----------------------------------------------------
5081
5082On the Mach-O platform, Objective-C stores metadata about garbage
5083collection in a special section called "image info". The metadata
5084consists of a version number and a bitmask specifying what types of
5085garbage collection are supported (if any) by the file. If two or more
5086modules are linked together their garbage collection metadata needs to
5087be merged rather than appended together.
5088
5089The Objective-C garbage collection module flags metadata consists of the
5090following key-value pairs:
5091
5092.. list-table::
5093 :header-rows: 1
5094 :widths: 30 70
5095
5096 * - Key
5097 - Value
5098
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005099 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005100 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005101
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005102 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005103 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005104 always 0.
5105
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005106 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005107 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005108 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5109 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5110 Objective-C ABI version 2.
5111
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005112 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005113 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005114 not. Valid values are 0, for no garbage collection, and 2, for garbage
5115 collection supported.
5116
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005117 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005118 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005119 If present, its value must be 6. This flag requires that the
5120 ``Objective-C Garbage Collection`` flag have the value 2.
5121
5122Some important flag interactions:
5123
5124- If a module with ``Objective-C Garbage Collection`` set to 0 is
5125 merged with a module with ``Objective-C Garbage Collection`` set to
5126 2, then the resulting module has the
5127 ``Objective-C Garbage Collection`` flag set to 0.
5128- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5129 merged with a module with ``Objective-C GC Only`` set to 6.
5130
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005131Automatic Linker Flags Module Flags Metadata
5132--------------------------------------------
5133
5134Some targets support embedding flags to the linker inside individual object
5135files. Typically this is used in conjunction with language extensions which
5136allow source files to explicitly declare the libraries they depend on, and have
5137these automatically be transmitted to the linker via object files.
5138
5139These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005140using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005141to be ``AppendUnique``, and the value for the key is expected to be a metadata
5142node which should be a list of other metadata nodes, each of which should be a
5143list of metadata strings defining linker options.
5144
5145For example, the following metadata section specifies two separate sets of
5146linker options, presumably to link against ``libz`` and the ``Cocoa``
5147framework::
5148
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005149 !0 = !{ i32 6, !"Linker Options",
5150 !{
5151 !{ !"-lz" },
5152 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005153 !llvm.module.flags = !{ !0 }
5154
5155The metadata encoding as lists of lists of options, as opposed to a collapsed
5156list of options, is chosen so that the IR encoding can use multiple option
5157strings to specify e.g., a single library, while still having that specifier be
5158preserved as an atomic element that can be recognized by a target specific
5159assembly writer or object file emitter.
5160
5161Each individual option is required to be either a valid option for the target's
5162linker, or an option that is reserved by the target specific assembly writer or
5163object file emitter. No other aspect of these options is defined by the IR.
5164
Oliver Stannard5dc29342014-06-20 10:08:11 +00005165C type width Module Flags Metadata
5166----------------------------------
5167
5168The ARM backend emits a section into each generated object file describing the
5169options that it was compiled with (in a compiler-independent way) to prevent
5170linking incompatible objects, and to allow automatic library selection. Some
5171of these options are not visible at the IR level, namely wchar_t width and enum
5172width.
5173
5174To pass this information to the backend, these options are encoded in module
5175flags metadata, using the following key-value pairs:
5176
5177.. list-table::
5178 :header-rows: 1
5179 :widths: 30 70
5180
5181 * - Key
5182 - Value
5183
5184 * - short_wchar
5185 - * 0 --- sizeof(wchar_t) == 4
5186 * 1 --- sizeof(wchar_t) == 2
5187
5188 * - short_enum
5189 - * 0 --- Enums are at least as large as an ``int``.
5190 * 1 --- Enums are stored in the smallest integer type which can
5191 represent all of its values.
5192
5193For example, the following metadata section specifies that the module was
5194compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5195enum is the smallest type which can represent all of its values::
5196
5197 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005198 !0 = !{i32 1, !"short_wchar", i32 1}
5199 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005200
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005201.. _intrinsicglobalvariables:
5202
Sean Silvab084af42012-12-07 10:36:55 +00005203Intrinsic Global Variables
5204==========================
5205
5206LLVM has a number of "magic" global variables that contain data that
5207affect code generation or other IR semantics. These are documented here.
5208All globals of this sort should have a section specified as
5209"``llvm.metadata``". This section and all globals that start with
5210"``llvm.``" are reserved for use by LLVM.
5211
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005212.. _gv_llvmused:
5213
Sean Silvab084af42012-12-07 10:36:55 +00005214The '``llvm.used``' Global Variable
5215-----------------------------------
5216
Rafael Espindola74f2e462013-04-22 14:58:02 +00005217The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005218:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005219pointers to named global variables, functions and aliases which may optionally
5220have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005221use of it is:
5222
5223.. code-block:: llvm
5224
5225 @X = global i8 4
5226 @Y = global i32 123
5227
5228 @llvm.used = appending global [2 x i8*] [
5229 i8* @X,
5230 i8* bitcast (i32* @Y to i8*)
5231 ], section "llvm.metadata"
5232
Rafael Espindola74f2e462013-04-22 14:58:02 +00005233If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5234and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005235symbol that it cannot see (which is why they have to be named). For example, if
5236a variable has internal linkage and no references other than that from the
5237``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5238references from inline asms and other things the compiler cannot "see", and
5239corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005240
5241On some targets, the code generator must emit a directive to the
5242assembler or object file to prevent the assembler and linker from
5243molesting the symbol.
5244
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005245.. _gv_llvmcompilerused:
5246
Sean Silvab084af42012-12-07 10:36:55 +00005247The '``llvm.compiler.used``' Global Variable
5248--------------------------------------------
5249
5250The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5251directive, except that it only prevents the compiler from touching the
5252symbol. On targets that support it, this allows an intelligent linker to
5253optimize references to the symbol without being impeded as it would be
5254by ``@llvm.used``.
5255
5256This is a rare construct that should only be used in rare circumstances,
5257and should not be exposed to source languages.
5258
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005259.. _gv_llvmglobalctors:
5260
Sean Silvab084af42012-12-07 10:36:55 +00005261The '``llvm.global_ctors``' Global Variable
5262-------------------------------------------
5263
5264.. code-block:: llvm
5265
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005266 %0 = type { i32, void ()*, i8* }
5267 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005268
5269The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005270functions, priorities, and an optional associated global or function.
5271The functions referenced by this array will be called in ascending order
5272of priority (i.e. lowest first) when the module is loaded. The order of
5273functions with the same priority is not defined.
5274
5275If the third field is present, non-null, and points to a global variable
5276or function, the initializer function will only run if the associated
5277data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005278
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005279.. _llvmglobaldtors:
5280
Sean Silvab084af42012-12-07 10:36:55 +00005281The '``llvm.global_dtors``' Global Variable
5282-------------------------------------------
5283
5284.. code-block:: llvm
5285
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005286 %0 = type { i32, void ()*, i8* }
5287 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005288
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005289The ``@llvm.global_dtors`` array contains a list of destructor
5290functions, priorities, and an optional associated global or function.
5291The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005292order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005293order of functions with the same priority is not defined.
5294
5295If the third field is present, non-null, and points to a global variable
5296or function, the destructor function will only run if the associated
5297data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005298
5299Instruction Reference
5300=====================
5301
5302The LLVM instruction set consists of several different classifications
5303of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5304instructions <binaryops>`, :ref:`bitwise binary
5305instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5306:ref:`other instructions <otherops>`.
5307
5308.. _terminators:
5309
5310Terminator Instructions
5311-----------------------
5312
5313As mentioned :ref:`previously <functionstructure>`, every basic block in a
5314program ends with a "Terminator" instruction, which indicates which
5315block should be executed after the current block is finished. These
5316terminator instructions typically yield a '``void``' value: they produce
5317control flow, not values (the one exception being the
5318':ref:`invoke <i_invoke>`' instruction).
5319
5320The terminator instructions are: ':ref:`ret <i_ret>`',
5321':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5322':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005323':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005324':ref:`catchret <i_catchret>`',
5325':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005326and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005327
5328.. _i_ret:
5329
5330'``ret``' Instruction
5331^^^^^^^^^^^^^^^^^^^^^
5332
5333Syntax:
5334"""""""
5335
5336::
5337
5338 ret <type> <value> ; Return a value from a non-void function
5339 ret void ; Return from void function
5340
5341Overview:
5342"""""""""
5343
5344The '``ret``' instruction is used to return control flow (and optionally
5345a value) from a function back to the caller.
5346
5347There are two forms of the '``ret``' instruction: one that returns a
5348value and then causes control flow, and one that just causes control
5349flow to occur.
5350
5351Arguments:
5352""""""""""
5353
5354The '``ret``' instruction optionally accepts a single argument, the
5355return value. The type of the return value must be a ':ref:`first
5356class <t_firstclass>`' type.
5357
5358A function is not :ref:`well formed <wellformed>` if it it has a non-void
5359return type and contains a '``ret``' instruction with no return value or
5360a return value with a type that does not match its type, or if it has a
5361void return type and contains a '``ret``' instruction with a return
5362value.
5363
5364Semantics:
5365""""""""""
5366
5367When the '``ret``' instruction is executed, control flow returns back to
5368the calling function's context. If the caller is a
5369":ref:`call <i_call>`" instruction, execution continues at the
5370instruction after the call. If the caller was an
5371":ref:`invoke <i_invoke>`" instruction, execution continues at the
5372beginning of the "normal" destination block. If the instruction returns
5373a value, that value shall set the call or invoke instruction's return
5374value.
5375
5376Example:
5377""""""""
5378
5379.. code-block:: llvm
5380
5381 ret i32 5 ; Return an integer value of 5
5382 ret void ; Return from a void function
5383 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5384
5385.. _i_br:
5386
5387'``br``' Instruction
5388^^^^^^^^^^^^^^^^^^^^
5389
5390Syntax:
5391"""""""
5392
5393::
5394
5395 br i1 <cond>, label <iftrue>, label <iffalse>
5396 br label <dest> ; Unconditional branch
5397
5398Overview:
5399"""""""""
5400
5401The '``br``' instruction is used to cause control flow to transfer to a
5402different basic block in the current function. There are two forms of
5403this instruction, corresponding to a conditional branch and an
5404unconditional branch.
5405
5406Arguments:
5407""""""""""
5408
5409The conditional branch form of the '``br``' instruction takes a single
5410'``i1``' value and two '``label``' values. The unconditional form of the
5411'``br``' instruction takes a single '``label``' value as a target.
5412
5413Semantics:
5414""""""""""
5415
5416Upon execution of a conditional '``br``' instruction, the '``i1``'
5417argument is evaluated. If the value is ``true``, control flows to the
5418'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5419to the '``iffalse``' ``label`` argument.
5420
5421Example:
5422""""""""
5423
5424.. code-block:: llvm
5425
5426 Test:
5427 %cond = icmp eq i32 %a, %b
5428 br i1 %cond, label %IfEqual, label %IfUnequal
5429 IfEqual:
5430 ret i32 1
5431 IfUnequal:
5432 ret i32 0
5433
5434.. _i_switch:
5435
5436'``switch``' Instruction
5437^^^^^^^^^^^^^^^^^^^^^^^^
5438
5439Syntax:
5440"""""""
5441
5442::
5443
5444 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5445
5446Overview:
5447"""""""""
5448
5449The '``switch``' instruction is used to transfer control flow to one of
5450several different places. It is a generalization of the '``br``'
5451instruction, allowing a branch to occur to one of many possible
5452destinations.
5453
5454Arguments:
5455""""""""""
5456
5457The '``switch``' instruction uses three parameters: an integer
5458comparison value '``value``', a default '``label``' destination, and an
5459array of pairs of comparison value constants and '``label``'s. The table
5460is not allowed to contain duplicate constant entries.
5461
5462Semantics:
5463""""""""""
5464
5465The ``switch`` instruction specifies a table of values and destinations.
5466When the '``switch``' instruction is executed, this table is searched
5467for the given value. If the value is found, control flow is transferred
5468to the corresponding destination; otherwise, control flow is transferred
5469to the default destination.
5470
5471Implementation:
5472"""""""""""""""
5473
5474Depending on properties of the target machine and the particular
5475``switch`` instruction, this instruction may be code generated in
5476different ways. For example, it could be generated as a series of
5477chained conditional branches or with a lookup table.
5478
5479Example:
5480""""""""
5481
5482.. code-block:: llvm
5483
5484 ; Emulate a conditional br instruction
5485 %Val = zext i1 %value to i32
5486 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5487
5488 ; Emulate an unconditional br instruction
5489 switch i32 0, label %dest [ ]
5490
5491 ; Implement a jump table:
5492 switch i32 %val, label %otherwise [ i32 0, label %onzero
5493 i32 1, label %onone
5494 i32 2, label %ontwo ]
5495
5496.. _i_indirectbr:
5497
5498'``indirectbr``' Instruction
5499^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5500
5501Syntax:
5502"""""""
5503
5504::
5505
5506 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5507
5508Overview:
5509"""""""""
5510
5511The '``indirectbr``' instruction implements an indirect branch to a
5512label within the current function, whose address is specified by
5513"``address``". Address must be derived from a
5514:ref:`blockaddress <blockaddress>` constant.
5515
5516Arguments:
5517""""""""""
5518
5519The '``address``' argument is the address of the label to jump to. The
5520rest of the arguments indicate the full set of possible destinations
5521that the address may point to. Blocks are allowed to occur multiple
5522times in the destination list, though this isn't particularly useful.
5523
5524This destination list is required so that dataflow analysis has an
5525accurate understanding of the CFG.
5526
5527Semantics:
5528""""""""""
5529
5530Control transfers to the block specified in the address argument. All
5531possible destination blocks must be listed in the label list, otherwise
5532this instruction has undefined behavior. This implies that jumps to
5533labels defined in other functions have undefined behavior as well.
5534
5535Implementation:
5536"""""""""""""""
5537
5538This is typically implemented with a jump through a register.
5539
5540Example:
5541""""""""
5542
5543.. code-block:: llvm
5544
5545 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5546
5547.. _i_invoke:
5548
5549'``invoke``' Instruction
5550^^^^^^^^^^^^^^^^^^^^^^^^
5551
5552Syntax:
5553"""""""
5554
5555::
5556
David Blaikieb83cf102016-07-13 17:21:34 +00005557 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005558 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005559
5560Overview:
5561"""""""""
5562
5563The '``invoke``' instruction causes control to transfer to a specified
5564function, with the possibility of control flow transfer to either the
5565'``normal``' label or the '``exception``' label. If the callee function
5566returns with the "``ret``" instruction, control flow will return to the
5567"normal" label. If the callee (or any indirect callees) returns via the
5568":ref:`resume <i_resume>`" instruction or other exception handling
5569mechanism, control is interrupted and continued at the dynamically
5570nearest "exception" label.
5571
5572The '``exception``' label is a `landing
5573pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5574'``exception``' label is required to have the
5575":ref:`landingpad <i_landingpad>`" instruction, which contains the
5576information about the behavior of the program after unwinding happens,
5577as its first non-PHI instruction. The restrictions on the
5578"``landingpad``" instruction's tightly couples it to the "``invoke``"
5579instruction, so that the important information contained within the
5580"``landingpad``" instruction can't be lost through normal code motion.
5581
5582Arguments:
5583""""""""""
5584
5585This instruction requires several arguments:
5586
5587#. The optional "cconv" marker indicates which :ref:`calling
5588 convention <callingconv>` the call should use. If none is
5589 specified, the call defaults to using C calling conventions.
5590#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5591 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5592 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005593#. '``ty``': the type of the call instruction itself which is also the
5594 type of the return value. Functions that return no value are marked
5595 ``void``.
5596#. '``fnty``': shall be the signature of the function being invoked. The
5597 argument types must match the types implied by this signature. This
5598 type can be omitted if the function is not varargs.
5599#. '``fnptrval``': An LLVM value containing a pointer to a function to
5600 be invoked. In most cases, this is a direct function invocation, but
5601 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5602 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005603#. '``function args``': argument list whose types match the function
5604 signature argument types and parameter attributes. All arguments must
5605 be of :ref:`first class <t_firstclass>` type. If the function signature
5606 indicates the function accepts a variable number of arguments, the
5607 extra arguments can be specified.
5608#. '``normal label``': the label reached when the called function
5609 executes a '``ret``' instruction.
5610#. '``exception label``': the label reached when a callee returns via
5611 the :ref:`resume <i_resume>` instruction or other exception handling
5612 mechanism.
5613#. The optional :ref:`function attributes <fnattrs>` list. Only
5614 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5615 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005616#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005617
5618Semantics:
5619""""""""""
5620
5621This instruction is designed to operate as a standard '``call``'
5622instruction in most regards. The primary difference is that it
5623establishes an association with a label, which is used by the runtime
5624library to unwind the stack.
5625
5626This instruction is used in languages with destructors to ensure that
5627proper cleanup is performed in the case of either a ``longjmp`` or a
5628thrown exception. Additionally, this is important for implementation of
5629'``catch``' clauses in high-level languages that support them.
5630
5631For the purposes of the SSA form, the definition of the value returned
5632by the '``invoke``' instruction is deemed to occur on the edge from the
5633current block to the "normal" label. If the callee unwinds then no
5634return value is available.
5635
5636Example:
5637""""""""
5638
5639.. code-block:: llvm
5640
5641 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005642 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005643 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005644 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005645
5646.. _i_resume:
5647
5648'``resume``' Instruction
5649^^^^^^^^^^^^^^^^^^^^^^^^
5650
5651Syntax:
5652"""""""
5653
5654::
5655
5656 resume <type> <value>
5657
5658Overview:
5659"""""""""
5660
5661The '``resume``' instruction is a terminator instruction that has no
5662successors.
5663
5664Arguments:
5665""""""""""
5666
5667The '``resume``' instruction requires one argument, which must have the
5668same type as the result of any '``landingpad``' instruction in the same
5669function.
5670
5671Semantics:
5672""""""""""
5673
5674The '``resume``' instruction resumes propagation of an existing
5675(in-flight) exception whose unwinding was interrupted with a
5676:ref:`landingpad <i_landingpad>` instruction.
5677
5678Example:
5679""""""""
5680
5681.. code-block:: llvm
5682
5683 resume { i8*, i32 } %exn
5684
David Majnemer8a1c45d2015-12-12 05:38:55 +00005685.. _i_catchswitch:
5686
5687'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005688^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005689
5690Syntax:
5691"""""""
5692
5693::
5694
5695 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5696 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5697
5698Overview:
5699"""""""""
5700
5701The '``catchswitch``' instruction is used by `LLVM's exception handling system
5702<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5703that may be executed by the :ref:`EH personality routine <personalityfn>`.
5704
5705Arguments:
5706""""""""""
5707
5708The ``parent`` argument is the token of the funclet that contains the
5709``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5710this operand may be the token ``none``.
5711
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005712The ``default`` argument is the label of another basic block beginning with
5713either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5714must be a legal target with respect to the ``parent`` links, as described in
5715the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005716
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005717The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005718:ref:`catchpad <i_catchpad>` instruction.
5719
5720Semantics:
5721""""""""""
5722
5723Executing this instruction transfers control to one of the successors in
5724``handlers``, if appropriate, or continues to unwind via the unwind label if
5725present.
5726
5727The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5728it must be both the first non-phi instruction and last instruction in the basic
5729block. Therefore, it must be the only non-phi instruction in the block.
5730
5731Example:
5732""""""""
5733
Renato Golin124f2592016-07-20 12:16:38 +00005734.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005735
5736 dispatch1:
5737 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5738 dispatch2:
5739 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5740
David Majnemer654e1302015-07-31 17:58:14 +00005741.. _i_catchret:
5742
5743'``catchret``' Instruction
5744^^^^^^^^^^^^^^^^^^^^^^^^^^
5745
5746Syntax:
5747"""""""
5748
5749::
5750
David Majnemer8a1c45d2015-12-12 05:38:55 +00005751 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005752
5753Overview:
5754"""""""""
5755
5756The '``catchret``' instruction is a terminator instruction that has a
5757single successor.
5758
5759
5760Arguments:
5761""""""""""
5762
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005763The first argument to a '``catchret``' indicates which ``catchpad`` it
5764exits. It must be a :ref:`catchpad <i_catchpad>`.
5765The second argument to a '``catchret``' specifies where control will
5766transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005767
5768Semantics:
5769""""""""""
5770
David Majnemer8a1c45d2015-12-12 05:38:55 +00005771The '``catchret``' instruction ends an existing (in-flight) exception whose
5772unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5773:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5774code to, for example, destroy the active exception. Control then transfers to
5775``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005776
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005777The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5778If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5779funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5780the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005781
5782Example:
5783""""""""
5784
Renato Golin124f2592016-07-20 12:16:38 +00005785.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005786
David Majnemer8a1c45d2015-12-12 05:38:55 +00005787 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005788
David Majnemer654e1302015-07-31 17:58:14 +00005789.. _i_cleanupret:
5790
5791'``cleanupret``' Instruction
5792^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5793
5794Syntax:
5795"""""""
5796
5797::
5798
David Majnemer8a1c45d2015-12-12 05:38:55 +00005799 cleanupret from <value> unwind label <continue>
5800 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005801
5802Overview:
5803"""""""""
5804
5805The '``cleanupret``' instruction is a terminator instruction that has
5806an optional successor.
5807
5808
5809Arguments:
5810""""""""""
5811
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005812The '``cleanupret``' instruction requires one argument, which indicates
5813which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005814If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5815funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5816the ``cleanupret``'s behavior is undefined.
5817
5818The '``cleanupret``' instruction also has an optional successor, ``continue``,
5819which must be the label of another basic block beginning with either a
5820``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5821be a legal target with respect to the ``parent`` links, as described in the
5822`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005823
5824Semantics:
5825""""""""""
5826
5827The '``cleanupret``' instruction indicates to the
5828:ref:`personality function <personalityfn>` that one
5829:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5830It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005831
David Majnemer654e1302015-07-31 17:58:14 +00005832Example:
5833""""""""
5834
Renato Golin124f2592016-07-20 12:16:38 +00005835.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005836
David Majnemer8a1c45d2015-12-12 05:38:55 +00005837 cleanupret from %cleanup unwind to caller
5838 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005839
Sean Silvab084af42012-12-07 10:36:55 +00005840.. _i_unreachable:
5841
5842'``unreachable``' Instruction
5843^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5844
5845Syntax:
5846"""""""
5847
5848::
5849
5850 unreachable
5851
5852Overview:
5853"""""""""
5854
5855The '``unreachable``' instruction has no defined semantics. This
5856instruction is used to inform the optimizer that a particular portion of
5857the code is not reachable. This can be used to indicate that the code
5858after a no-return function cannot be reached, and other facts.
5859
5860Semantics:
5861""""""""""
5862
5863The '``unreachable``' instruction has no defined semantics.
5864
5865.. _binaryops:
5866
5867Binary Operations
5868-----------------
5869
5870Binary operators are used to do most of the computation in a program.
5871They require two operands of the same type, execute an operation on
5872them, and produce a single value. The operands might represent multiple
5873data, as is the case with the :ref:`vector <t_vector>` data type. The
5874result value has the same type as its operands.
5875
5876There are several different binary operators:
5877
5878.. _i_add:
5879
5880'``add``' Instruction
5881^^^^^^^^^^^^^^^^^^^^^
5882
5883Syntax:
5884"""""""
5885
5886::
5887
Tim Northover675a0962014-06-13 14:24:23 +00005888 <result> = add <ty> <op1>, <op2> ; yields ty:result
5889 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5890 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5891 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005892
5893Overview:
5894"""""""""
5895
5896The '``add``' instruction returns the sum of its two operands.
5897
5898Arguments:
5899""""""""""
5900
5901The two arguments to the '``add``' instruction must be
5902:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5903arguments must have identical types.
5904
5905Semantics:
5906""""""""""
5907
5908The value produced is the integer sum of the two operands.
5909
5910If the sum has unsigned overflow, the result returned is the
5911mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5912the result.
5913
5914Because LLVM integers use a two's complement representation, this
5915instruction is appropriate for both signed and unsigned integers.
5916
5917``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5918respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5919result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5920unsigned and/or signed overflow, respectively, occurs.
5921
5922Example:
5923""""""""
5924
Renato Golin124f2592016-07-20 12:16:38 +00005925.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005926
Tim Northover675a0962014-06-13 14:24:23 +00005927 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005928
5929.. _i_fadd:
5930
5931'``fadd``' Instruction
5932^^^^^^^^^^^^^^^^^^^^^^
5933
5934Syntax:
5935"""""""
5936
5937::
5938
Tim Northover675a0962014-06-13 14:24:23 +00005939 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005940
5941Overview:
5942"""""""""
5943
5944The '``fadd``' instruction returns the sum of its two operands.
5945
5946Arguments:
5947""""""""""
5948
5949The two arguments to the '``fadd``' instruction must be :ref:`floating
5950point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5951Both arguments must have identical types.
5952
5953Semantics:
5954""""""""""
5955
5956The value produced is the floating point sum of the two operands. This
5957instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5958which are optimization hints to enable otherwise unsafe floating point
5959optimizations:
5960
5961Example:
5962""""""""
5963
Renato Golin124f2592016-07-20 12:16:38 +00005964.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005965
Tim Northover675a0962014-06-13 14:24:23 +00005966 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005967
5968'``sub``' Instruction
5969^^^^^^^^^^^^^^^^^^^^^
5970
5971Syntax:
5972"""""""
5973
5974::
5975
Tim Northover675a0962014-06-13 14:24:23 +00005976 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5977 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5978 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5979 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005980
5981Overview:
5982"""""""""
5983
5984The '``sub``' instruction returns the difference of its two operands.
5985
5986Note that the '``sub``' instruction is used to represent the '``neg``'
5987instruction present in most other intermediate representations.
5988
5989Arguments:
5990""""""""""
5991
5992The two arguments to the '``sub``' instruction must be
5993:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5994arguments must have identical types.
5995
5996Semantics:
5997""""""""""
5998
5999The value produced is the integer difference of the two operands.
6000
6001If the difference has unsigned overflow, the result returned is the
6002mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6003the result.
6004
6005Because LLVM integers use a two's complement representation, this
6006instruction is appropriate for both signed and unsigned integers.
6007
6008``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6009respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6010result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6011unsigned and/or signed overflow, respectively, occurs.
6012
6013Example:
6014""""""""
6015
Renato Golin124f2592016-07-20 12:16:38 +00006016.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006017
Tim Northover675a0962014-06-13 14:24:23 +00006018 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6019 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006020
6021.. _i_fsub:
6022
6023'``fsub``' Instruction
6024^^^^^^^^^^^^^^^^^^^^^^
6025
6026Syntax:
6027"""""""
6028
6029::
6030
Tim Northover675a0962014-06-13 14:24:23 +00006031 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006032
6033Overview:
6034"""""""""
6035
6036The '``fsub``' instruction returns the difference of its two operands.
6037
6038Note that the '``fsub``' instruction is used to represent the '``fneg``'
6039instruction present in most other intermediate representations.
6040
6041Arguments:
6042""""""""""
6043
6044The two arguments to the '``fsub``' instruction must be :ref:`floating
6045point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6046Both arguments must have identical types.
6047
6048Semantics:
6049""""""""""
6050
6051The value produced is the floating point difference of the two operands.
6052This instruction can also take any number of :ref:`fast-math
6053flags <fastmath>`, which are optimization hints to enable otherwise
6054unsafe floating point optimizations:
6055
6056Example:
6057""""""""
6058
Renato Golin124f2592016-07-20 12:16:38 +00006059.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006060
Tim Northover675a0962014-06-13 14:24:23 +00006061 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6062 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006063
6064'``mul``' Instruction
6065^^^^^^^^^^^^^^^^^^^^^
6066
6067Syntax:
6068"""""""
6069
6070::
6071
Tim Northover675a0962014-06-13 14:24:23 +00006072 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6073 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6074 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6075 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006076
6077Overview:
6078"""""""""
6079
6080The '``mul``' instruction returns the product of its two operands.
6081
6082Arguments:
6083""""""""""
6084
6085The two arguments to the '``mul``' instruction must be
6086:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6087arguments must have identical types.
6088
6089Semantics:
6090""""""""""
6091
6092The value produced is the integer product of the two operands.
6093
6094If the result of the multiplication has unsigned overflow, the result
6095returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6096bit width of the result.
6097
6098Because LLVM integers use a two's complement representation, and the
6099result is the same width as the operands, this instruction returns the
6100correct result for both signed and unsigned integers. If a full product
6101(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6102sign-extended or zero-extended as appropriate to the width of the full
6103product.
6104
6105``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6106respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6107result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6108unsigned and/or signed overflow, respectively, occurs.
6109
6110Example:
6111""""""""
6112
Renato Golin124f2592016-07-20 12:16:38 +00006113.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006114
Tim Northover675a0962014-06-13 14:24:23 +00006115 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006116
6117.. _i_fmul:
6118
6119'``fmul``' Instruction
6120^^^^^^^^^^^^^^^^^^^^^^
6121
6122Syntax:
6123"""""""
6124
6125::
6126
Tim Northover675a0962014-06-13 14:24:23 +00006127 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006128
6129Overview:
6130"""""""""
6131
6132The '``fmul``' instruction returns the product of its two operands.
6133
6134Arguments:
6135""""""""""
6136
6137The two arguments to the '``fmul``' instruction must be :ref:`floating
6138point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6139Both arguments must have identical types.
6140
6141Semantics:
6142""""""""""
6143
6144The value produced is the floating point product of the two operands.
6145This instruction can also take any number of :ref:`fast-math
6146flags <fastmath>`, which are optimization hints to enable otherwise
6147unsafe floating point optimizations:
6148
6149Example:
6150""""""""
6151
Renato Golin124f2592016-07-20 12:16:38 +00006152.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006153
Tim Northover675a0962014-06-13 14:24:23 +00006154 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006155
6156'``udiv``' Instruction
6157^^^^^^^^^^^^^^^^^^^^^^
6158
6159Syntax:
6160"""""""
6161
6162::
6163
Tim Northover675a0962014-06-13 14:24:23 +00006164 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6165 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006166
6167Overview:
6168"""""""""
6169
6170The '``udiv``' instruction returns the quotient of its two operands.
6171
6172Arguments:
6173""""""""""
6174
6175The two arguments to the '``udiv``' instruction must be
6176:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6177arguments must have identical types.
6178
6179Semantics:
6180""""""""""
6181
6182The value produced is the unsigned integer quotient of the two operands.
6183
6184Note that unsigned integer division and signed integer division are
6185distinct operations; for signed integer division, use '``sdiv``'.
6186
6187Division by zero leads to undefined behavior.
6188
6189If the ``exact`` keyword is present, the result value of the ``udiv`` is
6190a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6191such, "((a udiv exact b) mul b) == a").
6192
6193Example:
6194""""""""
6195
Renato Golin124f2592016-07-20 12:16:38 +00006196.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006197
Tim Northover675a0962014-06-13 14:24:23 +00006198 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006199
6200'``sdiv``' Instruction
6201^^^^^^^^^^^^^^^^^^^^^^
6202
6203Syntax:
6204"""""""
6205
6206::
6207
Tim Northover675a0962014-06-13 14:24:23 +00006208 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6209 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006210
6211Overview:
6212"""""""""
6213
6214The '``sdiv``' instruction returns the quotient of its two operands.
6215
6216Arguments:
6217""""""""""
6218
6219The two arguments to the '``sdiv``' instruction must be
6220:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6221arguments must have identical types.
6222
6223Semantics:
6224""""""""""
6225
6226The value produced is the signed integer quotient of the two operands
6227rounded towards zero.
6228
6229Note that signed integer division and unsigned integer division are
6230distinct operations; for unsigned integer division, use '``udiv``'.
6231
6232Division by zero leads to undefined behavior. Overflow also leads to
6233undefined behavior; this is a rare case, but can occur, for example, by
6234doing a 32-bit division of -2147483648 by -1.
6235
6236If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6237a :ref:`poison value <poisonvalues>` if the result would be rounded.
6238
6239Example:
6240""""""""
6241
Renato Golin124f2592016-07-20 12:16:38 +00006242.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006243
Tim Northover675a0962014-06-13 14:24:23 +00006244 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006245
6246.. _i_fdiv:
6247
6248'``fdiv``' Instruction
6249^^^^^^^^^^^^^^^^^^^^^^
6250
6251Syntax:
6252"""""""
6253
6254::
6255
Tim Northover675a0962014-06-13 14:24:23 +00006256 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006257
6258Overview:
6259"""""""""
6260
6261The '``fdiv``' instruction returns the quotient of its two operands.
6262
6263Arguments:
6264""""""""""
6265
6266The two arguments to the '``fdiv``' instruction must be :ref:`floating
6267point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6268Both arguments must have identical types.
6269
6270Semantics:
6271""""""""""
6272
6273The value produced is the floating point quotient of the two operands.
6274This instruction can also take any number of :ref:`fast-math
6275flags <fastmath>`, which are optimization hints to enable otherwise
6276unsafe floating point optimizations:
6277
6278Example:
6279""""""""
6280
Renato Golin124f2592016-07-20 12:16:38 +00006281.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006282
Tim Northover675a0962014-06-13 14:24:23 +00006283 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006284
6285'``urem``' Instruction
6286^^^^^^^^^^^^^^^^^^^^^^
6287
6288Syntax:
6289"""""""
6290
6291::
6292
Tim Northover675a0962014-06-13 14:24:23 +00006293 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006294
6295Overview:
6296"""""""""
6297
6298The '``urem``' instruction returns the remainder from the unsigned
6299division of its two arguments.
6300
6301Arguments:
6302""""""""""
6303
6304The two arguments to the '``urem``' instruction must be
6305:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6306arguments must have identical types.
6307
6308Semantics:
6309""""""""""
6310
6311This instruction returns the unsigned integer *remainder* of a division.
6312This instruction always performs an unsigned division to get the
6313remainder.
6314
6315Note that unsigned integer remainder and signed integer remainder are
6316distinct operations; for signed integer remainder, use '``srem``'.
6317
6318Taking the remainder of a division by zero leads to undefined behavior.
6319
6320Example:
6321""""""""
6322
Renato Golin124f2592016-07-20 12:16:38 +00006323.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006324
Tim Northover675a0962014-06-13 14:24:23 +00006325 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006326
6327'``srem``' Instruction
6328^^^^^^^^^^^^^^^^^^^^^^
6329
6330Syntax:
6331"""""""
6332
6333::
6334
Tim Northover675a0962014-06-13 14:24:23 +00006335 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006336
6337Overview:
6338"""""""""
6339
6340The '``srem``' instruction returns the remainder from the signed
6341division of its two operands. This instruction can also take
6342:ref:`vector <t_vector>` versions of the values in which case the elements
6343must be integers.
6344
6345Arguments:
6346""""""""""
6347
6348The two arguments to the '``srem``' instruction must be
6349:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6350arguments must have identical types.
6351
6352Semantics:
6353""""""""""
6354
6355This instruction returns the *remainder* of a division (where the result
6356is either zero or has the same sign as the dividend, ``op1``), not the
6357*modulo* operator (where the result is either zero or has the same sign
6358as the divisor, ``op2``) of a value. For more information about the
6359difference, see `The Math
6360Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6361table of how this is implemented in various languages, please see
6362`Wikipedia: modulo
6363operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6364
6365Note that signed integer remainder and unsigned integer remainder are
6366distinct operations; for unsigned integer remainder, use '``urem``'.
6367
6368Taking the remainder of a division by zero leads to undefined behavior.
6369Overflow also leads to undefined behavior; this is a rare case, but can
6370occur, for example, by taking the remainder of a 32-bit division of
6371-2147483648 by -1. (The remainder doesn't actually overflow, but this
6372rule lets srem be implemented using instructions that return both the
6373result of the division and the remainder.)
6374
6375Example:
6376""""""""
6377
Renato Golin124f2592016-07-20 12:16:38 +00006378.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006379
Tim Northover675a0962014-06-13 14:24:23 +00006380 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006381
6382.. _i_frem:
6383
6384'``frem``' Instruction
6385^^^^^^^^^^^^^^^^^^^^^^
6386
6387Syntax:
6388"""""""
6389
6390::
6391
Tim Northover675a0962014-06-13 14:24:23 +00006392 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006393
6394Overview:
6395"""""""""
6396
6397The '``frem``' instruction returns the remainder from the division of
6398its two operands.
6399
6400Arguments:
6401""""""""""
6402
6403The two arguments to the '``frem``' instruction must be :ref:`floating
6404point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6405Both arguments must have identical types.
6406
6407Semantics:
6408""""""""""
6409
6410This instruction returns the *remainder* of a division. The remainder
6411has the same sign as the dividend. This instruction can also take any
6412number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6413to enable otherwise unsafe floating point optimizations:
6414
6415Example:
6416""""""""
6417
Renato Golin124f2592016-07-20 12:16:38 +00006418.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006419
Tim Northover675a0962014-06-13 14:24:23 +00006420 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006421
6422.. _bitwiseops:
6423
6424Bitwise Binary Operations
6425-------------------------
6426
6427Bitwise binary operators are used to do various forms of bit-twiddling
6428in a program. They are generally very efficient instructions and can
6429commonly be strength reduced from other instructions. They require two
6430operands of the same type, execute an operation on them, and produce a
6431single value. The resulting value is the same type as its operands.
6432
6433'``shl``' Instruction
6434^^^^^^^^^^^^^^^^^^^^^
6435
6436Syntax:
6437"""""""
6438
6439::
6440
Tim Northover675a0962014-06-13 14:24:23 +00006441 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6442 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6443 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6444 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006445
6446Overview:
6447"""""""""
6448
6449The '``shl``' instruction returns the first operand shifted to the left
6450a specified number of bits.
6451
6452Arguments:
6453""""""""""
6454
6455Both arguments to the '``shl``' instruction must be the same
6456:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6457'``op2``' is treated as an unsigned value.
6458
6459Semantics:
6460""""""""""
6461
6462The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6463where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006464dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006465``op1``, the result is undefined. If the arguments are vectors, each
6466vector element of ``op1`` is shifted by the corresponding shift amount
6467in ``op2``.
6468
6469If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6470value <poisonvalues>` if it shifts out any non-zero bits. If the
6471``nsw`` keyword is present, then the shift produces a :ref:`poison
6472value <poisonvalues>` if it shifts out any bits that disagree with the
Sanjoy Dasdbc58d02016-11-13 23:40:40 +00006473resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006474
6475Example:
6476""""""""
6477
Renato Golin124f2592016-07-20 12:16:38 +00006478.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006479
Tim Northover675a0962014-06-13 14:24:23 +00006480 <result> = shl i32 4, %var ; yields i32: 4 << %var
6481 <result> = shl i32 4, 2 ; yields i32: 16
6482 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006483 <result> = shl i32 1, 32 ; undefined
6484 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6485
6486'``lshr``' Instruction
6487^^^^^^^^^^^^^^^^^^^^^^
6488
6489Syntax:
6490"""""""
6491
6492::
6493
Tim Northover675a0962014-06-13 14:24:23 +00006494 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6495 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006496
6497Overview:
6498"""""""""
6499
6500The '``lshr``' instruction (logical shift right) returns the first
6501operand shifted to the right a specified number of bits with zero fill.
6502
6503Arguments:
6504""""""""""
6505
6506Both arguments to the '``lshr``' instruction must be the same
6507:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6508'``op2``' is treated as an unsigned value.
6509
6510Semantics:
6511""""""""""
6512
6513This instruction always performs a logical shift right operation. The
6514most significant bits of the result will be filled with zero bits after
6515the shift. If ``op2`` is (statically or dynamically) equal to or larger
6516than the number of bits in ``op1``, the result is undefined. If the
6517arguments are vectors, each vector element of ``op1`` is shifted by the
6518corresponding shift amount in ``op2``.
6519
6520If the ``exact`` keyword is present, the result value of the ``lshr`` is
6521a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6522non-zero.
6523
6524Example:
6525""""""""
6526
Renato Golin124f2592016-07-20 12:16:38 +00006527.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006528
Tim Northover675a0962014-06-13 14:24:23 +00006529 <result> = lshr i32 4, 1 ; yields i32:result = 2
6530 <result> = lshr i32 4, 2 ; yields i32:result = 1
6531 <result> = lshr i8 4, 3 ; yields i8:result = 0
6532 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006533 <result> = lshr i32 1, 32 ; undefined
6534 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6535
6536'``ashr``' Instruction
6537^^^^^^^^^^^^^^^^^^^^^^
6538
6539Syntax:
6540"""""""
6541
6542::
6543
Tim Northover675a0962014-06-13 14:24:23 +00006544 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6545 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006546
6547Overview:
6548"""""""""
6549
6550The '``ashr``' instruction (arithmetic shift right) returns the first
6551operand shifted to the right a specified number of bits with sign
6552extension.
6553
6554Arguments:
6555""""""""""
6556
6557Both arguments to the '``ashr``' instruction must be the same
6558:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6559'``op2``' is treated as an unsigned value.
6560
6561Semantics:
6562""""""""""
6563
6564This instruction always performs an arithmetic shift right operation,
6565The most significant bits of the result will be filled with the sign bit
6566of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6567than the number of bits in ``op1``, the result is undefined. If the
6568arguments are vectors, each vector element of ``op1`` is shifted by the
6569corresponding shift amount in ``op2``.
6570
6571If the ``exact`` keyword is present, the result value of the ``ashr`` is
6572a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6573non-zero.
6574
6575Example:
6576""""""""
6577
Renato Golin124f2592016-07-20 12:16:38 +00006578.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006579
Tim Northover675a0962014-06-13 14:24:23 +00006580 <result> = ashr i32 4, 1 ; yields i32:result = 2
6581 <result> = ashr i32 4, 2 ; yields i32:result = 1
6582 <result> = ashr i8 4, 3 ; yields i8:result = 0
6583 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006584 <result> = ashr i32 1, 32 ; undefined
6585 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6586
6587'``and``' Instruction
6588^^^^^^^^^^^^^^^^^^^^^
6589
6590Syntax:
6591"""""""
6592
6593::
6594
Tim Northover675a0962014-06-13 14:24:23 +00006595 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006596
6597Overview:
6598"""""""""
6599
6600The '``and``' instruction returns the bitwise logical and of its two
6601operands.
6602
6603Arguments:
6604""""""""""
6605
6606The two arguments to the '``and``' instruction must be
6607:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6608arguments must have identical types.
6609
6610Semantics:
6611""""""""""
6612
6613The truth table used for the '``and``' instruction is:
6614
6615+-----+-----+-----+
6616| In0 | In1 | Out |
6617+-----+-----+-----+
6618| 0 | 0 | 0 |
6619+-----+-----+-----+
6620| 0 | 1 | 0 |
6621+-----+-----+-----+
6622| 1 | 0 | 0 |
6623+-----+-----+-----+
6624| 1 | 1 | 1 |
6625+-----+-----+-----+
6626
6627Example:
6628""""""""
6629
Renato Golin124f2592016-07-20 12:16:38 +00006630.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006631
Tim Northover675a0962014-06-13 14:24:23 +00006632 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6633 <result> = and i32 15, 40 ; yields i32:result = 8
6634 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006635
6636'``or``' Instruction
6637^^^^^^^^^^^^^^^^^^^^
6638
6639Syntax:
6640"""""""
6641
6642::
6643
Tim Northover675a0962014-06-13 14:24:23 +00006644 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006645
6646Overview:
6647"""""""""
6648
6649The '``or``' instruction returns the bitwise logical inclusive or of its
6650two operands.
6651
6652Arguments:
6653""""""""""
6654
6655The two arguments to the '``or``' instruction must be
6656:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6657arguments must have identical types.
6658
6659Semantics:
6660""""""""""
6661
6662The truth table used for the '``or``' instruction is:
6663
6664+-----+-----+-----+
6665| In0 | In1 | Out |
6666+-----+-----+-----+
6667| 0 | 0 | 0 |
6668+-----+-----+-----+
6669| 0 | 1 | 1 |
6670+-----+-----+-----+
6671| 1 | 0 | 1 |
6672+-----+-----+-----+
6673| 1 | 1 | 1 |
6674+-----+-----+-----+
6675
6676Example:
6677""""""""
6678
6679::
6680
Tim Northover675a0962014-06-13 14:24:23 +00006681 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6682 <result> = or i32 15, 40 ; yields i32:result = 47
6683 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006684
6685'``xor``' Instruction
6686^^^^^^^^^^^^^^^^^^^^^
6687
6688Syntax:
6689"""""""
6690
6691::
6692
Tim Northover675a0962014-06-13 14:24:23 +00006693 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006694
6695Overview:
6696"""""""""
6697
6698The '``xor``' instruction returns the bitwise logical exclusive or of
6699its two operands. The ``xor`` is used to implement the "one's
6700complement" operation, which is the "~" operator in C.
6701
6702Arguments:
6703""""""""""
6704
6705The two arguments to the '``xor``' instruction must be
6706:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6707arguments must have identical types.
6708
6709Semantics:
6710""""""""""
6711
6712The truth table used for the '``xor``' instruction is:
6713
6714+-----+-----+-----+
6715| In0 | In1 | Out |
6716+-----+-----+-----+
6717| 0 | 0 | 0 |
6718+-----+-----+-----+
6719| 0 | 1 | 1 |
6720+-----+-----+-----+
6721| 1 | 0 | 1 |
6722+-----+-----+-----+
6723| 1 | 1 | 0 |
6724+-----+-----+-----+
6725
6726Example:
6727""""""""
6728
Renato Golin124f2592016-07-20 12:16:38 +00006729.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006730
Tim Northover675a0962014-06-13 14:24:23 +00006731 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6732 <result> = xor i32 15, 40 ; yields i32:result = 39
6733 <result> = xor i32 4, 8 ; yields i32:result = 12
6734 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006735
6736Vector Operations
6737-----------------
6738
6739LLVM supports several instructions to represent vector operations in a
6740target-independent manner. These instructions cover the element-access
6741and vector-specific operations needed to process vectors effectively.
6742While LLVM does directly support these vector operations, many
6743sophisticated algorithms will want to use target-specific intrinsics to
6744take full advantage of a specific target.
6745
6746.. _i_extractelement:
6747
6748'``extractelement``' Instruction
6749^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6750
6751Syntax:
6752"""""""
6753
6754::
6755
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006756 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006757
6758Overview:
6759"""""""""
6760
6761The '``extractelement``' instruction extracts a single scalar element
6762from a vector at a specified index.
6763
6764Arguments:
6765""""""""""
6766
6767The first operand of an '``extractelement``' instruction is a value of
6768:ref:`vector <t_vector>` type. The second operand is an index indicating
6769the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006770variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006771
6772Semantics:
6773""""""""""
6774
6775The result is a scalar of the same type as the element type of ``val``.
6776Its value is the value at position ``idx`` of ``val``. If ``idx``
6777exceeds the length of ``val``, the results are undefined.
6778
6779Example:
6780""""""""
6781
Renato Golin124f2592016-07-20 12:16:38 +00006782.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006783
6784 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6785
6786.. _i_insertelement:
6787
6788'``insertelement``' Instruction
6789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6790
6791Syntax:
6792"""""""
6793
6794::
6795
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006796 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006797
6798Overview:
6799"""""""""
6800
6801The '``insertelement``' instruction inserts a scalar element into a
6802vector at a specified index.
6803
6804Arguments:
6805""""""""""
6806
6807The first operand of an '``insertelement``' instruction is a value of
6808:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6809type must equal the element type of the first operand. The third operand
6810is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006811index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006812
6813Semantics:
6814""""""""""
6815
6816The result is a vector of the same type as ``val``. Its element values
6817are those of ``val`` except at position ``idx``, where it gets the value
6818``elt``. If ``idx`` exceeds the length of ``val``, the results are
6819undefined.
6820
6821Example:
6822""""""""
6823
Renato Golin124f2592016-07-20 12:16:38 +00006824.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006825
6826 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6827
6828.. _i_shufflevector:
6829
6830'``shufflevector``' Instruction
6831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6832
6833Syntax:
6834"""""""
6835
6836::
6837
6838 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6839
6840Overview:
6841"""""""""
6842
6843The '``shufflevector``' instruction constructs a permutation of elements
6844from two input vectors, returning a vector with the same element type as
6845the input and length that is the same as the shuffle mask.
6846
6847Arguments:
6848""""""""""
6849
6850The first two operands of a '``shufflevector``' instruction are vectors
6851with the same type. The third argument is a shuffle mask whose element
6852type is always 'i32'. The result of the instruction is a vector whose
6853length is the same as the shuffle mask and whose element type is the
6854same as the element type of the first two operands.
6855
6856The shuffle mask operand is required to be a constant vector with either
6857constant integer or undef values.
6858
6859Semantics:
6860""""""""""
6861
6862The elements of the two input vectors are numbered from left to right
6863across both of the vectors. The shuffle mask operand specifies, for each
6864element of the result vector, which element of the two input vectors the
6865result element gets. The element selector may be undef (meaning "don't
6866care") and the second operand may be undef if performing a shuffle from
6867only one vector.
6868
6869Example:
6870""""""""
6871
Renato Golin124f2592016-07-20 12:16:38 +00006872.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006873
6874 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6875 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6876 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6877 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6878 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6879 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6880 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6881 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6882
6883Aggregate Operations
6884--------------------
6885
6886LLVM supports several instructions for working with
6887:ref:`aggregate <t_aggregate>` values.
6888
6889.. _i_extractvalue:
6890
6891'``extractvalue``' Instruction
6892^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6893
6894Syntax:
6895"""""""
6896
6897::
6898
6899 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6900
6901Overview:
6902"""""""""
6903
6904The '``extractvalue``' instruction extracts the value of a member field
6905from an :ref:`aggregate <t_aggregate>` value.
6906
6907Arguments:
6908""""""""""
6909
6910The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006911:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006912constant indices to specify which value to extract in a similar manner
6913as indices in a '``getelementptr``' instruction.
6914
6915The major differences to ``getelementptr`` indexing are:
6916
6917- Since the value being indexed is not a pointer, the first index is
6918 omitted and assumed to be zero.
6919- At least one index must be specified.
6920- Not only struct indices but also array indices must be in bounds.
6921
6922Semantics:
6923""""""""""
6924
6925The result is the value at the position in the aggregate specified by
6926the index operands.
6927
6928Example:
6929""""""""
6930
Renato Golin124f2592016-07-20 12:16:38 +00006931.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006932
6933 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6934
6935.. _i_insertvalue:
6936
6937'``insertvalue``' Instruction
6938^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6939
6940Syntax:
6941"""""""
6942
6943::
6944
6945 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6946
6947Overview:
6948"""""""""
6949
6950The '``insertvalue``' instruction inserts a value into a member field in
6951an :ref:`aggregate <t_aggregate>` value.
6952
6953Arguments:
6954""""""""""
6955
6956The first operand of an '``insertvalue``' instruction is a value of
6957:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6958a first-class value to insert. The following operands are constant
6959indices indicating the position at which to insert the value in a
6960similar manner as indices in a '``extractvalue``' instruction. The value
6961to insert must have the same type as the value identified by the
6962indices.
6963
6964Semantics:
6965""""""""""
6966
6967The result is an aggregate of the same type as ``val``. Its value is
6968that of ``val`` except that the value at the position specified by the
6969indices is that of ``elt``.
6970
6971Example:
6972""""""""
6973
6974.. code-block:: llvm
6975
6976 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6977 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006978 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006979
6980.. _memoryops:
6981
6982Memory Access and Addressing Operations
6983---------------------------------------
6984
6985A key design point of an SSA-based representation is how it represents
6986memory. In LLVM, no memory locations are in SSA form, which makes things
6987very simple. This section describes how to read, write, and allocate
6988memory in LLVM.
6989
6990.. _i_alloca:
6991
6992'``alloca``' Instruction
6993^^^^^^^^^^^^^^^^^^^^^^^^
6994
6995Syntax:
6996"""""""
6997
6998::
6999
Tim Northover675a0962014-06-13 14:24:23 +00007000 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00007001
7002Overview:
7003"""""""""
7004
7005The '``alloca``' instruction allocates memory on the stack frame of the
7006currently executing function, to be automatically released when this
7007function returns to its caller. The object is always allocated in the
7008generic address space (address space zero).
7009
7010Arguments:
7011""""""""""
7012
7013The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7014bytes of memory on the runtime stack, returning a pointer of the
7015appropriate type to the program. If "NumElements" is specified, it is
7016the number of elements allocated, otherwise "NumElements" is defaulted
7017to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007018allocation is guaranteed to be aligned to at least that boundary. The
7019alignment may not be greater than ``1 << 29``. If not specified, or if
7020zero, the target can choose to align the allocation on any convenient
7021boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007022
7023'``type``' may be any sized type.
7024
7025Semantics:
7026""""""""""
7027
7028Memory is allocated; a pointer is returned. The operation is undefined
7029if there is insufficient stack space for the allocation. '``alloca``'d
7030memory is automatically released when the function returns. The
7031'``alloca``' instruction is commonly used to represent automatic
7032variables that must have an address available. When the function returns
7033(either with the ``ret`` or ``resume`` instructions), the memory is
7034reclaimed. Allocating zero bytes is legal, but the result is undefined.
7035The order in which memory is allocated (ie., which way the stack grows)
7036is not specified.
7037
7038Example:
7039""""""""
7040
7041.. code-block:: llvm
7042
Tim Northover675a0962014-06-13 14:24:23 +00007043 %ptr = alloca i32 ; yields i32*:ptr
7044 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7045 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7046 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007047
7048.. _i_load:
7049
7050'``load``' Instruction
7051^^^^^^^^^^^^^^^^^^^^^^
7052
7053Syntax:
7054"""""""
7055
7056::
7057
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007058 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007059 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007060 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007061 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007062 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007063
7064Overview:
7065"""""""""
7066
7067The '``load``' instruction is used to read from memory.
7068
7069Arguments:
7070""""""""""
7071
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007072The argument to the ``load`` instruction specifies the memory address from which
7073to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7074known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7075the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7076modify the number or order of execution of this ``load`` with other
7077:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007078
JF Bastiend1fb5852015-12-17 22:09:19 +00007079If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7080<ordering>` and optional ``singlethread`` argument. The ``release`` and
7081``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7082produce :ref:`defined <memmodel>` results when they may see multiple atomic
7083stores. The type of the pointee must be an integer, pointer, or floating-point
7084type whose bit width is a power of two greater than or equal to eight and less
7085than or equal to a target-specific size limit. ``align`` must be explicitly
7086specified on atomic loads, and the load has undefined behavior if the alignment
7087is not set to a value which is at least the size in bytes of the
7088pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007089
7090The optional constant ``align`` argument specifies the alignment of the
7091operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007092or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007093alignment for the target. It is the responsibility of the code emitter
7094to ensure that the alignment information is correct. Overestimating the
7095alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007096may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007097maximum possible alignment is ``1 << 29``. An alignment value higher
7098than the size of the loaded type implies memory up to the alignment
7099value bytes can be safely loaded without trapping in the default
7100address space. Access of the high bytes can interfere with debugging
7101tools, so should not be accessed if the function has the
7102``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007103
7104The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007105metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007106``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007107metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007108that this load is not expected to be reused in the cache. The code
7109generator may select special instructions to save cache bandwidth, such
7110as the ``MOVNT`` instruction on x86.
7111
7112The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007113metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007114entries. If a load instruction tagged with the ``!invariant.load``
7115metadata is executed, the optimizer may assume the memory location
7116referenced by the load contains the same value at all points in the
7117program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007118
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007119The optional ``!invariant.group`` metadata must reference a single metadata name
7120 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7121
Philip Reamescdb72f32014-10-20 22:40:55 +00007122The optional ``!nonnull`` metadata must reference a single
7123metadata name ``<index>`` corresponding to a metadata node with no
7124entries. The existence of the ``!nonnull`` metadata on the
7125instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007126never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007127on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007128to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007129
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007130The optional ``!dereferenceable`` metadata must reference a single metadata
7131name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007132entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007133tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007134The number of bytes known to be dereferenceable is specified by the integer
7135value in the metadata node. This is analogous to the ''dereferenceable''
7136attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007137to loads of a pointer type.
7138
7139The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007140metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7141``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007142instruction tells the optimizer that the value loaded is known to be either
7143dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007144The number of bytes known to be dereferenceable is specified by the integer
7145value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7146attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007147to loads of a pointer type.
7148
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007149The optional ``!align`` metadata must reference a single metadata name
7150``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7151The existence of the ``!align`` metadata on the instruction tells the
7152optimizer that the value loaded is known to be aligned to a boundary specified
7153by the integer value in the metadata node. The alignment must be a power of 2.
7154This is analogous to the ''align'' attribute on parameters and return values.
7155This metadata can only be applied to loads of a pointer type.
7156
Sean Silvab084af42012-12-07 10:36:55 +00007157Semantics:
7158""""""""""
7159
7160The location of memory pointed to is loaded. If the value being loaded
7161is of scalar type then the number of bytes read does not exceed the
7162minimum number of bytes needed to hold all bits of the type. For
7163example, loading an ``i24`` reads at most three bytes. When loading a
7164value of a type like ``i20`` with a size that is not an integral number
7165of bytes, the result is undefined if the value was not originally
7166written using a store of the same type.
7167
7168Examples:
7169"""""""""
7170
7171.. code-block:: llvm
7172
Tim Northover675a0962014-06-13 14:24:23 +00007173 %ptr = alloca i32 ; yields i32*:ptr
7174 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007175 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007176
7177.. _i_store:
7178
7179'``store``' Instruction
7180^^^^^^^^^^^^^^^^^^^^^^^
7181
7182Syntax:
7183"""""""
7184
7185::
7186
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007187 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7188 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007189
7190Overview:
7191"""""""""
7192
7193The '``store``' instruction is used to write to memory.
7194
7195Arguments:
7196""""""""""
7197
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007198There are two arguments to the ``store`` instruction: a value to store and an
7199address at which to store it. The type of the ``<pointer>`` operand must be a
7200pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7201operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7202allowed to modify the number or order of execution of this ``store`` with other
7203:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7204<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7205structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007206
JF Bastiend1fb5852015-12-17 22:09:19 +00007207If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7208<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7209``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7210produce :ref:`defined <memmodel>` results when they may see multiple atomic
7211stores. The type of the pointee must be an integer, pointer, or floating-point
7212type whose bit width is a power of two greater than or equal to eight and less
7213than or equal to a target-specific size limit. ``align`` must be explicitly
7214specified on atomic stores, and the store has undefined behavior if the
7215alignment is not set to a value which is at least the size in bytes of the
7216pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007217
Eli Benderskyca380842013-04-17 17:17:20 +00007218The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007219operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007220or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007221alignment for the target. It is the responsibility of the code emitter
7222to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007223alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007224alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007225safe. The maximum possible alignment is ``1 << 29``. An alignment
7226value higher than the size of the stored type implies memory up to the
7227alignment value bytes can be stored to without trapping in the default
7228address space. Storing to the higher bytes however may result in data
7229races if another thread can access the same address. Introducing a
7230data race is not allowed. Storing to the extra bytes is not allowed
7231even in situations where a data race is known to not exist if the
7232function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007233
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007234The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007235name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007236value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007237tells the optimizer and code generator that this load is not expected to
7238be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007239instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007240x86.
7241
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007242The optional ``!invariant.group`` metadata must reference a
7243single metadata name ``<index>``. See ``invariant.group`` metadata.
7244
Sean Silvab084af42012-12-07 10:36:55 +00007245Semantics:
7246""""""""""
7247
Eli Benderskyca380842013-04-17 17:17:20 +00007248The contents of memory are updated to contain ``<value>`` at the
7249location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007250of scalar type then the number of bytes written does not exceed the
7251minimum number of bytes needed to hold all bits of the type. For
7252example, storing an ``i24`` writes at most three bytes. When writing a
7253value of a type like ``i20`` with a size that is not an integral number
7254of bytes, it is unspecified what happens to the extra bits that do not
7255belong to the type, but they will typically be overwritten.
7256
7257Example:
7258""""""""
7259
7260.. code-block:: llvm
7261
Tim Northover675a0962014-06-13 14:24:23 +00007262 %ptr = alloca i32 ; yields i32*:ptr
7263 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007264 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007265
7266.. _i_fence:
7267
7268'``fence``' Instruction
7269^^^^^^^^^^^^^^^^^^^^^^^
7270
7271Syntax:
7272"""""""
7273
7274::
7275
Tim Northover675a0962014-06-13 14:24:23 +00007276 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007277
7278Overview:
7279"""""""""
7280
7281The '``fence``' instruction is used to introduce happens-before edges
7282between operations.
7283
7284Arguments:
7285""""""""""
7286
7287'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7288defines what *synchronizes-with* edges they add. They can only be given
7289``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7290
7291Semantics:
7292""""""""""
7293
7294A fence A which has (at least) ``release`` ordering semantics
7295*synchronizes with* a fence B with (at least) ``acquire`` ordering
7296semantics if and only if there exist atomic operations X and Y, both
7297operating on some atomic object M, such that A is sequenced before X, X
7298modifies M (either directly or through some side effect of a sequence
7299headed by X), Y is sequenced before B, and Y observes M. This provides a
7300*happens-before* dependency between A and B. Rather than an explicit
7301``fence``, one (but not both) of the atomic operations X or Y might
7302provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7303still *synchronize-with* the explicit ``fence`` and establish the
7304*happens-before* edge.
7305
7306A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7307``acquire`` and ``release`` semantics specified above, participates in
7308the global program order of other ``seq_cst`` operations and/or fences.
7309
7310The optional ":ref:`singlethread <singlethread>`" argument specifies
7311that the fence only synchronizes with other fences in the same thread.
7312(This is useful for interacting with signal handlers.)
7313
7314Example:
7315""""""""
7316
7317.. code-block:: llvm
7318
Tim Northover675a0962014-06-13 14:24:23 +00007319 fence acquire ; yields void
7320 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007321
7322.. _i_cmpxchg:
7323
7324'``cmpxchg``' Instruction
7325^^^^^^^^^^^^^^^^^^^^^^^^^
7326
7327Syntax:
7328"""""""
7329
7330::
7331
Tim Northover675a0962014-06-13 14:24:23 +00007332 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007333
7334Overview:
7335"""""""""
7336
7337The '``cmpxchg``' instruction is used to atomically modify memory. It
7338loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007339equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007340
7341Arguments:
7342""""""""""
7343
7344There are three arguments to the '``cmpxchg``' instruction: an address
7345to operate on, a value to compare to the value currently be at that
7346address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007347are equal. The type of '<cmp>' must be an integer or pointer type whose
7348bit width is a power of two greater than or equal to eight and less
7349than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7350have the same type, and the type of '<pointer>' must be a pointer to
7351that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7352optimizer is not allowed to modify the number or order of execution of
7353this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007354
Tim Northovere94a5182014-03-11 10:48:52 +00007355The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007356``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7357must be at least ``monotonic``, the ordering constraint on failure must be no
7358stronger than that on success, and the failure ordering cannot be either
7359``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007360
7361The optional "``singlethread``" argument declares that the ``cmpxchg``
7362is only atomic with respect to code (usually signal handlers) running in
7363the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7364respect to all other code in the system.
7365
7366The pointer passed into cmpxchg must have alignment greater than or
7367equal to the size in memory of the operand.
7368
7369Semantics:
7370""""""""""
7371
Tim Northover420a2162014-06-13 14:24:07 +00007372The contents of memory at the location specified by the '``<pointer>``' operand
7373is read and compared to '``<cmp>``'; if the read value is the equal, the
7374'``<new>``' is written. The original value at the location is returned, together
7375with a flag indicating success (true) or failure (false).
7376
7377If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7378permitted: the operation may not write ``<new>`` even if the comparison
7379matched.
7380
7381If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7382if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007383
Tim Northovere94a5182014-03-11 10:48:52 +00007384A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7385identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7386load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007387
7388Example:
7389""""""""
7390
7391.. code-block:: llvm
7392
7393 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007394 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007395 br label %loop
7396
7397 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007398 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007399 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007400 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007401 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7402 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007403 br i1 %success, label %done, label %loop
7404
7405 done:
7406 ...
7407
7408.. _i_atomicrmw:
7409
7410'``atomicrmw``' Instruction
7411^^^^^^^^^^^^^^^^^^^^^^^^^^^
7412
7413Syntax:
7414"""""""
7415
7416::
7417
Tim Northover675a0962014-06-13 14:24:23 +00007418 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007419
7420Overview:
7421"""""""""
7422
7423The '``atomicrmw``' instruction is used to atomically modify memory.
7424
7425Arguments:
7426""""""""""
7427
7428There are three arguments to the '``atomicrmw``' instruction: an
7429operation to apply, an address whose value to modify, an argument to the
7430operation. The operation must be one of the following keywords:
7431
7432- xchg
7433- add
7434- sub
7435- and
7436- nand
7437- or
7438- xor
7439- max
7440- min
7441- umax
7442- umin
7443
7444The type of '<value>' must be an integer type whose bit width is a power
7445of two greater than or equal to eight and less than or equal to a
7446target-specific size limit. The type of the '``<pointer>``' operand must
7447be a pointer to that type. If the ``atomicrmw`` is marked as
7448``volatile``, then the optimizer is not allowed to modify the number or
7449order of execution of this ``atomicrmw`` with other :ref:`volatile
7450operations <volatile>`.
7451
7452Semantics:
7453""""""""""
7454
7455The contents of memory at the location specified by the '``<pointer>``'
7456operand are atomically read, modified, and written back. The original
7457value at the location is returned. The modification is specified by the
7458operation argument:
7459
7460- xchg: ``*ptr = val``
7461- add: ``*ptr = *ptr + val``
7462- sub: ``*ptr = *ptr - val``
7463- and: ``*ptr = *ptr & val``
7464- nand: ``*ptr = ~(*ptr & val)``
7465- or: ``*ptr = *ptr | val``
7466- xor: ``*ptr = *ptr ^ val``
7467- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7468- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7469- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7470 comparison)
7471- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7472 comparison)
7473
7474Example:
7475""""""""
7476
7477.. code-block:: llvm
7478
Tim Northover675a0962014-06-13 14:24:23 +00007479 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007480
7481.. _i_getelementptr:
7482
7483'``getelementptr``' Instruction
7484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7485
7486Syntax:
7487"""""""
7488
7489::
7490
Peter Collingbourned93620b2016-11-10 22:34:55 +00007491 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7492 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7493 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007494
7495Overview:
7496"""""""""
7497
7498The '``getelementptr``' instruction is used to get the address of a
7499subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007500address calculation only and does not access memory. The instruction can also
7501be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007502
7503Arguments:
7504""""""""""
7505
David Blaikie16a97eb2015-03-04 22:02:58 +00007506The first argument is always a type used as the basis for the calculations.
7507The second argument is always a pointer or a vector of pointers, and is the
7508base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007509that indicate which of the elements of the aggregate object are indexed.
7510The interpretation of each index is dependent on the type being indexed
7511into. The first index always indexes the pointer value given as the
7512first argument, the second index indexes a value of the type pointed to
7513(not necessarily the value directly pointed to, since the first index
7514can be non-zero), etc. The first type indexed into must be a pointer
7515value, subsequent types can be arrays, vectors, and structs. Note that
7516subsequent types being indexed into can never be pointers, since that
7517would require loading the pointer before continuing calculation.
7518
7519The type of each index argument depends on the type it is indexing into.
7520When indexing into a (optionally packed) structure, only ``i32`` integer
7521**constants** are allowed (when using a vector of indices they must all
7522be the **same** ``i32`` integer constant). When indexing into an array,
7523pointer or vector, integers of any width are allowed, and they are not
7524required to be constant. These integers are treated as signed values
7525where relevant.
7526
7527For example, let's consider a C code fragment and how it gets compiled
7528to LLVM:
7529
7530.. code-block:: c
7531
7532 struct RT {
7533 char A;
7534 int B[10][20];
7535 char C;
7536 };
7537 struct ST {
7538 int X;
7539 double Y;
7540 struct RT Z;
7541 };
7542
7543 int *foo(struct ST *s) {
7544 return &s[1].Z.B[5][13];
7545 }
7546
7547The LLVM code generated by Clang is:
7548
7549.. code-block:: llvm
7550
7551 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7552 %struct.ST = type { i32, double, %struct.RT }
7553
7554 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7555 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007556 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007557 ret i32* %arrayidx
7558 }
7559
7560Semantics:
7561""""""""""
7562
7563In the example above, the first index is indexing into the
7564'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7565= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7566indexes into the third element of the structure, yielding a
7567'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7568structure. The third index indexes into the second element of the
7569structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7570dimensions of the array are subscripted into, yielding an '``i32``'
7571type. The '``getelementptr``' instruction returns a pointer to this
7572element, thus computing a value of '``i32*``' type.
7573
7574Note that it is perfectly legal to index partially through a structure,
7575returning a pointer to an inner element. Because of this, the LLVM code
7576for the given testcase is equivalent to:
7577
7578.. code-block:: llvm
7579
7580 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007581 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7582 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7583 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7584 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7585 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007586 ret i32* %t5
7587 }
7588
7589If the ``inbounds`` keyword is present, the result value of the
7590``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7591pointer is not an *in bounds* address of an allocated object, or if any
7592of the addresses that would be formed by successive addition of the
7593offsets implied by the indices to the base address with infinitely
7594precise signed arithmetic are not an *in bounds* address of that
7595allocated object. The *in bounds* addresses for an allocated object are
7596all the addresses that point into the object, plus the address one byte
7597past the end. In cases where the base is a vector of pointers the
7598``inbounds`` keyword applies to each of the computations element-wise.
7599
7600If the ``inbounds`` keyword is not present, the offsets are added to the
7601base address with silently-wrapping two's complement arithmetic. If the
7602offsets have a different width from the pointer, they are sign-extended
7603or truncated to the width of the pointer. The result value of the
7604``getelementptr`` may be outside the object pointed to by the base
7605pointer. The result value may not necessarily be used to access memory
7606though, even if it happens to point into allocated storage. See the
7607:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7608information.
7609
Peter Collingbourned93620b2016-11-10 22:34:55 +00007610If the ``inrange`` keyword is present before any index, loading from or
7611storing to any pointer derived from the ``getelementptr`` has undefined
7612behavior if the load or store would access memory outside of the bounds of
7613the element selected by the index marked as ``inrange``. The result of a
7614pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7615involving memory) involving a pointer derived from a ``getelementptr`` with
7616the ``inrange`` keyword is undefined, with the exception of comparisons
7617in the case where both operands are in the range of the element selected
7618by the ``inrange`` keyword, inclusive of the address one past the end of
7619that element. Note that the ``inrange`` keyword is currently only allowed
7620in constant ``getelementptr`` expressions.
7621
Sean Silvab084af42012-12-07 10:36:55 +00007622The getelementptr instruction is often confusing. For some more insight
7623into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7624
7625Example:
7626""""""""
7627
7628.. code-block:: llvm
7629
7630 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007631 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007632 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007633 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007634 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007635 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007636 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007637 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007638
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007639Vector of pointers:
7640"""""""""""""""""""
7641
7642The ``getelementptr`` returns a vector of pointers, instead of a single address,
7643when one or more of its arguments is a vector. In such cases, all vector
7644arguments should have the same number of elements, and every scalar argument
7645will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007646
7647.. code-block:: llvm
7648
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007649 ; All arguments are vectors:
7650 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7651 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007652
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007653 ; Add the same scalar offset to each pointer of a vector:
7654 ; A[i] = ptrs[i] + offset*sizeof(i8)
7655 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007656
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007657 ; Add distinct offsets to the same pointer:
7658 ; A[i] = ptr + offsets[i]*sizeof(i8)
7659 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007660
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007661 ; In all cases described above the type of the result is <4 x i8*>
7662
7663The two following instructions are equivalent:
7664
7665.. code-block:: llvm
7666
7667 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7668 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7669 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7670 <4 x i32> %ind4,
7671 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007672
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007673 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7674 i32 2, i32 1, <4 x i32> %ind4, i64 13
7675
7676Let's look at the C code, where the vector version of ``getelementptr``
7677makes sense:
7678
7679.. code-block:: c
7680
7681 // Let's assume that we vectorize the following loop:
7682 double *A, B; int *C;
7683 for (int i = 0; i < size; ++i) {
7684 A[i] = B[C[i]];
7685 }
7686
7687.. code-block:: llvm
7688
7689 ; get pointers for 8 elements from array B
7690 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7691 ; load 8 elements from array B into A
7692 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7693 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007694
7695Conversion Operations
7696---------------------
7697
7698The instructions in this category are the conversion instructions
7699(casting) which all take a single operand and a type. They perform
7700various bit conversions on the operand.
7701
7702'``trunc .. to``' Instruction
7703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7704
7705Syntax:
7706"""""""
7707
7708::
7709
7710 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7711
7712Overview:
7713"""""""""
7714
7715The '``trunc``' instruction truncates its operand to the type ``ty2``.
7716
7717Arguments:
7718""""""""""
7719
7720The '``trunc``' instruction takes a value to trunc, and a type to trunc
7721it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7722of the same number of integers. The bit size of the ``value`` must be
7723larger than the bit size of the destination type, ``ty2``. Equal sized
7724types are not allowed.
7725
7726Semantics:
7727""""""""""
7728
7729The '``trunc``' instruction truncates the high order bits in ``value``
7730and converts the remaining bits to ``ty2``. Since the source size must
7731be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7732It will always truncate bits.
7733
7734Example:
7735""""""""
7736
7737.. code-block:: llvm
7738
7739 %X = trunc i32 257 to i8 ; yields i8:1
7740 %Y = trunc i32 123 to i1 ; yields i1:true
7741 %Z = trunc i32 122 to i1 ; yields i1:false
7742 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7743
7744'``zext .. to``' Instruction
7745^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7746
7747Syntax:
7748"""""""
7749
7750::
7751
7752 <result> = zext <ty> <value> to <ty2> ; yields ty2
7753
7754Overview:
7755"""""""""
7756
7757The '``zext``' instruction zero extends its operand to type ``ty2``.
7758
7759Arguments:
7760""""""""""
7761
7762The '``zext``' instruction takes a value to cast, and a type to cast it
7763to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7764the same number of integers. The bit size of the ``value`` must be
7765smaller than the bit size of the destination type, ``ty2``.
7766
7767Semantics:
7768""""""""""
7769
7770The ``zext`` fills the high order bits of the ``value`` with zero bits
7771until it reaches the size of the destination type, ``ty2``.
7772
7773When zero extending from i1, the result will always be either 0 or 1.
7774
7775Example:
7776""""""""
7777
7778.. code-block:: llvm
7779
7780 %X = zext i32 257 to i64 ; yields i64:257
7781 %Y = zext i1 true to i32 ; yields i32:1
7782 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7783
7784'``sext .. to``' Instruction
7785^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7786
7787Syntax:
7788"""""""
7789
7790::
7791
7792 <result> = sext <ty> <value> to <ty2> ; yields ty2
7793
7794Overview:
7795"""""""""
7796
7797The '``sext``' sign extends ``value`` to the type ``ty2``.
7798
7799Arguments:
7800""""""""""
7801
7802The '``sext``' instruction takes a value to cast, and a type to cast it
7803to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7804the same number of integers. The bit size of the ``value`` must be
7805smaller than the bit size of the destination type, ``ty2``.
7806
7807Semantics:
7808""""""""""
7809
7810The '``sext``' instruction performs a sign extension by copying the sign
7811bit (highest order bit) of the ``value`` until it reaches the bit size
7812of the type ``ty2``.
7813
7814When sign extending from i1, the extension always results in -1 or 0.
7815
7816Example:
7817""""""""
7818
7819.. code-block:: llvm
7820
7821 %X = sext i8 -1 to i16 ; yields i16 :65535
7822 %Y = sext i1 true to i32 ; yields i32:-1
7823 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7824
7825'``fptrunc .. to``' Instruction
7826^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7827
7828Syntax:
7829"""""""
7830
7831::
7832
7833 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7834
7835Overview:
7836"""""""""
7837
7838The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7839
7840Arguments:
7841""""""""""
7842
7843The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7844value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7845The size of ``value`` must be larger than the size of ``ty2``. This
7846implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7847
7848Semantics:
7849""""""""""
7850
Dan Liew50456fb2015-09-03 18:43:56 +00007851The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007852:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007853point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7854destination type, ``ty2``, then the results are undefined. If the cast produces
7855an inexact result, how rounding is performed (e.g. truncation, also known as
7856round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007857
7858Example:
7859""""""""
7860
7861.. code-block:: llvm
7862
7863 %X = fptrunc double 123.0 to float ; yields float:123.0
7864 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7865
7866'``fpext .. to``' Instruction
7867^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7868
7869Syntax:
7870"""""""
7871
7872::
7873
7874 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7875
7876Overview:
7877"""""""""
7878
7879The '``fpext``' extends a floating point ``value`` to a larger floating
7880point value.
7881
7882Arguments:
7883""""""""""
7884
7885The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7886``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7887to. The source type must be smaller than the destination type.
7888
7889Semantics:
7890""""""""""
7891
7892The '``fpext``' instruction extends the ``value`` from a smaller
7893:ref:`floating point <t_floating>` type to a larger :ref:`floating
7894point <t_floating>` type. The ``fpext`` cannot be used to make a
7895*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7896*no-op cast* for a floating point cast.
7897
7898Example:
7899""""""""
7900
7901.. code-block:: llvm
7902
7903 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7904 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7905
7906'``fptoui .. to``' Instruction
7907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7908
7909Syntax:
7910"""""""
7911
7912::
7913
7914 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7915
7916Overview:
7917"""""""""
7918
7919The '``fptoui``' converts a floating point ``value`` to its unsigned
7920integer equivalent of type ``ty2``.
7921
7922Arguments:
7923""""""""""
7924
7925The '``fptoui``' instruction takes a value to cast, which must be a
7926scalar or vector :ref:`floating point <t_floating>` value, and a type to
7927cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7928``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7929type with the same number of elements as ``ty``
7930
7931Semantics:
7932""""""""""
7933
7934The '``fptoui``' instruction converts its :ref:`floating
7935point <t_floating>` operand into the nearest (rounding towards zero)
7936unsigned integer value. If the value cannot fit in ``ty2``, the results
7937are undefined.
7938
7939Example:
7940""""""""
7941
7942.. code-block:: llvm
7943
7944 %X = fptoui double 123.0 to i32 ; yields i32:123
7945 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7946 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7947
7948'``fptosi .. to``' Instruction
7949^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7950
7951Syntax:
7952"""""""
7953
7954::
7955
7956 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7957
7958Overview:
7959"""""""""
7960
7961The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7962``value`` to type ``ty2``.
7963
7964Arguments:
7965""""""""""
7966
7967The '``fptosi``' instruction takes a value to cast, which must be a
7968scalar or vector :ref:`floating point <t_floating>` value, and a type to
7969cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7970``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7971type with the same number of elements as ``ty``
7972
7973Semantics:
7974""""""""""
7975
7976The '``fptosi``' instruction converts its :ref:`floating
7977point <t_floating>` operand into the nearest (rounding towards zero)
7978signed integer value. If the value cannot fit in ``ty2``, the results
7979are undefined.
7980
7981Example:
7982""""""""
7983
7984.. code-block:: llvm
7985
7986 %X = fptosi double -123.0 to i32 ; yields i32:-123
7987 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7988 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7989
7990'``uitofp .. to``' Instruction
7991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7992
7993Syntax:
7994"""""""
7995
7996::
7997
7998 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7999
8000Overview:
8001"""""""""
8002
8003The '``uitofp``' instruction regards ``value`` as an unsigned integer
8004and converts that value to the ``ty2`` type.
8005
8006Arguments:
8007""""""""""
8008
8009The '``uitofp``' instruction takes a value to cast, which must be a
8010scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8011``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8012``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8013type with the same number of elements as ``ty``
8014
8015Semantics:
8016""""""""""
8017
8018The '``uitofp``' instruction interprets its operand as an unsigned
8019integer quantity and converts it to the corresponding floating point
8020value. If the value cannot fit in the floating point value, the results
8021are undefined.
8022
8023Example:
8024""""""""
8025
8026.. code-block:: llvm
8027
8028 %X = uitofp i32 257 to float ; yields float:257.0
8029 %Y = uitofp i8 -1 to double ; yields double:255.0
8030
8031'``sitofp .. to``' Instruction
8032^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8033
8034Syntax:
8035"""""""
8036
8037::
8038
8039 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8040
8041Overview:
8042"""""""""
8043
8044The '``sitofp``' instruction regards ``value`` as a signed integer and
8045converts that value to the ``ty2`` type.
8046
8047Arguments:
8048""""""""""
8049
8050The '``sitofp``' instruction takes a value to cast, which must be a
8051scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8052``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8053``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8054type with the same number of elements as ``ty``
8055
8056Semantics:
8057""""""""""
8058
8059The '``sitofp``' instruction interprets its operand as a signed integer
8060quantity and converts it to the corresponding floating point value. If
8061the value cannot fit in the floating point value, the results are
8062undefined.
8063
8064Example:
8065""""""""
8066
8067.. code-block:: llvm
8068
8069 %X = sitofp i32 257 to float ; yields float:257.0
8070 %Y = sitofp i8 -1 to double ; yields double:-1.0
8071
8072.. _i_ptrtoint:
8073
8074'``ptrtoint .. to``' Instruction
8075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8076
8077Syntax:
8078"""""""
8079
8080::
8081
8082 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8083
8084Overview:
8085"""""""""
8086
8087The '``ptrtoint``' instruction converts the pointer or a vector of
8088pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8089
8090Arguments:
8091""""""""""
8092
8093The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008094a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008095type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8096a vector of integers type.
8097
8098Semantics:
8099""""""""""
8100
8101The '``ptrtoint``' instruction converts ``value`` to integer type
8102``ty2`` by interpreting the pointer value as an integer and either
8103truncating or zero extending that value to the size of the integer type.
8104If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8105``value`` is larger than ``ty2`` then a truncation is done. If they are
8106the same size, then nothing is done (*no-op cast*) other than a type
8107change.
8108
8109Example:
8110""""""""
8111
8112.. code-block:: llvm
8113
8114 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8115 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8116 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8117
8118.. _i_inttoptr:
8119
8120'``inttoptr .. to``' Instruction
8121^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8122
8123Syntax:
8124"""""""
8125
8126::
8127
8128 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8129
8130Overview:
8131"""""""""
8132
8133The '``inttoptr``' instruction converts an integer ``value`` to a
8134pointer type, ``ty2``.
8135
8136Arguments:
8137""""""""""
8138
8139The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8140cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8141type.
8142
8143Semantics:
8144""""""""""
8145
8146The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8147applying either a zero extension or a truncation depending on the size
8148of the integer ``value``. If ``value`` is larger than the size of a
8149pointer then a truncation is done. If ``value`` is smaller than the size
8150of a pointer then a zero extension is done. If they are the same size,
8151nothing is done (*no-op cast*).
8152
8153Example:
8154""""""""
8155
8156.. code-block:: llvm
8157
8158 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8159 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8160 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8161 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8162
8163.. _i_bitcast:
8164
8165'``bitcast .. to``' Instruction
8166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8167
8168Syntax:
8169"""""""
8170
8171::
8172
8173 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8174
8175Overview:
8176"""""""""
8177
8178The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8179changing any bits.
8180
8181Arguments:
8182""""""""""
8183
8184The '``bitcast``' instruction takes a value to cast, which must be a
8185non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008186also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8187bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008188identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008189also be a pointer of the same size. This instruction supports bitwise
8190conversion of vectors to integers and to vectors of other types (as
8191long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008192
8193Semantics:
8194""""""""""
8195
Matt Arsenault24b49c42013-07-31 17:49:08 +00008196The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8197is always a *no-op cast* because no bits change with this
8198conversion. The conversion is done as if the ``value`` had been stored
8199to memory and read back as type ``ty2``. Pointer (or vector of
8200pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008201pointers) types with the same address space through this instruction.
8202To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8203or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008204
8205Example:
8206""""""""
8207
Renato Golin124f2592016-07-20 12:16:38 +00008208.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008209
8210 %X = bitcast i8 255 to i8 ; yields i8 :-1
8211 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8212 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8213 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8214
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008215.. _i_addrspacecast:
8216
8217'``addrspacecast .. to``' Instruction
8218^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8219
8220Syntax:
8221"""""""
8222
8223::
8224
8225 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8226
8227Overview:
8228"""""""""
8229
8230The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8231address space ``n`` to type ``pty2`` in address space ``m``.
8232
8233Arguments:
8234""""""""""
8235
8236The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8237to cast and a pointer type to cast it to, which must have a different
8238address space.
8239
8240Semantics:
8241""""""""""
8242
8243The '``addrspacecast``' instruction converts the pointer value
8244``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008245value modification, depending on the target and the address space
8246pair. Pointer conversions within the same address space must be
8247performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008248conversion is legal then both result and operand refer to the same memory
8249location.
8250
8251Example:
8252""""""""
8253
8254.. code-block:: llvm
8255
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008256 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8257 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8258 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008259
Sean Silvab084af42012-12-07 10:36:55 +00008260.. _otherops:
8261
8262Other Operations
8263----------------
8264
8265The instructions in this category are the "miscellaneous" instructions,
8266which defy better classification.
8267
8268.. _i_icmp:
8269
8270'``icmp``' Instruction
8271^^^^^^^^^^^^^^^^^^^^^^
8272
8273Syntax:
8274"""""""
8275
8276::
8277
Tim Northover675a0962014-06-13 14:24:23 +00008278 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008279
8280Overview:
8281"""""""""
8282
8283The '``icmp``' instruction returns a boolean value or a vector of
8284boolean values based on comparison of its two integer, integer vector,
8285pointer, or pointer vector operands.
8286
8287Arguments:
8288""""""""""
8289
8290The '``icmp``' instruction takes three operands. The first operand is
8291the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008292not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008293
8294#. ``eq``: equal
8295#. ``ne``: not equal
8296#. ``ugt``: unsigned greater than
8297#. ``uge``: unsigned greater or equal
8298#. ``ult``: unsigned less than
8299#. ``ule``: unsigned less or equal
8300#. ``sgt``: signed greater than
8301#. ``sge``: signed greater or equal
8302#. ``slt``: signed less than
8303#. ``sle``: signed less or equal
8304
8305The remaining two arguments must be :ref:`integer <t_integer>` or
8306:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8307must also be identical types.
8308
8309Semantics:
8310""""""""""
8311
8312The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8313code given as ``cond``. The comparison performed always yields either an
8314:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8315
8316#. ``eq``: yields ``true`` if the operands are equal, ``false``
8317 otherwise. No sign interpretation is necessary or performed.
8318#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8319 otherwise. No sign interpretation is necessary or performed.
8320#. ``ugt``: interprets the operands as unsigned values and yields
8321 ``true`` if ``op1`` is greater than ``op2``.
8322#. ``uge``: interprets the operands as unsigned values and yields
8323 ``true`` if ``op1`` is greater than or equal to ``op2``.
8324#. ``ult``: interprets the operands as unsigned values and yields
8325 ``true`` if ``op1`` is less than ``op2``.
8326#. ``ule``: interprets the operands as unsigned values and yields
8327 ``true`` if ``op1`` is less than or equal to ``op2``.
8328#. ``sgt``: interprets the operands as signed values and yields ``true``
8329 if ``op1`` is greater than ``op2``.
8330#. ``sge``: interprets the operands as signed values and yields ``true``
8331 if ``op1`` is greater than or equal to ``op2``.
8332#. ``slt``: interprets the operands as signed values and yields ``true``
8333 if ``op1`` is less than ``op2``.
8334#. ``sle``: interprets the operands as signed values and yields ``true``
8335 if ``op1`` is less than or equal to ``op2``.
8336
8337If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8338are compared as if they were integers.
8339
8340If the operands are integer vectors, then they are compared element by
8341element. The result is an ``i1`` vector with the same number of elements
8342as the values being compared. Otherwise, the result is an ``i1``.
8343
8344Example:
8345""""""""
8346
Renato Golin124f2592016-07-20 12:16:38 +00008347.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008348
8349 <result> = icmp eq i32 4, 5 ; yields: result=false
8350 <result> = icmp ne float* %X, %X ; yields: result=false
8351 <result> = icmp ult i16 4, 5 ; yields: result=true
8352 <result> = icmp sgt i16 4, 5 ; yields: result=false
8353 <result> = icmp ule i16 -4, 5 ; yields: result=false
8354 <result> = icmp sge i16 4, 5 ; yields: result=false
8355
Sean Silvab084af42012-12-07 10:36:55 +00008356.. _i_fcmp:
8357
8358'``fcmp``' Instruction
8359^^^^^^^^^^^^^^^^^^^^^^
8360
8361Syntax:
8362"""""""
8363
8364::
8365
James Molloy88eb5352015-07-10 12:52:00 +00008366 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008367
8368Overview:
8369"""""""""
8370
8371The '``fcmp``' instruction returns a boolean value or vector of boolean
8372values based on comparison of its operands.
8373
8374If the operands are floating point scalars, then the result type is a
8375boolean (:ref:`i1 <t_integer>`).
8376
8377If the operands are floating point vectors, then the result type is a
8378vector of boolean with the same number of elements as the operands being
8379compared.
8380
8381Arguments:
8382""""""""""
8383
8384The '``fcmp``' instruction takes three operands. The first operand is
8385the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008386not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008387
8388#. ``false``: no comparison, always returns false
8389#. ``oeq``: ordered and equal
8390#. ``ogt``: ordered and greater than
8391#. ``oge``: ordered and greater than or equal
8392#. ``olt``: ordered and less than
8393#. ``ole``: ordered and less than or equal
8394#. ``one``: ordered and not equal
8395#. ``ord``: ordered (no nans)
8396#. ``ueq``: unordered or equal
8397#. ``ugt``: unordered or greater than
8398#. ``uge``: unordered or greater than or equal
8399#. ``ult``: unordered or less than
8400#. ``ule``: unordered or less than or equal
8401#. ``une``: unordered or not equal
8402#. ``uno``: unordered (either nans)
8403#. ``true``: no comparison, always returns true
8404
8405*Ordered* means that neither operand is a QNAN while *unordered* means
8406that either operand may be a QNAN.
8407
8408Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8409point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8410type. They must have identical types.
8411
8412Semantics:
8413""""""""""
8414
8415The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8416condition code given as ``cond``. If the operands are vectors, then the
8417vectors are compared element by element. Each comparison performed
8418always yields an :ref:`i1 <t_integer>` result, as follows:
8419
8420#. ``false``: always yields ``false``, regardless of operands.
8421#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8422 is equal to ``op2``.
8423#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8424 is greater than ``op2``.
8425#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8426 is greater than or equal to ``op2``.
8427#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8428 is less than ``op2``.
8429#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8430 is less than or equal to ``op2``.
8431#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8432 is not equal to ``op2``.
8433#. ``ord``: yields ``true`` if both operands are not a QNAN.
8434#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8435 equal to ``op2``.
8436#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8437 greater than ``op2``.
8438#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8439 greater than or equal to ``op2``.
8440#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8441 less than ``op2``.
8442#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8443 less than or equal to ``op2``.
8444#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8445 not equal to ``op2``.
8446#. ``uno``: yields ``true`` if either operand is a QNAN.
8447#. ``true``: always yields ``true``, regardless of operands.
8448
James Molloy88eb5352015-07-10 12:52:00 +00008449The ``fcmp`` instruction can also optionally take any number of
8450:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8451otherwise unsafe floating point optimizations.
8452
8453Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8454only flags that have any effect on its semantics are those that allow
8455assumptions to be made about the values of input arguments; namely
8456``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8457
Sean Silvab084af42012-12-07 10:36:55 +00008458Example:
8459""""""""
8460
Renato Golin124f2592016-07-20 12:16:38 +00008461.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008462
8463 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8464 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8465 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8466 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8467
Sean Silvab084af42012-12-07 10:36:55 +00008468.. _i_phi:
8469
8470'``phi``' Instruction
8471^^^^^^^^^^^^^^^^^^^^^
8472
8473Syntax:
8474"""""""
8475
8476::
8477
8478 <result> = phi <ty> [ <val0>, <label0>], ...
8479
8480Overview:
8481"""""""""
8482
8483The '``phi``' instruction is used to implement the φ node in the SSA
8484graph representing the function.
8485
8486Arguments:
8487""""""""""
8488
8489The type of the incoming values is specified with the first type field.
8490After this, the '``phi``' instruction takes a list of pairs as
8491arguments, with one pair for each predecessor basic block of the current
8492block. Only values of :ref:`first class <t_firstclass>` type may be used as
8493the value arguments to the PHI node. Only labels may be used as the
8494label arguments.
8495
8496There must be no non-phi instructions between the start of a basic block
8497and the PHI instructions: i.e. PHI instructions must be first in a basic
8498block.
8499
8500For the purposes of the SSA form, the use of each incoming value is
8501deemed to occur on the edge from the corresponding predecessor block to
8502the current block (but after any definition of an '``invoke``'
8503instruction's return value on the same edge).
8504
8505Semantics:
8506""""""""""
8507
8508At runtime, the '``phi``' instruction logically takes on the value
8509specified by the pair corresponding to the predecessor basic block that
8510executed just prior to the current block.
8511
8512Example:
8513""""""""
8514
8515.. code-block:: llvm
8516
8517 Loop: ; Infinite loop that counts from 0 on up...
8518 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8519 %nextindvar = add i32 %indvar, 1
8520 br label %Loop
8521
8522.. _i_select:
8523
8524'``select``' Instruction
8525^^^^^^^^^^^^^^^^^^^^^^^^
8526
8527Syntax:
8528"""""""
8529
8530::
8531
8532 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8533
8534 selty is either i1 or {<N x i1>}
8535
8536Overview:
8537"""""""""
8538
8539The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008540condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008541
8542Arguments:
8543""""""""""
8544
8545The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8546values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008547class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008548
8549Semantics:
8550""""""""""
8551
8552If the condition is an i1 and it evaluates to 1, the instruction returns
8553the first value argument; otherwise, it returns the second value
8554argument.
8555
8556If the condition is a vector of i1, then the value arguments must be
8557vectors of the same size, and the selection is done element by element.
8558
David Majnemer40a0b592015-03-03 22:45:47 +00008559If the condition is an i1 and the value arguments are vectors of the
8560same size, then an entire vector is selected.
8561
Sean Silvab084af42012-12-07 10:36:55 +00008562Example:
8563""""""""
8564
8565.. code-block:: llvm
8566
8567 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8568
8569.. _i_call:
8570
8571'``call``' Instruction
8572^^^^^^^^^^^^^^^^^^^^^^
8573
8574Syntax:
8575"""""""
8576
8577::
8578
David Blaikieb83cf102016-07-13 17:21:34 +00008579 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008580 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008581
8582Overview:
8583"""""""""
8584
8585The '``call``' instruction represents a simple function call.
8586
8587Arguments:
8588""""""""""
8589
8590This instruction requires several arguments:
8591
Reid Kleckner5772b772014-04-24 20:14:34 +00008592#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008593 should perform tail call optimization. The ``tail`` marker is a hint that
8594 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008595 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008596 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008597
8598 #. The call will not cause unbounded stack growth if it is part of a
8599 recursive cycle in the call graph.
8600 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8601 forwarded in place.
8602
8603 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008604 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008605 rules:
8606
8607 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8608 or a pointer bitcast followed by a ret instruction.
8609 - The ret instruction must return the (possibly bitcasted) value
8610 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008611 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008612 parameters or return types may differ in pointee type, but not
8613 in address space.
8614 - The calling conventions of the caller and callee must match.
8615 - All ABI-impacting function attributes, such as sret, byval, inreg,
8616 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008617 - The callee must be varargs iff the caller is varargs. Bitcasting a
8618 non-varargs function to the appropriate varargs type is legal so
8619 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008620
8621 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8622 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008623
8624 - Caller and callee both have the calling convention ``fastcc``.
8625 - The call is in tail position (ret immediately follows call and ret
8626 uses value of call or is void).
8627 - Option ``-tailcallopt`` is enabled, or
8628 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008629 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008630 met. <CodeGenerator.html#tailcallopt>`_
8631
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008632#. The optional ``notail`` marker indicates that the optimizers should not add
8633 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8634 call optimization from being performed on the call.
8635
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008636#. The optional ``fast-math flags`` marker indicates that the call has one or more
8637 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8638 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8639 for calls that return a floating-point scalar or vector type.
8640
Sean Silvab084af42012-12-07 10:36:55 +00008641#. The optional "cconv" marker indicates which :ref:`calling
8642 convention <callingconv>` the call should use. If none is
8643 specified, the call defaults to using C calling conventions. The
8644 calling convention of the call must match the calling convention of
8645 the target function, or else the behavior is undefined.
8646#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8647 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8648 are valid here.
8649#. '``ty``': the type of the call instruction itself which is also the
8650 type of the return value. Functions that return no value are marked
8651 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008652#. '``fnty``': shall be the signature of the function being called. The
8653 argument types must match the types implied by this signature. This
8654 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008655#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008656 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008657 indirect ``call``'s are just as possible, calling an arbitrary pointer
8658 to function value.
8659#. '``function args``': argument list whose types match the function
8660 signature argument types and parameter attributes. All arguments must
8661 be of :ref:`first class <t_firstclass>` type. If the function signature
8662 indicates the function accepts a variable number of arguments, the
8663 extra arguments can be specified.
8664#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008665 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8666 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008667#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008668
8669Semantics:
8670""""""""""
8671
8672The '``call``' instruction is used to cause control flow to transfer to
8673a specified function, with its incoming arguments bound to the specified
8674values. Upon a '``ret``' instruction in the called function, control
8675flow continues with the instruction after the function call, and the
8676return value of the function is bound to the result argument.
8677
8678Example:
8679""""""""
8680
8681.. code-block:: llvm
8682
8683 %retval = call i32 @test(i32 %argc)
8684 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8685 %X = tail call i32 @foo() ; yields i32
8686 %Y = tail call fastcc i32 @foo() ; yields i32
8687 call void %foo(i8 97 signext)
8688
8689 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008690 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008691 %gr = extractvalue %struct.A %r, 0 ; yields i32
8692 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8693 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8694 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8695
8696llvm treats calls to some functions with names and arguments that match
8697the standard C99 library as being the C99 library functions, and may
8698perform optimizations or generate code for them under that assumption.
8699This is something we'd like to change in the future to provide better
8700support for freestanding environments and non-C-based languages.
8701
8702.. _i_va_arg:
8703
8704'``va_arg``' Instruction
8705^^^^^^^^^^^^^^^^^^^^^^^^
8706
8707Syntax:
8708"""""""
8709
8710::
8711
8712 <resultval> = va_arg <va_list*> <arglist>, <argty>
8713
8714Overview:
8715"""""""""
8716
8717The '``va_arg``' instruction is used to access arguments passed through
8718the "variable argument" area of a function call. It is used to implement
8719the ``va_arg`` macro in C.
8720
8721Arguments:
8722""""""""""
8723
8724This instruction takes a ``va_list*`` value and the type of the
8725argument. It returns a value of the specified argument type and
8726increments the ``va_list`` to point to the next argument. The actual
8727type of ``va_list`` is target specific.
8728
8729Semantics:
8730""""""""""
8731
8732The '``va_arg``' instruction loads an argument of the specified type
8733from the specified ``va_list`` and causes the ``va_list`` to point to
8734the next argument. For more information, see the variable argument
8735handling :ref:`Intrinsic Functions <int_varargs>`.
8736
8737It is legal for this instruction to be called in a function which does
8738not take a variable number of arguments, for example, the ``vfprintf``
8739function.
8740
8741``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8742function <intrinsics>` because it takes a type as an argument.
8743
8744Example:
8745""""""""
8746
8747See the :ref:`variable argument processing <int_varargs>` section.
8748
8749Note that the code generator does not yet fully support va\_arg on many
8750targets. Also, it does not currently support va\_arg with aggregate
8751types on any target.
8752
8753.. _i_landingpad:
8754
8755'``landingpad``' Instruction
8756^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8757
8758Syntax:
8759"""""""
8760
8761::
8762
David Majnemer7fddecc2015-06-17 20:52:32 +00008763 <resultval> = landingpad <resultty> <clause>+
8764 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008765
8766 <clause> := catch <type> <value>
8767 <clause> := filter <array constant type> <array constant>
8768
8769Overview:
8770"""""""""
8771
8772The '``landingpad``' instruction is used by `LLVM's exception handling
8773system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008774is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008775code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008776defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008777re-entry to the function. The ``resultval`` has the type ``resultty``.
8778
8779Arguments:
8780""""""""""
8781
David Majnemer7fddecc2015-06-17 20:52:32 +00008782The optional
Sean Silvab084af42012-12-07 10:36:55 +00008783``cleanup`` flag indicates that the landing pad block is a cleanup.
8784
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008785A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008786contains the global variable representing the "type" that may be caught
8787or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8788clause takes an array constant as its argument. Use
8789"``[0 x i8**] undef``" for a filter which cannot throw. The
8790'``landingpad``' instruction must contain *at least* one ``clause`` or
8791the ``cleanup`` flag.
8792
8793Semantics:
8794""""""""""
8795
8796The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008797:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008798therefore the "result type" of the ``landingpad`` instruction. As with
8799calling conventions, how the personality function results are
8800represented in LLVM IR is target specific.
8801
8802The clauses are applied in order from top to bottom. If two
8803``landingpad`` instructions are merged together through inlining, the
8804clauses from the calling function are appended to the list of clauses.
8805When the call stack is being unwound due to an exception being thrown,
8806the exception is compared against each ``clause`` in turn. If it doesn't
8807match any of the clauses, and the ``cleanup`` flag is not set, then
8808unwinding continues further up the call stack.
8809
8810The ``landingpad`` instruction has several restrictions:
8811
8812- A landing pad block is a basic block which is the unwind destination
8813 of an '``invoke``' instruction.
8814- A landing pad block must have a '``landingpad``' instruction as its
8815 first non-PHI instruction.
8816- There can be only one '``landingpad``' instruction within the landing
8817 pad block.
8818- A basic block that is not a landing pad block may not include a
8819 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008820
8821Example:
8822""""""""
8823
8824.. code-block:: llvm
8825
8826 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008827 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008828 catch i8** @_ZTIi
8829 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008830 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008831 cleanup
8832 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008833 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008834 catch i8** @_ZTIi
8835 filter [1 x i8**] [@_ZTId]
8836
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008837.. _i_catchpad:
8838
8839'``catchpad``' Instruction
8840^^^^^^^^^^^^^^^^^^^^^^^^^^
8841
8842Syntax:
8843"""""""
8844
8845::
8846
8847 <resultval> = catchpad within <catchswitch> [<args>*]
8848
8849Overview:
8850"""""""""
8851
8852The '``catchpad``' instruction is used by `LLVM's exception handling
8853system <ExceptionHandling.html#overview>`_ to specify that a basic block
8854begins a catch handler --- one where a personality routine attempts to transfer
8855control to catch an exception.
8856
8857Arguments:
8858""""""""""
8859
8860The ``catchswitch`` operand must always be a token produced by a
8861:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8862ensures that each ``catchpad`` has exactly one predecessor block, and it always
8863terminates in a ``catchswitch``.
8864
8865The ``args`` correspond to whatever information the personality routine
8866requires to know if this is an appropriate handler for the exception. Control
8867will transfer to the ``catchpad`` if this is the first appropriate handler for
8868the exception.
8869
8870The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8871``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8872pads.
8873
8874Semantics:
8875""""""""""
8876
8877When the call stack is being unwound due to an exception being thrown, the
8878exception is compared against the ``args``. If it doesn't match, control will
8879not reach the ``catchpad`` instruction. The representation of ``args`` is
8880entirely target and personality function-specific.
8881
8882Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8883instruction must be the first non-phi of its parent basic block.
8884
8885The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8886instructions is described in the
8887`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8888
8889When a ``catchpad`` has been "entered" but not yet "exited" (as
8890described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8891it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8892that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8893
8894Example:
8895""""""""
8896
Renato Golin124f2592016-07-20 12:16:38 +00008897.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008898
8899 dispatch:
8900 %cs = catchswitch within none [label %handler0] unwind to caller
8901 ;; A catch block which can catch an integer.
8902 handler0:
8903 %tok = catchpad within %cs [i8** @_ZTIi]
8904
David Majnemer654e1302015-07-31 17:58:14 +00008905.. _i_cleanuppad:
8906
8907'``cleanuppad``' Instruction
8908^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8909
8910Syntax:
8911"""""""
8912
8913::
8914
David Majnemer8a1c45d2015-12-12 05:38:55 +00008915 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008916
8917Overview:
8918"""""""""
8919
8920The '``cleanuppad``' instruction is used by `LLVM's exception handling
8921system <ExceptionHandling.html#overview>`_ to specify that a basic block
8922is a cleanup block --- one where a personality routine attempts to
8923transfer control to run cleanup actions.
8924The ``args`` correspond to whatever additional
8925information the :ref:`personality function <personalityfn>` requires to
8926execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008927The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008928match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8929The ``parent`` argument is the token of the funclet that contains the
8930``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8931this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008932
8933Arguments:
8934""""""""""
8935
8936The instruction takes a list of arbitrary values which are interpreted
8937by the :ref:`personality function <personalityfn>`.
8938
8939Semantics:
8940""""""""""
8941
David Majnemer654e1302015-07-31 17:58:14 +00008942When the call stack is being unwound due to an exception being thrown,
8943the :ref:`personality function <personalityfn>` transfers control to the
8944``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008945As with calling conventions, how the personality function results are
8946represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008947
8948The ``cleanuppad`` instruction has several restrictions:
8949
8950- A cleanup block is a basic block which is the unwind destination of
8951 an exceptional instruction.
8952- A cleanup block must have a '``cleanuppad``' instruction as its
8953 first non-PHI instruction.
8954- There can be only one '``cleanuppad``' instruction within the
8955 cleanup block.
8956- A basic block that is not a cleanup block may not include a
8957 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008958
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008959When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8960described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8961it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8962that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008963
David Majnemer654e1302015-07-31 17:58:14 +00008964Example:
8965""""""""
8966
Renato Golin124f2592016-07-20 12:16:38 +00008967.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00008968
David Majnemer8a1c45d2015-12-12 05:38:55 +00008969 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008970
Sean Silvab084af42012-12-07 10:36:55 +00008971.. _intrinsics:
8972
8973Intrinsic Functions
8974===================
8975
8976LLVM supports the notion of an "intrinsic function". These functions
8977have well known names and semantics and are required to follow certain
8978restrictions. Overall, these intrinsics represent an extension mechanism
8979for the LLVM language that does not require changing all of the
8980transformations in LLVM when adding to the language (or the bitcode
8981reader/writer, the parser, etc...).
8982
8983Intrinsic function names must all start with an "``llvm.``" prefix. This
8984prefix is reserved in LLVM for intrinsic names; thus, function names may
8985not begin with this prefix. Intrinsic functions must always be external
8986functions: you cannot define the body of intrinsic functions. Intrinsic
8987functions may only be used in call or invoke instructions: it is illegal
8988to take the address of an intrinsic function. Additionally, because
8989intrinsic functions are part of the LLVM language, it is required if any
8990are added that they be documented here.
8991
8992Some intrinsic functions can be overloaded, i.e., the intrinsic
8993represents a family of functions that perform the same operation but on
8994different data types. Because LLVM can represent over 8 million
8995different integer types, overloading is used commonly to allow an
8996intrinsic function to operate on any integer type. One or more of the
8997argument types or the result type can be overloaded to accept any
8998integer type. Argument types may also be defined as exactly matching a
8999previous argument's type or the result type. This allows an intrinsic
9000function which accepts multiple arguments, but needs all of them to be
9001of the same type, to only be overloaded with respect to a single
9002argument or the result.
9003
9004Overloaded intrinsics will have the names of its overloaded argument
9005types encoded into its function name, each preceded by a period. Only
9006those types which are overloaded result in a name suffix. Arguments
9007whose type is matched against another type do not. For example, the
9008``llvm.ctpop`` function can take an integer of any width and returns an
9009integer of exactly the same integer width. This leads to a family of
9010functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9011``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9012overloaded, and only one type suffix is required. Because the argument's
9013type is matched against the return type, it does not require its own
9014name suffix.
9015
9016To learn how to add an intrinsic function, please see the `Extending
9017LLVM Guide <ExtendingLLVM.html>`_.
9018
9019.. _int_varargs:
9020
9021Variable Argument Handling Intrinsics
9022-------------------------------------
9023
9024Variable argument support is defined in LLVM with the
9025:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9026functions. These functions are related to the similarly named macros
9027defined in the ``<stdarg.h>`` header file.
9028
9029All of these functions operate on arguments that use a target-specific
9030value type "``va_list``". The LLVM assembly language reference manual
9031does not define what this type is, so all transformations should be
9032prepared to handle these functions regardless of the type used.
9033
9034This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9035variable argument handling intrinsic functions are used.
9036
9037.. code-block:: llvm
9038
Tim Northoverab60bb92014-11-02 01:21:51 +00009039 ; This struct is different for every platform. For most platforms,
9040 ; it is merely an i8*.
9041 %struct.va_list = type { i8* }
9042
9043 ; For Unix x86_64 platforms, va_list is the following struct:
9044 ; %struct.va_list = type { i32, i32, i8*, i8* }
9045
Sean Silvab084af42012-12-07 10:36:55 +00009046 define i32 @test(i32 %X, ...) {
9047 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009048 %ap = alloca %struct.va_list
9049 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009050 call void @llvm.va_start(i8* %ap2)
9051
9052 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009053 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009054
9055 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9056 %aq = alloca i8*
9057 %aq2 = bitcast i8** %aq to i8*
9058 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9059 call void @llvm.va_end(i8* %aq2)
9060
9061 ; Stop processing of arguments.
9062 call void @llvm.va_end(i8* %ap2)
9063 ret i32 %tmp
9064 }
9065
9066 declare void @llvm.va_start(i8*)
9067 declare void @llvm.va_copy(i8*, i8*)
9068 declare void @llvm.va_end(i8*)
9069
9070.. _int_va_start:
9071
9072'``llvm.va_start``' Intrinsic
9073^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9074
9075Syntax:
9076"""""""
9077
9078::
9079
Nick Lewycky04f6de02013-09-11 22:04:52 +00009080 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009081
9082Overview:
9083"""""""""
9084
9085The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9086subsequent use by ``va_arg``.
9087
9088Arguments:
9089""""""""""
9090
9091The argument is a pointer to a ``va_list`` element to initialize.
9092
9093Semantics:
9094""""""""""
9095
9096The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9097available in C. In a target-dependent way, it initializes the
9098``va_list`` element to which the argument points, so that the next call
9099to ``va_arg`` will produce the first variable argument passed to the
9100function. Unlike the C ``va_start`` macro, this intrinsic does not need
9101to know the last argument of the function as the compiler can figure
9102that out.
9103
9104'``llvm.va_end``' Intrinsic
9105^^^^^^^^^^^^^^^^^^^^^^^^^^^
9106
9107Syntax:
9108"""""""
9109
9110::
9111
9112 declare void @llvm.va_end(i8* <arglist>)
9113
9114Overview:
9115"""""""""
9116
9117The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9118initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9119
9120Arguments:
9121""""""""""
9122
9123The argument is a pointer to a ``va_list`` to destroy.
9124
9125Semantics:
9126""""""""""
9127
9128The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9129available in C. In a target-dependent way, it destroys the ``va_list``
9130element to which the argument points. Calls to
9131:ref:`llvm.va_start <int_va_start>` and
9132:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9133``llvm.va_end``.
9134
9135.. _int_va_copy:
9136
9137'``llvm.va_copy``' Intrinsic
9138^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9139
9140Syntax:
9141"""""""
9142
9143::
9144
9145 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9146
9147Overview:
9148"""""""""
9149
9150The '``llvm.va_copy``' intrinsic copies the current argument position
9151from the source argument list to the destination argument list.
9152
9153Arguments:
9154""""""""""
9155
9156The first argument is a pointer to a ``va_list`` element to initialize.
9157The second argument is a pointer to a ``va_list`` element to copy from.
9158
9159Semantics:
9160""""""""""
9161
9162The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9163available in C. In a target-dependent way, it copies the source
9164``va_list`` element into the destination ``va_list`` element. This
9165intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9166arbitrarily complex and require, for example, memory allocation.
9167
9168Accurate Garbage Collection Intrinsics
9169--------------------------------------
9170
Philip Reamesc5b0f562015-02-25 23:52:06 +00009171LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009172(GC) requires the frontend to generate code containing appropriate intrinsic
9173calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009174intrinsics in a manner which is appropriate for the target collector.
9175
Sean Silvab084af42012-12-07 10:36:55 +00009176These intrinsics allow identification of :ref:`GC roots on the
9177stack <int_gcroot>`, as well as garbage collector implementations that
9178require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009179Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009180these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009181details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009182
Philip Reamesf80bbff2015-02-25 23:45:20 +00009183Experimental Statepoint Intrinsics
9184^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9185
9186LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009187collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009188to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009189:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009190differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009191<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009192described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009193
9194.. _int_gcroot:
9195
9196'``llvm.gcroot``' Intrinsic
9197^^^^^^^^^^^^^^^^^^^^^^^^^^^
9198
9199Syntax:
9200"""""""
9201
9202::
9203
9204 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9205
9206Overview:
9207"""""""""
9208
9209The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9210the code generator, and allows some metadata to be associated with it.
9211
9212Arguments:
9213""""""""""
9214
9215The first argument specifies the address of a stack object that contains
9216the root pointer. The second pointer (which must be either a constant or
9217a global value address) contains the meta-data to be associated with the
9218root.
9219
9220Semantics:
9221""""""""""
9222
9223At runtime, a call to this intrinsic stores a null pointer into the
9224"ptrloc" location. At compile-time, the code generator generates
9225information to allow the runtime to find the pointer at GC safe points.
9226The '``llvm.gcroot``' intrinsic may only be used in a function which
9227:ref:`specifies a GC algorithm <gc>`.
9228
9229.. _int_gcread:
9230
9231'``llvm.gcread``' Intrinsic
9232^^^^^^^^^^^^^^^^^^^^^^^^^^^
9233
9234Syntax:
9235"""""""
9236
9237::
9238
9239 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9240
9241Overview:
9242"""""""""
9243
9244The '``llvm.gcread``' intrinsic identifies reads of references from heap
9245locations, allowing garbage collector implementations that require read
9246barriers.
9247
9248Arguments:
9249""""""""""
9250
9251The second argument is the address to read from, which should be an
9252address allocated from the garbage collector. The first object is a
9253pointer to the start of the referenced object, if needed by the language
9254runtime (otherwise null).
9255
9256Semantics:
9257""""""""""
9258
9259The '``llvm.gcread``' intrinsic has the same semantics as a load
9260instruction, but may be replaced with substantially more complex code by
9261the garbage collector runtime, as needed. The '``llvm.gcread``'
9262intrinsic may only be used in a function which :ref:`specifies a GC
9263algorithm <gc>`.
9264
9265.. _int_gcwrite:
9266
9267'``llvm.gcwrite``' Intrinsic
9268^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9269
9270Syntax:
9271"""""""
9272
9273::
9274
9275 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9276
9277Overview:
9278"""""""""
9279
9280The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9281locations, allowing garbage collector implementations that require write
9282barriers (such as generational or reference counting collectors).
9283
9284Arguments:
9285""""""""""
9286
9287The first argument is the reference to store, the second is the start of
9288the object to store it to, and the third is the address of the field of
9289Obj to store to. If the runtime does not require a pointer to the
9290object, Obj may be null.
9291
9292Semantics:
9293""""""""""
9294
9295The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9296instruction, but may be replaced with substantially more complex code by
9297the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9298intrinsic may only be used in a function which :ref:`specifies a GC
9299algorithm <gc>`.
9300
9301Code Generator Intrinsics
9302-------------------------
9303
9304These intrinsics are provided by LLVM to expose special features that
9305may only be implemented with code generator support.
9306
9307'``llvm.returnaddress``' Intrinsic
9308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9309
9310Syntax:
9311"""""""
9312
9313::
9314
9315 declare i8 *@llvm.returnaddress(i32 <level>)
9316
9317Overview:
9318"""""""""
9319
9320The '``llvm.returnaddress``' intrinsic attempts to compute a
9321target-specific value indicating the return address of the current
9322function or one of its callers.
9323
9324Arguments:
9325""""""""""
9326
9327The argument to this intrinsic indicates which function to return the
9328address for. Zero indicates the calling function, one indicates its
9329caller, etc. The argument is **required** to be a constant integer
9330value.
9331
9332Semantics:
9333""""""""""
9334
9335The '``llvm.returnaddress``' intrinsic either returns a pointer
9336indicating the return address of the specified call frame, or zero if it
9337cannot be identified. The value returned by this intrinsic is likely to
9338be incorrect or 0 for arguments other than zero, so it should only be
9339used for debugging purposes.
9340
9341Note that calling this intrinsic does not prevent function inlining or
9342other aggressive transformations, so the value returned may not be that
9343of the obvious source-language caller.
9344
Albert Gutowski795d7d62016-10-12 22:13:19 +00009345'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009346^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009347
9348Syntax:
9349"""""""
9350
9351::
9352
9353 declare i8 *@llvm.addressofreturnaddress()
9354
9355Overview:
9356"""""""""
9357
9358The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9359pointer to the place in the stack frame where the return address of the
9360current function is stored.
9361
9362Semantics:
9363""""""""""
9364
9365Note that calling this intrinsic does not prevent function inlining or
9366other aggressive transformations, so the value returned may not be that
9367of the obvious source-language caller.
9368
9369This intrinsic is only implemented for x86.
9370
Sean Silvab084af42012-12-07 10:36:55 +00009371'``llvm.frameaddress``' Intrinsic
9372^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9373
9374Syntax:
9375"""""""
9376
9377::
9378
9379 declare i8* @llvm.frameaddress(i32 <level>)
9380
9381Overview:
9382"""""""""
9383
9384The '``llvm.frameaddress``' intrinsic attempts to return the
9385target-specific frame pointer value for the specified stack frame.
9386
9387Arguments:
9388""""""""""
9389
9390The argument to this intrinsic indicates which function to return the
9391frame pointer for. Zero indicates the calling function, one indicates
9392its caller, etc. The argument is **required** to be a constant integer
9393value.
9394
9395Semantics:
9396""""""""""
9397
9398The '``llvm.frameaddress``' intrinsic either returns a pointer
9399indicating the frame address of the specified call frame, or zero if it
9400cannot be identified. The value returned by this intrinsic is likely to
9401be incorrect or 0 for arguments other than zero, so it should only be
9402used for debugging purposes.
9403
9404Note that calling this intrinsic does not prevent function inlining or
9405other aggressive transformations, so the value returned may not be that
9406of the obvious source-language caller.
9407
Reid Kleckner60381792015-07-07 22:25:32 +00009408'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009409^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9410
9411Syntax:
9412"""""""
9413
9414::
9415
Reid Kleckner60381792015-07-07 22:25:32 +00009416 declare void @llvm.localescape(...)
9417 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009418
9419Overview:
9420"""""""""
9421
Reid Kleckner60381792015-07-07 22:25:32 +00009422The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9423allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009424live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009425computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009426
9427Arguments:
9428""""""""""
9429
Reid Kleckner60381792015-07-07 22:25:32 +00009430All arguments to '``llvm.localescape``' must be pointers to static allocas or
9431casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009432once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009433
Reid Kleckner60381792015-07-07 22:25:32 +00009434The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009435bitcasted pointer to a function defined in the current module. The code
9436generator cannot determine the frame allocation offset of functions defined in
9437other modules.
9438
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009439The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9440call frame that is currently live. The return value of '``llvm.localaddress``'
9441is one way to produce such a value, but various runtimes also expose a suitable
9442pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009443
Reid Kleckner60381792015-07-07 22:25:32 +00009444The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9445'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009446
Reid Klecknere9b89312015-01-13 00:48:10 +00009447Semantics:
9448""""""""""
9449
Reid Kleckner60381792015-07-07 22:25:32 +00009450These intrinsics allow a group of functions to share access to a set of local
9451stack allocations of a one parent function. The parent function may call the
9452'``llvm.localescape``' intrinsic once from the function entry block, and the
9453child functions can use '``llvm.localrecover``' to access the escaped allocas.
9454The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9455the escaped allocas are allocated, which would break attempts to use
9456'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009457
Renato Golinc7aea402014-05-06 16:51:25 +00009458.. _int_read_register:
9459.. _int_write_register:
9460
9461'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9463
9464Syntax:
9465"""""""
9466
9467::
9468
9469 declare i32 @llvm.read_register.i32(metadata)
9470 declare i64 @llvm.read_register.i64(metadata)
9471 declare void @llvm.write_register.i32(metadata, i32 @value)
9472 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009473 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009474
9475Overview:
9476"""""""""
9477
9478The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9479provides access to the named register. The register must be valid on
9480the architecture being compiled to. The type needs to be compatible
9481with the register being read.
9482
9483Semantics:
9484""""""""""
9485
9486The '``llvm.read_register``' intrinsic returns the current value of the
9487register, where possible. The '``llvm.write_register``' intrinsic sets
9488the current value of the register, where possible.
9489
9490This is useful to implement named register global variables that need
9491to always be mapped to a specific register, as is common practice on
9492bare-metal programs including OS kernels.
9493
9494The compiler doesn't check for register availability or use of the used
9495register in surrounding code, including inline assembly. Because of that,
9496allocatable registers are not supported.
9497
9498Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009499architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009500work is needed to support other registers and even more so, allocatable
9501registers.
9502
Sean Silvab084af42012-12-07 10:36:55 +00009503.. _int_stacksave:
9504
9505'``llvm.stacksave``' Intrinsic
9506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9507
9508Syntax:
9509"""""""
9510
9511::
9512
9513 declare i8* @llvm.stacksave()
9514
9515Overview:
9516"""""""""
9517
9518The '``llvm.stacksave``' intrinsic is used to remember the current state
9519of the function stack, for use with
9520:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9521implementing language features like scoped automatic variable sized
9522arrays in C99.
9523
9524Semantics:
9525""""""""""
9526
9527This intrinsic returns a opaque pointer value that can be passed to
9528:ref:`llvm.stackrestore <int_stackrestore>`. When an
9529``llvm.stackrestore`` intrinsic is executed with a value saved from
9530``llvm.stacksave``, it effectively restores the state of the stack to
9531the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9532practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9533were allocated after the ``llvm.stacksave`` was executed.
9534
9535.. _int_stackrestore:
9536
9537'``llvm.stackrestore``' Intrinsic
9538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9539
9540Syntax:
9541"""""""
9542
9543::
9544
9545 declare void @llvm.stackrestore(i8* %ptr)
9546
9547Overview:
9548"""""""""
9549
9550The '``llvm.stackrestore``' intrinsic is used to restore the state of
9551the function stack to the state it was in when the corresponding
9552:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9553useful for implementing language features like scoped automatic variable
9554sized arrays in C99.
9555
9556Semantics:
9557""""""""""
9558
9559See the description for :ref:`llvm.stacksave <int_stacksave>`.
9560
Yury Gribovd7dbb662015-12-01 11:40:55 +00009561.. _int_get_dynamic_area_offset:
9562
9563'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009565
9566Syntax:
9567"""""""
9568
9569::
9570
9571 declare i32 @llvm.get.dynamic.area.offset.i32()
9572 declare i64 @llvm.get.dynamic.area.offset.i64()
9573
Lang Hames10239932016-10-08 00:20:42 +00009574Overview:
9575"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009576
9577 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9578 get the offset from native stack pointer to the address of the most
9579 recent dynamic alloca on the caller's stack. These intrinsics are
9580 intendend for use in combination with
9581 :ref:`llvm.stacksave <int_stacksave>` to get a
9582 pointer to the most recent dynamic alloca. This is useful, for example,
9583 for AddressSanitizer's stack unpoisoning routines.
9584
9585Semantics:
9586""""""""""
9587
9588 These intrinsics return a non-negative integer value that can be used to
9589 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9590 on the caller's stack. In particular, for targets where stack grows downwards,
9591 adding this offset to the native stack pointer would get the address of the most
9592 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009593 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009594 one past the end of the most recent dynamic alloca.
9595
9596 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9597 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9598 compile-time-known constant value.
9599
9600 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9601 must match the target's generic address space's (address space 0) pointer type.
9602
Sean Silvab084af42012-12-07 10:36:55 +00009603'``llvm.prefetch``' Intrinsic
9604^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9605
9606Syntax:
9607"""""""
9608
9609::
9610
9611 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9612
9613Overview:
9614"""""""""
9615
9616The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9617insert a prefetch instruction if supported; otherwise, it is a noop.
9618Prefetches have no effect on the behavior of the program but can change
9619its performance characteristics.
9620
9621Arguments:
9622""""""""""
9623
9624``address`` is the address to be prefetched, ``rw`` is the specifier
9625determining if the fetch should be for a read (0) or write (1), and
9626``locality`` is a temporal locality specifier ranging from (0) - no
9627locality, to (3) - extremely local keep in cache. The ``cache type``
9628specifies whether the prefetch is performed on the data (1) or
9629instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9630arguments must be constant integers.
9631
9632Semantics:
9633""""""""""
9634
9635This intrinsic does not modify the behavior of the program. In
9636particular, prefetches cannot trap and do not produce a value. On
9637targets that support this intrinsic, the prefetch can provide hints to
9638the processor cache for better performance.
9639
9640'``llvm.pcmarker``' Intrinsic
9641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9642
9643Syntax:
9644"""""""
9645
9646::
9647
9648 declare void @llvm.pcmarker(i32 <id>)
9649
9650Overview:
9651"""""""""
9652
9653The '``llvm.pcmarker``' intrinsic is a method to export a Program
9654Counter (PC) in a region of code to simulators and other tools. The
9655method is target specific, but it is expected that the marker will use
9656exported symbols to transmit the PC of the marker. The marker makes no
9657guarantees that it will remain with any specific instruction after
9658optimizations. It is possible that the presence of a marker will inhibit
9659optimizations. The intended use is to be inserted after optimizations to
9660allow correlations of simulation runs.
9661
9662Arguments:
9663""""""""""
9664
9665``id`` is a numerical id identifying the marker.
9666
9667Semantics:
9668""""""""""
9669
9670This intrinsic does not modify the behavior of the program. Backends
9671that do not support this intrinsic may ignore it.
9672
9673'``llvm.readcyclecounter``' Intrinsic
9674^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9675
9676Syntax:
9677"""""""
9678
9679::
9680
9681 declare i64 @llvm.readcyclecounter()
9682
9683Overview:
9684"""""""""
9685
9686The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9687counter register (or similar low latency, high accuracy clocks) on those
9688targets that support it. On X86, it should map to RDTSC. On Alpha, it
9689should map to RPCC. As the backing counters overflow quickly (on the
9690order of 9 seconds on alpha), this should only be used for small
9691timings.
9692
9693Semantics:
9694""""""""""
9695
9696When directly supported, reading the cycle counter should not modify any
9697memory. Implementations are allowed to either return a application
9698specific value or a system wide value. On backends without support, this
9699is lowered to a constant 0.
9700
Tim Northoverbc933082013-05-23 19:11:20 +00009701Note that runtime support may be conditional on the privilege-level code is
9702running at and the host platform.
9703
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009704'``llvm.clear_cache``' Intrinsic
9705^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9706
9707Syntax:
9708"""""""
9709
9710::
9711
9712 declare void @llvm.clear_cache(i8*, i8*)
9713
9714Overview:
9715"""""""""
9716
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009717The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9718in the specified range to the execution unit of the processor. On
9719targets with non-unified instruction and data cache, the implementation
9720flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009721
9722Semantics:
9723""""""""""
9724
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009725On platforms with coherent instruction and data caches (e.g. x86), this
9726intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009727cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009728instructions or a system call, if cache flushing requires special
9729privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009730
Sean Silvad02bf3e2014-04-07 22:29:53 +00009731The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009732time library.
Renato Golin93010e62014-03-26 14:01:32 +00009733
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009734This instrinsic does *not* empty the instruction pipeline. Modifications
9735of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009736
Justin Bogner61ba2e32014-12-08 18:02:35 +00009737'``llvm.instrprof_increment``' Intrinsic
9738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9739
9740Syntax:
9741"""""""
9742
9743::
9744
9745 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9746 i32 <num-counters>, i32 <index>)
9747
9748Overview:
9749"""""""""
9750
9751The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9752frontend for use with instrumentation based profiling. These will be
9753lowered by the ``-instrprof`` pass to generate execution counts of a
9754program at runtime.
9755
9756Arguments:
9757""""""""""
9758
9759The first argument is a pointer to a global variable containing the
9760name of the entity being instrumented. This should generally be the
9761(mangled) function name for a set of counters.
9762
9763The second argument is a hash value that can be used by the consumer
9764of the profile data to detect changes to the instrumented source, and
9765the third is the number of counters associated with ``name``. It is an
9766error if ``hash`` or ``num-counters`` differ between two instances of
9767``instrprof_increment`` that refer to the same name.
9768
9769The last argument refers to which of the counters for ``name`` should
9770be incremented. It should be a value between 0 and ``num-counters``.
9771
9772Semantics:
9773""""""""""
9774
9775This intrinsic represents an increment of a profiling counter. It will
9776cause the ``-instrprof`` pass to generate the appropriate data
9777structures and the code to increment the appropriate value, in a
9778format that can be written out by a compiler runtime and consumed via
9779the ``llvm-profdata`` tool.
9780
Xinliang David Li4ca17332016-09-18 18:34:07 +00009781'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +00009782^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +00009783
9784Syntax:
9785"""""""
9786
9787::
9788
9789 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
9790 i32 <num-counters>,
9791 i32 <index>, i64 <step>)
9792
9793Overview:
9794"""""""""
9795
9796The '``llvm.instrprof_increment_step``' intrinsic is an extension to
9797the '``llvm.instrprof_increment``' intrinsic with an additional fifth
9798argument to specify the step of the increment.
9799
9800Arguments:
9801""""""""""
9802The first four arguments are the same as '``llvm.instrprof_increment``'
9803instrinsic.
9804
9805The last argument specifies the value of the increment of the counter variable.
9806
9807Semantics:
9808""""""""""
9809See description of '``llvm.instrprof_increment``' instrinsic.
9810
9811
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009812'``llvm.instrprof_value_profile``' Intrinsic
9813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9814
9815Syntax:
9816"""""""
9817
9818::
9819
9820 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9821 i64 <value>, i32 <value_kind>,
9822 i32 <index>)
9823
9824Overview:
9825"""""""""
9826
9827The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9828frontend for use with instrumentation based profiling. This will be
9829lowered by the ``-instrprof`` pass to find out the target values,
9830instrumented expressions take in a program at runtime.
9831
9832Arguments:
9833""""""""""
9834
9835The first argument is a pointer to a global variable containing the
9836name of the entity being instrumented. ``name`` should generally be the
9837(mangled) function name for a set of counters.
9838
9839The second argument is a hash value that can be used by the consumer
9840of the profile data to detect changes to the instrumented source. It
9841is an error if ``hash`` differs between two instances of
9842``llvm.instrprof_*`` that refer to the same name.
9843
9844The third argument is the value of the expression being profiled. The profiled
9845expression's value should be representable as an unsigned 64-bit value. The
9846fourth argument represents the kind of value profiling that is being done. The
9847supported value profiling kinds are enumerated through the
9848``InstrProfValueKind`` type declared in the
9849``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9850index of the instrumented expression within ``name``. It should be >= 0.
9851
9852Semantics:
9853""""""""""
9854
9855This intrinsic represents the point where a call to a runtime routine
9856should be inserted for value profiling of target expressions. ``-instrprof``
9857pass will generate the appropriate data structures and replace the
9858``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9859runtime library with proper arguments.
9860
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009861'``llvm.thread.pointer``' Intrinsic
9862^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9863
9864Syntax:
9865"""""""
9866
9867::
9868
9869 declare i8* @llvm.thread.pointer()
9870
9871Overview:
9872"""""""""
9873
9874The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9875pointer.
9876
9877Semantics:
9878""""""""""
9879
9880The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9881for the current thread. The exact semantics of this value are target
9882specific: it may point to the start of TLS area, to the end, or somewhere
9883in the middle. Depending on the target, this intrinsic may read a register,
9884call a helper function, read from an alternate memory space, or perform
9885other operations necessary to locate the TLS area. Not all targets support
9886this intrinsic.
9887
Sean Silvab084af42012-12-07 10:36:55 +00009888Standard C Library Intrinsics
9889-----------------------------
9890
9891LLVM provides intrinsics for a few important standard C library
9892functions. These intrinsics allow source-language front-ends to pass
9893information about the alignment of the pointer arguments to the code
9894generator, providing opportunity for more efficient code generation.
9895
9896.. _int_memcpy:
9897
9898'``llvm.memcpy``' Intrinsic
9899^^^^^^^^^^^^^^^^^^^^^^^^^^^
9900
9901Syntax:
9902"""""""
9903
9904This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9905integer bit width and for different address spaces. Not all targets
9906support all bit widths however.
9907
9908::
9909
9910 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9911 i32 <len>, i32 <align>, i1 <isvolatile>)
9912 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9913 i64 <len>, i32 <align>, i1 <isvolatile>)
9914
9915Overview:
9916"""""""""
9917
9918The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9919source location to the destination location.
9920
9921Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9922intrinsics do not return a value, takes extra alignment/isvolatile
9923arguments and the pointers can be in specified address spaces.
9924
9925Arguments:
9926""""""""""
9927
9928The first argument is a pointer to the destination, the second is a
9929pointer to the source. The third argument is an integer argument
9930specifying the number of bytes to copy, the fourth argument is the
9931alignment of the source and destination locations, and the fifth is a
9932boolean indicating a volatile access.
9933
9934If the call to this intrinsic has an alignment value that is not 0 or 1,
9935then the caller guarantees that both the source and destination pointers
9936are aligned to that boundary.
9937
9938If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9939a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9940very cleanly specified and it is unwise to depend on it.
9941
9942Semantics:
9943""""""""""
9944
9945The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9946source location to the destination location, which are not allowed to
9947overlap. It copies "len" bytes of memory over. If the argument is known
9948to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009949argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009950
9951'``llvm.memmove``' Intrinsic
9952^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9953
9954Syntax:
9955"""""""
9956
9957This is an overloaded intrinsic. You can use llvm.memmove on any integer
9958bit width and for different address space. Not all targets support all
9959bit widths however.
9960
9961::
9962
9963 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9964 i32 <len>, i32 <align>, i1 <isvolatile>)
9965 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9966 i64 <len>, i32 <align>, i1 <isvolatile>)
9967
9968Overview:
9969"""""""""
9970
9971The '``llvm.memmove.*``' intrinsics move a block of memory from the
9972source location to the destination location. It is similar to the
9973'``llvm.memcpy``' intrinsic but allows the two memory locations to
9974overlap.
9975
9976Note that, unlike the standard libc function, the ``llvm.memmove.*``
9977intrinsics do not return a value, takes extra alignment/isvolatile
9978arguments and the pointers can be in specified address spaces.
9979
9980Arguments:
9981""""""""""
9982
9983The first argument is a pointer to the destination, the second is a
9984pointer to the source. The third argument is an integer argument
9985specifying the number of bytes to copy, the fourth argument is the
9986alignment of the source and destination locations, and the fifth is a
9987boolean indicating a volatile access.
9988
9989If the call to this intrinsic has an alignment value that is not 0 or 1,
9990then the caller guarantees that the source and destination pointers are
9991aligned to that boundary.
9992
9993If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9994is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9995not very cleanly specified and it is unwise to depend on it.
9996
9997Semantics:
9998""""""""""
9999
10000The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10001source location to the destination location, which may overlap. It
10002copies "len" bytes of memory over. If the argument is known to be
10003aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010004otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010005
10006'``llvm.memset.*``' Intrinsics
10007^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10008
10009Syntax:
10010"""""""
10011
10012This is an overloaded intrinsic. You can use llvm.memset on any integer
10013bit width and for different address spaces. However, not all targets
10014support all bit widths.
10015
10016::
10017
10018 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10019 i32 <len>, i32 <align>, i1 <isvolatile>)
10020 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10021 i64 <len>, i32 <align>, i1 <isvolatile>)
10022
10023Overview:
10024"""""""""
10025
10026The '``llvm.memset.*``' intrinsics fill a block of memory with a
10027particular byte value.
10028
10029Note that, unlike the standard libc function, the ``llvm.memset``
10030intrinsic does not return a value and takes extra alignment/volatile
10031arguments. Also, the destination can be in an arbitrary address space.
10032
10033Arguments:
10034""""""""""
10035
10036The first argument is a pointer to the destination to fill, the second
10037is the byte value with which to fill it, the third argument is an
10038integer argument specifying the number of bytes to fill, and the fourth
10039argument is the known alignment of the destination location.
10040
10041If the call to this intrinsic has an alignment value that is not 0 or 1,
10042then the caller guarantees that the destination pointer is aligned to
10043that boundary.
10044
10045If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10046a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10047very cleanly specified and it is unwise to depend on it.
10048
10049Semantics:
10050""""""""""
10051
10052The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10053at the destination location. If the argument is known to be aligned to
10054some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010055it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010056
10057'``llvm.sqrt.*``' Intrinsic
10058^^^^^^^^^^^^^^^^^^^^^^^^^^^
10059
10060Syntax:
10061"""""""
10062
10063This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10064floating point or vector of floating point type. Not all targets support
10065all types however.
10066
10067::
10068
10069 declare float @llvm.sqrt.f32(float %Val)
10070 declare double @llvm.sqrt.f64(double %Val)
10071 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10072 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10073 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10074
10075Overview:
10076"""""""""
10077
10078The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
Justin Lebarcb9b41d2017-01-27 00:58:03 +000010079returning the same value as the libm '``sqrt``' functions would, but without
10080trapping or setting ``errno``.
Sean Silvab084af42012-12-07 10:36:55 +000010081
10082Arguments:
10083""""""""""
10084
10085The argument and return value are floating point numbers of the same
10086type.
10087
10088Semantics:
10089""""""""""
10090
10091This function returns the sqrt of the specified operand if it is a
10092nonnegative floating point number.
10093
10094'``llvm.powi.*``' Intrinsic
10095^^^^^^^^^^^^^^^^^^^^^^^^^^^
10096
10097Syntax:
10098"""""""
10099
10100This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10101floating point or vector of floating point type. Not all targets support
10102all types however.
10103
10104::
10105
10106 declare float @llvm.powi.f32(float %Val, i32 %power)
10107 declare double @llvm.powi.f64(double %Val, i32 %power)
10108 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10109 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10110 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10111
10112Overview:
10113"""""""""
10114
10115The '``llvm.powi.*``' intrinsics return the first operand raised to the
10116specified (positive or negative) power. The order of evaluation of
10117multiplications is not defined. When a vector of floating point type is
10118used, the second argument remains a scalar integer value.
10119
10120Arguments:
10121""""""""""
10122
10123The second argument is an integer power, and the first is a value to
10124raise to that power.
10125
10126Semantics:
10127""""""""""
10128
10129This function returns the first value raised to the second power with an
10130unspecified sequence of rounding operations.
10131
10132'``llvm.sin.*``' Intrinsic
10133^^^^^^^^^^^^^^^^^^^^^^^^^^
10134
10135Syntax:
10136"""""""
10137
10138This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10139floating point or vector of floating point type. Not all targets support
10140all types however.
10141
10142::
10143
10144 declare float @llvm.sin.f32(float %Val)
10145 declare double @llvm.sin.f64(double %Val)
10146 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10147 declare fp128 @llvm.sin.f128(fp128 %Val)
10148 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10149
10150Overview:
10151"""""""""
10152
10153The '``llvm.sin.*``' intrinsics return the sine of the operand.
10154
10155Arguments:
10156""""""""""
10157
10158The argument and return value are floating point numbers of the same
10159type.
10160
10161Semantics:
10162""""""""""
10163
10164This function returns the sine of the specified operand, returning the
10165same values as the libm ``sin`` functions would, and handles error
10166conditions in the same way.
10167
10168'``llvm.cos.*``' Intrinsic
10169^^^^^^^^^^^^^^^^^^^^^^^^^^
10170
10171Syntax:
10172"""""""
10173
10174This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10175floating point or vector of floating point type. Not all targets support
10176all types however.
10177
10178::
10179
10180 declare float @llvm.cos.f32(float %Val)
10181 declare double @llvm.cos.f64(double %Val)
10182 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10183 declare fp128 @llvm.cos.f128(fp128 %Val)
10184 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10185
10186Overview:
10187"""""""""
10188
10189The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10190
10191Arguments:
10192""""""""""
10193
10194The argument and return value are floating point numbers of the same
10195type.
10196
10197Semantics:
10198""""""""""
10199
10200This function returns the cosine of the specified operand, returning the
10201same values as the libm ``cos`` functions would, and handles error
10202conditions in the same way.
10203
10204'``llvm.pow.*``' Intrinsic
10205^^^^^^^^^^^^^^^^^^^^^^^^^^
10206
10207Syntax:
10208"""""""
10209
10210This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10211floating point or vector of floating point type. Not all targets support
10212all types however.
10213
10214::
10215
10216 declare float @llvm.pow.f32(float %Val, float %Power)
10217 declare double @llvm.pow.f64(double %Val, double %Power)
10218 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10219 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10220 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10221
10222Overview:
10223"""""""""
10224
10225The '``llvm.pow.*``' intrinsics return the first operand raised to the
10226specified (positive or negative) power.
10227
10228Arguments:
10229""""""""""
10230
10231The second argument is a floating point power, and the first is a value
10232to raise to that power.
10233
10234Semantics:
10235""""""""""
10236
10237This function returns the first value raised to the second power,
10238returning the same values as the libm ``pow`` functions would, and
10239handles error conditions in the same way.
10240
10241'``llvm.exp.*``' Intrinsic
10242^^^^^^^^^^^^^^^^^^^^^^^^^^
10243
10244Syntax:
10245"""""""
10246
10247This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10248floating point or vector of floating point type. Not all targets support
10249all types however.
10250
10251::
10252
10253 declare float @llvm.exp.f32(float %Val)
10254 declare double @llvm.exp.f64(double %Val)
10255 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10256 declare fp128 @llvm.exp.f128(fp128 %Val)
10257 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10258
10259Overview:
10260"""""""""
10261
10262The '``llvm.exp.*``' intrinsics perform the exp function.
10263
10264Arguments:
10265""""""""""
10266
10267The argument and return value are floating point numbers of the same
10268type.
10269
10270Semantics:
10271""""""""""
10272
10273This function returns the same values as the libm ``exp`` functions
10274would, and handles error conditions in the same way.
10275
10276'``llvm.exp2.*``' Intrinsic
10277^^^^^^^^^^^^^^^^^^^^^^^^^^^
10278
10279Syntax:
10280"""""""
10281
10282This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10283floating point or vector of floating point type. Not all targets support
10284all types however.
10285
10286::
10287
10288 declare float @llvm.exp2.f32(float %Val)
10289 declare double @llvm.exp2.f64(double %Val)
10290 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10291 declare fp128 @llvm.exp2.f128(fp128 %Val)
10292 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10293
10294Overview:
10295"""""""""
10296
10297The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10298
10299Arguments:
10300""""""""""
10301
10302The argument and return value are floating point numbers of the same
10303type.
10304
10305Semantics:
10306""""""""""
10307
10308This function returns the same values as the libm ``exp2`` functions
10309would, and handles error conditions in the same way.
10310
10311'``llvm.log.*``' Intrinsic
10312^^^^^^^^^^^^^^^^^^^^^^^^^^
10313
10314Syntax:
10315"""""""
10316
10317This is an overloaded intrinsic. You can use ``llvm.log`` on any
10318floating point or vector of floating point type. Not all targets support
10319all types however.
10320
10321::
10322
10323 declare float @llvm.log.f32(float %Val)
10324 declare double @llvm.log.f64(double %Val)
10325 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10326 declare fp128 @llvm.log.f128(fp128 %Val)
10327 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10328
10329Overview:
10330"""""""""
10331
10332The '``llvm.log.*``' intrinsics perform the log function.
10333
10334Arguments:
10335""""""""""
10336
10337The argument and return value are floating point numbers of the same
10338type.
10339
10340Semantics:
10341""""""""""
10342
10343This function returns the same values as the libm ``log`` functions
10344would, and handles error conditions in the same way.
10345
10346'``llvm.log10.*``' Intrinsic
10347^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10348
10349Syntax:
10350"""""""
10351
10352This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10353floating point or vector of floating point type. Not all targets support
10354all types however.
10355
10356::
10357
10358 declare float @llvm.log10.f32(float %Val)
10359 declare double @llvm.log10.f64(double %Val)
10360 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10361 declare fp128 @llvm.log10.f128(fp128 %Val)
10362 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10363
10364Overview:
10365"""""""""
10366
10367The '``llvm.log10.*``' intrinsics perform the log10 function.
10368
10369Arguments:
10370""""""""""
10371
10372The argument and return value are floating point numbers of the same
10373type.
10374
10375Semantics:
10376""""""""""
10377
10378This function returns the same values as the libm ``log10`` functions
10379would, and handles error conditions in the same way.
10380
10381'``llvm.log2.*``' Intrinsic
10382^^^^^^^^^^^^^^^^^^^^^^^^^^^
10383
10384Syntax:
10385"""""""
10386
10387This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10388floating point or vector of floating point type. Not all targets support
10389all types however.
10390
10391::
10392
10393 declare float @llvm.log2.f32(float %Val)
10394 declare double @llvm.log2.f64(double %Val)
10395 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10396 declare fp128 @llvm.log2.f128(fp128 %Val)
10397 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10398
10399Overview:
10400"""""""""
10401
10402The '``llvm.log2.*``' intrinsics perform the log2 function.
10403
10404Arguments:
10405""""""""""
10406
10407The argument and return value are floating point numbers of the same
10408type.
10409
10410Semantics:
10411""""""""""
10412
10413This function returns the same values as the libm ``log2`` functions
10414would, and handles error conditions in the same way.
10415
10416'``llvm.fma.*``' Intrinsic
10417^^^^^^^^^^^^^^^^^^^^^^^^^^
10418
10419Syntax:
10420"""""""
10421
10422This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10423floating point or vector of floating point type. Not all targets support
10424all types however.
10425
10426::
10427
10428 declare float @llvm.fma.f32(float %a, float %b, float %c)
10429 declare double @llvm.fma.f64(double %a, double %b, double %c)
10430 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10431 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10432 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10433
10434Overview:
10435"""""""""
10436
10437The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10438operation.
10439
10440Arguments:
10441""""""""""
10442
10443The argument and return value are floating point numbers of the same
10444type.
10445
10446Semantics:
10447""""""""""
10448
10449This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010450would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010451
10452'``llvm.fabs.*``' Intrinsic
10453^^^^^^^^^^^^^^^^^^^^^^^^^^^
10454
10455Syntax:
10456"""""""
10457
10458This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10459floating point or vector of floating point type. Not all targets support
10460all types however.
10461
10462::
10463
10464 declare float @llvm.fabs.f32(float %Val)
10465 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010466 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010467 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010468 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010469
10470Overview:
10471"""""""""
10472
10473The '``llvm.fabs.*``' intrinsics return the absolute value of the
10474operand.
10475
10476Arguments:
10477""""""""""
10478
10479The argument and return value are floating point numbers of the same
10480type.
10481
10482Semantics:
10483""""""""""
10484
10485This function returns the same values as the libm ``fabs`` functions
10486would, and handles error conditions in the same way.
10487
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010488'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010490
10491Syntax:
10492"""""""
10493
10494This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10495floating point or vector of floating point type. Not all targets support
10496all types however.
10497
10498::
10499
Matt Arsenault64313c92014-10-22 18:25:02 +000010500 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10501 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10502 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10503 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10504 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010505
10506Overview:
10507"""""""""
10508
10509The '``llvm.minnum.*``' intrinsics return the minimum of the two
10510arguments.
10511
10512
10513Arguments:
10514""""""""""
10515
10516The arguments and return value are floating point numbers of the same
10517type.
10518
10519Semantics:
10520""""""""""
10521
10522Follows the IEEE-754 semantics for minNum, which also match for libm's
10523fmin.
10524
10525If either operand is a NaN, returns the other non-NaN operand. Returns
10526NaN only if both operands are NaN. If the operands compare equal,
10527returns a value that compares equal to both operands. This means that
10528fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10529
10530'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010531^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010532
10533Syntax:
10534"""""""
10535
10536This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10537floating point or vector of floating point type. Not all targets support
10538all types however.
10539
10540::
10541
Matt Arsenault64313c92014-10-22 18:25:02 +000010542 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10543 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10544 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10545 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10546 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010547
10548Overview:
10549"""""""""
10550
10551The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10552arguments.
10553
10554
10555Arguments:
10556""""""""""
10557
10558The arguments and return value are floating point numbers of the same
10559type.
10560
10561Semantics:
10562""""""""""
10563Follows the IEEE-754 semantics for maxNum, which also match for libm's
10564fmax.
10565
10566If either operand is a NaN, returns the other non-NaN operand. Returns
10567NaN only if both operands are NaN. If the operands compare equal,
10568returns a value that compares equal to both operands. This means that
10569fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10570
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010571'``llvm.copysign.*``' Intrinsic
10572^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10573
10574Syntax:
10575"""""""
10576
10577This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10578floating point or vector of floating point type. Not all targets support
10579all types however.
10580
10581::
10582
10583 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10584 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10585 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10586 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10587 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10588
10589Overview:
10590"""""""""
10591
10592The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10593first operand and the sign of the second operand.
10594
10595Arguments:
10596""""""""""
10597
10598The arguments and return value are floating point numbers of the same
10599type.
10600
10601Semantics:
10602""""""""""
10603
10604This function returns the same values as the libm ``copysign``
10605functions would, and handles error conditions in the same way.
10606
Sean Silvab084af42012-12-07 10:36:55 +000010607'``llvm.floor.*``' Intrinsic
10608^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10609
10610Syntax:
10611"""""""
10612
10613This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10614floating point or vector of floating point type. Not all targets support
10615all types however.
10616
10617::
10618
10619 declare float @llvm.floor.f32(float %Val)
10620 declare double @llvm.floor.f64(double %Val)
10621 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10622 declare fp128 @llvm.floor.f128(fp128 %Val)
10623 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10624
10625Overview:
10626"""""""""
10627
10628The '``llvm.floor.*``' intrinsics return the floor of the operand.
10629
10630Arguments:
10631""""""""""
10632
10633The argument and return value are floating point numbers of the same
10634type.
10635
10636Semantics:
10637""""""""""
10638
10639This function returns the same values as the libm ``floor`` functions
10640would, and handles error conditions in the same way.
10641
10642'``llvm.ceil.*``' Intrinsic
10643^^^^^^^^^^^^^^^^^^^^^^^^^^^
10644
10645Syntax:
10646"""""""
10647
10648This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10649floating point or vector of floating point type. Not all targets support
10650all types however.
10651
10652::
10653
10654 declare float @llvm.ceil.f32(float %Val)
10655 declare double @llvm.ceil.f64(double %Val)
10656 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10657 declare fp128 @llvm.ceil.f128(fp128 %Val)
10658 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10659
10660Overview:
10661"""""""""
10662
10663The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10664
10665Arguments:
10666""""""""""
10667
10668The argument and return value are floating point numbers of the same
10669type.
10670
10671Semantics:
10672""""""""""
10673
10674This function returns the same values as the libm ``ceil`` functions
10675would, and handles error conditions in the same way.
10676
10677'``llvm.trunc.*``' Intrinsic
10678^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10679
10680Syntax:
10681"""""""
10682
10683This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10684floating point or vector of floating point type. Not all targets support
10685all types however.
10686
10687::
10688
10689 declare float @llvm.trunc.f32(float %Val)
10690 declare double @llvm.trunc.f64(double %Val)
10691 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10692 declare fp128 @llvm.trunc.f128(fp128 %Val)
10693 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10694
10695Overview:
10696"""""""""
10697
10698The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10699nearest integer not larger in magnitude than the operand.
10700
10701Arguments:
10702""""""""""
10703
10704The argument and return value are floating point numbers of the same
10705type.
10706
10707Semantics:
10708""""""""""
10709
10710This function returns the same values as the libm ``trunc`` functions
10711would, and handles error conditions in the same way.
10712
10713'``llvm.rint.*``' Intrinsic
10714^^^^^^^^^^^^^^^^^^^^^^^^^^^
10715
10716Syntax:
10717"""""""
10718
10719This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10720floating point or vector of floating point type. Not all targets support
10721all types however.
10722
10723::
10724
10725 declare float @llvm.rint.f32(float %Val)
10726 declare double @llvm.rint.f64(double %Val)
10727 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10728 declare fp128 @llvm.rint.f128(fp128 %Val)
10729 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10730
10731Overview:
10732"""""""""
10733
10734The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10735nearest integer. It may raise an inexact floating-point exception if the
10736operand isn't an integer.
10737
10738Arguments:
10739""""""""""
10740
10741The argument and return value are floating point numbers of the same
10742type.
10743
10744Semantics:
10745""""""""""
10746
10747This function returns the same values as the libm ``rint`` functions
10748would, and handles error conditions in the same way.
10749
10750'``llvm.nearbyint.*``' Intrinsic
10751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10752
10753Syntax:
10754"""""""
10755
10756This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10757floating point or vector of floating point type. Not all targets support
10758all types however.
10759
10760::
10761
10762 declare float @llvm.nearbyint.f32(float %Val)
10763 declare double @llvm.nearbyint.f64(double %Val)
10764 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10765 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10766 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10767
10768Overview:
10769"""""""""
10770
10771The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10772nearest integer.
10773
10774Arguments:
10775""""""""""
10776
10777The argument and return value are floating point numbers of the same
10778type.
10779
10780Semantics:
10781""""""""""
10782
10783This function returns the same values as the libm ``nearbyint``
10784functions would, and handles error conditions in the same way.
10785
Hal Finkel171817e2013-08-07 22:49:12 +000010786'``llvm.round.*``' Intrinsic
10787^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10788
10789Syntax:
10790"""""""
10791
10792This is an overloaded intrinsic. You can use ``llvm.round`` on any
10793floating point or vector of floating point type. Not all targets support
10794all types however.
10795
10796::
10797
10798 declare float @llvm.round.f32(float %Val)
10799 declare double @llvm.round.f64(double %Val)
10800 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10801 declare fp128 @llvm.round.f128(fp128 %Val)
10802 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10803
10804Overview:
10805"""""""""
10806
10807The '``llvm.round.*``' intrinsics returns the operand rounded to the
10808nearest integer.
10809
10810Arguments:
10811""""""""""
10812
10813The argument and return value are floating point numbers of the same
10814type.
10815
10816Semantics:
10817""""""""""
10818
10819This function returns the same values as the libm ``round``
10820functions would, and handles error conditions in the same way.
10821
Sean Silvab084af42012-12-07 10:36:55 +000010822Bit Manipulation Intrinsics
10823---------------------------
10824
10825LLVM provides intrinsics for a few important bit manipulation
10826operations. These allow efficient code generation for some algorithms.
10827
James Molloy90111f72015-11-12 12:29:09 +000010828'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010830
10831Syntax:
10832"""""""
10833
10834This is an overloaded intrinsic function. You can use bitreverse on any
10835integer type.
10836
10837::
10838
10839 declare i16 @llvm.bitreverse.i16(i16 <id>)
10840 declare i32 @llvm.bitreverse.i32(i32 <id>)
10841 declare i64 @llvm.bitreverse.i64(i64 <id>)
10842
10843Overview:
10844"""""""""
10845
10846The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010847bitpattern of an integer value; for example ``0b10110110`` becomes
10848``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010849
10850Semantics:
10851""""""""""
10852
Yichao Yu5abf14b2016-11-23 16:25:31 +000010853The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000010854``M`` in the input moved to bit ``N-M`` in the output.
10855
Sean Silvab084af42012-12-07 10:36:55 +000010856'``llvm.bswap.*``' Intrinsics
10857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10858
10859Syntax:
10860"""""""
10861
10862This is an overloaded intrinsic function. You can use bswap on any
10863integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10864
10865::
10866
10867 declare i16 @llvm.bswap.i16(i16 <id>)
10868 declare i32 @llvm.bswap.i32(i32 <id>)
10869 declare i64 @llvm.bswap.i64(i64 <id>)
10870
10871Overview:
10872"""""""""
10873
10874The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10875values with an even number of bytes (positive multiple of 16 bits).
10876These are useful for performing operations on data that is not in the
10877target's native byte order.
10878
10879Semantics:
10880""""""""""
10881
10882The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10883and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10884intrinsic returns an i32 value that has the four bytes of the input i32
10885swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10886returned i32 will have its bytes in 3, 2, 1, 0 order. The
10887``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10888concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10889respectively).
10890
10891'``llvm.ctpop.*``' Intrinsic
10892^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10893
10894Syntax:
10895"""""""
10896
10897This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10898bit width, or on any vector with integer elements. Not all targets
10899support all bit widths or vector types, however.
10900
10901::
10902
10903 declare i8 @llvm.ctpop.i8(i8 <src>)
10904 declare i16 @llvm.ctpop.i16(i16 <src>)
10905 declare i32 @llvm.ctpop.i32(i32 <src>)
10906 declare i64 @llvm.ctpop.i64(i64 <src>)
10907 declare i256 @llvm.ctpop.i256(i256 <src>)
10908 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10909
10910Overview:
10911"""""""""
10912
10913The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10914in a value.
10915
10916Arguments:
10917""""""""""
10918
10919The only argument is the value to be counted. The argument may be of any
10920integer type, or a vector with integer elements. The return type must
10921match the argument type.
10922
10923Semantics:
10924""""""""""
10925
10926The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10927each element of a vector.
10928
10929'``llvm.ctlz.*``' Intrinsic
10930^^^^^^^^^^^^^^^^^^^^^^^^^^^
10931
10932Syntax:
10933"""""""
10934
10935This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10936integer bit width, or any vector whose elements are integers. Not all
10937targets support all bit widths or vector types, however.
10938
10939::
10940
10941 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10942 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10943 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10944 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10945 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010946 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010947
10948Overview:
10949"""""""""
10950
10951The '``llvm.ctlz``' family of intrinsic functions counts the number of
10952leading zeros in a variable.
10953
10954Arguments:
10955""""""""""
10956
10957The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010958any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010959type must match the first argument type.
10960
10961The second argument must be a constant and is a flag to indicate whether
10962the intrinsic should ensure that a zero as the first argument produces a
10963defined result. Historically some architectures did not provide a
10964defined result for zero values as efficiently, and many algorithms are
10965now predicated on avoiding zero-value inputs.
10966
10967Semantics:
10968""""""""""
10969
10970The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10971zeros in a variable, or within each element of the vector. If
10972``src == 0`` then the result is the size in bits of the type of ``src``
10973if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10974``llvm.ctlz(i32 2) = 30``.
10975
10976'``llvm.cttz.*``' Intrinsic
10977^^^^^^^^^^^^^^^^^^^^^^^^^^^
10978
10979Syntax:
10980"""""""
10981
10982This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10983integer bit width, or any vector of integer elements. Not all targets
10984support all bit widths or vector types, however.
10985
10986::
10987
10988 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10989 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10990 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10991 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10992 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010993 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010994
10995Overview:
10996"""""""""
10997
10998The '``llvm.cttz``' family of intrinsic functions counts the number of
10999trailing zeros.
11000
11001Arguments:
11002""""""""""
11003
11004The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011005any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011006type must match the first argument type.
11007
11008The second argument must be a constant and is a flag to indicate whether
11009the intrinsic should ensure that a zero as the first argument produces a
11010defined result. Historically some architectures did not provide a
11011defined result for zero values as efficiently, and many algorithms are
11012now predicated on avoiding zero-value inputs.
11013
11014Semantics:
11015""""""""""
11016
11017The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11018zeros in a variable, or within each element of a vector. If ``src == 0``
11019then the result is the size in bits of the type of ``src`` if
11020``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11021``llvm.cttz(2) = 1``.
11022
Philip Reames34843ae2015-03-05 05:55:55 +000011023.. _int_overflow:
11024
Sean Silvab084af42012-12-07 10:36:55 +000011025Arithmetic with Overflow Intrinsics
11026-----------------------------------
11027
John Regehr6a493f22016-05-12 20:55:09 +000011028LLVM provides intrinsics for fast arithmetic overflow checking.
11029
11030Each of these intrinsics returns a two-element struct. The first
11031element of this struct contains the result of the corresponding
11032arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11033the result. Therefore, for example, the first element of the struct
11034returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11035result of a 32-bit ``add`` instruction with the same operands, where
11036the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11037
11038The second element of the result is an ``i1`` that is 1 if the
11039arithmetic operation overflowed and 0 otherwise. An operation
11040overflows if, for any values of its operands ``A`` and ``B`` and for
11041any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11042not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11043``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11044``op`` is the underlying arithmetic operation.
11045
11046The behavior of these intrinsics is well-defined for all argument
11047values.
Sean Silvab084af42012-12-07 10:36:55 +000011048
11049'``llvm.sadd.with.overflow.*``' Intrinsics
11050^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11051
11052Syntax:
11053"""""""
11054
11055This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11056on any integer bit width.
11057
11058::
11059
11060 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11061 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11062 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11063
11064Overview:
11065"""""""""
11066
11067The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11068a signed addition of the two arguments, and indicate whether an overflow
11069occurred during the signed summation.
11070
11071Arguments:
11072""""""""""
11073
11074The arguments (%a and %b) and the first element of the result structure
11075may be of integer types of any bit width, but they must have the same
11076bit width. The second element of the result structure must be of type
11077``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11078addition.
11079
11080Semantics:
11081""""""""""
11082
11083The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011084a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011085first element of which is the signed summation, and the second element
11086of which is a bit specifying if the signed summation resulted in an
11087overflow.
11088
11089Examples:
11090"""""""""
11091
11092.. code-block:: llvm
11093
11094 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11095 %sum = extractvalue {i32, i1} %res, 0
11096 %obit = extractvalue {i32, i1} %res, 1
11097 br i1 %obit, label %overflow, label %normal
11098
11099'``llvm.uadd.with.overflow.*``' Intrinsics
11100^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11101
11102Syntax:
11103"""""""
11104
11105This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11106on any integer bit width.
11107
11108::
11109
11110 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11111 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11112 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11113
11114Overview:
11115"""""""""
11116
11117The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11118an unsigned addition of the two arguments, and indicate whether a carry
11119occurred during the unsigned summation.
11120
11121Arguments:
11122""""""""""
11123
11124The arguments (%a and %b) and the first element of the result structure
11125may be of integer types of any bit width, but they must have the same
11126bit width. The second element of the result structure must be of type
11127``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11128addition.
11129
11130Semantics:
11131""""""""""
11132
11133The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011134an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011135first element of which is the sum, and the second element of which is a
11136bit specifying if the unsigned summation resulted in a carry.
11137
11138Examples:
11139"""""""""
11140
11141.. code-block:: llvm
11142
11143 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11144 %sum = extractvalue {i32, i1} %res, 0
11145 %obit = extractvalue {i32, i1} %res, 1
11146 br i1 %obit, label %carry, label %normal
11147
11148'``llvm.ssub.with.overflow.*``' Intrinsics
11149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11150
11151Syntax:
11152"""""""
11153
11154This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11155on any integer bit width.
11156
11157::
11158
11159 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11160 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11161 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11162
11163Overview:
11164"""""""""
11165
11166The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11167a signed subtraction of the two arguments, and indicate whether an
11168overflow occurred during the signed subtraction.
11169
11170Arguments:
11171""""""""""
11172
11173The arguments (%a and %b) and the first element of the result structure
11174may be of integer types of any bit width, but they must have the same
11175bit width. The second element of the result structure must be of type
11176``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11177subtraction.
11178
11179Semantics:
11180""""""""""
11181
11182The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011183a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011184first element of which is the subtraction, and the second element of
11185which is a bit specifying if the signed subtraction resulted in an
11186overflow.
11187
11188Examples:
11189"""""""""
11190
11191.. code-block:: llvm
11192
11193 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11194 %sum = extractvalue {i32, i1} %res, 0
11195 %obit = extractvalue {i32, i1} %res, 1
11196 br i1 %obit, label %overflow, label %normal
11197
11198'``llvm.usub.with.overflow.*``' Intrinsics
11199^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11200
11201Syntax:
11202"""""""
11203
11204This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11205on any integer bit width.
11206
11207::
11208
11209 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11210 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11211 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11212
11213Overview:
11214"""""""""
11215
11216The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11217an unsigned subtraction of the two arguments, and indicate whether an
11218overflow occurred during the unsigned subtraction.
11219
11220Arguments:
11221""""""""""
11222
11223The arguments (%a and %b) and the first element of the result structure
11224may be of integer types of any bit width, but they must have the same
11225bit width. The second element of the result structure must be of type
11226``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11227subtraction.
11228
11229Semantics:
11230""""""""""
11231
11232The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011233an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011234the first element of which is the subtraction, and the second element of
11235which is a bit specifying if the unsigned subtraction resulted in an
11236overflow.
11237
11238Examples:
11239"""""""""
11240
11241.. code-block:: llvm
11242
11243 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11244 %sum = extractvalue {i32, i1} %res, 0
11245 %obit = extractvalue {i32, i1} %res, 1
11246 br i1 %obit, label %overflow, label %normal
11247
11248'``llvm.smul.with.overflow.*``' Intrinsics
11249^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11250
11251Syntax:
11252"""""""
11253
11254This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11255on any integer bit width.
11256
11257::
11258
11259 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11260 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11261 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11262
11263Overview:
11264"""""""""
11265
11266The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11267a signed multiplication of the two arguments, and indicate whether an
11268overflow occurred during the signed multiplication.
11269
11270Arguments:
11271""""""""""
11272
11273The arguments (%a and %b) and the first element of the result structure
11274may be of integer types of any bit width, but they must have the same
11275bit width. The second element of the result structure must be of type
11276``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11277multiplication.
11278
11279Semantics:
11280""""""""""
11281
11282The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011283a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011284the first element of which is the multiplication, and the second element
11285of which is a bit specifying if the signed multiplication resulted in an
11286overflow.
11287
11288Examples:
11289"""""""""
11290
11291.. code-block:: llvm
11292
11293 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11294 %sum = extractvalue {i32, i1} %res, 0
11295 %obit = extractvalue {i32, i1} %res, 1
11296 br i1 %obit, label %overflow, label %normal
11297
11298'``llvm.umul.with.overflow.*``' Intrinsics
11299^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11300
11301Syntax:
11302"""""""
11303
11304This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11305on any integer bit width.
11306
11307::
11308
11309 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11310 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11311 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11312
11313Overview:
11314"""""""""
11315
11316The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11317a unsigned multiplication of the two arguments, and indicate whether an
11318overflow occurred during the unsigned multiplication.
11319
11320Arguments:
11321""""""""""
11322
11323The arguments (%a and %b) and the first element of the result structure
11324may be of integer types of any bit width, but they must have the same
11325bit width. The second element of the result structure must be of type
11326``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11327multiplication.
11328
11329Semantics:
11330""""""""""
11331
11332The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011333an unsigned multiplication of the two arguments. They return a structure ---
11334the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011335element of which is a bit specifying if the unsigned multiplication
11336resulted in an overflow.
11337
11338Examples:
11339"""""""""
11340
11341.. code-block:: llvm
11342
11343 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11344 %sum = extractvalue {i32, i1} %res, 0
11345 %obit = extractvalue {i32, i1} %res, 1
11346 br i1 %obit, label %overflow, label %normal
11347
11348Specialised Arithmetic Intrinsics
11349---------------------------------
11350
Owen Anderson1056a922015-07-11 07:01:27 +000011351'``llvm.canonicalize.*``' Intrinsic
11352^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11353
11354Syntax:
11355"""""""
11356
11357::
11358
11359 declare float @llvm.canonicalize.f32(float %a)
11360 declare double @llvm.canonicalize.f64(double %b)
11361
11362Overview:
11363"""""""""
11364
11365The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011366encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011367implementing certain numeric primitives such as frexp. The canonical encoding is
11368defined by IEEE-754-2008 to be:
11369
11370::
11371
11372 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011373 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011374 numbers, infinities, and NaNs, especially in decimal formats.
11375
11376This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011377conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011378according to section 6.2.
11379
11380Examples of non-canonical encodings:
11381
Sean Silvaa1190322015-08-06 22:56:48 +000011382- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011383 converted to a canonical representation per hardware-specific protocol.
11384- Many normal decimal floating point numbers have non-canonical alternative
11385 encodings.
11386- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011387 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011388 a zero of the same sign by this operation.
11389
11390Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11391default exception handling must signal an invalid exception, and produce a
11392quiet NaN result.
11393
11394This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011395that the compiler does not constant fold the operation. Likewise, division by
113961.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011397-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11398
Sean Silvaa1190322015-08-06 22:56:48 +000011399``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011400
11401- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11402- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11403 to ``(x == y)``
11404
11405Additionally, the sign of zero must be conserved:
11406``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11407
11408The payload bits of a NaN must be conserved, with two exceptions.
11409First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011410must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011411usual methods.
11412
11413The canonicalization operation may be optimized away if:
11414
Sean Silvaa1190322015-08-06 22:56:48 +000011415- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011416 floating-point operation that is required by the standard to be canonical.
11417- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011418 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011419
Sean Silvab084af42012-12-07 10:36:55 +000011420'``llvm.fmuladd.*``' Intrinsic
11421^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11422
11423Syntax:
11424"""""""
11425
11426::
11427
11428 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11429 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11430
11431Overview:
11432"""""""""
11433
11434The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011435expressions that can be fused if the code generator determines that (a) the
11436target instruction set has support for a fused operation, and (b) that the
11437fused operation is more efficient than the equivalent, separate pair of mul
11438and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011439
11440Arguments:
11441""""""""""
11442
11443The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11444multiplicands, a and b, and an addend c.
11445
11446Semantics:
11447""""""""""
11448
11449The expression:
11450
11451::
11452
11453 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11454
11455is equivalent to the expression a \* b + c, except that rounding will
11456not be performed between the multiplication and addition steps if the
11457code generator fuses the operations. Fusion is not guaranteed, even if
11458the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011459corresponding llvm.fma.\* intrinsic function should be used
11460instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011461
11462Examples:
11463"""""""""
11464
11465.. code-block:: llvm
11466
Tim Northover675a0962014-06-13 14:24:23 +000011467 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011468
11469Half Precision Floating Point Intrinsics
11470----------------------------------------
11471
11472For most target platforms, half precision floating point is a
11473storage-only format. This means that it is a dense encoding (in memory)
11474but does not support computation in the format.
11475
11476This means that code must first load the half-precision floating point
11477value as an i16, then convert it to float with
11478:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11479then be performed on the float value (including extending to double
11480etc). To store the value back to memory, it is first converted to float
11481if needed, then converted to i16 with
11482:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11483i16 value.
11484
11485.. _int_convert_to_fp16:
11486
11487'``llvm.convert.to.fp16``' Intrinsic
11488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11489
11490Syntax:
11491"""""""
11492
11493::
11494
Tim Northoverfd7e4242014-07-17 10:51:23 +000011495 declare i16 @llvm.convert.to.fp16.f32(float %a)
11496 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011497
11498Overview:
11499"""""""""
11500
Tim Northoverfd7e4242014-07-17 10:51:23 +000011501The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11502conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011503
11504Arguments:
11505""""""""""
11506
11507The intrinsic function contains single argument - the value to be
11508converted.
11509
11510Semantics:
11511""""""""""
11512
Tim Northoverfd7e4242014-07-17 10:51:23 +000011513The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11514conventional floating point format to half precision floating point format. The
11515return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011516
11517Examples:
11518"""""""""
11519
11520.. code-block:: llvm
11521
Tim Northoverfd7e4242014-07-17 10:51:23 +000011522 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011523 store i16 %res, i16* @x, align 2
11524
11525.. _int_convert_from_fp16:
11526
11527'``llvm.convert.from.fp16``' Intrinsic
11528^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11529
11530Syntax:
11531"""""""
11532
11533::
11534
Tim Northoverfd7e4242014-07-17 10:51:23 +000011535 declare float @llvm.convert.from.fp16.f32(i16 %a)
11536 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011537
11538Overview:
11539"""""""""
11540
11541The '``llvm.convert.from.fp16``' intrinsic function performs a
11542conversion from half precision floating point format to single precision
11543floating point format.
11544
11545Arguments:
11546""""""""""
11547
11548The intrinsic function contains single argument - the value to be
11549converted.
11550
11551Semantics:
11552""""""""""
11553
11554The '``llvm.convert.from.fp16``' intrinsic function performs a
11555conversion from half single precision floating point format to single
11556precision floating point format. The input half-float value is
11557represented by an ``i16`` value.
11558
11559Examples:
11560"""""""""
11561
11562.. code-block:: llvm
11563
David Blaikiec7aabbb2015-03-04 22:06:14 +000011564 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011565 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011566
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011567.. _dbg_intrinsics:
11568
Sean Silvab084af42012-12-07 10:36:55 +000011569Debugger Intrinsics
11570-------------------
11571
11572The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11573prefix), are described in the `LLVM Source Level
11574Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11575document.
11576
11577Exception Handling Intrinsics
11578-----------------------------
11579
11580The LLVM exception handling intrinsics (which all start with
11581``llvm.eh.`` prefix), are described in the `LLVM Exception
11582Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11583
11584.. _int_trampoline:
11585
11586Trampoline Intrinsics
11587---------------------
11588
11589These intrinsics make it possible to excise one parameter, marked with
11590the :ref:`nest <nest>` attribute, from a function. The result is a
11591callable function pointer lacking the nest parameter - the caller does
11592not need to provide a value for it. Instead, the value to use is stored
11593in advance in a "trampoline", a block of memory usually allocated on the
11594stack, which also contains code to splice the nest value into the
11595argument list. This is used to implement the GCC nested function address
11596extension.
11597
11598For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11599then the resulting function pointer has signature ``i32 (i32, i32)*``.
11600It can be created as follows:
11601
11602.. code-block:: llvm
11603
11604 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011605 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011606 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11607 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11608 %fp = bitcast i8* %p to i32 (i32, i32)*
11609
11610The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11611``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11612
11613.. _int_it:
11614
11615'``llvm.init.trampoline``' Intrinsic
11616^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11617
11618Syntax:
11619"""""""
11620
11621::
11622
11623 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11624
11625Overview:
11626"""""""""
11627
11628This fills the memory pointed to by ``tramp`` with executable code,
11629turning it into a trampoline.
11630
11631Arguments:
11632""""""""""
11633
11634The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11635pointers. The ``tramp`` argument must point to a sufficiently large and
11636sufficiently aligned block of memory; this memory is written to by the
11637intrinsic. Note that the size and the alignment are target-specific -
11638LLVM currently provides no portable way of determining them, so a
11639front-end that generates this intrinsic needs to have some
11640target-specific knowledge. The ``func`` argument must hold a function
11641bitcast to an ``i8*``.
11642
11643Semantics:
11644""""""""""
11645
11646The block of memory pointed to by ``tramp`` is filled with target
11647dependent code, turning it into a function. Then ``tramp`` needs to be
11648passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11649be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11650function's signature is the same as that of ``func`` with any arguments
11651marked with the ``nest`` attribute removed. At most one such ``nest``
11652argument is allowed, and it must be of pointer type. Calling the new
11653function is equivalent to calling ``func`` with the same argument list,
11654but with ``nval`` used for the missing ``nest`` argument. If, after
11655calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11656modified, then the effect of any later call to the returned function
11657pointer is undefined.
11658
11659.. _int_at:
11660
11661'``llvm.adjust.trampoline``' Intrinsic
11662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11663
11664Syntax:
11665"""""""
11666
11667::
11668
11669 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11670
11671Overview:
11672"""""""""
11673
11674This performs any required machine-specific adjustment to the address of
11675a trampoline (passed as ``tramp``).
11676
11677Arguments:
11678""""""""""
11679
11680``tramp`` must point to a block of memory which already has trampoline
11681code filled in by a previous call to
11682:ref:`llvm.init.trampoline <int_it>`.
11683
11684Semantics:
11685""""""""""
11686
11687On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011688different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011689intrinsic returns the executable address corresponding to ``tramp``
11690after performing the required machine specific adjustments. The pointer
11691returned can then be :ref:`bitcast and executed <int_trampoline>`.
11692
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011693.. _int_mload_mstore:
11694
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011695Masked Vector Load and Store Intrinsics
11696---------------------------------------
11697
11698LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11699
11700.. _int_mload:
11701
11702'``llvm.masked.load.*``' Intrinsics
11703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11704
11705Syntax:
11706"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011707This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011708
11709::
11710
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011711 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11712 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011713 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011714 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011715 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011716 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011717
11718Overview:
11719"""""""""
11720
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011721Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011722
11723
11724Arguments:
11725""""""""""
11726
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011727The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011728
11729
11730Semantics:
11731""""""""""
11732
11733The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11734The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11735
11736
11737::
11738
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011739 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011740
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011741 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011742 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011743 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011744
11745.. _int_mstore:
11746
11747'``llvm.masked.store.*``' Intrinsics
11748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11749
11750Syntax:
11751"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011752This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011753
11754::
11755
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011756 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11757 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011758 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011759 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011760 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011761 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011762
11763Overview:
11764"""""""""
11765
11766Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11767
11768Arguments:
11769""""""""""
11770
11771The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11772
11773
11774Semantics:
11775""""""""""
11776
11777The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11778The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11779
11780::
11781
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011782 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011783
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011784 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011785 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011786 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11787 store <16 x float> %res, <16 x float>* %ptr, align 4
11788
11789
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011790Masked Vector Gather and Scatter Intrinsics
11791-------------------------------------------
11792
11793LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11794
11795.. _int_mgather:
11796
11797'``llvm.masked.gather.*``' Intrinsics
11798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11799
11800Syntax:
11801"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011802This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011803
11804::
11805
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011806 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11807 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11808 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011809
11810Overview:
11811"""""""""
11812
11813Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11814
11815
11816Arguments:
11817""""""""""
11818
11819The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11820
11821
11822Semantics:
11823""""""""""
11824
11825The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11826The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11827
11828
11829::
11830
Zvi Rackoverb26530c2017-01-26 20:29:15 +000011831 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011832
11833 ;; The gather with all-true mask is equivalent to the following instruction sequence
11834 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11835 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11836 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11837 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11838
11839 %val0 = load double, double* %ptr0, align 8
11840 %val1 = load double, double* %ptr1, align 8
11841 %val2 = load double, double* %ptr2, align 8
11842 %val3 = load double, double* %ptr3, align 8
11843
11844 %vec0 = insertelement <4 x double>undef, %val0, 0
11845 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11846 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11847 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11848
11849.. _int_mscatter:
11850
11851'``llvm.masked.scatter.*``' Intrinsics
11852^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11853
11854Syntax:
11855"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011856This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011857
11858::
11859
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011860 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11861 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11862 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011863
11864Overview:
11865"""""""""
11866
11867Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11868
11869Arguments:
11870""""""""""
11871
11872The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11873
11874
11875Semantics:
11876""""""""""
11877
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011878The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011879
11880::
11881
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011882 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011883 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11884
11885 ;; It is equivalent to a list of scalar stores
11886 %val0 = extractelement <8 x i32> %value, i32 0
11887 %val1 = extractelement <8 x i32> %value, i32 1
11888 ..
11889 %val7 = extractelement <8 x i32> %value, i32 7
11890 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11891 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11892 ..
11893 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11894 ;; Note: the order of the following stores is important when they overlap:
11895 store i32 %val0, i32* %ptr0, align 4
11896 store i32 %val1, i32* %ptr1, align 4
11897 ..
11898 store i32 %val7, i32* %ptr7, align 4
11899
11900
Sean Silvab084af42012-12-07 10:36:55 +000011901Memory Use Markers
11902------------------
11903
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011904This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011905memory objects and ranges where variables are immutable.
11906
Reid Klecknera534a382013-12-19 02:14:12 +000011907.. _int_lifestart:
11908
Sean Silvab084af42012-12-07 10:36:55 +000011909'``llvm.lifetime.start``' Intrinsic
11910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11911
11912Syntax:
11913"""""""
11914
11915::
11916
11917 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11918
11919Overview:
11920"""""""""
11921
11922The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11923object's lifetime.
11924
11925Arguments:
11926""""""""""
11927
11928The first argument is a constant integer representing the size of the
11929object, or -1 if it is variable sized. The second argument is a pointer
11930to the object.
11931
11932Semantics:
11933""""""""""
11934
11935This intrinsic indicates that before this point in the code, the value
11936of the memory pointed to by ``ptr`` is dead. This means that it is known
11937to never be used and has an undefined value. A load from the pointer
11938that precedes this intrinsic can be replaced with ``'undef'``.
11939
Reid Klecknera534a382013-12-19 02:14:12 +000011940.. _int_lifeend:
11941
Sean Silvab084af42012-12-07 10:36:55 +000011942'``llvm.lifetime.end``' Intrinsic
11943^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11944
11945Syntax:
11946"""""""
11947
11948::
11949
11950 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11951
11952Overview:
11953"""""""""
11954
11955The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11956object's lifetime.
11957
11958Arguments:
11959""""""""""
11960
11961The first argument is a constant integer representing the size of the
11962object, or -1 if it is variable sized. The second argument is a pointer
11963to the object.
11964
11965Semantics:
11966""""""""""
11967
11968This intrinsic indicates that after this point in the code, the value of
11969the memory pointed to by ``ptr`` is dead. This means that it is known to
11970never be used and has an undefined value. Any stores into the memory
11971object following this intrinsic may be removed as dead.
11972
11973'``llvm.invariant.start``' Intrinsic
11974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11975
11976Syntax:
11977"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011978This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011979
11980::
11981
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011982 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011983
11984Overview:
11985"""""""""
11986
11987The '``llvm.invariant.start``' intrinsic specifies that the contents of
11988a memory object will not change.
11989
11990Arguments:
11991""""""""""
11992
11993The first argument is a constant integer representing the size of the
11994object, or -1 if it is variable sized. The second argument is a pointer
11995to the object.
11996
11997Semantics:
11998""""""""""
11999
12000This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12001the return value, the referenced memory location is constant and
12002unchanging.
12003
12004'``llvm.invariant.end``' Intrinsic
12005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12006
12007Syntax:
12008"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012009This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012010
12011::
12012
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012013 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012014
12015Overview:
12016"""""""""
12017
12018The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12019memory object are mutable.
12020
12021Arguments:
12022""""""""""
12023
12024The first argument is the matching ``llvm.invariant.start`` intrinsic.
12025The second argument is a constant integer representing the size of the
12026object, or -1 if it is variable sized and the third argument is a
12027pointer to the object.
12028
12029Semantics:
12030""""""""""
12031
12032This intrinsic indicates that the memory is mutable again.
12033
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012034'``llvm.invariant.group.barrier``' Intrinsic
12035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12036
12037Syntax:
12038"""""""
12039
12040::
12041
12042 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12043
12044Overview:
12045"""""""""
12046
12047The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12048established by invariant.group metadata no longer holds, to obtain a new pointer
12049value that does not carry the invariant information.
12050
12051
12052Arguments:
12053""""""""""
12054
12055The ``llvm.invariant.group.barrier`` takes only one argument, which is
12056the pointer to the memory for which the ``invariant.group`` no longer holds.
12057
12058Semantics:
12059""""""""""
12060
12061Returns another pointer that aliases its argument but which is considered different
12062for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12063
Andrew Kaylora0a11642017-01-26 23:27:59 +000012064Constrained Floating Point Intrinsics
12065-------------------------------------
12066
12067These intrinsics are used to provide special handling of floating point
12068operations when specific rounding mode or floating point exception behavior is
12069required. By default, LLVM optimization passes assume that the rounding mode is
12070round-to-nearest and that floating point exceptions will not be monitored.
12071Constrained FP intrinsics are used to support non-default rounding modes and
12072accurately preserve exception behavior without compromising LLVM's ability to
12073optimize FP code when the default behavior is used.
12074
12075Each of these intrinsics corresponds to a normal floating point operation. The
12076first two arguments and the return value are the same as the corresponding FP
12077operation.
12078
12079The third argument is a metadata argument specifying the rounding mode to be
12080assumed. This argument must be one of the following strings:
12081
12082::
12083 "round.dynamic"
12084 "round.tonearest"
12085 "round.downward"
12086 "round.upward"
12087 "round.towardzero"
12088
12089If this argument is "round.dynamic" optimization passes must assume that the
12090rounding mode is unknown and may change at runtime. No transformations that
12091depend on rounding mode may be performed in this case.
12092
12093The other possible values for the rounding mode argument correspond to the
12094similarly named IEEE rounding modes. If the argument is any of these values
12095optimization passes may perform transformations as long as they are consistent
12096with the specified rounding mode.
12097
12098For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12099"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12100'x-0' should evaluate to '-0' when rounding downward. However, this
12101transformation is legal for all other rounding modes.
12102
12103For values other than "round.dynamic" optimization passes may assume that the
12104actual runtime rounding mode (as defined in a target-specific manner) matches
12105the specified rounding mode, but this is not guaranteed. Using a specific
12106non-dynamic rounding mode which does not match the actual rounding mode at
12107runtime results in undefined behavior.
12108
12109The fourth argument to the constrained floating point intrinsics specifies the
12110required exception behavior. This argument must be one of the following
12111strings:
12112
12113::
12114 "fpexcept.ignore"
12115 "fpexcept.maytrap"
12116 "fpexcept.strict"
12117
12118If this argument is "fpexcept.ignore" optimization passes may assume that the
12119exception status flags will not be read and that floating point exceptions will
12120be masked. This allows transformations to be performed that may change the
12121exception semantics of the original code. For example, FP operations may be
12122speculatively executed in this case whereas they must not be for either of the
12123other possible values of this argument.
12124
12125If the exception behavior argument is "fpexcept.maytrap" optimization passes
12126must avoid transformations that may raise exceptions that would not have been
12127raised by the original code (such as speculatively executing FP operations), but
12128passes are not required to preserve all exceptions that are implied by the
12129original code. For example, exceptions may be potentially hidden by constant
12130folding.
12131
12132If the exception behavior argument is "fpexcept.strict" all transformations must
12133strictly preserve the floating point exception semantics of the original code.
12134Any FP exception that would have been raised by the original code must be raised
12135by the transformed code, and the transformed code must not raise any FP
12136exceptions that would not have been raised by the original code. This is the
12137exception behavior argument that will be used if the code being compiled reads
12138the FP exception status flags, but this mode can also be used with code that
12139unmasks FP exceptions.
12140
12141The number and order of floating point exceptions is NOT guaranteed. For
12142example, a series of FP operations that each may raise exceptions may be
12143vectorized into a single instruction that raises each unique exception a single
12144time.
12145
12146
12147'``llvm.experimental.constrained.fadd``' Intrinsic
12148^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12149
12150Syntax:
12151"""""""
12152
12153::
12154
12155 declare <type>
12156 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12157 metadata <rounding mode>,
12158 metadata <exception behavior>)
12159
12160Overview:
12161"""""""""
12162
12163The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
12164two operands.
12165
12166
12167Arguments:
12168""""""""""
12169
12170The first two arguments to the '``llvm.experimental.constrained.fadd``'
12171intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12172of floating point values. Both arguments must have identical types.
12173
12174The third and fourth arguments specify the rounding mode and exception
12175behavior as described above.
12176
12177Semantics:
12178""""""""""
12179
12180The value produced is the floating point sum of the two value operands and has
12181the same type as the operands.
12182
12183
12184'``llvm.experimental.constrained.fsub``' Intrinsic
12185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12186
12187Syntax:
12188"""""""
12189
12190::
12191
12192 declare <type>
12193 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
12194 metadata <rounding mode>,
12195 metadata <exception behavior>)
12196
12197Overview:
12198"""""""""
12199
12200The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
12201of its two operands.
12202
12203
12204Arguments:
12205""""""""""
12206
12207The first two arguments to the '``llvm.experimental.constrained.fsub``'
12208intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12209of floating point values. Both arguments must have identical types.
12210
12211The third and fourth arguments specify the rounding mode and exception
12212behavior as described above.
12213
12214Semantics:
12215""""""""""
12216
12217The value produced is the floating point difference of the two value operands
12218and has the same type as the operands.
12219
12220
12221'``llvm.experimental.constrained.fmul``' Intrinsic
12222^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12223
12224Syntax:
12225"""""""
12226
12227::
12228
12229 declare <type>
12230 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
12231 metadata <rounding mode>,
12232 metadata <exception behavior>)
12233
12234Overview:
12235"""""""""
12236
12237The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
12238its two operands.
12239
12240
12241Arguments:
12242""""""""""
12243
12244The first two arguments to the '``llvm.experimental.constrained.fmul``'
12245intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12246of floating point values. Both arguments must have identical types.
12247
12248The third and fourth arguments specify the rounding mode and exception
12249behavior as described above.
12250
12251Semantics:
12252""""""""""
12253
12254The value produced is the floating point product of the two value operands and
12255has the same type as the operands.
12256
12257
12258'``llvm.experimental.constrained.fdiv``' Intrinsic
12259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12260
12261Syntax:
12262"""""""
12263
12264::
12265
12266 declare <type>
12267 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
12268 metadata <rounding mode>,
12269 metadata <exception behavior>)
12270
12271Overview:
12272"""""""""
12273
12274The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
12275its two operands.
12276
12277
12278Arguments:
12279""""""""""
12280
12281The first two arguments to the '``llvm.experimental.constrained.fdiv``'
12282intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12283of floating point values. Both arguments must have identical types.
12284
12285The third and fourth arguments specify the rounding mode and exception
12286behavior as described above.
12287
12288Semantics:
12289""""""""""
12290
12291The value produced is the floating point quotient of the two value operands and
12292has the same type as the operands.
12293
12294
12295'``llvm.experimental.constrained.frem``' Intrinsic
12296^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12297
12298Syntax:
12299"""""""
12300
12301::
12302
12303 declare <type>
12304 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
12305 metadata <rounding mode>,
12306 metadata <exception behavior>)
12307
12308Overview:
12309"""""""""
12310
12311The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
12312from the division of its two operands.
12313
12314
12315Arguments:
12316""""""""""
12317
12318The first two arguments to the '``llvm.experimental.constrained.frem``'
12319intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12320of floating point values. Both arguments must have identical types.
12321
12322The third and fourth arguments specify the rounding mode and exception
12323behavior as described above. The rounding mode argument has no effect, since
12324the result of frem is never rounded, but the argument is included for
12325consistency with the other constrained floating point intrinsics.
12326
12327Semantics:
12328""""""""""
12329
12330The value produced is the floating point remainder from the division of the two
12331value operands and has the same type as the operands. The remainder has the
12332same sign as the dividend.
12333
12334
Sean Silvab084af42012-12-07 10:36:55 +000012335General Intrinsics
12336------------------
12337
12338This class of intrinsics is designed to be generic and has no specific
12339purpose.
12340
12341'``llvm.var.annotation``' Intrinsic
12342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12343
12344Syntax:
12345"""""""
12346
12347::
12348
12349 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12350
12351Overview:
12352"""""""""
12353
12354The '``llvm.var.annotation``' intrinsic.
12355
12356Arguments:
12357""""""""""
12358
12359The first argument is a pointer to a value, the second is a pointer to a
12360global string, the third is a pointer to a global string which is the
12361source file name, and the last argument is the line number.
12362
12363Semantics:
12364""""""""""
12365
12366This intrinsic allows annotation of local variables with arbitrary
12367strings. This can be useful for special purpose optimizations that want
12368to look for these annotations. These have no other defined use; they are
12369ignored by code generation and optimization.
12370
Michael Gottesman88d18832013-03-26 00:34:27 +000012371'``llvm.ptr.annotation.*``' Intrinsic
12372^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12373
12374Syntax:
12375"""""""
12376
12377This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12378pointer to an integer of any width. *NOTE* you must specify an address space for
12379the pointer. The identifier for the default address space is the integer
12380'``0``'.
12381
12382::
12383
12384 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12385 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12386 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12387 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12388 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12389
12390Overview:
12391"""""""""
12392
12393The '``llvm.ptr.annotation``' intrinsic.
12394
12395Arguments:
12396""""""""""
12397
12398The first argument is a pointer to an integer value of arbitrary bitwidth
12399(result of some expression), the second is a pointer to a global string, the
12400third is a pointer to a global string which is the source file name, and the
12401last argument is the line number. It returns the value of the first argument.
12402
12403Semantics:
12404""""""""""
12405
12406This intrinsic allows annotation of a pointer to an integer with arbitrary
12407strings. This can be useful for special purpose optimizations that want to look
12408for these annotations. These have no other defined use; they are ignored by code
12409generation and optimization.
12410
Sean Silvab084af42012-12-07 10:36:55 +000012411'``llvm.annotation.*``' Intrinsic
12412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12413
12414Syntax:
12415"""""""
12416
12417This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12418any integer bit width.
12419
12420::
12421
12422 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12423 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12424 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12425 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12426 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12427
12428Overview:
12429"""""""""
12430
12431The '``llvm.annotation``' intrinsic.
12432
12433Arguments:
12434""""""""""
12435
12436The first argument is an integer value (result of some expression), the
12437second is a pointer to a global string, the third is a pointer to a
12438global string which is the source file name, and the last argument is
12439the line number. It returns the value of the first argument.
12440
12441Semantics:
12442""""""""""
12443
12444This intrinsic allows annotations to be put on arbitrary expressions
12445with arbitrary strings. This can be useful for special purpose
12446optimizations that want to look for these annotations. These have no
12447other defined use; they are ignored by code generation and optimization.
12448
12449'``llvm.trap``' Intrinsic
12450^^^^^^^^^^^^^^^^^^^^^^^^^
12451
12452Syntax:
12453"""""""
12454
12455::
12456
12457 declare void @llvm.trap() noreturn nounwind
12458
12459Overview:
12460"""""""""
12461
12462The '``llvm.trap``' intrinsic.
12463
12464Arguments:
12465""""""""""
12466
12467None.
12468
12469Semantics:
12470""""""""""
12471
12472This intrinsic is lowered to the target dependent trap instruction. If
12473the target does not have a trap instruction, this intrinsic will be
12474lowered to a call of the ``abort()`` function.
12475
12476'``llvm.debugtrap``' Intrinsic
12477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12478
12479Syntax:
12480"""""""
12481
12482::
12483
12484 declare void @llvm.debugtrap() nounwind
12485
12486Overview:
12487"""""""""
12488
12489The '``llvm.debugtrap``' intrinsic.
12490
12491Arguments:
12492""""""""""
12493
12494None.
12495
12496Semantics:
12497""""""""""
12498
12499This intrinsic is lowered to code which is intended to cause an
12500execution trap with the intention of requesting the attention of a
12501debugger.
12502
12503'``llvm.stackprotector``' Intrinsic
12504^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12505
12506Syntax:
12507"""""""
12508
12509::
12510
12511 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12512
12513Overview:
12514"""""""""
12515
12516The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12517onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12518is placed on the stack before local variables.
12519
12520Arguments:
12521""""""""""
12522
12523The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12524The first argument is the value loaded from the stack guard
12525``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12526enough space to hold the value of the guard.
12527
12528Semantics:
12529""""""""""
12530
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012531This intrinsic causes the prologue/epilogue inserter to force the position of
12532the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12533to ensure that if a local variable on the stack is overwritten, it will destroy
12534the value of the guard. When the function exits, the guard on the stack is
12535checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12536different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12537calling the ``__stack_chk_fail()`` function.
12538
Tim Shene885d5e2016-04-19 19:40:37 +000012539'``llvm.stackguard``' Intrinsic
12540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12541
12542Syntax:
12543"""""""
12544
12545::
12546
12547 declare i8* @llvm.stackguard()
12548
12549Overview:
12550"""""""""
12551
12552The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12553
12554It should not be generated by frontends, since it is only for internal usage.
12555The reason why we create this intrinsic is that we still support IR form Stack
12556Protector in FastISel.
12557
12558Arguments:
12559""""""""""
12560
12561None.
12562
12563Semantics:
12564""""""""""
12565
12566On some platforms, the value returned by this intrinsic remains unchanged
12567between loads in the same thread. On other platforms, it returns the same
12568global variable value, if any, e.g. ``@__stack_chk_guard``.
12569
12570Currently some platforms have IR-level customized stack guard loading (e.g.
12571X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12572in the future.
12573
Sean Silvab084af42012-12-07 10:36:55 +000012574'``llvm.objectsize``' Intrinsic
12575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12576
12577Syntax:
12578"""""""
12579
12580::
12581
12582 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12583 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12584
12585Overview:
12586"""""""""
12587
12588The ``llvm.objectsize`` intrinsic is designed to provide information to
12589the optimizers to determine at compile time whether a) an operation
12590(like memcpy) will overflow a buffer that corresponds to an object, or
12591b) that a runtime check for overflow isn't necessary. An object in this
12592context means an allocation of a specific class, structure, array, or
12593other object.
12594
12595Arguments:
12596""""""""""
12597
12598The ``llvm.objectsize`` intrinsic takes two arguments. The first
12599argument is a pointer to or into the ``object``. The second argument is
12600a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12601or -1 (if false) when the object size is unknown. The second argument
12602only accepts constants.
12603
12604Semantics:
12605""""""""""
12606
12607The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12608the size of the object concerned. If the size cannot be determined at
12609compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12610on the ``min`` argument).
12611
12612'``llvm.expect``' Intrinsic
12613^^^^^^^^^^^^^^^^^^^^^^^^^^^
12614
12615Syntax:
12616"""""""
12617
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012618This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12619integer bit width.
12620
Sean Silvab084af42012-12-07 10:36:55 +000012621::
12622
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012623 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012624 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12625 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12626
12627Overview:
12628"""""""""
12629
12630The ``llvm.expect`` intrinsic provides information about expected (the
12631most probable) value of ``val``, which can be used by optimizers.
12632
12633Arguments:
12634""""""""""
12635
12636The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12637a value. The second argument is an expected value, this needs to be a
12638constant value, variables are not allowed.
12639
12640Semantics:
12641""""""""""
12642
12643This intrinsic is lowered to the ``val``.
12644
Philip Reamese0e90832015-04-26 22:23:12 +000012645.. _int_assume:
12646
Hal Finkel93046912014-07-25 21:13:35 +000012647'``llvm.assume``' Intrinsic
12648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12649
12650Syntax:
12651"""""""
12652
12653::
12654
12655 declare void @llvm.assume(i1 %cond)
12656
12657Overview:
12658"""""""""
12659
12660The ``llvm.assume`` allows the optimizer to assume that the provided
12661condition is true. This information can then be used in simplifying other parts
12662of the code.
12663
12664Arguments:
12665""""""""""
12666
12667The condition which the optimizer may assume is always true.
12668
12669Semantics:
12670""""""""""
12671
12672The intrinsic allows the optimizer to assume that the provided condition is
12673always true whenever the control flow reaches the intrinsic call. No code is
12674generated for this intrinsic, and instructions that contribute only to the
12675provided condition are not used for code generation. If the condition is
12676violated during execution, the behavior is undefined.
12677
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012678Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012679used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12680only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012681if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012682sufficient overall improvement in code quality. For this reason,
12683``llvm.assume`` should not be used to document basic mathematical invariants
12684that the optimizer can otherwise deduce or facts that are of little use to the
12685optimizer.
12686
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012687.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012688
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012689'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12691
12692Syntax:
12693"""""""
12694
12695::
12696
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012697 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012698
12699
12700Arguments:
12701""""""""""
12702
12703The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012704metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012705
12706Overview:
12707"""""""""
12708
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012709The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12710with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012711
Peter Collingbourne0312f612016-06-25 00:23:04 +000012712'``llvm.type.checked.load``' Intrinsic
12713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12714
12715Syntax:
12716"""""""
12717
12718::
12719
12720 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12721
12722
12723Arguments:
12724""""""""""
12725
12726The first argument is a pointer from which to load a function pointer. The
12727second argument is the byte offset from which to load the function pointer. The
12728third argument is a metadata object representing a :doc:`type identifier
12729<TypeMetadata>`.
12730
12731Overview:
12732"""""""""
12733
12734The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12735virtual table pointer using type metadata. This intrinsic is used to implement
12736control flow integrity in conjunction with virtual call optimization. The
12737virtual call optimization pass will optimize away ``llvm.type.checked.load``
12738intrinsics associated with devirtualized calls, thereby removing the type
12739check in cases where it is not needed to enforce the control flow integrity
12740constraint.
12741
12742If the given pointer is associated with a type metadata identifier, this
12743function returns true as the second element of its return value. (Note that
12744the function may also return true if the given pointer is not associated
12745with a type metadata identifier.) If the function's return value's second
12746element is true, the following rules apply to the first element:
12747
12748- If the given pointer is associated with the given type metadata identifier,
12749 it is the function pointer loaded from the given byte offset from the given
12750 pointer.
12751
12752- If the given pointer is not associated with the given type metadata
12753 identifier, it is one of the following (the choice of which is unspecified):
12754
12755 1. The function pointer that would have been loaded from an arbitrarily chosen
12756 (through an unspecified mechanism) pointer associated with the type
12757 metadata.
12758
12759 2. If the function has a non-void return type, a pointer to a function that
12760 returns an unspecified value without causing side effects.
12761
12762If the function's return value's second element is false, the value of the
12763first element is undefined.
12764
12765
Sean Silvab084af42012-12-07 10:36:55 +000012766'``llvm.donothing``' Intrinsic
12767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12768
12769Syntax:
12770"""""""
12771
12772::
12773
12774 declare void @llvm.donothing() nounwind readnone
12775
12776Overview:
12777"""""""""
12778
Juergen Ributzkac9161192014-10-23 22:36:13 +000012779The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012780three intrinsics (besides ``llvm.experimental.patchpoint`` and
12781``llvm.experimental.gc.statepoint``) that can be called with an invoke
12782instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012783
12784Arguments:
12785""""""""""
12786
12787None.
12788
12789Semantics:
12790""""""""""
12791
12792This intrinsic does nothing, and it's removed by optimizers and ignored
12793by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012794
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012795'``llvm.experimental.deoptimize``' Intrinsic
12796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12797
12798Syntax:
12799"""""""
12800
12801::
12802
12803 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12804
12805Overview:
12806"""""""""
12807
12808This intrinsic, together with :ref:`deoptimization operand bundles
12809<deopt_opbundles>`, allow frontends to express transfer of control and
12810frame-local state from the currently executing (typically more specialized,
12811hence faster) version of a function into another (typically more generic, hence
12812slower) version.
12813
12814In languages with a fully integrated managed runtime like Java and JavaScript
12815this intrinsic can be used to implement "uncommon trap" or "side exit" like
12816functionality. In unmanaged languages like C and C++, this intrinsic can be
12817used to represent the slow paths of specialized functions.
12818
12819
12820Arguments:
12821""""""""""
12822
12823The intrinsic takes an arbitrary number of arguments, whose meaning is
12824decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12825
12826Semantics:
12827""""""""""
12828
12829The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12830deoptimization continuation (denoted using a :ref:`deoptimization
12831operand bundle <deopt_opbundles>`) and returns the value returned by
12832the deoptimization continuation. Defining the semantic properties of
12833the continuation itself is out of scope of the language reference --
12834as far as LLVM is concerned, the deoptimization continuation can
12835invoke arbitrary side effects, including reading from and writing to
12836the entire heap.
12837
12838Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12839continue execution to the end of the physical frame containing them, so all
12840calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12841
12842 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12843 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12844 - The ``ret`` instruction must return the value produced by the
12845 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12846
12847Note that the above restrictions imply that the return type for a call to
12848``@llvm.experimental.deoptimize`` will match the return type of its immediate
12849caller.
12850
12851The inliner composes the ``"deopt"`` continuations of the caller into the
12852``"deopt"`` continuations present in the inlinee, and also updates calls to this
12853intrinsic to return directly from the frame of the function it inlined into.
12854
Sanjoy Dase0aa4142016-05-12 01:17:38 +000012855All declarations of ``@llvm.experimental.deoptimize`` must share the
12856same calling convention.
12857
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012858.. _deoptimize_lowering:
12859
12860Lowering:
12861"""""""""
12862
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012863Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12864symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12865ensure that this symbol is defined). The call arguments to
12866``@llvm.experimental.deoptimize`` are lowered as if they were formal
12867arguments of the specified types, and not as varargs.
12868
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012869
Sanjoy Das021de052016-03-31 00:18:46 +000012870'``llvm.experimental.guard``' Intrinsic
12871^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12872
12873Syntax:
12874"""""""
12875
12876::
12877
12878 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12879
12880Overview:
12881"""""""""
12882
12883This intrinsic, together with :ref:`deoptimization operand bundles
12884<deopt_opbundles>`, allows frontends to express guards or checks on
12885optimistic assumptions made during compilation. The semantics of
12886``@llvm.experimental.guard`` is defined in terms of
12887``@llvm.experimental.deoptimize`` -- its body is defined to be
12888equivalent to:
12889
Renato Golin124f2592016-07-20 12:16:38 +000012890.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000012891
Renato Golin124f2592016-07-20 12:16:38 +000012892 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12893 %realPred = and i1 %pred, undef
12894 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000012895
Renato Golin124f2592016-07-20 12:16:38 +000012896 leave:
12897 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12898 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000012899
Renato Golin124f2592016-07-20 12:16:38 +000012900 continue:
12901 ret void
12902 }
Sanjoy Das021de052016-03-31 00:18:46 +000012903
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012904
12905with the optional ``[, !make.implicit !{}]`` present if and only if it
12906is present on the call site. For more details on ``!make.implicit``,
12907see :doc:`FaultMaps`.
12908
Sanjoy Das021de052016-03-31 00:18:46 +000012909In words, ``@llvm.experimental.guard`` executes the attached
12910``"deopt"`` continuation if (but **not** only if) its first argument
12911is ``false``. Since the optimizer is allowed to replace the ``undef``
12912with an arbitrary value, it can optimize guard to fail "spuriously",
12913i.e. without the original condition being false (hence the "not only
12914if"); and this allows for "check widening" type optimizations.
12915
12916``@llvm.experimental.guard`` cannot be invoked.
12917
12918
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012919'``llvm.load.relative``' Intrinsic
12920^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12921
12922Syntax:
12923"""""""
12924
12925::
12926
12927 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12928
12929Overview:
12930"""""""""
12931
12932This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12933adds ``%ptr`` to that value and returns it. The constant folder specifically
12934recognizes the form of this intrinsic and the constant initializers it may
12935load from; if a loaded constant initializer is known to have the form
12936``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12937
12938LLVM provides that the calculation of such a constant initializer will
12939not overflow at link time under the medium code model if ``x`` is an
12940``unnamed_addr`` function. However, it does not provide this guarantee for
12941a constant initializer folded into a function body. This intrinsic can be
12942used to avoid the possibility of overflows when loading from such a constant.
12943
Andrew Trick5e029ce2013-12-24 02:57:25 +000012944Stack Map Intrinsics
12945--------------------
12946
12947LLVM provides experimental intrinsics to support runtime patching
12948mechanisms commonly desired in dynamic language JITs. These intrinsics
12949are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000012950
12951Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000012952-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000012953
12954These intrinsics are similar to the standard library memory intrinsics except
12955that they perform memory transfer as a sequence of atomic memory accesses.
12956
12957.. _int_memcpy_element_atomic:
12958
12959'``llvm.memcpy.element.atomic``' Intrinsic
Igor Laevskyfedab152016-12-29 15:08:57 +000012960^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000012961
12962Syntax:
12963"""""""
12964
12965This is an overloaded intrinsic. You can use ``llvm.memcpy.element.atomic`` on
12966any integer bit width and for different address spaces. Not all targets
12967support all bit widths however.
12968
12969::
12970
12971 declare void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* <dest>, i8* <src>,
12972 i64 <num_elements>, i32 <element_size>)
12973
12974Overview:
12975"""""""""
12976
12977The '``llvm.memcpy.element.atomic.*``' intrinsic performs copy of a block of
12978memory from the source location to the destination location as a sequence of
12979unordered atomic memory accesses where each access is a multiple of
12980``element_size`` bytes wide and aligned at an element size boundary. For example
12981each element is accessed atomically in source and destination buffers.
12982
12983Arguments:
12984""""""""""
12985
12986The first argument is a pointer to the destination, the second is a
12987pointer to the source. The third argument is an integer argument
12988specifying the number of elements to copy, the fourth argument is size of
12989the single element in bytes.
12990
12991``element_size`` should be a power of two, greater than zero and less than
12992a target-specific atomic access size limit.
12993
12994For each of the input pointers ``align`` parameter attribute must be specified.
12995It must be a power of two and greater than or equal to the ``element_size``.
12996Caller guarantees that both the source and destination pointers are aligned to
12997that boundary.
12998
12999Semantics:
13000""""""""""
13001
13002The '``llvm.memcpy.element.atomic.*``' intrinsic copies
13003'``num_elements`` * ``element_size``' bytes of memory from the source location to
13004the destination location. These locations are not allowed to overlap. Memory copy
13005is performed as a sequence of unordered atomic memory accesses where each access
13006is guaranteed to be a multiple of ``element_size`` bytes wide and aligned at an
13007element size boundary.
13008
13009The order of the copy is unspecified. The same value may be read from the source
13010buffer many times, but only one write is issued to the destination buffer per
13011element. It is well defined to have concurrent reads and writes to both source
13012and destination provided those reads and writes are at least unordered atomic.
13013
13014This intrinsic does not provide any additional ordering guarantees over those
13015provided by a set of unordered loads from the source location and stores to the
13016destination.
13017
13018Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000013019"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000013020
13021In the most general case call to the '``llvm.memcpy.element.atomic.*``' is lowered
13022to a call to the symbol ``__llvm_memcpy_element_atomic_*``. Where '*' is replaced
13023with an actual element size.
13024
13025Optimizer is allowed to inline memory copy when it's profitable to do so.