blob: 94a896f421fe8c6bdf5ae77516ec9093b064b3c3 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
645an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000646
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000647Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000648:ref:`Thread Local Storage Model <tls_model>`.
649
Nico Rieck7157bb72014-01-14 15:22:47 +0000650Syntax::
651
Rafael Espindola32483a72016-05-10 18:22:45 +0000652 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000653 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
654 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000655 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000656 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000657 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659For example, the following defines a global in a numbered address space
660with an initializer, section, and alignment:
661
662.. code-block:: llvm
663
664 @G = addrspace(5) constant float 1.0, section "foo", align 4
665
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000666The following example just declares a global variable
667
668.. code-block:: llvm
669
670 @G = external global i32
671
Sean Silvab084af42012-12-07 10:36:55 +0000672The following example defines a thread-local global with the
673``initialexec`` TLS model:
674
675.. code-block:: llvm
676
677 @G = thread_local(initialexec) global i32 0, align 4
678
679.. _functionstructure:
680
681Functions
682---------
683
684LLVM function definitions consist of the "``define``" keyword, an
685optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000686style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
687an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000688an optional ``unnamed_addr`` attribute, a return type, an optional
689:ref:`parameter attribute <paramattrs>` for the return type, a function
690name, a (possibly empty) argument list (each with optional :ref:`parameter
691attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000692an optional section, an optional alignment,
693an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000694an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000695an optional :ref:`prologue <prologuedata>`,
696an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000697an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000698an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000699
700LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000701optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
702<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
703optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
704or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
705attribute <paramattrs>` for the return type, a function name, a possibly
706empty list of arguments, an optional alignment, an optional :ref:`garbage
707collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
708:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000709
Bill Wendling6822ecb2013-10-27 05:09:12 +0000710A function definition contains a list of basic blocks, forming the CFG (Control
711Flow Graph) for the function. Each basic block may optionally start with a label
712(giving the basic block a symbol table entry), contains a list of instructions,
713and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
714function return). If an explicit label is not provided, a block is assigned an
715implicit numbered label, using the next value from the same counter as used for
716unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
717entry block does not have an explicit label, it will be assigned label "%0",
718then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000719
720The first basic block in a function is special in two ways: it is
721immediately executed on entrance to the function, and it is not allowed
722to have predecessor basic blocks (i.e. there can not be any branches to
723the entry block of a function). Because the block can have no
724predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
725
726LLVM allows an explicit section to be specified for functions. If the
727target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000728Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730An explicit alignment may be specified for a function. If not present,
731or if the alignment is set to zero, the alignment of the function is set
732by the target to whatever it feels convenient. If an explicit alignment
733is specified, the function is forced to have at least that much
734alignment. All alignments must be a power of 2.
735
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000736If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000737be significant and two identical functions can be merged.
738
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000739If the ``local_unnamed_addr`` attribute is given, the address is known to
740not be significant within the module.
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Syntax::
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000745 [cconv] [ret attrs]
746 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000747 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
748 [comdat [($name)]] [align N] [gc] [prefix Constant]
749 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000750
Sean Silva706fba52015-08-06 22:56:24 +0000751The argument list is a comma separated sequence of arguments where each
752argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000753
754Syntax::
755
756 <type> [parameter Attrs] [name]
757
758
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000759.. _langref_aliases:
760
Sean Silvab084af42012-12-07 10:36:55 +0000761Aliases
762-------
763
Rafael Espindola64c1e182014-06-03 02:41:57 +0000764Aliases, unlike function or variables, don't create any new data. They
765are just a new symbol and metadata for an existing position.
766
767Aliases have a name and an aliasee that is either a global value or a
768constant expression.
769
Nico Rieck7157bb72014-01-14 15:22:47 +0000770Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000771:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
772<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000773
774Syntax::
775
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000776 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000777
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000778The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000779``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000780might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000781
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000782Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000783the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
784to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000785
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000786If the ``local_unnamed_addr`` attribute is given, the address is known to
787not be significant within the module.
788
Rafael Espindola64c1e182014-06-03 02:41:57 +0000789Since aliases are only a second name, some restrictions apply, of which
790some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000791
Rafael Espindola64c1e182014-06-03 02:41:57 +0000792* The expression defining the aliasee must be computable at assembly
793 time. Since it is just a name, no relocations can be used.
794
795* No alias in the expression can be weak as the possibility of the
796 intermediate alias being overridden cannot be represented in an
797 object file.
798
799* No global value in the expression can be a declaration, since that
800 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000801
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000802.. _langref_ifunc:
803
804IFuncs
805-------
806
807IFuncs, like as aliases, don't create any new data or func. They are just a new
808symbol that dynamic linker resolves at runtime by calling a resolver function.
809
810IFuncs have a name and a resolver that is a function called by dynamic linker
811that returns address of another function associated with the name.
812
813IFunc may have an optional :ref:`linkage type <linkage>` and an optional
814:ref:`visibility style <visibility>`.
815
816Syntax::
817
818 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821.. _langref_comdats:
822
823Comdats
824-------
825
826Comdat IR provides access to COFF and ELF object file COMDAT functionality.
827
Sean Silvaa1190322015-08-06 22:56:48 +0000828Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000829specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000830that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000831aliasee computes to, if any.
832
833Comdats have a selection kind to provide input on how the linker should
834choose between keys in two different object files.
835
836Syntax::
837
838 $<Name> = comdat SelectionKind
839
840The selection kind must be one of the following:
841
842``any``
843 The linker may choose any COMDAT key, the choice is arbitrary.
844``exactmatch``
845 The linker may choose any COMDAT key but the sections must contain the
846 same data.
847``largest``
848 The linker will choose the section containing the largest COMDAT key.
849``noduplicates``
850 The linker requires that only section with this COMDAT key exist.
851``samesize``
852 The linker may choose any COMDAT key but the sections must contain the
853 same amount of data.
854
855Note that the Mach-O platform doesn't support COMDATs and ELF only supports
856``any`` as a selection kind.
857
858Here is an example of a COMDAT group where a function will only be selected if
859the COMDAT key's section is the largest:
860
Renato Golin124f2592016-07-20 12:16:38 +0000861.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000862
863 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000864 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000865
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000867 ret void
868 }
869
Rafael Espindola83a362c2015-01-06 22:55:16 +0000870As a syntactic sugar the ``$name`` can be omitted if the name is the same as
871the global name:
872
Renato Golin124f2592016-07-20 12:16:38 +0000873.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000874
875 $foo = comdat any
876 @foo = global i32 2, comdat
877
878
David Majnemerdad0a642014-06-27 18:19:56 +0000879In a COFF object file, this will create a COMDAT section with selection kind
880``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
881and another COMDAT section with selection kind
882``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000883section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885There are some restrictions on the properties of the global object.
886It, or an alias to it, must have the same name as the COMDAT group when
887targeting COFF.
888The contents and size of this object may be used during link-time to determine
889which COMDAT groups get selected depending on the selection kind.
890Because the name of the object must match the name of the COMDAT group, the
891linkage of the global object must not be local; local symbols can get renamed
892if a collision occurs in the symbol table.
893
894The combined use of COMDATS and section attributes may yield surprising results.
895For example:
896
Renato Golin124f2592016-07-20 12:16:38 +0000897.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000898
899 $foo = comdat any
900 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901 @g1 = global i32 42, section "sec", comdat($foo)
902 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000903
904From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000905with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000906COMDAT groups and COMDATs, at the object file level, are represented by
907sections.
908
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000909Note that certain IR constructs like global variables and functions may
910create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000911COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000912in individual sections (e.g. when `-data-sections` or `-function-sections`
913is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000914
Sean Silvab084af42012-12-07 10:36:55 +0000915.. _namedmetadatastructure:
916
917Named Metadata
918--------------
919
920Named metadata is a collection of metadata. :ref:`Metadata
921nodes <metadata>` (but not metadata strings) are the only valid
922operands for a named metadata.
923
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000924#. Named metadata are represented as a string of characters with the
925 metadata prefix. The rules for metadata names are the same as for
926 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
927 are still valid, which allows any character to be part of a name.
928
Sean Silvab084af42012-12-07 10:36:55 +0000929Syntax::
930
931 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000932 !0 = !{!"zero"}
933 !1 = !{!"one"}
934 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000935 ; A named metadata.
936 !name = !{!0, !1, !2}
937
938.. _paramattrs:
939
940Parameter Attributes
941--------------------
942
943The return type and each parameter of a function type may have a set of
944*parameter attributes* associated with them. Parameter attributes are
945used to communicate additional information about the result or
946parameters of a function. Parameter attributes are considered to be part
947of the function, not of the function type, so functions with different
948parameter attributes can have the same function type.
949
950Parameter attributes are simple keywords that follow the type specified.
951If multiple parameter attributes are needed, they are space separated.
952For example:
953
954.. code-block:: llvm
955
956 declare i32 @printf(i8* noalias nocapture, ...)
957 declare i32 @atoi(i8 zeroext)
958 declare signext i8 @returns_signed_char()
959
960Note that any attributes for the function result (``nounwind``,
961``readonly``) come immediately after the argument list.
962
963Currently, only the following parameter attributes are defined:
964
965``zeroext``
966 This indicates to the code generator that the parameter or return
967 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000968 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000969``signext``
970 This indicates to the code generator that the parameter or return
971 value should be sign-extended to the extent required by the target's
972 ABI (which is usually 32-bits) by the caller (for a parameter) or
973 the callee (for a return value).
974``inreg``
975 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000976 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000977 a function call or return (usually, by putting it in a register as
978 opposed to memory, though some targets use it to distinguish between
979 two different kinds of registers). Use of this attribute is
980 target-specific.
981``byval``
982 This indicates that the pointer parameter should really be passed by
983 value to the function. The attribute implies that a hidden copy of
984 the pointee is made between the caller and the callee, so the callee
985 is unable to modify the value in the caller. This attribute is only
986 valid on LLVM pointer arguments. It is generally used to pass
987 structs and arrays by value, but is also valid on pointers to
988 scalars. The copy is considered to belong to the caller not the
989 callee (for example, ``readonly`` functions should not write to
990 ``byval`` parameters). This is not a valid attribute for return
991 values.
992
993 The byval attribute also supports specifying an alignment with the
994 align attribute. It indicates the alignment of the stack slot to
995 form and the known alignment of the pointer specified to the call
996 site. If the alignment is not specified, then the code generator
997 makes a target-specific assumption.
998
Reid Klecknera534a382013-12-19 02:14:12 +0000999.. _attr_inalloca:
1000
1001``inalloca``
1002
Reid Kleckner60d3a832014-01-16 22:59:24 +00001003 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001004 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001005 be a pointer to stack memory produced by an ``alloca`` instruction.
1006 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001007 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001008 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001009
Reid Kleckner436c42e2014-01-17 23:58:17 +00001010 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001011 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001012 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001013 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001014 ``inalloca`` attribute also disables LLVM's implicit lowering of
1015 large aggregate return values, which means that frontend authors
1016 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001017
Reid Kleckner60d3a832014-01-16 22:59:24 +00001018 When the call site is reached, the argument allocation must have
1019 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001020 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001021 space after an argument allocation and before its call site, but it
1022 must be cleared off with :ref:`llvm.stackrestore
1023 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001024
1025 See :doc:`InAlloca` for more information on how to use this
1026 attribute.
1027
Sean Silvab084af42012-12-07 10:36:55 +00001028``sret``
1029 This indicates that the pointer parameter specifies the address of a
1030 structure that is the return value of the function in the source
1031 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001032 loads and stores to the structure may be assumed by the callee not
1033 to trap and to be properly aligned. This is not a valid attribute
1034 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001035
Hal Finkelccc70902014-07-22 16:58:55 +00001036``align <n>``
1037 This indicates that the pointer value may be assumed by the optimizer to
1038 have the specified alignment.
1039
1040 Note that this attribute has additional semantics when combined with the
1041 ``byval`` attribute.
1042
Sean Silva1703e702014-04-08 21:06:22 +00001043.. _noalias:
1044
Sean Silvab084af42012-12-07 10:36:55 +00001045``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001046 This indicates that objects accessed via pointer values
1047 :ref:`based <pointeraliasing>` on the argument or return value are not also
1048 accessed, during the execution of the function, via pointer values not
1049 *based* on the argument or return value. The attribute on a return value
1050 also has additional semantics described below. The caller shares the
1051 responsibility with the callee for ensuring that these requirements are met.
1052 For further details, please see the discussion of the NoAlias response in
1053 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001054
1055 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001056 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001057
1058 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001059 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1060 attribute on return values are stronger than the semantics of the attribute
1061 when used on function arguments. On function return values, the ``noalias``
1062 attribute indicates that the function acts like a system memory allocation
1063 function, returning a pointer to allocated storage disjoint from the
1064 storage for any other object accessible to the caller.
1065
Sean Silvab084af42012-12-07 10:36:55 +00001066``nocapture``
1067 This indicates that the callee does not make any copies of the
1068 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001069 attribute for return values. Addresses used in volatile operations
1070 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001071
1072.. _nest:
1073
1074``nest``
1075 This indicates that the pointer parameter can be excised using the
1076 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001077 attribute for return values and can only be applied to one parameter.
1078
1079``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001080 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001081 value. This is a hint to the optimizer and code generator used when
1082 generating the caller, allowing value propagation, tail call optimization,
1083 and omission of register saves and restores in some cases; it is not
1084 checked or enforced when generating the callee. The parameter and the
1085 function return type must be valid operands for the
1086 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1087 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001088
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001089``nonnull``
1090 This indicates that the parameter or return pointer is not null. This
1091 attribute may only be applied to pointer typed parameters. This is not
1092 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001093 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001094 is non-null.
1095
Hal Finkelb0407ba2014-07-18 15:51:28 +00001096``dereferenceable(<n>)``
1097 This indicates that the parameter or return pointer is dereferenceable. This
1098 attribute may only be applied to pointer typed parameters. A pointer that
1099 is dereferenceable can be loaded from speculatively without a risk of
1100 trapping. The number of bytes known to be dereferenceable must be provided
1101 in parentheses. It is legal for the number of bytes to be less than the
1102 size of the pointee type. The ``nonnull`` attribute does not imply
1103 dereferenceability (consider a pointer to one element past the end of an
1104 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1105 ``addrspace(0)`` (which is the default address space).
1106
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001107``dereferenceable_or_null(<n>)``
1108 This indicates that the parameter or return value isn't both
1109 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001110 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001111 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1112 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1113 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1114 and in other address spaces ``dereferenceable_or_null(<n>)``
1115 implies that a pointer is at least one of ``dereferenceable(<n>)``
1116 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001117 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001118 pointer typed parameters.
1119
Manman Renf46262e2016-03-29 17:37:21 +00001120``swiftself``
1121 This indicates that the parameter is the self/context parameter. This is not
1122 a valid attribute for return values and can only be applied to one
1123 parameter.
1124
Manman Ren9bfd0d02016-04-01 21:41:15 +00001125``swifterror``
1126 This attribute is motivated to model and optimize Swift error handling. It
1127 can be applied to a parameter with pointer to pointer type or a
1128 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001129 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1130 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1131 the parameter or the alloca) can only be loaded and stored from, or used as
1132 a ``swifterror`` argument. This is not a valid attribute for return values
1133 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001134
1135 These constraints allow the calling convention to optimize access to
1136 ``swifterror`` variables by associating them with a specific register at
1137 call boundaries rather than placing them in memory. Since this does change
1138 the calling convention, a function which uses the ``swifterror`` attribute
1139 on a parameter is not ABI-compatible with one which does not.
1140
1141 These constraints also allow LLVM to assume that a ``swifterror`` argument
1142 does not alias any other memory visible within a function and that a
1143 ``swifterror`` alloca passed as an argument does not escape.
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _gc:
1146
Philip Reamesf80bbff2015-02-25 23:45:20 +00001147Garbage Collector Strategy Names
1148--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001149
Philip Reamesf80bbff2015-02-25 23:45:20 +00001150Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001151string:
1152
1153.. code-block:: llvm
1154
1155 define void @f() gc "name" { ... }
1156
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001157The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001158<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001159strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001160named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001161garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001162which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001163
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001164.. _prefixdata:
1165
1166Prefix Data
1167-----------
1168
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001169Prefix data is data associated with a function which the code
1170generator will emit immediately before the function's entrypoint.
1171The purpose of this feature is to allow frontends to associate
1172language-specific runtime metadata with specific functions and make it
1173available through the function pointer while still allowing the
1174function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001175
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001176To access the data for a given function, a program may bitcast the
1177function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001178index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001179the prefix data. For instance, take the example of a function annotated
1180with a single ``i32``,
1181
1182.. code-block:: llvm
1183
1184 define void @f() prefix i32 123 { ... }
1185
1186The prefix data can be referenced as,
1187
1188.. code-block:: llvm
1189
David Blaikie16a97eb2015-03-04 22:02:58 +00001190 %0 = bitcast void* () @f to i32*
1191 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001192 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001193
1194Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001195of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001196beginning of the prefix data is aligned. This means that if the size
1197of the prefix data is not a multiple of the alignment size, the
1198function's entrypoint will not be aligned. If alignment of the
1199function's entrypoint is desired, padding must be added to the prefix
1200data.
1201
Sean Silvaa1190322015-08-06 22:56:48 +00001202A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001203to the ``available_externally`` linkage in that the data may be used by the
1204optimizers but will not be emitted in the object file.
1205
1206.. _prologuedata:
1207
1208Prologue Data
1209-------------
1210
1211The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1212be inserted prior to the function body. This can be used for enabling
1213function hot-patching and instrumentation.
1214
1215To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001216have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001217bytes which decode to a sequence of machine instructions, valid for the
1218module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001219the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001221definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001222makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001223
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001225which encodes the ``nop`` instruction:
1226
Renato Golin124f2592016-07-20 12:16:38 +00001227.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001228
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001230
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231Generally prologue data can be formed by encoding a relative branch instruction
1232which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001233x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1234
Renato Golin124f2592016-07-20 12:16:38 +00001235.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001236
1237 %0 = type <{ i8, i8, i8* }>
1238
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001239 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001240
Sean Silvaa1190322015-08-06 22:56:48 +00001241A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001242to the ``available_externally`` linkage in that the data may be used by the
1243optimizers but will not be emitted in the object file.
1244
David Majnemer7fddecc2015-06-17 20:52:32 +00001245.. _personalityfn:
1246
1247Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001248--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001249
1250The ``personality`` attribute permits functions to specify what function
1251to use for exception handling.
1252
Bill Wendling63b88192013-02-06 06:52:58 +00001253.. _attrgrp:
1254
1255Attribute Groups
1256----------------
1257
1258Attribute groups are groups of attributes that are referenced by objects within
1259the IR. They are important for keeping ``.ll`` files readable, because a lot of
1260functions will use the same set of attributes. In the degenerative case of a
1261``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1262group will capture the important command line flags used to build that file.
1263
1264An attribute group is a module-level object. To use an attribute group, an
1265object references the attribute group's ID (e.g. ``#37``). An object may refer
1266to more than one attribute group. In that situation, the attributes from the
1267different groups are merged.
1268
1269Here is an example of attribute groups for a function that should always be
1270inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1271
1272.. code-block:: llvm
1273
1274 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001275 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001276
1277 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001278 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001279
1280 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1281 define void @f() #0 #1 { ... }
1282
Sean Silvab084af42012-12-07 10:36:55 +00001283.. _fnattrs:
1284
1285Function Attributes
1286-------------------
1287
1288Function attributes are set to communicate additional information about
1289a function. Function attributes are considered to be part of the
1290function, not of the function type, so functions with different function
1291attributes can have the same function type.
1292
1293Function attributes are simple keywords that follow the type specified.
1294If multiple attributes are needed, they are space separated. For
1295example:
1296
1297.. code-block:: llvm
1298
1299 define void @f() noinline { ... }
1300 define void @f() alwaysinline { ... }
1301 define void @f() alwaysinline optsize { ... }
1302 define void @f() optsize { ... }
1303
Sean Silvab084af42012-12-07 10:36:55 +00001304``alignstack(<n>)``
1305 This attribute indicates that, when emitting the prologue and
1306 epilogue, the backend should forcibly align the stack pointer.
1307 Specify the desired alignment, which must be a power of two, in
1308 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001309``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1310 This attribute indicates that the annotated function will always return at
1311 least a given number of bytes (or null). Its arguments are zero-indexed
1312 parameter numbers; if one argument is provided, then it's assumed that at
1313 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1314 returned pointer. If two are provided, then it's assumed that
1315 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1316 available. The referenced parameters must be integer types. No assumptions
1317 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001318``alwaysinline``
1319 This attribute indicates that the inliner should attempt to inline
1320 this function into callers whenever possible, ignoring any active
1321 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001322``builtin``
1323 This indicates that the callee function at a call site should be
1324 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001325 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001326 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001327 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001328``cold``
1329 This attribute indicates that this function is rarely called. When
1330 computing edge weights, basic blocks post-dominated by a cold
1331 function call are also considered to be cold; and, thus, given low
1332 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001333``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001334 In some parallel execution models, there exist operations that cannot be
1335 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001336 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001337
Justin Lebar58535b12016-02-17 17:46:41 +00001338 The ``convergent`` attribute may appear on functions or call/invoke
1339 instructions. When it appears on a function, it indicates that calls to
1340 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001341 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001342 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001343 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001344
Justin Lebar58535b12016-02-17 17:46:41 +00001345 When it appears on a call/invoke, the ``convergent`` attribute indicates
1346 that we should treat the call as though we're calling a convergent
1347 function. This is particularly useful on indirect calls; without this we
1348 may treat such calls as though the target is non-convergent.
1349
1350 The optimizer may remove the ``convergent`` attribute on functions when it
1351 can prove that the function does not execute any convergent operations.
1352 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1353 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001354``inaccessiblememonly``
1355 This attribute indicates that the function may only access memory that
1356 is not accessible by the module being compiled. This is a weaker form
1357 of ``readnone``.
1358``inaccessiblemem_or_argmemonly``
1359 This attribute indicates that the function may only access memory that is
1360 either not accessible by the module being compiled, or is pointed to
1361 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001362``inlinehint``
1363 This attribute indicates that the source code contained a hint that
1364 inlining this function is desirable (such as the "inline" keyword in
1365 C/C++). It is just a hint; it imposes no requirements on the
1366 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001367``jumptable``
1368 This attribute indicates that the function should be added to a
1369 jump-instruction table at code-generation time, and that all address-taken
1370 references to this function should be replaced with a reference to the
1371 appropriate jump-instruction-table function pointer. Note that this creates
1372 a new pointer for the original function, which means that code that depends
1373 on function-pointer identity can break. So, any function annotated with
1374 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001375``minsize``
1376 This attribute suggests that optimization passes and code generator
1377 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001378 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001379 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001380``naked``
1381 This attribute disables prologue / epilogue emission for the
1382 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001383``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001384 This indicates that the callee function at a call site is not recognized as
1385 a built-in function. LLVM will retain the original call and not replace it
1386 with equivalent code based on the semantics of the built-in function, unless
1387 the call site uses the ``builtin`` attribute. This is valid at call sites
1388 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001389``noduplicate``
1390 This attribute indicates that calls to the function cannot be
1391 duplicated. A call to a ``noduplicate`` function may be moved
1392 within its parent function, but may not be duplicated within
1393 its parent function.
1394
1395 A function containing a ``noduplicate`` call may still
1396 be an inlining candidate, provided that the call is not
1397 duplicated by inlining. That implies that the function has
1398 internal linkage and only has one call site, so the original
1399 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001400``noimplicitfloat``
1401 This attributes disables implicit floating point instructions.
1402``noinline``
1403 This attribute indicates that the inliner should never inline this
1404 function in any situation. This attribute may not be used together
1405 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001406``nonlazybind``
1407 This attribute suppresses lazy symbol binding for the function. This
1408 may make calls to the function faster, at the cost of extra program
1409 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001410``noredzone``
1411 This attribute indicates that the code generator should not use a
1412 red zone, even if the target-specific ABI normally permits it.
1413``noreturn``
1414 This function attribute indicates that the function never returns
1415 normally. This produces undefined behavior at runtime if the
1416 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001417``norecurse``
1418 This function attribute indicates that the function does not call itself
1419 either directly or indirectly down any possible call path. This produces
1420 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001421``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001422 This function attribute indicates that the function never raises an
1423 exception. If the function does raise an exception, its runtime
1424 behavior is undefined. However, functions marked nounwind may still
1425 trap or generate asynchronous exceptions. Exception handling schemes
1426 that are recognized by LLVM to handle asynchronous exceptions, such
1427 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001428``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001429 This function attribute indicates that most optimization passes will skip
1430 this function, with the exception of interprocedural optimization passes.
1431 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001432 This attribute cannot be used together with the ``alwaysinline``
1433 attribute; this attribute is also incompatible
1434 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001435
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001436 This attribute requires the ``noinline`` attribute to be specified on
1437 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001438 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001439 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001440``optsize``
1441 This attribute suggests that optimization passes and code generator
1442 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001443 and otherwise do optimizations specifically to reduce code size as
1444 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001445``"patchable-function"``
1446 This attribute tells the code generator that the code
1447 generated for this function needs to follow certain conventions that
1448 make it possible for a runtime function to patch over it later.
1449 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001450 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001451
1452 * ``"prologue-short-redirect"`` - This style of patchable
1453 function is intended to support patching a function prologue to
1454 redirect control away from the function in a thread safe
1455 manner. It guarantees that the first instruction of the
1456 function will be large enough to accommodate a short jump
1457 instruction, and will be sufficiently aligned to allow being
1458 fully changed via an atomic compare-and-swap instruction.
1459 While the first requirement can be satisfied by inserting large
1460 enough NOP, LLVM can and will try to re-purpose an existing
1461 instruction (i.e. one that would have to be emitted anyway) as
1462 the patchable instruction larger than a short jump.
1463
1464 ``"prologue-short-redirect"`` is currently only supported on
1465 x86-64.
1466
1467 This attribute by itself does not imply restrictions on
1468 inter-procedural optimizations. All of the semantic effects the
1469 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001470``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001471 On a function, this attribute indicates that the function computes its
1472 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001473 without dereferencing any pointer arguments or otherwise accessing
1474 any mutable state (e.g. memory, control registers, etc) visible to
1475 caller functions. It does not write through any pointer arguments
1476 (including ``byval`` arguments) and never changes any state visible
1477 to callers. This means that it cannot unwind exceptions by calling
1478 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001479
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001480 On an argument, this attribute indicates that the function does not
1481 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001482 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001483``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001484 On a function, this attribute indicates that the function does not write
1485 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001486 modify any state (e.g. memory, control registers, etc) visible to
1487 caller functions. It may dereference pointer arguments and read
1488 state that may be set in the caller. A readonly function always
1489 returns the same value (or unwinds an exception identically) when
1490 called with the same set of arguments and global state. It cannot
1491 unwind an exception by calling the ``C++`` exception throwing
1492 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001493
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001494 On an argument, this attribute indicates that the function does not write
1495 through this pointer argument, even though it may write to the memory that
1496 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001497``writeonly``
1498 On a function, this attribute indicates that the function may write to but
1499 does not read from memory.
1500
1501 On an argument, this attribute indicates that the function may write to but
1502 does not read through this pointer argument (even though it may read from
1503 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001504``argmemonly``
1505 This attribute indicates that the only memory accesses inside function are
1506 loads and stores from objects pointed to by its pointer-typed arguments,
1507 with arbitrary offsets. Or in other words, all memory operations in the
1508 function can refer to memory only using pointers based on its function
1509 arguments.
1510 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1511 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001512``returns_twice``
1513 This attribute indicates that this function can return twice. The C
1514 ``setjmp`` is an example of such a function. The compiler disables
1515 some optimizations (like tail calls) in the caller of these
1516 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001517``safestack``
1518 This attribute indicates that
1519 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1520 protection is enabled for this function.
1521
1522 If a function that has a ``safestack`` attribute is inlined into a
1523 function that doesn't have a ``safestack`` attribute or which has an
1524 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1525 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001526``sanitize_address``
1527 This attribute indicates that AddressSanitizer checks
1528 (dynamic address safety analysis) are enabled for this function.
1529``sanitize_memory``
1530 This attribute indicates that MemorySanitizer checks (dynamic detection
1531 of accesses to uninitialized memory) are enabled for this function.
1532``sanitize_thread``
1533 This attribute indicates that ThreadSanitizer checks
1534 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001535``ssp``
1536 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001537 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001538 placed on the stack before the local variables that's checked upon
1539 return from the function to see if it has been overwritten. A
1540 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001541 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001542
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001543 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1544 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1545 - Calls to alloca() with variable sizes or constant sizes greater than
1546 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001547
Josh Magee24c7f062014-02-01 01:36:16 +00001548 Variables that are identified as requiring a protector will be arranged
1549 on the stack such that they are adjacent to the stack protector guard.
1550
Sean Silvab084af42012-12-07 10:36:55 +00001551 If a function that has an ``ssp`` attribute is inlined into a
1552 function that doesn't have an ``ssp`` attribute, then the resulting
1553 function will have an ``ssp`` attribute.
1554``sspreq``
1555 This attribute indicates that the function should *always* emit a
1556 stack smashing protector. This overrides the ``ssp`` function
1557 attribute.
1558
Josh Magee24c7f062014-02-01 01:36:16 +00001559 Variables that are identified as requiring a protector will be arranged
1560 on the stack such that they are adjacent to the stack protector guard.
1561 The specific layout rules are:
1562
1563 #. Large arrays and structures containing large arrays
1564 (``>= ssp-buffer-size``) are closest to the stack protector.
1565 #. Small arrays and structures containing small arrays
1566 (``< ssp-buffer-size``) are 2nd closest to the protector.
1567 #. Variables that have had their address taken are 3rd closest to the
1568 protector.
1569
Sean Silvab084af42012-12-07 10:36:55 +00001570 If a function that has an ``sspreq`` attribute is inlined into a
1571 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001572 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1573 an ``sspreq`` attribute.
1574``sspstrong``
1575 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001576 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001577 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001578 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001579
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001580 - Arrays of any size and type
1581 - Aggregates containing an array of any size and type.
1582 - Calls to alloca().
1583 - Local variables that have had their address taken.
1584
Josh Magee24c7f062014-02-01 01:36:16 +00001585 Variables that are identified as requiring a protector will be arranged
1586 on the stack such that they are adjacent to the stack protector guard.
1587 The specific layout rules are:
1588
1589 #. Large arrays and structures containing large arrays
1590 (``>= ssp-buffer-size``) are closest to the stack protector.
1591 #. Small arrays and structures containing small arrays
1592 (``< ssp-buffer-size``) are 2nd closest to the protector.
1593 #. Variables that have had their address taken are 3rd closest to the
1594 protector.
1595
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001596 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001597
1598 If a function that has an ``sspstrong`` attribute is inlined into a
1599 function that doesn't have an ``sspstrong`` attribute, then the
1600 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001601``"thunk"``
1602 This attribute indicates that the function will delegate to some other
1603 function with a tail call. The prototype of a thunk should not be used for
1604 optimization purposes. The caller is expected to cast the thunk prototype to
1605 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001606``uwtable``
1607 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001608 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001609 show that no exceptions passes by it. This is normally the case for
1610 the ELF x86-64 abi, but it can be disabled for some compilation
1611 units.
Sean Silvab084af42012-12-07 10:36:55 +00001612
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001613
1614.. _opbundles:
1615
1616Operand Bundles
1617---------------
1618
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001619Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001620with certain LLVM instructions (currently only ``call`` s and
1621``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001622incorrect and will change program semantics.
1623
1624Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001625
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001626 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001627 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1628 bundle operand ::= SSA value
1629 tag ::= string constant
1630
1631Operand bundles are **not** part of a function's signature, and a
1632given function may be called from multiple places with different kinds
1633of operand bundles. This reflects the fact that the operand bundles
1634are conceptually a part of the ``call`` (or ``invoke``), not the
1635callee being dispatched to.
1636
1637Operand bundles are a generic mechanism intended to support
1638runtime-introspection-like functionality for managed languages. While
1639the exact semantics of an operand bundle depend on the bundle tag,
1640there are certain limitations to how much the presence of an operand
1641bundle can influence the semantics of a program. These restrictions
1642are described as the semantics of an "unknown" operand bundle. As
1643long as the behavior of an operand bundle is describable within these
1644restrictions, LLVM does not need to have special knowledge of the
1645operand bundle to not miscompile programs containing it.
1646
David Majnemer34cacb42015-10-22 01:46:38 +00001647- The bundle operands for an unknown operand bundle escape in unknown
1648 ways before control is transferred to the callee or invokee.
1649- Calls and invokes with operand bundles have unknown read / write
1650 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001651 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001652 callsite specific attributes.
1653- An operand bundle at a call site cannot change the implementation
1654 of the called function. Inter-procedural optimizations work as
1655 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001656
Sanjoy Dascdafd842015-11-11 21:38:02 +00001657More specific types of operand bundles are described below.
1658
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001659.. _deopt_opbundles:
1660
Sanjoy Dascdafd842015-11-11 21:38:02 +00001661Deoptimization Operand Bundles
1662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1663
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001664Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001665operand bundle tag. These operand bundles represent an alternate
1666"safe" continuation for the call site they're attached to, and can be
1667used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001668specified call site. There can be at most one ``"deopt"`` operand
1669bundle attached to a call site. Exact details of deoptimization is
1670out of scope for the language reference, but it usually involves
1671rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001672
1673From the compiler's perspective, deoptimization operand bundles make
1674the call sites they're attached to at least ``readonly``. They read
1675through all of their pointer typed operands (even if they're not
1676otherwise escaped) and the entire visible heap. Deoptimization
1677operand bundles do not capture their operands except during
1678deoptimization, in which case control will not be returned to the
1679compiled frame.
1680
Sanjoy Das2d161452015-11-18 06:23:38 +00001681The inliner knows how to inline through calls that have deoptimization
1682operand bundles. Just like inlining through a normal call site
1683involves composing the normal and exceptional continuations, inlining
1684through a call site with a deoptimization operand bundle needs to
1685appropriately compose the "safe" deoptimization continuation. The
1686inliner does this by prepending the parent's deoptimization
1687continuation to every deoptimization continuation in the inlined body.
1688E.g. inlining ``@f`` into ``@g`` in the following example
1689
1690.. code-block:: llvm
1691
1692 define void @f() {
1693 call void @x() ;; no deopt state
1694 call void @y() [ "deopt"(i32 10) ]
1695 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1696 ret void
1697 }
1698
1699 define void @g() {
1700 call void @f() [ "deopt"(i32 20) ]
1701 ret void
1702 }
1703
1704will result in
1705
1706.. code-block:: llvm
1707
1708 define void @g() {
1709 call void @x() ;; still no deopt state
1710 call void @y() [ "deopt"(i32 20, i32 10) ]
1711 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1712 ret void
1713 }
1714
1715It is the frontend's responsibility to structure or encode the
1716deoptimization state in a way that syntactically prepending the
1717caller's deoptimization state to the callee's deoptimization state is
1718semantically equivalent to composing the caller's deoptimization
1719continuation after the callee's deoptimization continuation.
1720
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001721.. _ob_funclet:
1722
David Majnemer3bb88c02015-12-15 21:27:27 +00001723Funclet Operand Bundles
1724^^^^^^^^^^^^^^^^^^^^^^^
1725
1726Funclet operand bundles are characterized by the ``"funclet"``
1727operand bundle tag. These operand bundles indicate that a call site
1728is within a particular funclet. There can be at most one
1729``"funclet"`` operand bundle attached to a call site and it must have
1730exactly one bundle operand.
1731
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001732If any funclet EH pads have been "entered" but not "exited" (per the
1733`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1734it is undefined behavior to execute a ``call`` or ``invoke`` which:
1735
1736* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1737 intrinsic, or
1738* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1739 not-yet-exited funclet EH pad.
1740
1741Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1742executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1743
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001744GC Transition Operand Bundles
1745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1746
1747GC transition operand bundles are characterized by the
1748``"gc-transition"`` operand bundle tag. These operand bundles mark a
1749call as a transition between a function with one GC strategy to a
1750function with a different GC strategy. If coordinating the transition
1751between GC strategies requires additional code generation at the call
1752site, these bundles may contain any values that are needed by the
1753generated code. For more details, see :ref:`GC Transitions
1754<gc_transition_args>`.
1755
Sean Silvab084af42012-12-07 10:36:55 +00001756.. _moduleasm:
1757
1758Module-Level Inline Assembly
1759----------------------------
1760
1761Modules may contain "module-level inline asm" blocks, which corresponds
1762to the GCC "file scope inline asm" blocks. These blocks are internally
1763concatenated by LLVM and treated as a single unit, but may be separated
1764in the ``.ll`` file if desired. The syntax is very simple:
1765
1766.. code-block:: llvm
1767
1768 module asm "inline asm code goes here"
1769 module asm "more can go here"
1770
1771The strings can contain any character by escaping non-printable
1772characters. The escape sequence used is simply "\\xx" where "xx" is the
1773two digit hex code for the number.
1774
James Y Knightbc832ed2015-07-08 18:08:36 +00001775Note that the assembly string *must* be parseable by LLVM's integrated assembler
1776(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001777
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001778.. _langref_datalayout:
1779
Sean Silvab084af42012-12-07 10:36:55 +00001780Data Layout
1781-----------
1782
1783A module may specify a target specific data layout string that specifies
1784how data is to be laid out in memory. The syntax for the data layout is
1785simply:
1786
1787.. code-block:: llvm
1788
1789 target datalayout = "layout specification"
1790
1791The *layout specification* consists of a list of specifications
1792separated by the minus sign character ('-'). Each specification starts
1793with a letter and may include other information after the letter to
1794define some aspect of the data layout. The specifications accepted are
1795as follows:
1796
1797``E``
1798 Specifies that the target lays out data in big-endian form. That is,
1799 the bits with the most significance have the lowest address
1800 location.
1801``e``
1802 Specifies that the target lays out data in little-endian form. That
1803 is, the bits with the least significance have the lowest address
1804 location.
1805``S<size>``
1806 Specifies the natural alignment of the stack in bits. Alignment
1807 promotion of stack variables is limited to the natural stack
1808 alignment to avoid dynamic stack realignment. The stack alignment
1809 must be a multiple of 8-bits. If omitted, the natural stack
1810 alignment defaults to "unspecified", which does not prevent any
1811 alignment promotions.
1812``p[n]:<size>:<abi>:<pref>``
1813 This specifies the *size* of a pointer and its ``<abi>`` and
1814 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001815 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001816 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001817 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001818``i<size>:<abi>:<pref>``
1819 This specifies the alignment for an integer type of a given bit
1820 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1821``v<size>:<abi>:<pref>``
1822 This specifies the alignment for a vector type of a given bit
1823 ``<size>``.
1824``f<size>:<abi>:<pref>``
1825 This specifies the alignment for a floating point type of a given bit
1826 ``<size>``. Only values of ``<size>`` that are supported by the target
1827 will work. 32 (float) and 64 (double) are supported on all targets; 80
1828 or 128 (different flavors of long double) are also supported on some
1829 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001830``a:<abi>:<pref>``
1831 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001832``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001833 If present, specifies that llvm names are mangled in the output. The
1834 options are
1835
1836 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1837 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1838 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1839 symbols get a ``_`` prefix.
1840 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1841 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001842 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1843 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001844``n<size1>:<size2>:<size3>...``
1845 This specifies a set of native integer widths for the target CPU in
1846 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1847 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1848 this set are considered to support most general arithmetic operations
1849 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001850``ni:<address space0>:<address space1>:<address space2>...``
1851 This specifies pointer types with the specified address spaces
1852 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1853 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001854
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001855On every specification that takes a ``<abi>:<pref>``, specifying the
1856``<pref>`` alignment is optional. If omitted, the preceding ``:``
1857should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1858
Sean Silvab084af42012-12-07 10:36:55 +00001859When constructing the data layout for a given target, LLVM starts with a
1860default set of specifications which are then (possibly) overridden by
1861the specifications in the ``datalayout`` keyword. The default
1862specifications are given in this list:
1863
1864- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001865- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1866- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1867 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001868- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001869- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1870- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1871- ``i16:16:16`` - i16 is 16-bit aligned
1872- ``i32:32:32`` - i32 is 32-bit aligned
1873- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1874 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001875- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001876- ``f32:32:32`` - float is 32-bit aligned
1877- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001878- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001879- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1880- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001881- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001882
1883When LLVM is determining the alignment for a given type, it uses the
1884following rules:
1885
1886#. If the type sought is an exact match for one of the specifications,
1887 that specification is used.
1888#. If no match is found, and the type sought is an integer type, then
1889 the smallest integer type that is larger than the bitwidth of the
1890 sought type is used. If none of the specifications are larger than
1891 the bitwidth then the largest integer type is used. For example,
1892 given the default specifications above, the i7 type will use the
1893 alignment of i8 (next largest) while both i65 and i256 will use the
1894 alignment of i64 (largest specified).
1895#. If no match is found, and the type sought is a vector type, then the
1896 largest vector type that is smaller than the sought vector type will
1897 be used as a fall back. This happens because <128 x double> can be
1898 implemented in terms of 64 <2 x double>, for example.
1899
1900The function of the data layout string may not be what you expect.
1901Notably, this is not a specification from the frontend of what alignment
1902the code generator should use.
1903
1904Instead, if specified, the target data layout is required to match what
1905the ultimate *code generator* expects. This string is used by the
1906mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001907what the ultimate code generator uses. There is no way to generate IR
1908that does not embed this target-specific detail into the IR. If you
1909don't specify the string, the default specifications will be used to
1910generate a Data Layout and the optimization phases will operate
1911accordingly and introduce target specificity into the IR with respect to
1912these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001913
Bill Wendling5cc90842013-10-18 23:41:25 +00001914.. _langref_triple:
1915
1916Target Triple
1917-------------
1918
1919A module may specify a target triple string that describes the target
1920host. The syntax for the target triple is simply:
1921
1922.. code-block:: llvm
1923
1924 target triple = "x86_64-apple-macosx10.7.0"
1925
1926The *target triple* string consists of a series of identifiers delimited
1927by the minus sign character ('-'). The canonical forms are:
1928
1929::
1930
1931 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1932 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1933
1934This information is passed along to the backend so that it generates
1935code for the proper architecture. It's possible to override this on the
1936command line with the ``-mtriple`` command line option.
1937
Sean Silvab084af42012-12-07 10:36:55 +00001938.. _pointeraliasing:
1939
1940Pointer Aliasing Rules
1941----------------------
1942
1943Any memory access must be done through a pointer value associated with
1944an address range of the memory access, otherwise the behavior is
1945undefined. Pointer values are associated with address ranges according
1946to the following rules:
1947
1948- A pointer value is associated with the addresses associated with any
1949 value it is *based* on.
1950- An address of a global variable is associated with the address range
1951 of the variable's storage.
1952- The result value of an allocation instruction is associated with the
1953 address range of the allocated storage.
1954- A null pointer in the default address-space is associated with no
1955 address.
1956- An integer constant other than zero or a pointer value returned from
1957 a function not defined within LLVM may be associated with address
1958 ranges allocated through mechanisms other than those provided by
1959 LLVM. Such ranges shall not overlap with any ranges of addresses
1960 allocated by mechanisms provided by LLVM.
1961
1962A pointer value is *based* on another pointer value according to the
1963following rules:
1964
1965- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001966 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001967- The result value of a ``bitcast`` is *based* on the operand of the
1968 ``bitcast``.
1969- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1970 values that contribute (directly or indirectly) to the computation of
1971 the pointer's value.
1972- The "*based* on" relationship is transitive.
1973
1974Note that this definition of *"based"* is intentionally similar to the
1975definition of *"based"* in C99, though it is slightly weaker.
1976
1977LLVM IR does not associate types with memory. The result type of a
1978``load`` merely indicates the size and alignment of the memory from
1979which to load, as well as the interpretation of the value. The first
1980operand type of a ``store`` similarly only indicates the size and
1981alignment of the store.
1982
1983Consequently, type-based alias analysis, aka TBAA, aka
1984``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1985:ref:`Metadata <metadata>` may be used to encode additional information
1986which specialized optimization passes may use to implement type-based
1987alias analysis.
1988
1989.. _volatile:
1990
1991Volatile Memory Accesses
1992------------------------
1993
1994Certain memory accesses, such as :ref:`load <i_load>`'s,
1995:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1996marked ``volatile``. The optimizers must not change the number of
1997volatile operations or change their order of execution relative to other
1998volatile operations. The optimizers *may* change the order of volatile
1999operations relative to non-volatile operations. This is not Java's
2000"volatile" and has no cross-thread synchronization behavior.
2001
Andrew Trick89fc5a62013-01-30 21:19:35 +00002002IR-level volatile loads and stores cannot safely be optimized into
2003llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2004flagged volatile. Likewise, the backend should never split or merge
2005target-legal volatile load/store instructions.
2006
Andrew Trick7e6f9282013-01-31 00:49:39 +00002007.. admonition:: Rationale
2008
2009 Platforms may rely on volatile loads and stores of natively supported
2010 data width to be executed as single instruction. For example, in C
2011 this holds for an l-value of volatile primitive type with native
2012 hardware support, but not necessarily for aggregate types. The
2013 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002014 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002015 do not violate the frontend's contract with the language.
2016
Sean Silvab084af42012-12-07 10:36:55 +00002017.. _memmodel:
2018
2019Memory Model for Concurrent Operations
2020--------------------------------------
2021
2022The LLVM IR does not define any way to start parallel threads of
2023execution or to register signal handlers. Nonetheless, there are
2024platform-specific ways to create them, and we define LLVM IR's behavior
2025in their presence. This model is inspired by the C++0x memory model.
2026
2027For a more informal introduction to this model, see the :doc:`Atomics`.
2028
2029We define a *happens-before* partial order as the least partial order
2030that
2031
2032- Is a superset of single-thread program order, and
2033- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2034 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2035 techniques, like pthread locks, thread creation, thread joining,
2036 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2037 Constraints <ordering>`).
2038
2039Note that program order does not introduce *happens-before* edges
2040between a thread and signals executing inside that thread.
2041
2042Every (defined) read operation (load instructions, memcpy, atomic
2043loads/read-modify-writes, etc.) R reads a series of bytes written by
2044(defined) write operations (store instructions, atomic
2045stores/read-modify-writes, memcpy, etc.). For the purposes of this
2046section, initialized globals are considered to have a write of the
2047initializer which is atomic and happens before any other read or write
2048of the memory in question. For each byte of a read R, R\ :sub:`byte`
2049may see any write to the same byte, except:
2050
2051- If write\ :sub:`1` happens before write\ :sub:`2`, and
2052 write\ :sub:`2` happens before R\ :sub:`byte`, then
2053 R\ :sub:`byte` does not see write\ :sub:`1`.
2054- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2055 R\ :sub:`byte` does not see write\ :sub:`3`.
2056
2057Given that definition, R\ :sub:`byte` is defined as follows:
2058
2059- If R is volatile, the result is target-dependent. (Volatile is
2060 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002061 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002062 like normal memory. It does not generally provide cross-thread
2063 synchronization.)
2064- Otherwise, if there is no write to the same byte that happens before
2065 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2066- Otherwise, if R\ :sub:`byte` may see exactly one write,
2067 R\ :sub:`byte` returns the value written by that write.
2068- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2069 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2070 Memory Ordering Constraints <ordering>` section for additional
2071 constraints on how the choice is made.
2072- Otherwise R\ :sub:`byte` returns ``undef``.
2073
2074R returns the value composed of the series of bytes it read. This
2075implies that some bytes within the value may be ``undef`` **without**
2076the entire value being ``undef``. Note that this only defines the
2077semantics of the operation; it doesn't mean that targets will emit more
2078than one instruction to read the series of bytes.
2079
2080Note that in cases where none of the atomic intrinsics are used, this
2081model places only one restriction on IR transformations on top of what
2082is required for single-threaded execution: introducing a store to a byte
2083which might not otherwise be stored is not allowed in general.
2084(Specifically, in the case where another thread might write to and read
2085from an address, introducing a store can change a load that may see
2086exactly one write into a load that may see multiple writes.)
2087
2088.. _ordering:
2089
2090Atomic Memory Ordering Constraints
2091----------------------------------
2092
2093Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2094:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2095:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002096ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002097the same address they *synchronize with*. These semantics are borrowed
2098from Java and C++0x, but are somewhat more colloquial. If these
2099descriptions aren't precise enough, check those specs (see spec
2100references in the :doc:`atomics guide <Atomics>`).
2101:ref:`fence <i_fence>` instructions treat these orderings somewhat
2102differently since they don't take an address. See that instruction's
2103documentation for details.
2104
2105For a simpler introduction to the ordering constraints, see the
2106:doc:`Atomics`.
2107
2108``unordered``
2109 The set of values that can be read is governed by the happens-before
2110 partial order. A value cannot be read unless some operation wrote
2111 it. This is intended to provide a guarantee strong enough to model
2112 Java's non-volatile shared variables. This ordering cannot be
2113 specified for read-modify-write operations; it is not strong enough
2114 to make them atomic in any interesting way.
2115``monotonic``
2116 In addition to the guarantees of ``unordered``, there is a single
2117 total order for modifications by ``monotonic`` operations on each
2118 address. All modification orders must be compatible with the
2119 happens-before order. There is no guarantee that the modification
2120 orders can be combined to a global total order for the whole program
2121 (and this often will not be possible). The read in an atomic
2122 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2123 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2124 order immediately before the value it writes. If one atomic read
2125 happens before another atomic read of the same address, the later
2126 read must see the same value or a later value in the address's
2127 modification order. This disallows reordering of ``monotonic`` (or
2128 stronger) operations on the same address. If an address is written
2129 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2130 read that address repeatedly, the other threads must eventually see
2131 the write. This corresponds to the C++0x/C1x
2132 ``memory_order_relaxed``.
2133``acquire``
2134 In addition to the guarantees of ``monotonic``, a
2135 *synchronizes-with* edge may be formed with a ``release`` operation.
2136 This is intended to model C++'s ``memory_order_acquire``.
2137``release``
2138 In addition to the guarantees of ``monotonic``, if this operation
2139 writes a value which is subsequently read by an ``acquire``
2140 operation, it *synchronizes-with* that operation. (This isn't a
2141 complete description; see the C++0x definition of a release
2142 sequence.) This corresponds to the C++0x/C1x
2143 ``memory_order_release``.
2144``acq_rel`` (acquire+release)
2145 Acts as both an ``acquire`` and ``release`` operation on its
2146 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2147``seq_cst`` (sequentially consistent)
2148 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002149 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002150 writes), there is a global total order on all
2151 sequentially-consistent operations on all addresses, which is
2152 consistent with the *happens-before* partial order and with the
2153 modification orders of all the affected addresses. Each
2154 sequentially-consistent read sees the last preceding write to the
2155 same address in this global order. This corresponds to the C++0x/C1x
2156 ``memory_order_seq_cst`` and Java volatile.
2157
2158.. _singlethread:
2159
2160If an atomic operation is marked ``singlethread``, it only *synchronizes
2161with* or participates in modification and seq\_cst total orderings with
2162other operations running in the same thread (for example, in signal
2163handlers).
2164
2165.. _fastmath:
2166
2167Fast-Math Flags
2168---------------
2169
2170LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2171:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002172:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
2173instructions have the following flags that can be set to enable
2174otherwise unsafe floating point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002175
2176``nnan``
2177 No NaNs - Allow optimizations to assume the arguments and result are not
2178 NaN. Such optimizations are required to retain defined behavior over
2179 NaNs, but the value of the result is undefined.
2180
2181``ninf``
2182 No Infs - Allow optimizations to assume the arguments and result are not
2183 +/-Inf. Such optimizations are required to retain defined behavior over
2184 +/-Inf, but the value of the result is undefined.
2185
2186``nsz``
2187 No Signed Zeros - Allow optimizations to treat the sign of a zero
2188 argument or result as insignificant.
2189
2190``arcp``
2191 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2192 argument rather than perform division.
2193
2194``fast``
2195 Fast - Allow algebraically equivalent transformations that may
2196 dramatically change results in floating point (e.g. reassociate). This
2197 flag implies all the others.
2198
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002199.. _uselistorder:
2200
2201Use-list Order Directives
2202-------------------------
2203
2204Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002205order to be recreated. ``<order-indexes>`` is a comma-separated list of
2206indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002207value's use-list is immediately sorted by these indexes.
2208
Sean Silvaa1190322015-08-06 22:56:48 +00002209Use-list directives may appear at function scope or global scope. They are not
2210instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002211function scope, they must appear after the terminator of the final basic block.
2212
2213If basic blocks have their address taken via ``blockaddress()`` expressions,
2214``uselistorder_bb`` can be used to reorder their use-lists from outside their
2215function's scope.
2216
2217:Syntax:
2218
2219::
2220
2221 uselistorder <ty> <value>, { <order-indexes> }
2222 uselistorder_bb @function, %block { <order-indexes> }
2223
2224:Examples:
2225
2226::
2227
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002228 define void @foo(i32 %arg1, i32 %arg2) {
2229 entry:
2230 ; ... instructions ...
2231 bb:
2232 ; ... instructions ...
2233
2234 ; At function scope.
2235 uselistorder i32 %arg1, { 1, 0, 2 }
2236 uselistorder label %bb, { 1, 0 }
2237 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002238
2239 ; At global scope.
2240 uselistorder i32* @global, { 1, 2, 0 }
2241 uselistorder i32 7, { 1, 0 }
2242 uselistorder i32 (i32) @bar, { 1, 0 }
2243 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2244
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002245.. _source_filename:
2246
2247Source Filename
2248---------------
2249
2250The *source filename* string is set to the original module identifier,
2251which will be the name of the compiled source file when compiling from
2252source through the clang front end, for example. It is then preserved through
2253the IR and bitcode.
2254
2255This is currently necessary to generate a consistent unique global
2256identifier for local functions used in profile data, which prepends the
2257source file name to the local function name.
2258
2259The syntax for the source file name is simply:
2260
Renato Golin124f2592016-07-20 12:16:38 +00002261.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002262
2263 source_filename = "/path/to/source.c"
2264
Sean Silvab084af42012-12-07 10:36:55 +00002265.. _typesystem:
2266
2267Type System
2268===========
2269
2270The LLVM type system is one of the most important features of the
2271intermediate representation. Being typed enables a number of
2272optimizations to be performed on the intermediate representation
2273directly, without having to do extra analyses on the side before the
2274transformation. A strong type system makes it easier to read the
2275generated code and enables novel analyses and transformations that are
2276not feasible to perform on normal three address code representations.
2277
Rafael Espindola08013342013-12-07 19:34:20 +00002278.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002279
Rafael Espindola08013342013-12-07 19:34:20 +00002280Void Type
2281---------
Sean Silvab084af42012-12-07 10:36:55 +00002282
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002283:Overview:
2284
Rafael Espindola08013342013-12-07 19:34:20 +00002285
2286The void type does not represent any value and has no size.
2287
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002288:Syntax:
2289
Rafael Espindola08013342013-12-07 19:34:20 +00002290
2291::
2292
2293 void
Sean Silvab084af42012-12-07 10:36:55 +00002294
2295
Rafael Espindola08013342013-12-07 19:34:20 +00002296.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002297
Rafael Espindola08013342013-12-07 19:34:20 +00002298Function Type
2299-------------
Sean Silvab084af42012-12-07 10:36:55 +00002300
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002301:Overview:
2302
Sean Silvab084af42012-12-07 10:36:55 +00002303
Rafael Espindola08013342013-12-07 19:34:20 +00002304The function type can be thought of as a function signature. It consists of a
2305return type and a list of formal parameter types. The return type of a function
2306type is a void type or first class type --- except for :ref:`label <t_label>`
2307and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002308
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002309:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002310
Rafael Espindola08013342013-12-07 19:34:20 +00002311::
Sean Silvab084af42012-12-07 10:36:55 +00002312
Rafael Espindola08013342013-12-07 19:34:20 +00002313 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002314
Rafael Espindola08013342013-12-07 19:34:20 +00002315...where '``<parameter list>``' is a comma-separated list of type
2316specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002317indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002318argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002319handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002320except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002321
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002322:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002323
Rafael Espindola08013342013-12-07 19:34:20 +00002324+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2325| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2326+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2327| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2328+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2329| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2330+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2331| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2332+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2333
2334.. _t_firstclass:
2335
2336First Class Types
2337-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002338
2339The :ref:`first class <t_firstclass>` types are perhaps the most important.
2340Values of these types are the only ones which can be produced by
2341instructions.
2342
Rafael Espindola08013342013-12-07 19:34:20 +00002343.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002344
Rafael Espindola08013342013-12-07 19:34:20 +00002345Single Value Types
2346^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002347
Rafael Espindola08013342013-12-07 19:34:20 +00002348These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002349
2350.. _t_integer:
2351
2352Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002353""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002354
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002355:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002356
2357The integer type is a very simple type that simply specifies an
2358arbitrary bit width for the integer type desired. Any bit width from 1
2359bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2360
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002361:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002362
2363::
2364
2365 iN
2366
2367The number of bits the integer will occupy is specified by the ``N``
2368value.
2369
2370Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002371*********
Sean Silvab084af42012-12-07 10:36:55 +00002372
2373+----------------+------------------------------------------------+
2374| ``i1`` | a single-bit integer. |
2375+----------------+------------------------------------------------+
2376| ``i32`` | a 32-bit integer. |
2377+----------------+------------------------------------------------+
2378| ``i1942652`` | a really big integer of over 1 million bits. |
2379+----------------+------------------------------------------------+
2380
2381.. _t_floating:
2382
2383Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002384""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002385
2386.. list-table::
2387 :header-rows: 1
2388
2389 * - Type
2390 - Description
2391
2392 * - ``half``
2393 - 16-bit floating point value
2394
2395 * - ``float``
2396 - 32-bit floating point value
2397
2398 * - ``double``
2399 - 64-bit floating point value
2400
2401 * - ``fp128``
2402 - 128-bit floating point value (112-bit mantissa)
2403
2404 * - ``x86_fp80``
2405 - 80-bit floating point value (X87)
2406
2407 * - ``ppc_fp128``
2408 - 128-bit floating point value (two 64-bits)
2409
Reid Kleckner9a16d082014-03-05 02:41:37 +00002410X86_mmx Type
2411""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002412
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002413:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002414
Reid Kleckner9a16d082014-03-05 02:41:37 +00002415The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002416machine. The operations allowed on it are quite limited: parameters and
2417return values, load and store, and bitcast. User-specified MMX
2418instructions are represented as intrinsic or asm calls with arguments
2419and/or results of this type. There are no arrays, vectors or constants
2420of this type.
2421
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002422:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002423
2424::
2425
Reid Kleckner9a16d082014-03-05 02:41:37 +00002426 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002427
Sean Silvab084af42012-12-07 10:36:55 +00002428
Rafael Espindola08013342013-12-07 19:34:20 +00002429.. _t_pointer:
2430
2431Pointer Type
2432""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002433
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002434:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002435
Rafael Espindola08013342013-12-07 19:34:20 +00002436The pointer type is used to specify memory locations. Pointers are
2437commonly used to reference objects in memory.
2438
2439Pointer types may have an optional address space attribute defining the
2440numbered address space where the pointed-to object resides. The default
2441address space is number zero. The semantics of non-zero address spaces
2442are target-specific.
2443
2444Note that LLVM does not permit pointers to void (``void*``) nor does it
2445permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002446
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002447:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002448
2449::
2450
Rafael Espindola08013342013-12-07 19:34:20 +00002451 <type> *
2452
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002453:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002454
2455+-------------------------+--------------------------------------------------------------------------------------------------------------+
2456| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2457+-------------------------+--------------------------------------------------------------------------------------------------------------+
2458| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2459+-------------------------+--------------------------------------------------------------------------------------------------------------+
2460| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2461+-------------------------+--------------------------------------------------------------------------------------------------------------+
2462
2463.. _t_vector:
2464
2465Vector Type
2466"""""""""""
2467
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002468:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002469
2470A vector type is a simple derived type that represents a vector of
2471elements. Vector types are used when multiple primitive data are
2472operated in parallel using a single instruction (SIMD). A vector type
2473requires a size (number of elements) and an underlying primitive data
2474type. Vector types are considered :ref:`first class <t_firstclass>`.
2475
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002476:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002477
2478::
2479
2480 < <# elements> x <elementtype> >
2481
2482The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002483elementtype may be any integer, floating point or pointer type. Vectors
2484of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002485
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002486:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002487
2488+-------------------+--------------------------------------------------+
2489| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2490+-------------------+--------------------------------------------------+
2491| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2492+-------------------+--------------------------------------------------+
2493| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2494+-------------------+--------------------------------------------------+
2495| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2496+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002497
2498.. _t_label:
2499
2500Label Type
2501^^^^^^^^^^
2502
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002503:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002504
2505The label type represents code labels.
2506
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002507:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002508
2509::
2510
2511 label
2512
David Majnemerb611e3f2015-08-14 05:09:07 +00002513.. _t_token:
2514
2515Token Type
2516^^^^^^^^^^
2517
2518:Overview:
2519
2520The token type is used when a value is associated with an instruction
2521but all uses of the value must not attempt to introspect or obscure it.
2522As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2523:ref:`select <i_select>` of type token.
2524
2525:Syntax:
2526
2527::
2528
2529 token
2530
2531
2532
Sean Silvab084af42012-12-07 10:36:55 +00002533.. _t_metadata:
2534
2535Metadata Type
2536^^^^^^^^^^^^^
2537
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002538:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002539
2540The metadata type represents embedded metadata. No derived types may be
2541created from metadata except for :ref:`function <t_function>` arguments.
2542
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002543:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002544
2545::
2546
2547 metadata
2548
Sean Silvab084af42012-12-07 10:36:55 +00002549.. _t_aggregate:
2550
2551Aggregate Types
2552^^^^^^^^^^^^^^^
2553
2554Aggregate Types are a subset of derived types that can contain multiple
2555member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2556aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2557aggregate types.
2558
2559.. _t_array:
2560
2561Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002562""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002563
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002564:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002565
2566The array type is a very simple derived type that arranges elements
2567sequentially in memory. The array type requires a size (number of
2568elements) and an underlying data type.
2569
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002570:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002571
2572::
2573
2574 [<# elements> x <elementtype>]
2575
2576The number of elements is a constant integer value; ``elementtype`` may
2577be any type with a size.
2578
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002579:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002580
2581+------------------+--------------------------------------+
2582| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2583+------------------+--------------------------------------+
2584| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2585+------------------+--------------------------------------+
2586| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2587+------------------+--------------------------------------+
2588
2589Here are some examples of multidimensional arrays:
2590
2591+-----------------------------+----------------------------------------------------------+
2592| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2593+-----------------------------+----------------------------------------------------------+
2594| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2595+-----------------------------+----------------------------------------------------------+
2596| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2597+-----------------------------+----------------------------------------------------------+
2598
2599There is no restriction on indexing beyond the end of the array implied
2600by a static type (though there are restrictions on indexing beyond the
2601bounds of an allocated object in some cases). This means that
2602single-dimension 'variable sized array' addressing can be implemented in
2603LLVM with a zero length array type. An implementation of 'pascal style
2604arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2605example.
2606
Sean Silvab084af42012-12-07 10:36:55 +00002607.. _t_struct:
2608
2609Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002610""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002611
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002612:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002613
2614The structure type is used to represent a collection of data members
2615together in memory. The elements of a structure may be any type that has
2616a size.
2617
2618Structures in memory are accessed using '``load``' and '``store``' by
2619getting a pointer to a field with the '``getelementptr``' instruction.
2620Structures in registers are accessed using the '``extractvalue``' and
2621'``insertvalue``' instructions.
2622
2623Structures may optionally be "packed" structures, which indicate that
2624the alignment of the struct is one byte, and that there is no padding
2625between the elements. In non-packed structs, padding between field types
2626is inserted as defined by the DataLayout string in the module, which is
2627required to match what the underlying code generator expects.
2628
2629Structures can either be "literal" or "identified". A literal structure
2630is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2631identified types are always defined at the top level with a name.
2632Literal types are uniqued by their contents and can never be recursive
2633or opaque since there is no way to write one. Identified types can be
2634recursive, can be opaqued, and are never uniqued.
2635
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002636:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002637
2638::
2639
2640 %T1 = type { <type list> } ; Identified normal struct type
2641 %T2 = type <{ <type list> }> ; Identified packed struct type
2642
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002643:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002644
2645+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2646| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2647+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002648| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002649+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2650| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2651+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2652
2653.. _t_opaque:
2654
2655Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002656""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002657
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002658:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002659
2660Opaque structure types are used to represent named structure types that
2661do not have a body specified. This corresponds (for example) to the C
2662notion of a forward declared structure.
2663
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002664:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002665
2666::
2667
2668 %X = type opaque
2669 %52 = type opaque
2670
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002671:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002672
2673+--------------+-------------------+
2674| ``opaque`` | An opaque type. |
2675+--------------+-------------------+
2676
Sean Silva1703e702014-04-08 21:06:22 +00002677.. _constants:
2678
Sean Silvab084af42012-12-07 10:36:55 +00002679Constants
2680=========
2681
2682LLVM has several different basic types of constants. This section
2683describes them all and their syntax.
2684
2685Simple Constants
2686----------------
2687
2688**Boolean constants**
2689 The two strings '``true``' and '``false``' are both valid constants
2690 of the ``i1`` type.
2691**Integer constants**
2692 Standard integers (such as '4') are constants of the
2693 :ref:`integer <t_integer>` type. Negative numbers may be used with
2694 integer types.
2695**Floating point constants**
2696 Floating point constants use standard decimal notation (e.g.
2697 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2698 hexadecimal notation (see below). The assembler requires the exact
2699 decimal value of a floating-point constant. For example, the
2700 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2701 decimal in binary. Floating point constants must have a :ref:`floating
2702 point <t_floating>` type.
2703**Null pointer constants**
2704 The identifier '``null``' is recognized as a null pointer constant
2705 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002706**Token constants**
2707 The identifier '``none``' is recognized as an empty token constant
2708 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002709
2710The one non-intuitive notation for constants is the hexadecimal form of
2711floating point constants. For example, the form
2712'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2713than) '``double 4.5e+15``'. The only time hexadecimal floating point
2714constants are required (and the only time that they are generated by the
2715disassembler) is when a floating point constant must be emitted but it
2716cannot be represented as a decimal floating point number in a reasonable
2717number of digits. For example, NaN's, infinities, and other special
2718values are represented in their IEEE hexadecimal format so that assembly
2719and disassembly do not cause any bits to change in the constants.
2720
2721When using the hexadecimal form, constants of types half, float, and
2722double are represented using the 16-digit form shown above (which
2723matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002724must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002725precision, respectively. Hexadecimal format is always used for long
2726double, and there are three forms of long double. The 80-bit format used
2727by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2728128-bit format used by PowerPC (two adjacent doubles) is represented by
2729``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002730represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2731will only work if they match the long double format on your target.
2732The IEEE 16-bit format (half precision) is represented by ``0xH``
2733followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2734(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002735
Reid Kleckner9a16d082014-03-05 02:41:37 +00002736There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002737
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002738.. _complexconstants:
2739
Sean Silvab084af42012-12-07 10:36:55 +00002740Complex Constants
2741-----------------
2742
2743Complex constants are a (potentially recursive) combination of simple
2744constants and smaller complex constants.
2745
2746**Structure constants**
2747 Structure constants are represented with notation similar to
2748 structure type definitions (a comma separated list of elements,
2749 surrounded by braces (``{}``)). For example:
2750 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2751 "``@G = external global i32``". Structure constants must have
2752 :ref:`structure type <t_struct>`, and the number and types of elements
2753 must match those specified by the type.
2754**Array constants**
2755 Array constants are represented with notation similar to array type
2756 definitions (a comma separated list of elements, surrounded by
2757 square brackets (``[]``)). For example:
2758 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2759 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002760 match those specified by the type. As a special case, character array
2761 constants may also be represented as a double-quoted string using the ``c``
2762 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002763**Vector constants**
2764 Vector constants are represented with notation similar to vector
2765 type definitions (a comma separated list of elements, surrounded by
2766 less-than/greater-than's (``<>``)). For example:
2767 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2768 must have :ref:`vector type <t_vector>`, and the number and types of
2769 elements must match those specified by the type.
2770**Zero initialization**
2771 The string '``zeroinitializer``' can be used to zero initialize a
2772 value to zero of *any* type, including scalar and
2773 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2774 having to print large zero initializers (e.g. for large arrays) and
2775 is always exactly equivalent to using explicit zero initializers.
2776**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002777 A metadata node is a constant tuple without types. For example:
2778 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002779 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2780 Unlike other typed constants that are meant to be interpreted as part of
2781 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002782 information such as debug info.
2783
2784Global Variable and Function Addresses
2785--------------------------------------
2786
2787The addresses of :ref:`global variables <globalvars>` and
2788:ref:`functions <functionstructure>` are always implicitly valid
2789(link-time) constants. These constants are explicitly referenced when
2790the :ref:`identifier for the global <identifiers>` is used and always have
2791:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2792file:
2793
2794.. code-block:: llvm
2795
2796 @X = global i32 17
2797 @Y = global i32 42
2798 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2799
2800.. _undefvalues:
2801
2802Undefined Values
2803----------------
2804
2805The string '``undef``' can be used anywhere a constant is expected, and
2806indicates that the user of the value may receive an unspecified
2807bit-pattern. Undefined values may be of any type (other than '``label``'
2808or '``void``') and be used anywhere a constant is permitted.
2809
2810Undefined values are useful because they indicate to the compiler that
2811the program is well defined no matter what value is used. This gives the
2812compiler more freedom to optimize. Here are some examples of
2813(potentially surprising) transformations that are valid (in pseudo IR):
2814
2815.. code-block:: llvm
2816
2817 %A = add %X, undef
2818 %B = sub %X, undef
2819 %C = xor %X, undef
2820 Safe:
2821 %A = undef
2822 %B = undef
2823 %C = undef
2824
2825This is safe because all of the output bits are affected by the undef
2826bits. Any output bit can have a zero or one depending on the input bits.
2827
2828.. code-block:: llvm
2829
2830 %A = or %X, undef
2831 %B = and %X, undef
2832 Safe:
2833 %A = -1
2834 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002835 Safe:
2836 %A = %X ;; By choosing undef as 0
2837 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002838 Unsafe:
2839 %A = undef
2840 %B = undef
2841
2842These logical operations have bits that are not always affected by the
2843input. For example, if ``%X`` has a zero bit, then the output of the
2844'``and``' operation will always be a zero for that bit, no matter what
2845the corresponding bit from the '``undef``' is. As such, it is unsafe to
2846optimize or assume that the result of the '``and``' is '``undef``'.
2847However, it is safe to assume that all bits of the '``undef``' could be
28480, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2849all the bits of the '``undef``' operand to the '``or``' could be set,
2850allowing the '``or``' to be folded to -1.
2851
2852.. code-block:: llvm
2853
2854 %A = select undef, %X, %Y
2855 %B = select undef, 42, %Y
2856 %C = select %X, %Y, undef
2857 Safe:
2858 %A = %X (or %Y)
2859 %B = 42 (or %Y)
2860 %C = %Y
2861 Unsafe:
2862 %A = undef
2863 %B = undef
2864 %C = undef
2865
2866This set of examples shows that undefined '``select``' (and conditional
2867branch) conditions can go *either way*, but they have to come from one
2868of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2869both known to have a clear low bit, then ``%A`` would have to have a
2870cleared low bit. However, in the ``%C`` example, the optimizer is
2871allowed to assume that the '``undef``' operand could be the same as
2872``%Y``, allowing the whole '``select``' to be eliminated.
2873
Renato Golin124f2592016-07-20 12:16:38 +00002874.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002875
2876 %A = xor undef, undef
2877
2878 %B = undef
2879 %C = xor %B, %B
2880
2881 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002882 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002883 %F = icmp gte %D, 4
2884
2885 Safe:
2886 %A = undef
2887 %B = undef
2888 %C = undef
2889 %D = undef
2890 %E = undef
2891 %F = undef
2892
2893This example points out that two '``undef``' operands are not
2894necessarily the same. This can be surprising to people (and also matches
2895C semantics) where they assume that "``X^X``" is always zero, even if
2896``X`` is undefined. This isn't true for a number of reasons, but the
2897short answer is that an '``undef``' "variable" can arbitrarily change
2898its value over its "live range". This is true because the variable
2899doesn't actually *have a live range*. Instead, the value is logically
2900read from arbitrary registers that happen to be around when needed, so
2901the value is not necessarily consistent over time. In fact, ``%A`` and
2902``%C`` need to have the same semantics or the core LLVM "replace all
2903uses with" concept would not hold.
2904
2905.. code-block:: llvm
2906
2907 %A = fdiv undef, %X
2908 %B = fdiv %X, undef
2909 Safe:
2910 %A = undef
2911 b: unreachable
2912
2913These examples show the crucial difference between an *undefined value*
2914and *undefined behavior*. An undefined value (like '``undef``') is
2915allowed to have an arbitrary bit-pattern. This means that the ``%A``
2916operation can be constant folded to '``undef``', because the '``undef``'
2917could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2918However, in the second example, we can make a more aggressive
2919assumption: because the ``undef`` is allowed to be an arbitrary value,
2920we are allowed to assume that it could be zero. Since a divide by zero
2921has *undefined behavior*, we are allowed to assume that the operation
2922does not execute at all. This allows us to delete the divide and all
2923code after it. Because the undefined operation "can't happen", the
2924optimizer can assume that it occurs in dead code.
2925
Renato Golin124f2592016-07-20 12:16:38 +00002926.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002927
2928 a: store undef -> %X
2929 b: store %X -> undef
2930 Safe:
2931 a: <deleted>
2932 b: unreachable
2933
2934These examples reiterate the ``fdiv`` example: a store *of* an undefined
2935value can be assumed to not have any effect; we can assume that the
2936value is overwritten with bits that happen to match what was already
2937there. However, a store *to* an undefined location could clobber
2938arbitrary memory, therefore, it has undefined behavior.
2939
2940.. _poisonvalues:
2941
2942Poison Values
2943-------------
2944
2945Poison values are similar to :ref:`undef values <undefvalues>`, however
2946they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002947that cannot evoke side effects has nevertheless detected a condition
2948that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002949
2950There is currently no way of representing a poison value in the IR; they
2951only exist when produced by operations such as :ref:`add <i_add>` with
2952the ``nsw`` flag.
2953
2954Poison value behavior is defined in terms of value *dependence*:
2955
2956- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2957- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2958 their dynamic predecessor basic block.
2959- Function arguments depend on the corresponding actual argument values
2960 in the dynamic callers of their functions.
2961- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2962 instructions that dynamically transfer control back to them.
2963- :ref:`Invoke <i_invoke>` instructions depend on the
2964 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2965 call instructions that dynamically transfer control back to them.
2966- Non-volatile loads and stores depend on the most recent stores to all
2967 of the referenced memory addresses, following the order in the IR
2968 (including loads and stores implied by intrinsics such as
2969 :ref:`@llvm.memcpy <int_memcpy>`.)
2970- An instruction with externally visible side effects depends on the
2971 most recent preceding instruction with externally visible side
2972 effects, following the order in the IR. (This includes :ref:`volatile
2973 operations <volatile>`.)
2974- An instruction *control-depends* on a :ref:`terminator
2975 instruction <terminators>` if the terminator instruction has
2976 multiple successors and the instruction is always executed when
2977 control transfers to one of the successors, and may not be executed
2978 when control is transferred to another.
2979- Additionally, an instruction also *control-depends* on a terminator
2980 instruction if the set of instructions it otherwise depends on would
2981 be different if the terminator had transferred control to a different
2982 successor.
2983- Dependence is transitive.
2984
Richard Smith32dbdf62014-07-31 04:25:36 +00002985Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2986with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002987on a poison value has undefined behavior.
2988
2989Here are some examples:
2990
2991.. code-block:: llvm
2992
2993 entry:
2994 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2995 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002996 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002997 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2998
2999 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003000 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003001
3002 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3003
3004 %narrowaddr = bitcast i32* @g to i16*
3005 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003006 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3007 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003008
3009 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3010 br i1 %cmp, label %true, label %end ; Branch to either destination.
3011
3012 true:
3013 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3014 ; it has undefined behavior.
3015 br label %end
3016
3017 end:
3018 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3019 ; Both edges into this PHI are
3020 ; control-dependent on %cmp, so this
3021 ; always results in a poison value.
3022
3023 store volatile i32 0, i32* @g ; This would depend on the store in %true
3024 ; if %cmp is true, or the store in %entry
3025 ; otherwise, so this is undefined behavior.
3026
3027 br i1 %cmp, label %second_true, label %second_end
3028 ; The same branch again, but this time the
3029 ; true block doesn't have side effects.
3030
3031 second_true:
3032 ; No side effects!
3033 ret void
3034
3035 second_end:
3036 store volatile i32 0, i32* @g ; This time, the instruction always depends
3037 ; on the store in %end. Also, it is
3038 ; control-equivalent to %end, so this is
3039 ; well-defined (ignoring earlier undefined
3040 ; behavior in this example).
3041
3042.. _blockaddress:
3043
3044Addresses of Basic Blocks
3045-------------------------
3046
3047``blockaddress(@function, %block)``
3048
3049The '``blockaddress``' constant computes the address of the specified
3050basic block in the specified function, and always has an ``i8*`` type.
3051Taking the address of the entry block is illegal.
3052
3053This value only has defined behavior when used as an operand to the
3054':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3055against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003056undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003057no label is equal to the null pointer. This may be passed around as an
3058opaque pointer sized value as long as the bits are not inspected. This
3059allows ``ptrtoint`` and arithmetic to be performed on these values so
3060long as the original value is reconstituted before the ``indirectbr``
3061instruction.
3062
3063Finally, some targets may provide defined semantics when using the value
3064as the operand to an inline assembly, but that is target specific.
3065
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003066.. _constantexprs:
3067
Sean Silvab084af42012-12-07 10:36:55 +00003068Constant Expressions
3069--------------------
3070
3071Constant expressions are used to allow expressions involving other
3072constants to be used as constants. Constant expressions may be of any
3073:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3074that does not have side effects (e.g. load and call are not supported).
3075The following is the syntax for constant expressions:
3076
3077``trunc (CST to TYPE)``
3078 Truncate a constant to another type. The bit size of CST must be
3079 larger than the bit size of TYPE. Both types must be integers.
3080``zext (CST to TYPE)``
3081 Zero extend a constant to another type. The bit size of CST must be
3082 smaller than the bit size of TYPE. Both types must be integers.
3083``sext (CST to TYPE)``
3084 Sign extend a constant to another type. The bit size of CST must be
3085 smaller than the bit size of TYPE. Both types must be integers.
3086``fptrunc (CST to TYPE)``
3087 Truncate a floating point constant to another floating point type.
3088 The size of CST must be larger than the size of TYPE. Both types
3089 must be floating point.
3090``fpext (CST to TYPE)``
3091 Floating point extend a constant to another type. The size of CST
3092 must be smaller or equal to the size of TYPE. Both types must be
3093 floating point.
3094``fptoui (CST to TYPE)``
3095 Convert a floating point constant to the corresponding unsigned
3096 integer constant. TYPE must be a scalar or vector integer type. CST
3097 must be of scalar or vector floating point type. Both CST and TYPE
3098 must be scalars, or vectors of the same number of elements. If the
3099 value won't fit in the integer type, the results are undefined.
3100``fptosi (CST to TYPE)``
3101 Convert a floating point constant to the corresponding signed
3102 integer constant. TYPE must be a scalar or vector integer type. CST
3103 must be of scalar or vector floating point type. Both CST and TYPE
3104 must be scalars, or vectors of the same number of elements. If the
3105 value won't fit in the integer type, the results are undefined.
3106``uitofp (CST to TYPE)``
3107 Convert an unsigned integer constant to the corresponding floating
3108 point constant. TYPE must be a scalar or vector floating point type.
3109 CST must be of scalar or vector integer type. Both CST and TYPE must
3110 be scalars, or vectors of the same number of elements. If the value
3111 won't fit in the floating point type, the results are undefined.
3112``sitofp (CST to TYPE)``
3113 Convert a signed integer constant to the corresponding floating
3114 point constant. TYPE must be a scalar or vector floating point type.
3115 CST must be of scalar or vector integer type. Both CST and TYPE must
3116 be scalars, or vectors of the same number of elements. If the value
3117 won't fit in the floating point type, the results are undefined.
3118``ptrtoint (CST to TYPE)``
3119 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003120 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003121 pointer type. The ``CST`` value is zero extended, truncated, or
3122 unchanged to make it fit in ``TYPE``.
3123``inttoptr (CST to TYPE)``
3124 Convert an integer constant to a pointer constant. TYPE must be a
3125 pointer type. CST must be of integer type. The CST value is zero
3126 extended, truncated, or unchanged to make it fit in a pointer size.
3127 This one is *really* dangerous!
3128``bitcast (CST to TYPE)``
3129 Convert a constant, CST, to another TYPE. The constraints of the
3130 operands are the same as those for the :ref:`bitcast
3131 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003132``addrspacecast (CST to TYPE)``
3133 Convert a constant pointer or constant vector of pointer, CST, to another
3134 TYPE in a different address space. The constraints of the operands are the
3135 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003136``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003137 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3138 constants. As with the :ref:`getelementptr <i_getelementptr>`
3139 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003140 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003141``select (COND, VAL1, VAL2)``
3142 Perform the :ref:`select operation <i_select>` on constants.
3143``icmp COND (VAL1, VAL2)``
3144 Performs the :ref:`icmp operation <i_icmp>` on constants.
3145``fcmp COND (VAL1, VAL2)``
3146 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3147``extractelement (VAL, IDX)``
3148 Perform the :ref:`extractelement operation <i_extractelement>` on
3149 constants.
3150``insertelement (VAL, ELT, IDX)``
3151 Perform the :ref:`insertelement operation <i_insertelement>` on
3152 constants.
3153``shufflevector (VEC1, VEC2, IDXMASK)``
3154 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3155 constants.
3156``extractvalue (VAL, IDX0, IDX1, ...)``
3157 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3158 constants. The index list is interpreted in a similar manner as
3159 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3160 least one index value must be specified.
3161``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3162 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3163 The index list is interpreted in a similar manner as indices in a
3164 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3165 value must be specified.
3166``OPCODE (LHS, RHS)``
3167 Perform the specified operation of the LHS and RHS constants. OPCODE
3168 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3169 binary <bitwiseops>` operations. The constraints on operands are
3170 the same as those for the corresponding instruction (e.g. no bitwise
3171 operations on floating point values are allowed).
3172
3173Other Values
3174============
3175
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003176.. _inlineasmexprs:
3177
Sean Silvab084af42012-12-07 10:36:55 +00003178Inline Assembler Expressions
3179----------------------------
3180
3181LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003182Inline Assembly <moduleasm>`) through the use of a special value. This value
3183represents the inline assembler as a template string (containing the
3184instructions to emit), a list of operand constraints (stored as a string), a
3185flag that indicates whether or not the inline asm expression has side effects,
3186and a flag indicating whether the function containing the asm needs to align its
3187stack conservatively.
3188
3189The template string supports argument substitution of the operands using "``$``"
3190followed by a number, to indicate substitution of the given register/memory
3191location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3192be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3193operand (See :ref:`inline-asm-modifiers`).
3194
3195A literal "``$``" may be included by using "``$$``" in the template. To include
3196other special characters into the output, the usual "``\XX``" escapes may be
3197used, just as in other strings. Note that after template substitution, the
3198resulting assembly string is parsed by LLVM's integrated assembler unless it is
3199disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3200syntax known to LLVM.
3201
Reid Kleckner71cb1642017-02-06 18:08:45 +00003202LLVM also supports a few more substitions useful for writing inline assembly:
3203
3204- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3205 This substitution is useful when declaring a local label. Many standard
3206 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3207 Adding a blob-unique identifier ensures that the two labels will not conflict
3208 during assembly. This is used to implement `GCC's %= special format
3209 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3210- ``${:comment}``: Expands to the comment character of the current target's
3211 assembly dialect. This is usually ``#``, but many targets use other strings,
3212 such as ``;``, ``//``, or ``!``.
3213- ``${:private}``: Expands to the assembler private label prefix. Labels with
3214 this prefix will not appear in the symbol table of the assembled object.
3215 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3216 relatively popular.
3217
James Y Knightbc832ed2015-07-08 18:08:36 +00003218LLVM's support for inline asm is modeled closely on the requirements of Clang's
3219GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3220modifier codes listed here are similar or identical to those in GCC's inline asm
3221support. However, to be clear, the syntax of the template and constraint strings
3222described here is *not* the same as the syntax accepted by GCC and Clang, and,
3223while most constraint letters are passed through as-is by Clang, some get
3224translated to other codes when converting from the C source to the LLVM
3225assembly.
3226
3227An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003228
3229.. code-block:: llvm
3230
3231 i32 (i32) asm "bswap $0", "=r,r"
3232
3233Inline assembler expressions may **only** be used as the callee operand
3234of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3235Thus, typically we have:
3236
3237.. code-block:: llvm
3238
3239 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3240
3241Inline asms with side effects not visible in the constraint list must be
3242marked as having side effects. This is done through the use of the
3243'``sideeffect``' keyword, like so:
3244
3245.. code-block:: llvm
3246
3247 call void asm sideeffect "eieio", ""()
3248
3249In some cases inline asms will contain code that will not work unless
3250the stack is aligned in some way, such as calls or SSE instructions on
3251x86, yet will not contain code that does that alignment within the asm.
3252The compiler should make conservative assumptions about what the asm
3253might contain and should generate its usual stack alignment code in the
3254prologue if the '``alignstack``' keyword is present:
3255
3256.. code-block:: llvm
3257
3258 call void asm alignstack "eieio", ""()
3259
3260Inline asms also support using non-standard assembly dialects. The
3261assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3262the inline asm is using the Intel dialect. Currently, ATT and Intel are
3263the only supported dialects. An example is:
3264
3265.. code-block:: llvm
3266
3267 call void asm inteldialect "eieio", ""()
3268
3269If multiple keywords appear the '``sideeffect``' keyword must come
3270first, the '``alignstack``' keyword second and the '``inteldialect``'
3271keyword last.
3272
James Y Knightbc832ed2015-07-08 18:08:36 +00003273Inline Asm Constraint String
3274^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3275
3276The constraint list is a comma-separated string, each element containing one or
3277more constraint codes.
3278
3279For each element in the constraint list an appropriate register or memory
3280operand will be chosen, and it will be made available to assembly template
3281string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3282second, etc.
3283
3284There are three different types of constraints, which are distinguished by a
3285prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3286constraints must always be given in that order: outputs first, then inputs, then
3287clobbers. They cannot be intermingled.
3288
3289There are also three different categories of constraint codes:
3290
3291- Register constraint. This is either a register class, or a fixed physical
3292 register. This kind of constraint will allocate a register, and if necessary,
3293 bitcast the argument or result to the appropriate type.
3294- Memory constraint. This kind of constraint is for use with an instruction
3295 taking a memory operand. Different constraints allow for different addressing
3296 modes used by the target.
3297- Immediate value constraint. This kind of constraint is for an integer or other
3298 immediate value which can be rendered directly into an instruction. The
3299 various target-specific constraints allow the selection of a value in the
3300 proper range for the instruction you wish to use it with.
3301
3302Output constraints
3303""""""""""""""""""
3304
3305Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3306indicates that the assembly will write to this operand, and the operand will
3307then be made available as a return value of the ``asm`` expression. Output
3308constraints do not consume an argument from the call instruction. (Except, see
3309below about indirect outputs).
3310
3311Normally, it is expected that no output locations are written to by the assembly
3312expression until *all* of the inputs have been read. As such, LLVM may assign
3313the same register to an output and an input. If this is not safe (e.g. if the
3314assembly contains two instructions, where the first writes to one output, and
3315the second reads an input and writes to a second output), then the "``&``"
3316modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003317"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003318will not use the same register for any inputs (other than an input tied to this
3319output).
3320
3321Input constraints
3322"""""""""""""""""
3323
3324Input constraints do not have a prefix -- just the constraint codes. Each input
3325constraint will consume one argument from the call instruction. It is not
3326permitted for the asm to write to any input register or memory location (unless
3327that input is tied to an output). Note also that multiple inputs may all be
3328assigned to the same register, if LLVM can determine that they necessarily all
3329contain the same value.
3330
3331Instead of providing a Constraint Code, input constraints may also "tie"
3332themselves to an output constraint, by providing an integer as the constraint
3333string. Tied inputs still consume an argument from the call instruction, and
3334take up a position in the asm template numbering as is usual -- they will simply
3335be constrained to always use the same register as the output they've been tied
3336to. For example, a constraint string of "``=r,0``" says to assign a register for
3337output, and use that register as an input as well (it being the 0'th
3338constraint).
3339
3340It is permitted to tie an input to an "early-clobber" output. In that case, no
3341*other* input may share the same register as the input tied to the early-clobber
3342(even when the other input has the same value).
3343
3344You may only tie an input to an output which has a register constraint, not a
3345memory constraint. Only a single input may be tied to an output.
3346
3347There is also an "interesting" feature which deserves a bit of explanation: if a
3348register class constraint allocates a register which is too small for the value
3349type operand provided as input, the input value will be split into multiple
3350registers, and all of them passed to the inline asm.
3351
3352However, this feature is often not as useful as you might think.
3353
3354Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3355architectures that have instructions which operate on multiple consecutive
3356instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3357SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3358hardware then loads into both the named register, and the next register. This
3359feature of inline asm would not be useful to support that.)
3360
3361A few of the targets provide a template string modifier allowing explicit access
3362to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3363``D``). On such an architecture, you can actually access the second allocated
3364register (yet, still, not any subsequent ones). But, in that case, you're still
3365probably better off simply splitting the value into two separate operands, for
3366clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3367despite existing only for use with this feature, is not really a good idea to
3368use)
3369
3370Indirect inputs and outputs
3371"""""""""""""""""""""""""""
3372
3373Indirect output or input constraints can be specified by the "``*``" modifier
3374(which goes after the "``=``" in case of an output). This indicates that the asm
3375will write to or read from the contents of an *address* provided as an input
3376argument. (Note that in this way, indirect outputs act more like an *input* than
3377an output: just like an input, they consume an argument of the call expression,
3378rather than producing a return value. An indirect output constraint is an
3379"output" only in that the asm is expected to write to the contents of the input
3380memory location, instead of just read from it).
3381
3382This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3383address of a variable as a value.
3384
3385It is also possible to use an indirect *register* constraint, but only on output
3386(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3387value normally, and then, separately emit a store to the address provided as
3388input, after the provided inline asm. (It's not clear what value this
3389functionality provides, compared to writing the store explicitly after the asm
3390statement, and it can only produce worse code, since it bypasses many
3391optimization passes. I would recommend not using it.)
3392
3393
3394Clobber constraints
3395"""""""""""""""""""
3396
3397A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3398consume an input operand, nor generate an output. Clobbers cannot use any of the
3399general constraint code letters -- they may use only explicit register
3400constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3401"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3402memory locations -- not only the memory pointed to by a declared indirect
3403output.
3404
Peter Zotov00257232016-08-30 10:48:31 +00003405Note that clobbering named registers that are also present in output
3406constraints is not legal.
3407
James Y Knightbc832ed2015-07-08 18:08:36 +00003408
3409Constraint Codes
3410""""""""""""""""
3411After a potential prefix comes constraint code, or codes.
3412
3413A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3414followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3415(e.g. "``{eax}``").
3416
3417The one and two letter constraint codes are typically chosen to be the same as
3418GCC's constraint codes.
3419
3420A single constraint may include one or more than constraint code in it, leaving
3421it up to LLVM to choose which one to use. This is included mainly for
3422compatibility with the translation of GCC inline asm coming from clang.
3423
3424There are two ways to specify alternatives, and either or both may be used in an
3425inline asm constraint list:
3426
34271) Append the codes to each other, making a constraint code set. E.g. "``im``"
3428 or "``{eax}m``". This means "choose any of the options in the set". The
3429 choice of constraint is made independently for each constraint in the
3430 constraint list.
3431
34322) Use "``|``" between constraint code sets, creating alternatives. Every
3433 constraint in the constraint list must have the same number of alternative
3434 sets. With this syntax, the same alternative in *all* of the items in the
3435 constraint list will be chosen together.
3436
3437Putting those together, you might have a two operand constraint string like
3438``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3439operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3440may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3441
3442However, the use of either of the alternatives features is *NOT* recommended, as
3443LLVM is not able to make an intelligent choice about which one to use. (At the
3444point it currently needs to choose, not enough information is available to do so
3445in a smart way.) Thus, it simply tries to make a choice that's most likely to
3446compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3447always choose to use memory, not registers). And, if given multiple registers,
3448or multiple register classes, it will simply choose the first one. (In fact, it
3449doesn't currently even ensure explicitly specified physical registers are
3450unique, so specifying multiple physical registers as alternatives, like
3451``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3452intended.)
3453
3454Supported Constraint Code List
3455""""""""""""""""""""""""""""""
3456
3457The constraint codes are, in general, expected to behave the same way they do in
3458GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3459inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3460and GCC likely indicates a bug in LLVM.
3461
3462Some constraint codes are typically supported by all targets:
3463
3464- ``r``: A register in the target's general purpose register class.
3465- ``m``: A memory address operand. It is target-specific what addressing modes
3466 are supported, typical examples are register, or register + register offset,
3467 or register + immediate offset (of some target-specific size).
3468- ``i``: An integer constant (of target-specific width). Allows either a simple
3469 immediate, or a relocatable value.
3470- ``n``: An integer constant -- *not* including relocatable values.
3471- ``s``: An integer constant, but allowing *only* relocatable values.
3472- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3473 useful to pass a label for an asm branch or call.
3474
3475 .. FIXME: but that surely isn't actually okay to jump out of an asm
3476 block without telling llvm about the control transfer???)
3477
3478- ``{register-name}``: Requires exactly the named physical register.
3479
3480Other constraints are target-specific:
3481
3482AArch64:
3483
3484- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3485- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3486 i.e. 0 to 4095 with optional shift by 12.
3487- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3488 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3489- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3490 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3491- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3492 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3493- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3494 32-bit register. This is a superset of ``K``: in addition to the bitmask
3495 immediate, also allows immediate integers which can be loaded with a single
3496 ``MOVZ`` or ``MOVL`` instruction.
3497- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3498 64-bit register. This is a superset of ``L``.
3499- ``Q``: Memory address operand must be in a single register (no
3500 offsets). (However, LLVM currently does this for the ``m`` constraint as
3501 well.)
3502- ``r``: A 32 or 64-bit integer register (W* or X*).
3503- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3504- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3505
3506AMDGPU:
3507
3508- ``r``: A 32 or 64-bit integer register.
3509- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3510- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3511
3512
3513All ARM modes:
3514
3515- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3516 operand. Treated the same as operand ``m``, at the moment.
3517
3518ARM and ARM's Thumb2 mode:
3519
3520- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3521- ``I``: An immediate integer valid for a data-processing instruction.
3522- ``J``: An immediate integer between -4095 and 4095.
3523- ``K``: An immediate integer whose bitwise inverse is valid for a
3524 data-processing instruction. (Can be used with template modifier "``B``" to
3525 print the inverted value).
3526- ``L``: An immediate integer whose negation is valid for a data-processing
3527 instruction. (Can be used with template modifier "``n``" to print the negated
3528 value).
3529- ``M``: A power of two or a integer between 0 and 32.
3530- ``N``: Invalid immediate constraint.
3531- ``O``: Invalid immediate constraint.
3532- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3533- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3534 as ``r``.
3535- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3536 invalid.
3537- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3538 ``d0-d31``, or ``q0-q15``.
3539- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3540 ``d0-d7``, or ``q0-q3``.
3541- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3542 ``s0-s31``.
3543
3544ARM's Thumb1 mode:
3545
3546- ``I``: An immediate integer between 0 and 255.
3547- ``J``: An immediate integer between -255 and -1.
3548- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3549 some amount.
3550- ``L``: An immediate integer between -7 and 7.
3551- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3552- ``N``: An immediate integer between 0 and 31.
3553- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3554- ``r``: A low 32-bit GPR register (``r0-r7``).
3555- ``l``: A low 32-bit GPR register (``r0-r7``).
3556- ``h``: A high GPR register (``r0-r7``).
3557- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3558 ``d0-d31``, or ``q0-q15``.
3559- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3560 ``d0-d7``, or ``q0-q3``.
3561- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3562 ``s0-s31``.
3563
3564
3565Hexagon:
3566
3567- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3568 at the moment.
3569- ``r``: A 32 or 64-bit register.
3570
3571MSP430:
3572
3573- ``r``: An 8 or 16-bit register.
3574
3575MIPS:
3576
3577- ``I``: An immediate signed 16-bit integer.
3578- ``J``: An immediate integer zero.
3579- ``K``: An immediate unsigned 16-bit integer.
3580- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3581- ``N``: An immediate integer between -65535 and -1.
3582- ``O``: An immediate signed 15-bit integer.
3583- ``P``: An immediate integer between 1 and 65535.
3584- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3585 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3586- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3587 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3588 ``m``.
3589- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3590 ``sc`` instruction on the given subtarget (details vary).
3591- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3592- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003593 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3594 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003595- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3596 ``25``).
3597- ``l``: The ``lo`` register, 32 or 64-bit.
3598- ``x``: Invalid.
3599
3600NVPTX:
3601
3602- ``b``: A 1-bit integer register.
3603- ``c`` or ``h``: A 16-bit integer register.
3604- ``r``: A 32-bit integer register.
3605- ``l`` or ``N``: A 64-bit integer register.
3606- ``f``: A 32-bit float register.
3607- ``d``: A 64-bit float register.
3608
3609
3610PowerPC:
3611
3612- ``I``: An immediate signed 16-bit integer.
3613- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3614- ``K``: An immediate unsigned 16-bit integer.
3615- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3616- ``M``: An immediate integer greater than 31.
3617- ``N``: An immediate integer that is an exact power of 2.
3618- ``O``: The immediate integer constant 0.
3619- ``P``: An immediate integer constant whose negation is a signed 16-bit
3620 constant.
3621- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3622 treated the same as ``m``.
3623- ``r``: A 32 or 64-bit integer register.
3624- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3625 ``R1-R31``).
3626- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3627 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3628- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3629 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3630 altivec vector register (``V0-V31``).
3631
3632 .. FIXME: is this a bug that v accepts QPX registers? I think this
3633 is supposed to only use the altivec vector registers?
3634
3635- ``y``: Condition register (``CR0-CR7``).
3636- ``wc``: An individual CR bit in a CR register.
3637- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3638 register set (overlapping both the floating-point and vector register files).
3639- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3640 set.
3641
3642Sparc:
3643
3644- ``I``: An immediate 13-bit signed integer.
3645- ``r``: A 32-bit integer register.
3646
3647SystemZ:
3648
3649- ``I``: An immediate unsigned 8-bit integer.
3650- ``J``: An immediate unsigned 12-bit integer.
3651- ``K``: An immediate signed 16-bit integer.
3652- ``L``: An immediate signed 20-bit integer.
3653- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003654- ``Q``: A memory address operand with a base address and a 12-bit immediate
3655 unsigned displacement.
3656- ``R``: A memory address operand with a base address, a 12-bit immediate
3657 unsigned displacement, and an index register.
3658- ``S``: A memory address operand with a base address and a 20-bit immediate
3659 signed displacement.
3660- ``T``: A memory address operand with a base address, a 20-bit immediate
3661 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003662- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3663- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3664 address context evaluates as zero).
3665- ``h``: A 32-bit value in the high part of a 64bit data register
3666 (LLVM-specific)
3667- ``f``: A 32, 64, or 128-bit floating point register.
3668
3669X86:
3670
3671- ``I``: An immediate integer between 0 and 31.
3672- ``J``: An immediate integer between 0 and 64.
3673- ``K``: An immediate signed 8-bit integer.
3674- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3675 0xffffffff.
3676- ``M``: An immediate integer between 0 and 3.
3677- ``N``: An immediate unsigned 8-bit integer.
3678- ``O``: An immediate integer between 0 and 127.
3679- ``e``: An immediate 32-bit signed integer.
3680- ``Z``: An immediate 32-bit unsigned integer.
3681- ``o``, ``v``: Treated the same as ``m``, at the moment.
3682- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3683 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3684 registers, and on X86-64, it is all of the integer registers.
3685- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3686 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3687- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3688- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3689 existed since i386, and can be accessed without the REX prefix.
3690- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3691- ``y``: A 64-bit MMX register, if MMX is enabled.
3692- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3693 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3694 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3695 512-bit vector operand in an AVX512 register, Otherwise, an error.
3696- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3697- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3698 32-bit mode, a 64-bit integer operand will get split into two registers). It
3699 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3700 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3701 you're better off splitting it yourself, before passing it to the asm
3702 statement.
3703
3704XCore:
3705
3706- ``r``: A 32-bit integer register.
3707
3708
3709.. _inline-asm-modifiers:
3710
3711Asm template argument modifiers
3712^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3713
3714In the asm template string, modifiers can be used on the operand reference, like
3715"``${0:n}``".
3716
3717The modifiers are, in general, expected to behave the same way they do in
3718GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3719inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3720and GCC likely indicates a bug in LLVM.
3721
3722Target-independent:
3723
Sean Silvaa1190322015-08-06 22:56:48 +00003724- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003725 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3726- ``n``: Negate and print immediate integer constant unadorned, without the
3727 target-specific immediate punctuation (e.g. no ``$`` prefix).
3728- ``l``: Print as an unadorned label, without the target-specific label
3729 punctuation (e.g. no ``$`` prefix).
3730
3731AArch64:
3732
3733- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3734 instead of ``x30``, print ``w30``.
3735- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3736- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3737 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3738 ``v*``.
3739
3740AMDGPU:
3741
3742- ``r``: No effect.
3743
3744ARM:
3745
3746- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3747 register).
3748- ``P``: No effect.
3749- ``q``: No effect.
3750- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3751 as ``d4[1]`` instead of ``s9``)
3752- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3753 prefix.
3754- ``L``: Print the low 16-bits of an immediate integer constant.
3755- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3756 register operands subsequent to the specified one (!), so use carefully.
3757- ``Q``: Print the low-order register of a register-pair, or the low-order
3758 register of a two-register operand.
3759- ``R``: Print the high-order register of a register-pair, or the high-order
3760 register of a two-register operand.
3761- ``H``: Print the second register of a register-pair. (On a big-endian system,
3762 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3763 to ``R``.)
3764
3765 .. FIXME: H doesn't currently support printing the second register
3766 of a two-register operand.
3767
3768- ``e``: Print the low doubleword register of a NEON quad register.
3769- ``f``: Print the high doubleword register of a NEON quad register.
3770- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3771 adornment.
3772
3773Hexagon:
3774
3775- ``L``: Print the second register of a two-register operand. Requires that it
3776 has been allocated consecutively to the first.
3777
3778 .. FIXME: why is it restricted to consecutive ones? And there's
3779 nothing that ensures that happens, is there?
3780
3781- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3782 nothing. Used to print 'addi' vs 'add' instructions.
3783
3784MSP430:
3785
3786No additional modifiers.
3787
3788MIPS:
3789
3790- ``X``: Print an immediate integer as hexadecimal
3791- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3792- ``d``: Print an immediate integer as decimal.
3793- ``m``: Subtract one and print an immediate integer as decimal.
3794- ``z``: Print $0 if an immediate zero, otherwise print normally.
3795- ``L``: Print the low-order register of a two-register operand, or prints the
3796 address of the low-order word of a double-word memory operand.
3797
3798 .. FIXME: L seems to be missing memory operand support.
3799
3800- ``M``: Print the high-order register of a two-register operand, or prints the
3801 address of the high-order word of a double-word memory operand.
3802
3803 .. FIXME: M seems to be missing memory operand support.
3804
3805- ``D``: Print the second register of a two-register operand, or prints the
3806 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3807 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3808 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003809- ``w``: No effect. Provided for compatibility with GCC which requires this
3810 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3811 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003812
3813NVPTX:
3814
3815- ``r``: No effect.
3816
3817PowerPC:
3818
3819- ``L``: Print the second register of a two-register operand. Requires that it
3820 has been allocated consecutively to the first.
3821
3822 .. FIXME: why is it restricted to consecutive ones? And there's
3823 nothing that ensures that happens, is there?
3824
3825- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3826 nothing. Used to print 'addi' vs 'add' instructions.
3827- ``y``: For a memory operand, prints formatter for a two-register X-form
3828 instruction. (Currently always prints ``r0,OPERAND``).
3829- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3830 otherwise. (NOTE: LLVM does not support update form, so this will currently
3831 always print nothing)
3832- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3833 not support indexed form, so this will currently always print nothing)
3834
3835Sparc:
3836
3837- ``r``: No effect.
3838
3839SystemZ:
3840
3841SystemZ implements only ``n``, and does *not* support any of the other
3842target-independent modifiers.
3843
3844X86:
3845
3846- ``c``: Print an unadorned integer or symbol name. (The latter is
3847 target-specific behavior for this typically target-independent modifier).
3848- ``A``: Print a register name with a '``*``' before it.
3849- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3850 operand.
3851- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3852 memory operand.
3853- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3854 operand.
3855- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3856 operand.
3857- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3858 available, otherwise the 32-bit register name; do nothing on a memory operand.
3859- ``n``: Negate and print an unadorned integer, or, for operands other than an
3860 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3861 the operand. (The behavior for relocatable symbol expressions is a
3862 target-specific behavior for this typically target-independent modifier)
3863- ``H``: Print a memory reference with additional offset +8.
3864- ``P``: Print a memory reference or operand for use as the argument of a call
3865 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3866
3867XCore:
3868
3869No additional modifiers.
3870
3871
Sean Silvab084af42012-12-07 10:36:55 +00003872Inline Asm Metadata
3873^^^^^^^^^^^^^^^^^^^
3874
3875The call instructions that wrap inline asm nodes may have a
3876"``!srcloc``" MDNode attached to it that contains a list of constant
3877integers. If present, the code generator will use the integer as the
3878location cookie value when report errors through the ``LLVMContext``
3879error reporting mechanisms. This allows a front-end to correlate backend
3880errors that occur with inline asm back to the source code that produced
3881it. For example:
3882
3883.. code-block:: llvm
3884
3885 call void asm sideeffect "something bad", ""(), !srcloc !42
3886 ...
3887 !42 = !{ i32 1234567 }
3888
3889It is up to the front-end to make sense of the magic numbers it places
3890in the IR. If the MDNode contains multiple constants, the code generator
3891will use the one that corresponds to the line of the asm that the error
3892occurs on.
3893
3894.. _metadata:
3895
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003896Metadata
3897========
Sean Silvab084af42012-12-07 10:36:55 +00003898
3899LLVM IR allows metadata to be attached to instructions in the program
3900that can convey extra information about the code to the optimizers and
3901code generator. One example application of metadata is source-level
3902debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003903
Sean Silvaa1190322015-08-06 22:56:48 +00003904Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003905``call`` instruction, it uses the ``metadata`` type.
3906
3907All metadata are identified in syntax by a exclamation point ('``!``').
3908
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003909.. _metadata-string:
3910
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003911Metadata Nodes and Metadata Strings
3912-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003913
3914A metadata string is a string surrounded by double quotes. It can
3915contain any character by escaping non-printable characters with
3916"``\xx``" where "``xx``" is the two digit hex code. For example:
3917"``!"test\00"``".
3918
3919Metadata nodes are represented with notation similar to structure
3920constants (a comma separated list of elements, surrounded by braces and
3921preceded by an exclamation point). Metadata nodes can have any values as
3922their operand. For example:
3923
3924.. code-block:: llvm
3925
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003926 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003927
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003928Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3929
Renato Golin124f2592016-07-20 12:16:38 +00003930.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003931
3932 !0 = distinct !{!"test\00", i32 10}
3933
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003934``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003935content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003936when metadata operands change.
3937
Sean Silvab084af42012-12-07 10:36:55 +00003938A :ref:`named metadata <namedmetadatastructure>` is a collection of
3939metadata nodes, which can be looked up in the module symbol table. For
3940example:
3941
3942.. code-block:: llvm
3943
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003944 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003945
3946Metadata can be used as function arguments. Here ``llvm.dbg.value``
3947function is using two metadata arguments:
3948
3949.. code-block:: llvm
3950
3951 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3952
Peter Collingbourne50108682015-11-06 02:41:02 +00003953Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3954to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003955
3956.. code-block:: llvm
3957
3958 %indvar.next = add i64 %indvar, 1, !dbg !21
3959
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003960Metadata can also be attached to a function or a global variable. Here metadata
3961``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
3962and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00003963
3964.. code-block:: llvm
3965
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003966 declare !dbg !22 void @f1()
3967 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00003968 ret void
3969 }
3970
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003971 @g1 = global i32 0, !dbg !22
3972 @g2 = external global i32, !dbg !22
3973
3974A transformation is required to drop any metadata attachment that it does not
3975know or know it can't preserve. Currently there is an exception for metadata
3976attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
3977unconditionally dropped unless the global is itself deleted.
3978
3979Metadata attached to a module using named metadata may not be dropped, with
3980the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
3981
Sean Silvab084af42012-12-07 10:36:55 +00003982More information about specific metadata nodes recognized by the
3983optimizers and code generator is found below.
3984
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003985.. _specialized-metadata:
3986
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003987Specialized Metadata Nodes
3988^^^^^^^^^^^^^^^^^^^^^^^^^^
3989
3990Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003991to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003992order.
3993
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003994These aren't inherently debug info centric, but currently all the specialized
3995metadata nodes are related to debug info.
3996
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003997.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003998
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003999DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004000"""""""""""""
4001
Sean Silvaa1190322015-08-06 22:56:48 +00004002``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004003``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
4004fields are tuples containing the debug info to be emitted along with the compile
4005unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004006references to them from instructions).
4007
Renato Golin124f2592016-07-20 12:16:38 +00004008.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004009
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004010 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004011 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004012 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004013 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004014 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004015
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004016Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00004017specific compilation unit. File descriptors are defined using this scope.
4018These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004019keep track of subprograms, global variables, type information, and imported
4020entities (declarations and namespaces).
4021
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004022.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004023
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004024DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004025""""""
4026
Sean Silvaa1190322015-08-06 22:56:48 +00004027``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004028
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004029.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004030
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004031 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4032 checksumkind: CSK_MD5,
4033 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004034
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004035Files are sometimes used in ``scope:`` fields, and are the only valid target
4036for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004037Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004038
Michael Kuperstein605308a2015-05-14 10:58:59 +00004039.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004040
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004041DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004042"""""""""""
4043
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004044``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004045``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004046
Renato Golin124f2592016-07-20 12:16:38 +00004047.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004049 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004050 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004051 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004052
Sean Silvaa1190322015-08-06 22:56:48 +00004053The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004054following:
4055
Renato Golin124f2592016-07-20 12:16:38 +00004056.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004057
4058 DW_ATE_address = 1
4059 DW_ATE_boolean = 2
4060 DW_ATE_float = 4
4061 DW_ATE_signed = 5
4062 DW_ATE_signed_char = 6
4063 DW_ATE_unsigned = 7
4064 DW_ATE_unsigned_char = 8
4065
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004066.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004067
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004068DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004069""""""""""""""""
4070
Sean Silvaa1190322015-08-06 22:56:48 +00004071``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004072refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004073types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004074represents a function with no return value (such as ``void foo() {}`` in C++).
4075
Renato Golin124f2592016-07-20 12:16:38 +00004076.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004077
4078 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4079 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004080 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004081
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004082.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004083
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004084DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004085"""""""""""""
4086
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004087``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004088qualified types.
4089
Renato Golin124f2592016-07-20 12:16:38 +00004090.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004091
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004092 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004093 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004094 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004095 align: 32)
4096
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004097The following ``tag:`` values are valid:
4098
Renato Golin124f2592016-07-20 12:16:38 +00004099.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004100
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004101 DW_TAG_member = 13
4102 DW_TAG_pointer_type = 15
4103 DW_TAG_reference_type = 16
4104 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004105 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004106 DW_TAG_ptr_to_member_type = 31
4107 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004108 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004109 DW_TAG_volatile_type = 53
4110 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004111 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004112
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004113.. _DIDerivedTypeMember:
4114
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004115``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004116<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004117``offset:`` is the member's bit offset. If the composite type has an ODR
4118``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4119uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004120
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004121``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4122field of :ref:`composite types <DICompositeType>` to describe parents and
4123friends.
4124
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004125``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4126
4127``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004128``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4129are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004130
4131Note that the ``void *`` type is expressed as a type derived from NULL.
4132
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004133.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004134
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004135DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004136"""""""""""""""
4137
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004138``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004139structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004140
4141If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004142identifier used for type merging between modules. When specified,
4143:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4144derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4145``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004146
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004147For a given ``identifier:``, there should only be a single composite type that
4148does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4149together will unique such definitions at parse time via the ``identifier:``
4150field, even if the nodes are ``distinct``.
4151
Renato Golin124f2592016-07-20 12:16:38 +00004152.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004153
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004154 !0 = !DIEnumerator(name: "SixKind", value: 7)
4155 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4156 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4157 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004158 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4159 elements: !{!0, !1, !2})
4160
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004161The following ``tag:`` values are valid:
4162
Renato Golin124f2592016-07-20 12:16:38 +00004163.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004164
4165 DW_TAG_array_type = 1
4166 DW_TAG_class_type = 2
4167 DW_TAG_enumeration_type = 4
4168 DW_TAG_structure_type = 19
4169 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004170
4171For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004172descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004173level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004174array type is a native packed vector.
4175
4176For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004177descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004178value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004179``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004180
4181For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4182``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004183<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4184``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4185``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004186
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004187.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004188
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004189DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004190""""""""""
4191
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004192``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004193:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004194
4195.. code-block:: llvm
4196
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004197 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4198 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4199 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004200
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004201.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004202
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004203DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004204""""""""""""
4205
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004206``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4207variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004208
4209.. code-block:: llvm
4210
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004211 !0 = !DIEnumerator(name: "SixKind", value: 7)
4212 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4213 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004214
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004215DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004216"""""""""""""""""""""""
4217
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004218``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004219language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004220:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004221
4222.. code-block:: llvm
4223
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004224 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004225
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004226DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004227""""""""""""""""""""""""
4228
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004229``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004230language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004231but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004232``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004233:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004234
4235.. code-block:: llvm
4236
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004237 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004238
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004239DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004240"""""""""""
4241
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004242``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004243
4244.. code-block:: llvm
4245
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004246 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004247
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004248DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004249""""""""""""""""
4250
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004251``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004252
4253.. code-block:: llvm
4254
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004255 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004256 file: !2, line: 7, type: !3, isLocal: true,
4257 isDefinition: false, variable: i32* @foo,
4258 declaration: !4)
4259
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004260All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004261:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004262
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004263.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004264
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004265DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004266""""""""""""
4267
Peter Collingbourne50108682015-11-06 02:41:02 +00004268``DISubprogram`` nodes represent functions from the source language. A
4269``DISubprogram`` may be attached to a function definition using ``!dbg``
4270metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4271that must be retained, even if their IR counterparts are optimized out of
4272the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004273
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004274.. _DISubprogramDeclaration:
4275
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004276When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004277tree as opposed to a definition of a function. If the scope is a composite
4278type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4279then the subprogram declaration is uniqued based only on its ``linkageName:``
4280and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004281
Renato Golin124f2592016-07-20 12:16:38 +00004282.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004283
Peter Collingbourne50108682015-11-06 02:41:02 +00004284 define void @_Z3foov() !dbg !0 {
4285 ...
4286 }
4287
4288 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4289 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004290 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004291 containingType: !4,
4292 virtuality: DW_VIRTUALITY_pure_virtual,
4293 virtualIndex: 10, flags: DIFlagPrototyped,
4294 isOptimized: true, templateParams: !5,
4295 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004296
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004297.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004298
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004299DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004300""""""""""""""
4301
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004302``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004303<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004304two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004305fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004306
Renato Golin124f2592016-07-20 12:16:38 +00004307.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004308
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004309 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004310
4311Usually lexical blocks are ``distinct`` to prevent node merging based on
4312operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004313
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004314.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004315
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004316DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004317""""""""""""""""""
4318
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004319``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004320:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004321indicate textual inclusion, or the ``discriminator:`` field can be used to
4322discriminate between control flow within a single block in the source language.
4323
4324.. code-block:: llvm
4325
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004326 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4327 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4328 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004329
Michael Kuperstein605308a2015-05-14 10:58:59 +00004330.. _DILocation:
4331
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004332DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004333""""""""""
4334
Sean Silvaa1190322015-08-06 22:56:48 +00004335``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004336mandatory, and points at an :ref:`DILexicalBlockFile`, an
4337:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004338
4339.. code-block:: llvm
4340
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004341 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004342
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004343.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004344
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004345DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004346"""""""""""""""
4347
Sean Silvaa1190322015-08-06 22:56:48 +00004348``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004349the ``arg:`` field is set to non-zero, then this variable is a subprogram
4350parameter, and it will be included in the ``variables:`` field of its
4351:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004352
Renato Golin124f2592016-07-20 12:16:38 +00004353.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004354
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004355 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4356 type: !3, flags: DIFlagArtificial)
4357 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4358 type: !3)
4359 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004360
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004361DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004362""""""""""""
4363
Sean Silvaa1190322015-08-06 22:56:48 +00004364``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004365:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4366describe how the referenced LLVM variable relates to the source language
4367variable.
4368
4369The current supported vocabulary is limited:
4370
4371- ``DW_OP_deref`` dereferences the working expression.
4372- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4373- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4374 here, respectively) of the variable piece from the working expression.
4375
Renato Golin124f2592016-07-20 12:16:38 +00004376.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004377
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004378 !0 = !DIExpression(DW_OP_deref)
4379 !1 = !DIExpression(DW_OP_plus, 3)
4380 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4381 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004382
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004383DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004384""""""""""""""
4385
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004386``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004387
4388.. code-block:: llvm
4389
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004390 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004391 getter: "getFoo", attributes: 7, type: !2)
4392
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004393DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004394""""""""""""""""
4395
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004396``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004397compile unit.
4398
Renato Golin124f2592016-07-20 12:16:38 +00004399.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004400
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004401 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004402 entity: !1, line: 7)
4403
Amjad Abouda9bcf162015-12-10 12:56:35 +00004404DIMacro
4405"""""""
4406
4407``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4408The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004409defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004410used to expand the macro identifier.
4411
Renato Golin124f2592016-07-20 12:16:38 +00004412.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004413
4414 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4415 value: "((x) + 1)")
4416 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4417
4418DIMacroFile
4419"""""""""""
4420
4421``DIMacroFile`` nodes represent inclusion of source files.
4422The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4423appear in the included source file.
4424
Renato Golin124f2592016-07-20 12:16:38 +00004425.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004426
4427 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4428 nodes: !3)
4429
Sean Silvab084af42012-12-07 10:36:55 +00004430'``tbaa``' Metadata
4431^^^^^^^^^^^^^^^^^^^
4432
4433In LLVM IR, memory does not have types, so LLVM's own type system is not
4434suitable for doing TBAA. Instead, metadata is added to the IR to
4435describe a type system of a higher level language. This can be used to
4436implement typical C/C++ TBAA, but it can also be used to implement
4437custom alias analysis behavior for other languages.
4438
4439The current metadata format is very simple. TBAA metadata nodes have up
4440to three fields, e.g.:
4441
4442.. code-block:: llvm
4443
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004444 !0 = !{ !"an example type tree" }
4445 !1 = !{ !"int", !0 }
4446 !2 = !{ !"float", !0 }
4447 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004448
4449The first field is an identity field. It can be any value, usually a
4450metadata string, which uniquely identifies the type. The most important
4451name in the tree is the name of the root node. Two trees with different
4452root node names are entirely disjoint, even if they have leaves with
4453common names.
4454
4455The second field identifies the type's parent node in the tree, or is
4456null or omitted for a root node. A type is considered to alias all of
4457its descendants and all of its ancestors in the tree. Also, a type is
4458considered to alias all types in other trees, so that bitcode produced
4459from multiple front-ends is handled conservatively.
4460
4461If the third field is present, it's an integer which if equal to 1
4462indicates that the type is "constant" (meaning
4463``pointsToConstantMemory`` should return true; see `other useful
4464AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4465
4466'``tbaa.struct``' Metadata
4467^^^^^^^^^^^^^^^^^^^^^^^^^^
4468
4469The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4470aggregate assignment operations in C and similar languages, however it
4471is defined to copy a contiguous region of memory, which is more than
4472strictly necessary for aggregate types which contain holes due to
4473padding. Also, it doesn't contain any TBAA information about the fields
4474of the aggregate.
4475
4476``!tbaa.struct`` metadata can describe which memory subregions in a
4477memcpy are padding and what the TBAA tags of the struct are.
4478
4479The current metadata format is very simple. ``!tbaa.struct`` metadata
4480nodes are a list of operands which are in conceptual groups of three.
4481For each group of three, the first operand gives the byte offset of a
4482field in bytes, the second gives its size in bytes, and the third gives
4483its tbaa tag. e.g.:
4484
4485.. code-block:: llvm
4486
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004487 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004488
4489This describes a struct with two fields. The first is at offset 0 bytes
4490with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4491and has size 4 bytes and has tbaa tag !2.
4492
4493Note that the fields need not be contiguous. In this example, there is a
44944 byte gap between the two fields. This gap represents padding which
4495does not carry useful data and need not be preserved.
4496
Hal Finkel94146652014-07-24 14:25:39 +00004497'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004499
4500``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4501noalias memory-access sets. This means that some collection of memory access
4502instructions (loads, stores, memory-accessing calls, etc.) that carry
4503``noalias`` metadata can specifically be specified not to alias with some other
4504collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004505Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004506a domain.
4507
4508When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004509of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004510subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004511instruction's ``noalias`` list, then the two memory accesses are assumed not to
4512alias.
Hal Finkel94146652014-07-24 14:25:39 +00004513
Adam Nemet569a5b32016-04-27 00:52:48 +00004514Because scopes in one domain don't affect scopes in other domains, separate
4515domains can be used to compose multiple independent noalias sets. This is
4516used for example during inlining. As the noalias function parameters are
4517turned into noalias scope metadata, a new domain is used every time the
4518function is inlined.
4519
Hal Finkel029cde62014-07-25 15:50:02 +00004520The metadata identifying each domain is itself a list containing one or two
4521entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004522string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004523self-reference can be used to create globally unique domain names. A
4524descriptive string may optionally be provided as a second list entry.
4525
4526The metadata identifying each scope is also itself a list containing two or
4527three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004528is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004529self-reference can be used to create globally unique scope names. A metadata
4530reference to the scope's domain is the second entry. A descriptive string may
4531optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004532
4533For example,
4534
4535.. code-block:: llvm
4536
Hal Finkel029cde62014-07-25 15:50:02 +00004537 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004538 !0 = !{!0}
4539 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004540
Hal Finkel029cde62014-07-25 15:50:02 +00004541 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004542 !2 = !{!2, !0}
4543 !3 = !{!3, !0}
4544 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004545
Hal Finkel029cde62014-07-25 15:50:02 +00004546 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004547 !5 = !{!4} ; A list containing only scope !4
4548 !6 = !{!4, !3, !2}
4549 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004550
4551 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004552 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004553 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004554
Hal Finkel029cde62014-07-25 15:50:02 +00004555 ; These two instructions also don't alias (for domain !1, the set of scopes
4556 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004557 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004558 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004559
Adam Nemet0a8416f2015-05-11 08:30:28 +00004560 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004561 ; the !noalias list is not a superset of, or equal to, the scopes in the
4562 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004563 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004564 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004565
Sean Silvab084af42012-12-07 10:36:55 +00004566'``fpmath``' Metadata
4567^^^^^^^^^^^^^^^^^^^^^
4568
4569``fpmath`` metadata may be attached to any instruction of floating point
4570type. It can be used to express the maximum acceptable error in the
4571result of that instruction, in ULPs, thus potentially allowing the
4572compiler to use a more efficient but less accurate method of computing
4573it. ULP is defined as follows:
4574
4575 If ``x`` is a real number that lies between two finite consecutive
4576 floating-point numbers ``a`` and ``b``, without being equal to one
4577 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4578 distance between the two non-equal finite floating-point numbers
4579 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4580
Matt Arsenault82f41512016-06-27 19:43:15 +00004581The metadata node shall consist of a single positive float type number
4582representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004583
4584.. code-block:: llvm
4585
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004586 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004587
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004588.. _range-metadata:
4589
Sean Silvab084af42012-12-07 10:36:55 +00004590'``range``' Metadata
4591^^^^^^^^^^^^^^^^^^^^
4592
Jingyue Wu37fcb592014-06-19 16:50:16 +00004593``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4594integer types. It expresses the possible ranges the loaded value or the value
4595returned by the called function at this call site is in. The ranges are
4596represented with a flattened list of integers. The loaded value or the value
4597returned is known to be in the union of the ranges defined by each consecutive
4598pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004599
4600- The type must match the type loaded by the instruction.
4601- The pair ``a,b`` represents the range ``[a,b)``.
4602- Both ``a`` and ``b`` are constants.
4603- The range is allowed to wrap.
4604- The range should not represent the full or empty set. That is,
4605 ``a!=b``.
4606
4607In addition, the pairs must be in signed order of the lower bound and
4608they must be non-contiguous.
4609
4610Examples:
4611
4612.. code-block:: llvm
4613
David Blaikiec7aabbb2015-03-04 22:06:14 +00004614 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4615 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004616 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4617 %d = invoke i8 @bar() to label %cont
4618 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004619 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004620 !0 = !{ i8 0, i8 2 }
4621 !1 = !{ i8 255, i8 2 }
4622 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4623 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004624
Peter Collingbourne235c2752016-12-08 19:01:00 +00004625'``absolute_symbol``' Metadata
4626^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4627
4628``absolute_symbol`` metadata may be attached to a global variable
4629declaration. It marks the declaration as a reference to an absolute symbol,
4630which causes the backend to use absolute relocations for the symbol even
4631in position independent code, and expresses the possible ranges that the
4632global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004633``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4634may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004635
Peter Collingbourned88f9282017-01-20 21:56:37 +00004636Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004637
4638.. code-block:: llvm
4639
4640 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004641 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004642
4643 ...
4644 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004645 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004646
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004647'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004648^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004649
4650``unpredictable`` metadata may be attached to any branch or switch
4651instruction. It can be used to express the unpredictability of control
4652flow. Similar to the llvm.expect intrinsic, it may be used to alter
4653optimizations related to compare and branch instructions. The metadata
4654is treated as a boolean value; if it exists, it signals that the branch
4655or switch that it is attached to is completely unpredictable.
4656
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004657'``llvm.loop``'
4658^^^^^^^^^^^^^^^
4659
4660It is sometimes useful to attach information to loop constructs. Currently,
4661loop metadata is implemented as metadata attached to the branch instruction
4662in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004663guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004664specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004665
4666The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004667itself to avoid merging it with any other identifier metadata, e.g.,
4668during module linkage or function inlining. That is, each loop should refer
4669to their own identification metadata even if they reside in separate functions.
4670The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004671constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004672
4673.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004674
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004675 !0 = !{!0}
4676 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004677
Mark Heffernan893752a2014-07-18 19:24:51 +00004678The loop identifier metadata can be used to specify additional
4679per-loop metadata. Any operands after the first operand can be treated
4680as user-defined metadata. For example the ``llvm.loop.unroll.count``
4681suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004682
Paul Redmond5fdf8362013-05-28 20:00:34 +00004683.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004684
Paul Redmond5fdf8362013-05-28 20:00:34 +00004685 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4686 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004687 !0 = !{!0, !1}
4688 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004689
Mark Heffernan9d20e422014-07-21 23:11:03 +00004690'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004692
Mark Heffernan9d20e422014-07-21 23:11:03 +00004693Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4694used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004695vectorization width and interleave count. These metadata should be used in
4696conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004697``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4698optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004699it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004700which contains information about loop-carried memory dependencies can be helpful
4701in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004702
Mark Heffernan9d20e422014-07-21 23:11:03 +00004703'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4705
Mark Heffernan9d20e422014-07-21 23:11:03 +00004706This metadata suggests an interleave count to the loop interleaver.
4707The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004708second operand is an integer specifying the interleave count. For
4709example:
4710
4711.. code-block:: llvm
4712
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004713 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004714
Mark Heffernan9d20e422014-07-21 23:11:03 +00004715Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004716multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004717then the interleave count will be determined automatically.
4718
4719'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004720^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004721
4722This metadata selectively enables or disables vectorization for the loop. The
4723first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004724is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000047250 disables vectorization:
4726
4727.. code-block:: llvm
4728
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004729 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4730 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004731
4732'``llvm.loop.vectorize.width``' Metadata
4733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4734
4735This metadata sets the target width of the vectorizer. The first
4736operand is the string ``llvm.loop.vectorize.width`` and the second
4737operand is an integer specifying the width. For example:
4738
4739.. code-block:: llvm
4740
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004741 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004742
4743Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004744vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000047450 or if the loop does not have this metadata the width will be
4746determined automatically.
4747
4748'``llvm.loop.unroll``'
4749^^^^^^^^^^^^^^^^^^^^^^
4750
4751Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4752optimization hints such as the unroll factor. ``llvm.loop.unroll``
4753metadata should be used in conjunction with ``llvm.loop`` loop
4754identification metadata. The ``llvm.loop.unroll`` metadata are only
4755optimization hints and the unrolling will only be performed if the
4756optimizer believes it is safe to do so.
4757
Mark Heffernan893752a2014-07-18 19:24:51 +00004758'``llvm.loop.unroll.count``' Metadata
4759^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4760
4761This metadata suggests an unroll factor to the loop unroller. The
4762first operand is the string ``llvm.loop.unroll.count`` and the second
4763operand is a positive integer specifying the unroll factor. For
4764example:
4765
4766.. code-block:: llvm
4767
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004768 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004769
4770If the trip count of the loop is less than the unroll count the loop
4771will be partially unrolled.
4772
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004773'``llvm.loop.unroll.disable``' Metadata
4774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4775
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004776This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004777which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004778
4779.. code-block:: llvm
4780
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004781 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004782
Kevin Qin715b01e2015-03-09 06:14:18 +00004783'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004785
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004786This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004787operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004788
4789.. code-block:: llvm
4790
4791 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4792
Mark Heffernan89391542015-08-10 17:28:08 +00004793'``llvm.loop.unroll.enable``' Metadata
4794^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4795
4796This metadata suggests that the loop should be fully unrolled if the trip count
4797is known at compile time and partially unrolled if the trip count is not known
4798at compile time. The metadata has a single operand which is the string
4799``llvm.loop.unroll.enable``. For example:
4800
4801.. code-block:: llvm
4802
4803 !0 = !{!"llvm.loop.unroll.enable"}
4804
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004805'``llvm.loop.unroll.full``' Metadata
4806^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4807
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004808This metadata suggests that the loop should be unrolled fully. The
4809metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004810For example:
4811
4812.. code-block:: llvm
4813
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004814 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004815
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004816'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004818
4819This metadata indicates that the loop should not be versioned for the purpose
4820of enabling loop-invariant code motion (LICM). The metadata has a single operand
4821which is the string ``llvm.loop.licm_versioning.disable``. For example:
4822
4823.. code-block:: llvm
4824
4825 !0 = !{!"llvm.loop.licm_versioning.disable"}
4826
Adam Nemetd2fa4142016-04-27 05:28:18 +00004827'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004828^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004829
4830Loop distribution allows splitting a loop into multiple loops. Currently,
4831this is only performed if the entire loop cannot be vectorized due to unsafe
4832memory dependencies. The transformation will atempt to isolate the unsafe
4833dependencies into their own loop.
4834
4835This metadata can be used to selectively enable or disable distribution of the
4836loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4837second operand is a bit. If the bit operand value is 1 distribution is
4838enabled. A value of 0 disables distribution:
4839
4840.. code-block:: llvm
4841
4842 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4843 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4844
4845This metadata should be used in conjunction with ``llvm.loop`` loop
4846identification metadata.
4847
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004848'``llvm.mem``'
4849^^^^^^^^^^^^^^^
4850
4851Metadata types used to annotate memory accesses with information helpful
4852for optimizations are prefixed with ``llvm.mem``.
4853
4854'``llvm.mem.parallel_loop_access``' Metadata
4855^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4856
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004857The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4858or metadata containing a list of loop identifiers for nested loops.
4859The metadata is attached to memory accessing instructions and denotes that
4860no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004861with the same loop identifier. The metadata on memory reads also implies that
4862if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004863
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004864Precisely, given two instructions ``m1`` and ``m2`` that both have the
4865``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4866set of loops associated with that metadata, respectively, then there is no loop
4867carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004868``L2``.
4869
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004870As a special case, if all memory accessing instructions in a loop have
4871``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4872loop has no loop carried memory dependences and is considered to be a parallel
4873loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004874
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004875Note that if not all memory access instructions have such metadata referring to
4876the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004877memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004878safe mechanism, this causes loops that were originally parallel to be considered
4879sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004880insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004881
4882Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004883both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004884metadata types that refer to the same loop identifier metadata.
4885
4886.. code-block:: llvm
4887
4888 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004889 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004890 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004891 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004892 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004893 ...
4894 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004895
4896 for.end:
4897 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004898 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004899
4900It is also possible to have nested parallel loops. In that case the
4901memory accesses refer to a list of loop identifier metadata nodes instead of
4902the loop identifier metadata node directly:
4903
4904.. code-block:: llvm
4905
4906 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004907 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004908 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004909 ...
4910 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004911
4912 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004913 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004914 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004915 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004916 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004917 ...
4918 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004919
4920 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004921 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004922 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004923 ...
4924 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004925
4926 outer.for.end: ; preds = %for.body
4927 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004928 !0 = !{!1, !2} ; a list of loop identifiers
4929 !1 = !{!1} ; an identifier for the inner loop
4930 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004931
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004932'``invariant.group``' Metadata
4933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4934
4935The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4936The existence of the ``invariant.group`` metadata on the instruction tells
4937the optimizer that every ``load`` and ``store`` to the same pointer operand
4938within the same invariant group can be assumed to load or store the same
4939value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00004940when two pointers are considered the same). Pointers returned by bitcast or
4941getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004942
4943Examples:
4944
4945.. code-block:: llvm
4946
4947 @unknownPtr = external global i8
4948 ...
4949 %ptr = alloca i8
4950 store i8 42, i8* %ptr, !invariant.group !0
4951 call void @foo(i8* %ptr)
4952
4953 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4954 call void @foo(i8* %ptr)
4955 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4956
4957 %newPtr = call i8* @getPointer(i8* %ptr)
4958 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4959
4960 %unknownValue = load i8, i8* @unknownPtr
4961 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4962
4963 call void @foo(i8* %ptr)
4964 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4965 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4966
4967 ...
4968 declare void @foo(i8*)
4969 declare i8* @getPointer(i8*)
4970 declare i8* @llvm.invariant.group.barrier(i8*)
4971
4972 !0 = !{!"magic ptr"}
4973 !1 = !{!"other ptr"}
4974
Peter Collingbournea333db82016-07-26 22:31:30 +00004975'``type``' Metadata
4976^^^^^^^^^^^^^^^^^^^
4977
4978See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004979
4980
Sean Silvab084af42012-12-07 10:36:55 +00004981Module Flags Metadata
4982=====================
4983
4984Information about the module as a whole is difficult to convey to LLVM's
4985subsystems. The LLVM IR isn't sufficient to transmit this information.
4986The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004987this. These flags are in the form of key / value pairs --- much like a
4988dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004989look it up.
4990
4991The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4992Each triplet has the following form:
4993
4994- The first element is a *behavior* flag, which specifies the behavior
4995 when two (or more) modules are merged together, and it encounters two
4996 (or more) metadata with the same ID. The supported behaviors are
4997 described below.
4998- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004999 metadata. Each module may only have one flag entry for each unique ID (not
5000 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005001- The third element is the value of the flag.
5002
5003When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005004``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5005each unique metadata ID string, there will be exactly one entry in the merged
5006modules ``llvm.module.flags`` metadata table, and the value for that entry will
5007be determined by the merge behavior flag, as described below. The only exception
5008is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005009
5010The following behaviors are supported:
5011
5012.. list-table::
5013 :header-rows: 1
5014 :widths: 10 90
5015
5016 * - Value
5017 - Behavior
5018
5019 * - 1
5020 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005021 Emits an error if two values disagree, otherwise the resulting value
5022 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005023
5024 * - 2
5025 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005026 Emits a warning if two values disagree. The result value will be the
5027 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005028
5029 * - 3
5030 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005031 Adds a requirement that another module flag be present and have a
5032 specified value after linking is performed. The value must be a
5033 metadata pair, where the first element of the pair is the ID of the
5034 module flag to be restricted, and the second element of the pair is
5035 the value the module flag should be restricted to. This behavior can
5036 be used to restrict the allowable results (via triggering of an
5037 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005038
5039 * - 4
5040 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005041 Uses the specified value, regardless of the behavior or value of the
5042 other module. If both modules specify **Override**, but the values
5043 differ, an error will be emitted.
5044
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005045 * - 5
5046 - **Append**
5047 Appends the two values, which are required to be metadata nodes.
5048
5049 * - 6
5050 - **AppendUnique**
5051 Appends the two values, which are required to be metadata
5052 nodes. However, duplicate entries in the second list are dropped
5053 during the append operation.
5054
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005055It is an error for a particular unique flag ID to have multiple behaviors,
5056except in the case of **Require** (which adds restrictions on another metadata
5057value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005058
5059An example of module flags:
5060
5061.. code-block:: llvm
5062
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005063 !0 = !{ i32 1, !"foo", i32 1 }
5064 !1 = !{ i32 4, !"bar", i32 37 }
5065 !2 = !{ i32 2, !"qux", i32 42 }
5066 !3 = !{ i32 3, !"qux",
5067 !{
5068 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005069 }
5070 }
5071 !llvm.module.flags = !{ !0, !1, !2, !3 }
5072
5073- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5074 if two or more ``!"foo"`` flags are seen is to emit an error if their
5075 values are not equal.
5076
5077- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5078 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005079 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005080
5081- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5082 behavior if two or more ``!"qux"`` flags are seen is to emit a
5083 warning if their values are not equal.
5084
5085- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5086
5087 ::
5088
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005089 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005090
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005091 The behavior is to emit an error if the ``llvm.module.flags`` does not
5092 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5093 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005094
5095Objective-C Garbage Collection Module Flags Metadata
5096----------------------------------------------------
5097
5098On the Mach-O platform, Objective-C stores metadata about garbage
5099collection in a special section called "image info". The metadata
5100consists of a version number and a bitmask specifying what types of
5101garbage collection are supported (if any) by the file. If two or more
5102modules are linked together their garbage collection metadata needs to
5103be merged rather than appended together.
5104
5105The Objective-C garbage collection module flags metadata consists of the
5106following key-value pairs:
5107
5108.. list-table::
5109 :header-rows: 1
5110 :widths: 30 70
5111
5112 * - Key
5113 - Value
5114
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005115 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005116 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005117
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005118 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005119 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005120 always 0.
5121
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005122 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005123 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005124 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5125 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5126 Objective-C ABI version 2.
5127
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005128 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005129 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005130 not. Valid values are 0, for no garbage collection, and 2, for garbage
5131 collection supported.
5132
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005133 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005134 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005135 If present, its value must be 6. This flag requires that the
5136 ``Objective-C Garbage Collection`` flag have the value 2.
5137
5138Some important flag interactions:
5139
5140- If a module with ``Objective-C Garbage Collection`` set to 0 is
5141 merged with a module with ``Objective-C Garbage Collection`` set to
5142 2, then the resulting module has the
5143 ``Objective-C Garbage Collection`` flag set to 0.
5144- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5145 merged with a module with ``Objective-C GC Only`` set to 6.
5146
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005147Automatic Linker Flags Module Flags Metadata
5148--------------------------------------------
5149
5150Some targets support embedding flags to the linker inside individual object
5151files. Typically this is used in conjunction with language extensions which
5152allow source files to explicitly declare the libraries they depend on, and have
5153these automatically be transmitted to the linker via object files.
5154
5155These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005156using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005157to be ``AppendUnique``, and the value for the key is expected to be a metadata
5158node which should be a list of other metadata nodes, each of which should be a
5159list of metadata strings defining linker options.
5160
5161For example, the following metadata section specifies two separate sets of
5162linker options, presumably to link against ``libz`` and the ``Cocoa``
5163framework::
5164
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005165 !0 = !{ i32 6, !"Linker Options",
5166 !{
5167 !{ !"-lz" },
5168 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005169 !llvm.module.flags = !{ !0 }
5170
5171The metadata encoding as lists of lists of options, as opposed to a collapsed
5172list of options, is chosen so that the IR encoding can use multiple option
5173strings to specify e.g., a single library, while still having that specifier be
5174preserved as an atomic element that can be recognized by a target specific
5175assembly writer or object file emitter.
5176
5177Each individual option is required to be either a valid option for the target's
5178linker, or an option that is reserved by the target specific assembly writer or
5179object file emitter. No other aspect of these options is defined by the IR.
5180
Oliver Stannard5dc29342014-06-20 10:08:11 +00005181C type width Module Flags Metadata
5182----------------------------------
5183
5184The ARM backend emits a section into each generated object file describing the
5185options that it was compiled with (in a compiler-independent way) to prevent
5186linking incompatible objects, and to allow automatic library selection. Some
5187of these options are not visible at the IR level, namely wchar_t width and enum
5188width.
5189
5190To pass this information to the backend, these options are encoded in module
5191flags metadata, using the following key-value pairs:
5192
5193.. list-table::
5194 :header-rows: 1
5195 :widths: 30 70
5196
5197 * - Key
5198 - Value
5199
5200 * - short_wchar
5201 - * 0 --- sizeof(wchar_t) == 4
5202 * 1 --- sizeof(wchar_t) == 2
5203
5204 * - short_enum
5205 - * 0 --- Enums are at least as large as an ``int``.
5206 * 1 --- Enums are stored in the smallest integer type which can
5207 represent all of its values.
5208
5209For example, the following metadata section specifies that the module was
5210compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5211enum is the smallest type which can represent all of its values::
5212
5213 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005214 !0 = !{i32 1, !"short_wchar", i32 1}
5215 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005216
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005217.. _intrinsicglobalvariables:
5218
Sean Silvab084af42012-12-07 10:36:55 +00005219Intrinsic Global Variables
5220==========================
5221
5222LLVM has a number of "magic" global variables that contain data that
5223affect code generation or other IR semantics. These are documented here.
5224All globals of this sort should have a section specified as
5225"``llvm.metadata``". This section and all globals that start with
5226"``llvm.``" are reserved for use by LLVM.
5227
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005228.. _gv_llvmused:
5229
Sean Silvab084af42012-12-07 10:36:55 +00005230The '``llvm.used``' Global Variable
5231-----------------------------------
5232
Rafael Espindola74f2e462013-04-22 14:58:02 +00005233The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005234:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005235pointers to named global variables, functions and aliases which may optionally
5236have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005237use of it is:
5238
5239.. code-block:: llvm
5240
5241 @X = global i8 4
5242 @Y = global i32 123
5243
5244 @llvm.used = appending global [2 x i8*] [
5245 i8* @X,
5246 i8* bitcast (i32* @Y to i8*)
5247 ], section "llvm.metadata"
5248
Rafael Espindola74f2e462013-04-22 14:58:02 +00005249If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5250and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005251symbol that it cannot see (which is why they have to be named). For example, if
5252a variable has internal linkage and no references other than that from the
5253``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5254references from inline asms and other things the compiler cannot "see", and
5255corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005256
5257On some targets, the code generator must emit a directive to the
5258assembler or object file to prevent the assembler and linker from
5259molesting the symbol.
5260
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005261.. _gv_llvmcompilerused:
5262
Sean Silvab084af42012-12-07 10:36:55 +00005263The '``llvm.compiler.used``' Global Variable
5264--------------------------------------------
5265
5266The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5267directive, except that it only prevents the compiler from touching the
5268symbol. On targets that support it, this allows an intelligent linker to
5269optimize references to the symbol without being impeded as it would be
5270by ``@llvm.used``.
5271
5272This is a rare construct that should only be used in rare circumstances,
5273and should not be exposed to source languages.
5274
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005275.. _gv_llvmglobalctors:
5276
Sean Silvab084af42012-12-07 10:36:55 +00005277The '``llvm.global_ctors``' Global Variable
5278-------------------------------------------
5279
5280.. code-block:: llvm
5281
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005282 %0 = type { i32, void ()*, i8* }
5283 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005284
5285The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005286functions, priorities, and an optional associated global or function.
5287The functions referenced by this array will be called in ascending order
5288of priority (i.e. lowest first) when the module is loaded. The order of
5289functions with the same priority is not defined.
5290
5291If the third field is present, non-null, and points to a global variable
5292or function, the initializer function will only run if the associated
5293data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005294
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005295.. _llvmglobaldtors:
5296
Sean Silvab084af42012-12-07 10:36:55 +00005297The '``llvm.global_dtors``' Global Variable
5298-------------------------------------------
5299
5300.. code-block:: llvm
5301
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005302 %0 = type { i32, void ()*, i8* }
5303 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005304
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005305The ``@llvm.global_dtors`` array contains a list of destructor
5306functions, priorities, and an optional associated global or function.
5307The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005308order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005309order of functions with the same priority is not defined.
5310
5311If the third field is present, non-null, and points to a global variable
5312or function, the destructor function will only run if the associated
5313data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005314
5315Instruction Reference
5316=====================
5317
5318The LLVM instruction set consists of several different classifications
5319of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5320instructions <binaryops>`, :ref:`bitwise binary
5321instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5322:ref:`other instructions <otherops>`.
5323
5324.. _terminators:
5325
5326Terminator Instructions
5327-----------------------
5328
5329As mentioned :ref:`previously <functionstructure>`, every basic block in a
5330program ends with a "Terminator" instruction, which indicates which
5331block should be executed after the current block is finished. These
5332terminator instructions typically yield a '``void``' value: they produce
5333control flow, not values (the one exception being the
5334':ref:`invoke <i_invoke>`' instruction).
5335
5336The terminator instructions are: ':ref:`ret <i_ret>`',
5337':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5338':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005339':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005340':ref:`catchret <i_catchret>`',
5341':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005342and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005343
5344.. _i_ret:
5345
5346'``ret``' Instruction
5347^^^^^^^^^^^^^^^^^^^^^
5348
5349Syntax:
5350"""""""
5351
5352::
5353
5354 ret <type> <value> ; Return a value from a non-void function
5355 ret void ; Return from void function
5356
5357Overview:
5358"""""""""
5359
5360The '``ret``' instruction is used to return control flow (and optionally
5361a value) from a function back to the caller.
5362
5363There are two forms of the '``ret``' instruction: one that returns a
5364value and then causes control flow, and one that just causes control
5365flow to occur.
5366
5367Arguments:
5368""""""""""
5369
5370The '``ret``' instruction optionally accepts a single argument, the
5371return value. The type of the return value must be a ':ref:`first
5372class <t_firstclass>`' type.
5373
5374A function is not :ref:`well formed <wellformed>` if it it has a non-void
5375return type and contains a '``ret``' instruction with no return value or
5376a return value with a type that does not match its type, or if it has a
5377void return type and contains a '``ret``' instruction with a return
5378value.
5379
5380Semantics:
5381""""""""""
5382
5383When the '``ret``' instruction is executed, control flow returns back to
5384the calling function's context. If the caller is a
5385":ref:`call <i_call>`" instruction, execution continues at the
5386instruction after the call. If the caller was an
5387":ref:`invoke <i_invoke>`" instruction, execution continues at the
5388beginning of the "normal" destination block. If the instruction returns
5389a value, that value shall set the call or invoke instruction's return
5390value.
5391
5392Example:
5393""""""""
5394
5395.. code-block:: llvm
5396
5397 ret i32 5 ; Return an integer value of 5
5398 ret void ; Return from a void function
5399 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5400
5401.. _i_br:
5402
5403'``br``' Instruction
5404^^^^^^^^^^^^^^^^^^^^
5405
5406Syntax:
5407"""""""
5408
5409::
5410
5411 br i1 <cond>, label <iftrue>, label <iffalse>
5412 br label <dest> ; Unconditional branch
5413
5414Overview:
5415"""""""""
5416
5417The '``br``' instruction is used to cause control flow to transfer to a
5418different basic block in the current function. There are two forms of
5419this instruction, corresponding to a conditional branch and an
5420unconditional branch.
5421
5422Arguments:
5423""""""""""
5424
5425The conditional branch form of the '``br``' instruction takes a single
5426'``i1``' value and two '``label``' values. The unconditional form of the
5427'``br``' instruction takes a single '``label``' value as a target.
5428
5429Semantics:
5430""""""""""
5431
5432Upon execution of a conditional '``br``' instruction, the '``i1``'
5433argument is evaluated. If the value is ``true``, control flows to the
5434'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5435to the '``iffalse``' ``label`` argument.
5436
5437Example:
5438""""""""
5439
5440.. code-block:: llvm
5441
5442 Test:
5443 %cond = icmp eq i32 %a, %b
5444 br i1 %cond, label %IfEqual, label %IfUnequal
5445 IfEqual:
5446 ret i32 1
5447 IfUnequal:
5448 ret i32 0
5449
5450.. _i_switch:
5451
5452'``switch``' Instruction
5453^^^^^^^^^^^^^^^^^^^^^^^^
5454
5455Syntax:
5456"""""""
5457
5458::
5459
5460 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5461
5462Overview:
5463"""""""""
5464
5465The '``switch``' instruction is used to transfer control flow to one of
5466several different places. It is a generalization of the '``br``'
5467instruction, allowing a branch to occur to one of many possible
5468destinations.
5469
5470Arguments:
5471""""""""""
5472
5473The '``switch``' instruction uses three parameters: an integer
5474comparison value '``value``', a default '``label``' destination, and an
5475array of pairs of comparison value constants and '``label``'s. The table
5476is not allowed to contain duplicate constant entries.
5477
5478Semantics:
5479""""""""""
5480
5481The ``switch`` instruction specifies a table of values and destinations.
5482When the '``switch``' instruction is executed, this table is searched
5483for the given value. If the value is found, control flow is transferred
5484to the corresponding destination; otherwise, control flow is transferred
5485to the default destination.
5486
5487Implementation:
5488"""""""""""""""
5489
5490Depending on properties of the target machine and the particular
5491``switch`` instruction, this instruction may be code generated in
5492different ways. For example, it could be generated as a series of
5493chained conditional branches or with a lookup table.
5494
5495Example:
5496""""""""
5497
5498.. code-block:: llvm
5499
5500 ; Emulate a conditional br instruction
5501 %Val = zext i1 %value to i32
5502 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5503
5504 ; Emulate an unconditional br instruction
5505 switch i32 0, label %dest [ ]
5506
5507 ; Implement a jump table:
5508 switch i32 %val, label %otherwise [ i32 0, label %onzero
5509 i32 1, label %onone
5510 i32 2, label %ontwo ]
5511
5512.. _i_indirectbr:
5513
5514'``indirectbr``' Instruction
5515^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5516
5517Syntax:
5518"""""""
5519
5520::
5521
5522 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5523
5524Overview:
5525"""""""""
5526
5527The '``indirectbr``' instruction implements an indirect branch to a
5528label within the current function, whose address is specified by
5529"``address``". Address must be derived from a
5530:ref:`blockaddress <blockaddress>` constant.
5531
5532Arguments:
5533""""""""""
5534
5535The '``address``' argument is the address of the label to jump to. The
5536rest of the arguments indicate the full set of possible destinations
5537that the address may point to. Blocks are allowed to occur multiple
5538times in the destination list, though this isn't particularly useful.
5539
5540This destination list is required so that dataflow analysis has an
5541accurate understanding of the CFG.
5542
5543Semantics:
5544""""""""""
5545
5546Control transfers to the block specified in the address argument. All
5547possible destination blocks must be listed in the label list, otherwise
5548this instruction has undefined behavior. This implies that jumps to
5549labels defined in other functions have undefined behavior as well.
5550
5551Implementation:
5552"""""""""""""""
5553
5554This is typically implemented with a jump through a register.
5555
5556Example:
5557""""""""
5558
5559.. code-block:: llvm
5560
5561 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5562
5563.. _i_invoke:
5564
5565'``invoke``' Instruction
5566^^^^^^^^^^^^^^^^^^^^^^^^
5567
5568Syntax:
5569"""""""
5570
5571::
5572
David Blaikieb83cf102016-07-13 17:21:34 +00005573 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005574 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005575
5576Overview:
5577"""""""""
5578
5579The '``invoke``' instruction causes control to transfer to a specified
5580function, with the possibility of control flow transfer to either the
5581'``normal``' label or the '``exception``' label. If the callee function
5582returns with the "``ret``" instruction, control flow will return to the
5583"normal" label. If the callee (or any indirect callees) returns via the
5584":ref:`resume <i_resume>`" instruction or other exception handling
5585mechanism, control is interrupted and continued at the dynamically
5586nearest "exception" label.
5587
5588The '``exception``' label is a `landing
5589pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5590'``exception``' label is required to have the
5591":ref:`landingpad <i_landingpad>`" instruction, which contains the
5592information about the behavior of the program after unwinding happens,
5593as its first non-PHI instruction. The restrictions on the
5594"``landingpad``" instruction's tightly couples it to the "``invoke``"
5595instruction, so that the important information contained within the
5596"``landingpad``" instruction can't be lost through normal code motion.
5597
5598Arguments:
5599""""""""""
5600
5601This instruction requires several arguments:
5602
5603#. The optional "cconv" marker indicates which :ref:`calling
5604 convention <callingconv>` the call should use. If none is
5605 specified, the call defaults to using C calling conventions.
5606#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5607 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5608 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005609#. '``ty``': the type of the call instruction itself which is also the
5610 type of the return value. Functions that return no value are marked
5611 ``void``.
5612#. '``fnty``': shall be the signature of the function being invoked. The
5613 argument types must match the types implied by this signature. This
5614 type can be omitted if the function is not varargs.
5615#. '``fnptrval``': An LLVM value containing a pointer to a function to
5616 be invoked. In most cases, this is a direct function invocation, but
5617 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5618 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005619#. '``function args``': argument list whose types match the function
5620 signature argument types and parameter attributes. All arguments must
5621 be of :ref:`first class <t_firstclass>` type. If the function signature
5622 indicates the function accepts a variable number of arguments, the
5623 extra arguments can be specified.
5624#. '``normal label``': the label reached when the called function
5625 executes a '``ret``' instruction.
5626#. '``exception label``': the label reached when a callee returns via
5627 the :ref:`resume <i_resume>` instruction or other exception handling
5628 mechanism.
5629#. The optional :ref:`function attributes <fnattrs>` list. Only
5630 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5631 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005632#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005633
5634Semantics:
5635""""""""""
5636
5637This instruction is designed to operate as a standard '``call``'
5638instruction in most regards. The primary difference is that it
5639establishes an association with a label, which is used by the runtime
5640library to unwind the stack.
5641
5642This instruction is used in languages with destructors to ensure that
5643proper cleanup is performed in the case of either a ``longjmp`` or a
5644thrown exception. Additionally, this is important for implementation of
5645'``catch``' clauses in high-level languages that support them.
5646
5647For the purposes of the SSA form, the definition of the value returned
5648by the '``invoke``' instruction is deemed to occur on the edge from the
5649current block to the "normal" label. If the callee unwinds then no
5650return value is available.
5651
5652Example:
5653""""""""
5654
5655.. code-block:: llvm
5656
5657 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005658 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005659 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005660 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005661
5662.. _i_resume:
5663
5664'``resume``' Instruction
5665^^^^^^^^^^^^^^^^^^^^^^^^
5666
5667Syntax:
5668"""""""
5669
5670::
5671
5672 resume <type> <value>
5673
5674Overview:
5675"""""""""
5676
5677The '``resume``' instruction is a terminator instruction that has no
5678successors.
5679
5680Arguments:
5681""""""""""
5682
5683The '``resume``' instruction requires one argument, which must have the
5684same type as the result of any '``landingpad``' instruction in the same
5685function.
5686
5687Semantics:
5688""""""""""
5689
5690The '``resume``' instruction resumes propagation of an existing
5691(in-flight) exception whose unwinding was interrupted with a
5692:ref:`landingpad <i_landingpad>` instruction.
5693
5694Example:
5695""""""""
5696
5697.. code-block:: llvm
5698
5699 resume { i8*, i32 } %exn
5700
David Majnemer8a1c45d2015-12-12 05:38:55 +00005701.. _i_catchswitch:
5702
5703'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005705
5706Syntax:
5707"""""""
5708
5709::
5710
5711 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5712 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5713
5714Overview:
5715"""""""""
5716
5717The '``catchswitch``' instruction is used by `LLVM's exception handling system
5718<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5719that may be executed by the :ref:`EH personality routine <personalityfn>`.
5720
5721Arguments:
5722""""""""""
5723
5724The ``parent`` argument is the token of the funclet that contains the
5725``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5726this operand may be the token ``none``.
5727
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005728The ``default`` argument is the label of another basic block beginning with
5729either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5730must be a legal target with respect to the ``parent`` links, as described in
5731the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005732
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005733The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005734:ref:`catchpad <i_catchpad>` instruction.
5735
5736Semantics:
5737""""""""""
5738
5739Executing this instruction transfers control to one of the successors in
5740``handlers``, if appropriate, or continues to unwind via the unwind label if
5741present.
5742
5743The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5744it must be both the first non-phi instruction and last instruction in the basic
5745block. Therefore, it must be the only non-phi instruction in the block.
5746
5747Example:
5748""""""""
5749
Renato Golin124f2592016-07-20 12:16:38 +00005750.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005751
5752 dispatch1:
5753 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5754 dispatch2:
5755 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5756
David Majnemer654e1302015-07-31 17:58:14 +00005757.. _i_catchret:
5758
5759'``catchret``' Instruction
5760^^^^^^^^^^^^^^^^^^^^^^^^^^
5761
5762Syntax:
5763"""""""
5764
5765::
5766
David Majnemer8a1c45d2015-12-12 05:38:55 +00005767 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005768
5769Overview:
5770"""""""""
5771
5772The '``catchret``' instruction is a terminator instruction that has a
5773single successor.
5774
5775
5776Arguments:
5777""""""""""
5778
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005779The first argument to a '``catchret``' indicates which ``catchpad`` it
5780exits. It must be a :ref:`catchpad <i_catchpad>`.
5781The second argument to a '``catchret``' specifies where control will
5782transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005783
5784Semantics:
5785""""""""""
5786
David Majnemer8a1c45d2015-12-12 05:38:55 +00005787The '``catchret``' instruction ends an existing (in-flight) exception whose
5788unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5789:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5790code to, for example, destroy the active exception. Control then transfers to
5791``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005792
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005793The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5794If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5795funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5796the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005797
5798Example:
5799""""""""
5800
Renato Golin124f2592016-07-20 12:16:38 +00005801.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005802
David Majnemer8a1c45d2015-12-12 05:38:55 +00005803 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005804
David Majnemer654e1302015-07-31 17:58:14 +00005805.. _i_cleanupret:
5806
5807'``cleanupret``' Instruction
5808^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5809
5810Syntax:
5811"""""""
5812
5813::
5814
David Majnemer8a1c45d2015-12-12 05:38:55 +00005815 cleanupret from <value> unwind label <continue>
5816 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005817
5818Overview:
5819"""""""""
5820
5821The '``cleanupret``' instruction is a terminator instruction that has
5822an optional successor.
5823
5824
5825Arguments:
5826""""""""""
5827
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005828The '``cleanupret``' instruction requires one argument, which indicates
5829which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005830If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5831funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5832the ``cleanupret``'s behavior is undefined.
5833
5834The '``cleanupret``' instruction also has an optional successor, ``continue``,
5835which must be the label of another basic block beginning with either a
5836``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5837be a legal target with respect to the ``parent`` links, as described in the
5838`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005839
5840Semantics:
5841""""""""""
5842
5843The '``cleanupret``' instruction indicates to the
5844:ref:`personality function <personalityfn>` that one
5845:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5846It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005847
David Majnemer654e1302015-07-31 17:58:14 +00005848Example:
5849""""""""
5850
Renato Golin124f2592016-07-20 12:16:38 +00005851.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005852
David Majnemer8a1c45d2015-12-12 05:38:55 +00005853 cleanupret from %cleanup unwind to caller
5854 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005855
Sean Silvab084af42012-12-07 10:36:55 +00005856.. _i_unreachable:
5857
5858'``unreachable``' Instruction
5859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5860
5861Syntax:
5862"""""""
5863
5864::
5865
5866 unreachable
5867
5868Overview:
5869"""""""""
5870
5871The '``unreachable``' instruction has no defined semantics. This
5872instruction is used to inform the optimizer that a particular portion of
5873the code is not reachable. This can be used to indicate that the code
5874after a no-return function cannot be reached, and other facts.
5875
5876Semantics:
5877""""""""""
5878
5879The '``unreachable``' instruction has no defined semantics.
5880
5881.. _binaryops:
5882
5883Binary Operations
5884-----------------
5885
5886Binary operators are used to do most of the computation in a program.
5887They require two operands of the same type, execute an operation on
5888them, and produce a single value. The operands might represent multiple
5889data, as is the case with the :ref:`vector <t_vector>` data type. The
5890result value has the same type as its operands.
5891
5892There are several different binary operators:
5893
5894.. _i_add:
5895
5896'``add``' Instruction
5897^^^^^^^^^^^^^^^^^^^^^
5898
5899Syntax:
5900"""""""
5901
5902::
5903
Tim Northover675a0962014-06-13 14:24:23 +00005904 <result> = add <ty> <op1>, <op2> ; yields ty:result
5905 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5906 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5907 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005908
5909Overview:
5910"""""""""
5911
5912The '``add``' instruction returns the sum of its two operands.
5913
5914Arguments:
5915""""""""""
5916
5917The two arguments to the '``add``' instruction must be
5918:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5919arguments must have identical types.
5920
5921Semantics:
5922""""""""""
5923
5924The value produced is the integer sum of the two operands.
5925
5926If the sum has unsigned overflow, the result returned is the
5927mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5928the result.
5929
5930Because LLVM integers use a two's complement representation, this
5931instruction is appropriate for both signed and unsigned integers.
5932
5933``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5934respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5935result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5936unsigned and/or signed overflow, respectively, occurs.
5937
5938Example:
5939""""""""
5940
Renato Golin124f2592016-07-20 12:16:38 +00005941.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005942
Tim Northover675a0962014-06-13 14:24:23 +00005943 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005944
5945.. _i_fadd:
5946
5947'``fadd``' Instruction
5948^^^^^^^^^^^^^^^^^^^^^^
5949
5950Syntax:
5951"""""""
5952
5953::
5954
Tim Northover675a0962014-06-13 14:24:23 +00005955 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005956
5957Overview:
5958"""""""""
5959
5960The '``fadd``' instruction returns the sum of its two operands.
5961
5962Arguments:
5963""""""""""
5964
5965The two arguments to the '``fadd``' instruction must be :ref:`floating
5966point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5967Both arguments must have identical types.
5968
5969Semantics:
5970""""""""""
5971
5972The value produced is the floating point sum of the two operands. This
5973instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5974which are optimization hints to enable otherwise unsafe floating point
5975optimizations:
5976
5977Example:
5978""""""""
5979
Renato Golin124f2592016-07-20 12:16:38 +00005980.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005981
Tim Northover675a0962014-06-13 14:24:23 +00005982 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005983
5984'``sub``' Instruction
5985^^^^^^^^^^^^^^^^^^^^^
5986
5987Syntax:
5988"""""""
5989
5990::
5991
Tim Northover675a0962014-06-13 14:24:23 +00005992 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5993 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5994 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5995 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005996
5997Overview:
5998"""""""""
5999
6000The '``sub``' instruction returns the difference of its two operands.
6001
6002Note that the '``sub``' instruction is used to represent the '``neg``'
6003instruction present in most other intermediate representations.
6004
6005Arguments:
6006""""""""""
6007
6008The two arguments to the '``sub``' instruction must be
6009:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6010arguments must have identical types.
6011
6012Semantics:
6013""""""""""
6014
6015The value produced is the integer difference of the two operands.
6016
6017If the difference has unsigned overflow, the result returned is the
6018mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6019the result.
6020
6021Because LLVM integers use a two's complement representation, this
6022instruction is appropriate for both signed and unsigned integers.
6023
6024``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6025respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6026result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6027unsigned and/or signed overflow, respectively, occurs.
6028
6029Example:
6030""""""""
6031
Renato Golin124f2592016-07-20 12:16:38 +00006032.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006033
Tim Northover675a0962014-06-13 14:24:23 +00006034 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6035 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006036
6037.. _i_fsub:
6038
6039'``fsub``' Instruction
6040^^^^^^^^^^^^^^^^^^^^^^
6041
6042Syntax:
6043"""""""
6044
6045::
6046
Tim Northover675a0962014-06-13 14:24:23 +00006047 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006048
6049Overview:
6050"""""""""
6051
6052The '``fsub``' instruction returns the difference of its two operands.
6053
6054Note that the '``fsub``' instruction is used to represent the '``fneg``'
6055instruction present in most other intermediate representations.
6056
6057Arguments:
6058""""""""""
6059
6060The two arguments to the '``fsub``' instruction must be :ref:`floating
6061point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6062Both arguments must have identical types.
6063
6064Semantics:
6065""""""""""
6066
6067The value produced is the floating point difference of the two operands.
6068This instruction can also take any number of :ref:`fast-math
6069flags <fastmath>`, which are optimization hints to enable otherwise
6070unsafe floating point optimizations:
6071
6072Example:
6073""""""""
6074
Renato Golin124f2592016-07-20 12:16:38 +00006075.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006076
Tim Northover675a0962014-06-13 14:24:23 +00006077 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6078 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006079
6080'``mul``' Instruction
6081^^^^^^^^^^^^^^^^^^^^^
6082
6083Syntax:
6084"""""""
6085
6086::
6087
Tim Northover675a0962014-06-13 14:24:23 +00006088 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6089 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6090 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6091 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006092
6093Overview:
6094"""""""""
6095
6096The '``mul``' instruction returns the product of its two operands.
6097
6098Arguments:
6099""""""""""
6100
6101The two arguments to the '``mul``' instruction must be
6102:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6103arguments must have identical types.
6104
6105Semantics:
6106""""""""""
6107
6108The value produced is the integer product of the two operands.
6109
6110If the result of the multiplication has unsigned overflow, the result
6111returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6112bit width of the result.
6113
6114Because LLVM integers use a two's complement representation, and the
6115result is the same width as the operands, this instruction returns the
6116correct result for both signed and unsigned integers. If a full product
6117(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6118sign-extended or zero-extended as appropriate to the width of the full
6119product.
6120
6121``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6122respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6123result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6124unsigned and/or signed overflow, respectively, occurs.
6125
6126Example:
6127""""""""
6128
Renato Golin124f2592016-07-20 12:16:38 +00006129.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006130
Tim Northover675a0962014-06-13 14:24:23 +00006131 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006132
6133.. _i_fmul:
6134
6135'``fmul``' Instruction
6136^^^^^^^^^^^^^^^^^^^^^^
6137
6138Syntax:
6139"""""""
6140
6141::
6142
Tim Northover675a0962014-06-13 14:24:23 +00006143 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006144
6145Overview:
6146"""""""""
6147
6148The '``fmul``' instruction returns the product of its two operands.
6149
6150Arguments:
6151""""""""""
6152
6153The two arguments to the '``fmul``' instruction must be :ref:`floating
6154point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6155Both arguments must have identical types.
6156
6157Semantics:
6158""""""""""
6159
6160The value produced is the floating point product of the two operands.
6161This instruction can also take any number of :ref:`fast-math
6162flags <fastmath>`, which are optimization hints to enable otherwise
6163unsafe floating point optimizations:
6164
6165Example:
6166""""""""
6167
Renato Golin124f2592016-07-20 12:16:38 +00006168.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006169
Tim Northover675a0962014-06-13 14:24:23 +00006170 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006171
6172'``udiv``' Instruction
6173^^^^^^^^^^^^^^^^^^^^^^
6174
6175Syntax:
6176"""""""
6177
6178::
6179
Tim Northover675a0962014-06-13 14:24:23 +00006180 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6181 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006182
6183Overview:
6184"""""""""
6185
6186The '``udiv``' instruction returns the quotient of its two operands.
6187
6188Arguments:
6189""""""""""
6190
6191The two arguments to the '``udiv``' instruction must be
6192:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6193arguments must have identical types.
6194
6195Semantics:
6196""""""""""
6197
6198The value produced is the unsigned integer quotient of the two operands.
6199
6200Note that unsigned integer division and signed integer division are
6201distinct operations; for signed integer division, use '``sdiv``'.
6202
6203Division by zero leads to undefined behavior.
6204
6205If the ``exact`` keyword is present, the result value of the ``udiv`` is
6206a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6207such, "((a udiv exact b) mul b) == a").
6208
6209Example:
6210""""""""
6211
Renato Golin124f2592016-07-20 12:16:38 +00006212.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006213
Tim Northover675a0962014-06-13 14:24:23 +00006214 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006215
6216'``sdiv``' Instruction
6217^^^^^^^^^^^^^^^^^^^^^^
6218
6219Syntax:
6220"""""""
6221
6222::
6223
Tim Northover675a0962014-06-13 14:24:23 +00006224 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6225 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006226
6227Overview:
6228"""""""""
6229
6230The '``sdiv``' instruction returns the quotient of its two operands.
6231
6232Arguments:
6233""""""""""
6234
6235The two arguments to the '``sdiv``' instruction must be
6236:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6237arguments must have identical types.
6238
6239Semantics:
6240""""""""""
6241
6242The value produced is the signed integer quotient of the two operands
6243rounded towards zero.
6244
6245Note that signed integer division and unsigned integer division are
6246distinct operations; for unsigned integer division, use '``udiv``'.
6247
6248Division by zero leads to undefined behavior. Overflow also leads to
6249undefined behavior; this is a rare case, but can occur, for example, by
6250doing a 32-bit division of -2147483648 by -1.
6251
6252If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6253a :ref:`poison value <poisonvalues>` if the result would be rounded.
6254
6255Example:
6256""""""""
6257
Renato Golin124f2592016-07-20 12:16:38 +00006258.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006259
Tim Northover675a0962014-06-13 14:24:23 +00006260 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006261
6262.. _i_fdiv:
6263
6264'``fdiv``' Instruction
6265^^^^^^^^^^^^^^^^^^^^^^
6266
6267Syntax:
6268"""""""
6269
6270::
6271
Tim Northover675a0962014-06-13 14:24:23 +00006272 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006273
6274Overview:
6275"""""""""
6276
6277The '``fdiv``' instruction returns the quotient of its two operands.
6278
6279Arguments:
6280""""""""""
6281
6282The two arguments to the '``fdiv``' instruction must be :ref:`floating
6283point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6284Both arguments must have identical types.
6285
6286Semantics:
6287""""""""""
6288
6289The value produced is the floating point quotient of the two operands.
6290This instruction can also take any number of :ref:`fast-math
6291flags <fastmath>`, which are optimization hints to enable otherwise
6292unsafe floating point optimizations:
6293
6294Example:
6295""""""""
6296
Renato Golin124f2592016-07-20 12:16:38 +00006297.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006298
Tim Northover675a0962014-06-13 14:24:23 +00006299 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006300
6301'``urem``' Instruction
6302^^^^^^^^^^^^^^^^^^^^^^
6303
6304Syntax:
6305"""""""
6306
6307::
6308
Tim Northover675a0962014-06-13 14:24:23 +00006309 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006310
6311Overview:
6312"""""""""
6313
6314The '``urem``' instruction returns the remainder from the unsigned
6315division of its two arguments.
6316
6317Arguments:
6318""""""""""
6319
6320The two arguments to the '``urem``' instruction must be
6321:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6322arguments must have identical types.
6323
6324Semantics:
6325""""""""""
6326
6327This instruction returns the unsigned integer *remainder* of a division.
6328This instruction always performs an unsigned division to get the
6329remainder.
6330
6331Note that unsigned integer remainder and signed integer remainder are
6332distinct operations; for signed integer remainder, use '``srem``'.
6333
6334Taking the remainder of a division by zero leads to undefined behavior.
6335
6336Example:
6337""""""""
6338
Renato Golin124f2592016-07-20 12:16:38 +00006339.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006340
Tim Northover675a0962014-06-13 14:24:23 +00006341 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006342
6343'``srem``' Instruction
6344^^^^^^^^^^^^^^^^^^^^^^
6345
6346Syntax:
6347"""""""
6348
6349::
6350
Tim Northover675a0962014-06-13 14:24:23 +00006351 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006352
6353Overview:
6354"""""""""
6355
6356The '``srem``' instruction returns the remainder from the signed
6357division of its two operands. This instruction can also take
6358:ref:`vector <t_vector>` versions of the values in which case the elements
6359must be integers.
6360
6361Arguments:
6362""""""""""
6363
6364The two arguments to the '``srem``' instruction must be
6365:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6366arguments must have identical types.
6367
6368Semantics:
6369""""""""""
6370
6371This instruction returns the *remainder* of a division (where the result
6372is either zero or has the same sign as the dividend, ``op1``), not the
6373*modulo* operator (where the result is either zero or has the same sign
6374as the divisor, ``op2``) of a value. For more information about the
6375difference, see `The Math
6376Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6377table of how this is implemented in various languages, please see
6378`Wikipedia: modulo
6379operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6380
6381Note that signed integer remainder and unsigned integer remainder are
6382distinct operations; for unsigned integer remainder, use '``urem``'.
6383
6384Taking the remainder of a division by zero leads to undefined behavior.
6385Overflow also leads to undefined behavior; this is a rare case, but can
6386occur, for example, by taking the remainder of a 32-bit division of
6387-2147483648 by -1. (The remainder doesn't actually overflow, but this
6388rule lets srem be implemented using instructions that return both the
6389result of the division and the remainder.)
6390
6391Example:
6392""""""""
6393
Renato Golin124f2592016-07-20 12:16:38 +00006394.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006395
Tim Northover675a0962014-06-13 14:24:23 +00006396 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006397
6398.. _i_frem:
6399
6400'``frem``' Instruction
6401^^^^^^^^^^^^^^^^^^^^^^
6402
6403Syntax:
6404"""""""
6405
6406::
6407
Tim Northover675a0962014-06-13 14:24:23 +00006408 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006409
6410Overview:
6411"""""""""
6412
6413The '``frem``' instruction returns the remainder from the division of
6414its two operands.
6415
6416Arguments:
6417""""""""""
6418
6419The two arguments to the '``frem``' instruction must be :ref:`floating
6420point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6421Both arguments must have identical types.
6422
6423Semantics:
6424""""""""""
6425
6426This instruction returns the *remainder* of a division. The remainder
6427has the same sign as the dividend. This instruction can also take any
6428number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6429to enable otherwise unsafe floating point optimizations:
6430
6431Example:
6432""""""""
6433
Renato Golin124f2592016-07-20 12:16:38 +00006434.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006435
Tim Northover675a0962014-06-13 14:24:23 +00006436 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006437
6438.. _bitwiseops:
6439
6440Bitwise Binary Operations
6441-------------------------
6442
6443Bitwise binary operators are used to do various forms of bit-twiddling
6444in a program. They are generally very efficient instructions and can
6445commonly be strength reduced from other instructions. They require two
6446operands of the same type, execute an operation on them, and produce a
6447single value. The resulting value is the same type as its operands.
6448
6449'``shl``' Instruction
6450^^^^^^^^^^^^^^^^^^^^^
6451
6452Syntax:
6453"""""""
6454
6455::
6456
Tim Northover675a0962014-06-13 14:24:23 +00006457 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6458 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6459 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6460 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006461
6462Overview:
6463"""""""""
6464
6465The '``shl``' instruction returns the first operand shifted to the left
6466a specified number of bits.
6467
6468Arguments:
6469""""""""""
6470
6471Both arguments to the '``shl``' instruction must be the same
6472:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6473'``op2``' is treated as an unsigned value.
6474
6475Semantics:
6476""""""""""
6477
6478The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6479where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006480dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006481``op1``, the result is undefined. If the arguments are vectors, each
6482vector element of ``op1`` is shifted by the corresponding shift amount
6483in ``op2``.
6484
6485If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6486value <poisonvalues>` if it shifts out any non-zero bits. If the
6487``nsw`` keyword is present, then the shift produces a :ref:`poison
6488value <poisonvalues>` if it shifts out any bits that disagree with the
Sanjoy Dasdbc58d02016-11-13 23:40:40 +00006489resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006490
6491Example:
6492""""""""
6493
Renato Golin124f2592016-07-20 12:16:38 +00006494.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006495
Tim Northover675a0962014-06-13 14:24:23 +00006496 <result> = shl i32 4, %var ; yields i32: 4 << %var
6497 <result> = shl i32 4, 2 ; yields i32: 16
6498 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006499 <result> = shl i32 1, 32 ; undefined
6500 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6501
6502'``lshr``' Instruction
6503^^^^^^^^^^^^^^^^^^^^^^
6504
6505Syntax:
6506"""""""
6507
6508::
6509
Tim Northover675a0962014-06-13 14:24:23 +00006510 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6511 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006512
6513Overview:
6514"""""""""
6515
6516The '``lshr``' instruction (logical shift right) returns the first
6517operand shifted to the right a specified number of bits with zero fill.
6518
6519Arguments:
6520""""""""""
6521
6522Both arguments to the '``lshr``' instruction must be the same
6523:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6524'``op2``' is treated as an unsigned value.
6525
6526Semantics:
6527""""""""""
6528
6529This instruction always performs a logical shift right operation. The
6530most significant bits of the result will be filled with zero bits after
6531the shift. If ``op2`` is (statically or dynamically) equal to or larger
6532than the number of bits in ``op1``, the result is undefined. If the
6533arguments are vectors, each vector element of ``op1`` is shifted by the
6534corresponding shift amount in ``op2``.
6535
6536If the ``exact`` keyword is present, the result value of the ``lshr`` is
6537a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6538non-zero.
6539
6540Example:
6541""""""""
6542
Renato Golin124f2592016-07-20 12:16:38 +00006543.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006544
Tim Northover675a0962014-06-13 14:24:23 +00006545 <result> = lshr i32 4, 1 ; yields i32:result = 2
6546 <result> = lshr i32 4, 2 ; yields i32:result = 1
6547 <result> = lshr i8 4, 3 ; yields i8:result = 0
6548 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006549 <result> = lshr i32 1, 32 ; undefined
6550 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6551
6552'``ashr``' Instruction
6553^^^^^^^^^^^^^^^^^^^^^^
6554
6555Syntax:
6556"""""""
6557
6558::
6559
Tim Northover675a0962014-06-13 14:24:23 +00006560 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6561 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006562
6563Overview:
6564"""""""""
6565
6566The '``ashr``' instruction (arithmetic shift right) returns the first
6567operand shifted to the right a specified number of bits with sign
6568extension.
6569
6570Arguments:
6571""""""""""
6572
6573Both arguments to the '``ashr``' instruction must be the same
6574:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6575'``op2``' is treated as an unsigned value.
6576
6577Semantics:
6578""""""""""
6579
6580This instruction always performs an arithmetic shift right operation,
6581The most significant bits of the result will be filled with the sign bit
6582of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6583than the number of bits in ``op1``, the result is undefined. If the
6584arguments are vectors, each vector element of ``op1`` is shifted by the
6585corresponding shift amount in ``op2``.
6586
6587If the ``exact`` keyword is present, the result value of the ``ashr`` is
6588a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6589non-zero.
6590
6591Example:
6592""""""""
6593
Renato Golin124f2592016-07-20 12:16:38 +00006594.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006595
Tim Northover675a0962014-06-13 14:24:23 +00006596 <result> = ashr i32 4, 1 ; yields i32:result = 2
6597 <result> = ashr i32 4, 2 ; yields i32:result = 1
6598 <result> = ashr i8 4, 3 ; yields i8:result = 0
6599 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006600 <result> = ashr i32 1, 32 ; undefined
6601 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6602
6603'``and``' Instruction
6604^^^^^^^^^^^^^^^^^^^^^
6605
6606Syntax:
6607"""""""
6608
6609::
6610
Tim Northover675a0962014-06-13 14:24:23 +00006611 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006612
6613Overview:
6614"""""""""
6615
6616The '``and``' instruction returns the bitwise logical and of its two
6617operands.
6618
6619Arguments:
6620""""""""""
6621
6622The two arguments to the '``and``' instruction must be
6623:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6624arguments must have identical types.
6625
6626Semantics:
6627""""""""""
6628
6629The truth table used for the '``and``' instruction is:
6630
6631+-----+-----+-----+
6632| In0 | In1 | Out |
6633+-----+-----+-----+
6634| 0 | 0 | 0 |
6635+-----+-----+-----+
6636| 0 | 1 | 0 |
6637+-----+-----+-----+
6638| 1 | 0 | 0 |
6639+-----+-----+-----+
6640| 1 | 1 | 1 |
6641+-----+-----+-----+
6642
6643Example:
6644""""""""
6645
Renato Golin124f2592016-07-20 12:16:38 +00006646.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006647
Tim Northover675a0962014-06-13 14:24:23 +00006648 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6649 <result> = and i32 15, 40 ; yields i32:result = 8
6650 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006651
6652'``or``' Instruction
6653^^^^^^^^^^^^^^^^^^^^
6654
6655Syntax:
6656"""""""
6657
6658::
6659
Tim Northover675a0962014-06-13 14:24:23 +00006660 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006661
6662Overview:
6663"""""""""
6664
6665The '``or``' instruction returns the bitwise logical inclusive or of its
6666two operands.
6667
6668Arguments:
6669""""""""""
6670
6671The two arguments to the '``or``' instruction must be
6672:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6673arguments must have identical types.
6674
6675Semantics:
6676""""""""""
6677
6678The truth table used for the '``or``' instruction is:
6679
6680+-----+-----+-----+
6681| In0 | In1 | Out |
6682+-----+-----+-----+
6683| 0 | 0 | 0 |
6684+-----+-----+-----+
6685| 0 | 1 | 1 |
6686+-----+-----+-----+
6687| 1 | 0 | 1 |
6688+-----+-----+-----+
6689| 1 | 1 | 1 |
6690+-----+-----+-----+
6691
6692Example:
6693""""""""
6694
6695::
6696
Tim Northover675a0962014-06-13 14:24:23 +00006697 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6698 <result> = or i32 15, 40 ; yields i32:result = 47
6699 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006700
6701'``xor``' Instruction
6702^^^^^^^^^^^^^^^^^^^^^
6703
6704Syntax:
6705"""""""
6706
6707::
6708
Tim Northover675a0962014-06-13 14:24:23 +00006709 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006710
6711Overview:
6712"""""""""
6713
6714The '``xor``' instruction returns the bitwise logical exclusive or of
6715its two operands. The ``xor`` is used to implement the "one's
6716complement" operation, which is the "~" operator in C.
6717
6718Arguments:
6719""""""""""
6720
6721The two arguments to the '``xor``' instruction must be
6722:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6723arguments must have identical types.
6724
6725Semantics:
6726""""""""""
6727
6728The truth table used for the '``xor``' instruction is:
6729
6730+-----+-----+-----+
6731| In0 | In1 | Out |
6732+-----+-----+-----+
6733| 0 | 0 | 0 |
6734+-----+-----+-----+
6735| 0 | 1 | 1 |
6736+-----+-----+-----+
6737| 1 | 0 | 1 |
6738+-----+-----+-----+
6739| 1 | 1 | 0 |
6740+-----+-----+-----+
6741
6742Example:
6743""""""""
6744
Renato Golin124f2592016-07-20 12:16:38 +00006745.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006746
Tim Northover675a0962014-06-13 14:24:23 +00006747 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6748 <result> = xor i32 15, 40 ; yields i32:result = 39
6749 <result> = xor i32 4, 8 ; yields i32:result = 12
6750 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006751
6752Vector Operations
6753-----------------
6754
6755LLVM supports several instructions to represent vector operations in a
6756target-independent manner. These instructions cover the element-access
6757and vector-specific operations needed to process vectors effectively.
6758While LLVM does directly support these vector operations, many
6759sophisticated algorithms will want to use target-specific intrinsics to
6760take full advantage of a specific target.
6761
6762.. _i_extractelement:
6763
6764'``extractelement``' Instruction
6765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6766
6767Syntax:
6768"""""""
6769
6770::
6771
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006772 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006773
6774Overview:
6775"""""""""
6776
6777The '``extractelement``' instruction extracts a single scalar element
6778from a vector at a specified index.
6779
6780Arguments:
6781""""""""""
6782
6783The first operand of an '``extractelement``' instruction is a value of
6784:ref:`vector <t_vector>` type. The second operand is an index indicating
6785the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006786variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006787
6788Semantics:
6789""""""""""
6790
6791The result is a scalar of the same type as the element type of ``val``.
6792Its value is the value at position ``idx`` of ``val``. If ``idx``
6793exceeds the length of ``val``, the results are undefined.
6794
6795Example:
6796""""""""
6797
Renato Golin124f2592016-07-20 12:16:38 +00006798.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006799
6800 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6801
6802.. _i_insertelement:
6803
6804'``insertelement``' Instruction
6805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6806
6807Syntax:
6808"""""""
6809
6810::
6811
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006812 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006813
6814Overview:
6815"""""""""
6816
6817The '``insertelement``' instruction inserts a scalar element into a
6818vector at a specified index.
6819
6820Arguments:
6821""""""""""
6822
6823The first operand of an '``insertelement``' instruction is a value of
6824:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6825type must equal the element type of the first operand. The third operand
6826is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006827index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006828
6829Semantics:
6830""""""""""
6831
6832The result is a vector of the same type as ``val``. Its element values
6833are those of ``val`` except at position ``idx``, where it gets the value
6834``elt``. If ``idx`` exceeds the length of ``val``, the results are
6835undefined.
6836
6837Example:
6838""""""""
6839
Renato Golin124f2592016-07-20 12:16:38 +00006840.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006841
6842 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6843
6844.. _i_shufflevector:
6845
6846'``shufflevector``' Instruction
6847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6848
6849Syntax:
6850"""""""
6851
6852::
6853
6854 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6855
6856Overview:
6857"""""""""
6858
6859The '``shufflevector``' instruction constructs a permutation of elements
6860from two input vectors, returning a vector with the same element type as
6861the input and length that is the same as the shuffle mask.
6862
6863Arguments:
6864""""""""""
6865
6866The first two operands of a '``shufflevector``' instruction are vectors
6867with the same type. The third argument is a shuffle mask whose element
6868type is always 'i32'. The result of the instruction is a vector whose
6869length is the same as the shuffle mask and whose element type is the
6870same as the element type of the first two operands.
6871
6872The shuffle mask operand is required to be a constant vector with either
6873constant integer or undef values.
6874
6875Semantics:
6876""""""""""
6877
6878The elements of the two input vectors are numbered from left to right
6879across both of the vectors. The shuffle mask operand specifies, for each
6880element of the result vector, which element of the two input vectors the
6881result element gets. The element selector may be undef (meaning "don't
6882care") and the second operand may be undef if performing a shuffle from
6883only one vector.
6884
6885Example:
6886""""""""
6887
Renato Golin124f2592016-07-20 12:16:38 +00006888.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006889
6890 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6891 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6892 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6893 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6894 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6895 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6896 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6897 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6898
6899Aggregate Operations
6900--------------------
6901
6902LLVM supports several instructions for working with
6903:ref:`aggregate <t_aggregate>` values.
6904
6905.. _i_extractvalue:
6906
6907'``extractvalue``' Instruction
6908^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6909
6910Syntax:
6911"""""""
6912
6913::
6914
6915 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6916
6917Overview:
6918"""""""""
6919
6920The '``extractvalue``' instruction extracts the value of a member field
6921from an :ref:`aggregate <t_aggregate>` value.
6922
6923Arguments:
6924""""""""""
6925
6926The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006927:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006928constant indices to specify which value to extract in a similar manner
6929as indices in a '``getelementptr``' instruction.
6930
6931The major differences to ``getelementptr`` indexing are:
6932
6933- Since the value being indexed is not a pointer, the first index is
6934 omitted and assumed to be zero.
6935- At least one index must be specified.
6936- Not only struct indices but also array indices must be in bounds.
6937
6938Semantics:
6939""""""""""
6940
6941The result is the value at the position in the aggregate specified by
6942the index operands.
6943
6944Example:
6945""""""""
6946
Renato Golin124f2592016-07-20 12:16:38 +00006947.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006948
6949 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6950
6951.. _i_insertvalue:
6952
6953'``insertvalue``' Instruction
6954^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6955
6956Syntax:
6957"""""""
6958
6959::
6960
6961 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6962
6963Overview:
6964"""""""""
6965
6966The '``insertvalue``' instruction inserts a value into a member field in
6967an :ref:`aggregate <t_aggregate>` value.
6968
6969Arguments:
6970""""""""""
6971
6972The first operand of an '``insertvalue``' instruction is a value of
6973:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6974a first-class value to insert. The following operands are constant
6975indices indicating the position at which to insert the value in a
6976similar manner as indices in a '``extractvalue``' instruction. The value
6977to insert must have the same type as the value identified by the
6978indices.
6979
6980Semantics:
6981""""""""""
6982
6983The result is an aggregate of the same type as ``val``. Its value is
6984that of ``val`` except that the value at the position specified by the
6985indices is that of ``elt``.
6986
6987Example:
6988""""""""
6989
6990.. code-block:: llvm
6991
6992 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6993 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006994 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006995
6996.. _memoryops:
6997
6998Memory Access and Addressing Operations
6999---------------------------------------
7000
7001A key design point of an SSA-based representation is how it represents
7002memory. In LLVM, no memory locations are in SSA form, which makes things
7003very simple. This section describes how to read, write, and allocate
7004memory in LLVM.
7005
7006.. _i_alloca:
7007
7008'``alloca``' Instruction
7009^^^^^^^^^^^^^^^^^^^^^^^^
7010
7011Syntax:
7012"""""""
7013
7014::
7015
Tim Northover675a0962014-06-13 14:24:23 +00007016 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00007017
7018Overview:
7019"""""""""
7020
7021The '``alloca``' instruction allocates memory on the stack frame of the
7022currently executing function, to be automatically released when this
7023function returns to its caller. The object is always allocated in the
7024generic address space (address space zero).
7025
7026Arguments:
7027""""""""""
7028
7029The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7030bytes of memory on the runtime stack, returning a pointer of the
7031appropriate type to the program. If "NumElements" is specified, it is
7032the number of elements allocated, otherwise "NumElements" is defaulted
7033to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007034allocation is guaranteed to be aligned to at least that boundary. The
7035alignment may not be greater than ``1 << 29``. If not specified, or if
7036zero, the target can choose to align the allocation on any convenient
7037boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007038
7039'``type``' may be any sized type.
7040
7041Semantics:
7042""""""""""
7043
7044Memory is allocated; a pointer is returned. The operation is undefined
7045if there is insufficient stack space for the allocation. '``alloca``'d
7046memory is automatically released when the function returns. The
7047'``alloca``' instruction is commonly used to represent automatic
7048variables that must have an address available. When the function returns
7049(either with the ``ret`` or ``resume`` instructions), the memory is
7050reclaimed. Allocating zero bytes is legal, but the result is undefined.
7051The order in which memory is allocated (ie., which way the stack grows)
7052is not specified.
7053
7054Example:
7055""""""""
7056
7057.. code-block:: llvm
7058
Tim Northover675a0962014-06-13 14:24:23 +00007059 %ptr = alloca i32 ; yields i32*:ptr
7060 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7061 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7062 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007063
7064.. _i_load:
7065
7066'``load``' Instruction
7067^^^^^^^^^^^^^^^^^^^^^^
7068
7069Syntax:
7070"""""""
7071
7072::
7073
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007074 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007075 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007076 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007077 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007078 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007079
7080Overview:
7081"""""""""
7082
7083The '``load``' instruction is used to read from memory.
7084
7085Arguments:
7086""""""""""
7087
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007088The argument to the ``load`` instruction specifies the memory address from which
7089to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7090known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7091the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7092modify the number or order of execution of this ``load`` with other
7093:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007094
JF Bastiend1fb5852015-12-17 22:09:19 +00007095If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7096<ordering>` and optional ``singlethread`` argument. The ``release`` and
7097``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7098produce :ref:`defined <memmodel>` results when they may see multiple atomic
7099stores. The type of the pointee must be an integer, pointer, or floating-point
7100type whose bit width is a power of two greater than or equal to eight and less
7101than or equal to a target-specific size limit. ``align`` must be explicitly
7102specified on atomic loads, and the load has undefined behavior if the alignment
7103is not set to a value which is at least the size in bytes of the
7104pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007105
7106The optional constant ``align`` argument specifies the alignment of the
7107operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007108or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007109alignment for the target. It is the responsibility of the code emitter
7110to ensure that the alignment information is correct. Overestimating the
7111alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007112may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007113maximum possible alignment is ``1 << 29``. An alignment value higher
7114than the size of the loaded type implies memory up to the alignment
7115value bytes can be safely loaded without trapping in the default
7116address space. Access of the high bytes can interfere with debugging
7117tools, so should not be accessed if the function has the
7118``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007119
7120The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007121metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007122``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007123metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007124that this load is not expected to be reused in the cache. The code
7125generator may select special instructions to save cache bandwidth, such
7126as the ``MOVNT`` instruction on x86.
7127
7128The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007129metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007130entries. If a load instruction tagged with the ``!invariant.load``
7131metadata is executed, the optimizer may assume the memory location
7132referenced by the load contains the same value at all points in the
7133program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007134
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007135The optional ``!invariant.group`` metadata must reference a single metadata name
7136 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7137
Philip Reamescdb72f32014-10-20 22:40:55 +00007138The optional ``!nonnull`` metadata must reference a single
7139metadata name ``<index>`` corresponding to a metadata node with no
7140entries. The existence of the ``!nonnull`` metadata on the
7141instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007142never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007143on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007144to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007145
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007146The optional ``!dereferenceable`` metadata must reference a single metadata
7147name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007148entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007149tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007150The number of bytes known to be dereferenceable is specified by the integer
7151value in the metadata node. This is analogous to the ''dereferenceable''
7152attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007153to loads of a pointer type.
7154
7155The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007156metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7157``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007158instruction tells the optimizer that the value loaded is known to be either
7159dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007160The number of bytes known to be dereferenceable is specified by the integer
7161value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7162attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007163to loads of a pointer type.
7164
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007165The optional ``!align`` metadata must reference a single metadata name
7166``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7167The existence of the ``!align`` metadata on the instruction tells the
7168optimizer that the value loaded is known to be aligned to a boundary specified
7169by the integer value in the metadata node. The alignment must be a power of 2.
7170This is analogous to the ''align'' attribute on parameters and return values.
7171This metadata can only be applied to loads of a pointer type.
7172
Sean Silvab084af42012-12-07 10:36:55 +00007173Semantics:
7174""""""""""
7175
7176The location of memory pointed to is loaded. If the value being loaded
7177is of scalar type then the number of bytes read does not exceed the
7178minimum number of bytes needed to hold all bits of the type. For
7179example, loading an ``i24`` reads at most three bytes. When loading a
7180value of a type like ``i20`` with a size that is not an integral number
7181of bytes, the result is undefined if the value was not originally
7182written using a store of the same type.
7183
7184Examples:
7185"""""""""
7186
7187.. code-block:: llvm
7188
Tim Northover675a0962014-06-13 14:24:23 +00007189 %ptr = alloca i32 ; yields i32*:ptr
7190 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007191 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007192
7193.. _i_store:
7194
7195'``store``' Instruction
7196^^^^^^^^^^^^^^^^^^^^^^^
7197
7198Syntax:
7199"""""""
7200
7201::
7202
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007203 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7204 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007205
7206Overview:
7207"""""""""
7208
7209The '``store``' instruction is used to write to memory.
7210
7211Arguments:
7212""""""""""
7213
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007214There are two arguments to the ``store`` instruction: a value to store and an
7215address at which to store it. The type of the ``<pointer>`` operand must be a
7216pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7217operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7218allowed to modify the number or order of execution of this ``store`` with other
7219:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7220<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7221structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007222
JF Bastiend1fb5852015-12-17 22:09:19 +00007223If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7224<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7225``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7226produce :ref:`defined <memmodel>` results when they may see multiple atomic
7227stores. The type of the pointee must be an integer, pointer, or floating-point
7228type whose bit width is a power of two greater than or equal to eight and less
7229than or equal to a target-specific size limit. ``align`` must be explicitly
7230specified on atomic stores, and the store has undefined behavior if the
7231alignment is not set to a value which is at least the size in bytes of the
7232pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007233
Eli Benderskyca380842013-04-17 17:17:20 +00007234The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007235operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007236or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007237alignment for the target. It is the responsibility of the code emitter
7238to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007239alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007240alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007241safe. The maximum possible alignment is ``1 << 29``. An alignment
7242value higher than the size of the stored type implies memory up to the
7243alignment value bytes can be stored to without trapping in the default
7244address space. Storing to the higher bytes however may result in data
7245races if another thread can access the same address. Introducing a
7246data race is not allowed. Storing to the extra bytes is not allowed
7247even in situations where a data race is known to not exist if the
7248function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007249
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007250The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007251name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007252value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007253tells the optimizer and code generator that this load is not expected to
7254be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007255instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007256x86.
7257
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007258The optional ``!invariant.group`` metadata must reference a
7259single metadata name ``<index>``. See ``invariant.group`` metadata.
7260
Sean Silvab084af42012-12-07 10:36:55 +00007261Semantics:
7262""""""""""
7263
Eli Benderskyca380842013-04-17 17:17:20 +00007264The contents of memory are updated to contain ``<value>`` at the
7265location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007266of scalar type then the number of bytes written does not exceed the
7267minimum number of bytes needed to hold all bits of the type. For
7268example, storing an ``i24`` writes at most three bytes. When writing a
7269value of a type like ``i20`` with a size that is not an integral number
7270of bytes, it is unspecified what happens to the extra bits that do not
7271belong to the type, but they will typically be overwritten.
7272
7273Example:
7274""""""""
7275
7276.. code-block:: llvm
7277
Tim Northover675a0962014-06-13 14:24:23 +00007278 %ptr = alloca i32 ; yields i32*:ptr
7279 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007280 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007281
7282.. _i_fence:
7283
7284'``fence``' Instruction
7285^^^^^^^^^^^^^^^^^^^^^^^
7286
7287Syntax:
7288"""""""
7289
7290::
7291
Tim Northover675a0962014-06-13 14:24:23 +00007292 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007293
7294Overview:
7295"""""""""
7296
7297The '``fence``' instruction is used to introduce happens-before edges
7298between operations.
7299
7300Arguments:
7301""""""""""
7302
7303'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7304defines what *synchronizes-with* edges they add. They can only be given
7305``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7306
7307Semantics:
7308""""""""""
7309
7310A fence A which has (at least) ``release`` ordering semantics
7311*synchronizes with* a fence B with (at least) ``acquire`` ordering
7312semantics if and only if there exist atomic operations X and Y, both
7313operating on some atomic object M, such that A is sequenced before X, X
7314modifies M (either directly or through some side effect of a sequence
7315headed by X), Y is sequenced before B, and Y observes M. This provides a
7316*happens-before* dependency between A and B. Rather than an explicit
7317``fence``, one (but not both) of the atomic operations X or Y might
7318provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7319still *synchronize-with* the explicit ``fence`` and establish the
7320*happens-before* edge.
7321
7322A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7323``acquire`` and ``release`` semantics specified above, participates in
7324the global program order of other ``seq_cst`` operations and/or fences.
7325
7326The optional ":ref:`singlethread <singlethread>`" argument specifies
7327that the fence only synchronizes with other fences in the same thread.
7328(This is useful for interacting with signal handlers.)
7329
7330Example:
7331""""""""
7332
7333.. code-block:: llvm
7334
Tim Northover675a0962014-06-13 14:24:23 +00007335 fence acquire ; yields void
7336 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007337
7338.. _i_cmpxchg:
7339
7340'``cmpxchg``' Instruction
7341^^^^^^^^^^^^^^^^^^^^^^^^^
7342
7343Syntax:
7344"""""""
7345
7346::
7347
Tim Northover675a0962014-06-13 14:24:23 +00007348 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007349
7350Overview:
7351"""""""""
7352
7353The '``cmpxchg``' instruction is used to atomically modify memory. It
7354loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007355equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007356
7357Arguments:
7358""""""""""
7359
7360There are three arguments to the '``cmpxchg``' instruction: an address
7361to operate on, a value to compare to the value currently be at that
7362address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007363are equal. The type of '<cmp>' must be an integer or pointer type whose
7364bit width is a power of two greater than or equal to eight and less
7365than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7366have the same type, and the type of '<pointer>' must be a pointer to
7367that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7368optimizer is not allowed to modify the number or order of execution of
7369this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007370
Tim Northovere94a5182014-03-11 10:48:52 +00007371The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007372``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7373must be at least ``monotonic``, the ordering constraint on failure must be no
7374stronger than that on success, and the failure ordering cannot be either
7375``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007376
7377The optional "``singlethread``" argument declares that the ``cmpxchg``
7378is only atomic with respect to code (usually signal handlers) running in
7379the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7380respect to all other code in the system.
7381
7382The pointer passed into cmpxchg must have alignment greater than or
7383equal to the size in memory of the operand.
7384
7385Semantics:
7386""""""""""
7387
Tim Northover420a2162014-06-13 14:24:07 +00007388The contents of memory at the location specified by the '``<pointer>``' operand
7389is read and compared to '``<cmp>``'; if the read value is the equal, the
7390'``<new>``' is written. The original value at the location is returned, together
7391with a flag indicating success (true) or failure (false).
7392
7393If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7394permitted: the operation may not write ``<new>`` even if the comparison
7395matched.
7396
7397If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7398if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007399
Tim Northovere94a5182014-03-11 10:48:52 +00007400A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7401identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7402load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007403
7404Example:
7405""""""""
7406
7407.. code-block:: llvm
7408
7409 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007410 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007411 br label %loop
7412
7413 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007414 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007415 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007416 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007417 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7418 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007419 br i1 %success, label %done, label %loop
7420
7421 done:
7422 ...
7423
7424.. _i_atomicrmw:
7425
7426'``atomicrmw``' Instruction
7427^^^^^^^^^^^^^^^^^^^^^^^^^^^
7428
7429Syntax:
7430"""""""
7431
7432::
7433
Tim Northover675a0962014-06-13 14:24:23 +00007434 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007435
7436Overview:
7437"""""""""
7438
7439The '``atomicrmw``' instruction is used to atomically modify memory.
7440
7441Arguments:
7442""""""""""
7443
7444There are three arguments to the '``atomicrmw``' instruction: an
7445operation to apply, an address whose value to modify, an argument to the
7446operation. The operation must be one of the following keywords:
7447
7448- xchg
7449- add
7450- sub
7451- and
7452- nand
7453- or
7454- xor
7455- max
7456- min
7457- umax
7458- umin
7459
7460The type of '<value>' must be an integer type whose bit width is a power
7461of two greater than or equal to eight and less than or equal to a
7462target-specific size limit. The type of the '``<pointer>``' operand must
7463be a pointer to that type. If the ``atomicrmw`` is marked as
7464``volatile``, then the optimizer is not allowed to modify the number or
7465order of execution of this ``atomicrmw`` with other :ref:`volatile
7466operations <volatile>`.
7467
7468Semantics:
7469""""""""""
7470
7471The contents of memory at the location specified by the '``<pointer>``'
7472operand are atomically read, modified, and written back. The original
7473value at the location is returned. The modification is specified by the
7474operation argument:
7475
7476- xchg: ``*ptr = val``
7477- add: ``*ptr = *ptr + val``
7478- sub: ``*ptr = *ptr - val``
7479- and: ``*ptr = *ptr & val``
7480- nand: ``*ptr = ~(*ptr & val)``
7481- or: ``*ptr = *ptr | val``
7482- xor: ``*ptr = *ptr ^ val``
7483- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7484- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7485- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7486 comparison)
7487- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7488 comparison)
7489
7490Example:
7491""""""""
7492
7493.. code-block:: llvm
7494
Tim Northover675a0962014-06-13 14:24:23 +00007495 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007496
7497.. _i_getelementptr:
7498
7499'``getelementptr``' Instruction
7500^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7501
7502Syntax:
7503"""""""
7504
7505::
7506
Peter Collingbourned93620b2016-11-10 22:34:55 +00007507 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7508 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7509 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007510
7511Overview:
7512"""""""""
7513
7514The '``getelementptr``' instruction is used to get the address of a
7515subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007516address calculation only and does not access memory. The instruction can also
7517be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007518
7519Arguments:
7520""""""""""
7521
David Blaikie16a97eb2015-03-04 22:02:58 +00007522The first argument is always a type used as the basis for the calculations.
7523The second argument is always a pointer or a vector of pointers, and is the
7524base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007525that indicate which of the elements of the aggregate object are indexed.
7526The interpretation of each index is dependent on the type being indexed
7527into. The first index always indexes the pointer value given as the
7528first argument, the second index indexes a value of the type pointed to
7529(not necessarily the value directly pointed to, since the first index
7530can be non-zero), etc. The first type indexed into must be a pointer
7531value, subsequent types can be arrays, vectors, and structs. Note that
7532subsequent types being indexed into can never be pointers, since that
7533would require loading the pointer before continuing calculation.
7534
7535The type of each index argument depends on the type it is indexing into.
7536When indexing into a (optionally packed) structure, only ``i32`` integer
7537**constants** are allowed (when using a vector of indices they must all
7538be the **same** ``i32`` integer constant). When indexing into an array,
7539pointer or vector, integers of any width are allowed, and they are not
7540required to be constant. These integers are treated as signed values
7541where relevant.
7542
7543For example, let's consider a C code fragment and how it gets compiled
7544to LLVM:
7545
7546.. code-block:: c
7547
7548 struct RT {
7549 char A;
7550 int B[10][20];
7551 char C;
7552 };
7553 struct ST {
7554 int X;
7555 double Y;
7556 struct RT Z;
7557 };
7558
7559 int *foo(struct ST *s) {
7560 return &s[1].Z.B[5][13];
7561 }
7562
7563The LLVM code generated by Clang is:
7564
7565.. code-block:: llvm
7566
7567 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7568 %struct.ST = type { i32, double, %struct.RT }
7569
7570 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7571 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007572 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007573 ret i32* %arrayidx
7574 }
7575
7576Semantics:
7577""""""""""
7578
7579In the example above, the first index is indexing into the
7580'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7581= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7582indexes into the third element of the structure, yielding a
7583'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7584structure. The third index indexes into the second element of the
7585structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7586dimensions of the array are subscripted into, yielding an '``i32``'
7587type. The '``getelementptr``' instruction returns a pointer to this
7588element, thus computing a value of '``i32*``' type.
7589
7590Note that it is perfectly legal to index partially through a structure,
7591returning a pointer to an inner element. Because of this, the LLVM code
7592for the given testcase is equivalent to:
7593
7594.. code-block:: llvm
7595
7596 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007597 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7598 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7599 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7600 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7601 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007602 ret i32* %t5
7603 }
7604
7605If the ``inbounds`` keyword is present, the result value of the
7606``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7607pointer is not an *in bounds* address of an allocated object, or if any
7608of the addresses that would be formed by successive addition of the
7609offsets implied by the indices to the base address with infinitely
7610precise signed arithmetic are not an *in bounds* address of that
7611allocated object. The *in bounds* addresses for an allocated object are
7612all the addresses that point into the object, plus the address one byte
7613past the end. In cases where the base is a vector of pointers the
7614``inbounds`` keyword applies to each of the computations element-wise.
7615
7616If the ``inbounds`` keyword is not present, the offsets are added to the
7617base address with silently-wrapping two's complement arithmetic. If the
7618offsets have a different width from the pointer, they are sign-extended
7619or truncated to the width of the pointer. The result value of the
7620``getelementptr`` may be outside the object pointed to by the base
7621pointer. The result value may not necessarily be used to access memory
7622though, even if it happens to point into allocated storage. See the
7623:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7624information.
7625
Peter Collingbourned93620b2016-11-10 22:34:55 +00007626If the ``inrange`` keyword is present before any index, loading from or
7627storing to any pointer derived from the ``getelementptr`` has undefined
7628behavior if the load or store would access memory outside of the bounds of
7629the element selected by the index marked as ``inrange``. The result of a
7630pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7631involving memory) involving a pointer derived from a ``getelementptr`` with
7632the ``inrange`` keyword is undefined, with the exception of comparisons
7633in the case where both operands are in the range of the element selected
7634by the ``inrange`` keyword, inclusive of the address one past the end of
7635that element. Note that the ``inrange`` keyword is currently only allowed
7636in constant ``getelementptr`` expressions.
7637
Sean Silvab084af42012-12-07 10:36:55 +00007638The getelementptr instruction is often confusing. For some more insight
7639into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7640
7641Example:
7642""""""""
7643
7644.. code-block:: llvm
7645
7646 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007647 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007648 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007649 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007650 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007651 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007652 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007653 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007654
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007655Vector of pointers:
7656"""""""""""""""""""
7657
7658The ``getelementptr`` returns a vector of pointers, instead of a single address,
7659when one or more of its arguments is a vector. In such cases, all vector
7660arguments should have the same number of elements, and every scalar argument
7661will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007662
7663.. code-block:: llvm
7664
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007665 ; All arguments are vectors:
7666 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7667 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007668
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007669 ; Add the same scalar offset to each pointer of a vector:
7670 ; A[i] = ptrs[i] + offset*sizeof(i8)
7671 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007672
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007673 ; Add distinct offsets to the same pointer:
7674 ; A[i] = ptr + offsets[i]*sizeof(i8)
7675 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007676
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007677 ; In all cases described above the type of the result is <4 x i8*>
7678
7679The two following instructions are equivalent:
7680
7681.. code-block:: llvm
7682
7683 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7684 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7685 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7686 <4 x i32> %ind4,
7687 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007688
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007689 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7690 i32 2, i32 1, <4 x i32> %ind4, i64 13
7691
7692Let's look at the C code, where the vector version of ``getelementptr``
7693makes sense:
7694
7695.. code-block:: c
7696
7697 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00007698 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007699 for (int i = 0; i < size; ++i) {
7700 A[i] = B[C[i]];
7701 }
7702
7703.. code-block:: llvm
7704
7705 ; get pointers for 8 elements from array B
7706 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7707 ; load 8 elements from array B into A
7708 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7709 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007710
7711Conversion Operations
7712---------------------
7713
7714The instructions in this category are the conversion instructions
7715(casting) which all take a single operand and a type. They perform
7716various bit conversions on the operand.
7717
7718'``trunc .. to``' Instruction
7719^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7720
7721Syntax:
7722"""""""
7723
7724::
7725
7726 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7727
7728Overview:
7729"""""""""
7730
7731The '``trunc``' instruction truncates its operand to the type ``ty2``.
7732
7733Arguments:
7734""""""""""
7735
7736The '``trunc``' instruction takes a value to trunc, and a type to trunc
7737it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7738of the same number of integers. The bit size of the ``value`` must be
7739larger than the bit size of the destination type, ``ty2``. Equal sized
7740types are not allowed.
7741
7742Semantics:
7743""""""""""
7744
7745The '``trunc``' instruction truncates the high order bits in ``value``
7746and converts the remaining bits to ``ty2``. Since the source size must
7747be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7748It will always truncate bits.
7749
7750Example:
7751""""""""
7752
7753.. code-block:: llvm
7754
7755 %X = trunc i32 257 to i8 ; yields i8:1
7756 %Y = trunc i32 123 to i1 ; yields i1:true
7757 %Z = trunc i32 122 to i1 ; yields i1:false
7758 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7759
7760'``zext .. to``' Instruction
7761^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7762
7763Syntax:
7764"""""""
7765
7766::
7767
7768 <result> = zext <ty> <value> to <ty2> ; yields ty2
7769
7770Overview:
7771"""""""""
7772
7773The '``zext``' instruction zero extends its operand to type ``ty2``.
7774
7775Arguments:
7776""""""""""
7777
7778The '``zext``' instruction takes a value to cast, and a type to cast it
7779to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7780the same number of integers. The bit size of the ``value`` must be
7781smaller than the bit size of the destination type, ``ty2``.
7782
7783Semantics:
7784""""""""""
7785
7786The ``zext`` fills the high order bits of the ``value`` with zero bits
7787until it reaches the size of the destination type, ``ty2``.
7788
7789When zero extending from i1, the result will always be either 0 or 1.
7790
7791Example:
7792""""""""
7793
7794.. code-block:: llvm
7795
7796 %X = zext i32 257 to i64 ; yields i64:257
7797 %Y = zext i1 true to i32 ; yields i32:1
7798 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7799
7800'``sext .. to``' Instruction
7801^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7802
7803Syntax:
7804"""""""
7805
7806::
7807
7808 <result> = sext <ty> <value> to <ty2> ; yields ty2
7809
7810Overview:
7811"""""""""
7812
7813The '``sext``' sign extends ``value`` to the type ``ty2``.
7814
7815Arguments:
7816""""""""""
7817
7818The '``sext``' instruction takes a value to cast, and a type to cast it
7819to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7820the same number of integers. The bit size of the ``value`` must be
7821smaller than the bit size of the destination type, ``ty2``.
7822
7823Semantics:
7824""""""""""
7825
7826The '``sext``' instruction performs a sign extension by copying the sign
7827bit (highest order bit) of the ``value`` until it reaches the bit size
7828of the type ``ty2``.
7829
7830When sign extending from i1, the extension always results in -1 or 0.
7831
7832Example:
7833""""""""
7834
7835.. code-block:: llvm
7836
7837 %X = sext i8 -1 to i16 ; yields i16 :65535
7838 %Y = sext i1 true to i32 ; yields i32:-1
7839 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7840
7841'``fptrunc .. to``' Instruction
7842^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7843
7844Syntax:
7845"""""""
7846
7847::
7848
7849 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7850
7851Overview:
7852"""""""""
7853
7854The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7855
7856Arguments:
7857""""""""""
7858
7859The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7860value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7861The size of ``value`` must be larger than the size of ``ty2``. This
7862implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7863
7864Semantics:
7865""""""""""
7866
Dan Liew50456fb2015-09-03 18:43:56 +00007867The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007868:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007869point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7870destination type, ``ty2``, then the results are undefined. If the cast produces
7871an inexact result, how rounding is performed (e.g. truncation, also known as
7872round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007873
7874Example:
7875""""""""
7876
7877.. code-block:: llvm
7878
7879 %X = fptrunc double 123.0 to float ; yields float:123.0
7880 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7881
7882'``fpext .. to``' Instruction
7883^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7884
7885Syntax:
7886"""""""
7887
7888::
7889
7890 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7891
7892Overview:
7893"""""""""
7894
7895The '``fpext``' extends a floating point ``value`` to a larger floating
7896point value.
7897
7898Arguments:
7899""""""""""
7900
7901The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7902``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7903to. The source type must be smaller than the destination type.
7904
7905Semantics:
7906""""""""""
7907
7908The '``fpext``' instruction extends the ``value`` from a smaller
7909:ref:`floating point <t_floating>` type to a larger :ref:`floating
7910point <t_floating>` type. The ``fpext`` cannot be used to make a
7911*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7912*no-op cast* for a floating point cast.
7913
7914Example:
7915""""""""
7916
7917.. code-block:: llvm
7918
7919 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7920 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7921
7922'``fptoui .. to``' Instruction
7923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7924
7925Syntax:
7926"""""""
7927
7928::
7929
7930 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7931
7932Overview:
7933"""""""""
7934
7935The '``fptoui``' converts a floating point ``value`` to its unsigned
7936integer equivalent of type ``ty2``.
7937
7938Arguments:
7939""""""""""
7940
7941The '``fptoui``' instruction takes a value to cast, which must be a
7942scalar or vector :ref:`floating point <t_floating>` value, and a type to
7943cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7944``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7945type with the same number of elements as ``ty``
7946
7947Semantics:
7948""""""""""
7949
7950The '``fptoui``' instruction converts its :ref:`floating
7951point <t_floating>` operand into the nearest (rounding towards zero)
7952unsigned integer value. If the value cannot fit in ``ty2``, the results
7953are undefined.
7954
7955Example:
7956""""""""
7957
7958.. code-block:: llvm
7959
7960 %X = fptoui double 123.0 to i32 ; yields i32:123
7961 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7962 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7963
7964'``fptosi .. to``' Instruction
7965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7966
7967Syntax:
7968"""""""
7969
7970::
7971
7972 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7973
7974Overview:
7975"""""""""
7976
7977The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7978``value`` to type ``ty2``.
7979
7980Arguments:
7981""""""""""
7982
7983The '``fptosi``' instruction takes a value to cast, which must be a
7984scalar or vector :ref:`floating point <t_floating>` value, and a type to
7985cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7986``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7987type with the same number of elements as ``ty``
7988
7989Semantics:
7990""""""""""
7991
7992The '``fptosi``' instruction converts its :ref:`floating
7993point <t_floating>` operand into the nearest (rounding towards zero)
7994signed integer value. If the value cannot fit in ``ty2``, the results
7995are undefined.
7996
7997Example:
7998""""""""
7999
8000.. code-block:: llvm
8001
8002 %X = fptosi double -123.0 to i32 ; yields i32:-123
8003 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8004 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8005
8006'``uitofp .. to``' Instruction
8007^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8008
8009Syntax:
8010"""""""
8011
8012::
8013
8014 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8015
8016Overview:
8017"""""""""
8018
8019The '``uitofp``' instruction regards ``value`` as an unsigned integer
8020and converts that value to the ``ty2`` type.
8021
8022Arguments:
8023""""""""""
8024
8025The '``uitofp``' instruction takes a value to cast, which must be a
8026scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8027``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8028``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8029type with the same number of elements as ``ty``
8030
8031Semantics:
8032""""""""""
8033
8034The '``uitofp``' instruction interprets its operand as an unsigned
8035integer quantity and converts it to the corresponding floating point
8036value. If the value cannot fit in the floating point value, the results
8037are undefined.
8038
8039Example:
8040""""""""
8041
8042.. code-block:: llvm
8043
8044 %X = uitofp i32 257 to float ; yields float:257.0
8045 %Y = uitofp i8 -1 to double ; yields double:255.0
8046
8047'``sitofp .. to``' Instruction
8048^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8049
8050Syntax:
8051"""""""
8052
8053::
8054
8055 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8056
8057Overview:
8058"""""""""
8059
8060The '``sitofp``' instruction regards ``value`` as a signed integer and
8061converts that value to the ``ty2`` type.
8062
8063Arguments:
8064""""""""""
8065
8066The '``sitofp``' instruction takes a value to cast, which must be a
8067scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8068``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8069``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8070type with the same number of elements as ``ty``
8071
8072Semantics:
8073""""""""""
8074
8075The '``sitofp``' instruction interprets its operand as a signed integer
8076quantity and converts it to the corresponding floating point value. If
8077the value cannot fit in the floating point value, the results are
8078undefined.
8079
8080Example:
8081""""""""
8082
8083.. code-block:: llvm
8084
8085 %X = sitofp i32 257 to float ; yields float:257.0
8086 %Y = sitofp i8 -1 to double ; yields double:-1.0
8087
8088.. _i_ptrtoint:
8089
8090'``ptrtoint .. to``' Instruction
8091^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8092
8093Syntax:
8094"""""""
8095
8096::
8097
8098 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8099
8100Overview:
8101"""""""""
8102
8103The '``ptrtoint``' instruction converts the pointer or a vector of
8104pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8105
8106Arguments:
8107""""""""""
8108
8109The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008110a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008111type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8112a vector of integers type.
8113
8114Semantics:
8115""""""""""
8116
8117The '``ptrtoint``' instruction converts ``value`` to integer type
8118``ty2`` by interpreting the pointer value as an integer and either
8119truncating or zero extending that value to the size of the integer type.
8120If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8121``value`` is larger than ``ty2`` then a truncation is done. If they are
8122the same size, then nothing is done (*no-op cast*) other than a type
8123change.
8124
8125Example:
8126""""""""
8127
8128.. code-block:: llvm
8129
8130 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8131 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8132 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8133
8134.. _i_inttoptr:
8135
8136'``inttoptr .. to``' Instruction
8137^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8138
8139Syntax:
8140"""""""
8141
8142::
8143
8144 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8145
8146Overview:
8147"""""""""
8148
8149The '``inttoptr``' instruction converts an integer ``value`` to a
8150pointer type, ``ty2``.
8151
8152Arguments:
8153""""""""""
8154
8155The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8156cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8157type.
8158
8159Semantics:
8160""""""""""
8161
8162The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8163applying either a zero extension or a truncation depending on the size
8164of the integer ``value``. If ``value`` is larger than the size of a
8165pointer then a truncation is done. If ``value`` is smaller than the size
8166of a pointer then a zero extension is done. If they are the same size,
8167nothing is done (*no-op cast*).
8168
8169Example:
8170""""""""
8171
8172.. code-block:: llvm
8173
8174 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8175 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8176 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8177 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8178
8179.. _i_bitcast:
8180
8181'``bitcast .. to``' Instruction
8182^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8183
8184Syntax:
8185"""""""
8186
8187::
8188
8189 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8190
8191Overview:
8192"""""""""
8193
8194The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8195changing any bits.
8196
8197Arguments:
8198""""""""""
8199
8200The '``bitcast``' instruction takes a value to cast, which must be a
8201non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008202also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8203bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008204identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008205also be a pointer of the same size. This instruction supports bitwise
8206conversion of vectors to integers and to vectors of other types (as
8207long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008208
8209Semantics:
8210""""""""""
8211
Matt Arsenault24b49c42013-07-31 17:49:08 +00008212The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8213is always a *no-op cast* because no bits change with this
8214conversion. The conversion is done as if the ``value`` had been stored
8215to memory and read back as type ``ty2``. Pointer (or vector of
8216pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008217pointers) types with the same address space through this instruction.
8218To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8219or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008220
8221Example:
8222""""""""
8223
Renato Golin124f2592016-07-20 12:16:38 +00008224.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008225
8226 %X = bitcast i8 255 to i8 ; yields i8 :-1
8227 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8228 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8229 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8230
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008231.. _i_addrspacecast:
8232
8233'``addrspacecast .. to``' Instruction
8234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8235
8236Syntax:
8237"""""""
8238
8239::
8240
8241 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8242
8243Overview:
8244"""""""""
8245
8246The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8247address space ``n`` to type ``pty2`` in address space ``m``.
8248
8249Arguments:
8250""""""""""
8251
8252The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8253to cast and a pointer type to cast it to, which must have a different
8254address space.
8255
8256Semantics:
8257""""""""""
8258
8259The '``addrspacecast``' instruction converts the pointer value
8260``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008261value modification, depending on the target and the address space
8262pair. Pointer conversions within the same address space must be
8263performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008264conversion is legal then both result and operand refer to the same memory
8265location.
8266
8267Example:
8268""""""""
8269
8270.. code-block:: llvm
8271
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008272 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8273 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8274 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008275
Sean Silvab084af42012-12-07 10:36:55 +00008276.. _otherops:
8277
8278Other Operations
8279----------------
8280
8281The instructions in this category are the "miscellaneous" instructions,
8282which defy better classification.
8283
8284.. _i_icmp:
8285
8286'``icmp``' Instruction
8287^^^^^^^^^^^^^^^^^^^^^^
8288
8289Syntax:
8290"""""""
8291
8292::
8293
Tim Northover675a0962014-06-13 14:24:23 +00008294 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008295
8296Overview:
8297"""""""""
8298
8299The '``icmp``' instruction returns a boolean value or a vector of
8300boolean values based on comparison of its two integer, integer vector,
8301pointer, or pointer vector operands.
8302
8303Arguments:
8304""""""""""
8305
8306The '``icmp``' instruction takes three operands. The first operand is
8307the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008308not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008309
8310#. ``eq``: equal
8311#. ``ne``: not equal
8312#. ``ugt``: unsigned greater than
8313#. ``uge``: unsigned greater or equal
8314#. ``ult``: unsigned less than
8315#. ``ule``: unsigned less or equal
8316#. ``sgt``: signed greater than
8317#. ``sge``: signed greater or equal
8318#. ``slt``: signed less than
8319#. ``sle``: signed less or equal
8320
8321The remaining two arguments must be :ref:`integer <t_integer>` or
8322:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8323must also be identical types.
8324
8325Semantics:
8326""""""""""
8327
8328The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8329code given as ``cond``. The comparison performed always yields either an
8330:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8331
8332#. ``eq``: yields ``true`` if the operands are equal, ``false``
8333 otherwise. No sign interpretation is necessary or performed.
8334#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8335 otherwise. No sign interpretation is necessary or performed.
8336#. ``ugt``: interprets the operands as unsigned values and yields
8337 ``true`` if ``op1`` is greater than ``op2``.
8338#. ``uge``: interprets the operands as unsigned values and yields
8339 ``true`` if ``op1`` is greater than or equal to ``op2``.
8340#. ``ult``: interprets the operands as unsigned values and yields
8341 ``true`` if ``op1`` is less than ``op2``.
8342#. ``ule``: interprets the operands as unsigned values and yields
8343 ``true`` if ``op1`` is less than or equal to ``op2``.
8344#. ``sgt``: interprets the operands as signed values and yields ``true``
8345 if ``op1`` is greater than ``op2``.
8346#. ``sge``: interprets the operands as signed values and yields ``true``
8347 if ``op1`` is greater than or equal to ``op2``.
8348#. ``slt``: interprets the operands as signed values and yields ``true``
8349 if ``op1`` is less than ``op2``.
8350#. ``sle``: interprets the operands as signed values and yields ``true``
8351 if ``op1`` is less than or equal to ``op2``.
8352
8353If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8354are compared as if they were integers.
8355
8356If the operands are integer vectors, then they are compared element by
8357element. The result is an ``i1`` vector with the same number of elements
8358as the values being compared. Otherwise, the result is an ``i1``.
8359
8360Example:
8361""""""""
8362
Renato Golin124f2592016-07-20 12:16:38 +00008363.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008364
8365 <result> = icmp eq i32 4, 5 ; yields: result=false
8366 <result> = icmp ne float* %X, %X ; yields: result=false
8367 <result> = icmp ult i16 4, 5 ; yields: result=true
8368 <result> = icmp sgt i16 4, 5 ; yields: result=false
8369 <result> = icmp ule i16 -4, 5 ; yields: result=false
8370 <result> = icmp sge i16 4, 5 ; yields: result=false
8371
Sean Silvab084af42012-12-07 10:36:55 +00008372.. _i_fcmp:
8373
8374'``fcmp``' Instruction
8375^^^^^^^^^^^^^^^^^^^^^^
8376
8377Syntax:
8378"""""""
8379
8380::
8381
James Molloy88eb5352015-07-10 12:52:00 +00008382 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008383
8384Overview:
8385"""""""""
8386
8387The '``fcmp``' instruction returns a boolean value or vector of boolean
8388values based on comparison of its operands.
8389
8390If the operands are floating point scalars, then the result type is a
8391boolean (:ref:`i1 <t_integer>`).
8392
8393If the operands are floating point vectors, then the result type is a
8394vector of boolean with the same number of elements as the operands being
8395compared.
8396
8397Arguments:
8398""""""""""
8399
8400The '``fcmp``' instruction takes three operands. The first operand is
8401the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008402not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008403
8404#. ``false``: no comparison, always returns false
8405#. ``oeq``: ordered and equal
8406#. ``ogt``: ordered and greater than
8407#. ``oge``: ordered and greater than or equal
8408#. ``olt``: ordered and less than
8409#. ``ole``: ordered and less than or equal
8410#. ``one``: ordered and not equal
8411#. ``ord``: ordered (no nans)
8412#. ``ueq``: unordered or equal
8413#. ``ugt``: unordered or greater than
8414#. ``uge``: unordered or greater than or equal
8415#. ``ult``: unordered or less than
8416#. ``ule``: unordered or less than or equal
8417#. ``une``: unordered or not equal
8418#. ``uno``: unordered (either nans)
8419#. ``true``: no comparison, always returns true
8420
8421*Ordered* means that neither operand is a QNAN while *unordered* means
8422that either operand may be a QNAN.
8423
8424Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8425point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8426type. They must have identical types.
8427
8428Semantics:
8429""""""""""
8430
8431The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8432condition code given as ``cond``. If the operands are vectors, then the
8433vectors are compared element by element. Each comparison performed
8434always yields an :ref:`i1 <t_integer>` result, as follows:
8435
8436#. ``false``: always yields ``false``, regardless of operands.
8437#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8438 is equal to ``op2``.
8439#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8440 is greater than ``op2``.
8441#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8442 is greater than or equal to ``op2``.
8443#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8444 is less than ``op2``.
8445#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8446 is less than or equal to ``op2``.
8447#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8448 is not equal to ``op2``.
8449#. ``ord``: yields ``true`` if both operands are not a QNAN.
8450#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8451 equal to ``op2``.
8452#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8453 greater than ``op2``.
8454#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8455 greater than or equal to ``op2``.
8456#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8457 less than ``op2``.
8458#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8459 less than or equal to ``op2``.
8460#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8461 not equal to ``op2``.
8462#. ``uno``: yields ``true`` if either operand is a QNAN.
8463#. ``true``: always yields ``true``, regardless of operands.
8464
James Molloy88eb5352015-07-10 12:52:00 +00008465The ``fcmp`` instruction can also optionally take any number of
8466:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8467otherwise unsafe floating point optimizations.
8468
8469Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8470only flags that have any effect on its semantics are those that allow
8471assumptions to be made about the values of input arguments; namely
8472``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8473
Sean Silvab084af42012-12-07 10:36:55 +00008474Example:
8475""""""""
8476
Renato Golin124f2592016-07-20 12:16:38 +00008477.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008478
8479 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8480 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8481 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8482 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8483
Sean Silvab084af42012-12-07 10:36:55 +00008484.. _i_phi:
8485
8486'``phi``' Instruction
8487^^^^^^^^^^^^^^^^^^^^^
8488
8489Syntax:
8490"""""""
8491
8492::
8493
8494 <result> = phi <ty> [ <val0>, <label0>], ...
8495
8496Overview:
8497"""""""""
8498
8499The '``phi``' instruction is used to implement the φ node in the SSA
8500graph representing the function.
8501
8502Arguments:
8503""""""""""
8504
8505The type of the incoming values is specified with the first type field.
8506After this, the '``phi``' instruction takes a list of pairs as
8507arguments, with one pair for each predecessor basic block of the current
8508block. Only values of :ref:`first class <t_firstclass>` type may be used as
8509the value arguments to the PHI node. Only labels may be used as the
8510label arguments.
8511
8512There must be no non-phi instructions between the start of a basic block
8513and the PHI instructions: i.e. PHI instructions must be first in a basic
8514block.
8515
8516For the purposes of the SSA form, the use of each incoming value is
8517deemed to occur on the edge from the corresponding predecessor block to
8518the current block (but after any definition of an '``invoke``'
8519instruction's return value on the same edge).
8520
8521Semantics:
8522""""""""""
8523
8524At runtime, the '``phi``' instruction logically takes on the value
8525specified by the pair corresponding to the predecessor basic block that
8526executed just prior to the current block.
8527
8528Example:
8529""""""""
8530
8531.. code-block:: llvm
8532
8533 Loop: ; Infinite loop that counts from 0 on up...
8534 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8535 %nextindvar = add i32 %indvar, 1
8536 br label %Loop
8537
8538.. _i_select:
8539
8540'``select``' Instruction
8541^^^^^^^^^^^^^^^^^^^^^^^^
8542
8543Syntax:
8544"""""""
8545
8546::
8547
8548 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8549
8550 selty is either i1 or {<N x i1>}
8551
8552Overview:
8553"""""""""
8554
8555The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008556condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008557
8558Arguments:
8559""""""""""
8560
8561The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8562values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008563class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008564
8565Semantics:
8566""""""""""
8567
8568If the condition is an i1 and it evaluates to 1, the instruction returns
8569the first value argument; otherwise, it returns the second value
8570argument.
8571
8572If the condition is a vector of i1, then the value arguments must be
8573vectors of the same size, and the selection is done element by element.
8574
David Majnemer40a0b592015-03-03 22:45:47 +00008575If the condition is an i1 and the value arguments are vectors of the
8576same size, then an entire vector is selected.
8577
Sean Silvab084af42012-12-07 10:36:55 +00008578Example:
8579""""""""
8580
8581.. code-block:: llvm
8582
8583 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8584
8585.. _i_call:
8586
8587'``call``' Instruction
8588^^^^^^^^^^^^^^^^^^^^^^
8589
8590Syntax:
8591"""""""
8592
8593::
8594
David Blaikieb83cf102016-07-13 17:21:34 +00008595 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008596 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008597
8598Overview:
8599"""""""""
8600
8601The '``call``' instruction represents a simple function call.
8602
8603Arguments:
8604""""""""""
8605
8606This instruction requires several arguments:
8607
Reid Kleckner5772b772014-04-24 20:14:34 +00008608#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008609 should perform tail call optimization. The ``tail`` marker is a hint that
8610 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008611 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008612 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008613
8614 #. The call will not cause unbounded stack growth if it is part of a
8615 recursive cycle in the call graph.
8616 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8617 forwarded in place.
8618
8619 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008620 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008621 rules:
8622
8623 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8624 or a pointer bitcast followed by a ret instruction.
8625 - The ret instruction must return the (possibly bitcasted) value
8626 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008627 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008628 parameters or return types may differ in pointee type, but not
8629 in address space.
8630 - The calling conventions of the caller and callee must match.
8631 - All ABI-impacting function attributes, such as sret, byval, inreg,
8632 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008633 - The callee must be varargs iff the caller is varargs. Bitcasting a
8634 non-varargs function to the appropriate varargs type is legal so
8635 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008636
8637 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8638 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008639
8640 - Caller and callee both have the calling convention ``fastcc``.
8641 - The call is in tail position (ret immediately follows call and ret
8642 uses value of call or is void).
8643 - Option ``-tailcallopt`` is enabled, or
8644 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008645 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008646 met. <CodeGenerator.html#tailcallopt>`_
8647
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008648#. The optional ``notail`` marker indicates that the optimizers should not add
8649 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8650 call optimization from being performed on the call.
8651
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008652#. The optional ``fast-math flags`` marker indicates that the call has one or more
8653 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8654 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8655 for calls that return a floating-point scalar or vector type.
8656
Sean Silvab084af42012-12-07 10:36:55 +00008657#. The optional "cconv" marker indicates which :ref:`calling
8658 convention <callingconv>` the call should use. If none is
8659 specified, the call defaults to using C calling conventions. The
8660 calling convention of the call must match the calling convention of
8661 the target function, or else the behavior is undefined.
8662#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8663 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8664 are valid here.
8665#. '``ty``': the type of the call instruction itself which is also the
8666 type of the return value. Functions that return no value are marked
8667 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008668#. '``fnty``': shall be the signature of the function being called. The
8669 argument types must match the types implied by this signature. This
8670 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008671#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008672 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008673 indirect ``call``'s are just as possible, calling an arbitrary pointer
8674 to function value.
8675#. '``function args``': argument list whose types match the function
8676 signature argument types and parameter attributes. All arguments must
8677 be of :ref:`first class <t_firstclass>` type. If the function signature
8678 indicates the function accepts a variable number of arguments, the
8679 extra arguments can be specified.
8680#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008681 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8682 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008683#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008684
8685Semantics:
8686""""""""""
8687
8688The '``call``' instruction is used to cause control flow to transfer to
8689a specified function, with its incoming arguments bound to the specified
8690values. Upon a '``ret``' instruction in the called function, control
8691flow continues with the instruction after the function call, and the
8692return value of the function is bound to the result argument.
8693
8694Example:
8695""""""""
8696
8697.. code-block:: llvm
8698
8699 %retval = call i32 @test(i32 %argc)
8700 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8701 %X = tail call i32 @foo() ; yields i32
8702 %Y = tail call fastcc i32 @foo() ; yields i32
8703 call void %foo(i8 97 signext)
8704
8705 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008706 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008707 %gr = extractvalue %struct.A %r, 0 ; yields i32
8708 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8709 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8710 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8711
8712llvm treats calls to some functions with names and arguments that match
8713the standard C99 library as being the C99 library functions, and may
8714perform optimizations or generate code for them under that assumption.
8715This is something we'd like to change in the future to provide better
8716support for freestanding environments and non-C-based languages.
8717
8718.. _i_va_arg:
8719
8720'``va_arg``' Instruction
8721^^^^^^^^^^^^^^^^^^^^^^^^
8722
8723Syntax:
8724"""""""
8725
8726::
8727
8728 <resultval> = va_arg <va_list*> <arglist>, <argty>
8729
8730Overview:
8731"""""""""
8732
8733The '``va_arg``' instruction is used to access arguments passed through
8734the "variable argument" area of a function call. It is used to implement
8735the ``va_arg`` macro in C.
8736
8737Arguments:
8738""""""""""
8739
8740This instruction takes a ``va_list*`` value and the type of the
8741argument. It returns a value of the specified argument type and
8742increments the ``va_list`` to point to the next argument. The actual
8743type of ``va_list`` is target specific.
8744
8745Semantics:
8746""""""""""
8747
8748The '``va_arg``' instruction loads an argument of the specified type
8749from the specified ``va_list`` and causes the ``va_list`` to point to
8750the next argument. For more information, see the variable argument
8751handling :ref:`Intrinsic Functions <int_varargs>`.
8752
8753It is legal for this instruction to be called in a function which does
8754not take a variable number of arguments, for example, the ``vfprintf``
8755function.
8756
8757``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8758function <intrinsics>` because it takes a type as an argument.
8759
8760Example:
8761""""""""
8762
8763See the :ref:`variable argument processing <int_varargs>` section.
8764
8765Note that the code generator does not yet fully support va\_arg on many
8766targets. Also, it does not currently support va\_arg with aggregate
8767types on any target.
8768
8769.. _i_landingpad:
8770
8771'``landingpad``' Instruction
8772^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8773
8774Syntax:
8775"""""""
8776
8777::
8778
David Majnemer7fddecc2015-06-17 20:52:32 +00008779 <resultval> = landingpad <resultty> <clause>+
8780 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008781
8782 <clause> := catch <type> <value>
8783 <clause> := filter <array constant type> <array constant>
8784
8785Overview:
8786"""""""""
8787
8788The '``landingpad``' instruction is used by `LLVM's exception handling
8789system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008790is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008791code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008792defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008793re-entry to the function. The ``resultval`` has the type ``resultty``.
8794
8795Arguments:
8796""""""""""
8797
David Majnemer7fddecc2015-06-17 20:52:32 +00008798The optional
Sean Silvab084af42012-12-07 10:36:55 +00008799``cleanup`` flag indicates that the landing pad block is a cleanup.
8800
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008801A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008802contains the global variable representing the "type" that may be caught
8803or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8804clause takes an array constant as its argument. Use
8805"``[0 x i8**] undef``" for a filter which cannot throw. The
8806'``landingpad``' instruction must contain *at least* one ``clause`` or
8807the ``cleanup`` flag.
8808
8809Semantics:
8810""""""""""
8811
8812The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008813:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008814therefore the "result type" of the ``landingpad`` instruction. As with
8815calling conventions, how the personality function results are
8816represented in LLVM IR is target specific.
8817
8818The clauses are applied in order from top to bottom. If two
8819``landingpad`` instructions are merged together through inlining, the
8820clauses from the calling function are appended to the list of clauses.
8821When the call stack is being unwound due to an exception being thrown,
8822the exception is compared against each ``clause`` in turn. If it doesn't
8823match any of the clauses, and the ``cleanup`` flag is not set, then
8824unwinding continues further up the call stack.
8825
8826The ``landingpad`` instruction has several restrictions:
8827
8828- A landing pad block is a basic block which is the unwind destination
8829 of an '``invoke``' instruction.
8830- A landing pad block must have a '``landingpad``' instruction as its
8831 first non-PHI instruction.
8832- There can be only one '``landingpad``' instruction within the landing
8833 pad block.
8834- A basic block that is not a landing pad block may not include a
8835 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008836
8837Example:
8838""""""""
8839
8840.. code-block:: llvm
8841
8842 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008843 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008844 catch i8** @_ZTIi
8845 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008846 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008847 cleanup
8848 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008849 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008850 catch i8** @_ZTIi
8851 filter [1 x i8**] [@_ZTId]
8852
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008853.. _i_catchpad:
8854
8855'``catchpad``' Instruction
8856^^^^^^^^^^^^^^^^^^^^^^^^^^
8857
8858Syntax:
8859"""""""
8860
8861::
8862
8863 <resultval> = catchpad within <catchswitch> [<args>*]
8864
8865Overview:
8866"""""""""
8867
8868The '``catchpad``' instruction is used by `LLVM's exception handling
8869system <ExceptionHandling.html#overview>`_ to specify that a basic block
8870begins a catch handler --- one where a personality routine attempts to transfer
8871control to catch an exception.
8872
8873Arguments:
8874""""""""""
8875
8876The ``catchswitch`` operand must always be a token produced by a
8877:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8878ensures that each ``catchpad`` has exactly one predecessor block, and it always
8879terminates in a ``catchswitch``.
8880
8881The ``args`` correspond to whatever information the personality routine
8882requires to know if this is an appropriate handler for the exception. Control
8883will transfer to the ``catchpad`` if this is the first appropriate handler for
8884the exception.
8885
8886The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8887``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8888pads.
8889
8890Semantics:
8891""""""""""
8892
8893When the call stack is being unwound due to an exception being thrown, the
8894exception is compared against the ``args``. If it doesn't match, control will
8895not reach the ``catchpad`` instruction. The representation of ``args`` is
8896entirely target and personality function-specific.
8897
8898Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8899instruction must be the first non-phi of its parent basic block.
8900
8901The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8902instructions is described in the
8903`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8904
8905When a ``catchpad`` has been "entered" but not yet "exited" (as
8906described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8907it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8908that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8909
8910Example:
8911""""""""
8912
Renato Golin124f2592016-07-20 12:16:38 +00008913.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008914
8915 dispatch:
8916 %cs = catchswitch within none [label %handler0] unwind to caller
8917 ;; A catch block which can catch an integer.
8918 handler0:
8919 %tok = catchpad within %cs [i8** @_ZTIi]
8920
David Majnemer654e1302015-07-31 17:58:14 +00008921.. _i_cleanuppad:
8922
8923'``cleanuppad``' Instruction
8924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8925
8926Syntax:
8927"""""""
8928
8929::
8930
David Majnemer8a1c45d2015-12-12 05:38:55 +00008931 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008932
8933Overview:
8934"""""""""
8935
8936The '``cleanuppad``' instruction is used by `LLVM's exception handling
8937system <ExceptionHandling.html#overview>`_ to specify that a basic block
8938is a cleanup block --- one where a personality routine attempts to
8939transfer control to run cleanup actions.
8940The ``args`` correspond to whatever additional
8941information the :ref:`personality function <personalityfn>` requires to
8942execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008943The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008944match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8945The ``parent`` argument is the token of the funclet that contains the
8946``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8947this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008948
8949Arguments:
8950""""""""""
8951
8952The instruction takes a list of arbitrary values which are interpreted
8953by the :ref:`personality function <personalityfn>`.
8954
8955Semantics:
8956""""""""""
8957
David Majnemer654e1302015-07-31 17:58:14 +00008958When the call stack is being unwound due to an exception being thrown,
8959the :ref:`personality function <personalityfn>` transfers control to the
8960``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008961As with calling conventions, how the personality function results are
8962represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008963
8964The ``cleanuppad`` instruction has several restrictions:
8965
8966- A cleanup block is a basic block which is the unwind destination of
8967 an exceptional instruction.
8968- A cleanup block must have a '``cleanuppad``' instruction as its
8969 first non-PHI instruction.
8970- There can be only one '``cleanuppad``' instruction within the
8971 cleanup block.
8972- A basic block that is not a cleanup block may not include a
8973 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008974
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008975When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8976described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8977it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8978that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008979
David Majnemer654e1302015-07-31 17:58:14 +00008980Example:
8981""""""""
8982
Renato Golin124f2592016-07-20 12:16:38 +00008983.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00008984
David Majnemer8a1c45d2015-12-12 05:38:55 +00008985 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008986
Sean Silvab084af42012-12-07 10:36:55 +00008987.. _intrinsics:
8988
8989Intrinsic Functions
8990===================
8991
8992LLVM supports the notion of an "intrinsic function". These functions
8993have well known names and semantics and are required to follow certain
8994restrictions. Overall, these intrinsics represent an extension mechanism
8995for the LLVM language that does not require changing all of the
8996transformations in LLVM when adding to the language (or the bitcode
8997reader/writer, the parser, etc...).
8998
8999Intrinsic function names must all start with an "``llvm.``" prefix. This
9000prefix is reserved in LLVM for intrinsic names; thus, function names may
9001not begin with this prefix. Intrinsic functions must always be external
9002functions: you cannot define the body of intrinsic functions. Intrinsic
9003functions may only be used in call or invoke instructions: it is illegal
9004to take the address of an intrinsic function. Additionally, because
9005intrinsic functions are part of the LLVM language, it is required if any
9006are added that they be documented here.
9007
9008Some intrinsic functions can be overloaded, i.e., the intrinsic
9009represents a family of functions that perform the same operation but on
9010different data types. Because LLVM can represent over 8 million
9011different integer types, overloading is used commonly to allow an
9012intrinsic function to operate on any integer type. One or more of the
9013argument types or the result type can be overloaded to accept any
9014integer type. Argument types may also be defined as exactly matching a
9015previous argument's type or the result type. This allows an intrinsic
9016function which accepts multiple arguments, but needs all of them to be
9017of the same type, to only be overloaded with respect to a single
9018argument or the result.
9019
9020Overloaded intrinsics will have the names of its overloaded argument
9021types encoded into its function name, each preceded by a period. Only
9022those types which are overloaded result in a name suffix. Arguments
9023whose type is matched against another type do not. For example, the
9024``llvm.ctpop`` function can take an integer of any width and returns an
9025integer of exactly the same integer width. This leads to a family of
9026functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9027``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9028overloaded, and only one type suffix is required. Because the argument's
9029type is matched against the return type, it does not require its own
9030name suffix.
9031
9032To learn how to add an intrinsic function, please see the `Extending
9033LLVM Guide <ExtendingLLVM.html>`_.
9034
9035.. _int_varargs:
9036
9037Variable Argument Handling Intrinsics
9038-------------------------------------
9039
9040Variable argument support is defined in LLVM with the
9041:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9042functions. These functions are related to the similarly named macros
9043defined in the ``<stdarg.h>`` header file.
9044
9045All of these functions operate on arguments that use a target-specific
9046value type "``va_list``". The LLVM assembly language reference manual
9047does not define what this type is, so all transformations should be
9048prepared to handle these functions regardless of the type used.
9049
9050This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9051variable argument handling intrinsic functions are used.
9052
9053.. code-block:: llvm
9054
Tim Northoverab60bb92014-11-02 01:21:51 +00009055 ; This struct is different for every platform. For most platforms,
9056 ; it is merely an i8*.
9057 %struct.va_list = type { i8* }
9058
9059 ; For Unix x86_64 platforms, va_list is the following struct:
9060 ; %struct.va_list = type { i32, i32, i8*, i8* }
9061
Sean Silvab084af42012-12-07 10:36:55 +00009062 define i32 @test(i32 %X, ...) {
9063 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009064 %ap = alloca %struct.va_list
9065 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009066 call void @llvm.va_start(i8* %ap2)
9067
9068 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009069 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009070
9071 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9072 %aq = alloca i8*
9073 %aq2 = bitcast i8** %aq to i8*
9074 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9075 call void @llvm.va_end(i8* %aq2)
9076
9077 ; Stop processing of arguments.
9078 call void @llvm.va_end(i8* %ap2)
9079 ret i32 %tmp
9080 }
9081
9082 declare void @llvm.va_start(i8*)
9083 declare void @llvm.va_copy(i8*, i8*)
9084 declare void @llvm.va_end(i8*)
9085
9086.. _int_va_start:
9087
9088'``llvm.va_start``' Intrinsic
9089^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9090
9091Syntax:
9092"""""""
9093
9094::
9095
Nick Lewycky04f6de02013-09-11 22:04:52 +00009096 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009097
9098Overview:
9099"""""""""
9100
9101The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9102subsequent use by ``va_arg``.
9103
9104Arguments:
9105""""""""""
9106
9107The argument is a pointer to a ``va_list`` element to initialize.
9108
9109Semantics:
9110""""""""""
9111
9112The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9113available in C. In a target-dependent way, it initializes the
9114``va_list`` element to which the argument points, so that the next call
9115to ``va_arg`` will produce the first variable argument passed to the
9116function. Unlike the C ``va_start`` macro, this intrinsic does not need
9117to know the last argument of the function as the compiler can figure
9118that out.
9119
9120'``llvm.va_end``' Intrinsic
9121^^^^^^^^^^^^^^^^^^^^^^^^^^^
9122
9123Syntax:
9124"""""""
9125
9126::
9127
9128 declare void @llvm.va_end(i8* <arglist>)
9129
9130Overview:
9131"""""""""
9132
9133The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9134initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9135
9136Arguments:
9137""""""""""
9138
9139The argument is a pointer to a ``va_list`` to destroy.
9140
9141Semantics:
9142""""""""""
9143
9144The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9145available in C. In a target-dependent way, it destroys the ``va_list``
9146element to which the argument points. Calls to
9147:ref:`llvm.va_start <int_va_start>` and
9148:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9149``llvm.va_end``.
9150
9151.. _int_va_copy:
9152
9153'``llvm.va_copy``' Intrinsic
9154^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9155
9156Syntax:
9157"""""""
9158
9159::
9160
9161 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9162
9163Overview:
9164"""""""""
9165
9166The '``llvm.va_copy``' intrinsic copies the current argument position
9167from the source argument list to the destination argument list.
9168
9169Arguments:
9170""""""""""
9171
9172The first argument is a pointer to a ``va_list`` element to initialize.
9173The second argument is a pointer to a ``va_list`` element to copy from.
9174
9175Semantics:
9176""""""""""
9177
9178The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9179available in C. In a target-dependent way, it copies the source
9180``va_list`` element into the destination ``va_list`` element. This
9181intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9182arbitrarily complex and require, for example, memory allocation.
9183
9184Accurate Garbage Collection Intrinsics
9185--------------------------------------
9186
Philip Reamesc5b0f562015-02-25 23:52:06 +00009187LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009188(GC) requires the frontend to generate code containing appropriate intrinsic
9189calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009190intrinsics in a manner which is appropriate for the target collector.
9191
Sean Silvab084af42012-12-07 10:36:55 +00009192These intrinsics allow identification of :ref:`GC roots on the
9193stack <int_gcroot>`, as well as garbage collector implementations that
9194require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009195Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009196these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009197details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009198
Philip Reamesf80bbff2015-02-25 23:45:20 +00009199Experimental Statepoint Intrinsics
9200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9201
9202LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009203collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009204to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009205:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009206differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009207<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009208described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009209
9210.. _int_gcroot:
9211
9212'``llvm.gcroot``' Intrinsic
9213^^^^^^^^^^^^^^^^^^^^^^^^^^^
9214
9215Syntax:
9216"""""""
9217
9218::
9219
9220 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9221
9222Overview:
9223"""""""""
9224
9225The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9226the code generator, and allows some metadata to be associated with it.
9227
9228Arguments:
9229""""""""""
9230
9231The first argument specifies the address of a stack object that contains
9232the root pointer. The second pointer (which must be either a constant or
9233a global value address) contains the meta-data to be associated with the
9234root.
9235
9236Semantics:
9237""""""""""
9238
9239At runtime, a call to this intrinsic stores a null pointer into the
9240"ptrloc" location. At compile-time, the code generator generates
9241information to allow the runtime to find the pointer at GC safe points.
9242The '``llvm.gcroot``' intrinsic may only be used in a function which
9243:ref:`specifies a GC algorithm <gc>`.
9244
9245.. _int_gcread:
9246
9247'``llvm.gcread``' Intrinsic
9248^^^^^^^^^^^^^^^^^^^^^^^^^^^
9249
9250Syntax:
9251"""""""
9252
9253::
9254
9255 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9256
9257Overview:
9258"""""""""
9259
9260The '``llvm.gcread``' intrinsic identifies reads of references from heap
9261locations, allowing garbage collector implementations that require read
9262barriers.
9263
9264Arguments:
9265""""""""""
9266
9267The second argument is the address to read from, which should be an
9268address allocated from the garbage collector. The first object is a
9269pointer to the start of the referenced object, if needed by the language
9270runtime (otherwise null).
9271
9272Semantics:
9273""""""""""
9274
9275The '``llvm.gcread``' intrinsic has the same semantics as a load
9276instruction, but may be replaced with substantially more complex code by
9277the garbage collector runtime, as needed. The '``llvm.gcread``'
9278intrinsic may only be used in a function which :ref:`specifies a GC
9279algorithm <gc>`.
9280
9281.. _int_gcwrite:
9282
9283'``llvm.gcwrite``' Intrinsic
9284^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9285
9286Syntax:
9287"""""""
9288
9289::
9290
9291 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9292
9293Overview:
9294"""""""""
9295
9296The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9297locations, allowing garbage collector implementations that require write
9298barriers (such as generational or reference counting collectors).
9299
9300Arguments:
9301""""""""""
9302
9303The first argument is the reference to store, the second is the start of
9304the object to store it to, and the third is the address of the field of
9305Obj to store to. If the runtime does not require a pointer to the
9306object, Obj may be null.
9307
9308Semantics:
9309""""""""""
9310
9311The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9312instruction, but may be replaced with substantially more complex code by
9313the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9314intrinsic may only be used in a function which :ref:`specifies a GC
9315algorithm <gc>`.
9316
9317Code Generator Intrinsics
9318-------------------------
9319
9320These intrinsics are provided by LLVM to expose special features that
9321may only be implemented with code generator support.
9322
9323'``llvm.returnaddress``' Intrinsic
9324^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9325
9326Syntax:
9327"""""""
9328
9329::
9330
9331 declare i8 *@llvm.returnaddress(i32 <level>)
9332
9333Overview:
9334"""""""""
9335
9336The '``llvm.returnaddress``' intrinsic attempts to compute a
9337target-specific value indicating the return address of the current
9338function or one of its callers.
9339
9340Arguments:
9341""""""""""
9342
9343The argument to this intrinsic indicates which function to return the
9344address for. Zero indicates the calling function, one indicates its
9345caller, etc. The argument is **required** to be a constant integer
9346value.
9347
9348Semantics:
9349""""""""""
9350
9351The '``llvm.returnaddress``' intrinsic either returns a pointer
9352indicating the return address of the specified call frame, or zero if it
9353cannot be identified. The value returned by this intrinsic is likely to
9354be incorrect or 0 for arguments other than zero, so it should only be
9355used for debugging purposes.
9356
9357Note that calling this intrinsic does not prevent function inlining or
9358other aggressive transformations, so the value returned may not be that
9359of the obvious source-language caller.
9360
Albert Gutowski795d7d62016-10-12 22:13:19 +00009361'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009362^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009363
9364Syntax:
9365"""""""
9366
9367::
9368
9369 declare i8 *@llvm.addressofreturnaddress()
9370
9371Overview:
9372"""""""""
9373
9374The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9375pointer to the place in the stack frame where the return address of the
9376current function is stored.
9377
9378Semantics:
9379""""""""""
9380
9381Note that calling this intrinsic does not prevent function inlining or
9382other aggressive transformations, so the value returned may not be that
9383of the obvious source-language caller.
9384
9385This intrinsic is only implemented for x86.
9386
Sean Silvab084af42012-12-07 10:36:55 +00009387'``llvm.frameaddress``' Intrinsic
9388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9389
9390Syntax:
9391"""""""
9392
9393::
9394
9395 declare i8* @llvm.frameaddress(i32 <level>)
9396
9397Overview:
9398"""""""""
9399
9400The '``llvm.frameaddress``' intrinsic attempts to return the
9401target-specific frame pointer value for the specified stack frame.
9402
9403Arguments:
9404""""""""""
9405
9406The argument to this intrinsic indicates which function to return the
9407frame pointer for. Zero indicates the calling function, one indicates
9408its caller, etc. The argument is **required** to be a constant integer
9409value.
9410
9411Semantics:
9412""""""""""
9413
9414The '``llvm.frameaddress``' intrinsic either returns a pointer
9415indicating the frame address of the specified call frame, or zero if it
9416cannot be identified. The value returned by this intrinsic is likely to
9417be incorrect or 0 for arguments other than zero, so it should only be
9418used for debugging purposes.
9419
9420Note that calling this intrinsic does not prevent function inlining or
9421other aggressive transformations, so the value returned may not be that
9422of the obvious source-language caller.
9423
Reid Kleckner60381792015-07-07 22:25:32 +00009424'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009425^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9426
9427Syntax:
9428"""""""
9429
9430::
9431
Reid Kleckner60381792015-07-07 22:25:32 +00009432 declare void @llvm.localescape(...)
9433 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009434
9435Overview:
9436"""""""""
9437
Reid Kleckner60381792015-07-07 22:25:32 +00009438The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9439allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009440live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009441computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009442
9443Arguments:
9444""""""""""
9445
Reid Kleckner60381792015-07-07 22:25:32 +00009446All arguments to '``llvm.localescape``' must be pointers to static allocas or
9447casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009448once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009449
Reid Kleckner60381792015-07-07 22:25:32 +00009450The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009451bitcasted pointer to a function defined in the current module. The code
9452generator cannot determine the frame allocation offset of functions defined in
9453other modules.
9454
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009455The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9456call frame that is currently live. The return value of '``llvm.localaddress``'
9457is one way to produce such a value, but various runtimes also expose a suitable
9458pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009459
Reid Kleckner60381792015-07-07 22:25:32 +00009460The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9461'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009462
Reid Klecknere9b89312015-01-13 00:48:10 +00009463Semantics:
9464""""""""""
9465
Reid Kleckner60381792015-07-07 22:25:32 +00009466These intrinsics allow a group of functions to share access to a set of local
9467stack allocations of a one parent function. The parent function may call the
9468'``llvm.localescape``' intrinsic once from the function entry block, and the
9469child functions can use '``llvm.localrecover``' to access the escaped allocas.
9470The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9471the escaped allocas are allocated, which would break attempts to use
9472'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009473
Renato Golinc7aea402014-05-06 16:51:25 +00009474.. _int_read_register:
9475.. _int_write_register:
9476
9477'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9479
9480Syntax:
9481"""""""
9482
9483::
9484
9485 declare i32 @llvm.read_register.i32(metadata)
9486 declare i64 @llvm.read_register.i64(metadata)
9487 declare void @llvm.write_register.i32(metadata, i32 @value)
9488 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009489 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009490
9491Overview:
9492"""""""""
9493
9494The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9495provides access to the named register. The register must be valid on
9496the architecture being compiled to. The type needs to be compatible
9497with the register being read.
9498
9499Semantics:
9500""""""""""
9501
9502The '``llvm.read_register``' intrinsic returns the current value of the
9503register, where possible. The '``llvm.write_register``' intrinsic sets
9504the current value of the register, where possible.
9505
9506This is useful to implement named register global variables that need
9507to always be mapped to a specific register, as is common practice on
9508bare-metal programs including OS kernels.
9509
9510The compiler doesn't check for register availability or use of the used
9511register in surrounding code, including inline assembly. Because of that,
9512allocatable registers are not supported.
9513
9514Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009515architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009516work is needed to support other registers and even more so, allocatable
9517registers.
9518
Sean Silvab084af42012-12-07 10:36:55 +00009519.. _int_stacksave:
9520
9521'``llvm.stacksave``' Intrinsic
9522^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9523
9524Syntax:
9525"""""""
9526
9527::
9528
9529 declare i8* @llvm.stacksave()
9530
9531Overview:
9532"""""""""
9533
9534The '``llvm.stacksave``' intrinsic is used to remember the current state
9535of the function stack, for use with
9536:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9537implementing language features like scoped automatic variable sized
9538arrays in C99.
9539
9540Semantics:
9541""""""""""
9542
9543This intrinsic returns a opaque pointer value that can be passed to
9544:ref:`llvm.stackrestore <int_stackrestore>`. When an
9545``llvm.stackrestore`` intrinsic is executed with a value saved from
9546``llvm.stacksave``, it effectively restores the state of the stack to
9547the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9548practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9549were allocated after the ``llvm.stacksave`` was executed.
9550
9551.. _int_stackrestore:
9552
9553'``llvm.stackrestore``' Intrinsic
9554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9555
9556Syntax:
9557"""""""
9558
9559::
9560
9561 declare void @llvm.stackrestore(i8* %ptr)
9562
9563Overview:
9564"""""""""
9565
9566The '``llvm.stackrestore``' intrinsic is used to restore the state of
9567the function stack to the state it was in when the corresponding
9568:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9569useful for implementing language features like scoped automatic variable
9570sized arrays in C99.
9571
9572Semantics:
9573""""""""""
9574
9575See the description for :ref:`llvm.stacksave <int_stacksave>`.
9576
Yury Gribovd7dbb662015-12-01 11:40:55 +00009577.. _int_get_dynamic_area_offset:
9578
9579'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009581
9582Syntax:
9583"""""""
9584
9585::
9586
9587 declare i32 @llvm.get.dynamic.area.offset.i32()
9588 declare i64 @llvm.get.dynamic.area.offset.i64()
9589
Lang Hames10239932016-10-08 00:20:42 +00009590Overview:
9591"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009592
9593 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9594 get the offset from native stack pointer to the address of the most
9595 recent dynamic alloca on the caller's stack. These intrinsics are
9596 intendend for use in combination with
9597 :ref:`llvm.stacksave <int_stacksave>` to get a
9598 pointer to the most recent dynamic alloca. This is useful, for example,
9599 for AddressSanitizer's stack unpoisoning routines.
9600
9601Semantics:
9602""""""""""
9603
9604 These intrinsics return a non-negative integer value that can be used to
9605 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9606 on the caller's stack. In particular, for targets where stack grows downwards,
9607 adding this offset to the native stack pointer would get the address of the most
9608 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009609 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009610 one past the end of the most recent dynamic alloca.
9611
9612 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9613 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9614 compile-time-known constant value.
9615
9616 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9617 must match the target's generic address space's (address space 0) pointer type.
9618
Sean Silvab084af42012-12-07 10:36:55 +00009619'``llvm.prefetch``' Intrinsic
9620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9621
9622Syntax:
9623"""""""
9624
9625::
9626
9627 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9628
9629Overview:
9630"""""""""
9631
9632The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9633insert a prefetch instruction if supported; otherwise, it is a noop.
9634Prefetches have no effect on the behavior of the program but can change
9635its performance characteristics.
9636
9637Arguments:
9638""""""""""
9639
9640``address`` is the address to be prefetched, ``rw`` is the specifier
9641determining if the fetch should be for a read (0) or write (1), and
9642``locality`` is a temporal locality specifier ranging from (0) - no
9643locality, to (3) - extremely local keep in cache. The ``cache type``
9644specifies whether the prefetch is performed on the data (1) or
9645instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9646arguments must be constant integers.
9647
9648Semantics:
9649""""""""""
9650
9651This intrinsic does not modify the behavior of the program. In
9652particular, prefetches cannot trap and do not produce a value. On
9653targets that support this intrinsic, the prefetch can provide hints to
9654the processor cache for better performance.
9655
9656'``llvm.pcmarker``' Intrinsic
9657^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9658
9659Syntax:
9660"""""""
9661
9662::
9663
9664 declare void @llvm.pcmarker(i32 <id>)
9665
9666Overview:
9667"""""""""
9668
9669The '``llvm.pcmarker``' intrinsic is a method to export a Program
9670Counter (PC) in a region of code to simulators and other tools. The
9671method is target specific, but it is expected that the marker will use
9672exported symbols to transmit the PC of the marker. The marker makes no
9673guarantees that it will remain with any specific instruction after
9674optimizations. It is possible that the presence of a marker will inhibit
9675optimizations. The intended use is to be inserted after optimizations to
9676allow correlations of simulation runs.
9677
9678Arguments:
9679""""""""""
9680
9681``id`` is a numerical id identifying the marker.
9682
9683Semantics:
9684""""""""""
9685
9686This intrinsic does not modify the behavior of the program. Backends
9687that do not support this intrinsic may ignore it.
9688
9689'``llvm.readcyclecounter``' Intrinsic
9690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9691
9692Syntax:
9693"""""""
9694
9695::
9696
9697 declare i64 @llvm.readcyclecounter()
9698
9699Overview:
9700"""""""""
9701
9702The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9703counter register (or similar low latency, high accuracy clocks) on those
9704targets that support it. On X86, it should map to RDTSC. On Alpha, it
9705should map to RPCC. As the backing counters overflow quickly (on the
9706order of 9 seconds on alpha), this should only be used for small
9707timings.
9708
9709Semantics:
9710""""""""""
9711
9712When directly supported, reading the cycle counter should not modify any
9713memory. Implementations are allowed to either return a application
9714specific value or a system wide value. On backends without support, this
9715is lowered to a constant 0.
9716
Tim Northoverbc933082013-05-23 19:11:20 +00009717Note that runtime support may be conditional on the privilege-level code is
9718running at and the host platform.
9719
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009720'``llvm.clear_cache``' Intrinsic
9721^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9722
9723Syntax:
9724"""""""
9725
9726::
9727
9728 declare void @llvm.clear_cache(i8*, i8*)
9729
9730Overview:
9731"""""""""
9732
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009733The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9734in the specified range to the execution unit of the processor. On
9735targets with non-unified instruction and data cache, the implementation
9736flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009737
9738Semantics:
9739""""""""""
9740
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009741On platforms with coherent instruction and data caches (e.g. x86), this
9742intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009743cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009744instructions or a system call, if cache flushing requires special
9745privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009746
Sean Silvad02bf3e2014-04-07 22:29:53 +00009747The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009748time library.
Renato Golin93010e62014-03-26 14:01:32 +00009749
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009750This instrinsic does *not* empty the instruction pipeline. Modifications
9751of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009752
Justin Bogner61ba2e32014-12-08 18:02:35 +00009753'``llvm.instrprof_increment``' Intrinsic
9754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9755
9756Syntax:
9757"""""""
9758
9759::
9760
9761 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9762 i32 <num-counters>, i32 <index>)
9763
9764Overview:
9765"""""""""
9766
9767The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9768frontend for use with instrumentation based profiling. These will be
9769lowered by the ``-instrprof`` pass to generate execution counts of a
9770program at runtime.
9771
9772Arguments:
9773""""""""""
9774
9775The first argument is a pointer to a global variable containing the
9776name of the entity being instrumented. This should generally be the
9777(mangled) function name for a set of counters.
9778
9779The second argument is a hash value that can be used by the consumer
9780of the profile data to detect changes to the instrumented source, and
9781the third is the number of counters associated with ``name``. It is an
9782error if ``hash`` or ``num-counters`` differ between two instances of
9783``instrprof_increment`` that refer to the same name.
9784
9785The last argument refers to which of the counters for ``name`` should
9786be incremented. It should be a value between 0 and ``num-counters``.
9787
9788Semantics:
9789""""""""""
9790
9791This intrinsic represents an increment of a profiling counter. It will
9792cause the ``-instrprof`` pass to generate the appropriate data
9793structures and the code to increment the appropriate value, in a
9794format that can be written out by a compiler runtime and consumed via
9795the ``llvm-profdata`` tool.
9796
Xinliang David Li4ca17332016-09-18 18:34:07 +00009797'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +00009798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +00009799
9800Syntax:
9801"""""""
9802
9803::
9804
9805 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
9806 i32 <num-counters>,
9807 i32 <index>, i64 <step>)
9808
9809Overview:
9810"""""""""
9811
9812The '``llvm.instrprof_increment_step``' intrinsic is an extension to
9813the '``llvm.instrprof_increment``' intrinsic with an additional fifth
9814argument to specify the step of the increment.
9815
9816Arguments:
9817""""""""""
9818The first four arguments are the same as '``llvm.instrprof_increment``'
9819instrinsic.
9820
9821The last argument specifies the value of the increment of the counter variable.
9822
9823Semantics:
9824""""""""""
9825See description of '``llvm.instrprof_increment``' instrinsic.
9826
9827
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009828'``llvm.instrprof_value_profile``' Intrinsic
9829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9830
9831Syntax:
9832"""""""
9833
9834::
9835
9836 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9837 i64 <value>, i32 <value_kind>,
9838 i32 <index>)
9839
9840Overview:
9841"""""""""
9842
9843The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9844frontend for use with instrumentation based profiling. This will be
9845lowered by the ``-instrprof`` pass to find out the target values,
9846instrumented expressions take in a program at runtime.
9847
9848Arguments:
9849""""""""""
9850
9851The first argument is a pointer to a global variable containing the
9852name of the entity being instrumented. ``name`` should generally be the
9853(mangled) function name for a set of counters.
9854
9855The second argument is a hash value that can be used by the consumer
9856of the profile data to detect changes to the instrumented source. It
9857is an error if ``hash`` differs between two instances of
9858``llvm.instrprof_*`` that refer to the same name.
9859
9860The third argument is the value of the expression being profiled. The profiled
9861expression's value should be representable as an unsigned 64-bit value. The
9862fourth argument represents the kind of value profiling that is being done. The
9863supported value profiling kinds are enumerated through the
9864``InstrProfValueKind`` type declared in the
9865``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9866index of the instrumented expression within ``name``. It should be >= 0.
9867
9868Semantics:
9869""""""""""
9870
9871This intrinsic represents the point where a call to a runtime routine
9872should be inserted for value profiling of target expressions. ``-instrprof``
9873pass will generate the appropriate data structures and replace the
9874``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9875runtime library with proper arguments.
9876
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009877'``llvm.thread.pointer``' Intrinsic
9878^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9879
9880Syntax:
9881"""""""
9882
9883::
9884
9885 declare i8* @llvm.thread.pointer()
9886
9887Overview:
9888"""""""""
9889
9890The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9891pointer.
9892
9893Semantics:
9894""""""""""
9895
9896The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9897for the current thread. The exact semantics of this value are target
9898specific: it may point to the start of TLS area, to the end, or somewhere
9899in the middle. Depending on the target, this intrinsic may read a register,
9900call a helper function, read from an alternate memory space, or perform
9901other operations necessary to locate the TLS area. Not all targets support
9902this intrinsic.
9903
Sean Silvab084af42012-12-07 10:36:55 +00009904Standard C Library Intrinsics
9905-----------------------------
9906
9907LLVM provides intrinsics for a few important standard C library
9908functions. These intrinsics allow source-language front-ends to pass
9909information about the alignment of the pointer arguments to the code
9910generator, providing opportunity for more efficient code generation.
9911
9912.. _int_memcpy:
9913
9914'``llvm.memcpy``' Intrinsic
9915^^^^^^^^^^^^^^^^^^^^^^^^^^^
9916
9917Syntax:
9918"""""""
9919
9920This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9921integer bit width and for different address spaces. Not all targets
9922support all bit widths however.
9923
9924::
9925
9926 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9927 i32 <len>, i32 <align>, i1 <isvolatile>)
9928 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9929 i64 <len>, i32 <align>, i1 <isvolatile>)
9930
9931Overview:
9932"""""""""
9933
9934The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9935source location to the destination location.
9936
9937Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9938intrinsics do not return a value, takes extra alignment/isvolatile
9939arguments and the pointers can be in specified address spaces.
9940
9941Arguments:
9942""""""""""
9943
9944The first argument is a pointer to the destination, the second is a
9945pointer to the source. The third argument is an integer argument
9946specifying the number of bytes to copy, the fourth argument is the
9947alignment of the source and destination locations, and the fifth is a
9948boolean indicating a volatile access.
9949
9950If the call to this intrinsic has an alignment value that is not 0 or 1,
9951then the caller guarantees that both the source and destination pointers
9952are aligned to that boundary.
9953
9954If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9955a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9956very cleanly specified and it is unwise to depend on it.
9957
9958Semantics:
9959""""""""""
9960
9961The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9962source location to the destination location, which are not allowed to
9963overlap. It copies "len" bytes of memory over. If the argument is known
9964to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009965argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009966
9967'``llvm.memmove``' Intrinsic
9968^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9969
9970Syntax:
9971"""""""
9972
9973This is an overloaded intrinsic. You can use llvm.memmove on any integer
9974bit width and for different address space. Not all targets support all
9975bit widths however.
9976
9977::
9978
9979 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9980 i32 <len>, i32 <align>, i1 <isvolatile>)
9981 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9982 i64 <len>, i32 <align>, i1 <isvolatile>)
9983
9984Overview:
9985"""""""""
9986
9987The '``llvm.memmove.*``' intrinsics move a block of memory from the
9988source location to the destination location. It is similar to the
9989'``llvm.memcpy``' intrinsic but allows the two memory locations to
9990overlap.
9991
9992Note that, unlike the standard libc function, the ``llvm.memmove.*``
9993intrinsics do not return a value, takes extra alignment/isvolatile
9994arguments and the pointers can be in specified address spaces.
9995
9996Arguments:
9997""""""""""
9998
9999The first argument is a pointer to the destination, the second is a
10000pointer to the source. The third argument is an integer argument
10001specifying the number of bytes to copy, the fourth argument is the
10002alignment of the source and destination locations, and the fifth is a
10003boolean indicating a volatile access.
10004
10005If the call to this intrinsic has an alignment value that is not 0 or 1,
10006then the caller guarantees that the source and destination pointers are
10007aligned to that boundary.
10008
10009If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10010is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10011not very cleanly specified and it is unwise to depend on it.
10012
10013Semantics:
10014""""""""""
10015
10016The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10017source location to the destination location, which may overlap. It
10018copies "len" bytes of memory over. If the argument is known to be
10019aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010020otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010021
10022'``llvm.memset.*``' Intrinsics
10023^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10024
10025Syntax:
10026"""""""
10027
10028This is an overloaded intrinsic. You can use llvm.memset on any integer
10029bit width and for different address spaces. However, not all targets
10030support all bit widths.
10031
10032::
10033
10034 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10035 i32 <len>, i32 <align>, i1 <isvolatile>)
10036 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10037 i64 <len>, i32 <align>, i1 <isvolatile>)
10038
10039Overview:
10040"""""""""
10041
10042The '``llvm.memset.*``' intrinsics fill a block of memory with a
10043particular byte value.
10044
10045Note that, unlike the standard libc function, the ``llvm.memset``
10046intrinsic does not return a value and takes extra alignment/volatile
10047arguments. Also, the destination can be in an arbitrary address space.
10048
10049Arguments:
10050""""""""""
10051
10052The first argument is a pointer to the destination to fill, the second
10053is the byte value with which to fill it, the third argument is an
10054integer argument specifying the number of bytes to fill, and the fourth
10055argument is the known alignment of the destination location.
10056
10057If the call to this intrinsic has an alignment value that is not 0 or 1,
10058then the caller guarantees that the destination pointer is aligned to
10059that boundary.
10060
10061If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10062a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10063very cleanly specified and it is unwise to depend on it.
10064
10065Semantics:
10066""""""""""
10067
10068The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10069at the destination location. If the argument is known to be aligned to
10070some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010071it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010072
10073'``llvm.sqrt.*``' Intrinsic
10074^^^^^^^^^^^^^^^^^^^^^^^^^^^
10075
10076Syntax:
10077"""""""
10078
10079This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10080floating point or vector of floating point type. Not all targets support
10081all types however.
10082
10083::
10084
10085 declare float @llvm.sqrt.f32(float %Val)
10086 declare double @llvm.sqrt.f64(double %Val)
10087 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10088 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10089 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10090
10091Overview:
10092"""""""""
10093
10094The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
Justin Lebarcb9b41d2017-01-27 00:58:03 +000010095returning the same value as the libm '``sqrt``' functions would, but without
10096trapping or setting ``errno``.
Sean Silvab084af42012-12-07 10:36:55 +000010097
10098Arguments:
10099""""""""""
10100
10101The argument and return value are floating point numbers of the same
10102type.
10103
10104Semantics:
10105""""""""""
10106
10107This function returns the sqrt of the specified operand if it is a
10108nonnegative floating point number.
10109
10110'``llvm.powi.*``' Intrinsic
10111^^^^^^^^^^^^^^^^^^^^^^^^^^^
10112
10113Syntax:
10114"""""""
10115
10116This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10117floating point or vector of floating point type. Not all targets support
10118all types however.
10119
10120::
10121
10122 declare float @llvm.powi.f32(float %Val, i32 %power)
10123 declare double @llvm.powi.f64(double %Val, i32 %power)
10124 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10125 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10126 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10127
10128Overview:
10129"""""""""
10130
10131The '``llvm.powi.*``' intrinsics return the first operand raised to the
10132specified (positive or negative) power. The order of evaluation of
10133multiplications is not defined. When a vector of floating point type is
10134used, the second argument remains a scalar integer value.
10135
10136Arguments:
10137""""""""""
10138
10139The second argument is an integer power, and the first is a value to
10140raise to that power.
10141
10142Semantics:
10143""""""""""
10144
10145This function returns the first value raised to the second power with an
10146unspecified sequence of rounding operations.
10147
10148'``llvm.sin.*``' Intrinsic
10149^^^^^^^^^^^^^^^^^^^^^^^^^^
10150
10151Syntax:
10152"""""""
10153
10154This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10155floating point or vector of floating point type. Not all targets support
10156all types however.
10157
10158::
10159
10160 declare float @llvm.sin.f32(float %Val)
10161 declare double @llvm.sin.f64(double %Val)
10162 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10163 declare fp128 @llvm.sin.f128(fp128 %Val)
10164 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10165
10166Overview:
10167"""""""""
10168
10169The '``llvm.sin.*``' intrinsics return the sine of the operand.
10170
10171Arguments:
10172""""""""""
10173
10174The argument and return value are floating point numbers of the same
10175type.
10176
10177Semantics:
10178""""""""""
10179
10180This function returns the sine of the specified operand, returning the
10181same values as the libm ``sin`` functions would, and handles error
10182conditions in the same way.
10183
10184'``llvm.cos.*``' Intrinsic
10185^^^^^^^^^^^^^^^^^^^^^^^^^^
10186
10187Syntax:
10188"""""""
10189
10190This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10191floating point or vector of floating point type. Not all targets support
10192all types however.
10193
10194::
10195
10196 declare float @llvm.cos.f32(float %Val)
10197 declare double @llvm.cos.f64(double %Val)
10198 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10199 declare fp128 @llvm.cos.f128(fp128 %Val)
10200 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10201
10202Overview:
10203"""""""""
10204
10205The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10206
10207Arguments:
10208""""""""""
10209
10210The argument and return value are floating point numbers of the same
10211type.
10212
10213Semantics:
10214""""""""""
10215
10216This function returns the cosine of the specified operand, returning the
10217same values as the libm ``cos`` functions would, and handles error
10218conditions in the same way.
10219
10220'``llvm.pow.*``' Intrinsic
10221^^^^^^^^^^^^^^^^^^^^^^^^^^
10222
10223Syntax:
10224"""""""
10225
10226This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10227floating point or vector of floating point type. Not all targets support
10228all types however.
10229
10230::
10231
10232 declare float @llvm.pow.f32(float %Val, float %Power)
10233 declare double @llvm.pow.f64(double %Val, double %Power)
10234 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10235 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10236 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10237
10238Overview:
10239"""""""""
10240
10241The '``llvm.pow.*``' intrinsics return the first operand raised to the
10242specified (positive or negative) power.
10243
10244Arguments:
10245""""""""""
10246
10247The second argument is a floating point power, and the first is a value
10248to raise to that power.
10249
10250Semantics:
10251""""""""""
10252
10253This function returns the first value raised to the second power,
10254returning the same values as the libm ``pow`` functions would, and
10255handles error conditions in the same way.
10256
10257'``llvm.exp.*``' Intrinsic
10258^^^^^^^^^^^^^^^^^^^^^^^^^^
10259
10260Syntax:
10261"""""""
10262
10263This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10264floating point or vector of floating point type. Not all targets support
10265all types however.
10266
10267::
10268
10269 declare float @llvm.exp.f32(float %Val)
10270 declare double @llvm.exp.f64(double %Val)
10271 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10272 declare fp128 @llvm.exp.f128(fp128 %Val)
10273 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10274
10275Overview:
10276"""""""""
10277
10278The '``llvm.exp.*``' intrinsics perform the exp function.
10279
10280Arguments:
10281""""""""""
10282
10283The argument and return value are floating point numbers of the same
10284type.
10285
10286Semantics:
10287""""""""""
10288
10289This function returns the same values as the libm ``exp`` functions
10290would, and handles error conditions in the same way.
10291
10292'``llvm.exp2.*``' Intrinsic
10293^^^^^^^^^^^^^^^^^^^^^^^^^^^
10294
10295Syntax:
10296"""""""
10297
10298This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10299floating point or vector of floating point type. Not all targets support
10300all types however.
10301
10302::
10303
10304 declare float @llvm.exp2.f32(float %Val)
10305 declare double @llvm.exp2.f64(double %Val)
10306 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10307 declare fp128 @llvm.exp2.f128(fp128 %Val)
10308 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10309
10310Overview:
10311"""""""""
10312
10313The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10314
10315Arguments:
10316""""""""""
10317
10318The argument and return value are floating point numbers of the same
10319type.
10320
10321Semantics:
10322""""""""""
10323
10324This function returns the same values as the libm ``exp2`` functions
10325would, and handles error conditions in the same way.
10326
10327'``llvm.log.*``' Intrinsic
10328^^^^^^^^^^^^^^^^^^^^^^^^^^
10329
10330Syntax:
10331"""""""
10332
10333This is an overloaded intrinsic. You can use ``llvm.log`` on any
10334floating point or vector of floating point type. Not all targets support
10335all types however.
10336
10337::
10338
10339 declare float @llvm.log.f32(float %Val)
10340 declare double @llvm.log.f64(double %Val)
10341 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10342 declare fp128 @llvm.log.f128(fp128 %Val)
10343 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10344
10345Overview:
10346"""""""""
10347
10348The '``llvm.log.*``' intrinsics perform the log function.
10349
10350Arguments:
10351""""""""""
10352
10353The argument and return value are floating point numbers of the same
10354type.
10355
10356Semantics:
10357""""""""""
10358
10359This function returns the same values as the libm ``log`` functions
10360would, and handles error conditions in the same way.
10361
10362'``llvm.log10.*``' Intrinsic
10363^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10364
10365Syntax:
10366"""""""
10367
10368This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10369floating point or vector of floating point type. Not all targets support
10370all types however.
10371
10372::
10373
10374 declare float @llvm.log10.f32(float %Val)
10375 declare double @llvm.log10.f64(double %Val)
10376 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10377 declare fp128 @llvm.log10.f128(fp128 %Val)
10378 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10379
10380Overview:
10381"""""""""
10382
10383The '``llvm.log10.*``' intrinsics perform the log10 function.
10384
10385Arguments:
10386""""""""""
10387
10388The argument and return value are floating point numbers of the same
10389type.
10390
10391Semantics:
10392""""""""""
10393
10394This function returns the same values as the libm ``log10`` functions
10395would, and handles error conditions in the same way.
10396
10397'``llvm.log2.*``' Intrinsic
10398^^^^^^^^^^^^^^^^^^^^^^^^^^^
10399
10400Syntax:
10401"""""""
10402
10403This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10404floating point or vector of floating point type. Not all targets support
10405all types however.
10406
10407::
10408
10409 declare float @llvm.log2.f32(float %Val)
10410 declare double @llvm.log2.f64(double %Val)
10411 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10412 declare fp128 @llvm.log2.f128(fp128 %Val)
10413 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10414
10415Overview:
10416"""""""""
10417
10418The '``llvm.log2.*``' intrinsics perform the log2 function.
10419
10420Arguments:
10421""""""""""
10422
10423The argument and return value are floating point numbers of the same
10424type.
10425
10426Semantics:
10427""""""""""
10428
10429This function returns the same values as the libm ``log2`` functions
10430would, and handles error conditions in the same way.
10431
10432'``llvm.fma.*``' Intrinsic
10433^^^^^^^^^^^^^^^^^^^^^^^^^^
10434
10435Syntax:
10436"""""""
10437
10438This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10439floating point or vector of floating point type. Not all targets support
10440all types however.
10441
10442::
10443
10444 declare float @llvm.fma.f32(float %a, float %b, float %c)
10445 declare double @llvm.fma.f64(double %a, double %b, double %c)
10446 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10447 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10448 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10449
10450Overview:
10451"""""""""
10452
10453The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10454operation.
10455
10456Arguments:
10457""""""""""
10458
10459The argument and return value are floating point numbers of the same
10460type.
10461
10462Semantics:
10463""""""""""
10464
10465This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010466would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010467
10468'``llvm.fabs.*``' Intrinsic
10469^^^^^^^^^^^^^^^^^^^^^^^^^^^
10470
10471Syntax:
10472"""""""
10473
10474This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10475floating point or vector of floating point type. Not all targets support
10476all types however.
10477
10478::
10479
10480 declare float @llvm.fabs.f32(float %Val)
10481 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010482 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010483 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010484 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010485
10486Overview:
10487"""""""""
10488
10489The '``llvm.fabs.*``' intrinsics return the absolute value of the
10490operand.
10491
10492Arguments:
10493""""""""""
10494
10495The argument and return value are floating point numbers of the same
10496type.
10497
10498Semantics:
10499""""""""""
10500
10501This function returns the same values as the libm ``fabs`` functions
10502would, and handles error conditions in the same way.
10503
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010504'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010506
10507Syntax:
10508"""""""
10509
10510This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10511floating point or vector of floating point type. Not all targets support
10512all types however.
10513
10514::
10515
Matt Arsenault64313c92014-10-22 18:25:02 +000010516 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10517 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10518 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10519 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10520 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010521
10522Overview:
10523"""""""""
10524
10525The '``llvm.minnum.*``' intrinsics return the minimum of the two
10526arguments.
10527
10528
10529Arguments:
10530""""""""""
10531
10532The arguments and return value are floating point numbers of the same
10533type.
10534
10535Semantics:
10536""""""""""
10537
10538Follows the IEEE-754 semantics for minNum, which also match for libm's
10539fmin.
10540
10541If either operand is a NaN, returns the other non-NaN operand. Returns
10542NaN only if both operands are NaN. If the operands compare equal,
10543returns a value that compares equal to both operands. This means that
10544fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10545
10546'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010548
10549Syntax:
10550"""""""
10551
10552This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10553floating point or vector of floating point type. Not all targets support
10554all types however.
10555
10556::
10557
Matt Arsenault64313c92014-10-22 18:25:02 +000010558 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10559 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10560 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10561 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10562 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010563
10564Overview:
10565"""""""""
10566
10567The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10568arguments.
10569
10570
10571Arguments:
10572""""""""""
10573
10574The arguments and return value are floating point numbers of the same
10575type.
10576
10577Semantics:
10578""""""""""
10579Follows the IEEE-754 semantics for maxNum, which also match for libm's
10580fmax.
10581
10582If either operand is a NaN, returns the other non-NaN operand. Returns
10583NaN only if both operands are NaN. If the operands compare equal,
10584returns a value that compares equal to both operands. This means that
10585fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10586
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010587'``llvm.copysign.*``' Intrinsic
10588^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10589
10590Syntax:
10591"""""""
10592
10593This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10594floating point or vector of floating point type. Not all targets support
10595all types however.
10596
10597::
10598
10599 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10600 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10601 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10602 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10603 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10604
10605Overview:
10606"""""""""
10607
10608The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10609first operand and the sign of the second operand.
10610
10611Arguments:
10612""""""""""
10613
10614The arguments and return value are floating point numbers of the same
10615type.
10616
10617Semantics:
10618""""""""""
10619
10620This function returns the same values as the libm ``copysign``
10621functions would, and handles error conditions in the same way.
10622
Sean Silvab084af42012-12-07 10:36:55 +000010623'``llvm.floor.*``' Intrinsic
10624^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10625
10626Syntax:
10627"""""""
10628
10629This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10630floating point or vector of floating point type. Not all targets support
10631all types however.
10632
10633::
10634
10635 declare float @llvm.floor.f32(float %Val)
10636 declare double @llvm.floor.f64(double %Val)
10637 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10638 declare fp128 @llvm.floor.f128(fp128 %Val)
10639 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10640
10641Overview:
10642"""""""""
10643
10644The '``llvm.floor.*``' intrinsics return the floor of the operand.
10645
10646Arguments:
10647""""""""""
10648
10649The argument and return value are floating point numbers of the same
10650type.
10651
10652Semantics:
10653""""""""""
10654
10655This function returns the same values as the libm ``floor`` functions
10656would, and handles error conditions in the same way.
10657
10658'``llvm.ceil.*``' Intrinsic
10659^^^^^^^^^^^^^^^^^^^^^^^^^^^
10660
10661Syntax:
10662"""""""
10663
10664This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10665floating point or vector of floating point type. Not all targets support
10666all types however.
10667
10668::
10669
10670 declare float @llvm.ceil.f32(float %Val)
10671 declare double @llvm.ceil.f64(double %Val)
10672 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10673 declare fp128 @llvm.ceil.f128(fp128 %Val)
10674 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10675
10676Overview:
10677"""""""""
10678
10679The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10680
10681Arguments:
10682""""""""""
10683
10684The argument and return value are floating point numbers of the same
10685type.
10686
10687Semantics:
10688""""""""""
10689
10690This function returns the same values as the libm ``ceil`` functions
10691would, and handles error conditions in the same way.
10692
10693'``llvm.trunc.*``' Intrinsic
10694^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10695
10696Syntax:
10697"""""""
10698
10699This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10700floating point or vector of floating point type. Not all targets support
10701all types however.
10702
10703::
10704
10705 declare float @llvm.trunc.f32(float %Val)
10706 declare double @llvm.trunc.f64(double %Val)
10707 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10708 declare fp128 @llvm.trunc.f128(fp128 %Val)
10709 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10710
10711Overview:
10712"""""""""
10713
10714The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10715nearest integer not larger in magnitude than the operand.
10716
10717Arguments:
10718""""""""""
10719
10720The argument and return value are floating point numbers of the same
10721type.
10722
10723Semantics:
10724""""""""""
10725
10726This function returns the same values as the libm ``trunc`` functions
10727would, and handles error conditions in the same way.
10728
10729'``llvm.rint.*``' Intrinsic
10730^^^^^^^^^^^^^^^^^^^^^^^^^^^
10731
10732Syntax:
10733"""""""
10734
10735This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10736floating point or vector of floating point type. Not all targets support
10737all types however.
10738
10739::
10740
10741 declare float @llvm.rint.f32(float %Val)
10742 declare double @llvm.rint.f64(double %Val)
10743 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10744 declare fp128 @llvm.rint.f128(fp128 %Val)
10745 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10746
10747Overview:
10748"""""""""
10749
10750The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10751nearest integer. It may raise an inexact floating-point exception if the
10752operand isn't an integer.
10753
10754Arguments:
10755""""""""""
10756
10757The argument and return value are floating point numbers of the same
10758type.
10759
10760Semantics:
10761""""""""""
10762
10763This function returns the same values as the libm ``rint`` functions
10764would, and handles error conditions in the same way.
10765
10766'``llvm.nearbyint.*``' Intrinsic
10767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10768
10769Syntax:
10770"""""""
10771
10772This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10773floating point or vector of floating point type. Not all targets support
10774all types however.
10775
10776::
10777
10778 declare float @llvm.nearbyint.f32(float %Val)
10779 declare double @llvm.nearbyint.f64(double %Val)
10780 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10781 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10782 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10783
10784Overview:
10785"""""""""
10786
10787The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10788nearest integer.
10789
10790Arguments:
10791""""""""""
10792
10793The argument and return value are floating point numbers of the same
10794type.
10795
10796Semantics:
10797""""""""""
10798
10799This function returns the same values as the libm ``nearbyint``
10800functions would, and handles error conditions in the same way.
10801
Hal Finkel171817e2013-08-07 22:49:12 +000010802'``llvm.round.*``' Intrinsic
10803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10804
10805Syntax:
10806"""""""
10807
10808This is an overloaded intrinsic. You can use ``llvm.round`` on any
10809floating point or vector of floating point type. Not all targets support
10810all types however.
10811
10812::
10813
10814 declare float @llvm.round.f32(float %Val)
10815 declare double @llvm.round.f64(double %Val)
10816 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10817 declare fp128 @llvm.round.f128(fp128 %Val)
10818 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10819
10820Overview:
10821"""""""""
10822
10823The '``llvm.round.*``' intrinsics returns the operand rounded to the
10824nearest integer.
10825
10826Arguments:
10827""""""""""
10828
10829The argument and return value are floating point numbers of the same
10830type.
10831
10832Semantics:
10833""""""""""
10834
10835This function returns the same values as the libm ``round``
10836functions would, and handles error conditions in the same way.
10837
Sean Silvab084af42012-12-07 10:36:55 +000010838Bit Manipulation Intrinsics
10839---------------------------
10840
10841LLVM provides intrinsics for a few important bit manipulation
10842operations. These allow efficient code generation for some algorithms.
10843
James Molloy90111f72015-11-12 12:29:09 +000010844'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010845^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010846
10847Syntax:
10848"""""""
10849
10850This is an overloaded intrinsic function. You can use bitreverse on any
10851integer type.
10852
10853::
10854
10855 declare i16 @llvm.bitreverse.i16(i16 <id>)
10856 declare i32 @llvm.bitreverse.i32(i32 <id>)
10857 declare i64 @llvm.bitreverse.i64(i64 <id>)
10858
10859Overview:
10860"""""""""
10861
10862The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010863bitpattern of an integer value; for example ``0b10110110`` becomes
10864``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010865
10866Semantics:
10867""""""""""
10868
Yichao Yu5abf14b2016-11-23 16:25:31 +000010869The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000010870``M`` in the input moved to bit ``N-M`` in the output.
10871
Sean Silvab084af42012-12-07 10:36:55 +000010872'``llvm.bswap.*``' Intrinsics
10873^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10874
10875Syntax:
10876"""""""
10877
10878This is an overloaded intrinsic function. You can use bswap on any
10879integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10880
10881::
10882
10883 declare i16 @llvm.bswap.i16(i16 <id>)
10884 declare i32 @llvm.bswap.i32(i32 <id>)
10885 declare i64 @llvm.bswap.i64(i64 <id>)
10886
10887Overview:
10888"""""""""
10889
10890The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10891values with an even number of bytes (positive multiple of 16 bits).
10892These are useful for performing operations on data that is not in the
10893target's native byte order.
10894
10895Semantics:
10896""""""""""
10897
10898The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10899and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10900intrinsic returns an i32 value that has the four bytes of the input i32
10901swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10902returned i32 will have its bytes in 3, 2, 1, 0 order. The
10903``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10904concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10905respectively).
10906
10907'``llvm.ctpop.*``' Intrinsic
10908^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10909
10910Syntax:
10911"""""""
10912
10913This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10914bit width, or on any vector with integer elements. Not all targets
10915support all bit widths or vector types, however.
10916
10917::
10918
10919 declare i8 @llvm.ctpop.i8(i8 <src>)
10920 declare i16 @llvm.ctpop.i16(i16 <src>)
10921 declare i32 @llvm.ctpop.i32(i32 <src>)
10922 declare i64 @llvm.ctpop.i64(i64 <src>)
10923 declare i256 @llvm.ctpop.i256(i256 <src>)
10924 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10925
10926Overview:
10927"""""""""
10928
10929The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10930in a value.
10931
10932Arguments:
10933""""""""""
10934
10935The only argument is the value to be counted. The argument may be of any
10936integer type, or a vector with integer elements. The return type must
10937match the argument type.
10938
10939Semantics:
10940""""""""""
10941
10942The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10943each element of a vector.
10944
10945'``llvm.ctlz.*``' Intrinsic
10946^^^^^^^^^^^^^^^^^^^^^^^^^^^
10947
10948Syntax:
10949"""""""
10950
10951This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10952integer bit width, or any vector whose elements are integers. Not all
10953targets support all bit widths or vector types, however.
10954
10955::
10956
10957 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10958 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10959 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10960 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10961 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010962 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010963
10964Overview:
10965"""""""""
10966
10967The '``llvm.ctlz``' family of intrinsic functions counts the number of
10968leading zeros in a variable.
10969
10970Arguments:
10971""""""""""
10972
10973The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010974any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010975type must match the first argument type.
10976
10977The second argument must be a constant and is a flag to indicate whether
10978the intrinsic should ensure that a zero as the first argument produces a
10979defined result. Historically some architectures did not provide a
10980defined result for zero values as efficiently, and many algorithms are
10981now predicated on avoiding zero-value inputs.
10982
10983Semantics:
10984""""""""""
10985
10986The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10987zeros in a variable, or within each element of the vector. If
10988``src == 0`` then the result is the size in bits of the type of ``src``
10989if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10990``llvm.ctlz(i32 2) = 30``.
10991
10992'``llvm.cttz.*``' Intrinsic
10993^^^^^^^^^^^^^^^^^^^^^^^^^^^
10994
10995Syntax:
10996"""""""
10997
10998This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10999integer bit width, or any vector of integer elements. Not all targets
11000support all bit widths or vector types, however.
11001
11002::
11003
11004 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11005 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11006 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11007 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11008 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011009 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011010
11011Overview:
11012"""""""""
11013
11014The '``llvm.cttz``' family of intrinsic functions counts the number of
11015trailing zeros.
11016
11017Arguments:
11018""""""""""
11019
11020The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011021any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011022type must match the first argument type.
11023
11024The second argument must be a constant and is a flag to indicate whether
11025the intrinsic should ensure that a zero as the first argument produces a
11026defined result. Historically some architectures did not provide a
11027defined result for zero values as efficiently, and many algorithms are
11028now predicated on avoiding zero-value inputs.
11029
11030Semantics:
11031""""""""""
11032
11033The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11034zeros in a variable, or within each element of a vector. If ``src == 0``
11035then the result is the size in bits of the type of ``src`` if
11036``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11037``llvm.cttz(2) = 1``.
11038
Philip Reames34843ae2015-03-05 05:55:55 +000011039.. _int_overflow:
11040
Sean Silvab084af42012-12-07 10:36:55 +000011041Arithmetic with Overflow Intrinsics
11042-----------------------------------
11043
John Regehr6a493f22016-05-12 20:55:09 +000011044LLVM provides intrinsics for fast arithmetic overflow checking.
11045
11046Each of these intrinsics returns a two-element struct. The first
11047element of this struct contains the result of the corresponding
11048arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11049the result. Therefore, for example, the first element of the struct
11050returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11051result of a 32-bit ``add`` instruction with the same operands, where
11052the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11053
11054The second element of the result is an ``i1`` that is 1 if the
11055arithmetic operation overflowed and 0 otherwise. An operation
11056overflows if, for any values of its operands ``A`` and ``B`` and for
11057any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11058not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11059``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11060``op`` is the underlying arithmetic operation.
11061
11062The behavior of these intrinsics is well-defined for all argument
11063values.
Sean Silvab084af42012-12-07 10:36:55 +000011064
11065'``llvm.sadd.with.overflow.*``' Intrinsics
11066^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11067
11068Syntax:
11069"""""""
11070
11071This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11072on any integer bit width.
11073
11074::
11075
11076 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11077 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11078 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11079
11080Overview:
11081"""""""""
11082
11083The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11084a signed addition of the two arguments, and indicate whether an overflow
11085occurred during the signed summation.
11086
11087Arguments:
11088""""""""""
11089
11090The arguments (%a and %b) and the first element of the result structure
11091may be of integer types of any bit width, but they must have the same
11092bit width. The second element of the result structure must be of type
11093``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11094addition.
11095
11096Semantics:
11097""""""""""
11098
11099The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011100a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011101first element of which is the signed summation, and the second element
11102of which is a bit specifying if the signed summation resulted in an
11103overflow.
11104
11105Examples:
11106"""""""""
11107
11108.. code-block:: llvm
11109
11110 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11111 %sum = extractvalue {i32, i1} %res, 0
11112 %obit = extractvalue {i32, i1} %res, 1
11113 br i1 %obit, label %overflow, label %normal
11114
11115'``llvm.uadd.with.overflow.*``' Intrinsics
11116^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11117
11118Syntax:
11119"""""""
11120
11121This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11122on any integer bit width.
11123
11124::
11125
11126 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11127 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11128 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11129
11130Overview:
11131"""""""""
11132
11133The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11134an unsigned addition of the two arguments, and indicate whether a carry
11135occurred during the unsigned summation.
11136
11137Arguments:
11138""""""""""
11139
11140The arguments (%a and %b) and the first element of the result structure
11141may be of integer types of any bit width, but they must have the same
11142bit width. The second element of the result structure must be of type
11143``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11144addition.
11145
11146Semantics:
11147""""""""""
11148
11149The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011150an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011151first element of which is the sum, and the second element of which is a
11152bit specifying if the unsigned summation resulted in a carry.
11153
11154Examples:
11155"""""""""
11156
11157.. code-block:: llvm
11158
11159 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11160 %sum = extractvalue {i32, i1} %res, 0
11161 %obit = extractvalue {i32, i1} %res, 1
11162 br i1 %obit, label %carry, label %normal
11163
11164'``llvm.ssub.with.overflow.*``' Intrinsics
11165^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11166
11167Syntax:
11168"""""""
11169
11170This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11171on any integer bit width.
11172
11173::
11174
11175 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11176 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11177 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11178
11179Overview:
11180"""""""""
11181
11182The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11183a signed subtraction of the two arguments, and indicate whether an
11184overflow occurred during the signed subtraction.
11185
11186Arguments:
11187""""""""""
11188
11189The arguments (%a and %b) and the first element of the result structure
11190may be of integer types of any bit width, but they must have the same
11191bit width. The second element of the result structure must be of type
11192``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11193subtraction.
11194
11195Semantics:
11196""""""""""
11197
11198The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011199a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011200first element of which is the subtraction, and the second element of
11201which is a bit specifying if the signed subtraction resulted in an
11202overflow.
11203
11204Examples:
11205"""""""""
11206
11207.. code-block:: llvm
11208
11209 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11210 %sum = extractvalue {i32, i1} %res, 0
11211 %obit = extractvalue {i32, i1} %res, 1
11212 br i1 %obit, label %overflow, label %normal
11213
11214'``llvm.usub.with.overflow.*``' Intrinsics
11215^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11216
11217Syntax:
11218"""""""
11219
11220This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11221on any integer bit width.
11222
11223::
11224
11225 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11226 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11227 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11228
11229Overview:
11230"""""""""
11231
11232The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11233an unsigned subtraction of the two arguments, and indicate whether an
11234overflow occurred during the unsigned subtraction.
11235
11236Arguments:
11237""""""""""
11238
11239The arguments (%a and %b) and the first element of the result structure
11240may be of integer types of any bit width, but they must have the same
11241bit width. The second element of the result structure must be of type
11242``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11243subtraction.
11244
11245Semantics:
11246""""""""""
11247
11248The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011249an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011250the first element of which is the subtraction, and the second element of
11251which is a bit specifying if the unsigned subtraction resulted in an
11252overflow.
11253
11254Examples:
11255"""""""""
11256
11257.. code-block:: llvm
11258
11259 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11260 %sum = extractvalue {i32, i1} %res, 0
11261 %obit = extractvalue {i32, i1} %res, 1
11262 br i1 %obit, label %overflow, label %normal
11263
11264'``llvm.smul.with.overflow.*``' Intrinsics
11265^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11266
11267Syntax:
11268"""""""
11269
11270This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11271on any integer bit width.
11272
11273::
11274
11275 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11276 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11277 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11278
11279Overview:
11280"""""""""
11281
11282The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11283a signed multiplication of the two arguments, and indicate whether an
11284overflow occurred during the signed multiplication.
11285
11286Arguments:
11287""""""""""
11288
11289The arguments (%a and %b) and the first element of the result structure
11290may be of integer types of any bit width, but they must have the same
11291bit width. The second element of the result structure must be of type
11292``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11293multiplication.
11294
11295Semantics:
11296""""""""""
11297
11298The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011299a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011300the first element of which is the multiplication, and the second element
11301of which is a bit specifying if the signed multiplication resulted in an
11302overflow.
11303
11304Examples:
11305"""""""""
11306
11307.. code-block:: llvm
11308
11309 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11310 %sum = extractvalue {i32, i1} %res, 0
11311 %obit = extractvalue {i32, i1} %res, 1
11312 br i1 %obit, label %overflow, label %normal
11313
11314'``llvm.umul.with.overflow.*``' Intrinsics
11315^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11316
11317Syntax:
11318"""""""
11319
11320This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11321on any integer bit width.
11322
11323::
11324
11325 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11326 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11327 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11328
11329Overview:
11330"""""""""
11331
11332The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11333a unsigned multiplication of the two arguments, and indicate whether an
11334overflow occurred during the unsigned multiplication.
11335
11336Arguments:
11337""""""""""
11338
11339The arguments (%a and %b) and the first element of the result structure
11340may be of integer types of any bit width, but they must have the same
11341bit width. The second element of the result structure must be of type
11342``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11343multiplication.
11344
11345Semantics:
11346""""""""""
11347
11348The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011349an unsigned multiplication of the two arguments. They return a structure ---
11350the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011351element of which is a bit specifying if the unsigned multiplication
11352resulted in an overflow.
11353
11354Examples:
11355"""""""""
11356
11357.. code-block:: llvm
11358
11359 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11360 %sum = extractvalue {i32, i1} %res, 0
11361 %obit = extractvalue {i32, i1} %res, 1
11362 br i1 %obit, label %overflow, label %normal
11363
11364Specialised Arithmetic Intrinsics
11365---------------------------------
11366
Owen Anderson1056a922015-07-11 07:01:27 +000011367'``llvm.canonicalize.*``' Intrinsic
11368^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11369
11370Syntax:
11371"""""""
11372
11373::
11374
11375 declare float @llvm.canonicalize.f32(float %a)
11376 declare double @llvm.canonicalize.f64(double %b)
11377
11378Overview:
11379"""""""""
11380
11381The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011382encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011383implementing certain numeric primitives such as frexp. The canonical encoding is
11384defined by IEEE-754-2008 to be:
11385
11386::
11387
11388 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011389 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011390 numbers, infinities, and NaNs, especially in decimal formats.
11391
11392This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011393conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011394according to section 6.2.
11395
11396Examples of non-canonical encodings:
11397
Sean Silvaa1190322015-08-06 22:56:48 +000011398- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011399 converted to a canonical representation per hardware-specific protocol.
11400- Many normal decimal floating point numbers have non-canonical alternative
11401 encodings.
11402- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011403 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011404 a zero of the same sign by this operation.
11405
11406Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11407default exception handling must signal an invalid exception, and produce a
11408quiet NaN result.
11409
11410This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011411that the compiler does not constant fold the operation. Likewise, division by
114121.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011413-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11414
Sean Silvaa1190322015-08-06 22:56:48 +000011415``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011416
11417- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11418- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11419 to ``(x == y)``
11420
11421Additionally, the sign of zero must be conserved:
11422``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11423
11424The payload bits of a NaN must be conserved, with two exceptions.
11425First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011426must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011427usual methods.
11428
11429The canonicalization operation may be optimized away if:
11430
Sean Silvaa1190322015-08-06 22:56:48 +000011431- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011432 floating-point operation that is required by the standard to be canonical.
11433- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011434 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011435
Sean Silvab084af42012-12-07 10:36:55 +000011436'``llvm.fmuladd.*``' Intrinsic
11437^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11438
11439Syntax:
11440"""""""
11441
11442::
11443
11444 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11445 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11446
11447Overview:
11448"""""""""
11449
11450The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011451expressions that can be fused if the code generator determines that (a) the
11452target instruction set has support for a fused operation, and (b) that the
11453fused operation is more efficient than the equivalent, separate pair of mul
11454and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011455
11456Arguments:
11457""""""""""
11458
11459The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11460multiplicands, a and b, and an addend c.
11461
11462Semantics:
11463""""""""""
11464
11465The expression:
11466
11467::
11468
11469 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11470
11471is equivalent to the expression a \* b + c, except that rounding will
11472not be performed between the multiplication and addition steps if the
11473code generator fuses the operations. Fusion is not guaranteed, even if
11474the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011475corresponding llvm.fma.\* intrinsic function should be used
11476instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011477
11478Examples:
11479"""""""""
11480
11481.. code-block:: llvm
11482
Tim Northover675a0962014-06-13 14:24:23 +000011483 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011484
11485Half Precision Floating Point Intrinsics
11486----------------------------------------
11487
11488For most target platforms, half precision floating point is a
11489storage-only format. This means that it is a dense encoding (in memory)
11490but does not support computation in the format.
11491
11492This means that code must first load the half-precision floating point
11493value as an i16, then convert it to float with
11494:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11495then be performed on the float value (including extending to double
11496etc). To store the value back to memory, it is first converted to float
11497if needed, then converted to i16 with
11498:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11499i16 value.
11500
11501.. _int_convert_to_fp16:
11502
11503'``llvm.convert.to.fp16``' Intrinsic
11504^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11505
11506Syntax:
11507"""""""
11508
11509::
11510
Tim Northoverfd7e4242014-07-17 10:51:23 +000011511 declare i16 @llvm.convert.to.fp16.f32(float %a)
11512 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011513
11514Overview:
11515"""""""""
11516
Tim Northoverfd7e4242014-07-17 10:51:23 +000011517The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11518conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011519
11520Arguments:
11521""""""""""
11522
11523The intrinsic function contains single argument - the value to be
11524converted.
11525
11526Semantics:
11527""""""""""
11528
Tim Northoverfd7e4242014-07-17 10:51:23 +000011529The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11530conventional floating point format to half precision floating point format. The
11531return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011532
11533Examples:
11534"""""""""
11535
11536.. code-block:: llvm
11537
Tim Northoverfd7e4242014-07-17 10:51:23 +000011538 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011539 store i16 %res, i16* @x, align 2
11540
11541.. _int_convert_from_fp16:
11542
11543'``llvm.convert.from.fp16``' Intrinsic
11544^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11545
11546Syntax:
11547"""""""
11548
11549::
11550
Tim Northoverfd7e4242014-07-17 10:51:23 +000011551 declare float @llvm.convert.from.fp16.f32(i16 %a)
11552 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011553
11554Overview:
11555"""""""""
11556
11557The '``llvm.convert.from.fp16``' intrinsic function performs a
11558conversion from half precision floating point format to single precision
11559floating point format.
11560
11561Arguments:
11562""""""""""
11563
11564The intrinsic function contains single argument - the value to be
11565converted.
11566
11567Semantics:
11568""""""""""
11569
11570The '``llvm.convert.from.fp16``' intrinsic function performs a
11571conversion from half single precision floating point format to single
11572precision floating point format. The input half-float value is
11573represented by an ``i16`` value.
11574
11575Examples:
11576"""""""""
11577
11578.. code-block:: llvm
11579
David Blaikiec7aabbb2015-03-04 22:06:14 +000011580 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011581 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011582
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011583.. _dbg_intrinsics:
11584
Sean Silvab084af42012-12-07 10:36:55 +000011585Debugger Intrinsics
11586-------------------
11587
11588The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11589prefix), are described in the `LLVM Source Level
11590Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11591document.
11592
11593Exception Handling Intrinsics
11594-----------------------------
11595
11596The LLVM exception handling intrinsics (which all start with
11597``llvm.eh.`` prefix), are described in the `LLVM Exception
11598Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11599
11600.. _int_trampoline:
11601
11602Trampoline Intrinsics
11603---------------------
11604
11605These intrinsics make it possible to excise one parameter, marked with
11606the :ref:`nest <nest>` attribute, from a function. The result is a
11607callable function pointer lacking the nest parameter - the caller does
11608not need to provide a value for it. Instead, the value to use is stored
11609in advance in a "trampoline", a block of memory usually allocated on the
11610stack, which also contains code to splice the nest value into the
11611argument list. This is used to implement the GCC nested function address
11612extension.
11613
11614For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11615then the resulting function pointer has signature ``i32 (i32, i32)*``.
11616It can be created as follows:
11617
11618.. code-block:: llvm
11619
11620 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011621 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011622 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11623 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11624 %fp = bitcast i8* %p to i32 (i32, i32)*
11625
11626The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11627``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11628
11629.. _int_it:
11630
11631'``llvm.init.trampoline``' Intrinsic
11632^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11633
11634Syntax:
11635"""""""
11636
11637::
11638
11639 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11640
11641Overview:
11642"""""""""
11643
11644This fills the memory pointed to by ``tramp`` with executable code,
11645turning it into a trampoline.
11646
11647Arguments:
11648""""""""""
11649
11650The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11651pointers. The ``tramp`` argument must point to a sufficiently large and
11652sufficiently aligned block of memory; this memory is written to by the
11653intrinsic. Note that the size and the alignment are target-specific -
11654LLVM currently provides no portable way of determining them, so a
11655front-end that generates this intrinsic needs to have some
11656target-specific knowledge. The ``func`` argument must hold a function
11657bitcast to an ``i8*``.
11658
11659Semantics:
11660""""""""""
11661
11662The block of memory pointed to by ``tramp`` is filled with target
11663dependent code, turning it into a function. Then ``tramp`` needs to be
11664passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11665be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11666function's signature is the same as that of ``func`` with any arguments
11667marked with the ``nest`` attribute removed. At most one such ``nest``
11668argument is allowed, and it must be of pointer type. Calling the new
11669function is equivalent to calling ``func`` with the same argument list,
11670but with ``nval`` used for the missing ``nest`` argument. If, after
11671calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11672modified, then the effect of any later call to the returned function
11673pointer is undefined.
11674
11675.. _int_at:
11676
11677'``llvm.adjust.trampoline``' Intrinsic
11678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11679
11680Syntax:
11681"""""""
11682
11683::
11684
11685 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11686
11687Overview:
11688"""""""""
11689
11690This performs any required machine-specific adjustment to the address of
11691a trampoline (passed as ``tramp``).
11692
11693Arguments:
11694""""""""""
11695
11696``tramp`` must point to a block of memory which already has trampoline
11697code filled in by a previous call to
11698:ref:`llvm.init.trampoline <int_it>`.
11699
11700Semantics:
11701""""""""""
11702
11703On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011704different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011705intrinsic returns the executable address corresponding to ``tramp``
11706after performing the required machine specific adjustments. The pointer
11707returned can then be :ref:`bitcast and executed <int_trampoline>`.
11708
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011709.. _int_mload_mstore:
11710
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011711Masked Vector Load and Store Intrinsics
11712---------------------------------------
11713
11714LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11715
11716.. _int_mload:
11717
11718'``llvm.masked.load.*``' Intrinsics
11719^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11720
11721Syntax:
11722"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011723This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011724
11725::
11726
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011727 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11728 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011729 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011730 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011731 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011732 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011733
11734Overview:
11735"""""""""
11736
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011737Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011738
11739
11740Arguments:
11741""""""""""
11742
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011743The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011744
11745
11746Semantics:
11747""""""""""
11748
11749The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11750The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11751
11752
11753::
11754
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011755 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011756
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011757 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011758 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011759 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011760
11761.. _int_mstore:
11762
11763'``llvm.masked.store.*``' Intrinsics
11764^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11765
11766Syntax:
11767"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011768This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011769
11770::
11771
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011772 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11773 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011774 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011775 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011776 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011777 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011778
11779Overview:
11780"""""""""
11781
11782Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11783
11784Arguments:
11785""""""""""
11786
11787The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11788
11789
11790Semantics:
11791""""""""""
11792
11793The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11794The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11795
11796::
11797
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011798 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011799
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011800 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011801 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011802 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11803 store <16 x float> %res, <16 x float>* %ptr, align 4
11804
11805
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011806Masked Vector Gather and Scatter Intrinsics
11807-------------------------------------------
11808
11809LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11810
11811.. _int_mgather:
11812
11813'``llvm.masked.gather.*``' Intrinsics
11814^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11815
11816Syntax:
11817"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011818This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011819
11820::
11821
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011822 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11823 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11824 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011825
11826Overview:
11827"""""""""
11828
11829Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11830
11831
11832Arguments:
11833""""""""""
11834
11835The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11836
11837
11838Semantics:
11839""""""""""
11840
11841The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11842The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11843
11844
11845::
11846
Zvi Rackoverb26530c2017-01-26 20:29:15 +000011847 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011848
11849 ;; The gather with all-true mask is equivalent to the following instruction sequence
11850 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11851 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11852 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11853 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11854
11855 %val0 = load double, double* %ptr0, align 8
11856 %val1 = load double, double* %ptr1, align 8
11857 %val2 = load double, double* %ptr2, align 8
11858 %val3 = load double, double* %ptr3, align 8
11859
11860 %vec0 = insertelement <4 x double>undef, %val0, 0
11861 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11862 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11863 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11864
11865.. _int_mscatter:
11866
11867'``llvm.masked.scatter.*``' Intrinsics
11868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11869
11870Syntax:
11871"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011872This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011873
11874::
11875
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011876 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11877 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11878 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011879
11880Overview:
11881"""""""""
11882
11883Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11884
11885Arguments:
11886""""""""""
11887
11888The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11889
11890
11891Semantics:
11892""""""""""
11893
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011894The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011895
11896::
11897
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011898 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011899 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11900
11901 ;; It is equivalent to a list of scalar stores
11902 %val0 = extractelement <8 x i32> %value, i32 0
11903 %val1 = extractelement <8 x i32> %value, i32 1
11904 ..
11905 %val7 = extractelement <8 x i32> %value, i32 7
11906 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11907 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11908 ..
11909 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11910 ;; Note: the order of the following stores is important when they overlap:
11911 store i32 %val0, i32* %ptr0, align 4
11912 store i32 %val1, i32* %ptr1, align 4
11913 ..
11914 store i32 %val7, i32* %ptr7, align 4
11915
11916
Sean Silvab084af42012-12-07 10:36:55 +000011917Memory Use Markers
11918------------------
11919
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011920This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011921memory objects and ranges where variables are immutable.
11922
Reid Klecknera534a382013-12-19 02:14:12 +000011923.. _int_lifestart:
11924
Sean Silvab084af42012-12-07 10:36:55 +000011925'``llvm.lifetime.start``' Intrinsic
11926^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11927
11928Syntax:
11929"""""""
11930
11931::
11932
11933 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11934
11935Overview:
11936"""""""""
11937
11938The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11939object's lifetime.
11940
11941Arguments:
11942""""""""""
11943
11944The first argument is a constant integer representing the size of the
11945object, or -1 if it is variable sized. The second argument is a pointer
11946to the object.
11947
11948Semantics:
11949""""""""""
11950
11951This intrinsic indicates that before this point in the code, the value
11952of the memory pointed to by ``ptr`` is dead. This means that it is known
11953to never be used and has an undefined value. A load from the pointer
11954that precedes this intrinsic can be replaced with ``'undef'``.
11955
Reid Klecknera534a382013-12-19 02:14:12 +000011956.. _int_lifeend:
11957
Sean Silvab084af42012-12-07 10:36:55 +000011958'``llvm.lifetime.end``' Intrinsic
11959^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11960
11961Syntax:
11962"""""""
11963
11964::
11965
11966 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11967
11968Overview:
11969"""""""""
11970
11971The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11972object's lifetime.
11973
11974Arguments:
11975""""""""""
11976
11977The first argument is a constant integer representing the size of the
11978object, or -1 if it is variable sized. The second argument is a pointer
11979to the object.
11980
11981Semantics:
11982""""""""""
11983
11984This intrinsic indicates that after this point in the code, the value of
11985the memory pointed to by ``ptr`` is dead. This means that it is known to
11986never be used and has an undefined value. Any stores into the memory
11987object following this intrinsic may be removed as dead.
11988
11989'``llvm.invariant.start``' Intrinsic
11990^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11991
11992Syntax:
11993"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011994This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011995
11996::
11997
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011998 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011999
12000Overview:
12001"""""""""
12002
12003The '``llvm.invariant.start``' intrinsic specifies that the contents of
12004a memory object will not change.
12005
12006Arguments:
12007""""""""""
12008
12009The first argument is a constant integer representing the size of the
12010object, or -1 if it is variable sized. The second argument is a pointer
12011to the object.
12012
12013Semantics:
12014""""""""""
12015
12016This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12017the return value, the referenced memory location is constant and
12018unchanging.
12019
12020'``llvm.invariant.end``' Intrinsic
12021^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12022
12023Syntax:
12024"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012025This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012026
12027::
12028
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012029 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012030
12031Overview:
12032"""""""""
12033
12034The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12035memory object are mutable.
12036
12037Arguments:
12038""""""""""
12039
12040The first argument is the matching ``llvm.invariant.start`` intrinsic.
12041The second argument is a constant integer representing the size of the
12042object, or -1 if it is variable sized and the third argument is a
12043pointer to the object.
12044
12045Semantics:
12046""""""""""
12047
12048This intrinsic indicates that the memory is mutable again.
12049
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012050'``llvm.invariant.group.barrier``' Intrinsic
12051^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12052
12053Syntax:
12054"""""""
12055
12056::
12057
12058 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12059
12060Overview:
12061"""""""""
12062
12063The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12064established by invariant.group metadata no longer holds, to obtain a new pointer
12065value that does not carry the invariant information.
12066
12067
12068Arguments:
12069""""""""""
12070
12071The ``llvm.invariant.group.barrier`` takes only one argument, which is
12072the pointer to the memory for which the ``invariant.group`` no longer holds.
12073
12074Semantics:
12075""""""""""
12076
12077Returns another pointer that aliases its argument but which is considered different
12078for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12079
Andrew Kaylora0a11642017-01-26 23:27:59 +000012080Constrained Floating Point Intrinsics
12081-------------------------------------
12082
12083These intrinsics are used to provide special handling of floating point
12084operations when specific rounding mode or floating point exception behavior is
12085required. By default, LLVM optimization passes assume that the rounding mode is
12086round-to-nearest and that floating point exceptions will not be monitored.
12087Constrained FP intrinsics are used to support non-default rounding modes and
12088accurately preserve exception behavior without compromising LLVM's ability to
12089optimize FP code when the default behavior is used.
12090
12091Each of these intrinsics corresponds to a normal floating point operation. The
12092first two arguments and the return value are the same as the corresponding FP
12093operation.
12094
12095The third argument is a metadata argument specifying the rounding mode to be
12096assumed. This argument must be one of the following strings:
12097
12098::
12099 "round.dynamic"
12100 "round.tonearest"
12101 "round.downward"
12102 "round.upward"
12103 "round.towardzero"
12104
12105If this argument is "round.dynamic" optimization passes must assume that the
12106rounding mode is unknown and may change at runtime. No transformations that
12107depend on rounding mode may be performed in this case.
12108
12109The other possible values for the rounding mode argument correspond to the
12110similarly named IEEE rounding modes. If the argument is any of these values
12111optimization passes may perform transformations as long as they are consistent
12112with the specified rounding mode.
12113
12114For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12115"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12116'x-0' should evaluate to '-0' when rounding downward. However, this
12117transformation is legal for all other rounding modes.
12118
12119For values other than "round.dynamic" optimization passes may assume that the
12120actual runtime rounding mode (as defined in a target-specific manner) matches
12121the specified rounding mode, but this is not guaranteed. Using a specific
12122non-dynamic rounding mode which does not match the actual rounding mode at
12123runtime results in undefined behavior.
12124
12125The fourth argument to the constrained floating point intrinsics specifies the
12126required exception behavior. This argument must be one of the following
12127strings:
12128
12129::
12130 "fpexcept.ignore"
12131 "fpexcept.maytrap"
12132 "fpexcept.strict"
12133
12134If this argument is "fpexcept.ignore" optimization passes may assume that the
12135exception status flags will not be read and that floating point exceptions will
12136be masked. This allows transformations to be performed that may change the
12137exception semantics of the original code. For example, FP operations may be
12138speculatively executed in this case whereas they must not be for either of the
12139other possible values of this argument.
12140
12141If the exception behavior argument is "fpexcept.maytrap" optimization passes
12142must avoid transformations that may raise exceptions that would not have been
12143raised by the original code (such as speculatively executing FP operations), but
12144passes are not required to preserve all exceptions that are implied by the
12145original code. For example, exceptions may be potentially hidden by constant
12146folding.
12147
12148If the exception behavior argument is "fpexcept.strict" all transformations must
12149strictly preserve the floating point exception semantics of the original code.
12150Any FP exception that would have been raised by the original code must be raised
12151by the transformed code, and the transformed code must not raise any FP
12152exceptions that would not have been raised by the original code. This is the
12153exception behavior argument that will be used if the code being compiled reads
12154the FP exception status flags, but this mode can also be used with code that
12155unmasks FP exceptions.
12156
12157The number and order of floating point exceptions is NOT guaranteed. For
12158example, a series of FP operations that each may raise exceptions may be
12159vectorized into a single instruction that raises each unique exception a single
12160time.
12161
12162
12163'``llvm.experimental.constrained.fadd``' Intrinsic
12164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12165
12166Syntax:
12167"""""""
12168
12169::
12170
12171 declare <type>
12172 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12173 metadata <rounding mode>,
12174 metadata <exception behavior>)
12175
12176Overview:
12177"""""""""
12178
12179The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
12180two operands.
12181
12182
12183Arguments:
12184""""""""""
12185
12186The first two arguments to the '``llvm.experimental.constrained.fadd``'
12187intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12188of floating point values. Both arguments must have identical types.
12189
12190The third and fourth arguments specify the rounding mode and exception
12191behavior as described above.
12192
12193Semantics:
12194""""""""""
12195
12196The value produced is the floating point sum of the two value operands and has
12197the same type as the operands.
12198
12199
12200'``llvm.experimental.constrained.fsub``' Intrinsic
12201^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12202
12203Syntax:
12204"""""""
12205
12206::
12207
12208 declare <type>
12209 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
12210 metadata <rounding mode>,
12211 metadata <exception behavior>)
12212
12213Overview:
12214"""""""""
12215
12216The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
12217of its two operands.
12218
12219
12220Arguments:
12221""""""""""
12222
12223The first two arguments to the '``llvm.experimental.constrained.fsub``'
12224intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12225of floating point values. Both arguments must have identical types.
12226
12227The third and fourth arguments specify the rounding mode and exception
12228behavior as described above.
12229
12230Semantics:
12231""""""""""
12232
12233The value produced is the floating point difference of the two value operands
12234and has the same type as the operands.
12235
12236
12237'``llvm.experimental.constrained.fmul``' Intrinsic
12238^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12239
12240Syntax:
12241"""""""
12242
12243::
12244
12245 declare <type>
12246 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
12247 metadata <rounding mode>,
12248 metadata <exception behavior>)
12249
12250Overview:
12251"""""""""
12252
12253The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
12254its two operands.
12255
12256
12257Arguments:
12258""""""""""
12259
12260The first two arguments to the '``llvm.experimental.constrained.fmul``'
12261intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12262of floating point values. Both arguments must have identical types.
12263
12264The third and fourth arguments specify the rounding mode and exception
12265behavior as described above.
12266
12267Semantics:
12268""""""""""
12269
12270The value produced is the floating point product of the two value operands and
12271has the same type as the operands.
12272
12273
12274'``llvm.experimental.constrained.fdiv``' Intrinsic
12275^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12276
12277Syntax:
12278"""""""
12279
12280::
12281
12282 declare <type>
12283 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
12284 metadata <rounding mode>,
12285 metadata <exception behavior>)
12286
12287Overview:
12288"""""""""
12289
12290The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
12291its two operands.
12292
12293
12294Arguments:
12295""""""""""
12296
12297The first two arguments to the '``llvm.experimental.constrained.fdiv``'
12298intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12299of floating point values. Both arguments must have identical types.
12300
12301The third and fourth arguments specify the rounding mode and exception
12302behavior as described above.
12303
12304Semantics:
12305""""""""""
12306
12307The value produced is the floating point quotient of the two value operands and
12308has the same type as the operands.
12309
12310
12311'``llvm.experimental.constrained.frem``' Intrinsic
12312^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12313
12314Syntax:
12315"""""""
12316
12317::
12318
12319 declare <type>
12320 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
12321 metadata <rounding mode>,
12322 metadata <exception behavior>)
12323
12324Overview:
12325"""""""""
12326
12327The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
12328from the division of its two operands.
12329
12330
12331Arguments:
12332""""""""""
12333
12334The first two arguments to the '``llvm.experimental.constrained.frem``'
12335intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12336of floating point values. Both arguments must have identical types.
12337
12338The third and fourth arguments specify the rounding mode and exception
12339behavior as described above. The rounding mode argument has no effect, since
12340the result of frem is never rounded, but the argument is included for
12341consistency with the other constrained floating point intrinsics.
12342
12343Semantics:
12344""""""""""
12345
12346The value produced is the floating point remainder from the division of the two
12347value operands and has the same type as the operands. The remainder has the
12348same sign as the dividend.
12349
12350
Sean Silvab084af42012-12-07 10:36:55 +000012351General Intrinsics
12352------------------
12353
12354This class of intrinsics is designed to be generic and has no specific
12355purpose.
12356
12357'``llvm.var.annotation``' Intrinsic
12358^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12359
12360Syntax:
12361"""""""
12362
12363::
12364
12365 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12366
12367Overview:
12368"""""""""
12369
12370The '``llvm.var.annotation``' intrinsic.
12371
12372Arguments:
12373""""""""""
12374
12375The first argument is a pointer to a value, the second is a pointer to a
12376global string, the third is a pointer to a global string which is the
12377source file name, and the last argument is the line number.
12378
12379Semantics:
12380""""""""""
12381
12382This intrinsic allows annotation of local variables with arbitrary
12383strings. This can be useful for special purpose optimizations that want
12384to look for these annotations. These have no other defined use; they are
12385ignored by code generation and optimization.
12386
Michael Gottesman88d18832013-03-26 00:34:27 +000012387'``llvm.ptr.annotation.*``' Intrinsic
12388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12389
12390Syntax:
12391"""""""
12392
12393This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12394pointer to an integer of any width. *NOTE* you must specify an address space for
12395the pointer. The identifier for the default address space is the integer
12396'``0``'.
12397
12398::
12399
12400 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12401 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12402 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12403 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12404 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12405
12406Overview:
12407"""""""""
12408
12409The '``llvm.ptr.annotation``' intrinsic.
12410
12411Arguments:
12412""""""""""
12413
12414The first argument is a pointer to an integer value of arbitrary bitwidth
12415(result of some expression), the second is a pointer to a global string, the
12416third is a pointer to a global string which is the source file name, and the
12417last argument is the line number. It returns the value of the first argument.
12418
12419Semantics:
12420""""""""""
12421
12422This intrinsic allows annotation of a pointer to an integer with arbitrary
12423strings. This can be useful for special purpose optimizations that want to look
12424for these annotations. These have no other defined use; they are ignored by code
12425generation and optimization.
12426
Sean Silvab084af42012-12-07 10:36:55 +000012427'``llvm.annotation.*``' Intrinsic
12428^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12429
12430Syntax:
12431"""""""
12432
12433This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12434any integer bit width.
12435
12436::
12437
12438 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12439 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12440 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12441 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12442 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12443
12444Overview:
12445"""""""""
12446
12447The '``llvm.annotation``' intrinsic.
12448
12449Arguments:
12450""""""""""
12451
12452The first argument is an integer value (result of some expression), the
12453second is a pointer to a global string, the third is a pointer to a
12454global string which is the source file name, and the last argument is
12455the line number. It returns the value of the first argument.
12456
12457Semantics:
12458""""""""""
12459
12460This intrinsic allows annotations to be put on arbitrary expressions
12461with arbitrary strings. This can be useful for special purpose
12462optimizations that want to look for these annotations. These have no
12463other defined use; they are ignored by code generation and optimization.
12464
12465'``llvm.trap``' Intrinsic
12466^^^^^^^^^^^^^^^^^^^^^^^^^
12467
12468Syntax:
12469"""""""
12470
12471::
12472
12473 declare void @llvm.trap() noreturn nounwind
12474
12475Overview:
12476"""""""""
12477
12478The '``llvm.trap``' intrinsic.
12479
12480Arguments:
12481""""""""""
12482
12483None.
12484
12485Semantics:
12486""""""""""
12487
12488This intrinsic is lowered to the target dependent trap instruction. If
12489the target does not have a trap instruction, this intrinsic will be
12490lowered to a call of the ``abort()`` function.
12491
12492'``llvm.debugtrap``' Intrinsic
12493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12494
12495Syntax:
12496"""""""
12497
12498::
12499
12500 declare void @llvm.debugtrap() nounwind
12501
12502Overview:
12503"""""""""
12504
12505The '``llvm.debugtrap``' intrinsic.
12506
12507Arguments:
12508""""""""""
12509
12510None.
12511
12512Semantics:
12513""""""""""
12514
12515This intrinsic is lowered to code which is intended to cause an
12516execution trap with the intention of requesting the attention of a
12517debugger.
12518
12519'``llvm.stackprotector``' Intrinsic
12520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12521
12522Syntax:
12523"""""""
12524
12525::
12526
12527 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12528
12529Overview:
12530"""""""""
12531
12532The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12533onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12534is placed on the stack before local variables.
12535
12536Arguments:
12537""""""""""
12538
12539The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12540The first argument is the value loaded from the stack guard
12541``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12542enough space to hold the value of the guard.
12543
12544Semantics:
12545""""""""""
12546
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012547This intrinsic causes the prologue/epilogue inserter to force the position of
12548the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12549to ensure that if a local variable on the stack is overwritten, it will destroy
12550the value of the guard. When the function exits, the guard on the stack is
12551checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12552different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12553calling the ``__stack_chk_fail()`` function.
12554
Tim Shene885d5e2016-04-19 19:40:37 +000012555'``llvm.stackguard``' Intrinsic
12556^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12557
12558Syntax:
12559"""""""
12560
12561::
12562
12563 declare i8* @llvm.stackguard()
12564
12565Overview:
12566"""""""""
12567
12568The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12569
12570It should not be generated by frontends, since it is only for internal usage.
12571The reason why we create this intrinsic is that we still support IR form Stack
12572Protector in FastISel.
12573
12574Arguments:
12575""""""""""
12576
12577None.
12578
12579Semantics:
12580""""""""""
12581
12582On some platforms, the value returned by this intrinsic remains unchanged
12583between loads in the same thread. On other platforms, it returns the same
12584global variable value, if any, e.g. ``@__stack_chk_guard``.
12585
12586Currently some platforms have IR-level customized stack guard loading (e.g.
12587X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12588in the future.
12589
Sean Silvab084af42012-12-07 10:36:55 +000012590'``llvm.objectsize``' Intrinsic
12591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12592
12593Syntax:
12594"""""""
12595
12596::
12597
12598 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12599 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12600
12601Overview:
12602"""""""""
12603
12604The ``llvm.objectsize`` intrinsic is designed to provide information to
12605the optimizers to determine at compile time whether a) an operation
12606(like memcpy) will overflow a buffer that corresponds to an object, or
12607b) that a runtime check for overflow isn't necessary. An object in this
12608context means an allocation of a specific class, structure, array, or
12609other object.
12610
12611Arguments:
12612""""""""""
12613
12614The ``llvm.objectsize`` intrinsic takes two arguments. The first
12615argument is a pointer to or into the ``object``. The second argument is
12616a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12617or -1 (if false) when the object size is unknown. The second argument
12618only accepts constants.
12619
12620Semantics:
12621""""""""""
12622
12623The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12624the size of the object concerned. If the size cannot be determined at
12625compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12626on the ``min`` argument).
12627
12628'``llvm.expect``' Intrinsic
12629^^^^^^^^^^^^^^^^^^^^^^^^^^^
12630
12631Syntax:
12632"""""""
12633
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012634This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12635integer bit width.
12636
Sean Silvab084af42012-12-07 10:36:55 +000012637::
12638
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012639 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012640 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12641 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12642
12643Overview:
12644"""""""""
12645
12646The ``llvm.expect`` intrinsic provides information about expected (the
12647most probable) value of ``val``, which can be used by optimizers.
12648
12649Arguments:
12650""""""""""
12651
12652The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12653a value. The second argument is an expected value, this needs to be a
12654constant value, variables are not allowed.
12655
12656Semantics:
12657""""""""""
12658
12659This intrinsic is lowered to the ``val``.
12660
Philip Reamese0e90832015-04-26 22:23:12 +000012661.. _int_assume:
12662
Hal Finkel93046912014-07-25 21:13:35 +000012663'``llvm.assume``' Intrinsic
12664^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12665
12666Syntax:
12667"""""""
12668
12669::
12670
12671 declare void @llvm.assume(i1 %cond)
12672
12673Overview:
12674"""""""""
12675
12676The ``llvm.assume`` allows the optimizer to assume that the provided
12677condition is true. This information can then be used in simplifying other parts
12678of the code.
12679
12680Arguments:
12681""""""""""
12682
12683The condition which the optimizer may assume is always true.
12684
12685Semantics:
12686""""""""""
12687
12688The intrinsic allows the optimizer to assume that the provided condition is
12689always true whenever the control flow reaches the intrinsic call. No code is
12690generated for this intrinsic, and instructions that contribute only to the
12691provided condition are not used for code generation. If the condition is
12692violated during execution, the behavior is undefined.
12693
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012694Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012695used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12696only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012697if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012698sufficient overall improvement in code quality. For this reason,
12699``llvm.assume`` should not be used to document basic mathematical invariants
12700that the optimizer can otherwise deduce or facts that are of little use to the
12701optimizer.
12702
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012703.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012704
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012705'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012706^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12707
12708Syntax:
12709"""""""
12710
12711::
12712
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012713 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012714
12715
12716Arguments:
12717""""""""""
12718
12719The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012720metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012721
12722Overview:
12723"""""""""
12724
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012725The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12726with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012727
Peter Collingbourne0312f612016-06-25 00:23:04 +000012728'``llvm.type.checked.load``' Intrinsic
12729^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12730
12731Syntax:
12732"""""""
12733
12734::
12735
12736 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12737
12738
12739Arguments:
12740""""""""""
12741
12742The first argument is a pointer from which to load a function pointer. The
12743second argument is the byte offset from which to load the function pointer. The
12744third argument is a metadata object representing a :doc:`type identifier
12745<TypeMetadata>`.
12746
12747Overview:
12748"""""""""
12749
12750The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12751virtual table pointer using type metadata. This intrinsic is used to implement
12752control flow integrity in conjunction with virtual call optimization. The
12753virtual call optimization pass will optimize away ``llvm.type.checked.load``
12754intrinsics associated with devirtualized calls, thereby removing the type
12755check in cases where it is not needed to enforce the control flow integrity
12756constraint.
12757
12758If the given pointer is associated with a type metadata identifier, this
12759function returns true as the second element of its return value. (Note that
12760the function may also return true if the given pointer is not associated
12761with a type metadata identifier.) If the function's return value's second
12762element is true, the following rules apply to the first element:
12763
12764- If the given pointer is associated with the given type metadata identifier,
12765 it is the function pointer loaded from the given byte offset from the given
12766 pointer.
12767
12768- If the given pointer is not associated with the given type metadata
12769 identifier, it is one of the following (the choice of which is unspecified):
12770
12771 1. The function pointer that would have been loaded from an arbitrarily chosen
12772 (through an unspecified mechanism) pointer associated with the type
12773 metadata.
12774
12775 2. If the function has a non-void return type, a pointer to a function that
12776 returns an unspecified value without causing side effects.
12777
12778If the function's return value's second element is false, the value of the
12779first element is undefined.
12780
12781
Sean Silvab084af42012-12-07 10:36:55 +000012782'``llvm.donothing``' Intrinsic
12783^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12784
12785Syntax:
12786"""""""
12787
12788::
12789
12790 declare void @llvm.donothing() nounwind readnone
12791
12792Overview:
12793"""""""""
12794
Juergen Ributzkac9161192014-10-23 22:36:13 +000012795The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012796three intrinsics (besides ``llvm.experimental.patchpoint`` and
12797``llvm.experimental.gc.statepoint``) that can be called with an invoke
12798instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012799
12800Arguments:
12801""""""""""
12802
12803None.
12804
12805Semantics:
12806""""""""""
12807
12808This intrinsic does nothing, and it's removed by optimizers and ignored
12809by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012810
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012811'``llvm.experimental.deoptimize``' Intrinsic
12812^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12813
12814Syntax:
12815"""""""
12816
12817::
12818
12819 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12820
12821Overview:
12822"""""""""
12823
12824This intrinsic, together with :ref:`deoptimization operand bundles
12825<deopt_opbundles>`, allow frontends to express transfer of control and
12826frame-local state from the currently executing (typically more specialized,
12827hence faster) version of a function into another (typically more generic, hence
12828slower) version.
12829
12830In languages with a fully integrated managed runtime like Java and JavaScript
12831this intrinsic can be used to implement "uncommon trap" or "side exit" like
12832functionality. In unmanaged languages like C and C++, this intrinsic can be
12833used to represent the slow paths of specialized functions.
12834
12835
12836Arguments:
12837""""""""""
12838
12839The intrinsic takes an arbitrary number of arguments, whose meaning is
12840decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12841
12842Semantics:
12843""""""""""
12844
12845The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12846deoptimization continuation (denoted using a :ref:`deoptimization
12847operand bundle <deopt_opbundles>`) and returns the value returned by
12848the deoptimization continuation. Defining the semantic properties of
12849the continuation itself is out of scope of the language reference --
12850as far as LLVM is concerned, the deoptimization continuation can
12851invoke arbitrary side effects, including reading from and writing to
12852the entire heap.
12853
12854Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12855continue execution to the end of the physical frame containing them, so all
12856calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12857
12858 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12859 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12860 - The ``ret`` instruction must return the value produced by the
12861 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12862
12863Note that the above restrictions imply that the return type for a call to
12864``@llvm.experimental.deoptimize`` will match the return type of its immediate
12865caller.
12866
12867The inliner composes the ``"deopt"`` continuations of the caller into the
12868``"deopt"`` continuations present in the inlinee, and also updates calls to this
12869intrinsic to return directly from the frame of the function it inlined into.
12870
Sanjoy Dase0aa4142016-05-12 01:17:38 +000012871All declarations of ``@llvm.experimental.deoptimize`` must share the
12872same calling convention.
12873
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012874.. _deoptimize_lowering:
12875
12876Lowering:
12877"""""""""
12878
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012879Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12880symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12881ensure that this symbol is defined). The call arguments to
12882``@llvm.experimental.deoptimize`` are lowered as if they were formal
12883arguments of the specified types, and not as varargs.
12884
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012885
Sanjoy Das021de052016-03-31 00:18:46 +000012886'``llvm.experimental.guard``' Intrinsic
12887^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12888
12889Syntax:
12890"""""""
12891
12892::
12893
12894 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12895
12896Overview:
12897"""""""""
12898
12899This intrinsic, together with :ref:`deoptimization operand bundles
12900<deopt_opbundles>`, allows frontends to express guards or checks on
12901optimistic assumptions made during compilation. The semantics of
12902``@llvm.experimental.guard`` is defined in terms of
12903``@llvm.experimental.deoptimize`` -- its body is defined to be
12904equivalent to:
12905
Renato Golin124f2592016-07-20 12:16:38 +000012906.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000012907
Renato Golin124f2592016-07-20 12:16:38 +000012908 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12909 %realPred = and i1 %pred, undef
12910 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000012911
Renato Golin124f2592016-07-20 12:16:38 +000012912 leave:
12913 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12914 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000012915
Renato Golin124f2592016-07-20 12:16:38 +000012916 continue:
12917 ret void
12918 }
Sanjoy Das021de052016-03-31 00:18:46 +000012919
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012920
12921with the optional ``[, !make.implicit !{}]`` present if and only if it
12922is present on the call site. For more details on ``!make.implicit``,
12923see :doc:`FaultMaps`.
12924
Sanjoy Das021de052016-03-31 00:18:46 +000012925In words, ``@llvm.experimental.guard`` executes the attached
12926``"deopt"`` continuation if (but **not** only if) its first argument
12927is ``false``. Since the optimizer is allowed to replace the ``undef``
12928with an arbitrary value, it can optimize guard to fail "spuriously",
12929i.e. without the original condition being false (hence the "not only
12930if"); and this allows for "check widening" type optimizations.
12931
12932``@llvm.experimental.guard`` cannot be invoked.
12933
12934
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012935'``llvm.load.relative``' Intrinsic
12936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12937
12938Syntax:
12939"""""""
12940
12941::
12942
12943 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12944
12945Overview:
12946"""""""""
12947
12948This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12949adds ``%ptr`` to that value and returns it. The constant folder specifically
12950recognizes the form of this intrinsic and the constant initializers it may
12951load from; if a loaded constant initializer is known to have the form
12952``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12953
12954LLVM provides that the calculation of such a constant initializer will
12955not overflow at link time under the medium code model if ``x`` is an
12956``unnamed_addr`` function. However, it does not provide this guarantee for
12957a constant initializer folded into a function body. This intrinsic can be
12958used to avoid the possibility of overflows when loading from such a constant.
12959
Andrew Trick5e029ce2013-12-24 02:57:25 +000012960Stack Map Intrinsics
12961--------------------
12962
12963LLVM provides experimental intrinsics to support runtime patching
12964mechanisms commonly desired in dynamic language JITs. These intrinsics
12965are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000012966
12967Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000012968-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000012969
12970These intrinsics are similar to the standard library memory intrinsics except
12971that they perform memory transfer as a sequence of atomic memory accesses.
12972
12973.. _int_memcpy_element_atomic:
12974
12975'``llvm.memcpy.element.atomic``' Intrinsic
Igor Laevskyfedab152016-12-29 15:08:57 +000012976^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000012977
12978Syntax:
12979"""""""
12980
12981This is an overloaded intrinsic. You can use ``llvm.memcpy.element.atomic`` on
12982any integer bit width and for different address spaces. Not all targets
12983support all bit widths however.
12984
12985::
12986
12987 declare void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* <dest>, i8* <src>,
12988 i64 <num_elements>, i32 <element_size>)
12989
12990Overview:
12991"""""""""
12992
12993The '``llvm.memcpy.element.atomic.*``' intrinsic performs copy of a block of
12994memory from the source location to the destination location as a sequence of
12995unordered atomic memory accesses where each access is a multiple of
12996``element_size`` bytes wide and aligned at an element size boundary. For example
12997each element is accessed atomically in source and destination buffers.
12998
12999Arguments:
13000""""""""""
13001
13002The first argument is a pointer to the destination, the second is a
13003pointer to the source. The third argument is an integer argument
13004specifying the number of elements to copy, the fourth argument is size of
13005the single element in bytes.
13006
13007``element_size`` should be a power of two, greater than zero and less than
13008a target-specific atomic access size limit.
13009
13010For each of the input pointers ``align`` parameter attribute must be specified.
13011It must be a power of two and greater than or equal to the ``element_size``.
13012Caller guarantees that both the source and destination pointers are aligned to
13013that boundary.
13014
13015Semantics:
13016""""""""""
13017
13018The '``llvm.memcpy.element.atomic.*``' intrinsic copies
13019'``num_elements`` * ``element_size``' bytes of memory from the source location to
13020the destination location. These locations are not allowed to overlap. Memory copy
13021is performed as a sequence of unordered atomic memory accesses where each access
13022is guaranteed to be a multiple of ``element_size`` bytes wide and aligned at an
13023element size boundary.
13024
13025The order of the copy is unspecified. The same value may be read from the source
13026buffer many times, but only one write is issued to the destination buffer per
13027element. It is well defined to have concurrent reads and writes to both source
13028and destination provided those reads and writes are at least unordered atomic.
13029
13030This intrinsic does not provide any additional ordering guarantees over those
13031provided by a set of unordered loads from the source location and stores to the
13032destination.
13033
13034Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000013035"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000013036
13037In the most general case call to the '``llvm.memcpy.element.atomic.*``' is lowered
13038to a call to the symbol ``__llvm_memcpy_element_atomic_*``. Where '*' is replaced
13039with an actual element size.
13040
13041Optimizer is allowed to inline memory copy when it's profitable to do so.