blob: dce47fcdb7bb0d940a2f26b72e672e7476244546 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
645an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000646
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000647Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000648:ref:`Thread Local Storage Model <tls_model>`.
649
Nico Rieck7157bb72014-01-14 15:22:47 +0000650Syntax::
651
Rafael Espindola32483a72016-05-10 18:22:45 +0000652 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000653 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
654 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000655 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000656 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000657 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659For example, the following defines a global in a numbered address space
660with an initializer, section, and alignment:
661
662.. code-block:: llvm
663
664 @G = addrspace(5) constant float 1.0, section "foo", align 4
665
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000666The following example just declares a global variable
667
668.. code-block:: llvm
669
670 @G = external global i32
671
Sean Silvab084af42012-12-07 10:36:55 +0000672The following example defines a thread-local global with the
673``initialexec`` TLS model:
674
675.. code-block:: llvm
676
677 @G = thread_local(initialexec) global i32 0, align 4
678
679.. _functionstructure:
680
681Functions
682---------
683
684LLVM function definitions consist of the "``define``" keyword, an
685optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000686style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
687an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000688an optional ``unnamed_addr`` attribute, a return type, an optional
689:ref:`parameter attribute <paramattrs>` for the return type, a function
690name, a (possibly empty) argument list (each with optional :ref:`parameter
691attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000692an optional section, an optional alignment,
693an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000694an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000695an optional :ref:`prologue <prologuedata>`,
696an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000697an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000698an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000699
700LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000701optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
702<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
703optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
704or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
705attribute <paramattrs>` for the return type, a function name, a possibly
706empty list of arguments, an optional alignment, an optional :ref:`garbage
707collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
708:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000709
Bill Wendling6822ecb2013-10-27 05:09:12 +0000710A function definition contains a list of basic blocks, forming the CFG (Control
711Flow Graph) for the function. Each basic block may optionally start with a label
712(giving the basic block a symbol table entry), contains a list of instructions,
713and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
714function return). If an explicit label is not provided, a block is assigned an
715implicit numbered label, using the next value from the same counter as used for
716unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
717entry block does not have an explicit label, it will be assigned label "%0",
718then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000719
720The first basic block in a function is special in two ways: it is
721immediately executed on entrance to the function, and it is not allowed
722to have predecessor basic blocks (i.e. there can not be any branches to
723the entry block of a function). Because the block can have no
724predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
725
726LLVM allows an explicit section to be specified for functions. If the
727target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000728Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730An explicit alignment may be specified for a function. If not present,
731or if the alignment is set to zero, the alignment of the function is set
732by the target to whatever it feels convenient. If an explicit alignment
733is specified, the function is forced to have at least that much
734alignment. All alignments must be a power of 2.
735
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000736If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000737be significant and two identical functions can be merged.
738
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000739If the ``local_unnamed_addr`` attribute is given, the address is known to
740not be significant within the module.
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Syntax::
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000745 [cconv] [ret attrs]
746 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000747 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
748 [comdat [($name)]] [align N] [gc] [prefix Constant]
749 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000750
Sean Silva706fba52015-08-06 22:56:24 +0000751The argument list is a comma separated sequence of arguments where each
752argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000753
754Syntax::
755
756 <type> [parameter Attrs] [name]
757
758
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000759.. _langref_aliases:
760
Sean Silvab084af42012-12-07 10:36:55 +0000761Aliases
762-------
763
Rafael Espindola64c1e182014-06-03 02:41:57 +0000764Aliases, unlike function or variables, don't create any new data. They
765are just a new symbol and metadata for an existing position.
766
767Aliases have a name and an aliasee that is either a global value or a
768constant expression.
769
Nico Rieck7157bb72014-01-14 15:22:47 +0000770Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000771:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
772<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000773
774Syntax::
775
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000776 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000777
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000778The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000779``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000780might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000781
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000782Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000783the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
784to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000785
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000786If the ``local_unnamed_addr`` attribute is given, the address is known to
787not be significant within the module.
788
Rafael Espindola64c1e182014-06-03 02:41:57 +0000789Since aliases are only a second name, some restrictions apply, of which
790some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000791
Rafael Espindola64c1e182014-06-03 02:41:57 +0000792* The expression defining the aliasee must be computable at assembly
793 time. Since it is just a name, no relocations can be used.
794
795* No alias in the expression can be weak as the possibility of the
796 intermediate alias being overridden cannot be represented in an
797 object file.
798
799* No global value in the expression can be a declaration, since that
800 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000801
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000802.. _langref_ifunc:
803
804IFuncs
805-------
806
807IFuncs, like as aliases, don't create any new data or func. They are just a new
808symbol that dynamic linker resolves at runtime by calling a resolver function.
809
810IFuncs have a name and a resolver that is a function called by dynamic linker
811that returns address of another function associated with the name.
812
813IFunc may have an optional :ref:`linkage type <linkage>` and an optional
814:ref:`visibility style <visibility>`.
815
816Syntax::
817
818 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821.. _langref_comdats:
822
823Comdats
824-------
825
826Comdat IR provides access to COFF and ELF object file COMDAT functionality.
827
Sean Silvaa1190322015-08-06 22:56:48 +0000828Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000829specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000830that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000831aliasee computes to, if any.
832
833Comdats have a selection kind to provide input on how the linker should
834choose between keys in two different object files.
835
836Syntax::
837
838 $<Name> = comdat SelectionKind
839
840The selection kind must be one of the following:
841
842``any``
843 The linker may choose any COMDAT key, the choice is arbitrary.
844``exactmatch``
845 The linker may choose any COMDAT key but the sections must contain the
846 same data.
847``largest``
848 The linker will choose the section containing the largest COMDAT key.
849``noduplicates``
850 The linker requires that only section with this COMDAT key exist.
851``samesize``
852 The linker may choose any COMDAT key but the sections must contain the
853 same amount of data.
854
855Note that the Mach-O platform doesn't support COMDATs and ELF only supports
856``any`` as a selection kind.
857
858Here is an example of a COMDAT group where a function will only be selected if
859the COMDAT key's section is the largest:
860
Renato Golin124f2592016-07-20 12:16:38 +0000861.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000862
863 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000864 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000865
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000867 ret void
868 }
869
Rafael Espindola83a362c2015-01-06 22:55:16 +0000870As a syntactic sugar the ``$name`` can be omitted if the name is the same as
871the global name:
872
Renato Golin124f2592016-07-20 12:16:38 +0000873.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000874
875 $foo = comdat any
876 @foo = global i32 2, comdat
877
878
David Majnemerdad0a642014-06-27 18:19:56 +0000879In a COFF object file, this will create a COMDAT section with selection kind
880``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
881and another COMDAT section with selection kind
882``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000883section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885There are some restrictions on the properties of the global object.
886It, or an alias to it, must have the same name as the COMDAT group when
887targeting COFF.
888The contents and size of this object may be used during link-time to determine
889which COMDAT groups get selected depending on the selection kind.
890Because the name of the object must match the name of the COMDAT group, the
891linkage of the global object must not be local; local symbols can get renamed
892if a collision occurs in the symbol table.
893
894The combined use of COMDATS and section attributes may yield surprising results.
895For example:
896
Renato Golin124f2592016-07-20 12:16:38 +0000897.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000898
899 $foo = comdat any
900 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901 @g1 = global i32 42, section "sec", comdat($foo)
902 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000903
904From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000905with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000906COMDAT groups and COMDATs, at the object file level, are represented by
907sections.
908
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000909Note that certain IR constructs like global variables and functions may
910create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000911COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000912in individual sections (e.g. when `-data-sections` or `-function-sections`
913is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000914
Sean Silvab084af42012-12-07 10:36:55 +0000915.. _namedmetadatastructure:
916
917Named Metadata
918--------------
919
920Named metadata is a collection of metadata. :ref:`Metadata
921nodes <metadata>` (but not metadata strings) are the only valid
922operands for a named metadata.
923
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000924#. Named metadata are represented as a string of characters with the
925 metadata prefix. The rules for metadata names are the same as for
926 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
927 are still valid, which allows any character to be part of a name.
928
Sean Silvab084af42012-12-07 10:36:55 +0000929Syntax::
930
931 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000932 !0 = !{!"zero"}
933 !1 = !{!"one"}
934 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000935 ; A named metadata.
936 !name = !{!0, !1, !2}
937
938.. _paramattrs:
939
940Parameter Attributes
941--------------------
942
943The return type and each parameter of a function type may have a set of
944*parameter attributes* associated with them. Parameter attributes are
945used to communicate additional information about the result or
946parameters of a function. Parameter attributes are considered to be part
947of the function, not of the function type, so functions with different
948parameter attributes can have the same function type.
949
950Parameter attributes are simple keywords that follow the type specified.
951If multiple parameter attributes are needed, they are space separated.
952For example:
953
954.. code-block:: llvm
955
956 declare i32 @printf(i8* noalias nocapture, ...)
957 declare i32 @atoi(i8 zeroext)
958 declare signext i8 @returns_signed_char()
959
960Note that any attributes for the function result (``nounwind``,
961``readonly``) come immediately after the argument list.
962
963Currently, only the following parameter attributes are defined:
964
965``zeroext``
966 This indicates to the code generator that the parameter or return
967 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000968 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000969``signext``
970 This indicates to the code generator that the parameter or return
971 value should be sign-extended to the extent required by the target's
972 ABI (which is usually 32-bits) by the caller (for a parameter) or
973 the callee (for a return value).
974``inreg``
975 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000976 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000977 a function call or return (usually, by putting it in a register as
978 opposed to memory, though some targets use it to distinguish between
979 two different kinds of registers). Use of this attribute is
980 target-specific.
981``byval``
982 This indicates that the pointer parameter should really be passed by
983 value to the function. The attribute implies that a hidden copy of
984 the pointee is made between the caller and the callee, so the callee
985 is unable to modify the value in the caller. This attribute is only
986 valid on LLVM pointer arguments. It is generally used to pass
987 structs and arrays by value, but is also valid on pointers to
988 scalars. The copy is considered to belong to the caller not the
989 callee (for example, ``readonly`` functions should not write to
990 ``byval`` parameters). This is not a valid attribute for return
991 values.
992
993 The byval attribute also supports specifying an alignment with the
994 align attribute. It indicates the alignment of the stack slot to
995 form and the known alignment of the pointer specified to the call
996 site. If the alignment is not specified, then the code generator
997 makes a target-specific assumption.
998
Reid Klecknera534a382013-12-19 02:14:12 +0000999.. _attr_inalloca:
1000
1001``inalloca``
1002
Reid Kleckner60d3a832014-01-16 22:59:24 +00001003 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001004 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001005 be a pointer to stack memory produced by an ``alloca`` instruction.
1006 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001007 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001008 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001009
Reid Kleckner436c42e2014-01-17 23:58:17 +00001010 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001011 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001012 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001013 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001014 ``inalloca`` attribute also disables LLVM's implicit lowering of
1015 large aggregate return values, which means that frontend authors
1016 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001017
Reid Kleckner60d3a832014-01-16 22:59:24 +00001018 When the call site is reached, the argument allocation must have
1019 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001020 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001021 space after an argument allocation and before its call site, but it
1022 must be cleared off with :ref:`llvm.stackrestore
1023 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001024
1025 See :doc:`InAlloca` for more information on how to use this
1026 attribute.
1027
Sean Silvab084af42012-12-07 10:36:55 +00001028``sret``
1029 This indicates that the pointer parameter specifies the address of a
1030 structure that is the return value of the function in the source
1031 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001032 loads and stores to the structure may be assumed by the callee not
1033 to trap and to be properly aligned. This is not a valid attribute
1034 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001035
Hal Finkelccc70902014-07-22 16:58:55 +00001036``align <n>``
1037 This indicates that the pointer value may be assumed by the optimizer to
1038 have the specified alignment.
1039
1040 Note that this attribute has additional semantics when combined with the
1041 ``byval`` attribute.
1042
Sean Silva1703e702014-04-08 21:06:22 +00001043.. _noalias:
1044
Sean Silvab084af42012-12-07 10:36:55 +00001045``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001046 This indicates that objects accessed via pointer values
1047 :ref:`based <pointeraliasing>` on the argument or return value are not also
1048 accessed, during the execution of the function, via pointer values not
1049 *based* on the argument or return value. The attribute on a return value
1050 also has additional semantics described below. The caller shares the
1051 responsibility with the callee for ensuring that these requirements are met.
1052 For further details, please see the discussion of the NoAlias response in
1053 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001054
1055 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001056 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001057
1058 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001059 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1060 attribute on return values are stronger than the semantics of the attribute
1061 when used on function arguments. On function return values, the ``noalias``
1062 attribute indicates that the function acts like a system memory allocation
1063 function, returning a pointer to allocated storage disjoint from the
1064 storage for any other object accessible to the caller.
1065
Sean Silvab084af42012-12-07 10:36:55 +00001066``nocapture``
1067 This indicates that the callee does not make any copies of the
1068 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001069 attribute for return values. Addresses used in volatile operations
1070 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001071
1072.. _nest:
1073
1074``nest``
1075 This indicates that the pointer parameter can be excised using the
1076 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001077 attribute for return values and can only be applied to one parameter.
1078
1079``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001080 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001081 value. This is a hint to the optimizer and code generator used when
1082 generating the caller, allowing value propagation, tail call optimization,
1083 and omission of register saves and restores in some cases; it is not
1084 checked or enforced when generating the callee. The parameter and the
1085 function return type must be valid operands for the
1086 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1087 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001088
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001089``nonnull``
1090 This indicates that the parameter or return pointer is not null. This
1091 attribute may only be applied to pointer typed parameters. This is not
1092 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001093 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001094 is non-null.
1095
Hal Finkelb0407ba2014-07-18 15:51:28 +00001096``dereferenceable(<n>)``
1097 This indicates that the parameter or return pointer is dereferenceable. This
1098 attribute may only be applied to pointer typed parameters. A pointer that
1099 is dereferenceable can be loaded from speculatively without a risk of
1100 trapping. The number of bytes known to be dereferenceable must be provided
1101 in parentheses. It is legal for the number of bytes to be less than the
1102 size of the pointee type. The ``nonnull`` attribute does not imply
1103 dereferenceability (consider a pointer to one element past the end of an
1104 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1105 ``addrspace(0)`` (which is the default address space).
1106
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001107``dereferenceable_or_null(<n>)``
1108 This indicates that the parameter or return value isn't both
1109 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001110 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001111 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1112 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1113 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1114 and in other address spaces ``dereferenceable_or_null(<n>)``
1115 implies that a pointer is at least one of ``dereferenceable(<n>)``
1116 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001117 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001118 pointer typed parameters.
1119
Manman Renf46262e2016-03-29 17:37:21 +00001120``swiftself``
1121 This indicates that the parameter is the self/context parameter. This is not
1122 a valid attribute for return values and can only be applied to one
1123 parameter.
1124
Manman Ren9bfd0d02016-04-01 21:41:15 +00001125``swifterror``
1126 This attribute is motivated to model and optimize Swift error handling. It
1127 can be applied to a parameter with pointer to pointer type or a
1128 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001129 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1130 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1131 the parameter or the alloca) can only be loaded and stored from, or used as
1132 a ``swifterror`` argument. This is not a valid attribute for return values
1133 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001134
1135 These constraints allow the calling convention to optimize access to
1136 ``swifterror`` variables by associating them with a specific register at
1137 call boundaries rather than placing them in memory. Since this does change
1138 the calling convention, a function which uses the ``swifterror`` attribute
1139 on a parameter is not ABI-compatible with one which does not.
1140
1141 These constraints also allow LLVM to assume that a ``swifterror`` argument
1142 does not alias any other memory visible within a function and that a
1143 ``swifterror`` alloca passed as an argument does not escape.
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _gc:
1146
Philip Reamesf80bbff2015-02-25 23:45:20 +00001147Garbage Collector Strategy Names
1148--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001149
Philip Reamesf80bbff2015-02-25 23:45:20 +00001150Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001151string:
1152
1153.. code-block:: llvm
1154
1155 define void @f() gc "name" { ... }
1156
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001157The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001158<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001159strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001160named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001161garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001162which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001163
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001164.. _prefixdata:
1165
1166Prefix Data
1167-----------
1168
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001169Prefix data is data associated with a function which the code
1170generator will emit immediately before the function's entrypoint.
1171The purpose of this feature is to allow frontends to associate
1172language-specific runtime metadata with specific functions and make it
1173available through the function pointer while still allowing the
1174function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001175
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001176To access the data for a given function, a program may bitcast the
1177function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001178index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001179the prefix data. For instance, take the example of a function annotated
1180with a single ``i32``,
1181
1182.. code-block:: llvm
1183
1184 define void @f() prefix i32 123 { ... }
1185
1186The prefix data can be referenced as,
1187
1188.. code-block:: llvm
1189
David Blaikie16a97eb2015-03-04 22:02:58 +00001190 %0 = bitcast void* () @f to i32*
1191 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001192 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001193
1194Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001195of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001196beginning of the prefix data is aligned. This means that if the size
1197of the prefix data is not a multiple of the alignment size, the
1198function's entrypoint will not be aligned. If alignment of the
1199function's entrypoint is desired, padding must be added to the prefix
1200data.
1201
Sean Silvaa1190322015-08-06 22:56:48 +00001202A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001203to the ``available_externally`` linkage in that the data may be used by the
1204optimizers but will not be emitted in the object file.
1205
1206.. _prologuedata:
1207
1208Prologue Data
1209-------------
1210
1211The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1212be inserted prior to the function body. This can be used for enabling
1213function hot-patching and instrumentation.
1214
1215To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001216have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001217bytes which decode to a sequence of machine instructions, valid for the
1218module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001219the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001221definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001222makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001223
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001225which encodes the ``nop`` instruction:
1226
Renato Golin124f2592016-07-20 12:16:38 +00001227.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001228
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001230
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231Generally prologue data can be formed by encoding a relative branch instruction
1232which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001233x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1234
Renato Golin124f2592016-07-20 12:16:38 +00001235.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001236
1237 %0 = type <{ i8, i8, i8* }>
1238
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001239 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001240
Sean Silvaa1190322015-08-06 22:56:48 +00001241A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001242to the ``available_externally`` linkage in that the data may be used by the
1243optimizers but will not be emitted in the object file.
1244
David Majnemer7fddecc2015-06-17 20:52:32 +00001245.. _personalityfn:
1246
1247Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001248--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001249
1250The ``personality`` attribute permits functions to specify what function
1251to use for exception handling.
1252
Bill Wendling63b88192013-02-06 06:52:58 +00001253.. _attrgrp:
1254
1255Attribute Groups
1256----------------
1257
1258Attribute groups are groups of attributes that are referenced by objects within
1259the IR. They are important for keeping ``.ll`` files readable, because a lot of
1260functions will use the same set of attributes. In the degenerative case of a
1261``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1262group will capture the important command line flags used to build that file.
1263
1264An attribute group is a module-level object. To use an attribute group, an
1265object references the attribute group's ID (e.g. ``#37``). An object may refer
1266to more than one attribute group. In that situation, the attributes from the
1267different groups are merged.
1268
1269Here is an example of attribute groups for a function that should always be
1270inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1271
1272.. code-block:: llvm
1273
1274 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001275 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001276
1277 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001278 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001279
1280 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1281 define void @f() #0 #1 { ... }
1282
Sean Silvab084af42012-12-07 10:36:55 +00001283.. _fnattrs:
1284
1285Function Attributes
1286-------------------
1287
1288Function attributes are set to communicate additional information about
1289a function. Function attributes are considered to be part of the
1290function, not of the function type, so functions with different function
1291attributes can have the same function type.
1292
1293Function attributes are simple keywords that follow the type specified.
1294If multiple attributes are needed, they are space separated. For
1295example:
1296
1297.. code-block:: llvm
1298
1299 define void @f() noinline { ... }
1300 define void @f() alwaysinline { ... }
1301 define void @f() alwaysinline optsize { ... }
1302 define void @f() optsize { ... }
1303
Sean Silvab084af42012-12-07 10:36:55 +00001304``alignstack(<n>)``
1305 This attribute indicates that, when emitting the prologue and
1306 epilogue, the backend should forcibly align the stack pointer.
1307 Specify the desired alignment, which must be a power of two, in
1308 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001309``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1310 This attribute indicates that the annotated function will always return at
1311 least a given number of bytes (or null). Its arguments are zero-indexed
1312 parameter numbers; if one argument is provided, then it's assumed that at
1313 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1314 returned pointer. If two are provided, then it's assumed that
1315 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1316 available. The referenced parameters must be integer types. No assumptions
1317 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001318``alwaysinline``
1319 This attribute indicates that the inliner should attempt to inline
1320 this function into callers whenever possible, ignoring any active
1321 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001322``builtin``
1323 This indicates that the callee function at a call site should be
1324 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001325 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001326 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001327 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001328``cold``
1329 This attribute indicates that this function is rarely called. When
1330 computing edge weights, basic blocks post-dominated by a cold
1331 function call are also considered to be cold; and, thus, given low
1332 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001333``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001334 In some parallel execution models, there exist operations that cannot be
1335 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001336 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001337
Justin Lebar58535b12016-02-17 17:46:41 +00001338 The ``convergent`` attribute may appear on functions or call/invoke
1339 instructions. When it appears on a function, it indicates that calls to
1340 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001341 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001342 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001343 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001344
Justin Lebar58535b12016-02-17 17:46:41 +00001345 When it appears on a call/invoke, the ``convergent`` attribute indicates
1346 that we should treat the call as though we're calling a convergent
1347 function. This is particularly useful on indirect calls; without this we
1348 may treat such calls as though the target is non-convergent.
1349
1350 The optimizer may remove the ``convergent`` attribute on functions when it
1351 can prove that the function does not execute any convergent operations.
1352 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1353 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001354``inaccessiblememonly``
1355 This attribute indicates that the function may only access memory that
1356 is not accessible by the module being compiled. This is a weaker form
1357 of ``readnone``.
1358``inaccessiblemem_or_argmemonly``
1359 This attribute indicates that the function may only access memory that is
1360 either not accessible by the module being compiled, or is pointed to
1361 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001362``inlinehint``
1363 This attribute indicates that the source code contained a hint that
1364 inlining this function is desirable (such as the "inline" keyword in
1365 C/C++). It is just a hint; it imposes no requirements on the
1366 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001367``jumptable``
1368 This attribute indicates that the function should be added to a
1369 jump-instruction table at code-generation time, and that all address-taken
1370 references to this function should be replaced with a reference to the
1371 appropriate jump-instruction-table function pointer. Note that this creates
1372 a new pointer for the original function, which means that code that depends
1373 on function-pointer identity can break. So, any function annotated with
1374 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001375``minsize``
1376 This attribute suggests that optimization passes and code generator
1377 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001378 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001379 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001380``naked``
1381 This attribute disables prologue / epilogue emission for the
1382 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001383``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001384 This indicates that the callee function at a call site is not recognized as
1385 a built-in function. LLVM will retain the original call and not replace it
1386 with equivalent code based on the semantics of the built-in function, unless
1387 the call site uses the ``builtin`` attribute. This is valid at call sites
1388 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001389``noduplicate``
1390 This attribute indicates that calls to the function cannot be
1391 duplicated. A call to a ``noduplicate`` function may be moved
1392 within its parent function, but may not be duplicated within
1393 its parent function.
1394
1395 A function containing a ``noduplicate`` call may still
1396 be an inlining candidate, provided that the call is not
1397 duplicated by inlining. That implies that the function has
1398 internal linkage and only has one call site, so the original
1399 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001400``noimplicitfloat``
1401 This attributes disables implicit floating point instructions.
1402``noinline``
1403 This attribute indicates that the inliner should never inline this
1404 function in any situation. This attribute may not be used together
1405 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001406``nonlazybind``
1407 This attribute suppresses lazy symbol binding for the function. This
1408 may make calls to the function faster, at the cost of extra program
1409 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001410``noredzone``
1411 This attribute indicates that the code generator should not use a
1412 red zone, even if the target-specific ABI normally permits it.
1413``noreturn``
1414 This function attribute indicates that the function never returns
1415 normally. This produces undefined behavior at runtime if the
1416 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001417``norecurse``
1418 This function attribute indicates that the function does not call itself
1419 either directly or indirectly down any possible call path. This produces
1420 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001421``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001422 This function attribute indicates that the function never raises an
1423 exception. If the function does raise an exception, its runtime
1424 behavior is undefined. However, functions marked nounwind may still
1425 trap or generate asynchronous exceptions. Exception handling schemes
1426 that are recognized by LLVM to handle asynchronous exceptions, such
1427 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001428``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001429 This function attribute indicates that most optimization passes will skip
1430 this function, with the exception of interprocedural optimization passes.
1431 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001432 This attribute cannot be used together with the ``alwaysinline``
1433 attribute; this attribute is also incompatible
1434 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001435
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001436 This attribute requires the ``noinline`` attribute to be specified on
1437 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001438 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001439 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001440``optsize``
1441 This attribute suggests that optimization passes and code generator
1442 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001443 and otherwise do optimizations specifically to reduce code size as
1444 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001445``"patchable-function"``
1446 This attribute tells the code generator that the code
1447 generated for this function needs to follow certain conventions that
1448 make it possible for a runtime function to patch over it later.
1449 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001450 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001451
1452 * ``"prologue-short-redirect"`` - This style of patchable
1453 function is intended to support patching a function prologue to
1454 redirect control away from the function in a thread safe
1455 manner. It guarantees that the first instruction of the
1456 function will be large enough to accommodate a short jump
1457 instruction, and will be sufficiently aligned to allow being
1458 fully changed via an atomic compare-and-swap instruction.
1459 While the first requirement can be satisfied by inserting large
1460 enough NOP, LLVM can and will try to re-purpose an existing
1461 instruction (i.e. one that would have to be emitted anyway) as
1462 the patchable instruction larger than a short jump.
1463
1464 ``"prologue-short-redirect"`` is currently only supported on
1465 x86-64.
1466
1467 This attribute by itself does not imply restrictions on
1468 inter-procedural optimizations. All of the semantic effects the
1469 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001470``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001471 On a function, this attribute indicates that the function computes its
1472 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001473 without dereferencing any pointer arguments or otherwise accessing
1474 any mutable state (e.g. memory, control registers, etc) visible to
1475 caller functions. It does not write through any pointer arguments
1476 (including ``byval`` arguments) and never changes any state visible
1477 to callers. This means that it cannot unwind exceptions by calling
1478 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001479
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001480 On an argument, this attribute indicates that the function does not
1481 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001482 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001483``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001484 On a function, this attribute indicates that the function does not write
1485 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001486 modify any state (e.g. memory, control registers, etc) visible to
1487 caller functions. It may dereference pointer arguments and read
1488 state that may be set in the caller. A readonly function always
1489 returns the same value (or unwinds an exception identically) when
1490 called with the same set of arguments and global state. It cannot
1491 unwind an exception by calling the ``C++`` exception throwing
1492 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001493
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001494 On an argument, this attribute indicates that the function does not write
1495 through this pointer argument, even though it may write to the memory that
1496 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001497``writeonly``
1498 On a function, this attribute indicates that the function may write to but
1499 does not read from memory.
1500
1501 On an argument, this attribute indicates that the function may write to but
1502 does not read through this pointer argument (even though it may read from
1503 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001504``argmemonly``
1505 This attribute indicates that the only memory accesses inside function are
1506 loads and stores from objects pointed to by its pointer-typed arguments,
1507 with arbitrary offsets. Or in other words, all memory operations in the
1508 function can refer to memory only using pointers based on its function
1509 arguments.
1510 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1511 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001512``returns_twice``
1513 This attribute indicates that this function can return twice. The C
1514 ``setjmp`` is an example of such a function. The compiler disables
1515 some optimizations (like tail calls) in the caller of these
1516 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001517``safestack``
1518 This attribute indicates that
1519 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1520 protection is enabled for this function.
1521
1522 If a function that has a ``safestack`` attribute is inlined into a
1523 function that doesn't have a ``safestack`` attribute or which has an
1524 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1525 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001526``sanitize_address``
1527 This attribute indicates that AddressSanitizer checks
1528 (dynamic address safety analysis) are enabled for this function.
1529``sanitize_memory``
1530 This attribute indicates that MemorySanitizer checks (dynamic detection
1531 of accesses to uninitialized memory) are enabled for this function.
1532``sanitize_thread``
1533 This attribute indicates that ThreadSanitizer checks
1534 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001535``ssp``
1536 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001537 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001538 placed on the stack before the local variables that's checked upon
1539 return from the function to see if it has been overwritten. A
1540 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001541 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001542
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001543 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1544 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1545 - Calls to alloca() with variable sizes or constant sizes greater than
1546 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001547
Josh Magee24c7f062014-02-01 01:36:16 +00001548 Variables that are identified as requiring a protector will be arranged
1549 on the stack such that they are adjacent to the stack protector guard.
1550
Sean Silvab084af42012-12-07 10:36:55 +00001551 If a function that has an ``ssp`` attribute is inlined into a
1552 function that doesn't have an ``ssp`` attribute, then the resulting
1553 function will have an ``ssp`` attribute.
1554``sspreq``
1555 This attribute indicates that the function should *always* emit a
1556 stack smashing protector. This overrides the ``ssp`` function
1557 attribute.
1558
Josh Magee24c7f062014-02-01 01:36:16 +00001559 Variables that are identified as requiring a protector will be arranged
1560 on the stack such that they are adjacent to the stack protector guard.
1561 The specific layout rules are:
1562
1563 #. Large arrays and structures containing large arrays
1564 (``>= ssp-buffer-size``) are closest to the stack protector.
1565 #. Small arrays and structures containing small arrays
1566 (``< ssp-buffer-size``) are 2nd closest to the protector.
1567 #. Variables that have had their address taken are 3rd closest to the
1568 protector.
1569
Sean Silvab084af42012-12-07 10:36:55 +00001570 If a function that has an ``sspreq`` attribute is inlined into a
1571 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001572 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1573 an ``sspreq`` attribute.
1574``sspstrong``
1575 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001576 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001577 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001578 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001579
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001580 - Arrays of any size and type
1581 - Aggregates containing an array of any size and type.
1582 - Calls to alloca().
1583 - Local variables that have had their address taken.
1584
Josh Magee24c7f062014-02-01 01:36:16 +00001585 Variables that are identified as requiring a protector will be arranged
1586 on the stack such that they are adjacent to the stack protector guard.
1587 The specific layout rules are:
1588
1589 #. Large arrays and structures containing large arrays
1590 (``>= ssp-buffer-size``) are closest to the stack protector.
1591 #. Small arrays and structures containing small arrays
1592 (``< ssp-buffer-size``) are 2nd closest to the protector.
1593 #. Variables that have had their address taken are 3rd closest to the
1594 protector.
1595
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001596 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001597
1598 If a function that has an ``sspstrong`` attribute is inlined into a
1599 function that doesn't have an ``sspstrong`` attribute, then the
1600 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001601``"thunk"``
1602 This attribute indicates that the function will delegate to some other
1603 function with a tail call. The prototype of a thunk should not be used for
1604 optimization purposes. The caller is expected to cast the thunk prototype to
1605 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001606``uwtable``
1607 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001608 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001609 show that no exceptions passes by it. This is normally the case for
1610 the ELF x86-64 abi, but it can be disabled for some compilation
1611 units.
Sean Silvab084af42012-12-07 10:36:55 +00001612
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001613
1614.. _opbundles:
1615
1616Operand Bundles
1617---------------
1618
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001619Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001620with certain LLVM instructions (currently only ``call`` s and
1621``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001622incorrect and will change program semantics.
1623
1624Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001625
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001626 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001627 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1628 bundle operand ::= SSA value
1629 tag ::= string constant
1630
1631Operand bundles are **not** part of a function's signature, and a
1632given function may be called from multiple places with different kinds
1633of operand bundles. This reflects the fact that the operand bundles
1634are conceptually a part of the ``call`` (or ``invoke``), not the
1635callee being dispatched to.
1636
1637Operand bundles are a generic mechanism intended to support
1638runtime-introspection-like functionality for managed languages. While
1639the exact semantics of an operand bundle depend on the bundle tag,
1640there are certain limitations to how much the presence of an operand
1641bundle can influence the semantics of a program. These restrictions
1642are described as the semantics of an "unknown" operand bundle. As
1643long as the behavior of an operand bundle is describable within these
1644restrictions, LLVM does not need to have special knowledge of the
1645operand bundle to not miscompile programs containing it.
1646
David Majnemer34cacb42015-10-22 01:46:38 +00001647- The bundle operands for an unknown operand bundle escape in unknown
1648 ways before control is transferred to the callee or invokee.
1649- Calls and invokes with operand bundles have unknown read / write
1650 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001651 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001652 callsite specific attributes.
1653- An operand bundle at a call site cannot change the implementation
1654 of the called function. Inter-procedural optimizations work as
1655 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001656
Sanjoy Dascdafd842015-11-11 21:38:02 +00001657More specific types of operand bundles are described below.
1658
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001659.. _deopt_opbundles:
1660
Sanjoy Dascdafd842015-11-11 21:38:02 +00001661Deoptimization Operand Bundles
1662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1663
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001664Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001665operand bundle tag. These operand bundles represent an alternate
1666"safe" continuation for the call site they're attached to, and can be
1667used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001668specified call site. There can be at most one ``"deopt"`` operand
1669bundle attached to a call site. Exact details of deoptimization is
1670out of scope for the language reference, but it usually involves
1671rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001672
1673From the compiler's perspective, deoptimization operand bundles make
1674the call sites they're attached to at least ``readonly``. They read
1675through all of their pointer typed operands (even if they're not
1676otherwise escaped) and the entire visible heap. Deoptimization
1677operand bundles do not capture their operands except during
1678deoptimization, in which case control will not be returned to the
1679compiled frame.
1680
Sanjoy Das2d161452015-11-18 06:23:38 +00001681The inliner knows how to inline through calls that have deoptimization
1682operand bundles. Just like inlining through a normal call site
1683involves composing the normal and exceptional continuations, inlining
1684through a call site with a deoptimization operand bundle needs to
1685appropriately compose the "safe" deoptimization continuation. The
1686inliner does this by prepending the parent's deoptimization
1687continuation to every deoptimization continuation in the inlined body.
1688E.g. inlining ``@f`` into ``@g`` in the following example
1689
1690.. code-block:: llvm
1691
1692 define void @f() {
1693 call void @x() ;; no deopt state
1694 call void @y() [ "deopt"(i32 10) ]
1695 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1696 ret void
1697 }
1698
1699 define void @g() {
1700 call void @f() [ "deopt"(i32 20) ]
1701 ret void
1702 }
1703
1704will result in
1705
1706.. code-block:: llvm
1707
1708 define void @g() {
1709 call void @x() ;; still no deopt state
1710 call void @y() [ "deopt"(i32 20, i32 10) ]
1711 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1712 ret void
1713 }
1714
1715It is the frontend's responsibility to structure or encode the
1716deoptimization state in a way that syntactically prepending the
1717caller's deoptimization state to the callee's deoptimization state is
1718semantically equivalent to composing the caller's deoptimization
1719continuation after the callee's deoptimization continuation.
1720
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001721.. _ob_funclet:
1722
David Majnemer3bb88c02015-12-15 21:27:27 +00001723Funclet Operand Bundles
1724^^^^^^^^^^^^^^^^^^^^^^^
1725
1726Funclet operand bundles are characterized by the ``"funclet"``
1727operand bundle tag. These operand bundles indicate that a call site
1728is within a particular funclet. There can be at most one
1729``"funclet"`` operand bundle attached to a call site and it must have
1730exactly one bundle operand.
1731
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001732If any funclet EH pads have been "entered" but not "exited" (per the
1733`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1734it is undefined behavior to execute a ``call`` or ``invoke`` which:
1735
1736* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1737 intrinsic, or
1738* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1739 not-yet-exited funclet EH pad.
1740
1741Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1742executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1743
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001744GC Transition Operand Bundles
1745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1746
1747GC transition operand bundles are characterized by the
1748``"gc-transition"`` operand bundle tag. These operand bundles mark a
1749call as a transition between a function with one GC strategy to a
1750function with a different GC strategy. If coordinating the transition
1751between GC strategies requires additional code generation at the call
1752site, these bundles may contain any values that are needed by the
1753generated code. For more details, see :ref:`GC Transitions
1754<gc_transition_args>`.
1755
Sean Silvab084af42012-12-07 10:36:55 +00001756.. _moduleasm:
1757
1758Module-Level Inline Assembly
1759----------------------------
1760
1761Modules may contain "module-level inline asm" blocks, which corresponds
1762to the GCC "file scope inline asm" blocks. These blocks are internally
1763concatenated by LLVM and treated as a single unit, but may be separated
1764in the ``.ll`` file if desired. The syntax is very simple:
1765
1766.. code-block:: llvm
1767
1768 module asm "inline asm code goes here"
1769 module asm "more can go here"
1770
1771The strings can contain any character by escaping non-printable
1772characters. The escape sequence used is simply "\\xx" where "xx" is the
1773two digit hex code for the number.
1774
James Y Knightbc832ed2015-07-08 18:08:36 +00001775Note that the assembly string *must* be parseable by LLVM's integrated assembler
1776(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001777
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001778.. _langref_datalayout:
1779
Sean Silvab084af42012-12-07 10:36:55 +00001780Data Layout
1781-----------
1782
1783A module may specify a target specific data layout string that specifies
1784how data is to be laid out in memory. The syntax for the data layout is
1785simply:
1786
1787.. code-block:: llvm
1788
1789 target datalayout = "layout specification"
1790
1791The *layout specification* consists of a list of specifications
1792separated by the minus sign character ('-'). Each specification starts
1793with a letter and may include other information after the letter to
1794define some aspect of the data layout. The specifications accepted are
1795as follows:
1796
1797``E``
1798 Specifies that the target lays out data in big-endian form. That is,
1799 the bits with the most significance have the lowest address
1800 location.
1801``e``
1802 Specifies that the target lays out data in little-endian form. That
1803 is, the bits with the least significance have the lowest address
1804 location.
1805``S<size>``
1806 Specifies the natural alignment of the stack in bits. Alignment
1807 promotion of stack variables is limited to the natural stack
1808 alignment to avoid dynamic stack realignment. The stack alignment
1809 must be a multiple of 8-bits. If omitted, the natural stack
1810 alignment defaults to "unspecified", which does not prevent any
1811 alignment promotions.
1812``p[n]:<size>:<abi>:<pref>``
1813 This specifies the *size* of a pointer and its ``<abi>`` and
1814 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001815 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001816 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001817 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001818``i<size>:<abi>:<pref>``
1819 This specifies the alignment for an integer type of a given bit
1820 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1821``v<size>:<abi>:<pref>``
1822 This specifies the alignment for a vector type of a given bit
1823 ``<size>``.
1824``f<size>:<abi>:<pref>``
1825 This specifies the alignment for a floating point type of a given bit
1826 ``<size>``. Only values of ``<size>`` that are supported by the target
1827 will work. 32 (float) and 64 (double) are supported on all targets; 80
1828 or 128 (different flavors of long double) are also supported on some
1829 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001830``a:<abi>:<pref>``
1831 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001832``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001833 If present, specifies that llvm names are mangled in the output. The
1834 options are
1835
1836 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1837 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1838 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1839 symbols get a ``_`` prefix.
1840 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1841 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001842 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1843 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001844``n<size1>:<size2>:<size3>...``
1845 This specifies a set of native integer widths for the target CPU in
1846 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1847 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1848 this set are considered to support most general arithmetic operations
1849 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001850``ni:<address space0>:<address space1>:<address space2>...``
1851 This specifies pointer types with the specified address spaces
1852 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1853 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001854
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001855On every specification that takes a ``<abi>:<pref>``, specifying the
1856``<pref>`` alignment is optional. If omitted, the preceding ``:``
1857should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1858
Sean Silvab084af42012-12-07 10:36:55 +00001859When constructing the data layout for a given target, LLVM starts with a
1860default set of specifications which are then (possibly) overridden by
1861the specifications in the ``datalayout`` keyword. The default
1862specifications are given in this list:
1863
1864- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001865- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1866- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1867 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001868- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001869- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1870- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1871- ``i16:16:16`` - i16 is 16-bit aligned
1872- ``i32:32:32`` - i32 is 32-bit aligned
1873- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1874 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001875- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001876- ``f32:32:32`` - float is 32-bit aligned
1877- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001878- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001879- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1880- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001881- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001882
1883When LLVM is determining the alignment for a given type, it uses the
1884following rules:
1885
1886#. If the type sought is an exact match for one of the specifications,
1887 that specification is used.
1888#. If no match is found, and the type sought is an integer type, then
1889 the smallest integer type that is larger than the bitwidth of the
1890 sought type is used. If none of the specifications are larger than
1891 the bitwidth then the largest integer type is used. For example,
1892 given the default specifications above, the i7 type will use the
1893 alignment of i8 (next largest) while both i65 and i256 will use the
1894 alignment of i64 (largest specified).
1895#. If no match is found, and the type sought is a vector type, then the
1896 largest vector type that is smaller than the sought vector type will
1897 be used as a fall back. This happens because <128 x double> can be
1898 implemented in terms of 64 <2 x double>, for example.
1899
1900The function of the data layout string may not be what you expect.
1901Notably, this is not a specification from the frontend of what alignment
1902the code generator should use.
1903
1904Instead, if specified, the target data layout is required to match what
1905the ultimate *code generator* expects. This string is used by the
1906mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001907what the ultimate code generator uses. There is no way to generate IR
1908that does not embed this target-specific detail into the IR. If you
1909don't specify the string, the default specifications will be used to
1910generate a Data Layout and the optimization phases will operate
1911accordingly and introduce target specificity into the IR with respect to
1912these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001913
Bill Wendling5cc90842013-10-18 23:41:25 +00001914.. _langref_triple:
1915
1916Target Triple
1917-------------
1918
1919A module may specify a target triple string that describes the target
1920host. The syntax for the target triple is simply:
1921
1922.. code-block:: llvm
1923
1924 target triple = "x86_64-apple-macosx10.7.0"
1925
1926The *target triple* string consists of a series of identifiers delimited
1927by the minus sign character ('-'). The canonical forms are:
1928
1929::
1930
1931 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1932 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1933
1934This information is passed along to the backend so that it generates
1935code for the proper architecture. It's possible to override this on the
1936command line with the ``-mtriple`` command line option.
1937
Sean Silvab084af42012-12-07 10:36:55 +00001938.. _pointeraliasing:
1939
1940Pointer Aliasing Rules
1941----------------------
1942
1943Any memory access must be done through a pointer value associated with
1944an address range of the memory access, otherwise the behavior is
1945undefined. Pointer values are associated with address ranges according
1946to the following rules:
1947
1948- A pointer value is associated with the addresses associated with any
1949 value it is *based* on.
1950- An address of a global variable is associated with the address range
1951 of the variable's storage.
1952- The result value of an allocation instruction is associated with the
1953 address range of the allocated storage.
1954- A null pointer in the default address-space is associated with no
1955 address.
1956- An integer constant other than zero or a pointer value returned from
1957 a function not defined within LLVM may be associated with address
1958 ranges allocated through mechanisms other than those provided by
1959 LLVM. Such ranges shall not overlap with any ranges of addresses
1960 allocated by mechanisms provided by LLVM.
1961
1962A pointer value is *based* on another pointer value according to the
1963following rules:
1964
1965- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001966 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001967- The result value of a ``bitcast`` is *based* on the operand of the
1968 ``bitcast``.
1969- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1970 values that contribute (directly or indirectly) to the computation of
1971 the pointer's value.
1972- The "*based* on" relationship is transitive.
1973
1974Note that this definition of *"based"* is intentionally similar to the
1975definition of *"based"* in C99, though it is slightly weaker.
1976
1977LLVM IR does not associate types with memory. The result type of a
1978``load`` merely indicates the size and alignment of the memory from
1979which to load, as well as the interpretation of the value. The first
1980operand type of a ``store`` similarly only indicates the size and
1981alignment of the store.
1982
1983Consequently, type-based alias analysis, aka TBAA, aka
1984``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1985:ref:`Metadata <metadata>` may be used to encode additional information
1986which specialized optimization passes may use to implement type-based
1987alias analysis.
1988
1989.. _volatile:
1990
1991Volatile Memory Accesses
1992------------------------
1993
1994Certain memory accesses, such as :ref:`load <i_load>`'s,
1995:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1996marked ``volatile``. The optimizers must not change the number of
1997volatile operations or change their order of execution relative to other
1998volatile operations. The optimizers *may* change the order of volatile
1999operations relative to non-volatile operations. This is not Java's
2000"volatile" and has no cross-thread synchronization behavior.
2001
Andrew Trick89fc5a62013-01-30 21:19:35 +00002002IR-level volatile loads and stores cannot safely be optimized into
2003llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2004flagged volatile. Likewise, the backend should never split or merge
2005target-legal volatile load/store instructions.
2006
Andrew Trick7e6f9282013-01-31 00:49:39 +00002007.. admonition:: Rationale
2008
2009 Platforms may rely on volatile loads and stores of natively supported
2010 data width to be executed as single instruction. For example, in C
2011 this holds for an l-value of volatile primitive type with native
2012 hardware support, but not necessarily for aggregate types. The
2013 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002014 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002015 do not violate the frontend's contract with the language.
2016
Sean Silvab084af42012-12-07 10:36:55 +00002017.. _memmodel:
2018
2019Memory Model for Concurrent Operations
2020--------------------------------------
2021
2022The LLVM IR does not define any way to start parallel threads of
2023execution or to register signal handlers. Nonetheless, there are
2024platform-specific ways to create them, and we define LLVM IR's behavior
2025in their presence. This model is inspired by the C++0x memory model.
2026
2027For a more informal introduction to this model, see the :doc:`Atomics`.
2028
2029We define a *happens-before* partial order as the least partial order
2030that
2031
2032- Is a superset of single-thread program order, and
2033- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2034 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2035 techniques, like pthread locks, thread creation, thread joining,
2036 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2037 Constraints <ordering>`).
2038
2039Note that program order does not introduce *happens-before* edges
2040between a thread and signals executing inside that thread.
2041
2042Every (defined) read operation (load instructions, memcpy, atomic
2043loads/read-modify-writes, etc.) R reads a series of bytes written by
2044(defined) write operations (store instructions, atomic
2045stores/read-modify-writes, memcpy, etc.). For the purposes of this
2046section, initialized globals are considered to have a write of the
2047initializer which is atomic and happens before any other read or write
2048of the memory in question. For each byte of a read R, R\ :sub:`byte`
2049may see any write to the same byte, except:
2050
2051- If write\ :sub:`1` happens before write\ :sub:`2`, and
2052 write\ :sub:`2` happens before R\ :sub:`byte`, then
2053 R\ :sub:`byte` does not see write\ :sub:`1`.
2054- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2055 R\ :sub:`byte` does not see write\ :sub:`3`.
2056
2057Given that definition, R\ :sub:`byte` is defined as follows:
2058
2059- If R is volatile, the result is target-dependent. (Volatile is
2060 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002061 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002062 like normal memory. It does not generally provide cross-thread
2063 synchronization.)
2064- Otherwise, if there is no write to the same byte that happens before
2065 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2066- Otherwise, if R\ :sub:`byte` may see exactly one write,
2067 R\ :sub:`byte` returns the value written by that write.
2068- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2069 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2070 Memory Ordering Constraints <ordering>` section for additional
2071 constraints on how the choice is made.
2072- Otherwise R\ :sub:`byte` returns ``undef``.
2073
2074R returns the value composed of the series of bytes it read. This
2075implies that some bytes within the value may be ``undef`` **without**
2076the entire value being ``undef``. Note that this only defines the
2077semantics of the operation; it doesn't mean that targets will emit more
2078than one instruction to read the series of bytes.
2079
2080Note that in cases where none of the atomic intrinsics are used, this
2081model places only one restriction on IR transformations on top of what
2082is required for single-threaded execution: introducing a store to a byte
2083which might not otherwise be stored is not allowed in general.
2084(Specifically, in the case where another thread might write to and read
2085from an address, introducing a store can change a load that may see
2086exactly one write into a load that may see multiple writes.)
2087
2088.. _ordering:
2089
2090Atomic Memory Ordering Constraints
2091----------------------------------
2092
2093Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2094:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2095:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002096ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002097the same address they *synchronize with*. These semantics are borrowed
2098from Java and C++0x, but are somewhat more colloquial. If these
2099descriptions aren't precise enough, check those specs (see spec
2100references in the :doc:`atomics guide <Atomics>`).
2101:ref:`fence <i_fence>` instructions treat these orderings somewhat
2102differently since they don't take an address. See that instruction's
2103documentation for details.
2104
2105For a simpler introduction to the ordering constraints, see the
2106:doc:`Atomics`.
2107
2108``unordered``
2109 The set of values that can be read is governed by the happens-before
2110 partial order. A value cannot be read unless some operation wrote
2111 it. This is intended to provide a guarantee strong enough to model
2112 Java's non-volatile shared variables. This ordering cannot be
2113 specified for read-modify-write operations; it is not strong enough
2114 to make them atomic in any interesting way.
2115``monotonic``
2116 In addition to the guarantees of ``unordered``, there is a single
2117 total order for modifications by ``monotonic`` operations on each
2118 address. All modification orders must be compatible with the
2119 happens-before order. There is no guarantee that the modification
2120 orders can be combined to a global total order for the whole program
2121 (and this often will not be possible). The read in an atomic
2122 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2123 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2124 order immediately before the value it writes. If one atomic read
2125 happens before another atomic read of the same address, the later
2126 read must see the same value or a later value in the address's
2127 modification order. This disallows reordering of ``monotonic`` (or
2128 stronger) operations on the same address. If an address is written
2129 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2130 read that address repeatedly, the other threads must eventually see
2131 the write. This corresponds to the C++0x/C1x
2132 ``memory_order_relaxed``.
2133``acquire``
2134 In addition to the guarantees of ``monotonic``, a
2135 *synchronizes-with* edge may be formed with a ``release`` operation.
2136 This is intended to model C++'s ``memory_order_acquire``.
2137``release``
2138 In addition to the guarantees of ``monotonic``, if this operation
2139 writes a value which is subsequently read by an ``acquire``
2140 operation, it *synchronizes-with* that operation. (This isn't a
2141 complete description; see the C++0x definition of a release
2142 sequence.) This corresponds to the C++0x/C1x
2143 ``memory_order_release``.
2144``acq_rel`` (acquire+release)
2145 Acts as both an ``acquire`` and ``release`` operation on its
2146 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2147``seq_cst`` (sequentially consistent)
2148 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002149 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002150 writes), there is a global total order on all
2151 sequentially-consistent operations on all addresses, which is
2152 consistent with the *happens-before* partial order and with the
2153 modification orders of all the affected addresses. Each
2154 sequentially-consistent read sees the last preceding write to the
2155 same address in this global order. This corresponds to the C++0x/C1x
2156 ``memory_order_seq_cst`` and Java volatile.
2157
2158.. _singlethread:
2159
2160If an atomic operation is marked ``singlethread``, it only *synchronizes
2161with* or participates in modification and seq\_cst total orderings with
2162other operations running in the same thread (for example, in signal
2163handlers).
2164
2165.. _fastmath:
2166
2167Fast-Math Flags
2168---------------
2169
2170LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2171:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002172:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
2173instructions have the following flags that can be set to enable
2174otherwise unsafe floating point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002175
2176``nnan``
2177 No NaNs - Allow optimizations to assume the arguments and result are not
2178 NaN. Such optimizations are required to retain defined behavior over
2179 NaNs, but the value of the result is undefined.
2180
2181``ninf``
2182 No Infs - Allow optimizations to assume the arguments and result are not
2183 +/-Inf. Such optimizations are required to retain defined behavior over
2184 +/-Inf, but the value of the result is undefined.
2185
2186``nsz``
2187 No Signed Zeros - Allow optimizations to treat the sign of a zero
2188 argument or result as insignificant.
2189
2190``arcp``
2191 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2192 argument rather than perform division.
2193
2194``fast``
2195 Fast - Allow algebraically equivalent transformations that may
2196 dramatically change results in floating point (e.g. reassociate). This
2197 flag implies all the others.
2198
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002199.. _uselistorder:
2200
2201Use-list Order Directives
2202-------------------------
2203
2204Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002205order to be recreated. ``<order-indexes>`` is a comma-separated list of
2206indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002207value's use-list is immediately sorted by these indexes.
2208
Sean Silvaa1190322015-08-06 22:56:48 +00002209Use-list directives may appear at function scope or global scope. They are not
2210instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002211function scope, they must appear after the terminator of the final basic block.
2212
2213If basic blocks have their address taken via ``blockaddress()`` expressions,
2214``uselistorder_bb`` can be used to reorder their use-lists from outside their
2215function's scope.
2216
2217:Syntax:
2218
2219::
2220
2221 uselistorder <ty> <value>, { <order-indexes> }
2222 uselistorder_bb @function, %block { <order-indexes> }
2223
2224:Examples:
2225
2226::
2227
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002228 define void @foo(i32 %arg1, i32 %arg2) {
2229 entry:
2230 ; ... instructions ...
2231 bb:
2232 ; ... instructions ...
2233
2234 ; At function scope.
2235 uselistorder i32 %arg1, { 1, 0, 2 }
2236 uselistorder label %bb, { 1, 0 }
2237 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002238
2239 ; At global scope.
2240 uselistorder i32* @global, { 1, 2, 0 }
2241 uselistorder i32 7, { 1, 0 }
2242 uselistorder i32 (i32) @bar, { 1, 0 }
2243 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2244
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002245.. _source_filename:
2246
2247Source Filename
2248---------------
2249
2250The *source filename* string is set to the original module identifier,
2251which will be the name of the compiled source file when compiling from
2252source through the clang front end, for example. It is then preserved through
2253the IR and bitcode.
2254
2255This is currently necessary to generate a consistent unique global
2256identifier for local functions used in profile data, which prepends the
2257source file name to the local function name.
2258
2259The syntax for the source file name is simply:
2260
Renato Golin124f2592016-07-20 12:16:38 +00002261.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002262
2263 source_filename = "/path/to/source.c"
2264
Sean Silvab084af42012-12-07 10:36:55 +00002265.. _typesystem:
2266
2267Type System
2268===========
2269
2270The LLVM type system is one of the most important features of the
2271intermediate representation. Being typed enables a number of
2272optimizations to be performed on the intermediate representation
2273directly, without having to do extra analyses on the side before the
2274transformation. A strong type system makes it easier to read the
2275generated code and enables novel analyses and transformations that are
2276not feasible to perform on normal three address code representations.
2277
Rafael Espindola08013342013-12-07 19:34:20 +00002278.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002279
Rafael Espindola08013342013-12-07 19:34:20 +00002280Void Type
2281---------
Sean Silvab084af42012-12-07 10:36:55 +00002282
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002283:Overview:
2284
Rafael Espindola08013342013-12-07 19:34:20 +00002285
2286The void type does not represent any value and has no size.
2287
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002288:Syntax:
2289
Rafael Espindola08013342013-12-07 19:34:20 +00002290
2291::
2292
2293 void
Sean Silvab084af42012-12-07 10:36:55 +00002294
2295
Rafael Espindola08013342013-12-07 19:34:20 +00002296.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002297
Rafael Espindola08013342013-12-07 19:34:20 +00002298Function Type
2299-------------
Sean Silvab084af42012-12-07 10:36:55 +00002300
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002301:Overview:
2302
Sean Silvab084af42012-12-07 10:36:55 +00002303
Rafael Espindola08013342013-12-07 19:34:20 +00002304The function type can be thought of as a function signature. It consists of a
2305return type and a list of formal parameter types. The return type of a function
2306type is a void type or first class type --- except for :ref:`label <t_label>`
2307and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002308
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002309:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002310
Rafael Espindola08013342013-12-07 19:34:20 +00002311::
Sean Silvab084af42012-12-07 10:36:55 +00002312
Rafael Espindola08013342013-12-07 19:34:20 +00002313 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002314
Rafael Espindola08013342013-12-07 19:34:20 +00002315...where '``<parameter list>``' is a comma-separated list of type
2316specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002317indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002318argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002319handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002320except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002321
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002322:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002323
Rafael Espindola08013342013-12-07 19:34:20 +00002324+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2325| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2326+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2327| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2328+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2329| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2330+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2331| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2332+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2333
2334.. _t_firstclass:
2335
2336First Class Types
2337-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002338
2339The :ref:`first class <t_firstclass>` types are perhaps the most important.
2340Values of these types are the only ones which can be produced by
2341instructions.
2342
Rafael Espindola08013342013-12-07 19:34:20 +00002343.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002344
Rafael Espindola08013342013-12-07 19:34:20 +00002345Single Value Types
2346^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002347
Rafael Espindola08013342013-12-07 19:34:20 +00002348These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002349
2350.. _t_integer:
2351
2352Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002353""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002354
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002355:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002356
2357The integer type is a very simple type that simply specifies an
2358arbitrary bit width for the integer type desired. Any bit width from 1
2359bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2360
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002361:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002362
2363::
2364
2365 iN
2366
2367The number of bits the integer will occupy is specified by the ``N``
2368value.
2369
2370Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002371*********
Sean Silvab084af42012-12-07 10:36:55 +00002372
2373+----------------+------------------------------------------------+
2374| ``i1`` | a single-bit integer. |
2375+----------------+------------------------------------------------+
2376| ``i32`` | a 32-bit integer. |
2377+----------------+------------------------------------------------+
2378| ``i1942652`` | a really big integer of over 1 million bits. |
2379+----------------+------------------------------------------------+
2380
2381.. _t_floating:
2382
2383Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002384""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002385
2386.. list-table::
2387 :header-rows: 1
2388
2389 * - Type
2390 - Description
2391
2392 * - ``half``
2393 - 16-bit floating point value
2394
2395 * - ``float``
2396 - 32-bit floating point value
2397
2398 * - ``double``
2399 - 64-bit floating point value
2400
2401 * - ``fp128``
2402 - 128-bit floating point value (112-bit mantissa)
2403
2404 * - ``x86_fp80``
2405 - 80-bit floating point value (X87)
2406
2407 * - ``ppc_fp128``
2408 - 128-bit floating point value (two 64-bits)
2409
Reid Kleckner9a16d082014-03-05 02:41:37 +00002410X86_mmx Type
2411""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002412
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002413:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002414
Reid Kleckner9a16d082014-03-05 02:41:37 +00002415The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002416machine. The operations allowed on it are quite limited: parameters and
2417return values, load and store, and bitcast. User-specified MMX
2418instructions are represented as intrinsic or asm calls with arguments
2419and/or results of this type. There are no arrays, vectors or constants
2420of this type.
2421
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002422:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002423
2424::
2425
Reid Kleckner9a16d082014-03-05 02:41:37 +00002426 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002427
Sean Silvab084af42012-12-07 10:36:55 +00002428
Rafael Espindola08013342013-12-07 19:34:20 +00002429.. _t_pointer:
2430
2431Pointer Type
2432""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002433
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002434:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002435
Rafael Espindola08013342013-12-07 19:34:20 +00002436The pointer type is used to specify memory locations. Pointers are
2437commonly used to reference objects in memory.
2438
2439Pointer types may have an optional address space attribute defining the
2440numbered address space where the pointed-to object resides. The default
2441address space is number zero. The semantics of non-zero address spaces
2442are target-specific.
2443
2444Note that LLVM does not permit pointers to void (``void*``) nor does it
2445permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002446
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002447:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002448
2449::
2450
Rafael Espindola08013342013-12-07 19:34:20 +00002451 <type> *
2452
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002453:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002454
2455+-------------------------+--------------------------------------------------------------------------------------------------------------+
2456| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2457+-------------------------+--------------------------------------------------------------------------------------------------------------+
2458| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2459+-------------------------+--------------------------------------------------------------------------------------------------------------+
2460| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2461+-------------------------+--------------------------------------------------------------------------------------------------------------+
2462
2463.. _t_vector:
2464
2465Vector Type
2466"""""""""""
2467
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002468:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002469
2470A vector type is a simple derived type that represents a vector of
2471elements. Vector types are used when multiple primitive data are
2472operated in parallel using a single instruction (SIMD). A vector type
2473requires a size (number of elements) and an underlying primitive data
2474type. Vector types are considered :ref:`first class <t_firstclass>`.
2475
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002476:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002477
2478::
2479
2480 < <# elements> x <elementtype> >
2481
2482The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002483elementtype may be any integer, floating point or pointer type. Vectors
2484of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002485
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002486:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002487
2488+-------------------+--------------------------------------------------+
2489| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2490+-------------------+--------------------------------------------------+
2491| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2492+-------------------+--------------------------------------------------+
2493| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2494+-------------------+--------------------------------------------------+
2495| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2496+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002497
2498.. _t_label:
2499
2500Label Type
2501^^^^^^^^^^
2502
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002503:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002504
2505The label type represents code labels.
2506
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002507:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002508
2509::
2510
2511 label
2512
David Majnemerb611e3f2015-08-14 05:09:07 +00002513.. _t_token:
2514
2515Token Type
2516^^^^^^^^^^
2517
2518:Overview:
2519
2520The token type is used when a value is associated with an instruction
2521but all uses of the value must not attempt to introspect or obscure it.
2522As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2523:ref:`select <i_select>` of type token.
2524
2525:Syntax:
2526
2527::
2528
2529 token
2530
2531
2532
Sean Silvab084af42012-12-07 10:36:55 +00002533.. _t_metadata:
2534
2535Metadata Type
2536^^^^^^^^^^^^^
2537
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002538:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002539
2540The metadata type represents embedded metadata. No derived types may be
2541created from metadata except for :ref:`function <t_function>` arguments.
2542
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002543:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002544
2545::
2546
2547 metadata
2548
Sean Silvab084af42012-12-07 10:36:55 +00002549.. _t_aggregate:
2550
2551Aggregate Types
2552^^^^^^^^^^^^^^^
2553
2554Aggregate Types are a subset of derived types that can contain multiple
2555member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2556aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2557aggregate types.
2558
2559.. _t_array:
2560
2561Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002562""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002563
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002564:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002565
2566The array type is a very simple derived type that arranges elements
2567sequentially in memory. The array type requires a size (number of
2568elements) and an underlying data type.
2569
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002570:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002571
2572::
2573
2574 [<# elements> x <elementtype>]
2575
2576The number of elements is a constant integer value; ``elementtype`` may
2577be any type with a size.
2578
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002579:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002580
2581+------------------+--------------------------------------+
2582| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2583+------------------+--------------------------------------+
2584| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2585+------------------+--------------------------------------+
2586| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2587+------------------+--------------------------------------+
2588
2589Here are some examples of multidimensional arrays:
2590
2591+-----------------------------+----------------------------------------------------------+
2592| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2593+-----------------------------+----------------------------------------------------------+
2594| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2595+-----------------------------+----------------------------------------------------------+
2596| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2597+-----------------------------+----------------------------------------------------------+
2598
2599There is no restriction on indexing beyond the end of the array implied
2600by a static type (though there are restrictions on indexing beyond the
2601bounds of an allocated object in some cases). This means that
2602single-dimension 'variable sized array' addressing can be implemented in
2603LLVM with a zero length array type. An implementation of 'pascal style
2604arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2605example.
2606
Sean Silvab084af42012-12-07 10:36:55 +00002607.. _t_struct:
2608
2609Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002610""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002611
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002612:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002613
2614The structure type is used to represent a collection of data members
2615together in memory. The elements of a structure may be any type that has
2616a size.
2617
2618Structures in memory are accessed using '``load``' and '``store``' by
2619getting a pointer to a field with the '``getelementptr``' instruction.
2620Structures in registers are accessed using the '``extractvalue``' and
2621'``insertvalue``' instructions.
2622
2623Structures may optionally be "packed" structures, which indicate that
2624the alignment of the struct is one byte, and that there is no padding
2625between the elements. In non-packed structs, padding between field types
2626is inserted as defined by the DataLayout string in the module, which is
2627required to match what the underlying code generator expects.
2628
2629Structures can either be "literal" or "identified". A literal structure
2630is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2631identified types are always defined at the top level with a name.
2632Literal types are uniqued by their contents and can never be recursive
2633or opaque since there is no way to write one. Identified types can be
2634recursive, can be opaqued, and are never uniqued.
2635
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002636:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002637
2638::
2639
2640 %T1 = type { <type list> } ; Identified normal struct type
2641 %T2 = type <{ <type list> }> ; Identified packed struct type
2642
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002643:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002644
2645+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2646| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2647+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002648| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002649+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2650| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2651+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2652
2653.. _t_opaque:
2654
2655Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002656""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002657
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002658:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002659
2660Opaque structure types are used to represent named structure types that
2661do not have a body specified. This corresponds (for example) to the C
2662notion of a forward declared structure.
2663
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002664:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002665
2666::
2667
2668 %X = type opaque
2669 %52 = type opaque
2670
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002671:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002672
2673+--------------+-------------------+
2674| ``opaque`` | An opaque type. |
2675+--------------+-------------------+
2676
Sean Silva1703e702014-04-08 21:06:22 +00002677.. _constants:
2678
Sean Silvab084af42012-12-07 10:36:55 +00002679Constants
2680=========
2681
2682LLVM has several different basic types of constants. This section
2683describes them all and their syntax.
2684
2685Simple Constants
2686----------------
2687
2688**Boolean constants**
2689 The two strings '``true``' and '``false``' are both valid constants
2690 of the ``i1`` type.
2691**Integer constants**
2692 Standard integers (such as '4') are constants of the
2693 :ref:`integer <t_integer>` type. Negative numbers may be used with
2694 integer types.
2695**Floating point constants**
2696 Floating point constants use standard decimal notation (e.g.
2697 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2698 hexadecimal notation (see below). The assembler requires the exact
2699 decimal value of a floating-point constant. For example, the
2700 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2701 decimal in binary. Floating point constants must have a :ref:`floating
2702 point <t_floating>` type.
2703**Null pointer constants**
2704 The identifier '``null``' is recognized as a null pointer constant
2705 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002706**Token constants**
2707 The identifier '``none``' is recognized as an empty token constant
2708 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002709
2710The one non-intuitive notation for constants is the hexadecimal form of
2711floating point constants. For example, the form
2712'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2713than) '``double 4.5e+15``'. The only time hexadecimal floating point
2714constants are required (and the only time that they are generated by the
2715disassembler) is when a floating point constant must be emitted but it
2716cannot be represented as a decimal floating point number in a reasonable
2717number of digits. For example, NaN's, infinities, and other special
2718values are represented in their IEEE hexadecimal format so that assembly
2719and disassembly do not cause any bits to change in the constants.
2720
2721When using the hexadecimal form, constants of types half, float, and
2722double are represented using the 16-digit form shown above (which
2723matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002724must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002725precision, respectively. Hexadecimal format is always used for long
2726double, and there are three forms of long double. The 80-bit format used
2727by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2728128-bit format used by PowerPC (two adjacent doubles) is represented by
2729``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002730represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2731will only work if they match the long double format on your target.
2732The IEEE 16-bit format (half precision) is represented by ``0xH``
2733followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2734(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002735
Reid Kleckner9a16d082014-03-05 02:41:37 +00002736There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002737
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002738.. _complexconstants:
2739
Sean Silvab084af42012-12-07 10:36:55 +00002740Complex Constants
2741-----------------
2742
2743Complex constants are a (potentially recursive) combination of simple
2744constants and smaller complex constants.
2745
2746**Structure constants**
2747 Structure constants are represented with notation similar to
2748 structure type definitions (a comma separated list of elements,
2749 surrounded by braces (``{}``)). For example:
2750 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2751 "``@G = external global i32``". Structure constants must have
2752 :ref:`structure type <t_struct>`, and the number and types of elements
2753 must match those specified by the type.
2754**Array constants**
2755 Array constants are represented with notation similar to array type
2756 definitions (a comma separated list of elements, surrounded by
2757 square brackets (``[]``)). For example:
2758 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2759 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002760 match those specified by the type. As a special case, character array
2761 constants may also be represented as a double-quoted string using the ``c``
2762 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002763**Vector constants**
2764 Vector constants are represented with notation similar to vector
2765 type definitions (a comma separated list of elements, surrounded by
2766 less-than/greater-than's (``<>``)). For example:
2767 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2768 must have :ref:`vector type <t_vector>`, and the number and types of
2769 elements must match those specified by the type.
2770**Zero initialization**
2771 The string '``zeroinitializer``' can be used to zero initialize a
2772 value to zero of *any* type, including scalar and
2773 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2774 having to print large zero initializers (e.g. for large arrays) and
2775 is always exactly equivalent to using explicit zero initializers.
2776**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002777 A metadata node is a constant tuple without types. For example:
2778 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002779 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2780 Unlike other typed constants that are meant to be interpreted as part of
2781 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002782 information such as debug info.
2783
2784Global Variable and Function Addresses
2785--------------------------------------
2786
2787The addresses of :ref:`global variables <globalvars>` and
2788:ref:`functions <functionstructure>` are always implicitly valid
2789(link-time) constants. These constants are explicitly referenced when
2790the :ref:`identifier for the global <identifiers>` is used and always have
2791:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2792file:
2793
2794.. code-block:: llvm
2795
2796 @X = global i32 17
2797 @Y = global i32 42
2798 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2799
2800.. _undefvalues:
2801
2802Undefined Values
2803----------------
2804
2805The string '``undef``' can be used anywhere a constant is expected, and
2806indicates that the user of the value may receive an unspecified
2807bit-pattern. Undefined values may be of any type (other than '``label``'
2808or '``void``') and be used anywhere a constant is permitted.
2809
2810Undefined values are useful because they indicate to the compiler that
2811the program is well defined no matter what value is used. This gives the
2812compiler more freedom to optimize. Here are some examples of
2813(potentially surprising) transformations that are valid (in pseudo IR):
2814
2815.. code-block:: llvm
2816
2817 %A = add %X, undef
2818 %B = sub %X, undef
2819 %C = xor %X, undef
2820 Safe:
2821 %A = undef
2822 %B = undef
2823 %C = undef
2824
2825This is safe because all of the output bits are affected by the undef
2826bits. Any output bit can have a zero or one depending on the input bits.
2827
2828.. code-block:: llvm
2829
2830 %A = or %X, undef
2831 %B = and %X, undef
2832 Safe:
2833 %A = -1
2834 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002835 Safe:
2836 %A = %X ;; By choosing undef as 0
2837 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002838 Unsafe:
2839 %A = undef
2840 %B = undef
2841
2842These logical operations have bits that are not always affected by the
2843input. For example, if ``%X`` has a zero bit, then the output of the
2844'``and``' operation will always be a zero for that bit, no matter what
2845the corresponding bit from the '``undef``' is. As such, it is unsafe to
2846optimize or assume that the result of the '``and``' is '``undef``'.
2847However, it is safe to assume that all bits of the '``undef``' could be
28480, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2849all the bits of the '``undef``' operand to the '``or``' could be set,
2850allowing the '``or``' to be folded to -1.
2851
2852.. code-block:: llvm
2853
2854 %A = select undef, %X, %Y
2855 %B = select undef, 42, %Y
2856 %C = select %X, %Y, undef
2857 Safe:
2858 %A = %X (or %Y)
2859 %B = 42 (or %Y)
2860 %C = %Y
2861 Unsafe:
2862 %A = undef
2863 %B = undef
2864 %C = undef
2865
2866This set of examples shows that undefined '``select``' (and conditional
2867branch) conditions can go *either way*, but they have to come from one
2868of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2869both known to have a clear low bit, then ``%A`` would have to have a
2870cleared low bit. However, in the ``%C`` example, the optimizer is
2871allowed to assume that the '``undef``' operand could be the same as
2872``%Y``, allowing the whole '``select``' to be eliminated.
2873
Renato Golin124f2592016-07-20 12:16:38 +00002874.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002875
2876 %A = xor undef, undef
2877
2878 %B = undef
2879 %C = xor %B, %B
2880
2881 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002882 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002883 %F = icmp gte %D, 4
2884
2885 Safe:
2886 %A = undef
2887 %B = undef
2888 %C = undef
2889 %D = undef
2890 %E = undef
2891 %F = undef
2892
2893This example points out that two '``undef``' operands are not
2894necessarily the same. This can be surprising to people (and also matches
2895C semantics) where they assume that "``X^X``" is always zero, even if
2896``X`` is undefined. This isn't true for a number of reasons, but the
2897short answer is that an '``undef``' "variable" can arbitrarily change
2898its value over its "live range". This is true because the variable
2899doesn't actually *have a live range*. Instead, the value is logically
2900read from arbitrary registers that happen to be around when needed, so
2901the value is not necessarily consistent over time. In fact, ``%A`` and
2902``%C`` need to have the same semantics or the core LLVM "replace all
2903uses with" concept would not hold.
2904
2905.. code-block:: llvm
2906
2907 %A = fdiv undef, %X
2908 %B = fdiv %X, undef
2909 Safe:
2910 %A = undef
2911 b: unreachable
2912
2913These examples show the crucial difference between an *undefined value*
2914and *undefined behavior*. An undefined value (like '``undef``') is
2915allowed to have an arbitrary bit-pattern. This means that the ``%A``
2916operation can be constant folded to '``undef``', because the '``undef``'
2917could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2918However, in the second example, we can make a more aggressive
2919assumption: because the ``undef`` is allowed to be an arbitrary value,
2920we are allowed to assume that it could be zero. Since a divide by zero
2921has *undefined behavior*, we are allowed to assume that the operation
2922does not execute at all. This allows us to delete the divide and all
2923code after it. Because the undefined operation "can't happen", the
2924optimizer can assume that it occurs in dead code.
2925
Renato Golin124f2592016-07-20 12:16:38 +00002926.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002927
2928 a: store undef -> %X
2929 b: store %X -> undef
2930 Safe:
2931 a: <deleted>
2932 b: unreachable
2933
2934These examples reiterate the ``fdiv`` example: a store *of* an undefined
2935value can be assumed to not have any effect; we can assume that the
2936value is overwritten with bits that happen to match what was already
2937there. However, a store *to* an undefined location could clobber
2938arbitrary memory, therefore, it has undefined behavior.
2939
2940.. _poisonvalues:
2941
2942Poison Values
2943-------------
2944
2945Poison values are similar to :ref:`undef values <undefvalues>`, however
2946they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002947that cannot evoke side effects has nevertheless detected a condition
2948that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002949
2950There is currently no way of representing a poison value in the IR; they
2951only exist when produced by operations such as :ref:`add <i_add>` with
2952the ``nsw`` flag.
2953
2954Poison value behavior is defined in terms of value *dependence*:
2955
2956- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2957- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2958 their dynamic predecessor basic block.
2959- Function arguments depend on the corresponding actual argument values
2960 in the dynamic callers of their functions.
2961- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2962 instructions that dynamically transfer control back to them.
2963- :ref:`Invoke <i_invoke>` instructions depend on the
2964 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2965 call instructions that dynamically transfer control back to them.
2966- Non-volatile loads and stores depend on the most recent stores to all
2967 of the referenced memory addresses, following the order in the IR
2968 (including loads and stores implied by intrinsics such as
2969 :ref:`@llvm.memcpy <int_memcpy>`.)
2970- An instruction with externally visible side effects depends on the
2971 most recent preceding instruction with externally visible side
2972 effects, following the order in the IR. (This includes :ref:`volatile
2973 operations <volatile>`.)
2974- An instruction *control-depends* on a :ref:`terminator
2975 instruction <terminators>` if the terminator instruction has
2976 multiple successors and the instruction is always executed when
2977 control transfers to one of the successors, and may not be executed
2978 when control is transferred to another.
2979- Additionally, an instruction also *control-depends* on a terminator
2980 instruction if the set of instructions it otherwise depends on would
2981 be different if the terminator had transferred control to a different
2982 successor.
2983- Dependence is transitive.
2984
Richard Smith32dbdf62014-07-31 04:25:36 +00002985Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2986with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002987on a poison value has undefined behavior.
2988
2989Here are some examples:
2990
2991.. code-block:: llvm
2992
2993 entry:
2994 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2995 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002996 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002997 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2998
2999 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003000 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003001
3002 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3003
3004 %narrowaddr = bitcast i32* @g to i16*
3005 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003006 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3007 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003008
3009 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3010 br i1 %cmp, label %true, label %end ; Branch to either destination.
3011
3012 true:
3013 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3014 ; it has undefined behavior.
3015 br label %end
3016
3017 end:
3018 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3019 ; Both edges into this PHI are
3020 ; control-dependent on %cmp, so this
3021 ; always results in a poison value.
3022
3023 store volatile i32 0, i32* @g ; This would depend on the store in %true
3024 ; if %cmp is true, or the store in %entry
3025 ; otherwise, so this is undefined behavior.
3026
3027 br i1 %cmp, label %second_true, label %second_end
3028 ; The same branch again, but this time the
3029 ; true block doesn't have side effects.
3030
3031 second_true:
3032 ; No side effects!
3033 ret void
3034
3035 second_end:
3036 store volatile i32 0, i32* @g ; This time, the instruction always depends
3037 ; on the store in %end. Also, it is
3038 ; control-equivalent to %end, so this is
3039 ; well-defined (ignoring earlier undefined
3040 ; behavior in this example).
3041
3042.. _blockaddress:
3043
3044Addresses of Basic Blocks
3045-------------------------
3046
3047``blockaddress(@function, %block)``
3048
3049The '``blockaddress``' constant computes the address of the specified
3050basic block in the specified function, and always has an ``i8*`` type.
3051Taking the address of the entry block is illegal.
3052
3053This value only has defined behavior when used as an operand to the
3054':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3055against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003056undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003057no label is equal to the null pointer. This may be passed around as an
3058opaque pointer sized value as long as the bits are not inspected. This
3059allows ``ptrtoint`` and arithmetic to be performed on these values so
3060long as the original value is reconstituted before the ``indirectbr``
3061instruction.
3062
3063Finally, some targets may provide defined semantics when using the value
3064as the operand to an inline assembly, but that is target specific.
3065
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003066.. _constantexprs:
3067
Sean Silvab084af42012-12-07 10:36:55 +00003068Constant Expressions
3069--------------------
3070
3071Constant expressions are used to allow expressions involving other
3072constants to be used as constants. Constant expressions may be of any
3073:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3074that does not have side effects (e.g. load and call are not supported).
3075The following is the syntax for constant expressions:
3076
3077``trunc (CST to TYPE)``
3078 Truncate a constant to another type. The bit size of CST must be
3079 larger than the bit size of TYPE. Both types must be integers.
3080``zext (CST to TYPE)``
3081 Zero extend a constant to another type. The bit size of CST must be
3082 smaller than the bit size of TYPE. Both types must be integers.
3083``sext (CST to TYPE)``
3084 Sign extend a constant to another type. The bit size of CST must be
3085 smaller than the bit size of TYPE. Both types must be integers.
3086``fptrunc (CST to TYPE)``
3087 Truncate a floating point constant to another floating point type.
3088 The size of CST must be larger than the size of TYPE. Both types
3089 must be floating point.
3090``fpext (CST to TYPE)``
3091 Floating point extend a constant to another type. The size of CST
3092 must be smaller or equal to the size of TYPE. Both types must be
3093 floating point.
3094``fptoui (CST to TYPE)``
3095 Convert a floating point constant to the corresponding unsigned
3096 integer constant. TYPE must be a scalar or vector integer type. CST
3097 must be of scalar or vector floating point type. Both CST and TYPE
3098 must be scalars, or vectors of the same number of elements. If the
3099 value won't fit in the integer type, the results are undefined.
3100``fptosi (CST to TYPE)``
3101 Convert a floating point constant to the corresponding signed
3102 integer constant. TYPE must be a scalar or vector integer type. CST
3103 must be of scalar or vector floating point type. Both CST and TYPE
3104 must be scalars, or vectors of the same number of elements. If the
3105 value won't fit in the integer type, the results are undefined.
3106``uitofp (CST to TYPE)``
3107 Convert an unsigned integer constant to the corresponding floating
3108 point constant. TYPE must be a scalar or vector floating point type.
3109 CST must be of scalar or vector integer type. Both CST and TYPE must
3110 be scalars, or vectors of the same number of elements. If the value
3111 won't fit in the floating point type, the results are undefined.
3112``sitofp (CST to TYPE)``
3113 Convert a signed integer constant to the corresponding floating
3114 point constant. TYPE must be a scalar or vector floating point type.
3115 CST must be of scalar or vector integer type. Both CST and TYPE must
3116 be scalars, or vectors of the same number of elements. If the value
3117 won't fit in the floating point type, the results are undefined.
3118``ptrtoint (CST to TYPE)``
3119 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003120 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003121 pointer type. The ``CST`` value is zero extended, truncated, or
3122 unchanged to make it fit in ``TYPE``.
3123``inttoptr (CST to TYPE)``
3124 Convert an integer constant to a pointer constant. TYPE must be a
3125 pointer type. CST must be of integer type. The CST value is zero
3126 extended, truncated, or unchanged to make it fit in a pointer size.
3127 This one is *really* dangerous!
3128``bitcast (CST to TYPE)``
3129 Convert a constant, CST, to another TYPE. The constraints of the
3130 operands are the same as those for the :ref:`bitcast
3131 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003132``addrspacecast (CST to TYPE)``
3133 Convert a constant pointer or constant vector of pointer, CST, to another
3134 TYPE in a different address space. The constraints of the operands are the
3135 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003136``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003137 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3138 constants. As with the :ref:`getelementptr <i_getelementptr>`
3139 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003140 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003141``select (COND, VAL1, VAL2)``
3142 Perform the :ref:`select operation <i_select>` on constants.
3143``icmp COND (VAL1, VAL2)``
3144 Performs the :ref:`icmp operation <i_icmp>` on constants.
3145``fcmp COND (VAL1, VAL2)``
3146 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3147``extractelement (VAL, IDX)``
3148 Perform the :ref:`extractelement operation <i_extractelement>` on
3149 constants.
3150``insertelement (VAL, ELT, IDX)``
3151 Perform the :ref:`insertelement operation <i_insertelement>` on
3152 constants.
3153``shufflevector (VEC1, VEC2, IDXMASK)``
3154 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3155 constants.
3156``extractvalue (VAL, IDX0, IDX1, ...)``
3157 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3158 constants. The index list is interpreted in a similar manner as
3159 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3160 least one index value must be specified.
3161``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3162 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3163 The index list is interpreted in a similar manner as indices in a
3164 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3165 value must be specified.
3166``OPCODE (LHS, RHS)``
3167 Perform the specified operation of the LHS and RHS constants. OPCODE
3168 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3169 binary <bitwiseops>` operations. The constraints on operands are
3170 the same as those for the corresponding instruction (e.g. no bitwise
3171 operations on floating point values are allowed).
3172
3173Other Values
3174============
3175
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003176.. _inlineasmexprs:
3177
Sean Silvab084af42012-12-07 10:36:55 +00003178Inline Assembler Expressions
3179----------------------------
3180
3181LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003182Inline Assembly <moduleasm>`) through the use of a special value. This value
3183represents the inline assembler as a template string (containing the
3184instructions to emit), a list of operand constraints (stored as a string), a
3185flag that indicates whether or not the inline asm expression has side effects,
3186and a flag indicating whether the function containing the asm needs to align its
3187stack conservatively.
3188
3189The template string supports argument substitution of the operands using "``$``"
3190followed by a number, to indicate substitution of the given register/memory
3191location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3192be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3193operand (See :ref:`inline-asm-modifiers`).
3194
3195A literal "``$``" may be included by using "``$$``" in the template. To include
3196other special characters into the output, the usual "``\XX``" escapes may be
3197used, just as in other strings. Note that after template substitution, the
3198resulting assembly string is parsed by LLVM's integrated assembler unless it is
3199disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3200syntax known to LLVM.
3201
Reid Kleckner71cb1642017-02-06 18:08:45 +00003202LLVM also supports a few more substitions useful for writing inline assembly:
3203
3204- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3205 This substitution is useful when declaring a local label. Many standard
3206 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3207 Adding a blob-unique identifier ensures that the two labels will not conflict
3208 during assembly. This is used to implement `GCC's %= special format
3209 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3210- ``${:comment}``: Expands to the comment character of the current target's
3211 assembly dialect. This is usually ``#``, but many targets use other strings,
3212 such as ``;``, ``//``, or ``!``.
3213- ``${:private}``: Expands to the assembler private label prefix. Labels with
3214 this prefix will not appear in the symbol table of the assembled object.
3215 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3216 relatively popular.
3217
James Y Knightbc832ed2015-07-08 18:08:36 +00003218LLVM's support for inline asm is modeled closely on the requirements of Clang's
3219GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3220modifier codes listed here are similar or identical to those in GCC's inline asm
3221support. However, to be clear, the syntax of the template and constraint strings
3222described here is *not* the same as the syntax accepted by GCC and Clang, and,
3223while most constraint letters are passed through as-is by Clang, some get
3224translated to other codes when converting from the C source to the LLVM
3225assembly.
3226
3227An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003228
3229.. code-block:: llvm
3230
3231 i32 (i32) asm "bswap $0", "=r,r"
3232
3233Inline assembler expressions may **only** be used as the callee operand
3234of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3235Thus, typically we have:
3236
3237.. code-block:: llvm
3238
3239 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3240
3241Inline asms with side effects not visible in the constraint list must be
3242marked as having side effects. This is done through the use of the
3243'``sideeffect``' keyword, like so:
3244
3245.. code-block:: llvm
3246
3247 call void asm sideeffect "eieio", ""()
3248
3249In some cases inline asms will contain code that will not work unless
3250the stack is aligned in some way, such as calls or SSE instructions on
3251x86, yet will not contain code that does that alignment within the asm.
3252The compiler should make conservative assumptions about what the asm
3253might contain and should generate its usual stack alignment code in the
3254prologue if the '``alignstack``' keyword is present:
3255
3256.. code-block:: llvm
3257
3258 call void asm alignstack "eieio", ""()
3259
3260Inline asms also support using non-standard assembly dialects. The
3261assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3262the inline asm is using the Intel dialect. Currently, ATT and Intel are
3263the only supported dialects. An example is:
3264
3265.. code-block:: llvm
3266
3267 call void asm inteldialect "eieio", ""()
3268
3269If multiple keywords appear the '``sideeffect``' keyword must come
3270first, the '``alignstack``' keyword second and the '``inteldialect``'
3271keyword last.
3272
James Y Knightbc832ed2015-07-08 18:08:36 +00003273Inline Asm Constraint String
3274^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3275
3276The constraint list is a comma-separated string, each element containing one or
3277more constraint codes.
3278
3279For each element in the constraint list an appropriate register or memory
3280operand will be chosen, and it will be made available to assembly template
3281string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3282second, etc.
3283
3284There are three different types of constraints, which are distinguished by a
3285prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3286constraints must always be given in that order: outputs first, then inputs, then
3287clobbers. They cannot be intermingled.
3288
3289There are also three different categories of constraint codes:
3290
3291- Register constraint. This is either a register class, or a fixed physical
3292 register. This kind of constraint will allocate a register, and if necessary,
3293 bitcast the argument or result to the appropriate type.
3294- Memory constraint. This kind of constraint is for use with an instruction
3295 taking a memory operand. Different constraints allow for different addressing
3296 modes used by the target.
3297- Immediate value constraint. This kind of constraint is for an integer or other
3298 immediate value which can be rendered directly into an instruction. The
3299 various target-specific constraints allow the selection of a value in the
3300 proper range for the instruction you wish to use it with.
3301
3302Output constraints
3303""""""""""""""""""
3304
3305Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3306indicates that the assembly will write to this operand, and the operand will
3307then be made available as a return value of the ``asm`` expression. Output
3308constraints do not consume an argument from the call instruction. (Except, see
3309below about indirect outputs).
3310
3311Normally, it is expected that no output locations are written to by the assembly
3312expression until *all* of the inputs have been read. As such, LLVM may assign
3313the same register to an output and an input. If this is not safe (e.g. if the
3314assembly contains two instructions, where the first writes to one output, and
3315the second reads an input and writes to a second output), then the "``&``"
3316modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003317"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003318will not use the same register for any inputs (other than an input tied to this
3319output).
3320
3321Input constraints
3322"""""""""""""""""
3323
3324Input constraints do not have a prefix -- just the constraint codes. Each input
3325constraint will consume one argument from the call instruction. It is not
3326permitted for the asm to write to any input register or memory location (unless
3327that input is tied to an output). Note also that multiple inputs may all be
3328assigned to the same register, if LLVM can determine that they necessarily all
3329contain the same value.
3330
3331Instead of providing a Constraint Code, input constraints may also "tie"
3332themselves to an output constraint, by providing an integer as the constraint
3333string. Tied inputs still consume an argument from the call instruction, and
3334take up a position in the asm template numbering as is usual -- they will simply
3335be constrained to always use the same register as the output they've been tied
3336to. For example, a constraint string of "``=r,0``" says to assign a register for
3337output, and use that register as an input as well (it being the 0'th
3338constraint).
3339
3340It is permitted to tie an input to an "early-clobber" output. In that case, no
3341*other* input may share the same register as the input tied to the early-clobber
3342(even when the other input has the same value).
3343
3344You may only tie an input to an output which has a register constraint, not a
3345memory constraint. Only a single input may be tied to an output.
3346
3347There is also an "interesting" feature which deserves a bit of explanation: if a
3348register class constraint allocates a register which is too small for the value
3349type operand provided as input, the input value will be split into multiple
3350registers, and all of them passed to the inline asm.
3351
3352However, this feature is often not as useful as you might think.
3353
3354Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3355architectures that have instructions which operate on multiple consecutive
3356instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3357SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3358hardware then loads into both the named register, and the next register. This
3359feature of inline asm would not be useful to support that.)
3360
3361A few of the targets provide a template string modifier allowing explicit access
3362to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3363``D``). On such an architecture, you can actually access the second allocated
3364register (yet, still, not any subsequent ones). But, in that case, you're still
3365probably better off simply splitting the value into two separate operands, for
3366clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3367despite existing only for use with this feature, is not really a good idea to
3368use)
3369
3370Indirect inputs and outputs
3371"""""""""""""""""""""""""""
3372
3373Indirect output or input constraints can be specified by the "``*``" modifier
3374(which goes after the "``=``" in case of an output). This indicates that the asm
3375will write to or read from the contents of an *address* provided as an input
3376argument. (Note that in this way, indirect outputs act more like an *input* than
3377an output: just like an input, they consume an argument of the call expression,
3378rather than producing a return value. An indirect output constraint is an
3379"output" only in that the asm is expected to write to the contents of the input
3380memory location, instead of just read from it).
3381
3382This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3383address of a variable as a value.
3384
3385It is also possible to use an indirect *register* constraint, but only on output
3386(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3387value normally, and then, separately emit a store to the address provided as
3388input, after the provided inline asm. (It's not clear what value this
3389functionality provides, compared to writing the store explicitly after the asm
3390statement, and it can only produce worse code, since it bypasses many
3391optimization passes. I would recommend not using it.)
3392
3393
3394Clobber constraints
3395"""""""""""""""""""
3396
3397A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3398consume an input operand, nor generate an output. Clobbers cannot use any of the
3399general constraint code letters -- they may use only explicit register
3400constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3401"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3402memory locations -- not only the memory pointed to by a declared indirect
3403output.
3404
Peter Zotov00257232016-08-30 10:48:31 +00003405Note that clobbering named registers that are also present in output
3406constraints is not legal.
3407
James Y Knightbc832ed2015-07-08 18:08:36 +00003408
3409Constraint Codes
3410""""""""""""""""
3411After a potential prefix comes constraint code, or codes.
3412
3413A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3414followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3415(e.g. "``{eax}``").
3416
3417The one and two letter constraint codes are typically chosen to be the same as
3418GCC's constraint codes.
3419
3420A single constraint may include one or more than constraint code in it, leaving
3421it up to LLVM to choose which one to use. This is included mainly for
3422compatibility with the translation of GCC inline asm coming from clang.
3423
3424There are two ways to specify alternatives, and either or both may be used in an
3425inline asm constraint list:
3426
34271) Append the codes to each other, making a constraint code set. E.g. "``im``"
3428 or "``{eax}m``". This means "choose any of the options in the set". The
3429 choice of constraint is made independently for each constraint in the
3430 constraint list.
3431
34322) Use "``|``" between constraint code sets, creating alternatives. Every
3433 constraint in the constraint list must have the same number of alternative
3434 sets. With this syntax, the same alternative in *all* of the items in the
3435 constraint list will be chosen together.
3436
3437Putting those together, you might have a two operand constraint string like
3438``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3439operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3440may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3441
3442However, the use of either of the alternatives features is *NOT* recommended, as
3443LLVM is not able to make an intelligent choice about which one to use. (At the
3444point it currently needs to choose, not enough information is available to do so
3445in a smart way.) Thus, it simply tries to make a choice that's most likely to
3446compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3447always choose to use memory, not registers). And, if given multiple registers,
3448or multiple register classes, it will simply choose the first one. (In fact, it
3449doesn't currently even ensure explicitly specified physical registers are
3450unique, so specifying multiple physical registers as alternatives, like
3451``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3452intended.)
3453
3454Supported Constraint Code List
3455""""""""""""""""""""""""""""""
3456
3457The constraint codes are, in general, expected to behave the same way they do in
3458GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3459inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3460and GCC likely indicates a bug in LLVM.
3461
3462Some constraint codes are typically supported by all targets:
3463
3464- ``r``: A register in the target's general purpose register class.
3465- ``m``: A memory address operand. It is target-specific what addressing modes
3466 are supported, typical examples are register, or register + register offset,
3467 or register + immediate offset (of some target-specific size).
3468- ``i``: An integer constant (of target-specific width). Allows either a simple
3469 immediate, or a relocatable value.
3470- ``n``: An integer constant -- *not* including relocatable values.
3471- ``s``: An integer constant, but allowing *only* relocatable values.
3472- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3473 useful to pass a label for an asm branch or call.
3474
3475 .. FIXME: but that surely isn't actually okay to jump out of an asm
3476 block without telling llvm about the control transfer???)
3477
3478- ``{register-name}``: Requires exactly the named physical register.
3479
3480Other constraints are target-specific:
3481
3482AArch64:
3483
3484- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3485- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3486 i.e. 0 to 4095 with optional shift by 12.
3487- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3488 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3489- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3490 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3491- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3492 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3493- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3494 32-bit register. This is a superset of ``K``: in addition to the bitmask
3495 immediate, also allows immediate integers which can be loaded with a single
3496 ``MOVZ`` or ``MOVL`` instruction.
3497- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3498 64-bit register. This is a superset of ``L``.
3499- ``Q``: Memory address operand must be in a single register (no
3500 offsets). (However, LLVM currently does this for the ``m`` constraint as
3501 well.)
3502- ``r``: A 32 or 64-bit integer register (W* or X*).
3503- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3504- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3505
3506AMDGPU:
3507
3508- ``r``: A 32 or 64-bit integer register.
3509- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3510- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3511
3512
3513All ARM modes:
3514
3515- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3516 operand. Treated the same as operand ``m``, at the moment.
3517
3518ARM and ARM's Thumb2 mode:
3519
3520- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3521- ``I``: An immediate integer valid for a data-processing instruction.
3522- ``J``: An immediate integer between -4095 and 4095.
3523- ``K``: An immediate integer whose bitwise inverse is valid for a
3524 data-processing instruction. (Can be used with template modifier "``B``" to
3525 print the inverted value).
3526- ``L``: An immediate integer whose negation is valid for a data-processing
3527 instruction. (Can be used with template modifier "``n``" to print the negated
3528 value).
3529- ``M``: A power of two or a integer between 0 and 32.
3530- ``N``: Invalid immediate constraint.
3531- ``O``: Invalid immediate constraint.
3532- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3533- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3534 as ``r``.
3535- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3536 invalid.
3537- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3538 ``d0-d31``, or ``q0-q15``.
3539- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3540 ``d0-d7``, or ``q0-q3``.
3541- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3542 ``s0-s31``.
3543
3544ARM's Thumb1 mode:
3545
3546- ``I``: An immediate integer between 0 and 255.
3547- ``J``: An immediate integer between -255 and -1.
3548- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3549 some amount.
3550- ``L``: An immediate integer between -7 and 7.
3551- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3552- ``N``: An immediate integer between 0 and 31.
3553- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3554- ``r``: A low 32-bit GPR register (``r0-r7``).
3555- ``l``: A low 32-bit GPR register (``r0-r7``).
3556- ``h``: A high GPR register (``r0-r7``).
3557- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3558 ``d0-d31``, or ``q0-q15``.
3559- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3560 ``d0-d7``, or ``q0-q3``.
3561- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3562 ``s0-s31``.
3563
3564
3565Hexagon:
3566
3567- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3568 at the moment.
3569- ``r``: A 32 or 64-bit register.
3570
3571MSP430:
3572
3573- ``r``: An 8 or 16-bit register.
3574
3575MIPS:
3576
3577- ``I``: An immediate signed 16-bit integer.
3578- ``J``: An immediate integer zero.
3579- ``K``: An immediate unsigned 16-bit integer.
3580- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3581- ``N``: An immediate integer between -65535 and -1.
3582- ``O``: An immediate signed 15-bit integer.
3583- ``P``: An immediate integer between 1 and 65535.
3584- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3585 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3586- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3587 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3588 ``m``.
3589- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3590 ``sc`` instruction on the given subtarget (details vary).
3591- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3592- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003593 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3594 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003595- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3596 ``25``).
3597- ``l``: The ``lo`` register, 32 or 64-bit.
3598- ``x``: Invalid.
3599
3600NVPTX:
3601
3602- ``b``: A 1-bit integer register.
3603- ``c`` or ``h``: A 16-bit integer register.
3604- ``r``: A 32-bit integer register.
3605- ``l`` or ``N``: A 64-bit integer register.
3606- ``f``: A 32-bit float register.
3607- ``d``: A 64-bit float register.
3608
3609
3610PowerPC:
3611
3612- ``I``: An immediate signed 16-bit integer.
3613- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3614- ``K``: An immediate unsigned 16-bit integer.
3615- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3616- ``M``: An immediate integer greater than 31.
3617- ``N``: An immediate integer that is an exact power of 2.
3618- ``O``: The immediate integer constant 0.
3619- ``P``: An immediate integer constant whose negation is a signed 16-bit
3620 constant.
3621- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3622 treated the same as ``m``.
3623- ``r``: A 32 or 64-bit integer register.
3624- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3625 ``R1-R31``).
3626- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3627 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3628- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3629 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3630 altivec vector register (``V0-V31``).
3631
3632 .. FIXME: is this a bug that v accepts QPX registers? I think this
3633 is supposed to only use the altivec vector registers?
3634
3635- ``y``: Condition register (``CR0-CR7``).
3636- ``wc``: An individual CR bit in a CR register.
3637- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3638 register set (overlapping both the floating-point and vector register files).
3639- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3640 set.
3641
3642Sparc:
3643
3644- ``I``: An immediate 13-bit signed integer.
3645- ``r``: A 32-bit integer register.
3646
3647SystemZ:
3648
3649- ``I``: An immediate unsigned 8-bit integer.
3650- ``J``: An immediate unsigned 12-bit integer.
3651- ``K``: An immediate signed 16-bit integer.
3652- ``L``: An immediate signed 20-bit integer.
3653- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003654- ``Q``: A memory address operand with a base address and a 12-bit immediate
3655 unsigned displacement.
3656- ``R``: A memory address operand with a base address, a 12-bit immediate
3657 unsigned displacement, and an index register.
3658- ``S``: A memory address operand with a base address and a 20-bit immediate
3659 signed displacement.
3660- ``T``: A memory address operand with a base address, a 20-bit immediate
3661 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003662- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3663- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3664 address context evaluates as zero).
3665- ``h``: A 32-bit value in the high part of a 64bit data register
3666 (LLVM-specific)
3667- ``f``: A 32, 64, or 128-bit floating point register.
3668
3669X86:
3670
3671- ``I``: An immediate integer between 0 and 31.
3672- ``J``: An immediate integer between 0 and 64.
3673- ``K``: An immediate signed 8-bit integer.
3674- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3675 0xffffffff.
3676- ``M``: An immediate integer between 0 and 3.
3677- ``N``: An immediate unsigned 8-bit integer.
3678- ``O``: An immediate integer between 0 and 127.
3679- ``e``: An immediate 32-bit signed integer.
3680- ``Z``: An immediate 32-bit unsigned integer.
3681- ``o``, ``v``: Treated the same as ``m``, at the moment.
3682- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3683 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3684 registers, and on X86-64, it is all of the integer registers.
3685- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3686 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3687- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3688- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3689 existed since i386, and can be accessed without the REX prefix.
3690- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3691- ``y``: A 64-bit MMX register, if MMX is enabled.
3692- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3693 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3694 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3695 512-bit vector operand in an AVX512 register, Otherwise, an error.
3696- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3697- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3698 32-bit mode, a 64-bit integer operand will get split into two registers). It
3699 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3700 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3701 you're better off splitting it yourself, before passing it to the asm
3702 statement.
3703
3704XCore:
3705
3706- ``r``: A 32-bit integer register.
3707
3708
3709.. _inline-asm-modifiers:
3710
3711Asm template argument modifiers
3712^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3713
3714In the asm template string, modifiers can be used on the operand reference, like
3715"``${0:n}``".
3716
3717The modifiers are, in general, expected to behave the same way they do in
3718GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3719inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3720and GCC likely indicates a bug in LLVM.
3721
3722Target-independent:
3723
Sean Silvaa1190322015-08-06 22:56:48 +00003724- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003725 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3726- ``n``: Negate and print immediate integer constant unadorned, without the
3727 target-specific immediate punctuation (e.g. no ``$`` prefix).
3728- ``l``: Print as an unadorned label, without the target-specific label
3729 punctuation (e.g. no ``$`` prefix).
3730
3731AArch64:
3732
3733- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3734 instead of ``x30``, print ``w30``.
3735- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3736- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3737 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3738 ``v*``.
3739
3740AMDGPU:
3741
3742- ``r``: No effect.
3743
3744ARM:
3745
3746- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3747 register).
3748- ``P``: No effect.
3749- ``q``: No effect.
3750- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3751 as ``d4[1]`` instead of ``s9``)
3752- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3753 prefix.
3754- ``L``: Print the low 16-bits of an immediate integer constant.
3755- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3756 register operands subsequent to the specified one (!), so use carefully.
3757- ``Q``: Print the low-order register of a register-pair, or the low-order
3758 register of a two-register operand.
3759- ``R``: Print the high-order register of a register-pair, or the high-order
3760 register of a two-register operand.
3761- ``H``: Print the second register of a register-pair. (On a big-endian system,
3762 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3763 to ``R``.)
3764
3765 .. FIXME: H doesn't currently support printing the second register
3766 of a two-register operand.
3767
3768- ``e``: Print the low doubleword register of a NEON quad register.
3769- ``f``: Print the high doubleword register of a NEON quad register.
3770- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3771 adornment.
3772
3773Hexagon:
3774
3775- ``L``: Print the second register of a two-register operand. Requires that it
3776 has been allocated consecutively to the first.
3777
3778 .. FIXME: why is it restricted to consecutive ones? And there's
3779 nothing that ensures that happens, is there?
3780
3781- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3782 nothing. Used to print 'addi' vs 'add' instructions.
3783
3784MSP430:
3785
3786No additional modifiers.
3787
3788MIPS:
3789
3790- ``X``: Print an immediate integer as hexadecimal
3791- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3792- ``d``: Print an immediate integer as decimal.
3793- ``m``: Subtract one and print an immediate integer as decimal.
3794- ``z``: Print $0 if an immediate zero, otherwise print normally.
3795- ``L``: Print the low-order register of a two-register operand, or prints the
3796 address of the low-order word of a double-word memory operand.
3797
3798 .. FIXME: L seems to be missing memory operand support.
3799
3800- ``M``: Print the high-order register of a two-register operand, or prints the
3801 address of the high-order word of a double-word memory operand.
3802
3803 .. FIXME: M seems to be missing memory operand support.
3804
3805- ``D``: Print the second register of a two-register operand, or prints the
3806 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3807 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3808 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003809- ``w``: No effect. Provided for compatibility with GCC which requires this
3810 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3811 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003812
3813NVPTX:
3814
3815- ``r``: No effect.
3816
3817PowerPC:
3818
3819- ``L``: Print the second register of a two-register operand. Requires that it
3820 has been allocated consecutively to the first.
3821
3822 .. FIXME: why is it restricted to consecutive ones? And there's
3823 nothing that ensures that happens, is there?
3824
3825- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3826 nothing. Used to print 'addi' vs 'add' instructions.
3827- ``y``: For a memory operand, prints formatter for a two-register X-form
3828 instruction. (Currently always prints ``r0,OPERAND``).
3829- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3830 otherwise. (NOTE: LLVM does not support update form, so this will currently
3831 always print nothing)
3832- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3833 not support indexed form, so this will currently always print nothing)
3834
3835Sparc:
3836
3837- ``r``: No effect.
3838
3839SystemZ:
3840
3841SystemZ implements only ``n``, and does *not* support any of the other
3842target-independent modifiers.
3843
3844X86:
3845
3846- ``c``: Print an unadorned integer or symbol name. (The latter is
3847 target-specific behavior for this typically target-independent modifier).
3848- ``A``: Print a register name with a '``*``' before it.
3849- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3850 operand.
3851- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3852 memory operand.
3853- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3854 operand.
3855- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3856 operand.
3857- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3858 available, otherwise the 32-bit register name; do nothing on a memory operand.
3859- ``n``: Negate and print an unadorned integer, or, for operands other than an
3860 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3861 the operand. (The behavior for relocatable symbol expressions is a
3862 target-specific behavior for this typically target-independent modifier)
3863- ``H``: Print a memory reference with additional offset +8.
3864- ``P``: Print a memory reference or operand for use as the argument of a call
3865 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3866
3867XCore:
3868
3869No additional modifiers.
3870
3871
Sean Silvab084af42012-12-07 10:36:55 +00003872Inline Asm Metadata
3873^^^^^^^^^^^^^^^^^^^
3874
3875The call instructions that wrap inline asm nodes may have a
3876"``!srcloc``" MDNode attached to it that contains a list of constant
3877integers. If present, the code generator will use the integer as the
3878location cookie value when report errors through the ``LLVMContext``
3879error reporting mechanisms. This allows a front-end to correlate backend
3880errors that occur with inline asm back to the source code that produced
3881it. For example:
3882
3883.. code-block:: llvm
3884
3885 call void asm sideeffect "something bad", ""(), !srcloc !42
3886 ...
3887 !42 = !{ i32 1234567 }
3888
3889It is up to the front-end to make sense of the magic numbers it places
3890in the IR. If the MDNode contains multiple constants, the code generator
3891will use the one that corresponds to the line of the asm that the error
3892occurs on.
3893
3894.. _metadata:
3895
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003896Metadata
3897========
Sean Silvab084af42012-12-07 10:36:55 +00003898
3899LLVM IR allows metadata to be attached to instructions in the program
3900that can convey extra information about the code to the optimizers and
3901code generator. One example application of metadata is source-level
3902debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003903
Sean Silvaa1190322015-08-06 22:56:48 +00003904Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003905``call`` instruction, it uses the ``metadata`` type.
3906
3907All metadata are identified in syntax by a exclamation point ('``!``').
3908
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003909.. _metadata-string:
3910
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003911Metadata Nodes and Metadata Strings
3912-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003913
3914A metadata string is a string surrounded by double quotes. It can
3915contain any character by escaping non-printable characters with
3916"``\xx``" where "``xx``" is the two digit hex code. For example:
3917"``!"test\00"``".
3918
3919Metadata nodes are represented with notation similar to structure
3920constants (a comma separated list of elements, surrounded by braces and
3921preceded by an exclamation point). Metadata nodes can have any values as
3922their operand. For example:
3923
3924.. code-block:: llvm
3925
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003926 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003927
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003928Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3929
Renato Golin124f2592016-07-20 12:16:38 +00003930.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003931
3932 !0 = distinct !{!"test\00", i32 10}
3933
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003934``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003935content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003936when metadata operands change.
3937
Sean Silvab084af42012-12-07 10:36:55 +00003938A :ref:`named metadata <namedmetadatastructure>` is a collection of
3939metadata nodes, which can be looked up in the module symbol table. For
3940example:
3941
3942.. code-block:: llvm
3943
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003944 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003945
3946Metadata can be used as function arguments. Here ``llvm.dbg.value``
3947function is using two metadata arguments:
3948
3949.. code-block:: llvm
3950
3951 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3952
Peter Collingbourne50108682015-11-06 02:41:02 +00003953Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3954to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003955
3956.. code-block:: llvm
3957
3958 %indvar.next = add i64 %indvar, 1, !dbg !21
3959
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003960Metadata can also be attached to a function or a global variable. Here metadata
3961``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
3962and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00003963
3964.. code-block:: llvm
3965
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003966 declare !dbg !22 void @f1()
3967 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00003968 ret void
3969 }
3970
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003971 @g1 = global i32 0, !dbg !22
3972 @g2 = external global i32, !dbg !22
3973
3974A transformation is required to drop any metadata attachment that it does not
3975know or know it can't preserve. Currently there is an exception for metadata
3976attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
3977unconditionally dropped unless the global is itself deleted.
3978
3979Metadata attached to a module using named metadata may not be dropped, with
3980the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
3981
Sean Silvab084af42012-12-07 10:36:55 +00003982More information about specific metadata nodes recognized by the
3983optimizers and code generator is found below.
3984
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003985.. _specialized-metadata:
3986
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003987Specialized Metadata Nodes
3988^^^^^^^^^^^^^^^^^^^^^^^^^^
3989
3990Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003991to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003992order.
3993
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003994These aren't inherently debug info centric, but currently all the specialized
3995metadata nodes are related to debug info.
3996
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003997.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003998
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003999DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004000"""""""""""""
4001
Sean Silvaa1190322015-08-06 22:56:48 +00004002``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004003``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
4004fields are tuples containing the debug info to be emitted along with the compile
4005unit, regardless of code optimizations (some nodes are only emitted if there are
Dehao Chenfb02f712017-02-10 21:09:07 +00004006references to them from instructions). The ``debugInfoForProfiling:`` field is a
4007boolean indicating whether or not line-table discriminators are updated to
4008provide more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004009
Renato Golin124f2592016-07-20 12:16:38 +00004010.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004011
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004012 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004013 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004014 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004015 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004016 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004017
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004018Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00004019specific compilation unit. File descriptors are defined using this scope.
4020These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004021keep track of subprograms, global variables, type information, and imported
4022entities (declarations and namespaces).
4023
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004024.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004025
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004026DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004027""""""
4028
Sean Silvaa1190322015-08-06 22:56:48 +00004029``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004030
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004031.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004032
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004033 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4034 checksumkind: CSK_MD5,
4035 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004036
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004037Files are sometimes used in ``scope:`` fields, and are the only valid target
4038for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004039Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004040
Michael Kuperstein605308a2015-05-14 10:58:59 +00004041.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004042
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004043DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004044"""""""""""
4045
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004046``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004047``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048
Renato Golin124f2592016-07-20 12:16:38 +00004049.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004050
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004051 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004052 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004053 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004054
Sean Silvaa1190322015-08-06 22:56:48 +00004055The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004056following:
4057
Renato Golin124f2592016-07-20 12:16:38 +00004058.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004059
4060 DW_ATE_address = 1
4061 DW_ATE_boolean = 2
4062 DW_ATE_float = 4
4063 DW_ATE_signed = 5
4064 DW_ATE_signed_char = 6
4065 DW_ATE_unsigned = 7
4066 DW_ATE_unsigned_char = 8
4067
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004068.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004069
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004070DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004071""""""""""""""""
4072
Sean Silvaa1190322015-08-06 22:56:48 +00004073``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004074refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004075types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004076represents a function with no return value (such as ``void foo() {}`` in C++).
4077
Renato Golin124f2592016-07-20 12:16:38 +00004078.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004079
4080 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4081 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004082 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004083
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004084.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004085
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004086DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004087"""""""""""""
4088
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004089``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004090qualified types.
4091
Renato Golin124f2592016-07-20 12:16:38 +00004092.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004093
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004094 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004095 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004096 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004097 align: 32)
4098
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004099The following ``tag:`` values are valid:
4100
Renato Golin124f2592016-07-20 12:16:38 +00004101.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004102
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004103 DW_TAG_member = 13
4104 DW_TAG_pointer_type = 15
4105 DW_TAG_reference_type = 16
4106 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004107 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004108 DW_TAG_ptr_to_member_type = 31
4109 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004110 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004111 DW_TAG_volatile_type = 53
4112 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004113 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004114
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004115.. _DIDerivedTypeMember:
4116
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004117``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004118<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004119``offset:`` is the member's bit offset. If the composite type has an ODR
4120``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4121uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004122
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004123``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4124field of :ref:`composite types <DICompositeType>` to describe parents and
4125friends.
4126
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004127``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4128
4129``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004130``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4131are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004132
4133Note that the ``void *`` type is expressed as a type derived from NULL.
4134
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004135.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004136
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004137DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004138"""""""""""""""
4139
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004140``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004141structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004142
4143If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004144identifier used for type merging between modules. When specified,
4145:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4146derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4147``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004148
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004149For a given ``identifier:``, there should only be a single composite type that
4150does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4151together will unique such definitions at parse time via the ``identifier:``
4152field, even if the nodes are ``distinct``.
4153
Renato Golin124f2592016-07-20 12:16:38 +00004154.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004155
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004156 !0 = !DIEnumerator(name: "SixKind", value: 7)
4157 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4158 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4159 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004160 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4161 elements: !{!0, !1, !2})
4162
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004163The following ``tag:`` values are valid:
4164
Renato Golin124f2592016-07-20 12:16:38 +00004165.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004166
4167 DW_TAG_array_type = 1
4168 DW_TAG_class_type = 2
4169 DW_TAG_enumeration_type = 4
4170 DW_TAG_structure_type = 19
4171 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004172
4173For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004174descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004175level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004176array type is a native packed vector.
4177
4178For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004179descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004180value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004181``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004182
4183For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4184``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004185<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4186``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4187``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004188
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004189.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004190
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004191DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004192""""""""""
4193
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004194``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004195:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004196
4197.. code-block:: llvm
4198
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004199 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4200 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4201 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004202
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004203.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004204
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004205DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004206""""""""""""
4207
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004208``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4209variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004210
4211.. code-block:: llvm
4212
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004213 !0 = !DIEnumerator(name: "SixKind", value: 7)
4214 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4215 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004216
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004217DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004218"""""""""""""""""""""""
4219
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004220``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004221language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004222:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004223
4224.. code-block:: llvm
4225
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004226 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004227
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004228DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004229""""""""""""""""""""""""
4230
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004231``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004232language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004233but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004234``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004235:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004236
4237.. code-block:: llvm
4238
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004239 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004240
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004241DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004242"""""""""""
4243
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004244``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004245
4246.. code-block:: llvm
4247
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004248 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004249
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004250DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004251""""""""""""""""
4252
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004253``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004254
4255.. code-block:: llvm
4256
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004257 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004258 file: !2, line: 7, type: !3, isLocal: true,
4259 isDefinition: false, variable: i32* @foo,
4260 declaration: !4)
4261
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004262All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004263:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004264
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004265.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004266
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004267DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004268""""""""""""
4269
Peter Collingbourne50108682015-11-06 02:41:02 +00004270``DISubprogram`` nodes represent functions from the source language. A
4271``DISubprogram`` may be attached to a function definition using ``!dbg``
4272metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4273that must be retained, even if their IR counterparts are optimized out of
4274the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004275
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004276.. _DISubprogramDeclaration:
4277
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004278When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004279tree as opposed to a definition of a function. If the scope is a composite
4280type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4281then the subprogram declaration is uniqued based only on its ``linkageName:``
4282and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004283
Renato Golin124f2592016-07-20 12:16:38 +00004284.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004285
Peter Collingbourne50108682015-11-06 02:41:02 +00004286 define void @_Z3foov() !dbg !0 {
4287 ...
4288 }
4289
4290 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4291 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004292 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004293 containingType: !4,
4294 virtuality: DW_VIRTUALITY_pure_virtual,
4295 virtualIndex: 10, flags: DIFlagPrototyped,
4296 isOptimized: true, templateParams: !5,
4297 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004298
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004299.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004300
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004301DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004302""""""""""""""
4303
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004304``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004305<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004306two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004307fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004308
Renato Golin124f2592016-07-20 12:16:38 +00004309.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004310
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004311 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004312
4313Usually lexical blocks are ``distinct`` to prevent node merging based on
4314operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004315
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004316.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004317
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004318DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004319""""""""""""""""""
4320
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004321``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004322:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004323indicate textual inclusion, or the ``discriminator:`` field can be used to
4324discriminate between control flow within a single block in the source language.
4325
4326.. code-block:: llvm
4327
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004328 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4329 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4330 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004331
Michael Kuperstein605308a2015-05-14 10:58:59 +00004332.. _DILocation:
4333
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004334DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004335""""""""""
4336
Sean Silvaa1190322015-08-06 22:56:48 +00004337``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004338mandatory, and points at an :ref:`DILexicalBlockFile`, an
4339:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004340
4341.. code-block:: llvm
4342
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004343 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004344
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004345.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004346
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004347DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004348"""""""""""""""
4349
Sean Silvaa1190322015-08-06 22:56:48 +00004350``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004351the ``arg:`` field is set to non-zero, then this variable is a subprogram
4352parameter, and it will be included in the ``variables:`` field of its
4353:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004354
Renato Golin124f2592016-07-20 12:16:38 +00004355.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004356
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004357 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4358 type: !3, flags: DIFlagArtificial)
4359 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4360 type: !3)
4361 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004362
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004363DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004364""""""""""""
4365
Sean Silvaa1190322015-08-06 22:56:48 +00004366``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004367:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4368describe how the referenced LLVM variable relates to the source language
4369variable.
4370
4371The current supported vocabulary is limited:
4372
4373- ``DW_OP_deref`` dereferences the working expression.
4374- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4375- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4376 here, respectively) of the variable piece from the working expression.
4377
Renato Golin124f2592016-07-20 12:16:38 +00004378.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004379
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004380 !0 = !DIExpression(DW_OP_deref)
4381 !1 = !DIExpression(DW_OP_plus, 3)
4382 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4383 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004384
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004385DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004386""""""""""""""
4387
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004388``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004389
4390.. code-block:: llvm
4391
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004392 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004393 getter: "getFoo", attributes: 7, type: !2)
4394
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004395DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004396""""""""""""""""
4397
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004398``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004399compile unit.
4400
Renato Golin124f2592016-07-20 12:16:38 +00004401.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004402
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004403 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004404 entity: !1, line: 7)
4405
Amjad Abouda9bcf162015-12-10 12:56:35 +00004406DIMacro
4407"""""""
4408
4409``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4410The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004411defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004412used to expand the macro identifier.
4413
Renato Golin124f2592016-07-20 12:16:38 +00004414.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004415
4416 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4417 value: "((x) + 1)")
4418 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4419
4420DIMacroFile
4421"""""""""""
4422
4423``DIMacroFile`` nodes represent inclusion of source files.
4424The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4425appear in the included source file.
4426
Renato Golin124f2592016-07-20 12:16:38 +00004427.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004428
4429 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4430 nodes: !3)
4431
Sean Silvab084af42012-12-07 10:36:55 +00004432'``tbaa``' Metadata
4433^^^^^^^^^^^^^^^^^^^
4434
4435In LLVM IR, memory does not have types, so LLVM's own type system is not
4436suitable for doing TBAA. Instead, metadata is added to the IR to
4437describe a type system of a higher level language. This can be used to
4438implement typical C/C++ TBAA, but it can also be used to implement
4439custom alias analysis behavior for other languages.
4440
4441The current metadata format is very simple. TBAA metadata nodes have up
4442to three fields, e.g.:
4443
4444.. code-block:: llvm
4445
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004446 !0 = !{ !"an example type tree" }
4447 !1 = !{ !"int", !0 }
4448 !2 = !{ !"float", !0 }
4449 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004450
4451The first field is an identity field. It can be any value, usually a
4452metadata string, which uniquely identifies the type. The most important
4453name in the tree is the name of the root node. Two trees with different
4454root node names are entirely disjoint, even if they have leaves with
4455common names.
4456
4457The second field identifies the type's parent node in the tree, or is
4458null or omitted for a root node. A type is considered to alias all of
4459its descendants and all of its ancestors in the tree. Also, a type is
4460considered to alias all types in other trees, so that bitcode produced
4461from multiple front-ends is handled conservatively.
4462
4463If the third field is present, it's an integer which if equal to 1
4464indicates that the type is "constant" (meaning
4465``pointsToConstantMemory`` should return true; see `other useful
4466AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4467
4468'``tbaa.struct``' Metadata
4469^^^^^^^^^^^^^^^^^^^^^^^^^^
4470
4471The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4472aggregate assignment operations in C and similar languages, however it
4473is defined to copy a contiguous region of memory, which is more than
4474strictly necessary for aggregate types which contain holes due to
4475padding. Also, it doesn't contain any TBAA information about the fields
4476of the aggregate.
4477
4478``!tbaa.struct`` metadata can describe which memory subregions in a
4479memcpy are padding and what the TBAA tags of the struct are.
4480
4481The current metadata format is very simple. ``!tbaa.struct`` metadata
4482nodes are a list of operands which are in conceptual groups of three.
4483For each group of three, the first operand gives the byte offset of a
4484field in bytes, the second gives its size in bytes, and the third gives
4485its tbaa tag. e.g.:
4486
4487.. code-block:: llvm
4488
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004489 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004490
4491This describes a struct with two fields. The first is at offset 0 bytes
4492with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4493and has size 4 bytes and has tbaa tag !2.
4494
4495Note that the fields need not be contiguous. In this example, there is a
44964 byte gap between the two fields. This gap represents padding which
4497does not carry useful data and need not be preserved.
4498
Hal Finkel94146652014-07-24 14:25:39 +00004499'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004500^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004501
4502``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4503noalias memory-access sets. This means that some collection of memory access
4504instructions (loads, stores, memory-accessing calls, etc.) that carry
4505``noalias`` metadata can specifically be specified not to alias with some other
4506collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004507Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004508a domain.
4509
4510When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004511of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004512subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004513instruction's ``noalias`` list, then the two memory accesses are assumed not to
4514alias.
Hal Finkel94146652014-07-24 14:25:39 +00004515
Adam Nemet569a5b32016-04-27 00:52:48 +00004516Because scopes in one domain don't affect scopes in other domains, separate
4517domains can be used to compose multiple independent noalias sets. This is
4518used for example during inlining. As the noalias function parameters are
4519turned into noalias scope metadata, a new domain is used every time the
4520function is inlined.
4521
Hal Finkel029cde62014-07-25 15:50:02 +00004522The metadata identifying each domain is itself a list containing one or two
4523entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004524string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004525self-reference can be used to create globally unique domain names. A
4526descriptive string may optionally be provided as a second list entry.
4527
4528The metadata identifying each scope is also itself a list containing two or
4529three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004530is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004531self-reference can be used to create globally unique scope names. A metadata
4532reference to the scope's domain is the second entry. A descriptive string may
4533optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004534
4535For example,
4536
4537.. code-block:: llvm
4538
Hal Finkel029cde62014-07-25 15:50:02 +00004539 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004540 !0 = !{!0}
4541 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004542
Hal Finkel029cde62014-07-25 15:50:02 +00004543 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004544 !2 = !{!2, !0}
4545 !3 = !{!3, !0}
4546 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004547
Hal Finkel029cde62014-07-25 15:50:02 +00004548 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004549 !5 = !{!4} ; A list containing only scope !4
4550 !6 = !{!4, !3, !2}
4551 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004552
4553 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004554 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004555 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004556
Hal Finkel029cde62014-07-25 15:50:02 +00004557 ; These two instructions also don't alias (for domain !1, the set of scopes
4558 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004559 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004560 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004561
Adam Nemet0a8416f2015-05-11 08:30:28 +00004562 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004563 ; the !noalias list is not a superset of, or equal to, the scopes in the
4564 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004565 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004566 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004567
Sean Silvab084af42012-12-07 10:36:55 +00004568'``fpmath``' Metadata
4569^^^^^^^^^^^^^^^^^^^^^
4570
4571``fpmath`` metadata may be attached to any instruction of floating point
4572type. It can be used to express the maximum acceptable error in the
4573result of that instruction, in ULPs, thus potentially allowing the
4574compiler to use a more efficient but less accurate method of computing
4575it. ULP is defined as follows:
4576
4577 If ``x`` is a real number that lies between two finite consecutive
4578 floating-point numbers ``a`` and ``b``, without being equal to one
4579 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4580 distance between the two non-equal finite floating-point numbers
4581 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4582
Matt Arsenault82f41512016-06-27 19:43:15 +00004583The metadata node shall consist of a single positive float type number
4584representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004585
4586.. code-block:: llvm
4587
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004588 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004589
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004590.. _range-metadata:
4591
Sean Silvab084af42012-12-07 10:36:55 +00004592'``range``' Metadata
4593^^^^^^^^^^^^^^^^^^^^
4594
Jingyue Wu37fcb592014-06-19 16:50:16 +00004595``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4596integer types. It expresses the possible ranges the loaded value or the value
4597returned by the called function at this call site is in. The ranges are
4598represented with a flattened list of integers. The loaded value or the value
4599returned is known to be in the union of the ranges defined by each consecutive
4600pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004601
4602- The type must match the type loaded by the instruction.
4603- The pair ``a,b`` represents the range ``[a,b)``.
4604- Both ``a`` and ``b`` are constants.
4605- The range is allowed to wrap.
4606- The range should not represent the full or empty set. That is,
4607 ``a!=b``.
4608
4609In addition, the pairs must be in signed order of the lower bound and
4610they must be non-contiguous.
4611
4612Examples:
4613
4614.. code-block:: llvm
4615
David Blaikiec7aabbb2015-03-04 22:06:14 +00004616 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4617 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004618 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4619 %d = invoke i8 @bar() to label %cont
4620 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004621 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004622 !0 = !{ i8 0, i8 2 }
4623 !1 = !{ i8 255, i8 2 }
4624 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4625 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004626
Peter Collingbourne235c2752016-12-08 19:01:00 +00004627'``absolute_symbol``' Metadata
4628^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4629
4630``absolute_symbol`` metadata may be attached to a global variable
4631declaration. It marks the declaration as a reference to an absolute symbol,
4632which causes the backend to use absolute relocations for the symbol even
4633in position independent code, and expresses the possible ranges that the
4634global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004635``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4636may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004637
Peter Collingbourned88f9282017-01-20 21:56:37 +00004638Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004639
4640.. code-block:: llvm
4641
4642 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004643 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004644
4645 ...
4646 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004647 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004648
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004649'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004650^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004651
4652``unpredictable`` metadata may be attached to any branch or switch
4653instruction. It can be used to express the unpredictability of control
4654flow. Similar to the llvm.expect intrinsic, it may be used to alter
4655optimizations related to compare and branch instructions. The metadata
4656is treated as a boolean value; if it exists, it signals that the branch
4657or switch that it is attached to is completely unpredictable.
4658
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004659'``llvm.loop``'
4660^^^^^^^^^^^^^^^
4661
4662It is sometimes useful to attach information to loop constructs. Currently,
4663loop metadata is implemented as metadata attached to the branch instruction
4664in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004665guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004666specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004667
4668The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004669itself to avoid merging it with any other identifier metadata, e.g.,
4670during module linkage or function inlining. That is, each loop should refer
4671to their own identification metadata even if they reside in separate functions.
4672The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004673constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004674
4675.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004676
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004677 !0 = !{!0}
4678 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004679
Mark Heffernan893752a2014-07-18 19:24:51 +00004680The loop identifier metadata can be used to specify additional
4681per-loop metadata. Any operands after the first operand can be treated
4682as user-defined metadata. For example the ``llvm.loop.unroll.count``
4683suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004684
Paul Redmond5fdf8362013-05-28 20:00:34 +00004685.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004686
Paul Redmond5fdf8362013-05-28 20:00:34 +00004687 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4688 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004689 !0 = !{!0, !1}
4690 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004691
Mark Heffernan9d20e422014-07-21 23:11:03 +00004692'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4693^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004694
Mark Heffernan9d20e422014-07-21 23:11:03 +00004695Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4696used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004697vectorization width and interleave count. These metadata should be used in
4698conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004699``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4700optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004701it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004702which contains information about loop-carried memory dependencies can be helpful
4703in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004704
Mark Heffernan9d20e422014-07-21 23:11:03 +00004705'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004706^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4707
Mark Heffernan9d20e422014-07-21 23:11:03 +00004708This metadata suggests an interleave count to the loop interleaver.
4709The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004710second operand is an integer specifying the interleave count. For
4711example:
4712
4713.. code-block:: llvm
4714
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004715 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004716
Mark Heffernan9d20e422014-07-21 23:11:03 +00004717Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004718multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004719then the interleave count will be determined automatically.
4720
4721'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004722^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004723
4724This metadata selectively enables or disables vectorization for the loop. The
4725first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004726is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000047270 disables vectorization:
4728
4729.. code-block:: llvm
4730
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004731 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4732 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004733
4734'``llvm.loop.vectorize.width``' Metadata
4735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4736
4737This metadata sets the target width of the vectorizer. The first
4738operand is the string ``llvm.loop.vectorize.width`` and the second
4739operand is an integer specifying the width. For example:
4740
4741.. code-block:: llvm
4742
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004743 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004744
4745Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004746vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000047470 or if the loop does not have this metadata the width will be
4748determined automatically.
4749
4750'``llvm.loop.unroll``'
4751^^^^^^^^^^^^^^^^^^^^^^
4752
4753Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4754optimization hints such as the unroll factor. ``llvm.loop.unroll``
4755metadata should be used in conjunction with ``llvm.loop`` loop
4756identification metadata. The ``llvm.loop.unroll`` metadata are only
4757optimization hints and the unrolling will only be performed if the
4758optimizer believes it is safe to do so.
4759
Mark Heffernan893752a2014-07-18 19:24:51 +00004760'``llvm.loop.unroll.count``' Metadata
4761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4762
4763This metadata suggests an unroll factor to the loop unroller. The
4764first operand is the string ``llvm.loop.unroll.count`` and the second
4765operand is a positive integer specifying the unroll factor. For
4766example:
4767
4768.. code-block:: llvm
4769
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004770 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004771
4772If the trip count of the loop is less than the unroll count the loop
4773will be partially unrolled.
4774
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004775'``llvm.loop.unroll.disable``' Metadata
4776^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4777
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004778This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004779which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004780
4781.. code-block:: llvm
4782
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004783 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004784
Kevin Qin715b01e2015-03-09 06:14:18 +00004785'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004787
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004788This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004789operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004790
4791.. code-block:: llvm
4792
4793 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4794
Mark Heffernan89391542015-08-10 17:28:08 +00004795'``llvm.loop.unroll.enable``' Metadata
4796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4797
4798This metadata suggests that the loop should be fully unrolled if the trip count
4799is known at compile time and partially unrolled if the trip count is not known
4800at compile time. The metadata has a single operand which is the string
4801``llvm.loop.unroll.enable``. For example:
4802
4803.. code-block:: llvm
4804
4805 !0 = !{!"llvm.loop.unroll.enable"}
4806
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004807'``llvm.loop.unroll.full``' Metadata
4808^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4809
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004810This metadata suggests that the loop should be unrolled fully. The
4811metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004812For example:
4813
4814.. code-block:: llvm
4815
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004816 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004817
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004818'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004819^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004820
4821This metadata indicates that the loop should not be versioned for the purpose
4822of enabling loop-invariant code motion (LICM). The metadata has a single operand
4823which is the string ``llvm.loop.licm_versioning.disable``. For example:
4824
4825.. code-block:: llvm
4826
4827 !0 = !{!"llvm.loop.licm_versioning.disable"}
4828
Adam Nemetd2fa4142016-04-27 05:28:18 +00004829'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004830^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004831
4832Loop distribution allows splitting a loop into multiple loops. Currently,
4833this is only performed if the entire loop cannot be vectorized due to unsafe
4834memory dependencies. The transformation will atempt to isolate the unsafe
4835dependencies into their own loop.
4836
4837This metadata can be used to selectively enable or disable distribution of the
4838loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4839second operand is a bit. If the bit operand value is 1 distribution is
4840enabled. A value of 0 disables distribution:
4841
4842.. code-block:: llvm
4843
4844 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4845 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4846
4847This metadata should be used in conjunction with ``llvm.loop`` loop
4848identification metadata.
4849
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004850'``llvm.mem``'
4851^^^^^^^^^^^^^^^
4852
4853Metadata types used to annotate memory accesses with information helpful
4854for optimizations are prefixed with ``llvm.mem``.
4855
4856'``llvm.mem.parallel_loop_access``' Metadata
4857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4858
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004859The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4860or metadata containing a list of loop identifiers for nested loops.
4861The metadata is attached to memory accessing instructions and denotes that
4862no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004863with the same loop identifier. The metadata on memory reads also implies that
4864if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004865
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004866Precisely, given two instructions ``m1`` and ``m2`` that both have the
4867``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4868set of loops associated with that metadata, respectively, then there is no loop
4869carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004870``L2``.
4871
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004872As a special case, if all memory accessing instructions in a loop have
4873``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4874loop has no loop carried memory dependences and is considered to be a parallel
4875loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004876
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004877Note that if not all memory access instructions have such metadata referring to
4878the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004879memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004880safe mechanism, this causes loops that were originally parallel to be considered
4881sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004882insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004883
4884Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004885both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004886metadata types that refer to the same loop identifier metadata.
4887
4888.. code-block:: llvm
4889
4890 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004891 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004892 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004893 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004894 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004895 ...
4896 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004897
4898 for.end:
4899 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004900 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004901
4902It is also possible to have nested parallel loops. In that case the
4903memory accesses refer to a list of loop identifier metadata nodes instead of
4904the loop identifier metadata node directly:
4905
4906.. code-block:: llvm
4907
4908 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004909 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004910 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004911 ...
4912 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004913
4914 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004915 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004916 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004917 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004918 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004919 ...
4920 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004921
4922 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004923 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004924 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004925 ...
4926 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004927
4928 outer.for.end: ; preds = %for.body
4929 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004930 !0 = !{!1, !2} ; a list of loop identifiers
4931 !1 = !{!1} ; an identifier for the inner loop
4932 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004933
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004934'``invariant.group``' Metadata
4935^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4936
4937The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4938The existence of the ``invariant.group`` metadata on the instruction tells
4939the optimizer that every ``load`` and ``store`` to the same pointer operand
4940within the same invariant group can be assumed to load or store the same
4941value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00004942when two pointers are considered the same). Pointers returned by bitcast or
4943getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004944
4945Examples:
4946
4947.. code-block:: llvm
4948
4949 @unknownPtr = external global i8
4950 ...
4951 %ptr = alloca i8
4952 store i8 42, i8* %ptr, !invariant.group !0
4953 call void @foo(i8* %ptr)
4954
4955 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4956 call void @foo(i8* %ptr)
4957 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4958
4959 %newPtr = call i8* @getPointer(i8* %ptr)
4960 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4961
4962 %unknownValue = load i8, i8* @unknownPtr
4963 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4964
4965 call void @foo(i8* %ptr)
4966 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4967 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4968
4969 ...
4970 declare void @foo(i8*)
4971 declare i8* @getPointer(i8*)
4972 declare i8* @llvm.invariant.group.barrier(i8*)
4973
4974 !0 = !{!"magic ptr"}
4975 !1 = !{!"other ptr"}
4976
Peter Collingbournea333db82016-07-26 22:31:30 +00004977'``type``' Metadata
4978^^^^^^^^^^^^^^^^^^^
4979
4980See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004981
4982
Sean Silvab084af42012-12-07 10:36:55 +00004983Module Flags Metadata
4984=====================
4985
4986Information about the module as a whole is difficult to convey to LLVM's
4987subsystems. The LLVM IR isn't sufficient to transmit this information.
4988The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004989this. These flags are in the form of key / value pairs --- much like a
4990dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004991look it up.
4992
4993The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4994Each triplet has the following form:
4995
4996- The first element is a *behavior* flag, which specifies the behavior
4997 when two (or more) modules are merged together, and it encounters two
4998 (or more) metadata with the same ID. The supported behaviors are
4999 described below.
5000- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005001 metadata. Each module may only have one flag entry for each unique ID (not
5002 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005003- The third element is the value of the flag.
5004
5005When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005006``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5007each unique metadata ID string, there will be exactly one entry in the merged
5008modules ``llvm.module.flags`` metadata table, and the value for that entry will
5009be determined by the merge behavior flag, as described below. The only exception
5010is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005011
5012The following behaviors are supported:
5013
5014.. list-table::
5015 :header-rows: 1
5016 :widths: 10 90
5017
5018 * - Value
5019 - Behavior
5020
5021 * - 1
5022 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005023 Emits an error if two values disagree, otherwise the resulting value
5024 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005025
5026 * - 2
5027 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005028 Emits a warning if two values disagree. The result value will be the
5029 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005030
5031 * - 3
5032 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005033 Adds a requirement that another module flag be present and have a
5034 specified value after linking is performed. The value must be a
5035 metadata pair, where the first element of the pair is the ID of the
5036 module flag to be restricted, and the second element of the pair is
5037 the value the module flag should be restricted to. This behavior can
5038 be used to restrict the allowable results (via triggering of an
5039 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005040
5041 * - 4
5042 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005043 Uses the specified value, regardless of the behavior or value of the
5044 other module. If both modules specify **Override**, but the values
5045 differ, an error will be emitted.
5046
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005047 * - 5
5048 - **Append**
5049 Appends the two values, which are required to be metadata nodes.
5050
5051 * - 6
5052 - **AppendUnique**
5053 Appends the two values, which are required to be metadata
5054 nodes. However, duplicate entries in the second list are dropped
5055 during the append operation.
5056
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005057It is an error for a particular unique flag ID to have multiple behaviors,
5058except in the case of **Require** (which adds restrictions on another metadata
5059value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005060
5061An example of module flags:
5062
5063.. code-block:: llvm
5064
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005065 !0 = !{ i32 1, !"foo", i32 1 }
5066 !1 = !{ i32 4, !"bar", i32 37 }
5067 !2 = !{ i32 2, !"qux", i32 42 }
5068 !3 = !{ i32 3, !"qux",
5069 !{
5070 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005071 }
5072 }
5073 !llvm.module.flags = !{ !0, !1, !2, !3 }
5074
5075- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5076 if two or more ``!"foo"`` flags are seen is to emit an error if their
5077 values are not equal.
5078
5079- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5080 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005081 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005082
5083- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5084 behavior if two or more ``!"qux"`` flags are seen is to emit a
5085 warning if their values are not equal.
5086
5087- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5088
5089 ::
5090
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005091 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005092
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005093 The behavior is to emit an error if the ``llvm.module.flags`` does not
5094 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5095 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005096
5097Objective-C Garbage Collection Module Flags Metadata
5098----------------------------------------------------
5099
5100On the Mach-O platform, Objective-C stores metadata about garbage
5101collection in a special section called "image info". The metadata
5102consists of a version number and a bitmask specifying what types of
5103garbage collection are supported (if any) by the file. If two or more
5104modules are linked together their garbage collection metadata needs to
5105be merged rather than appended together.
5106
5107The Objective-C garbage collection module flags metadata consists of the
5108following key-value pairs:
5109
5110.. list-table::
5111 :header-rows: 1
5112 :widths: 30 70
5113
5114 * - Key
5115 - Value
5116
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005117 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005118 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005119
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005120 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005121 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005122 always 0.
5123
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005124 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005125 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005126 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5127 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5128 Objective-C ABI version 2.
5129
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005130 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005131 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005132 not. Valid values are 0, for no garbage collection, and 2, for garbage
5133 collection supported.
5134
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005135 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005136 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005137 If present, its value must be 6. This flag requires that the
5138 ``Objective-C Garbage Collection`` flag have the value 2.
5139
5140Some important flag interactions:
5141
5142- If a module with ``Objective-C Garbage Collection`` set to 0 is
5143 merged with a module with ``Objective-C Garbage Collection`` set to
5144 2, then the resulting module has the
5145 ``Objective-C Garbage Collection`` flag set to 0.
5146- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5147 merged with a module with ``Objective-C GC Only`` set to 6.
5148
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005149Automatic Linker Flags Module Flags Metadata
5150--------------------------------------------
5151
5152Some targets support embedding flags to the linker inside individual object
5153files. Typically this is used in conjunction with language extensions which
5154allow source files to explicitly declare the libraries they depend on, and have
5155these automatically be transmitted to the linker via object files.
5156
5157These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005158using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005159to be ``AppendUnique``, and the value for the key is expected to be a metadata
5160node which should be a list of other metadata nodes, each of which should be a
5161list of metadata strings defining linker options.
5162
5163For example, the following metadata section specifies two separate sets of
5164linker options, presumably to link against ``libz`` and the ``Cocoa``
5165framework::
5166
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005167 !0 = !{ i32 6, !"Linker Options",
5168 !{
5169 !{ !"-lz" },
5170 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005171 !llvm.module.flags = !{ !0 }
5172
5173The metadata encoding as lists of lists of options, as opposed to a collapsed
5174list of options, is chosen so that the IR encoding can use multiple option
5175strings to specify e.g., a single library, while still having that specifier be
5176preserved as an atomic element that can be recognized by a target specific
5177assembly writer or object file emitter.
5178
5179Each individual option is required to be either a valid option for the target's
5180linker, or an option that is reserved by the target specific assembly writer or
5181object file emitter. No other aspect of these options is defined by the IR.
5182
Oliver Stannard5dc29342014-06-20 10:08:11 +00005183C type width Module Flags Metadata
5184----------------------------------
5185
5186The ARM backend emits a section into each generated object file describing the
5187options that it was compiled with (in a compiler-independent way) to prevent
5188linking incompatible objects, and to allow automatic library selection. Some
5189of these options are not visible at the IR level, namely wchar_t width and enum
5190width.
5191
5192To pass this information to the backend, these options are encoded in module
5193flags metadata, using the following key-value pairs:
5194
5195.. list-table::
5196 :header-rows: 1
5197 :widths: 30 70
5198
5199 * - Key
5200 - Value
5201
5202 * - short_wchar
5203 - * 0 --- sizeof(wchar_t) == 4
5204 * 1 --- sizeof(wchar_t) == 2
5205
5206 * - short_enum
5207 - * 0 --- Enums are at least as large as an ``int``.
5208 * 1 --- Enums are stored in the smallest integer type which can
5209 represent all of its values.
5210
5211For example, the following metadata section specifies that the module was
5212compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5213enum is the smallest type which can represent all of its values::
5214
5215 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005216 !0 = !{i32 1, !"short_wchar", i32 1}
5217 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005218
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005219.. _intrinsicglobalvariables:
5220
Sean Silvab084af42012-12-07 10:36:55 +00005221Intrinsic Global Variables
5222==========================
5223
5224LLVM has a number of "magic" global variables that contain data that
5225affect code generation or other IR semantics. These are documented here.
5226All globals of this sort should have a section specified as
5227"``llvm.metadata``". This section and all globals that start with
5228"``llvm.``" are reserved for use by LLVM.
5229
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005230.. _gv_llvmused:
5231
Sean Silvab084af42012-12-07 10:36:55 +00005232The '``llvm.used``' Global Variable
5233-----------------------------------
5234
Rafael Espindola74f2e462013-04-22 14:58:02 +00005235The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005236:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005237pointers to named global variables, functions and aliases which may optionally
5238have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005239use of it is:
5240
5241.. code-block:: llvm
5242
5243 @X = global i8 4
5244 @Y = global i32 123
5245
5246 @llvm.used = appending global [2 x i8*] [
5247 i8* @X,
5248 i8* bitcast (i32* @Y to i8*)
5249 ], section "llvm.metadata"
5250
Rafael Espindola74f2e462013-04-22 14:58:02 +00005251If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5252and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005253symbol that it cannot see (which is why they have to be named). For example, if
5254a variable has internal linkage and no references other than that from the
5255``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5256references from inline asms and other things the compiler cannot "see", and
5257corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005258
5259On some targets, the code generator must emit a directive to the
5260assembler or object file to prevent the assembler and linker from
5261molesting the symbol.
5262
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005263.. _gv_llvmcompilerused:
5264
Sean Silvab084af42012-12-07 10:36:55 +00005265The '``llvm.compiler.used``' Global Variable
5266--------------------------------------------
5267
5268The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5269directive, except that it only prevents the compiler from touching the
5270symbol. On targets that support it, this allows an intelligent linker to
5271optimize references to the symbol without being impeded as it would be
5272by ``@llvm.used``.
5273
5274This is a rare construct that should only be used in rare circumstances,
5275and should not be exposed to source languages.
5276
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005277.. _gv_llvmglobalctors:
5278
Sean Silvab084af42012-12-07 10:36:55 +00005279The '``llvm.global_ctors``' Global Variable
5280-------------------------------------------
5281
5282.. code-block:: llvm
5283
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005284 %0 = type { i32, void ()*, i8* }
5285 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005286
5287The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005288functions, priorities, and an optional associated global or function.
5289The functions referenced by this array will be called in ascending order
5290of priority (i.e. lowest first) when the module is loaded. The order of
5291functions with the same priority is not defined.
5292
5293If the third field is present, non-null, and points to a global variable
5294or function, the initializer function will only run if the associated
5295data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005296
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005297.. _llvmglobaldtors:
5298
Sean Silvab084af42012-12-07 10:36:55 +00005299The '``llvm.global_dtors``' Global Variable
5300-------------------------------------------
5301
5302.. code-block:: llvm
5303
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005304 %0 = type { i32, void ()*, i8* }
5305 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005306
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005307The ``@llvm.global_dtors`` array contains a list of destructor
5308functions, priorities, and an optional associated global or function.
5309The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005310order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005311order of functions with the same priority is not defined.
5312
5313If the third field is present, non-null, and points to a global variable
5314or function, the destructor function will only run if the associated
5315data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005316
5317Instruction Reference
5318=====================
5319
5320The LLVM instruction set consists of several different classifications
5321of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5322instructions <binaryops>`, :ref:`bitwise binary
5323instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5324:ref:`other instructions <otherops>`.
5325
5326.. _terminators:
5327
5328Terminator Instructions
5329-----------------------
5330
5331As mentioned :ref:`previously <functionstructure>`, every basic block in a
5332program ends with a "Terminator" instruction, which indicates which
5333block should be executed after the current block is finished. These
5334terminator instructions typically yield a '``void``' value: they produce
5335control flow, not values (the one exception being the
5336':ref:`invoke <i_invoke>`' instruction).
5337
5338The terminator instructions are: ':ref:`ret <i_ret>`',
5339':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5340':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005341':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005342':ref:`catchret <i_catchret>`',
5343':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005344and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005345
5346.. _i_ret:
5347
5348'``ret``' Instruction
5349^^^^^^^^^^^^^^^^^^^^^
5350
5351Syntax:
5352"""""""
5353
5354::
5355
5356 ret <type> <value> ; Return a value from a non-void function
5357 ret void ; Return from void function
5358
5359Overview:
5360"""""""""
5361
5362The '``ret``' instruction is used to return control flow (and optionally
5363a value) from a function back to the caller.
5364
5365There are two forms of the '``ret``' instruction: one that returns a
5366value and then causes control flow, and one that just causes control
5367flow to occur.
5368
5369Arguments:
5370""""""""""
5371
5372The '``ret``' instruction optionally accepts a single argument, the
5373return value. The type of the return value must be a ':ref:`first
5374class <t_firstclass>`' type.
5375
5376A function is not :ref:`well formed <wellformed>` if it it has a non-void
5377return type and contains a '``ret``' instruction with no return value or
5378a return value with a type that does not match its type, or if it has a
5379void return type and contains a '``ret``' instruction with a return
5380value.
5381
5382Semantics:
5383""""""""""
5384
5385When the '``ret``' instruction is executed, control flow returns back to
5386the calling function's context. If the caller is a
5387":ref:`call <i_call>`" instruction, execution continues at the
5388instruction after the call. If the caller was an
5389":ref:`invoke <i_invoke>`" instruction, execution continues at the
5390beginning of the "normal" destination block. If the instruction returns
5391a value, that value shall set the call or invoke instruction's return
5392value.
5393
5394Example:
5395""""""""
5396
5397.. code-block:: llvm
5398
5399 ret i32 5 ; Return an integer value of 5
5400 ret void ; Return from a void function
5401 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5402
5403.. _i_br:
5404
5405'``br``' Instruction
5406^^^^^^^^^^^^^^^^^^^^
5407
5408Syntax:
5409"""""""
5410
5411::
5412
5413 br i1 <cond>, label <iftrue>, label <iffalse>
5414 br label <dest> ; Unconditional branch
5415
5416Overview:
5417"""""""""
5418
5419The '``br``' instruction is used to cause control flow to transfer to a
5420different basic block in the current function. There are two forms of
5421this instruction, corresponding to a conditional branch and an
5422unconditional branch.
5423
5424Arguments:
5425""""""""""
5426
5427The conditional branch form of the '``br``' instruction takes a single
5428'``i1``' value and two '``label``' values. The unconditional form of the
5429'``br``' instruction takes a single '``label``' value as a target.
5430
5431Semantics:
5432""""""""""
5433
5434Upon execution of a conditional '``br``' instruction, the '``i1``'
5435argument is evaluated. If the value is ``true``, control flows to the
5436'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5437to the '``iffalse``' ``label`` argument.
5438
5439Example:
5440""""""""
5441
5442.. code-block:: llvm
5443
5444 Test:
5445 %cond = icmp eq i32 %a, %b
5446 br i1 %cond, label %IfEqual, label %IfUnequal
5447 IfEqual:
5448 ret i32 1
5449 IfUnequal:
5450 ret i32 0
5451
5452.. _i_switch:
5453
5454'``switch``' Instruction
5455^^^^^^^^^^^^^^^^^^^^^^^^
5456
5457Syntax:
5458"""""""
5459
5460::
5461
5462 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5463
5464Overview:
5465"""""""""
5466
5467The '``switch``' instruction is used to transfer control flow to one of
5468several different places. It is a generalization of the '``br``'
5469instruction, allowing a branch to occur to one of many possible
5470destinations.
5471
5472Arguments:
5473""""""""""
5474
5475The '``switch``' instruction uses three parameters: an integer
5476comparison value '``value``', a default '``label``' destination, and an
5477array of pairs of comparison value constants and '``label``'s. The table
5478is not allowed to contain duplicate constant entries.
5479
5480Semantics:
5481""""""""""
5482
5483The ``switch`` instruction specifies a table of values and destinations.
5484When the '``switch``' instruction is executed, this table is searched
5485for the given value. If the value is found, control flow is transferred
5486to the corresponding destination; otherwise, control flow is transferred
5487to the default destination.
5488
5489Implementation:
5490"""""""""""""""
5491
5492Depending on properties of the target machine and the particular
5493``switch`` instruction, this instruction may be code generated in
5494different ways. For example, it could be generated as a series of
5495chained conditional branches or with a lookup table.
5496
5497Example:
5498""""""""
5499
5500.. code-block:: llvm
5501
5502 ; Emulate a conditional br instruction
5503 %Val = zext i1 %value to i32
5504 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5505
5506 ; Emulate an unconditional br instruction
5507 switch i32 0, label %dest [ ]
5508
5509 ; Implement a jump table:
5510 switch i32 %val, label %otherwise [ i32 0, label %onzero
5511 i32 1, label %onone
5512 i32 2, label %ontwo ]
5513
5514.. _i_indirectbr:
5515
5516'``indirectbr``' Instruction
5517^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5518
5519Syntax:
5520"""""""
5521
5522::
5523
5524 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5525
5526Overview:
5527"""""""""
5528
5529The '``indirectbr``' instruction implements an indirect branch to a
5530label within the current function, whose address is specified by
5531"``address``". Address must be derived from a
5532:ref:`blockaddress <blockaddress>` constant.
5533
5534Arguments:
5535""""""""""
5536
5537The '``address``' argument is the address of the label to jump to. The
5538rest of the arguments indicate the full set of possible destinations
5539that the address may point to. Blocks are allowed to occur multiple
5540times in the destination list, though this isn't particularly useful.
5541
5542This destination list is required so that dataflow analysis has an
5543accurate understanding of the CFG.
5544
5545Semantics:
5546""""""""""
5547
5548Control transfers to the block specified in the address argument. All
5549possible destination blocks must be listed in the label list, otherwise
5550this instruction has undefined behavior. This implies that jumps to
5551labels defined in other functions have undefined behavior as well.
5552
5553Implementation:
5554"""""""""""""""
5555
5556This is typically implemented with a jump through a register.
5557
5558Example:
5559""""""""
5560
5561.. code-block:: llvm
5562
5563 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5564
5565.. _i_invoke:
5566
5567'``invoke``' Instruction
5568^^^^^^^^^^^^^^^^^^^^^^^^
5569
5570Syntax:
5571"""""""
5572
5573::
5574
David Blaikieb83cf102016-07-13 17:21:34 +00005575 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005576 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005577
5578Overview:
5579"""""""""
5580
5581The '``invoke``' instruction causes control to transfer to a specified
5582function, with the possibility of control flow transfer to either the
5583'``normal``' label or the '``exception``' label. If the callee function
5584returns with the "``ret``" instruction, control flow will return to the
5585"normal" label. If the callee (or any indirect callees) returns via the
5586":ref:`resume <i_resume>`" instruction or other exception handling
5587mechanism, control is interrupted and continued at the dynamically
5588nearest "exception" label.
5589
5590The '``exception``' label is a `landing
5591pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5592'``exception``' label is required to have the
5593":ref:`landingpad <i_landingpad>`" instruction, which contains the
5594information about the behavior of the program after unwinding happens,
5595as its first non-PHI instruction. The restrictions on the
5596"``landingpad``" instruction's tightly couples it to the "``invoke``"
5597instruction, so that the important information contained within the
5598"``landingpad``" instruction can't be lost through normal code motion.
5599
5600Arguments:
5601""""""""""
5602
5603This instruction requires several arguments:
5604
5605#. The optional "cconv" marker indicates which :ref:`calling
5606 convention <callingconv>` the call should use. If none is
5607 specified, the call defaults to using C calling conventions.
5608#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5609 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5610 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005611#. '``ty``': the type of the call instruction itself which is also the
5612 type of the return value. Functions that return no value are marked
5613 ``void``.
5614#. '``fnty``': shall be the signature of the function being invoked. The
5615 argument types must match the types implied by this signature. This
5616 type can be omitted if the function is not varargs.
5617#. '``fnptrval``': An LLVM value containing a pointer to a function to
5618 be invoked. In most cases, this is a direct function invocation, but
5619 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5620 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005621#. '``function args``': argument list whose types match the function
5622 signature argument types and parameter attributes. All arguments must
5623 be of :ref:`first class <t_firstclass>` type. If the function signature
5624 indicates the function accepts a variable number of arguments, the
5625 extra arguments can be specified.
5626#. '``normal label``': the label reached when the called function
5627 executes a '``ret``' instruction.
5628#. '``exception label``': the label reached when a callee returns via
5629 the :ref:`resume <i_resume>` instruction or other exception handling
5630 mechanism.
5631#. The optional :ref:`function attributes <fnattrs>` list. Only
5632 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5633 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005634#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005635
5636Semantics:
5637""""""""""
5638
5639This instruction is designed to operate as a standard '``call``'
5640instruction in most regards. The primary difference is that it
5641establishes an association with a label, which is used by the runtime
5642library to unwind the stack.
5643
5644This instruction is used in languages with destructors to ensure that
5645proper cleanup is performed in the case of either a ``longjmp`` or a
5646thrown exception. Additionally, this is important for implementation of
5647'``catch``' clauses in high-level languages that support them.
5648
5649For the purposes of the SSA form, the definition of the value returned
5650by the '``invoke``' instruction is deemed to occur on the edge from the
5651current block to the "normal" label. If the callee unwinds then no
5652return value is available.
5653
5654Example:
5655""""""""
5656
5657.. code-block:: llvm
5658
5659 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005660 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005661 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005662 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005663
5664.. _i_resume:
5665
5666'``resume``' Instruction
5667^^^^^^^^^^^^^^^^^^^^^^^^
5668
5669Syntax:
5670"""""""
5671
5672::
5673
5674 resume <type> <value>
5675
5676Overview:
5677"""""""""
5678
5679The '``resume``' instruction is a terminator instruction that has no
5680successors.
5681
5682Arguments:
5683""""""""""
5684
5685The '``resume``' instruction requires one argument, which must have the
5686same type as the result of any '``landingpad``' instruction in the same
5687function.
5688
5689Semantics:
5690""""""""""
5691
5692The '``resume``' instruction resumes propagation of an existing
5693(in-flight) exception whose unwinding was interrupted with a
5694:ref:`landingpad <i_landingpad>` instruction.
5695
5696Example:
5697""""""""
5698
5699.. code-block:: llvm
5700
5701 resume { i8*, i32 } %exn
5702
David Majnemer8a1c45d2015-12-12 05:38:55 +00005703.. _i_catchswitch:
5704
5705'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005706^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005707
5708Syntax:
5709"""""""
5710
5711::
5712
5713 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5714 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5715
5716Overview:
5717"""""""""
5718
5719The '``catchswitch``' instruction is used by `LLVM's exception handling system
5720<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5721that may be executed by the :ref:`EH personality routine <personalityfn>`.
5722
5723Arguments:
5724""""""""""
5725
5726The ``parent`` argument is the token of the funclet that contains the
5727``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5728this operand may be the token ``none``.
5729
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005730The ``default`` argument is the label of another basic block beginning with
5731either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5732must be a legal target with respect to the ``parent`` links, as described in
5733the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005734
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005735The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005736:ref:`catchpad <i_catchpad>` instruction.
5737
5738Semantics:
5739""""""""""
5740
5741Executing this instruction transfers control to one of the successors in
5742``handlers``, if appropriate, or continues to unwind via the unwind label if
5743present.
5744
5745The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5746it must be both the first non-phi instruction and last instruction in the basic
5747block. Therefore, it must be the only non-phi instruction in the block.
5748
5749Example:
5750""""""""
5751
Renato Golin124f2592016-07-20 12:16:38 +00005752.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005753
5754 dispatch1:
5755 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5756 dispatch2:
5757 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5758
David Majnemer654e1302015-07-31 17:58:14 +00005759.. _i_catchret:
5760
5761'``catchret``' Instruction
5762^^^^^^^^^^^^^^^^^^^^^^^^^^
5763
5764Syntax:
5765"""""""
5766
5767::
5768
David Majnemer8a1c45d2015-12-12 05:38:55 +00005769 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005770
5771Overview:
5772"""""""""
5773
5774The '``catchret``' instruction is a terminator instruction that has a
5775single successor.
5776
5777
5778Arguments:
5779""""""""""
5780
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005781The first argument to a '``catchret``' indicates which ``catchpad`` it
5782exits. It must be a :ref:`catchpad <i_catchpad>`.
5783The second argument to a '``catchret``' specifies where control will
5784transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005785
5786Semantics:
5787""""""""""
5788
David Majnemer8a1c45d2015-12-12 05:38:55 +00005789The '``catchret``' instruction ends an existing (in-flight) exception whose
5790unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5791:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5792code to, for example, destroy the active exception. Control then transfers to
5793``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005794
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005795The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5796If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5797funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5798the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005799
5800Example:
5801""""""""
5802
Renato Golin124f2592016-07-20 12:16:38 +00005803.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005804
David Majnemer8a1c45d2015-12-12 05:38:55 +00005805 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005806
David Majnemer654e1302015-07-31 17:58:14 +00005807.. _i_cleanupret:
5808
5809'``cleanupret``' Instruction
5810^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5811
5812Syntax:
5813"""""""
5814
5815::
5816
David Majnemer8a1c45d2015-12-12 05:38:55 +00005817 cleanupret from <value> unwind label <continue>
5818 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005819
5820Overview:
5821"""""""""
5822
5823The '``cleanupret``' instruction is a terminator instruction that has
5824an optional successor.
5825
5826
5827Arguments:
5828""""""""""
5829
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005830The '``cleanupret``' instruction requires one argument, which indicates
5831which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005832If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5833funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5834the ``cleanupret``'s behavior is undefined.
5835
5836The '``cleanupret``' instruction also has an optional successor, ``continue``,
5837which must be the label of another basic block beginning with either a
5838``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5839be a legal target with respect to the ``parent`` links, as described in the
5840`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005841
5842Semantics:
5843""""""""""
5844
5845The '``cleanupret``' instruction indicates to the
5846:ref:`personality function <personalityfn>` that one
5847:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5848It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005849
David Majnemer654e1302015-07-31 17:58:14 +00005850Example:
5851""""""""
5852
Renato Golin124f2592016-07-20 12:16:38 +00005853.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005854
David Majnemer8a1c45d2015-12-12 05:38:55 +00005855 cleanupret from %cleanup unwind to caller
5856 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005857
Sean Silvab084af42012-12-07 10:36:55 +00005858.. _i_unreachable:
5859
5860'``unreachable``' Instruction
5861^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5862
5863Syntax:
5864"""""""
5865
5866::
5867
5868 unreachable
5869
5870Overview:
5871"""""""""
5872
5873The '``unreachable``' instruction has no defined semantics. This
5874instruction is used to inform the optimizer that a particular portion of
5875the code is not reachable. This can be used to indicate that the code
5876after a no-return function cannot be reached, and other facts.
5877
5878Semantics:
5879""""""""""
5880
5881The '``unreachable``' instruction has no defined semantics.
5882
5883.. _binaryops:
5884
5885Binary Operations
5886-----------------
5887
5888Binary operators are used to do most of the computation in a program.
5889They require two operands of the same type, execute an operation on
5890them, and produce a single value. The operands might represent multiple
5891data, as is the case with the :ref:`vector <t_vector>` data type. The
5892result value has the same type as its operands.
5893
5894There are several different binary operators:
5895
5896.. _i_add:
5897
5898'``add``' Instruction
5899^^^^^^^^^^^^^^^^^^^^^
5900
5901Syntax:
5902"""""""
5903
5904::
5905
Tim Northover675a0962014-06-13 14:24:23 +00005906 <result> = add <ty> <op1>, <op2> ; yields ty:result
5907 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5908 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5909 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005910
5911Overview:
5912"""""""""
5913
5914The '``add``' instruction returns the sum of its two operands.
5915
5916Arguments:
5917""""""""""
5918
5919The two arguments to the '``add``' instruction must be
5920:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5921arguments must have identical types.
5922
5923Semantics:
5924""""""""""
5925
5926The value produced is the integer sum of the two operands.
5927
5928If the sum has unsigned overflow, the result returned is the
5929mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5930the result.
5931
5932Because LLVM integers use a two's complement representation, this
5933instruction is appropriate for both signed and unsigned integers.
5934
5935``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5936respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5937result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5938unsigned and/or signed overflow, respectively, occurs.
5939
5940Example:
5941""""""""
5942
Renato Golin124f2592016-07-20 12:16:38 +00005943.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005944
Tim Northover675a0962014-06-13 14:24:23 +00005945 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005946
5947.. _i_fadd:
5948
5949'``fadd``' Instruction
5950^^^^^^^^^^^^^^^^^^^^^^
5951
5952Syntax:
5953"""""""
5954
5955::
5956
Tim Northover675a0962014-06-13 14:24:23 +00005957 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005958
5959Overview:
5960"""""""""
5961
5962The '``fadd``' instruction returns the sum of its two operands.
5963
5964Arguments:
5965""""""""""
5966
5967The two arguments to the '``fadd``' instruction must be :ref:`floating
5968point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5969Both arguments must have identical types.
5970
5971Semantics:
5972""""""""""
5973
5974The value produced is the floating point sum of the two operands. This
5975instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5976which are optimization hints to enable otherwise unsafe floating point
5977optimizations:
5978
5979Example:
5980""""""""
5981
Renato Golin124f2592016-07-20 12:16:38 +00005982.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005983
Tim Northover675a0962014-06-13 14:24:23 +00005984 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005985
5986'``sub``' Instruction
5987^^^^^^^^^^^^^^^^^^^^^
5988
5989Syntax:
5990"""""""
5991
5992::
5993
Tim Northover675a0962014-06-13 14:24:23 +00005994 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5995 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5996 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5997 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005998
5999Overview:
6000"""""""""
6001
6002The '``sub``' instruction returns the difference of its two operands.
6003
6004Note that the '``sub``' instruction is used to represent the '``neg``'
6005instruction present in most other intermediate representations.
6006
6007Arguments:
6008""""""""""
6009
6010The two arguments to the '``sub``' instruction must be
6011:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6012arguments must have identical types.
6013
6014Semantics:
6015""""""""""
6016
6017The value produced is the integer difference of the two operands.
6018
6019If the difference has unsigned overflow, the result returned is the
6020mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6021the result.
6022
6023Because LLVM integers use a two's complement representation, this
6024instruction is appropriate for both signed and unsigned integers.
6025
6026``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6027respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6028result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6029unsigned and/or signed overflow, respectively, occurs.
6030
6031Example:
6032""""""""
6033
Renato Golin124f2592016-07-20 12:16:38 +00006034.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006035
Tim Northover675a0962014-06-13 14:24:23 +00006036 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6037 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006038
6039.. _i_fsub:
6040
6041'``fsub``' Instruction
6042^^^^^^^^^^^^^^^^^^^^^^
6043
6044Syntax:
6045"""""""
6046
6047::
6048
Tim Northover675a0962014-06-13 14:24:23 +00006049 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006050
6051Overview:
6052"""""""""
6053
6054The '``fsub``' instruction returns the difference of its two operands.
6055
6056Note that the '``fsub``' instruction is used to represent the '``fneg``'
6057instruction present in most other intermediate representations.
6058
6059Arguments:
6060""""""""""
6061
6062The two arguments to the '``fsub``' instruction must be :ref:`floating
6063point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6064Both arguments must have identical types.
6065
6066Semantics:
6067""""""""""
6068
6069The value produced is the floating point difference of the two operands.
6070This instruction can also take any number of :ref:`fast-math
6071flags <fastmath>`, which are optimization hints to enable otherwise
6072unsafe floating point optimizations:
6073
6074Example:
6075""""""""
6076
Renato Golin124f2592016-07-20 12:16:38 +00006077.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006078
Tim Northover675a0962014-06-13 14:24:23 +00006079 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6080 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006081
6082'``mul``' Instruction
6083^^^^^^^^^^^^^^^^^^^^^
6084
6085Syntax:
6086"""""""
6087
6088::
6089
Tim Northover675a0962014-06-13 14:24:23 +00006090 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6091 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6092 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6093 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006094
6095Overview:
6096"""""""""
6097
6098The '``mul``' instruction returns the product of its two operands.
6099
6100Arguments:
6101""""""""""
6102
6103The two arguments to the '``mul``' instruction must be
6104:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6105arguments must have identical types.
6106
6107Semantics:
6108""""""""""
6109
6110The value produced is the integer product of the two operands.
6111
6112If the result of the multiplication has unsigned overflow, the result
6113returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6114bit width of the result.
6115
6116Because LLVM integers use a two's complement representation, and the
6117result is the same width as the operands, this instruction returns the
6118correct result for both signed and unsigned integers. If a full product
6119(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6120sign-extended or zero-extended as appropriate to the width of the full
6121product.
6122
6123``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6124respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6125result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6126unsigned and/or signed overflow, respectively, occurs.
6127
6128Example:
6129""""""""
6130
Renato Golin124f2592016-07-20 12:16:38 +00006131.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006132
Tim Northover675a0962014-06-13 14:24:23 +00006133 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006134
6135.. _i_fmul:
6136
6137'``fmul``' Instruction
6138^^^^^^^^^^^^^^^^^^^^^^
6139
6140Syntax:
6141"""""""
6142
6143::
6144
Tim Northover675a0962014-06-13 14:24:23 +00006145 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006146
6147Overview:
6148"""""""""
6149
6150The '``fmul``' instruction returns the product of its two operands.
6151
6152Arguments:
6153""""""""""
6154
6155The two arguments to the '``fmul``' instruction must be :ref:`floating
6156point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6157Both arguments must have identical types.
6158
6159Semantics:
6160""""""""""
6161
6162The value produced is the floating point product of the two operands.
6163This instruction can also take any number of :ref:`fast-math
6164flags <fastmath>`, which are optimization hints to enable otherwise
6165unsafe floating point optimizations:
6166
6167Example:
6168""""""""
6169
Renato Golin124f2592016-07-20 12:16:38 +00006170.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006171
Tim Northover675a0962014-06-13 14:24:23 +00006172 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006173
6174'``udiv``' Instruction
6175^^^^^^^^^^^^^^^^^^^^^^
6176
6177Syntax:
6178"""""""
6179
6180::
6181
Tim Northover675a0962014-06-13 14:24:23 +00006182 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6183 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006184
6185Overview:
6186"""""""""
6187
6188The '``udiv``' instruction returns the quotient of its two operands.
6189
6190Arguments:
6191""""""""""
6192
6193The two arguments to the '``udiv``' instruction must be
6194:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6195arguments must have identical types.
6196
6197Semantics:
6198""""""""""
6199
6200The value produced is the unsigned integer quotient of the two operands.
6201
6202Note that unsigned integer division and signed integer division are
6203distinct operations; for signed integer division, use '``sdiv``'.
6204
6205Division by zero leads to undefined behavior.
6206
6207If the ``exact`` keyword is present, the result value of the ``udiv`` is
6208a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6209such, "((a udiv exact b) mul b) == a").
6210
6211Example:
6212""""""""
6213
Renato Golin124f2592016-07-20 12:16:38 +00006214.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006215
Tim Northover675a0962014-06-13 14:24:23 +00006216 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006217
6218'``sdiv``' Instruction
6219^^^^^^^^^^^^^^^^^^^^^^
6220
6221Syntax:
6222"""""""
6223
6224::
6225
Tim Northover675a0962014-06-13 14:24:23 +00006226 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6227 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006228
6229Overview:
6230"""""""""
6231
6232The '``sdiv``' instruction returns the quotient of its two operands.
6233
6234Arguments:
6235""""""""""
6236
6237The two arguments to the '``sdiv``' instruction must be
6238:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6239arguments must have identical types.
6240
6241Semantics:
6242""""""""""
6243
6244The value produced is the signed integer quotient of the two operands
6245rounded towards zero.
6246
6247Note that signed integer division and unsigned integer division are
6248distinct operations; for unsigned integer division, use '``udiv``'.
6249
6250Division by zero leads to undefined behavior. Overflow also leads to
6251undefined behavior; this is a rare case, but can occur, for example, by
6252doing a 32-bit division of -2147483648 by -1.
6253
6254If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6255a :ref:`poison value <poisonvalues>` if the result would be rounded.
6256
6257Example:
6258""""""""
6259
Renato Golin124f2592016-07-20 12:16:38 +00006260.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006261
Tim Northover675a0962014-06-13 14:24:23 +00006262 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006263
6264.. _i_fdiv:
6265
6266'``fdiv``' Instruction
6267^^^^^^^^^^^^^^^^^^^^^^
6268
6269Syntax:
6270"""""""
6271
6272::
6273
Tim Northover675a0962014-06-13 14:24:23 +00006274 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006275
6276Overview:
6277"""""""""
6278
6279The '``fdiv``' instruction returns the quotient of its two operands.
6280
6281Arguments:
6282""""""""""
6283
6284The two arguments to the '``fdiv``' instruction must be :ref:`floating
6285point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6286Both arguments must have identical types.
6287
6288Semantics:
6289""""""""""
6290
6291The value produced is the floating point quotient of the two operands.
6292This instruction can also take any number of :ref:`fast-math
6293flags <fastmath>`, which are optimization hints to enable otherwise
6294unsafe floating point optimizations:
6295
6296Example:
6297""""""""
6298
Renato Golin124f2592016-07-20 12:16:38 +00006299.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006300
Tim Northover675a0962014-06-13 14:24:23 +00006301 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006302
6303'``urem``' Instruction
6304^^^^^^^^^^^^^^^^^^^^^^
6305
6306Syntax:
6307"""""""
6308
6309::
6310
Tim Northover675a0962014-06-13 14:24:23 +00006311 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006312
6313Overview:
6314"""""""""
6315
6316The '``urem``' instruction returns the remainder from the unsigned
6317division of its two arguments.
6318
6319Arguments:
6320""""""""""
6321
6322The two arguments to the '``urem``' instruction must be
6323:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6324arguments must have identical types.
6325
6326Semantics:
6327""""""""""
6328
6329This instruction returns the unsigned integer *remainder* of a division.
6330This instruction always performs an unsigned division to get the
6331remainder.
6332
6333Note that unsigned integer remainder and signed integer remainder are
6334distinct operations; for signed integer remainder, use '``srem``'.
6335
6336Taking the remainder of a division by zero leads to undefined behavior.
6337
6338Example:
6339""""""""
6340
Renato Golin124f2592016-07-20 12:16:38 +00006341.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006342
Tim Northover675a0962014-06-13 14:24:23 +00006343 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006344
6345'``srem``' Instruction
6346^^^^^^^^^^^^^^^^^^^^^^
6347
6348Syntax:
6349"""""""
6350
6351::
6352
Tim Northover675a0962014-06-13 14:24:23 +00006353 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006354
6355Overview:
6356"""""""""
6357
6358The '``srem``' instruction returns the remainder from the signed
6359division of its two operands. This instruction can also take
6360:ref:`vector <t_vector>` versions of the values in which case the elements
6361must be integers.
6362
6363Arguments:
6364""""""""""
6365
6366The two arguments to the '``srem``' instruction must be
6367:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6368arguments must have identical types.
6369
6370Semantics:
6371""""""""""
6372
6373This instruction returns the *remainder* of a division (where the result
6374is either zero or has the same sign as the dividend, ``op1``), not the
6375*modulo* operator (where the result is either zero or has the same sign
6376as the divisor, ``op2``) of a value. For more information about the
6377difference, see `The Math
6378Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6379table of how this is implemented in various languages, please see
6380`Wikipedia: modulo
6381operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6382
6383Note that signed integer remainder and unsigned integer remainder are
6384distinct operations; for unsigned integer remainder, use '``urem``'.
6385
6386Taking the remainder of a division by zero leads to undefined behavior.
6387Overflow also leads to undefined behavior; this is a rare case, but can
6388occur, for example, by taking the remainder of a 32-bit division of
6389-2147483648 by -1. (The remainder doesn't actually overflow, but this
6390rule lets srem be implemented using instructions that return both the
6391result of the division and the remainder.)
6392
6393Example:
6394""""""""
6395
Renato Golin124f2592016-07-20 12:16:38 +00006396.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006397
Tim Northover675a0962014-06-13 14:24:23 +00006398 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006399
6400.. _i_frem:
6401
6402'``frem``' Instruction
6403^^^^^^^^^^^^^^^^^^^^^^
6404
6405Syntax:
6406"""""""
6407
6408::
6409
Tim Northover675a0962014-06-13 14:24:23 +00006410 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006411
6412Overview:
6413"""""""""
6414
6415The '``frem``' instruction returns the remainder from the division of
6416its two operands.
6417
6418Arguments:
6419""""""""""
6420
6421The two arguments to the '``frem``' instruction must be :ref:`floating
6422point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6423Both arguments must have identical types.
6424
6425Semantics:
6426""""""""""
6427
6428This instruction returns the *remainder* of a division. The remainder
6429has the same sign as the dividend. This instruction can also take any
6430number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6431to enable otherwise unsafe floating point optimizations:
6432
6433Example:
6434""""""""
6435
Renato Golin124f2592016-07-20 12:16:38 +00006436.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006437
Tim Northover675a0962014-06-13 14:24:23 +00006438 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006439
6440.. _bitwiseops:
6441
6442Bitwise Binary Operations
6443-------------------------
6444
6445Bitwise binary operators are used to do various forms of bit-twiddling
6446in a program. They are generally very efficient instructions and can
6447commonly be strength reduced from other instructions. They require two
6448operands of the same type, execute an operation on them, and produce a
6449single value. The resulting value is the same type as its operands.
6450
6451'``shl``' Instruction
6452^^^^^^^^^^^^^^^^^^^^^
6453
6454Syntax:
6455"""""""
6456
6457::
6458
Tim Northover675a0962014-06-13 14:24:23 +00006459 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6460 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6461 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6462 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006463
6464Overview:
6465"""""""""
6466
6467The '``shl``' instruction returns the first operand shifted to the left
6468a specified number of bits.
6469
6470Arguments:
6471""""""""""
6472
6473Both arguments to the '``shl``' instruction must be the same
6474:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6475'``op2``' is treated as an unsigned value.
6476
6477Semantics:
6478""""""""""
6479
6480The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6481where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006482dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006483``op1``, the result is undefined. If the arguments are vectors, each
6484vector element of ``op1`` is shifted by the corresponding shift amount
6485in ``op2``.
6486
6487If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6488value <poisonvalues>` if it shifts out any non-zero bits. If the
6489``nsw`` keyword is present, then the shift produces a :ref:`poison
6490value <poisonvalues>` if it shifts out any bits that disagree with the
Sanjoy Dasdbc58d02016-11-13 23:40:40 +00006491resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006492
6493Example:
6494""""""""
6495
Renato Golin124f2592016-07-20 12:16:38 +00006496.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006497
Tim Northover675a0962014-06-13 14:24:23 +00006498 <result> = shl i32 4, %var ; yields i32: 4 << %var
6499 <result> = shl i32 4, 2 ; yields i32: 16
6500 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006501 <result> = shl i32 1, 32 ; undefined
6502 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6503
6504'``lshr``' Instruction
6505^^^^^^^^^^^^^^^^^^^^^^
6506
6507Syntax:
6508"""""""
6509
6510::
6511
Tim Northover675a0962014-06-13 14:24:23 +00006512 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6513 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006514
6515Overview:
6516"""""""""
6517
6518The '``lshr``' instruction (logical shift right) returns the first
6519operand shifted to the right a specified number of bits with zero fill.
6520
6521Arguments:
6522""""""""""
6523
6524Both arguments to the '``lshr``' instruction must be the same
6525:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6526'``op2``' is treated as an unsigned value.
6527
6528Semantics:
6529""""""""""
6530
6531This instruction always performs a logical shift right operation. The
6532most significant bits of the result will be filled with zero bits after
6533the shift. If ``op2`` is (statically or dynamically) equal to or larger
6534than the number of bits in ``op1``, the result is undefined. If the
6535arguments are vectors, each vector element of ``op1`` is shifted by the
6536corresponding shift amount in ``op2``.
6537
6538If the ``exact`` keyword is present, the result value of the ``lshr`` is
6539a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6540non-zero.
6541
6542Example:
6543""""""""
6544
Renato Golin124f2592016-07-20 12:16:38 +00006545.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006546
Tim Northover675a0962014-06-13 14:24:23 +00006547 <result> = lshr i32 4, 1 ; yields i32:result = 2
6548 <result> = lshr i32 4, 2 ; yields i32:result = 1
6549 <result> = lshr i8 4, 3 ; yields i8:result = 0
6550 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006551 <result> = lshr i32 1, 32 ; undefined
6552 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6553
6554'``ashr``' Instruction
6555^^^^^^^^^^^^^^^^^^^^^^
6556
6557Syntax:
6558"""""""
6559
6560::
6561
Tim Northover675a0962014-06-13 14:24:23 +00006562 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6563 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006564
6565Overview:
6566"""""""""
6567
6568The '``ashr``' instruction (arithmetic shift right) returns the first
6569operand shifted to the right a specified number of bits with sign
6570extension.
6571
6572Arguments:
6573""""""""""
6574
6575Both arguments to the '``ashr``' instruction must be the same
6576:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6577'``op2``' is treated as an unsigned value.
6578
6579Semantics:
6580""""""""""
6581
6582This instruction always performs an arithmetic shift right operation,
6583The most significant bits of the result will be filled with the sign bit
6584of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6585than the number of bits in ``op1``, the result is undefined. If the
6586arguments are vectors, each vector element of ``op1`` is shifted by the
6587corresponding shift amount in ``op2``.
6588
6589If the ``exact`` keyword is present, the result value of the ``ashr`` is
6590a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6591non-zero.
6592
6593Example:
6594""""""""
6595
Renato Golin124f2592016-07-20 12:16:38 +00006596.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006597
Tim Northover675a0962014-06-13 14:24:23 +00006598 <result> = ashr i32 4, 1 ; yields i32:result = 2
6599 <result> = ashr i32 4, 2 ; yields i32:result = 1
6600 <result> = ashr i8 4, 3 ; yields i8:result = 0
6601 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006602 <result> = ashr i32 1, 32 ; undefined
6603 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6604
6605'``and``' Instruction
6606^^^^^^^^^^^^^^^^^^^^^
6607
6608Syntax:
6609"""""""
6610
6611::
6612
Tim Northover675a0962014-06-13 14:24:23 +00006613 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006614
6615Overview:
6616"""""""""
6617
6618The '``and``' instruction returns the bitwise logical and of its two
6619operands.
6620
6621Arguments:
6622""""""""""
6623
6624The two arguments to the '``and``' instruction must be
6625:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6626arguments must have identical types.
6627
6628Semantics:
6629""""""""""
6630
6631The truth table used for the '``and``' instruction is:
6632
6633+-----+-----+-----+
6634| In0 | In1 | Out |
6635+-----+-----+-----+
6636| 0 | 0 | 0 |
6637+-----+-----+-----+
6638| 0 | 1 | 0 |
6639+-----+-----+-----+
6640| 1 | 0 | 0 |
6641+-----+-----+-----+
6642| 1 | 1 | 1 |
6643+-----+-----+-----+
6644
6645Example:
6646""""""""
6647
Renato Golin124f2592016-07-20 12:16:38 +00006648.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006649
Tim Northover675a0962014-06-13 14:24:23 +00006650 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6651 <result> = and i32 15, 40 ; yields i32:result = 8
6652 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006653
6654'``or``' Instruction
6655^^^^^^^^^^^^^^^^^^^^
6656
6657Syntax:
6658"""""""
6659
6660::
6661
Tim Northover675a0962014-06-13 14:24:23 +00006662 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006663
6664Overview:
6665"""""""""
6666
6667The '``or``' instruction returns the bitwise logical inclusive or of its
6668two operands.
6669
6670Arguments:
6671""""""""""
6672
6673The two arguments to the '``or``' instruction must be
6674:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6675arguments must have identical types.
6676
6677Semantics:
6678""""""""""
6679
6680The truth table used for the '``or``' instruction is:
6681
6682+-----+-----+-----+
6683| In0 | In1 | Out |
6684+-----+-----+-----+
6685| 0 | 0 | 0 |
6686+-----+-----+-----+
6687| 0 | 1 | 1 |
6688+-----+-----+-----+
6689| 1 | 0 | 1 |
6690+-----+-----+-----+
6691| 1 | 1 | 1 |
6692+-----+-----+-----+
6693
6694Example:
6695""""""""
6696
6697::
6698
Tim Northover675a0962014-06-13 14:24:23 +00006699 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6700 <result> = or i32 15, 40 ; yields i32:result = 47
6701 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006702
6703'``xor``' Instruction
6704^^^^^^^^^^^^^^^^^^^^^
6705
6706Syntax:
6707"""""""
6708
6709::
6710
Tim Northover675a0962014-06-13 14:24:23 +00006711 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006712
6713Overview:
6714"""""""""
6715
6716The '``xor``' instruction returns the bitwise logical exclusive or of
6717its two operands. The ``xor`` is used to implement the "one's
6718complement" operation, which is the "~" operator in C.
6719
6720Arguments:
6721""""""""""
6722
6723The two arguments to the '``xor``' instruction must be
6724:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6725arguments must have identical types.
6726
6727Semantics:
6728""""""""""
6729
6730The truth table used for the '``xor``' instruction is:
6731
6732+-----+-----+-----+
6733| In0 | In1 | Out |
6734+-----+-----+-----+
6735| 0 | 0 | 0 |
6736+-----+-----+-----+
6737| 0 | 1 | 1 |
6738+-----+-----+-----+
6739| 1 | 0 | 1 |
6740+-----+-----+-----+
6741| 1 | 1 | 0 |
6742+-----+-----+-----+
6743
6744Example:
6745""""""""
6746
Renato Golin124f2592016-07-20 12:16:38 +00006747.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006748
Tim Northover675a0962014-06-13 14:24:23 +00006749 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6750 <result> = xor i32 15, 40 ; yields i32:result = 39
6751 <result> = xor i32 4, 8 ; yields i32:result = 12
6752 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006753
6754Vector Operations
6755-----------------
6756
6757LLVM supports several instructions to represent vector operations in a
6758target-independent manner. These instructions cover the element-access
6759and vector-specific operations needed to process vectors effectively.
6760While LLVM does directly support these vector operations, many
6761sophisticated algorithms will want to use target-specific intrinsics to
6762take full advantage of a specific target.
6763
6764.. _i_extractelement:
6765
6766'``extractelement``' Instruction
6767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6768
6769Syntax:
6770"""""""
6771
6772::
6773
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006774 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006775
6776Overview:
6777"""""""""
6778
6779The '``extractelement``' instruction extracts a single scalar element
6780from a vector at a specified index.
6781
6782Arguments:
6783""""""""""
6784
6785The first operand of an '``extractelement``' instruction is a value of
6786:ref:`vector <t_vector>` type. The second operand is an index indicating
6787the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006788variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006789
6790Semantics:
6791""""""""""
6792
6793The result is a scalar of the same type as the element type of ``val``.
6794Its value is the value at position ``idx`` of ``val``. If ``idx``
6795exceeds the length of ``val``, the results are undefined.
6796
6797Example:
6798""""""""
6799
Renato Golin124f2592016-07-20 12:16:38 +00006800.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006801
6802 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6803
6804.. _i_insertelement:
6805
6806'``insertelement``' Instruction
6807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6808
6809Syntax:
6810"""""""
6811
6812::
6813
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006814 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006815
6816Overview:
6817"""""""""
6818
6819The '``insertelement``' instruction inserts a scalar element into a
6820vector at a specified index.
6821
6822Arguments:
6823""""""""""
6824
6825The first operand of an '``insertelement``' instruction is a value of
6826:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6827type must equal the element type of the first operand. The third operand
6828is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006829index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006830
6831Semantics:
6832""""""""""
6833
6834The result is a vector of the same type as ``val``. Its element values
6835are those of ``val`` except at position ``idx``, where it gets the value
6836``elt``. If ``idx`` exceeds the length of ``val``, the results are
6837undefined.
6838
6839Example:
6840""""""""
6841
Renato Golin124f2592016-07-20 12:16:38 +00006842.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006843
6844 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6845
6846.. _i_shufflevector:
6847
6848'``shufflevector``' Instruction
6849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6850
6851Syntax:
6852"""""""
6853
6854::
6855
6856 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6857
6858Overview:
6859"""""""""
6860
6861The '``shufflevector``' instruction constructs a permutation of elements
6862from two input vectors, returning a vector with the same element type as
6863the input and length that is the same as the shuffle mask.
6864
6865Arguments:
6866""""""""""
6867
6868The first two operands of a '``shufflevector``' instruction are vectors
6869with the same type. The third argument is a shuffle mask whose element
6870type is always 'i32'. The result of the instruction is a vector whose
6871length is the same as the shuffle mask and whose element type is the
6872same as the element type of the first two operands.
6873
6874The shuffle mask operand is required to be a constant vector with either
6875constant integer or undef values.
6876
6877Semantics:
6878""""""""""
6879
6880The elements of the two input vectors are numbered from left to right
6881across both of the vectors. The shuffle mask operand specifies, for each
6882element of the result vector, which element of the two input vectors the
6883result element gets. The element selector may be undef (meaning "don't
6884care") and the second operand may be undef if performing a shuffle from
6885only one vector.
6886
6887Example:
6888""""""""
6889
Renato Golin124f2592016-07-20 12:16:38 +00006890.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006891
6892 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6893 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6894 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6895 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6896 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6897 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6898 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6899 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6900
6901Aggregate Operations
6902--------------------
6903
6904LLVM supports several instructions for working with
6905:ref:`aggregate <t_aggregate>` values.
6906
6907.. _i_extractvalue:
6908
6909'``extractvalue``' Instruction
6910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6911
6912Syntax:
6913"""""""
6914
6915::
6916
6917 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6918
6919Overview:
6920"""""""""
6921
6922The '``extractvalue``' instruction extracts the value of a member field
6923from an :ref:`aggregate <t_aggregate>` value.
6924
6925Arguments:
6926""""""""""
6927
6928The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006929:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006930constant indices to specify which value to extract in a similar manner
6931as indices in a '``getelementptr``' instruction.
6932
6933The major differences to ``getelementptr`` indexing are:
6934
6935- Since the value being indexed is not a pointer, the first index is
6936 omitted and assumed to be zero.
6937- At least one index must be specified.
6938- Not only struct indices but also array indices must be in bounds.
6939
6940Semantics:
6941""""""""""
6942
6943The result is the value at the position in the aggregate specified by
6944the index operands.
6945
6946Example:
6947""""""""
6948
Renato Golin124f2592016-07-20 12:16:38 +00006949.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006950
6951 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6952
6953.. _i_insertvalue:
6954
6955'``insertvalue``' Instruction
6956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6957
6958Syntax:
6959"""""""
6960
6961::
6962
6963 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6964
6965Overview:
6966"""""""""
6967
6968The '``insertvalue``' instruction inserts a value into a member field in
6969an :ref:`aggregate <t_aggregate>` value.
6970
6971Arguments:
6972""""""""""
6973
6974The first operand of an '``insertvalue``' instruction is a value of
6975:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6976a first-class value to insert. The following operands are constant
6977indices indicating the position at which to insert the value in a
6978similar manner as indices in a '``extractvalue``' instruction. The value
6979to insert must have the same type as the value identified by the
6980indices.
6981
6982Semantics:
6983""""""""""
6984
6985The result is an aggregate of the same type as ``val``. Its value is
6986that of ``val`` except that the value at the position specified by the
6987indices is that of ``elt``.
6988
6989Example:
6990""""""""
6991
6992.. code-block:: llvm
6993
6994 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6995 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006996 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006997
6998.. _memoryops:
6999
7000Memory Access and Addressing Operations
7001---------------------------------------
7002
7003A key design point of an SSA-based representation is how it represents
7004memory. In LLVM, no memory locations are in SSA form, which makes things
7005very simple. This section describes how to read, write, and allocate
7006memory in LLVM.
7007
7008.. _i_alloca:
7009
7010'``alloca``' Instruction
7011^^^^^^^^^^^^^^^^^^^^^^^^
7012
7013Syntax:
7014"""""""
7015
7016::
7017
Tim Northover675a0962014-06-13 14:24:23 +00007018 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00007019
7020Overview:
7021"""""""""
7022
7023The '``alloca``' instruction allocates memory on the stack frame of the
7024currently executing function, to be automatically released when this
7025function returns to its caller. The object is always allocated in the
7026generic address space (address space zero).
7027
7028Arguments:
7029""""""""""
7030
7031The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7032bytes of memory on the runtime stack, returning a pointer of the
7033appropriate type to the program. If "NumElements" is specified, it is
7034the number of elements allocated, otherwise "NumElements" is defaulted
7035to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007036allocation is guaranteed to be aligned to at least that boundary. The
7037alignment may not be greater than ``1 << 29``. If not specified, or if
7038zero, the target can choose to align the allocation on any convenient
7039boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007040
7041'``type``' may be any sized type.
7042
7043Semantics:
7044""""""""""
7045
7046Memory is allocated; a pointer is returned. The operation is undefined
7047if there is insufficient stack space for the allocation. '``alloca``'d
7048memory is automatically released when the function returns. The
7049'``alloca``' instruction is commonly used to represent automatic
7050variables that must have an address available. When the function returns
7051(either with the ``ret`` or ``resume`` instructions), the memory is
7052reclaimed. Allocating zero bytes is legal, but the result is undefined.
7053The order in which memory is allocated (ie., which way the stack grows)
7054is not specified.
7055
7056Example:
7057""""""""
7058
7059.. code-block:: llvm
7060
Tim Northover675a0962014-06-13 14:24:23 +00007061 %ptr = alloca i32 ; yields i32*:ptr
7062 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7063 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7064 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007065
7066.. _i_load:
7067
7068'``load``' Instruction
7069^^^^^^^^^^^^^^^^^^^^^^
7070
7071Syntax:
7072"""""""
7073
7074::
7075
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007076 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007077 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007078 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007079 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007080 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007081
7082Overview:
7083"""""""""
7084
7085The '``load``' instruction is used to read from memory.
7086
7087Arguments:
7088""""""""""
7089
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007090The argument to the ``load`` instruction specifies the memory address from which
7091to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7092known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7093the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7094modify the number or order of execution of this ``load`` with other
7095:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007096
JF Bastiend1fb5852015-12-17 22:09:19 +00007097If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7098<ordering>` and optional ``singlethread`` argument. The ``release`` and
7099``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7100produce :ref:`defined <memmodel>` results when they may see multiple atomic
7101stores. The type of the pointee must be an integer, pointer, or floating-point
7102type whose bit width is a power of two greater than or equal to eight and less
7103than or equal to a target-specific size limit. ``align`` must be explicitly
7104specified on atomic loads, and the load has undefined behavior if the alignment
7105is not set to a value which is at least the size in bytes of the
7106pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007107
7108The optional constant ``align`` argument specifies the alignment of the
7109operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007110or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007111alignment for the target. It is the responsibility of the code emitter
7112to ensure that the alignment information is correct. Overestimating the
7113alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007114may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007115maximum possible alignment is ``1 << 29``. An alignment value higher
7116than the size of the loaded type implies memory up to the alignment
7117value bytes can be safely loaded without trapping in the default
7118address space. Access of the high bytes can interfere with debugging
7119tools, so should not be accessed if the function has the
7120``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007121
7122The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007123metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007124``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007125metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007126that this load is not expected to be reused in the cache. The code
7127generator may select special instructions to save cache bandwidth, such
7128as the ``MOVNT`` instruction on x86.
7129
7130The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007131metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007132entries. If a load instruction tagged with the ``!invariant.load``
7133metadata is executed, the optimizer may assume the memory location
7134referenced by the load contains the same value at all points in the
7135program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007136
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007137The optional ``!invariant.group`` metadata must reference a single metadata name
7138 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7139
Philip Reamescdb72f32014-10-20 22:40:55 +00007140The optional ``!nonnull`` metadata must reference a single
7141metadata name ``<index>`` corresponding to a metadata node with no
7142entries. The existence of the ``!nonnull`` metadata on the
7143instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007144never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007145on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007146to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007147
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007148The optional ``!dereferenceable`` metadata must reference a single metadata
7149name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007150entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007151tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007152The number of bytes known to be dereferenceable is specified by the integer
7153value in the metadata node. This is analogous to the ''dereferenceable''
7154attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007155to loads of a pointer type.
7156
7157The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007158metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7159``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007160instruction tells the optimizer that the value loaded is known to be either
7161dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007162The number of bytes known to be dereferenceable is specified by the integer
7163value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7164attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007165to loads of a pointer type.
7166
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007167The optional ``!align`` metadata must reference a single metadata name
7168``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7169The existence of the ``!align`` metadata on the instruction tells the
7170optimizer that the value loaded is known to be aligned to a boundary specified
7171by the integer value in the metadata node. The alignment must be a power of 2.
7172This is analogous to the ''align'' attribute on parameters and return values.
7173This metadata can only be applied to loads of a pointer type.
7174
Sean Silvab084af42012-12-07 10:36:55 +00007175Semantics:
7176""""""""""
7177
7178The location of memory pointed to is loaded. If the value being loaded
7179is of scalar type then the number of bytes read does not exceed the
7180minimum number of bytes needed to hold all bits of the type. For
7181example, loading an ``i24`` reads at most three bytes. When loading a
7182value of a type like ``i20`` with a size that is not an integral number
7183of bytes, the result is undefined if the value was not originally
7184written using a store of the same type.
7185
7186Examples:
7187"""""""""
7188
7189.. code-block:: llvm
7190
Tim Northover675a0962014-06-13 14:24:23 +00007191 %ptr = alloca i32 ; yields i32*:ptr
7192 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007193 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007194
7195.. _i_store:
7196
7197'``store``' Instruction
7198^^^^^^^^^^^^^^^^^^^^^^^
7199
7200Syntax:
7201"""""""
7202
7203::
7204
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007205 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7206 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007207
7208Overview:
7209"""""""""
7210
7211The '``store``' instruction is used to write to memory.
7212
7213Arguments:
7214""""""""""
7215
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007216There are two arguments to the ``store`` instruction: a value to store and an
7217address at which to store it. The type of the ``<pointer>`` operand must be a
7218pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7219operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7220allowed to modify the number or order of execution of this ``store`` with other
7221:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7222<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7223structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007224
JF Bastiend1fb5852015-12-17 22:09:19 +00007225If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7226<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7227``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7228produce :ref:`defined <memmodel>` results when they may see multiple atomic
7229stores. The type of the pointee must be an integer, pointer, or floating-point
7230type whose bit width is a power of two greater than or equal to eight and less
7231than or equal to a target-specific size limit. ``align`` must be explicitly
7232specified on atomic stores, and the store has undefined behavior if the
7233alignment is not set to a value which is at least the size in bytes of the
7234pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007235
Eli Benderskyca380842013-04-17 17:17:20 +00007236The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007237operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007238or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007239alignment for the target. It is the responsibility of the code emitter
7240to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007241alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007242alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007243safe. The maximum possible alignment is ``1 << 29``. An alignment
7244value higher than the size of the stored type implies memory up to the
7245alignment value bytes can be stored to without trapping in the default
7246address space. Storing to the higher bytes however may result in data
7247races if another thread can access the same address. Introducing a
7248data race is not allowed. Storing to the extra bytes is not allowed
7249even in situations where a data race is known to not exist if the
7250function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007251
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007252The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007253name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007254value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007255tells the optimizer and code generator that this load is not expected to
7256be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007257instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007258x86.
7259
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007260The optional ``!invariant.group`` metadata must reference a
7261single metadata name ``<index>``. See ``invariant.group`` metadata.
7262
Sean Silvab084af42012-12-07 10:36:55 +00007263Semantics:
7264""""""""""
7265
Eli Benderskyca380842013-04-17 17:17:20 +00007266The contents of memory are updated to contain ``<value>`` at the
7267location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007268of scalar type then the number of bytes written does not exceed the
7269minimum number of bytes needed to hold all bits of the type. For
7270example, storing an ``i24`` writes at most three bytes. When writing a
7271value of a type like ``i20`` with a size that is not an integral number
7272of bytes, it is unspecified what happens to the extra bits that do not
7273belong to the type, but they will typically be overwritten.
7274
7275Example:
7276""""""""
7277
7278.. code-block:: llvm
7279
Tim Northover675a0962014-06-13 14:24:23 +00007280 %ptr = alloca i32 ; yields i32*:ptr
7281 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007282 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007283
7284.. _i_fence:
7285
7286'``fence``' Instruction
7287^^^^^^^^^^^^^^^^^^^^^^^
7288
7289Syntax:
7290"""""""
7291
7292::
7293
Tim Northover675a0962014-06-13 14:24:23 +00007294 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007295
7296Overview:
7297"""""""""
7298
7299The '``fence``' instruction is used to introduce happens-before edges
7300between operations.
7301
7302Arguments:
7303""""""""""
7304
7305'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7306defines what *synchronizes-with* edges they add. They can only be given
7307``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7308
7309Semantics:
7310""""""""""
7311
7312A fence A which has (at least) ``release`` ordering semantics
7313*synchronizes with* a fence B with (at least) ``acquire`` ordering
7314semantics if and only if there exist atomic operations X and Y, both
7315operating on some atomic object M, such that A is sequenced before X, X
7316modifies M (either directly or through some side effect of a sequence
7317headed by X), Y is sequenced before B, and Y observes M. This provides a
7318*happens-before* dependency between A and B. Rather than an explicit
7319``fence``, one (but not both) of the atomic operations X or Y might
7320provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7321still *synchronize-with* the explicit ``fence`` and establish the
7322*happens-before* edge.
7323
7324A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7325``acquire`` and ``release`` semantics specified above, participates in
7326the global program order of other ``seq_cst`` operations and/or fences.
7327
7328The optional ":ref:`singlethread <singlethread>`" argument specifies
7329that the fence only synchronizes with other fences in the same thread.
7330(This is useful for interacting with signal handlers.)
7331
7332Example:
7333""""""""
7334
7335.. code-block:: llvm
7336
Tim Northover675a0962014-06-13 14:24:23 +00007337 fence acquire ; yields void
7338 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007339
7340.. _i_cmpxchg:
7341
7342'``cmpxchg``' Instruction
7343^^^^^^^^^^^^^^^^^^^^^^^^^
7344
7345Syntax:
7346"""""""
7347
7348::
7349
Tim Northover675a0962014-06-13 14:24:23 +00007350 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007351
7352Overview:
7353"""""""""
7354
7355The '``cmpxchg``' instruction is used to atomically modify memory. It
7356loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007357equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007358
7359Arguments:
7360""""""""""
7361
7362There are three arguments to the '``cmpxchg``' instruction: an address
7363to operate on, a value to compare to the value currently be at that
7364address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007365are equal. The type of '<cmp>' must be an integer or pointer type whose
7366bit width is a power of two greater than or equal to eight and less
7367than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7368have the same type, and the type of '<pointer>' must be a pointer to
7369that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7370optimizer is not allowed to modify the number or order of execution of
7371this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007372
Tim Northovere94a5182014-03-11 10:48:52 +00007373The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007374``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7375must be at least ``monotonic``, the ordering constraint on failure must be no
7376stronger than that on success, and the failure ordering cannot be either
7377``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007378
7379The optional "``singlethread``" argument declares that the ``cmpxchg``
7380is only atomic with respect to code (usually signal handlers) running in
7381the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7382respect to all other code in the system.
7383
7384The pointer passed into cmpxchg must have alignment greater than or
7385equal to the size in memory of the operand.
7386
7387Semantics:
7388""""""""""
7389
Tim Northover420a2162014-06-13 14:24:07 +00007390The contents of memory at the location specified by the '``<pointer>``' operand
7391is read and compared to '``<cmp>``'; if the read value is the equal, the
7392'``<new>``' is written. The original value at the location is returned, together
7393with a flag indicating success (true) or failure (false).
7394
7395If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7396permitted: the operation may not write ``<new>`` even if the comparison
7397matched.
7398
7399If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7400if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007401
Tim Northovere94a5182014-03-11 10:48:52 +00007402A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7403identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7404load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007405
7406Example:
7407""""""""
7408
7409.. code-block:: llvm
7410
7411 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007412 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007413 br label %loop
7414
7415 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007416 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007417 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007418 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007419 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7420 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007421 br i1 %success, label %done, label %loop
7422
7423 done:
7424 ...
7425
7426.. _i_atomicrmw:
7427
7428'``atomicrmw``' Instruction
7429^^^^^^^^^^^^^^^^^^^^^^^^^^^
7430
7431Syntax:
7432"""""""
7433
7434::
7435
Tim Northover675a0962014-06-13 14:24:23 +00007436 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007437
7438Overview:
7439"""""""""
7440
7441The '``atomicrmw``' instruction is used to atomically modify memory.
7442
7443Arguments:
7444""""""""""
7445
7446There are three arguments to the '``atomicrmw``' instruction: an
7447operation to apply, an address whose value to modify, an argument to the
7448operation. The operation must be one of the following keywords:
7449
7450- xchg
7451- add
7452- sub
7453- and
7454- nand
7455- or
7456- xor
7457- max
7458- min
7459- umax
7460- umin
7461
7462The type of '<value>' must be an integer type whose bit width is a power
7463of two greater than or equal to eight and less than or equal to a
7464target-specific size limit. The type of the '``<pointer>``' operand must
7465be a pointer to that type. If the ``atomicrmw`` is marked as
7466``volatile``, then the optimizer is not allowed to modify the number or
7467order of execution of this ``atomicrmw`` with other :ref:`volatile
7468operations <volatile>`.
7469
7470Semantics:
7471""""""""""
7472
7473The contents of memory at the location specified by the '``<pointer>``'
7474operand are atomically read, modified, and written back. The original
7475value at the location is returned. The modification is specified by the
7476operation argument:
7477
7478- xchg: ``*ptr = val``
7479- add: ``*ptr = *ptr + val``
7480- sub: ``*ptr = *ptr - val``
7481- and: ``*ptr = *ptr & val``
7482- nand: ``*ptr = ~(*ptr & val)``
7483- or: ``*ptr = *ptr | val``
7484- xor: ``*ptr = *ptr ^ val``
7485- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7486- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7487- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7488 comparison)
7489- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7490 comparison)
7491
7492Example:
7493""""""""
7494
7495.. code-block:: llvm
7496
Tim Northover675a0962014-06-13 14:24:23 +00007497 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007498
7499.. _i_getelementptr:
7500
7501'``getelementptr``' Instruction
7502^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7503
7504Syntax:
7505"""""""
7506
7507::
7508
Peter Collingbourned93620b2016-11-10 22:34:55 +00007509 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7510 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7511 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007512
7513Overview:
7514"""""""""
7515
7516The '``getelementptr``' instruction is used to get the address of a
7517subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007518address calculation only and does not access memory. The instruction can also
7519be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007520
7521Arguments:
7522""""""""""
7523
David Blaikie16a97eb2015-03-04 22:02:58 +00007524The first argument is always a type used as the basis for the calculations.
7525The second argument is always a pointer or a vector of pointers, and is the
7526base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007527that indicate which of the elements of the aggregate object are indexed.
7528The interpretation of each index is dependent on the type being indexed
7529into. The first index always indexes the pointer value given as the
7530first argument, the second index indexes a value of the type pointed to
7531(not necessarily the value directly pointed to, since the first index
7532can be non-zero), etc. The first type indexed into must be a pointer
7533value, subsequent types can be arrays, vectors, and structs. Note that
7534subsequent types being indexed into can never be pointers, since that
7535would require loading the pointer before continuing calculation.
7536
7537The type of each index argument depends on the type it is indexing into.
7538When indexing into a (optionally packed) structure, only ``i32`` integer
7539**constants** are allowed (when using a vector of indices they must all
7540be the **same** ``i32`` integer constant). When indexing into an array,
7541pointer or vector, integers of any width are allowed, and they are not
7542required to be constant. These integers are treated as signed values
7543where relevant.
7544
7545For example, let's consider a C code fragment and how it gets compiled
7546to LLVM:
7547
7548.. code-block:: c
7549
7550 struct RT {
7551 char A;
7552 int B[10][20];
7553 char C;
7554 };
7555 struct ST {
7556 int X;
7557 double Y;
7558 struct RT Z;
7559 };
7560
7561 int *foo(struct ST *s) {
7562 return &s[1].Z.B[5][13];
7563 }
7564
7565The LLVM code generated by Clang is:
7566
7567.. code-block:: llvm
7568
7569 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7570 %struct.ST = type { i32, double, %struct.RT }
7571
7572 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7573 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007574 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007575 ret i32* %arrayidx
7576 }
7577
7578Semantics:
7579""""""""""
7580
7581In the example above, the first index is indexing into the
7582'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7583= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7584indexes into the third element of the structure, yielding a
7585'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7586structure. The third index indexes into the second element of the
7587structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7588dimensions of the array are subscripted into, yielding an '``i32``'
7589type. The '``getelementptr``' instruction returns a pointer to this
7590element, thus computing a value of '``i32*``' type.
7591
7592Note that it is perfectly legal to index partially through a structure,
7593returning a pointer to an inner element. Because of this, the LLVM code
7594for the given testcase is equivalent to:
7595
7596.. code-block:: llvm
7597
7598 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007599 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7600 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7601 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7602 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7603 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007604 ret i32* %t5
7605 }
7606
7607If the ``inbounds`` keyword is present, the result value of the
7608``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7609pointer is not an *in bounds* address of an allocated object, or if any
7610of the addresses that would be formed by successive addition of the
7611offsets implied by the indices to the base address with infinitely
7612precise signed arithmetic are not an *in bounds* address of that
7613allocated object. The *in bounds* addresses for an allocated object are
7614all the addresses that point into the object, plus the address one byte
7615past the end. In cases where the base is a vector of pointers the
7616``inbounds`` keyword applies to each of the computations element-wise.
7617
7618If the ``inbounds`` keyword is not present, the offsets are added to the
7619base address with silently-wrapping two's complement arithmetic. If the
7620offsets have a different width from the pointer, they are sign-extended
7621or truncated to the width of the pointer. The result value of the
7622``getelementptr`` may be outside the object pointed to by the base
7623pointer. The result value may not necessarily be used to access memory
7624though, even if it happens to point into allocated storage. See the
7625:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7626information.
7627
Peter Collingbourned93620b2016-11-10 22:34:55 +00007628If the ``inrange`` keyword is present before any index, loading from or
7629storing to any pointer derived from the ``getelementptr`` has undefined
7630behavior if the load or store would access memory outside of the bounds of
7631the element selected by the index marked as ``inrange``. The result of a
7632pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7633involving memory) involving a pointer derived from a ``getelementptr`` with
7634the ``inrange`` keyword is undefined, with the exception of comparisons
7635in the case where both operands are in the range of the element selected
7636by the ``inrange`` keyword, inclusive of the address one past the end of
7637that element. Note that the ``inrange`` keyword is currently only allowed
7638in constant ``getelementptr`` expressions.
7639
Sean Silvab084af42012-12-07 10:36:55 +00007640The getelementptr instruction is often confusing. For some more insight
7641into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7642
7643Example:
7644""""""""
7645
7646.. code-block:: llvm
7647
7648 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007649 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007650 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007651 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007652 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007653 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007654 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007655 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007656
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007657Vector of pointers:
7658"""""""""""""""""""
7659
7660The ``getelementptr`` returns a vector of pointers, instead of a single address,
7661when one or more of its arguments is a vector. In such cases, all vector
7662arguments should have the same number of elements, and every scalar argument
7663will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007664
7665.. code-block:: llvm
7666
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007667 ; All arguments are vectors:
7668 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7669 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007670
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007671 ; Add the same scalar offset to each pointer of a vector:
7672 ; A[i] = ptrs[i] + offset*sizeof(i8)
7673 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007674
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007675 ; Add distinct offsets to the same pointer:
7676 ; A[i] = ptr + offsets[i]*sizeof(i8)
7677 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007678
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007679 ; In all cases described above the type of the result is <4 x i8*>
7680
7681The two following instructions are equivalent:
7682
7683.. code-block:: llvm
7684
7685 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7686 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7687 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7688 <4 x i32> %ind4,
7689 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007690
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007691 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7692 i32 2, i32 1, <4 x i32> %ind4, i64 13
7693
7694Let's look at the C code, where the vector version of ``getelementptr``
7695makes sense:
7696
7697.. code-block:: c
7698
7699 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00007700 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007701 for (int i = 0; i < size; ++i) {
7702 A[i] = B[C[i]];
7703 }
7704
7705.. code-block:: llvm
7706
7707 ; get pointers for 8 elements from array B
7708 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7709 ; load 8 elements from array B into A
7710 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7711 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007712
7713Conversion Operations
7714---------------------
7715
7716The instructions in this category are the conversion instructions
7717(casting) which all take a single operand and a type. They perform
7718various bit conversions on the operand.
7719
7720'``trunc .. to``' Instruction
7721^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7722
7723Syntax:
7724"""""""
7725
7726::
7727
7728 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7729
7730Overview:
7731"""""""""
7732
7733The '``trunc``' instruction truncates its operand to the type ``ty2``.
7734
7735Arguments:
7736""""""""""
7737
7738The '``trunc``' instruction takes a value to trunc, and a type to trunc
7739it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7740of the same number of integers. The bit size of the ``value`` must be
7741larger than the bit size of the destination type, ``ty2``. Equal sized
7742types are not allowed.
7743
7744Semantics:
7745""""""""""
7746
7747The '``trunc``' instruction truncates the high order bits in ``value``
7748and converts the remaining bits to ``ty2``. Since the source size must
7749be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7750It will always truncate bits.
7751
7752Example:
7753""""""""
7754
7755.. code-block:: llvm
7756
7757 %X = trunc i32 257 to i8 ; yields i8:1
7758 %Y = trunc i32 123 to i1 ; yields i1:true
7759 %Z = trunc i32 122 to i1 ; yields i1:false
7760 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7761
7762'``zext .. to``' Instruction
7763^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7764
7765Syntax:
7766"""""""
7767
7768::
7769
7770 <result> = zext <ty> <value> to <ty2> ; yields ty2
7771
7772Overview:
7773"""""""""
7774
7775The '``zext``' instruction zero extends its operand to type ``ty2``.
7776
7777Arguments:
7778""""""""""
7779
7780The '``zext``' instruction takes a value to cast, and a type to cast it
7781to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7782the same number of integers. The bit size of the ``value`` must be
7783smaller than the bit size of the destination type, ``ty2``.
7784
7785Semantics:
7786""""""""""
7787
7788The ``zext`` fills the high order bits of the ``value`` with zero bits
7789until it reaches the size of the destination type, ``ty2``.
7790
7791When zero extending from i1, the result will always be either 0 or 1.
7792
7793Example:
7794""""""""
7795
7796.. code-block:: llvm
7797
7798 %X = zext i32 257 to i64 ; yields i64:257
7799 %Y = zext i1 true to i32 ; yields i32:1
7800 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7801
7802'``sext .. to``' Instruction
7803^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7804
7805Syntax:
7806"""""""
7807
7808::
7809
7810 <result> = sext <ty> <value> to <ty2> ; yields ty2
7811
7812Overview:
7813"""""""""
7814
7815The '``sext``' sign extends ``value`` to the type ``ty2``.
7816
7817Arguments:
7818""""""""""
7819
7820The '``sext``' instruction takes a value to cast, and a type to cast it
7821to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7822the same number of integers. The bit size of the ``value`` must be
7823smaller than the bit size of the destination type, ``ty2``.
7824
7825Semantics:
7826""""""""""
7827
7828The '``sext``' instruction performs a sign extension by copying the sign
7829bit (highest order bit) of the ``value`` until it reaches the bit size
7830of the type ``ty2``.
7831
7832When sign extending from i1, the extension always results in -1 or 0.
7833
7834Example:
7835""""""""
7836
7837.. code-block:: llvm
7838
7839 %X = sext i8 -1 to i16 ; yields i16 :65535
7840 %Y = sext i1 true to i32 ; yields i32:-1
7841 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7842
7843'``fptrunc .. to``' Instruction
7844^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7845
7846Syntax:
7847"""""""
7848
7849::
7850
7851 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7852
7853Overview:
7854"""""""""
7855
7856The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7857
7858Arguments:
7859""""""""""
7860
7861The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7862value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7863The size of ``value`` must be larger than the size of ``ty2``. This
7864implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7865
7866Semantics:
7867""""""""""
7868
Dan Liew50456fb2015-09-03 18:43:56 +00007869The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007870:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007871point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7872destination type, ``ty2``, then the results are undefined. If the cast produces
7873an inexact result, how rounding is performed (e.g. truncation, also known as
7874round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007875
7876Example:
7877""""""""
7878
7879.. code-block:: llvm
7880
7881 %X = fptrunc double 123.0 to float ; yields float:123.0
7882 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7883
7884'``fpext .. to``' Instruction
7885^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7886
7887Syntax:
7888"""""""
7889
7890::
7891
7892 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7893
7894Overview:
7895"""""""""
7896
7897The '``fpext``' extends a floating point ``value`` to a larger floating
7898point value.
7899
7900Arguments:
7901""""""""""
7902
7903The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7904``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7905to. The source type must be smaller than the destination type.
7906
7907Semantics:
7908""""""""""
7909
7910The '``fpext``' instruction extends the ``value`` from a smaller
7911:ref:`floating point <t_floating>` type to a larger :ref:`floating
7912point <t_floating>` type. The ``fpext`` cannot be used to make a
7913*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7914*no-op cast* for a floating point cast.
7915
7916Example:
7917""""""""
7918
7919.. code-block:: llvm
7920
7921 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7922 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7923
7924'``fptoui .. to``' Instruction
7925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7926
7927Syntax:
7928"""""""
7929
7930::
7931
7932 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7933
7934Overview:
7935"""""""""
7936
7937The '``fptoui``' converts a floating point ``value`` to its unsigned
7938integer equivalent of type ``ty2``.
7939
7940Arguments:
7941""""""""""
7942
7943The '``fptoui``' instruction takes a value to cast, which must be a
7944scalar or vector :ref:`floating point <t_floating>` value, and a type to
7945cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7946``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7947type with the same number of elements as ``ty``
7948
7949Semantics:
7950""""""""""
7951
7952The '``fptoui``' instruction converts its :ref:`floating
7953point <t_floating>` operand into the nearest (rounding towards zero)
7954unsigned integer value. If the value cannot fit in ``ty2``, the results
7955are undefined.
7956
7957Example:
7958""""""""
7959
7960.. code-block:: llvm
7961
7962 %X = fptoui double 123.0 to i32 ; yields i32:123
7963 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7964 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7965
7966'``fptosi .. to``' Instruction
7967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7968
7969Syntax:
7970"""""""
7971
7972::
7973
7974 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7975
7976Overview:
7977"""""""""
7978
7979The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7980``value`` to type ``ty2``.
7981
7982Arguments:
7983""""""""""
7984
7985The '``fptosi``' instruction takes a value to cast, which must be a
7986scalar or vector :ref:`floating point <t_floating>` value, and a type to
7987cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7988``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7989type with the same number of elements as ``ty``
7990
7991Semantics:
7992""""""""""
7993
7994The '``fptosi``' instruction converts its :ref:`floating
7995point <t_floating>` operand into the nearest (rounding towards zero)
7996signed integer value. If the value cannot fit in ``ty2``, the results
7997are undefined.
7998
7999Example:
8000""""""""
8001
8002.. code-block:: llvm
8003
8004 %X = fptosi double -123.0 to i32 ; yields i32:-123
8005 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8006 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8007
8008'``uitofp .. to``' Instruction
8009^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8010
8011Syntax:
8012"""""""
8013
8014::
8015
8016 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8017
8018Overview:
8019"""""""""
8020
8021The '``uitofp``' instruction regards ``value`` as an unsigned integer
8022and converts that value to the ``ty2`` type.
8023
8024Arguments:
8025""""""""""
8026
8027The '``uitofp``' instruction takes a value to cast, which must be a
8028scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8029``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8030``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8031type with the same number of elements as ``ty``
8032
8033Semantics:
8034""""""""""
8035
8036The '``uitofp``' instruction interprets its operand as an unsigned
8037integer quantity and converts it to the corresponding floating point
8038value. If the value cannot fit in the floating point value, the results
8039are undefined.
8040
8041Example:
8042""""""""
8043
8044.. code-block:: llvm
8045
8046 %X = uitofp i32 257 to float ; yields float:257.0
8047 %Y = uitofp i8 -1 to double ; yields double:255.0
8048
8049'``sitofp .. to``' Instruction
8050^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8051
8052Syntax:
8053"""""""
8054
8055::
8056
8057 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8058
8059Overview:
8060"""""""""
8061
8062The '``sitofp``' instruction regards ``value`` as a signed integer and
8063converts that value to the ``ty2`` type.
8064
8065Arguments:
8066""""""""""
8067
8068The '``sitofp``' instruction takes a value to cast, which must be a
8069scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8070``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8071``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8072type with the same number of elements as ``ty``
8073
8074Semantics:
8075""""""""""
8076
8077The '``sitofp``' instruction interprets its operand as a signed integer
8078quantity and converts it to the corresponding floating point value. If
8079the value cannot fit in the floating point value, the results are
8080undefined.
8081
8082Example:
8083""""""""
8084
8085.. code-block:: llvm
8086
8087 %X = sitofp i32 257 to float ; yields float:257.0
8088 %Y = sitofp i8 -1 to double ; yields double:-1.0
8089
8090.. _i_ptrtoint:
8091
8092'``ptrtoint .. to``' Instruction
8093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8094
8095Syntax:
8096"""""""
8097
8098::
8099
8100 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8101
8102Overview:
8103"""""""""
8104
8105The '``ptrtoint``' instruction converts the pointer or a vector of
8106pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8107
8108Arguments:
8109""""""""""
8110
8111The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008112a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008113type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8114a vector of integers type.
8115
8116Semantics:
8117""""""""""
8118
8119The '``ptrtoint``' instruction converts ``value`` to integer type
8120``ty2`` by interpreting the pointer value as an integer and either
8121truncating or zero extending that value to the size of the integer type.
8122If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8123``value`` is larger than ``ty2`` then a truncation is done. If they are
8124the same size, then nothing is done (*no-op cast*) other than a type
8125change.
8126
8127Example:
8128""""""""
8129
8130.. code-block:: llvm
8131
8132 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8133 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8134 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8135
8136.. _i_inttoptr:
8137
8138'``inttoptr .. to``' Instruction
8139^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8140
8141Syntax:
8142"""""""
8143
8144::
8145
8146 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8147
8148Overview:
8149"""""""""
8150
8151The '``inttoptr``' instruction converts an integer ``value`` to a
8152pointer type, ``ty2``.
8153
8154Arguments:
8155""""""""""
8156
8157The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8158cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8159type.
8160
8161Semantics:
8162""""""""""
8163
8164The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8165applying either a zero extension or a truncation depending on the size
8166of the integer ``value``. If ``value`` is larger than the size of a
8167pointer then a truncation is done. If ``value`` is smaller than the size
8168of a pointer then a zero extension is done. If they are the same size,
8169nothing is done (*no-op cast*).
8170
8171Example:
8172""""""""
8173
8174.. code-block:: llvm
8175
8176 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8177 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8178 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8179 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8180
8181.. _i_bitcast:
8182
8183'``bitcast .. to``' Instruction
8184^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8185
8186Syntax:
8187"""""""
8188
8189::
8190
8191 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8192
8193Overview:
8194"""""""""
8195
8196The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8197changing any bits.
8198
8199Arguments:
8200""""""""""
8201
8202The '``bitcast``' instruction takes a value to cast, which must be a
8203non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008204also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8205bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008206identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008207also be a pointer of the same size. This instruction supports bitwise
8208conversion of vectors to integers and to vectors of other types (as
8209long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008210
8211Semantics:
8212""""""""""
8213
Matt Arsenault24b49c42013-07-31 17:49:08 +00008214The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8215is always a *no-op cast* because no bits change with this
8216conversion. The conversion is done as if the ``value`` had been stored
8217to memory and read back as type ``ty2``. Pointer (or vector of
8218pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008219pointers) types with the same address space through this instruction.
8220To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8221or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008222
8223Example:
8224""""""""
8225
Renato Golin124f2592016-07-20 12:16:38 +00008226.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008227
8228 %X = bitcast i8 255 to i8 ; yields i8 :-1
8229 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8230 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8231 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8232
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008233.. _i_addrspacecast:
8234
8235'``addrspacecast .. to``' Instruction
8236^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8237
8238Syntax:
8239"""""""
8240
8241::
8242
8243 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8244
8245Overview:
8246"""""""""
8247
8248The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8249address space ``n`` to type ``pty2`` in address space ``m``.
8250
8251Arguments:
8252""""""""""
8253
8254The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8255to cast and a pointer type to cast it to, which must have a different
8256address space.
8257
8258Semantics:
8259""""""""""
8260
8261The '``addrspacecast``' instruction converts the pointer value
8262``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008263value modification, depending on the target and the address space
8264pair. Pointer conversions within the same address space must be
8265performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008266conversion is legal then both result and operand refer to the same memory
8267location.
8268
8269Example:
8270""""""""
8271
8272.. code-block:: llvm
8273
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008274 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8275 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8276 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008277
Sean Silvab084af42012-12-07 10:36:55 +00008278.. _otherops:
8279
8280Other Operations
8281----------------
8282
8283The instructions in this category are the "miscellaneous" instructions,
8284which defy better classification.
8285
8286.. _i_icmp:
8287
8288'``icmp``' Instruction
8289^^^^^^^^^^^^^^^^^^^^^^
8290
8291Syntax:
8292"""""""
8293
8294::
8295
Tim Northover675a0962014-06-13 14:24:23 +00008296 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008297
8298Overview:
8299"""""""""
8300
8301The '``icmp``' instruction returns a boolean value or a vector of
8302boolean values based on comparison of its two integer, integer vector,
8303pointer, or pointer vector operands.
8304
8305Arguments:
8306""""""""""
8307
8308The '``icmp``' instruction takes three operands. The first operand is
8309the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008310not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008311
8312#. ``eq``: equal
8313#. ``ne``: not equal
8314#. ``ugt``: unsigned greater than
8315#. ``uge``: unsigned greater or equal
8316#. ``ult``: unsigned less than
8317#. ``ule``: unsigned less or equal
8318#. ``sgt``: signed greater than
8319#. ``sge``: signed greater or equal
8320#. ``slt``: signed less than
8321#. ``sle``: signed less or equal
8322
8323The remaining two arguments must be :ref:`integer <t_integer>` or
8324:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8325must also be identical types.
8326
8327Semantics:
8328""""""""""
8329
8330The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8331code given as ``cond``. The comparison performed always yields either an
8332:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8333
8334#. ``eq``: yields ``true`` if the operands are equal, ``false``
8335 otherwise. No sign interpretation is necessary or performed.
8336#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8337 otherwise. No sign interpretation is necessary or performed.
8338#. ``ugt``: interprets the operands as unsigned values and yields
8339 ``true`` if ``op1`` is greater than ``op2``.
8340#. ``uge``: interprets the operands as unsigned values and yields
8341 ``true`` if ``op1`` is greater than or equal to ``op2``.
8342#. ``ult``: interprets the operands as unsigned values and yields
8343 ``true`` if ``op1`` is less than ``op2``.
8344#. ``ule``: interprets the operands as unsigned values and yields
8345 ``true`` if ``op1`` is less than or equal to ``op2``.
8346#. ``sgt``: interprets the operands as signed values and yields ``true``
8347 if ``op1`` is greater than ``op2``.
8348#. ``sge``: interprets the operands as signed values and yields ``true``
8349 if ``op1`` is greater than or equal to ``op2``.
8350#. ``slt``: interprets the operands as signed values and yields ``true``
8351 if ``op1`` is less than ``op2``.
8352#. ``sle``: interprets the operands as signed values and yields ``true``
8353 if ``op1`` is less than or equal to ``op2``.
8354
8355If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8356are compared as if they were integers.
8357
8358If the operands are integer vectors, then they are compared element by
8359element. The result is an ``i1`` vector with the same number of elements
8360as the values being compared. Otherwise, the result is an ``i1``.
8361
8362Example:
8363""""""""
8364
Renato Golin124f2592016-07-20 12:16:38 +00008365.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008366
8367 <result> = icmp eq i32 4, 5 ; yields: result=false
8368 <result> = icmp ne float* %X, %X ; yields: result=false
8369 <result> = icmp ult i16 4, 5 ; yields: result=true
8370 <result> = icmp sgt i16 4, 5 ; yields: result=false
8371 <result> = icmp ule i16 -4, 5 ; yields: result=false
8372 <result> = icmp sge i16 4, 5 ; yields: result=false
8373
Sean Silvab084af42012-12-07 10:36:55 +00008374.. _i_fcmp:
8375
8376'``fcmp``' Instruction
8377^^^^^^^^^^^^^^^^^^^^^^
8378
8379Syntax:
8380"""""""
8381
8382::
8383
James Molloy88eb5352015-07-10 12:52:00 +00008384 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008385
8386Overview:
8387"""""""""
8388
8389The '``fcmp``' instruction returns a boolean value or vector of boolean
8390values based on comparison of its operands.
8391
8392If the operands are floating point scalars, then the result type is a
8393boolean (:ref:`i1 <t_integer>`).
8394
8395If the operands are floating point vectors, then the result type is a
8396vector of boolean with the same number of elements as the operands being
8397compared.
8398
8399Arguments:
8400""""""""""
8401
8402The '``fcmp``' instruction takes three operands. The first operand is
8403the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008404not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008405
8406#. ``false``: no comparison, always returns false
8407#. ``oeq``: ordered and equal
8408#. ``ogt``: ordered and greater than
8409#. ``oge``: ordered and greater than or equal
8410#. ``olt``: ordered and less than
8411#. ``ole``: ordered and less than or equal
8412#. ``one``: ordered and not equal
8413#. ``ord``: ordered (no nans)
8414#. ``ueq``: unordered or equal
8415#. ``ugt``: unordered or greater than
8416#. ``uge``: unordered or greater than or equal
8417#. ``ult``: unordered or less than
8418#. ``ule``: unordered or less than or equal
8419#. ``une``: unordered or not equal
8420#. ``uno``: unordered (either nans)
8421#. ``true``: no comparison, always returns true
8422
8423*Ordered* means that neither operand is a QNAN while *unordered* means
8424that either operand may be a QNAN.
8425
8426Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8427point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8428type. They must have identical types.
8429
8430Semantics:
8431""""""""""
8432
8433The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8434condition code given as ``cond``. If the operands are vectors, then the
8435vectors are compared element by element. Each comparison performed
8436always yields an :ref:`i1 <t_integer>` result, as follows:
8437
8438#. ``false``: always yields ``false``, regardless of operands.
8439#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8440 is equal to ``op2``.
8441#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8442 is greater than ``op2``.
8443#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8444 is greater than or equal to ``op2``.
8445#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8446 is less than ``op2``.
8447#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8448 is less than or equal to ``op2``.
8449#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8450 is not equal to ``op2``.
8451#. ``ord``: yields ``true`` if both operands are not a QNAN.
8452#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8453 equal to ``op2``.
8454#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8455 greater than ``op2``.
8456#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8457 greater than or equal to ``op2``.
8458#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8459 less than ``op2``.
8460#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8461 less than or equal to ``op2``.
8462#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8463 not equal to ``op2``.
8464#. ``uno``: yields ``true`` if either operand is a QNAN.
8465#. ``true``: always yields ``true``, regardless of operands.
8466
James Molloy88eb5352015-07-10 12:52:00 +00008467The ``fcmp`` instruction can also optionally take any number of
8468:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8469otherwise unsafe floating point optimizations.
8470
8471Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8472only flags that have any effect on its semantics are those that allow
8473assumptions to be made about the values of input arguments; namely
8474``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8475
Sean Silvab084af42012-12-07 10:36:55 +00008476Example:
8477""""""""
8478
Renato Golin124f2592016-07-20 12:16:38 +00008479.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008480
8481 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8482 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8483 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8484 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8485
Sean Silvab084af42012-12-07 10:36:55 +00008486.. _i_phi:
8487
8488'``phi``' Instruction
8489^^^^^^^^^^^^^^^^^^^^^
8490
8491Syntax:
8492"""""""
8493
8494::
8495
8496 <result> = phi <ty> [ <val0>, <label0>], ...
8497
8498Overview:
8499"""""""""
8500
8501The '``phi``' instruction is used to implement the φ node in the SSA
8502graph representing the function.
8503
8504Arguments:
8505""""""""""
8506
8507The type of the incoming values is specified with the first type field.
8508After this, the '``phi``' instruction takes a list of pairs as
8509arguments, with one pair for each predecessor basic block of the current
8510block. Only values of :ref:`first class <t_firstclass>` type may be used as
8511the value arguments to the PHI node. Only labels may be used as the
8512label arguments.
8513
8514There must be no non-phi instructions between the start of a basic block
8515and the PHI instructions: i.e. PHI instructions must be first in a basic
8516block.
8517
8518For the purposes of the SSA form, the use of each incoming value is
8519deemed to occur on the edge from the corresponding predecessor block to
8520the current block (but after any definition of an '``invoke``'
8521instruction's return value on the same edge).
8522
8523Semantics:
8524""""""""""
8525
8526At runtime, the '``phi``' instruction logically takes on the value
8527specified by the pair corresponding to the predecessor basic block that
8528executed just prior to the current block.
8529
8530Example:
8531""""""""
8532
8533.. code-block:: llvm
8534
8535 Loop: ; Infinite loop that counts from 0 on up...
8536 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8537 %nextindvar = add i32 %indvar, 1
8538 br label %Loop
8539
8540.. _i_select:
8541
8542'``select``' Instruction
8543^^^^^^^^^^^^^^^^^^^^^^^^
8544
8545Syntax:
8546"""""""
8547
8548::
8549
8550 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8551
8552 selty is either i1 or {<N x i1>}
8553
8554Overview:
8555"""""""""
8556
8557The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008558condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008559
8560Arguments:
8561""""""""""
8562
8563The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8564values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008565class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008566
8567Semantics:
8568""""""""""
8569
8570If the condition is an i1 and it evaluates to 1, the instruction returns
8571the first value argument; otherwise, it returns the second value
8572argument.
8573
8574If the condition is a vector of i1, then the value arguments must be
8575vectors of the same size, and the selection is done element by element.
8576
David Majnemer40a0b592015-03-03 22:45:47 +00008577If the condition is an i1 and the value arguments are vectors of the
8578same size, then an entire vector is selected.
8579
Sean Silvab084af42012-12-07 10:36:55 +00008580Example:
8581""""""""
8582
8583.. code-block:: llvm
8584
8585 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8586
8587.. _i_call:
8588
8589'``call``' Instruction
8590^^^^^^^^^^^^^^^^^^^^^^
8591
8592Syntax:
8593"""""""
8594
8595::
8596
David Blaikieb83cf102016-07-13 17:21:34 +00008597 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008598 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008599
8600Overview:
8601"""""""""
8602
8603The '``call``' instruction represents a simple function call.
8604
8605Arguments:
8606""""""""""
8607
8608This instruction requires several arguments:
8609
Reid Kleckner5772b772014-04-24 20:14:34 +00008610#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008611 should perform tail call optimization. The ``tail`` marker is a hint that
8612 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008613 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008614 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008615
8616 #. The call will not cause unbounded stack growth if it is part of a
8617 recursive cycle in the call graph.
8618 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8619 forwarded in place.
8620
8621 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008622 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008623 rules:
8624
8625 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8626 or a pointer bitcast followed by a ret instruction.
8627 - The ret instruction must return the (possibly bitcasted) value
8628 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008629 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008630 parameters or return types may differ in pointee type, but not
8631 in address space.
8632 - The calling conventions of the caller and callee must match.
8633 - All ABI-impacting function attributes, such as sret, byval, inreg,
8634 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008635 - The callee must be varargs iff the caller is varargs. Bitcasting a
8636 non-varargs function to the appropriate varargs type is legal so
8637 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008638
8639 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8640 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008641
8642 - Caller and callee both have the calling convention ``fastcc``.
8643 - The call is in tail position (ret immediately follows call and ret
8644 uses value of call or is void).
8645 - Option ``-tailcallopt`` is enabled, or
8646 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008647 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008648 met. <CodeGenerator.html#tailcallopt>`_
8649
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008650#. The optional ``notail`` marker indicates that the optimizers should not add
8651 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8652 call optimization from being performed on the call.
8653
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008654#. The optional ``fast-math flags`` marker indicates that the call has one or more
8655 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8656 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8657 for calls that return a floating-point scalar or vector type.
8658
Sean Silvab084af42012-12-07 10:36:55 +00008659#. The optional "cconv" marker indicates which :ref:`calling
8660 convention <callingconv>` the call should use. If none is
8661 specified, the call defaults to using C calling conventions. The
8662 calling convention of the call must match the calling convention of
8663 the target function, or else the behavior is undefined.
8664#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8665 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8666 are valid here.
8667#. '``ty``': the type of the call instruction itself which is also the
8668 type of the return value. Functions that return no value are marked
8669 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008670#. '``fnty``': shall be the signature of the function being called. The
8671 argument types must match the types implied by this signature. This
8672 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008673#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008674 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008675 indirect ``call``'s are just as possible, calling an arbitrary pointer
8676 to function value.
8677#. '``function args``': argument list whose types match the function
8678 signature argument types and parameter attributes. All arguments must
8679 be of :ref:`first class <t_firstclass>` type. If the function signature
8680 indicates the function accepts a variable number of arguments, the
8681 extra arguments can be specified.
8682#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008683 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8684 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008685#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008686
8687Semantics:
8688""""""""""
8689
8690The '``call``' instruction is used to cause control flow to transfer to
8691a specified function, with its incoming arguments bound to the specified
8692values. Upon a '``ret``' instruction in the called function, control
8693flow continues with the instruction after the function call, and the
8694return value of the function is bound to the result argument.
8695
8696Example:
8697""""""""
8698
8699.. code-block:: llvm
8700
8701 %retval = call i32 @test(i32 %argc)
8702 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8703 %X = tail call i32 @foo() ; yields i32
8704 %Y = tail call fastcc i32 @foo() ; yields i32
8705 call void %foo(i8 97 signext)
8706
8707 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008708 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008709 %gr = extractvalue %struct.A %r, 0 ; yields i32
8710 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8711 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8712 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8713
8714llvm treats calls to some functions with names and arguments that match
8715the standard C99 library as being the C99 library functions, and may
8716perform optimizations or generate code for them under that assumption.
8717This is something we'd like to change in the future to provide better
8718support for freestanding environments and non-C-based languages.
8719
8720.. _i_va_arg:
8721
8722'``va_arg``' Instruction
8723^^^^^^^^^^^^^^^^^^^^^^^^
8724
8725Syntax:
8726"""""""
8727
8728::
8729
8730 <resultval> = va_arg <va_list*> <arglist>, <argty>
8731
8732Overview:
8733"""""""""
8734
8735The '``va_arg``' instruction is used to access arguments passed through
8736the "variable argument" area of a function call. It is used to implement
8737the ``va_arg`` macro in C.
8738
8739Arguments:
8740""""""""""
8741
8742This instruction takes a ``va_list*`` value and the type of the
8743argument. It returns a value of the specified argument type and
8744increments the ``va_list`` to point to the next argument. The actual
8745type of ``va_list`` is target specific.
8746
8747Semantics:
8748""""""""""
8749
8750The '``va_arg``' instruction loads an argument of the specified type
8751from the specified ``va_list`` and causes the ``va_list`` to point to
8752the next argument. For more information, see the variable argument
8753handling :ref:`Intrinsic Functions <int_varargs>`.
8754
8755It is legal for this instruction to be called in a function which does
8756not take a variable number of arguments, for example, the ``vfprintf``
8757function.
8758
8759``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8760function <intrinsics>` because it takes a type as an argument.
8761
8762Example:
8763""""""""
8764
8765See the :ref:`variable argument processing <int_varargs>` section.
8766
8767Note that the code generator does not yet fully support va\_arg on many
8768targets. Also, it does not currently support va\_arg with aggregate
8769types on any target.
8770
8771.. _i_landingpad:
8772
8773'``landingpad``' Instruction
8774^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8775
8776Syntax:
8777"""""""
8778
8779::
8780
David Majnemer7fddecc2015-06-17 20:52:32 +00008781 <resultval> = landingpad <resultty> <clause>+
8782 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008783
8784 <clause> := catch <type> <value>
8785 <clause> := filter <array constant type> <array constant>
8786
8787Overview:
8788"""""""""
8789
8790The '``landingpad``' instruction is used by `LLVM's exception handling
8791system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008792is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008793code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008794defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008795re-entry to the function. The ``resultval`` has the type ``resultty``.
8796
8797Arguments:
8798""""""""""
8799
David Majnemer7fddecc2015-06-17 20:52:32 +00008800The optional
Sean Silvab084af42012-12-07 10:36:55 +00008801``cleanup`` flag indicates that the landing pad block is a cleanup.
8802
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008803A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008804contains the global variable representing the "type" that may be caught
8805or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8806clause takes an array constant as its argument. Use
8807"``[0 x i8**] undef``" for a filter which cannot throw. The
8808'``landingpad``' instruction must contain *at least* one ``clause`` or
8809the ``cleanup`` flag.
8810
8811Semantics:
8812""""""""""
8813
8814The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008815:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008816therefore the "result type" of the ``landingpad`` instruction. As with
8817calling conventions, how the personality function results are
8818represented in LLVM IR is target specific.
8819
8820The clauses are applied in order from top to bottom. If two
8821``landingpad`` instructions are merged together through inlining, the
8822clauses from the calling function are appended to the list of clauses.
8823When the call stack is being unwound due to an exception being thrown,
8824the exception is compared against each ``clause`` in turn. If it doesn't
8825match any of the clauses, and the ``cleanup`` flag is not set, then
8826unwinding continues further up the call stack.
8827
8828The ``landingpad`` instruction has several restrictions:
8829
8830- A landing pad block is a basic block which is the unwind destination
8831 of an '``invoke``' instruction.
8832- A landing pad block must have a '``landingpad``' instruction as its
8833 first non-PHI instruction.
8834- There can be only one '``landingpad``' instruction within the landing
8835 pad block.
8836- A basic block that is not a landing pad block may not include a
8837 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008838
8839Example:
8840""""""""
8841
8842.. code-block:: llvm
8843
8844 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008845 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008846 catch i8** @_ZTIi
8847 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008848 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008849 cleanup
8850 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008851 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008852 catch i8** @_ZTIi
8853 filter [1 x i8**] [@_ZTId]
8854
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008855.. _i_catchpad:
8856
8857'``catchpad``' Instruction
8858^^^^^^^^^^^^^^^^^^^^^^^^^^
8859
8860Syntax:
8861"""""""
8862
8863::
8864
8865 <resultval> = catchpad within <catchswitch> [<args>*]
8866
8867Overview:
8868"""""""""
8869
8870The '``catchpad``' instruction is used by `LLVM's exception handling
8871system <ExceptionHandling.html#overview>`_ to specify that a basic block
8872begins a catch handler --- one where a personality routine attempts to transfer
8873control to catch an exception.
8874
8875Arguments:
8876""""""""""
8877
8878The ``catchswitch`` operand must always be a token produced by a
8879:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8880ensures that each ``catchpad`` has exactly one predecessor block, and it always
8881terminates in a ``catchswitch``.
8882
8883The ``args`` correspond to whatever information the personality routine
8884requires to know if this is an appropriate handler for the exception. Control
8885will transfer to the ``catchpad`` if this is the first appropriate handler for
8886the exception.
8887
8888The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8889``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8890pads.
8891
8892Semantics:
8893""""""""""
8894
8895When the call stack is being unwound due to an exception being thrown, the
8896exception is compared against the ``args``. If it doesn't match, control will
8897not reach the ``catchpad`` instruction. The representation of ``args`` is
8898entirely target and personality function-specific.
8899
8900Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8901instruction must be the first non-phi of its parent basic block.
8902
8903The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8904instructions is described in the
8905`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8906
8907When a ``catchpad`` has been "entered" but not yet "exited" (as
8908described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8909it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8910that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8911
8912Example:
8913""""""""
8914
Renato Golin124f2592016-07-20 12:16:38 +00008915.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008916
8917 dispatch:
8918 %cs = catchswitch within none [label %handler0] unwind to caller
8919 ;; A catch block which can catch an integer.
8920 handler0:
8921 %tok = catchpad within %cs [i8** @_ZTIi]
8922
David Majnemer654e1302015-07-31 17:58:14 +00008923.. _i_cleanuppad:
8924
8925'``cleanuppad``' Instruction
8926^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8927
8928Syntax:
8929"""""""
8930
8931::
8932
David Majnemer8a1c45d2015-12-12 05:38:55 +00008933 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008934
8935Overview:
8936"""""""""
8937
8938The '``cleanuppad``' instruction is used by `LLVM's exception handling
8939system <ExceptionHandling.html#overview>`_ to specify that a basic block
8940is a cleanup block --- one where a personality routine attempts to
8941transfer control to run cleanup actions.
8942The ``args`` correspond to whatever additional
8943information the :ref:`personality function <personalityfn>` requires to
8944execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008945The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008946match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8947The ``parent`` argument is the token of the funclet that contains the
8948``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8949this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008950
8951Arguments:
8952""""""""""
8953
8954The instruction takes a list of arbitrary values which are interpreted
8955by the :ref:`personality function <personalityfn>`.
8956
8957Semantics:
8958""""""""""
8959
David Majnemer654e1302015-07-31 17:58:14 +00008960When the call stack is being unwound due to an exception being thrown,
8961the :ref:`personality function <personalityfn>` transfers control to the
8962``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008963As with calling conventions, how the personality function results are
8964represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008965
8966The ``cleanuppad`` instruction has several restrictions:
8967
8968- A cleanup block is a basic block which is the unwind destination of
8969 an exceptional instruction.
8970- A cleanup block must have a '``cleanuppad``' instruction as its
8971 first non-PHI instruction.
8972- There can be only one '``cleanuppad``' instruction within the
8973 cleanup block.
8974- A basic block that is not a cleanup block may not include a
8975 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008976
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008977When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8978described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8979it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8980that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008981
David Majnemer654e1302015-07-31 17:58:14 +00008982Example:
8983""""""""
8984
Renato Golin124f2592016-07-20 12:16:38 +00008985.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00008986
David Majnemer8a1c45d2015-12-12 05:38:55 +00008987 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008988
Sean Silvab084af42012-12-07 10:36:55 +00008989.. _intrinsics:
8990
8991Intrinsic Functions
8992===================
8993
8994LLVM supports the notion of an "intrinsic function". These functions
8995have well known names and semantics and are required to follow certain
8996restrictions. Overall, these intrinsics represent an extension mechanism
8997for the LLVM language that does not require changing all of the
8998transformations in LLVM when adding to the language (or the bitcode
8999reader/writer, the parser, etc...).
9000
9001Intrinsic function names must all start with an "``llvm.``" prefix. This
9002prefix is reserved in LLVM for intrinsic names; thus, function names may
9003not begin with this prefix. Intrinsic functions must always be external
9004functions: you cannot define the body of intrinsic functions. Intrinsic
9005functions may only be used in call or invoke instructions: it is illegal
9006to take the address of an intrinsic function. Additionally, because
9007intrinsic functions are part of the LLVM language, it is required if any
9008are added that they be documented here.
9009
9010Some intrinsic functions can be overloaded, i.e., the intrinsic
9011represents a family of functions that perform the same operation but on
9012different data types. Because LLVM can represent over 8 million
9013different integer types, overloading is used commonly to allow an
9014intrinsic function to operate on any integer type. One or more of the
9015argument types or the result type can be overloaded to accept any
9016integer type. Argument types may also be defined as exactly matching a
9017previous argument's type or the result type. This allows an intrinsic
9018function which accepts multiple arguments, but needs all of them to be
9019of the same type, to only be overloaded with respect to a single
9020argument or the result.
9021
9022Overloaded intrinsics will have the names of its overloaded argument
9023types encoded into its function name, each preceded by a period. Only
9024those types which are overloaded result in a name suffix. Arguments
9025whose type is matched against another type do not. For example, the
9026``llvm.ctpop`` function can take an integer of any width and returns an
9027integer of exactly the same integer width. This leads to a family of
9028functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9029``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9030overloaded, and only one type suffix is required. Because the argument's
9031type is matched against the return type, it does not require its own
9032name suffix.
9033
9034To learn how to add an intrinsic function, please see the `Extending
9035LLVM Guide <ExtendingLLVM.html>`_.
9036
9037.. _int_varargs:
9038
9039Variable Argument Handling Intrinsics
9040-------------------------------------
9041
9042Variable argument support is defined in LLVM with the
9043:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9044functions. These functions are related to the similarly named macros
9045defined in the ``<stdarg.h>`` header file.
9046
9047All of these functions operate on arguments that use a target-specific
9048value type "``va_list``". The LLVM assembly language reference manual
9049does not define what this type is, so all transformations should be
9050prepared to handle these functions regardless of the type used.
9051
9052This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9053variable argument handling intrinsic functions are used.
9054
9055.. code-block:: llvm
9056
Tim Northoverab60bb92014-11-02 01:21:51 +00009057 ; This struct is different for every platform. For most platforms,
9058 ; it is merely an i8*.
9059 %struct.va_list = type { i8* }
9060
9061 ; For Unix x86_64 platforms, va_list is the following struct:
9062 ; %struct.va_list = type { i32, i32, i8*, i8* }
9063
Sean Silvab084af42012-12-07 10:36:55 +00009064 define i32 @test(i32 %X, ...) {
9065 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009066 %ap = alloca %struct.va_list
9067 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009068 call void @llvm.va_start(i8* %ap2)
9069
9070 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009071 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009072
9073 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9074 %aq = alloca i8*
9075 %aq2 = bitcast i8** %aq to i8*
9076 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9077 call void @llvm.va_end(i8* %aq2)
9078
9079 ; Stop processing of arguments.
9080 call void @llvm.va_end(i8* %ap2)
9081 ret i32 %tmp
9082 }
9083
9084 declare void @llvm.va_start(i8*)
9085 declare void @llvm.va_copy(i8*, i8*)
9086 declare void @llvm.va_end(i8*)
9087
9088.. _int_va_start:
9089
9090'``llvm.va_start``' Intrinsic
9091^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9092
9093Syntax:
9094"""""""
9095
9096::
9097
Nick Lewycky04f6de02013-09-11 22:04:52 +00009098 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009099
9100Overview:
9101"""""""""
9102
9103The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9104subsequent use by ``va_arg``.
9105
9106Arguments:
9107""""""""""
9108
9109The argument is a pointer to a ``va_list`` element to initialize.
9110
9111Semantics:
9112""""""""""
9113
9114The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9115available in C. In a target-dependent way, it initializes the
9116``va_list`` element to which the argument points, so that the next call
9117to ``va_arg`` will produce the first variable argument passed to the
9118function. Unlike the C ``va_start`` macro, this intrinsic does not need
9119to know the last argument of the function as the compiler can figure
9120that out.
9121
9122'``llvm.va_end``' Intrinsic
9123^^^^^^^^^^^^^^^^^^^^^^^^^^^
9124
9125Syntax:
9126"""""""
9127
9128::
9129
9130 declare void @llvm.va_end(i8* <arglist>)
9131
9132Overview:
9133"""""""""
9134
9135The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9136initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9137
9138Arguments:
9139""""""""""
9140
9141The argument is a pointer to a ``va_list`` to destroy.
9142
9143Semantics:
9144""""""""""
9145
9146The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9147available in C. In a target-dependent way, it destroys the ``va_list``
9148element to which the argument points. Calls to
9149:ref:`llvm.va_start <int_va_start>` and
9150:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9151``llvm.va_end``.
9152
9153.. _int_va_copy:
9154
9155'``llvm.va_copy``' Intrinsic
9156^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9157
9158Syntax:
9159"""""""
9160
9161::
9162
9163 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9164
9165Overview:
9166"""""""""
9167
9168The '``llvm.va_copy``' intrinsic copies the current argument position
9169from the source argument list to the destination argument list.
9170
9171Arguments:
9172""""""""""
9173
9174The first argument is a pointer to a ``va_list`` element to initialize.
9175The second argument is a pointer to a ``va_list`` element to copy from.
9176
9177Semantics:
9178""""""""""
9179
9180The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9181available in C. In a target-dependent way, it copies the source
9182``va_list`` element into the destination ``va_list`` element. This
9183intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9184arbitrarily complex and require, for example, memory allocation.
9185
9186Accurate Garbage Collection Intrinsics
9187--------------------------------------
9188
Philip Reamesc5b0f562015-02-25 23:52:06 +00009189LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009190(GC) requires the frontend to generate code containing appropriate intrinsic
9191calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009192intrinsics in a manner which is appropriate for the target collector.
9193
Sean Silvab084af42012-12-07 10:36:55 +00009194These intrinsics allow identification of :ref:`GC roots on the
9195stack <int_gcroot>`, as well as garbage collector implementations that
9196require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009197Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009198these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009199details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009200
Philip Reamesf80bbff2015-02-25 23:45:20 +00009201Experimental Statepoint Intrinsics
9202^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9203
9204LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009205collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009206to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009207:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009208differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009209<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009210described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009211
9212.. _int_gcroot:
9213
9214'``llvm.gcroot``' Intrinsic
9215^^^^^^^^^^^^^^^^^^^^^^^^^^^
9216
9217Syntax:
9218"""""""
9219
9220::
9221
9222 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9223
9224Overview:
9225"""""""""
9226
9227The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9228the code generator, and allows some metadata to be associated with it.
9229
9230Arguments:
9231""""""""""
9232
9233The first argument specifies the address of a stack object that contains
9234the root pointer. The second pointer (which must be either a constant or
9235a global value address) contains the meta-data to be associated with the
9236root.
9237
9238Semantics:
9239""""""""""
9240
9241At runtime, a call to this intrinsic stores a null pointer into the
9242"ptrloc" location. At compile-time, the code generator generates
9243information to allow the runtime to find the pointer at GC safe points.
9244The '``llvm.gcroot``' intrinsic may only be used in a function which
9245:ref:`specifies a GC algorithm <gc>`.
9246
9247.. _int_gcread:
9248
9249'``llvm.gcread``' Intrinsic
9250^^^^^^^^^^^^^^^^^^^^^^^^^^^
9251
9252Syntax:
9253"""""""
9254
9255::
9256
9257 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9258
9259Overview:
9260"""""""""
9261
9262The '``llvm.gcread``' intrinsic identifies reads of references from heap
9263locations, allowing garbage collector implementations that require read
9264barriers.
9265
9266Arguments:
9267""""""""""
9268
9269The second argument is the address to read from, which should be an
9270address allocated from the garbage collector. The first object is a
9271pointer to the start of the referenced object, if needed by the language
9272runtime (otherwise null).
9273
9274Semantics:
9275""""""""""
9276
9277The '``llvm.gcread``' intrinsic has the same semantics as a load
9278instruction, but may be replaced with substantially more complex code by
9279the garbage collector runtime, as needed. The '``llvm.gcread``'
9280intrinsic may only be used in a function which :ref:`specifies a GC
9281algorithm <gc>`.
9282
9283.. _int_gcwrite:
9284
9285'``llvm.gcwrite``' Intrinsic
9286^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9287
9288Syntax:
9289"""""""
9290
9291::
9292
9293 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9294
9295Overview:
9296"""""""""
9297
9298The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9299locations, allowing garbage collector implementations that require write
9300barriers (such as generational or reference counting collectors).
9301
9302Arguments:
9303""""""""""
9304
9305The first argument is the reference to store, the second is the start of
9306the object to store it to, and the third is the address of the field of
9307Obj to store to. If the runtime does not require a pointer to the
9308object, Obj may be null.
9309
9310Semantics:
9311""""""""""
9312
9313The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9314instruction, but may be replaced with substantially more complex code by
9315the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9316intrinsic may only be used in a function which :ref:`specifies a GC
9317algorithm <gc>`.
9318
9319Code Generator Intrinsics
9320-------------------------
9321
9322These intrinsics are provided by LLVM to expose special features that
9323may only be implemented with code generator support.
9324
9325'``llvm.returnaddress``' Intrinsic
9326^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9327
9328Syntax:
9329"""""""
9330
9331::
9332
9333 declare i8 *@llvm.returnaddress(i32 <level>)
9334
9335Overview:
9336"""""""""
9337
9338The '``llvm.returnaddress``' intrinsic attempts to compute a
9339target-specific value indicating the return address of the current
9340function or one of its callers.
9341
9342Arguments:
9343""""""""""
9344
9345The argument to this intrinsic indicates which function to return the
9346address for. Zero indicates the calling function, one indicates its
9347caller, etc. The argument is **required** to be a constant integer
9348value.
9349
9350Semantics:
9351""""""""""
9352
9353The '``llvm.returnaddress``' intrinsic either returns a pointer
9354indicating the return address of the specified call frame, or zero if it
9355cannot be identified. The value returned by this intrinsic is likely to
9356be incorrect or 0 for arguments other than zero, so it should only be
9357used for debugging purposes.
9358
9359Note that calling this intrinsic does not prevent function inlining or
9360other aggressive transformations, so the value returned may not be that
9361of the obvious source-language caller.
9362
Albert Gutowski795d7d62016-10-12 22:13:19 +00009363'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009365
9366Syntax:
9367"""""""
9368
9369::
9370
9371 declare i8 *@llvm.addressofreturnaddress()
9372
9373Overview:
9374"""""""""
9375
9376The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9377pointer to the place in the stack frame where the return address of the
9378current function is stored.
9379
9380Semantics:
9381""""""""""
9382
9383Note that calling this intrinsic does not prevent function inlining or
9384other aggressive transformations, so the value returned may not be that
9385of the obvious source-language caller.
9386
9387This intrinsic is only implemented for x86.
9388
Sean Silvab084af42012-12-07 10:36:55 +00009389'``llvm.frameaddress``' Intrinsic
9390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9391
9392Syntax:
9393"""""""
9394
9395::
9396
9397 declare i8* @llvm.frameaddress(i32 <level>)
9398
9399Overview:
9400"""""""""
9401
9402The '``llvm.frameaddress``' intrinsic attempts to return the
9403target-specific frame pointer value for the specified stack frame.
9404
9405Arguments:
9406""""""""""
9407
9408The argument to this intrinsic indicates which function to return the
9409frame pointer for. Zero indicates the calling function, one indicates
9410its caller, etc. The argument is **required** to be a constant integer
9411value.
9412
9413Semantics:
9414""""""""""
9415
9416The '``llvm.frameaddress``' intrinsic either returns a pointer
9417indicating the frame address of the specified call frame, or zero if it
9418cannot be identified. The value returned by this intrinsic is likely to
9419be incorrect or 0 for arguments other than zero, so it should only be
9420used for debugging purposes.
9421
9422Note that calling this intrinsic does not prevent function inlining or
9423other aggressive transformations, so the value returned may not be that
9424of the obvious source-language caller.
9425
Reid Kleckner60381792015-07-07 22:25:32 +00009426'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009427^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9428
9429Syntax:
9430"""""""
9431
9432::
9433
Reid Kleckner60381792015-07-07 22:25:32 +00009434 declare void @llvm.localescape(...)
9435 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009436
9437Overview:
9438"""""""""
9439
Reid Kleckner60381792015-07-07 22:25:32 +00009440The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9441allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009442live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009443computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009444
9445Arguments:
9446""""""""""
9447
Reid Kleckner60381792015-07-07 22:25:32 +00009448All arguments to '``llvm.localescape``' must be pointers to static allocas or
9449casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009450once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009451
Reid Kleckner60381792015-07-07 22:25:32 +00009452The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009453bitcasted pointer to a function defined in the current module. The code
9454generator cannot determine the frame allocation offset of functions defined in
9455other modules.
9456
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009457The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9458call frame that is currently live. The return value of '``llvm.localaddress``'
9459is one way to produce such a value, but various runtimes also expose a suitable
9460pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009461
Reid Kleckner60381792015-07-07 22:25:32 +00009462The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9463'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009464
Reid Klecknere9b89312015-01-13 00:48:10 +00009465Semantics:
9466""""""""""
9467
Reid Kleckner60381792015-07-07 22:25:32 +00009468These intrinsics allow a group of functions to share access to a set of local
9469stack allocations of a one parent function. The parent function may call the
9470'``llvm.localescape``' intrinsic once from the function entry block, and the
9471child functions can use '``llvm.localrecover``' to access the escaped allocas.
9472The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9473the escaped allocas are allocated, which would break attempts to use
9474'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009475
Renato Golinc7aea402014-05-06 16:51:25 +00009476.. _int_read_register:
9477.. _int_write_register:
9478
9479'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9480^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9481
9482Syntax:
9483"""""""
9484
9485::
9486
9487 declare i32 @llvm.read_register.i32(metadata)
9488 declare i64 @llvm.read_register.i64(metadata)
9489 declare void @llvm.write_register.i32(metadata, i32 @value)
9490 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009491 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009492
9493Overview:
9494"""""""""
9495
9496The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9497provides access to the named register. The register must be valid on
9498the architecture being compiled to. The type needs to be compatible
9499with the register being read.
9500
9501Semantics:
9502""""""""""
9503
9504The '``llvm.read_register``' intrinsic returns the current value of the
9505register, where possible. The '``llvm.write_register``' intrinsic sets
9506the current value of the register, where possible.
9507
9508This is useful to implement named register global variables that need
9509to always be mapped to a specific register, as is common practice on
9510bare-metal programs including OS kernels.
9511
9512The compiler doesn't check for register availability or use of the used
9513register in surrounding code, including inline assembly. Because of that,
9514allocatable registers are not supported.
9515
9516Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009517architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009518work is needed to support other registers and even more so, allocatable
9519registers.
9520
Sean Silvab084af42012-12-07 10:36:55 +00009521.. _int_stacksave:
9522
9523'``llvm.stacksave``' Intrinsic
9524^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9525
9526Syntax:
9527"""""""
9528
9529::
9530
9531 declare i8* @llvm.stacksave()
9532
9533Overview:
9534"""""""""
9535
9536The '``llvm.stacksave``' intrinsic is used to remember the current state
9537of the function stack, for use with
9538:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9539implementing language features like scoped automatic variable sized
9540arrays in C99.
9541
9542Semantics:
9543""""""""""
9544
9545This intrinsic returns a opaque pointer value that can be passed to
9546:ref:`llvm.stackrestore <int_stackrestore>`. When an
9547``llvm.stackrestore`` intrinsic is executed with a value saved from
9548``llvm.stacksave``, it effectively restores the state of the stack to
9549the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9550practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9551were allocated after the ``llvm.stacksave`` was executed.
9552
9553.. _int_stackrestore:
9554
9555'``llvm.stackrestore``' Intrinsic
9556^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9557
9558Syntax:
9559"""""""
9560
9561::
9562
9563 declare void @llvm.stackrestore(i8* %ptr)
9564
9565Overview:
9566"""""""""
9567
9568The '``llvm.stackrestore``' intrinsic is used to restore the state of
9569the function stack to the state it was in when the corresponding
9570:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9571useful for implementing language features like scoped automatic variable
9572sized arrays in C99.
9573
9574Semantics:
9575""""""""""
9576
9577See the description for :ref:`llvm.stacksave <int_stacksave>`.
9578
Yury Gribovd7dbb662015-12-01 11:40:55 +00009579.. _int_get_dynamic_area_offset:
9580
9581'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009583
9584Syntax:
9585"""""""
9586
9587::
9588
9589 declare i32 @llvm.get.dynamic.area.offset.i32()
9590 declare i64 @llvm.get.dynamic.area.offset.i64()
9591
Lang Hames10239932016-10-08 00:20:42 +00009592Overview:
9593"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009594
9595 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9596 get the offset from native stack pointer to the address of the most
9597 recent dynamic alloca on the caller's stack. These intrinsics are
9598 intendend for use in combination with
9599 :ref:`llvm.stacksave <int_stacksave>` to get a
9600 pointer to the most recent dynamic alloca. This is useful, for example,
9601 for AddressSanitizer's stack unpoisoning routines.
9602
9603Semantics:
9604""""""""""
9605
9606 These intrinsics return a non-negative integer value that can be used to
9607 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9608 on the caller's stack. In particular, for targets where stack grows downwards,
9609 adding this offset to the native stack pointer would get the address of the most
9610 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009611 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009612 one past the end of the most recent dynamic alloca.
9613
9614 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9615 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9616 compile-time-known constant value.
9617
9618 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9619 must match the target's generic address space's (address space 0) pointer type.
9620
Sean Silvab084af42012-12-07 10:36:55 +00009621'``llvm.prefetch``' Intrinsic
9622^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9623
9624Syntax:
9625"""""""
9626
9627::
9628
9629 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9630
9631Overview:
9632"""""""""
9633
9634The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9635insert a prefetch instruction if supported; otherwise, it is a noop.
9636Prefetches have no effect on the behavior of the program but can change
9637its performance characteristics.
9638
9639Arguments:
9640""""""""""
9641
9642``address`` is the address to be prefetched, ``rw`` is the specifier
9643determining if the fetch should be for a read (0) or write (1), and
9644``locality`` is a temporal locality specifier ranging from (0) - no
9645locality, to (3) - extremely local keep in cache. The ``cache type``
9646specifies whether the prefetch is performed on the data (1) or
9647instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9648arguments must be constant integers.
9649
9650Semantics:
9651""""""""""
9652
9653This intrinsic does not modify the behavior of the program. In
9654particular, prefetches cannot trap and do not produce a value. On
9655targets that support this intrinsic, the prefetch can provide hints to
9656the processor cache for better performance.
9657
9658'``llvm.pcmarker``' Intrinsic
9659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9660
9661Syntax:
9662"""""""
9663
9664::
9665
9666 declare void @llvm.pcmarker(i32 <id>)
9667
9668Overview:
9669"""""""""
9670
9671The '``llvm.pcmarker``' intrinsic is a method to export a Program
9672Counter (PC) in a region of code to simulators and other tools. The
9673method is target specific, but it is expected that the marker will use
9674exported symbols to transmit the PC of the marker. The marker makes no
9675guarantees that it will remain with any specific instruction after
9676optimizations. It is possible that the presence of a marker will inhibit
9677optimizations. The intended use is to be inserted after optimizations to
9678allow correlations of simulation runs.
9679
9680Arguments:
9681""""""""""
9682
9683``id`` is a numerical id identifying the marker.
9684
9685Semantics:
9686""""""""""
9687
9688This intrinsic does not modify the behavior of the program. Backends
9689that do not support this intrinsic may ignore it.
9690
9691'``llvm.readcyclecounter``' Intrinsic
9692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9693
9694Syntax:
9695"""""""
9696
9697::
9698
9699 declare i64 @llvm.readcyclecounter()
9700
9701Overview:
9702"""""""""
9703
9704The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9705counter register (or similar low latency, high accuracy clocks) on those
9706targets that support it. On X86, it should map to RDTSC. On Alpha, it
9707should map to RPCC. As the backing counters overflow quickly (on the
9708order of 9 seconds on alpha), this should only be used for small
9709timings.
9710
9711Semantics:
9712""""""""""
9713
9714When directly supported, reading the cycle counter should not modify any
9715memory. Implementations are allowed to either return a application
9716specific value or a system wide value. On backends without support, this
9717is lowered to a constant 0.
9718
Tim Northoverbc933082013-05-23 19:11:20 +00009719Note that runtime support may be conditional on the privilege-level code is
9720running at and the host platform.
9721
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009722'``llvm.clear_cache``' Intrinsic
9723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9724
9725Syntax:
9726"""""""
9727
9728::
9729
9730 declare void @llvm.clear_cache(i8*, i8*)
9731
9732Overview:
9733"""""""""
9734
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009735The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9736in the specified range to the execution unit of the processor. On
9737targets with non-unified instruction and data cache, the implementation
9738flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009739
9740Semantics:
9741""""""""""
9742
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009743On platforms with coherent instruction and data caches (e.g. x86), this
9744intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009745cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009746instructions or a system call, if cache flushing requires special
9747privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009748
Sean Silvad02bf3e2014-04-07 22:29:53 +00009749The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009750time library.
Renato Golin93010e62014-03-26 14:01:32 +00009751
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009752This instrinsic does *not* empty the instruction pipeline. Modifications
9753of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009754
Justin Bogner61ba2e32014-12-08 18:02:35 +00009755'``llvm.instrprof_increment``' Intrinsic
9756^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9757
9758Syntax:
9759"""""""
9760
9761::
9762
9763 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9764 i32 <num-counters>, i32 <index>)
9765
9766Overview:
9767"""""""""
9768
9769The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9770frontend for use with instrumentation based profiling. These will be
9771lowered by the ``-instrprof`` pass to generate execution counts of a
9772program at runtime.
9773
9774Arguments:
9775""""""""""
9776
9777The first argument is a pointer to a global variable containing the
9778name of the entity being instrumented. This should generally be the
9779(mangled) function name for a set of counters.
9780
9781The second argument is a hash value that can be used by the consumer
9782of the profile data to detect changes to the instrumented source, and
9783the third is the number of counters associated with ``name``. It is an
9784error if ``hash`` or ``num-counters`` differ between two instances of
9785``instrprof_increment`` that refer to the same name.
9786
9787The last argument refers to which of the counters for ``name`` should
9788be incremented. It should be a value between 0 and ``num-counters``.
9789
9790Semantics:
9791""""""""""
9792
9793This intrinsic represents an increment of a profiling counter. It will
9794cause the ``-instrprof`` pass to generate the appropriate data
9795structures and the code to increment the appropriate value, in a
9796format that can be written out by a compiler runtime and consumed via
9797the ``llvm-profdata`` tool.
9798
Xinliang David Li4ca17332016-09-18 18:34:07 +00009799'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +00009800^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +00009801
9802Syntax:
9803"""""""
9804
9805::
9806
9807 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
9808 i32 <num-counters>,
9809 i32 <index>, i64 <step>)
9810
9811Overview:
9812"""""""""
9813
9814The '``llvm.instrprof_increment_step``' intrinsic is an extension to
9815the '``llvm.instrprof_increment``' intrinsic with an additional fifth
9816argument to specify the step of the increment.
9817
9818Arguments:
9819""""""""""
9820The first four arguments are the same as '``llvm.instrprof_increment``'
9821instrinsic.
9822
9823The last argument specifies the value of the increment of the counter variable.
9824
9825Semantics:
9826""""""""""
9827See description of '``llvm.instrprof_increment``' instrinsic.
9828
9829
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009830'``llvm.instrprof_value_profile``' Intrinsic
9831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9832
9833Syntax:
9834"""""""
9835
9836::
9837
9838 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9839 i64 <value>, i32 <value_kind>,
9840 i32 <index>)
9841
9842Overview:
9843"""""""""
9844
9845The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9846frontend for use with instrumentation based profiling. This will be
9847lowered by the ``-instrprof`` pass to find out the target values,
9848instrumented expressions take in a program at runtime.
9849
9850Arguments:
9851""""""""""
9852
9853The first argument is a pointer to a global variable containing the
9854name of the entity being instrumented. ``name`` should generally be the
9855(mangled) function name for a set of counters.
9856
9857The second argument is a hash value that can be used by the consumer
9858of the profile data to detect changes to the instrumented source. It
9859is an error if ``hash`` differs between two instances of
9860``llvm.instrprof_*`` that refer to the same name.
9861
9862The third argument is the value of the expression being profiled. The profiled
9863expression's value should be representable as an unsigned 64-bit value. The
9864fourth argument represents the kind of value profiling that is being done. The
9865supported value profiling kinds are enumerated through the
9866``InstrProfValueKind`` type declared in the
9867``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9868index of the instrumented expression within ``name``. It should be >= 0.
9869
9870Semantics:
9871""""""""""
9872
9873This intrinsic represents the point where a call to a runtime routine
9874should be inserted for value profiling of target expressions. ``-instrprof``
9875pass will generate the appropriate data structures and replace the
9876``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9877runtime library with proper arguments.
9878
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009879'``llvm.thread.pointer``' Intrinsic
9880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9881
9882Syntax:
9883"""""""
9884
9885::
9886
9887 declare i8* @llvm.thread.pointer()
9888
9889Overview:
9890"""""""""
9891
9892The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9893pointer.
9894
9895Semantics:
9896""""""""""
9897
9898The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9899for the current thread. The exact semantics of this value are target
9900specific: it may point to the start of TLS area, to the end, or somewhere
9901in the middle. Depending on the target, this intrinsic may read a register,
9902call a helper function, read from an alternate memory space, or perform
9903other operations necessary to locate the TLS area. Not all targets support
9904this intrinsic.
9905
Sean Silvab084af42012-12-07 10:36:55 +00009906Standard C Library Intrinsics
9907-----------------------------
9908
9909LLVM provides intrinsics for a few important standard C library
9910functions. These intrinsics allow source-language front-ends to pass
9911information about the alignment of the pointer arguments to the code
9912generator, providing opportunity for more efficient code generation.
9913
9914.. _int_memcpy:
9915
9916'``llvm.memcpy``' Intrinsic
9917^^^^^^^^^^^^^^^^^^^^^^^^^^^
9918
9919Syntax:
9920"""""""
9921
9922This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9923integer bit width and for different address spaces. Not all targets
9924support all bit widths however.
9925
9926::
9927
9928 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9929 i32 <len>, i32 <align>, i1 <isvolatile>)
9930 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9931 i64 <len>, i32 <align>, i1 <isvolatile>)
9932
9933Overview:
9934"""""""""
9935
9936The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9937source location to the destination location.
9938
9939Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9940intrinsics do not return a value, takes extra alignment/isvolatile
9941arguments and the pointers can be in specified address spaces.
9942
9943Arguments:
9944""""""""""
9945
9946The first argument is a pointer to the destination, the second is a
9947pointer to the source. The third argument is an integer argument
9948specifying the number of bytes to copy, the fourth argument is the
9949alignment of the source and destination locations, and the fifth is a
9950boolean indicating a volatile access.
9951
9952If the call to this intrinsic has an alignment value that is not 0 or 1,
9953then the caller guarantees that both the source and destination pointers
9954are aligned to that boundary.
9955
9956If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9957a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9958very cleanly specified and it is unwise to depend on it.
9959
9960Semantics:
9961""""""""""
9962
9963The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9964source location to the destination location, which are not allowed to
9965overlap. It copies "len" bytes of memory over. If the argument is known
9966to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009967argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009968
9969'``llvm.memmove``' Intrinsic
9970^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9971
9972Syntax:
9973"""""""
9974
9975This is an overloaded intrinsic. You can use llvm.memmove on any integer
9976bit width and for different address space. Not all targets support all
9977bit widths however.
9978
9979::
9980
9981 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9982 i32 <len>, i32 <align>, i1 <isvolatile>)
9983 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9984 i64 <len>, i32 <align>, i1 <isvolatile>)
9985
9986Overview:
9987"""""""""
9988
9989The '``llvm.memmove.*``' intrinsics move a block of memory from the
9990source location to the destination location. It is similar to the
9991'``llvm.memcpy``' intrinsic but allows the two memory locations to
9992overlap.
9993
9994Note that, unlike the standard libc function, the ``llvm.memmove.*``
9995intrinsics do not return a value, takes extra alignment/isvolatile
9996arguments and the pointers can be in specified address spaces.
9997
9998Arguments:
9999""""""""""
10000
10001The first argument is a pointer to the destination, the second is a
10002pointer to the source. The third argument is an integer argument
10003specifying the number of bytes to copy, the fourth argument is the
10004alignment of the source and destination locations, and the fifth is a
10005boolean indicating a volatile access.
10006
10007If the call to this intrinsic has an alignment value that is not 0 or 1,
10008then the caller guarantees that the source and destination pointers are
10009aligned to that boundary.
10010
10011If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10012is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10013not very cleanly specified and it is unwise to depend on it.
10014
10015Semantics:
10016""""""""""
10017
10018The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10019source location to the destination location, which may overlap. It
10020copies "len" bytes of memory over. If the argument is known to be
10021aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010022otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010023
10024'``llvm.memset.*``' Intrinsics
10025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10026
10027Syntax:
10028"""""""
10029
10030This is an overloaded intrinsic. You can use llvm.memset on any integer
10031bit width and for different address spaces. However, not all targets
10032support all bit widths.
10033
10034::
10035
10036 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10037 i32 <len>, i32 <align>, i1 <isvolatile>)
10038 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10039 i64 <len>, i32 <align>, i1 <isvolatile>)
10040
10041Overview:
10042"""""""""
10043
10044The '``llvm.memset.*``' intrinsics fill a block of memory with a
10045particular byte value.
10046
10047Note that, unlike the standard libc function, the ``llvm.memset``
10048intrinsic does not return a value and takes extra alignment/volatile
10049arguments. Also, the destination can be in an arbitrary address space.
10050
10051Arguments:
10052""""""""""
10053
10054The first argument is a pointer to the destination to fill, the second
10055is the byte value with which to fill it, the third argument is an
10056integer argument specifying the number of bytes to fill, and the fourth
10057argument is the known alignment of the destination location.
10058
10059If the call to this intrinsic has an alignment value that is not 0 or 1,
10060then the caller guarantees that the destination pointer is aligned to
10061that boundary.
10062
10063If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10064a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10065very cleanly specified and it is unwise to depend on it.
10066
10067Semantics:
10068""""""""""
10069
10070The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10071at the destination location. If the argument is known to be aligned to
10072some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010073it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010074
10075'``llvm.sqrt.*``' Intrinsic
10076^^^^^^^^^^^^^^^^^^^^^^^^^^^
10077
10078Syntax:
10079"""""""
10080
10081This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10082floating point or vector of floating point type. Not all targets support
10083all types however.
10084
10085::
10086
10087 declare float @llvm.sqrt.f32(float %Val)
10088 declare double @llvm.sqrt.f64(double %Val)
10089 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10090 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10091 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10092
10093Overview:
10094"""""""""
10095
10096The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
Justin Lebarcb9b41d2017-01-27 00:58:03 +000010097returning the same value as the libm '``sqrt``' functions would, but without
10098trapping or setting ``errno``.
Sean Silvab084af42012-12-07 10:36:55 +000010099
10100Arguments:
10101""""""""""
10102
10103The argument and return value are floating point numbers of the same
10104type.
10105
10106Semantics:
10107""""""""""
10108
10109This function returns the sqrt of the specified operand if it is a
10110nonnegative floating point number.
10111
10112'``llvm.powi.*``' Intrinsic
10113^^^^^^^^^^^^^^^^^^^^^^^^^^^
10114
10115Syntax:
10116"""""""
10117
10118This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10119floating point or vector of floating point type. Not all targets support
10120all types however.
10121
10122::
10123
10124 declare float @llvm.powi.f32(float %Val, i32 %power)
10125 declare double @llvm.powi.f64(double %Val, i32 %power)
10126 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10127 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10128 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10129
10130Overview:
10131"""""""""
10132
10133The '``llvm.powi.*``' intrinsics return the first operand raised to the
10134specified (positive or negative) power. The order of evaluation of
10135multiplications is not defined. When a vector of floating point type is
10136used, the second argument remains a scalar integer value.
10137
10138Arguments:
10139""""""""""
10140
10141The second argument is an integer power, and the first is a value to
10142raise to that power.
10143
10144Semantics:
10145""""""""""
10146
10147This function returns the first value raised to the second power with an
10148unspecified sequence of rounding operations.
10149
10150'``llvm.sin.*``' Intrinsic
10151^^^^^^^^^^^^^^^^^^^^^^^^^^
10152
10153Syntax:
10154"""""""
10155
10156This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10157floating point or vector of floating point type. Not all targets support
10158all types however.
10159
10160::
10161
10162 declare float @llvm.sin.f32(float %Val)
10163 declare double @llvm.sin.f64(double %Val)
10164 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10165 declare fp128 @llvm.sin.f128(fp128 %Val)
10166 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10167
10168Overview:
10169"""""""""
10170
10171The '``llvm.sin.*``' intrinsics return the sine of the operand.
10172
10173Arguments:
10174""""""""""
10175
10176The argument and return value are floating point numbers of the same
10177type.
10178
10179Semantics:
10180""""""""""
10181
10182This function returns the sine of the specified operand, returning the
10183same values as the libm ``sin`` functions would, and handles error
10184conditions in the same way.
10185
10186'``llvm.cos.*``' Intrinsic
10187^^^^^^^^^^^^^^^^^^^^^^^^^^
10188
10189Syntax:
10190"""""""
10191
10192This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10193floating point or vector of floating point type. Not all targets support
10194all types however.
10195
10196::
10197
10198 declare float @llvm.cos.f32(float %Val)
10199 declare double @llvm.cos.f64(double %Val)
10200 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10201 declare fp128 @llvm.cos.f128(fp128 %Val)
10202 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10203
10204Overview:
10205"""""""""
10206
10207The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10208
10209Arguments:
10210""""""""""
10211
10212The argument and return value are floating point numbers of the same
10213type.
10214
10215Semantics:
10216""""""""""
10217
10218This function returns the cosine of the specified operand, returning the
10219same values as the libm ``cos`` functions would, and handles error
10220conditions in the same way.
10221
10222'``llvm.pow.*``' Intrinsic
10223^^^^^^^^^^^^^^^^^^^^^^^^^^
10224
10225Syntax:
10226"""""""
10227
10228This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10229floating point or vector of floating point type. Not all targets support
10230all types however.
10231
10232::
10233
10234 declare float @llvm.pow.f32(float %Val, float %Power)
10235 declare double @llvm.pow.f64(double %Val, double %Power)
10236 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10237 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10238 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10239
10240Overview:
10241"""""""""
10242
10243The '``llvm.pow.*``' intrinsics return the first operand raised to the
10244specified (positive or negative) power.
10245
10246Arguments:
10247""""""""""
10248
10249The second argument is a floating point power, and the first is a value
10250to raise to that power.
10251
10252Semantics:
10253""""""""""
10254
10255This function returns the first value raised to the second power,
10256returning the same values as the libm ``pow`` functions would, and
10257handles error conditions in the same way.
10258
10259'``llvm.exp.*``' Intrinsic
10260^^^^^^^^^^^^^^^^^^^^^^^^^^
10261
10262Syntax:
10263"""""""
10264
10265This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10266floating point or vector of floating point type. Not all targets support
10267all types however.
10268
10269::
10270
10271 declare float @llvm.exp.f32(float %Val)
10272 declare double @llvm.exp.f64(double %Val)
10273 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10274 declare fp128 @llvm.exp.f128(fp128 %Val)
10275 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10276
10277Overview:
10278"""""""""
10279
10280The '``llvm.exp.*``' intrinsics perform the exp function.
10281
10282Arguments:
10283""""""""""
10284
10285The argument and return value are floating point numbers of the same
10286type.
10287
10288Semantics:
10289""""""""""
10290
10291This function returns the same values as the libm ``exp`` functions
10292would, and handles error conditions in the same way.
10293
10294'``llvm.exp2.*``' Intrinsic
10295^^^^^^^^^^^^^^^^^^^^^^^^^^^
10296
10297Syntax:
10298"""""""
10299
10300This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10301floating point or vector of floating point type. Not all targets support
10302all types however.
10303
10304::
10305
10306 declare float @llvm.exp2.f32(float %Val)
10307 declare double @llvm.exp2.f64(double %Val)
10308 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10309 declare fp128 @llvm.exp2.f128(fp128 %Val)
10310 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10311
10312Overview:
10313"""""""""
10314
10315The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10316
10317Arguments:
10318""""""""""
10319
10320The argument and return value are floating point numbers of the same
10321type.
10322
10323Semantics:
10324""""""""""
10325
10326This function returns the same values as the libm ``exp2`` functions
10327would, and handles error conditions in the same way.
10328
10329'``llvm.log.*``' Intrinsic
10330^^^^^^^^^^^^^^^^^^^^^^^^^^
10331
10332Syntax:
10333"""""""
10334
10335This is an overloaded intrinsic. You can use ``llvm.log`` on any
10336floating point or vector of floating point type. Not all targets support
10337all types however.
10338
10339::
10340
10341 declare float @llvm.log.f32(float %Val)
10342 declare double @llvm.log.f64(double %Val)
10343 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10344 declare fp128 @llvm.log.f128(fp128 %Val)
10345 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10346
10347Overview:
10348"""""""""
10349
10350The '``llvm.log.*``' intrinsics perform the log function.
10351
10352Arguments:
10353""""""""""
10354
10355The argument and return value are floating point numbers of the same
10356type.
10357
10358Semantics:
10359""""""""""
10360
10361This function returns the same values as the libm ``log`` functions
10362would, and handles error conditions in the same way.
10363
10364'``llvm.log10.*``' Intrinsic
10365^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10366
10367Syntax:
10368"""""""
10369
10370This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10371floating point or vector of floating point type. Not all targets support
10372all types however.
10373
10374::
10375
10376 declare float @llvm.log10.f32(float %Val)
10377 declare double @llvm.log10.f64(double %Val)
10378 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10379 declare fp128 @llvm.log10.f128(fp128 %Val)
10380 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10381
10382Overview:
10383"""""""""
10384
10385The '``llvm.log10.*``' intrinsics perform the log10 function.
10386
10387Arguments:
10388""""""""""
10389
10390The argument and return value are floating point numbers of the same
10391type.
10392
10393Semantics:
10394""""""""""
10395
10396This function returns the same values as the libm ``log10`` functions
10397would, and handles error conditions in the same way.
10398
10399'``llvm.log2.*``' Intrinsic
10400^^^^^^^^^^^^^^^^^^^^^^^^^^^
10401
10402Syntax:
10403"""""""
10404
10405This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10406floating point or vector of floating point type. Not all targets support
10407all types however.
10408
10409::
10410
10411 declare float @llvm.log2.f32(float %Val)
10412 declare double @llvm.log2.f64(double %Val)
10413 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10414 declare fp128 @llvm.log2.f128(fp128 %Val)
10415 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10416
10417Overview:
10418"""""""""
10419
10420The '``llvm.log2.*``' intrinsics perform the log2 function.
10421
10422Arguments:
10423""""""""""
10424
10425The argument and return value are floating point numbers of the same
10426type.
10427
10428Semantics:
10429""""""""""
10430
10431This function returns the same values as the libm ``log2`` functions
10432would, and handles error conditions in the same way.
10433
10434'``llvm.fma.*``' Intrinsic
10435^^^^^^^^^^^^^^^^^^^^^^^^^^
10436
10437Syntax:
10438"""""""
10439
10440This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10441floating point or vector of floating point type. Not all targets support
10442all types however.
10443
10444::
10445
10446 declare float @llvm.fma.f32(float %a, float %b, float %c)
10447 declare double @llvm.fma.f64(double %a, double %b, double %c)
10448 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10449 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10450 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10451
10452Overview:
10453"""""""""
10454
10455The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10456operation.
10457
10458Arguments:
10459""""""""""
10460
10461The argument and return value are floating point numbers of the same
10462type.
10463
10464Semantics:
10465""""""""""
10466
10467This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010468would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010469
10470'``llvm.fabs.*``' Intrinsic
10471^^^^^^^^^^^^^^^^^^^^^^^^^^^
10472
10473Syntax:
10474"""""""
10475
10476This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10477floating point or vector of floating point type. Not all targets support
10478all types however.
10479
10480::
10481
10482 declare float @llvm.fabs.f32(float %Val)
10483 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010484 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010485 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010486 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010487
10488Overview:
10489"""""""""
10490
10491The '``llvm.fabs.*``' intrinsics return the absolute value of the
10492operand.
10493
10494Arguments:
10495""""""""""
10496
10497The argument and return value are floating point numbers of the same
10498type.
10499
10500Semantics:
10501""""""""""
10502
10503This function returns the same values as the libm ``fabs`` functions
10504would, and handles error conditions in the same way.
10505
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010506'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010507^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010508
10509Syntax:
10510"""""""
10511
10512This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10513floating point or vector of floating point type. Not all targets support
10514all types however.
10515
10516::
10517
Matt Arsenault64313c92014-10-22 18:25:02 +000010518 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10519 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10520 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10521 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10522 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010523
10524Overview:
10525"""""""""
10526
10527The '``llvm.minnum.*``' intrinsics return the minimum of the two
10528arguments.
10529
10530
10531Arguments:
10532""""""""""
10533
10534The arguments and return value are floating point numbers of the same
10535type.
10536
10537Semantics:
10538""""""""""
10539
10540Follows the IEEE-754 semantics for minNum, which also match for libm's
10541fmin.
10542
10543If either operand is a NaN, returns the other non-NaN operand. Returns
10544NaN only if both operands are NaN. If the operands compare equal,
10545returns a value that compares equal to both operands. This means that
10546fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10547
10548'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010549^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010550
10551Syntax:
10552"""""""
10553
10554This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10555floating point or vector of floating point type. Not all targets support
10556all types however.
10557
10558::
10559
Matt Arsenault64313c92014-10-22 18:25:02 +000010560 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10561 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10562 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10563 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10564 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010565
10566Overview:
10567"""""""""
10568
10569The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10570arguments.
10571
10572
10573Arguments:
10574""""""""""
10575
10576The arguments and return value are floating point numbers of the same
10577type.
10578
10579Semantics:
10580""""""""""
10581Follows the IEEE-754 semantics for maxNum, which also match for libm's
10582fmax.
10583
10584If either operand is a NaN, returns the other non-NaN operand. Returns
10585NaN only if both operands are NaN. If the operands compare equal,
10586returns a value that compares equal to both operands. This means that
10587fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10588
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010589'``llvm.copysign.*``' Intrinsic
10590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10591
10592Syntax:
10593"""""""
10594
10595This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10596floating point or vector of floating point type. Not all targets support
10597all types however.
10598
10599::
10600
10601 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10602 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10603 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10604 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10605 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10606
10607Overview:
10608"""""""""
10609
10610The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10611first operand and the sign of the second operand.
10612
10613Arguments:
10614""""""""""
10615
10616The arguments and return value are floating point numbers of the same
10617type.
10618
10619Semantics:
10620""""""""""
10621
10622This function returns the same values as the libm ``copysign``
10623functions would, and handles error conditions in the same way.
10624
Sean Silvab084af42012-12-07 10:36:55 +000010625'``llvm.floor.*``' Intrinsic
10626^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10627
10628Syntax:
10629"""""""
10630
10631This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10632floating point or vector of floating point type. Not all targets support
10633all types however.
10634
10635::
10636
10637 declare float @llvm.floor.f32(float %Val)
10638 declare double @llvm.floor.f64(double %Val)
10639 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10640 declare fp128 @llvm.floor.f128(fp128 %Val)
10641 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10642
10643Overview:
10644"""""""""
10645
10646The '``llvm.floor.*``' intrinsics return the floor of the operand.
10647
10648Arguments:
10649""""""""""
10650
10651The argument and return value are floating point numbers of the same
10652type.
10653
10654Semantics:
10655""""""""""
10656
10657This function returns the same values as the libm ``floor`` functions
10658would, and handles error conditions in the same way.
10659
10660'``llvm.ceil.*``' Intrinsic
10661^^^^^^^^^^^^^^^^^^^^^^^^^^^
10662
10663Syntax:
10664"""""""
10665
10666This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10667floating point or vector of floating point type. Not all targets support
10668all types however.
10669
10670::
10671
10672 declare float @llvm.ceil.f32(float %Val)
10673 declare double @llvm.ceil.f64(double %Val)
10674 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10675 declare fp128 @llvm.ceil.f128(fp128 %Val)
10676 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10677
10678Overview:
10679"""""""""
10680
10681The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10682
10683Arguments:
10684""""""""""
10685
10686The argument and return value are floating point numbers of the same
10687type.
10688
10689Semantics:
10690""""""""""
10691
10692This function returns the same values as the libm ``ceil`` functions
10693would, and handles error conditions in the same way.
10694
10695'``llvm.trunc.*``' Intrinsic
10696^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10697
10698Syntax:
10699"""""""
10700
10701This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10702floating point or vector of floating point type. Not all targets support
10703all types however.
10704
10705::
10706
10707 declare float @llvm.trunc.f32(float %Val)
10708 declare double @llvm.trunc.f64(double %Val)
10709 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10710 declare fp128 @llvm.trunc.f128(fp128 %Val)
10711 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10712
10713Overview:
10714"""""""""
10715
10716The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10717nearest integer not larger in magnitude than the operand.
10718
10719Arguments:
10720""""""""""
10721
10722The argument and return value are floating point numbers of the same
10723type.
10724
10725Semantics:
10726""""""""""
10727
10728This function returns the same values as the libm ``trunc`` functions
10729would, and handles error conditions in the same way.
10730
10731'``llvm.rint.*``' Intrinsic
10732^^^^^^^^^^^^^^^^^^^^^^^^^^^
10733
10734Syntax:
10735"""""""
10736
10737This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10738floating point or vector of floating point type. Not all targets support
10739all types however.
10740
10741::
10742
10743 declare float @llvm.rint.f32(float %Val)
10744 declare double @llvm.rint.f64(double %Val)
10745 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10746 declare fp128 @llvm.rint.f128(fp128 %Val)
10747 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10748
10749Overview:
10750"""""""""
10751
10752The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10753nearest integer. It may raise an inexact floating-point exception if the
10754operand isn't an integer.
10755
10756Arguments:
10757""""""""""
10758
10759The argument and return value are floating point numbers of the same
10760type.
10761
10762Semantics:
10763""""""""""
10764
10765This function returns the same values as the libm ``rint`` functions
10766would, and handles error conditions in the same way.
10767
10768'``llvm.nearbyint.*``' Intrinsic
10769^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10770
10771Syntax:
10772"""""""
10773
10774This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10775floating point or vector of floating point type. Not all targets support
10776all types however.
10777
10778::
10779
10780 declare float @llvm.nearbyint.f32(float %Val)
10781 declare double @llvm.nearbyint.f64(double %Val)
10782 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10783 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10784 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10785
10786Overview:
10787"""""""""
10788
10789The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10790nearest integer.
10791
10792Arguments:
10793""""""""""
10794
10795The argument and return value are floating point numbers of the same
10796type.
10797
10798Semantics:
10799""""""""""
10800
10801This function returns the same values as the libm ``nearbyint``
10802functions would, and handles error conditions in the same way.
10803
Hal Finkel171817e2013-08-07 22:49:12 +000010804'``llvm.round.*``' Intrinsic
10805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10806
10807Syntax:
10808"""""""
10809
10810This is an overloaded intrinsic. You can use ``llvm.round`` on any
10811floating point or vector of floating point type. Not all targets support
10812all types however.
10813
10814::
10815
10816 declare float @llvm.round.f32(float %Val)
10817 declare double @llvm.round.f64(double %Val)
10818 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10819 declare fp128 @llvm.round.f128(fp128 %Val)
10820 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10821
10822Overview:
10823"""""""""
10824
10825The '``llvm.round.*``' intrinsics returns the operand rounded to the
10826nearest integer.
10827
10828Arguments:
10829""""""""""
10830
10831The argument and return value are floating point numbers of the same
10832type.
10833
10834Semantics:
10835""""""""""
10836
10837This function returns the same values as the libm ``round``
10838functions would, and handles error conditions in the same way.
10839
Sean Silvab084af42012-12-07 10:36:55 +000010840Bit Manipulation Intrinsics
10841---------------------------
10842
10843LLVM provides intrinsics for a few important bit manipulation
10844operations. These allow efficient code generation for some algorithms.
10845
James Molloy90111f72015-11-12 12:29:09 +000010846'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010848
10849Syntax:
10850"""""""
10851
10852This is an overloaded intrinsic function. You can use bitreverse on any
10853integer type.
10854
10855::
10856
10857 declare i16 @llvm.bitreverse.i16(i16 <id>)
10858 declare i32 @llvm.bitreverse.i32(i32 <id>)
10859 declare i64 @llvm.bitreverse.i64(i64 <id>)
10860
10861Overview:
10862"""""""""
10863
10864The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010865bitpattern of an integer value; for example ``0b10110110`` becomes
10866``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010867
10868Semantics:
10869""""""""""
10870
Yichao Yu5abf14b2016-11-23 16:25:31 +000010871The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000010872``M`` in the input moved to bit ``N-M`` in the output.
10873
Sean Silvab084af42012-12-07 10:36:55 +000010874'``llvm.bswap.*``' Intrinsics
10875^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10876
10877Syntax:
10878"""""""
10879
10880This is an overloaded intrinsic function. You can use bswap on any
10881integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10882
10883::
10884
10885 declare i16 @llvm.bswap.i16(i16 <id>)
10886 declare i32 @llvm.bswap.i32(i32 <id>)
10887 declare i64 @llvm.bswap.i64(i64 <id>)
10888
10889Overview:
10890"""""""""
10891
10892The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10893values with an even number of bytes (positive multiple of 16 bits).
10894These are useful for performing operations on data that is not in the
10895target's native byte order.
10896
10897Semantics:
10898""""""""""
10899
10900The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10901and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10902intrinsic returns an i32 value that has the four bytes of the input i32
10903swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10904returned i32 will have its bytes in 3, 2, 1, 0 order. The
10905``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10906concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10907respectively).
10908
10909'``llvm.ctpop.*``' Intrinsic
10910^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10911
10912Syntax:
10913"""""""
10914
10915This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10916bit width, or on any vector with integer elements. Not all targets
10917support all bit widths or vector types, however.
10918
10919::
10920
10921 declare i8 @llvm.ctpop.i8(i8 <src>)
10922 declare i16 @llvm.ctpop.i16(i16 <src>)
10923 declare i32 @llvm.ctpop.i32(i32 <src>)
10924 declare i64 @llvm.ctpop.i64(i64 <src>)
10925 declare i256 @llvm.ctpop.i256(i256 <src>)
10926 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10927
10928Overview:
10929"""""""""
10930
10931The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10932in a value.
10933
10934Arguments:
10935""""""""""
10936
10937The only argument is the value to be counted. The argument may be of any
10938integer type, or a vector with integer elements. The return type must
10939match the argument type.
10940
10941Semantics:
10942""""""""""
10943
10944The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10945each element of a vector.
10946
10947'``llvm.ctlz.*``' Intrinsic
10948^^^^^^^^^^^^^^^^^^^^^^^^^^^
10949
10950Syntax:
10951"""""""
10952
10953This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10954integer bit width, or any vector whose elements are integers. Not all
10955targets support all bit widths or vector types, however.
10956
10957::
10958
10959 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10960 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10961 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10962 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10963 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010964 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010965
10966Overview:
10967"""""""""
10968
10969The '``llvm.ctlz``' family of intrinsic functions counts the number of
10970leading zeros in a variable.
10971
10972Arguments:
10973""""""""""
10974
10975The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010976any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010977type must match the first argument type.
10978
10979The second argument must be a constant and is a flag to indicate whether
10980the intrinsic should ensure that a zero as the first argument produces a
10981defined result. Historically some architectures did not provide a
10982defined result for zero values as efficiently, and many algorithms are
10983now predicated on avoiding zero-value inputs.
10984
10985Semantics:
10986""""""""""
10987
10988The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10989zeros in a variable, or within each element of the vector. If
10990``src == 0`` then the result is the size in bits of the type of ``src``
10991if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10992``llvm.ctlz(i32 2) = 30``.
10993
10994'``llvm.cttz.*``' Intrinsic
10995^^^^^^^^^^^^^^^^^^^^^^^^^^^
10996
10997Syntax:
10998"""""""
10999
11000This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11001integer bit width, or any vector of integer elements. Not all targets
11002support all bit widths or vector types, however.
11003
11004::
11005
11006 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11007 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11008 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11009 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11010 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011011 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011012
11013Overview:
11014"""""""""
11015
11016The '``llvm.cttz``' family of intrinsic functions counts the number of
11017trailing zeros.
11018
11019Arguments:
11020""""""""""
11021
11022The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011023any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011024type must match the first argument type.
11025
11026The second argument must be a constant and is a flag to indicate whether
11027the intrinsic should ensure that a zero as the first argument produces a
11028defined result. Historically some architectures did not provide a
11029defined result for zero values as efficiently, and many algorithms are
11030now predicated on avoiding zero-value inputs.
11031
11032Semantics:
11033""""""""""
11034
11035The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11036zeros in a variable, or within each element of a vector. If ``src == 0``
11037then the result is the size in bits of the type of ``src`` if
11038``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11039``llvm.cttz(2) = 1``.
11040
Philip Reames34843ae2015-03-05 05:55:55 +000011041.. _int_overflow:
11042
Sean Silvab084af42012-12-07 10:36:55 +000011043Arithmetic with Overflow Intrinsics
11044-----------------------------------
11045
John Regehr6a493f22016-05-12 20:55:09 +000011046LLVM provides intrinsics for fast arithmetic overflow checking.
11047
11048Each of these intrinsics returns a two-element struct. The first
11049element of this struct contains the result of the corresponding
11050arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11051the result. Therefore, for example, the first element of the struct
11052returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11053result of a 32-bit ``add`` instruction with the same operands, where
11054the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11055
11056The second element of the result is an ``i1`` that is 1 if the
11057arithmetic operation overflowed and 0 otherwise. An operation
11058overflows if, for any values of its operands ``A`` and ``B`` and for
11059any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11060not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11061``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11062``op`` is the underlying arithmetic operation.
11063
11064The behavior of these intrinsics is well-defined for all argument
11065values.
Sean Silvab084af42012-12-07 10:36:55 +000011066
11067'``llvm.sadd.with.overflow.*``' Intrinsics
11068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11069
11070Syntax:
11071"""""""
11072
11073This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11074on any integer bit width.
11075
11076::
11077
11078 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11079 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11080 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11081
11082Overview:
11083"""""""""
11084
11085The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11086a signed addition of the two arguments, and indicate whether an overflow
11087occurred during the signed summation.
11088
11089Arguments:
11090""""""""""
11091
11092The arguments (%a and %b) and the first element of the result structure
11093may be of integer types of any bit width, but they must have the same
11094bit width. The second element of the result structure must be of type
11095``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11096addition.
11097
11098Semantics:
11099""""""""""
11100
11101The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011102a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011103first element of which is the signed summation, and the second element
11104of which is a bit specifying if the signed summation resulted in an
11105overflow.
11106
11107Examples:
11108"""""""""
11109
11110.. code-block:: llvm
11111
11112 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11113 %sum = extractvalue {i32, i1} %res, 0
11114 %obit = extractvalue {i32, i1} %res, 1
11115 br i1 %obit, label %overflow, label %normal
11116
11117'``llvm.uadd.with.overflow.*``' Intrinsics
11118^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11119
11120Syntax:
11121"""""""
11122
11123This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11124on any integer bit width.
11125
11126::
11127
11128 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11129 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11130 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11131
11132Overview:
11133"""""""""
11134
11135The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11136an unsigned addition of the two arguments, and indicate whether a carry
11137occurred during the unsigned summation.
11138
11139Arguments:
11140""""""""""
11141
11142The arguments (%a and %b) and the first element of the result structure
11143may be of integer types of any bit width, but they must have the same
11144bit width. The second element of the result structure must be of type
11145``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11146addition.
11147
11148Semantics:
11149""""""""""
11150
11151The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011152an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011153first element of which is the sum, and the second element of which is a
11154bit specifying if the unsigned summation resulted in a carry.
11155
11156Examples:
11157"""""""""
11158
11159.. code-block:: llvm
11160
11161 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11162 %sum = extractvalue {i32, i1} %res, 0
11163 %obit = extractvalue {i32, i1} %res, 1
11164 br i1 %obit, label %carry, label %normal
11165
11166'``llvm.ssub.with.overflow.*``' Intrinsics
11167^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11168
11169Syntax:
11170"""""""
11171
11172This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11173on any integer bit width.
11174
11175::
11176
11177 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11178 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11179 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11180
11181Overview:
11182"""""""""
11183
11184The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11185a signed subtraction of the two arguments, and indicate whether an
11186overflow occurred during the signed subtraction.
11187
11188Arguments:
11189""""""""""
11190
11191The arguments (%a and %b) and the first element of the result structure
11192may be of integer types of any bit width, but they must have the same
11193bit width. The second element of the result structure must be of type
11194``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11195subtraction.
11196
11197Semantics:
11198""""""""""
11199
11200The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011201a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011202first element of which is the subtraction, and the second element of
11203which is a bit specifying if the signed subtraction resulted in an
11204overflow.
11205
11206Examples:
11207"""""""""
11208
11209.. code-block:: llvm
11210
11211 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11212 %sum = extractvalue {i32, i1} %res, 0
11213 %obit = extractvalue {i32, i1} %res, 1
11214 br i1 %obit, label %overflow, label %normal
11215
11216'``llvm.usub.with.overflow.*``' Intrinsics
11217^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11218
11219Syntax:
11220"""""""
11221
11222This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11223on any integer bit width.
11224
11225::
11226
11227 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11228 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11229 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11230
11231Overview:
11232"""""""""
11233
11234The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11235an unsigned subtraction of the two arguments, and indicate whether an
11236overflow occurred during the unsigned subtraction.
11237
11238Arguments:
11239""""""""""
11240
11241The arguments (%a and %b) and the first element of the result structure
11242may be of integer types of any bit width, but they must have the same
11243bit width. The second element of the result structure must be of type
11244``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11245subtraction.
11246
11247Semantics:
11248""""""""""
11249
11250The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011251an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011252the first element of which is the subtraction, and the second element of
11253which is a bit specifying if the unsigned subtraction resulted in an
11254overflow.
11255
11256Examples:
11257"""""""""
11258
11259.. code-block:: llvm
11260
11261 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11262 %sum = extractvalue {i32, i1} %res, 0
11263 %obit = extractvalue {i32, i1} %res, 1
11264 br i1 %obit, label %overflow, label %normal
11265
11266'``llvm.smul.with.overflow.*``' Intrinsics
11267^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11268
11269Syntax:
11270"""""""
11271
11272This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11273on any integer bit width.
11274
11275::
11276
11277 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11278 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11279 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11280
11281Overview:
11282"""""""""
11283
11284The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11285a signed multiplication of the two arguments, and indicate whether an
11286overflow occurred during the signed multiplication.
11287
11288Arguments:
11289""""""""""
11290
11291The arguments (%a and %b) and the first element of the result structure
11292may be of integer types of any bit width, but they must have the same
11293bit width. The second element of the result structure must be of type
11294``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11295multiplication.
11296
11297Semantics:
11298""""""""""
11299
11300The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011301a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011302the first element of which is the multiplication, and the second element
11303of which is a bit specifying if the signed multiplication resulted in an
11304overflow.
11305
11306Examples:
11307"""""""""
11308
11309.. code-block:: llvm
11310
11311 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11312 %sum = extractvalue {i32, i1} %res, 0
11313 %obit = extractvalue {i32, i1} %res, 1
11314 br i1 %obit, label %overflow, label %normal
11315
11316'``llvm.umul.with.overflow.*``' Intrinsics
11317^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11318
11319Syntax:
11320"""""""
11321
11322This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11323on any integer bit width.
11324
11325::
11326
11327 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11328 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11329 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11330
11331Overview:
11332"""""""""
11333
11334The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11335a unsigned multiplication of the two arguments, and indicate whether an
11336overflow occurred during the unsigned multiplication.
11337
11338Arguments:
11339""""""""""
11340
11341The arguments (%a and %b) and the first element of the result structure
11342may be of integer types of any bit width, but they must have the same
11343bit width. The second element of the result structure must be of type
11344``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11345multiplication.
11346
11347Semantics:
11348""""""""""
11349
11350The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011351an unsigned multiplication of the two arguments. They return a structure ---
11352the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011353element of which is a bit specifying if the unsigned multiplication
11354resulted in an overflow.
11355
11356Examples:
11357"""""""""
11358
11359.. code-block:: llvm
11360
11361 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11362 %sum = extractvalue {i32, i1} %res, 0
11363 %obit = extractvalue {i32, i1} %res, 1
11364 br i1 %obit, label %overflow, label %normal
11365
11366Specialised Arithmetic Intrinsics
11367---------------------------------
11368
Owen Anderson1056a922015-07-11 07:01:27 +000011369'``llvm.canonicalize.*``' Intrinsic
11370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11371
11372Syntax:
11373"""""""
11374
11375::
11376
11377 declare float @llvm.canonicalize.f32(float %a)
11378 declare double @llvm.canonicalize.f64(double %b)
11379
11380Overview:
11381"""""""""
11382
11383The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011384encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011385implementing certain numeric primitives such as frexp. The canonical encoding is
11386defined by IEEE-754-2008 to be:
11387
11388::
11389
11390 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011391 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011392 numbers, infinities, and NaNs, especially in decimal formats.
11393
11394This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011395conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011396according to section 6.2.
11397
11398Examples of non-canonical encodings:
11399
Sean Silvaa1190322015-08-06 22:56:48 +000011400- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011401 converted to a canonical representation per hardware-specific protocol.
11402- Many normal decimal floating point numbers have non-canonical alternative
11403 encodings.
11404- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011405 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011406 a zero of the same sign by this operation.
11407
11408Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11409default exception handling must signal an invalid exception, and produce a
11410quiet NaN result.
11411
11412This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011413that the compiler does not constant fold the operation. Likewise, division by
114141.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011415-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11416
Sean Silvaa1190322015-08-06 22:56:48 +000011417``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011418
11419- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11420- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11421 to ``(x == y)``
11422
11423Additionally, the sign of zero must be conserved:
11424``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11425
11426The payload bits of a NaN must be conserved, with two exceptions.
11427First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011428must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011429usual methods.
11430
11431The canonicalization operation may be optimized away if:
11432
Sean Silvaa1190322015-08-06 22:56:48 +000011433- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011434 floating-point operation that is required by the standard to be canonical.
11435- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011436 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011437
Sean Silvab084af42012-12-07 10:36:55 +000011438'``llvm.fmuladd.*``' Intrinsic
11439^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11440
11441Syntax:
11442"""""""
11443
11444::
11445
11446 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11447 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11448
11449Overview:
11450"""""""""
11451
11452The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011453expressions that can be fused if the code generator determines that (a) the
11454target instruction set has support for a fused operation, and (b) that the
11455fused operation is more efficient than the equivalent, separate pair of mul
11456and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011457
11458Arguments:
11459""""""""""
11460
11461The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11462multiplicands, a and b, and an addend c.
11463
11464Semantics:
11465""""""""""
11466
11467The expression:
11468
11469::
11470
11471 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11472
11473is equivalent to the expression a \* b + c, except that rounding will
11474not be performed between the multiplication and addition steps if the
11475code generator fuses the operations. Fusion is not guaranteed, even if
11476the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011477corresponding llvm.fma.\* intrinsic function should be used
11478instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011479
11480Examples:
11481"""""""""
11482
11483.. code-block:: llvm
11484
Tim Northover675a0962014-06-13 14:24:23 +000011485 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011486
11487Half Precision Floating Point Intrinsics
11488----------------------------------------
11489
11490For most target platforms, half precision floating point is a
11491storage-only format. This means that it is a dense encoding (in memory)
11492but does not support computation in the format.
11493
11494This means that code must first load the half-precision floating point
11495value as an i16, then convert it to float with
11496:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11497then be performed on the float value (including extending to double
11498etc). To store the value back to memory, it is first converted to float
11499if needed, then converted to i16 with
11500:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11501i16 value.
11502
11503.. _int_convert_to_fp16:
11504
11505'``llvm.convert.to.fp16``' Intrinsic
11506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11507
11508Syntax:
11509"""""""
11510
11511::
11512
Tim Northoverfd7e4242014-07-17 10:51:23 +000011513 declare i16 @llvm.convert.to.fp16.f32(float %a)
11514 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011515
11516Overview:
11517"""""""""
11518
Tim Northoverfd7e4242014-07-17 10:51:23 +000011519The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11520conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011521
11522Arguments:
11523""""""""""
11524
11525The intrinsic function contains single argument - the value to be
11526converted.
11527
11528Semantics:
11529""""""""""
11530
Tim Northoverfd7e4242014-07-17 10:51:23 +000011531The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11532conventional floating point format to half precision floating point format. The
11533return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011534
11535Examples:
11536"""""""""
11537
11538.. code-block:: llvm
11539
Tim Northoverfd7e4242014-07-17 10:51:23 +000011540 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011541 store i16 %res, i16* @x, align 2
11542
11543.. _int_convert_from_fp16:
11544
11545'``llvm.convert.from.fp16``' Intrinsic
11546^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11547
11548Syntax:
11549"""""""
11550
11551::
11552
Tim Northoverfd7e4242014-07-17 10:51:23 +000011553 declare float @llvm.convert.from.fp16.f32(i16 %a)
11554 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011555
11556Overview:
11557"""""""""
11558
11559The '``llvm.convert.from.fp16``' intrinsic function performs a
11560conversion from half precision floating point format to single precision
11561floating point format.
11562
11563Arguments:
11564""""""""""
11565
11566The intrinsic function contains single argument - the value to be
11567converted.
11568
11569Semantics:
11570""""""""""
11571
11572The '``llvm.convert.from.fp16``' intrinsic function performs a
11573conversion from half single precision floating point format to single
11574precision floating point format. The input half-float value is
11575represented by an ``i16`` value.
11576
11577Examples:
11578"""""""""
11579
11580.. code-block:: llvm
11581
David Blaikiec7aabbb2015-03-04 22:06:14 +000011582 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011583 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011584
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011585.. _dbg_intrinsics:
11586
Sean Silvab084af42012-12-07 10:36:55 +000011587Debugger Intrinsics
11588-------------------
11589
11590The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11591prefix), are described in the `LLVM Source Level
11592Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11593document.
11594
11595Exception Handling Intrinsics
11596-----------------------------
11597
11598The LLVM exception handling intrinsics (which all start with
11599``llvm.eh.`` prefix), are described in the `LLVM Exception
11600Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11601
11602.. _int_trampoline:
11603
11604Trampoline Intrinsics
11605---------------------
11606
11607These intrinsics make it possible to excise one parameter, marked with
11608the :ref:`nest <nest>` attribute, from a function. The result is a
11609callable function pointer lacking the nest parameter - the caller does
11610not need to provide a value for it. Instead, the value to use is stored
11611in advance in a "trampoline", a block of memory usually allocated on the
11612stack, which also contains code to splice the nest value into the
11613argument list. This is used to implement the GCC nested function address
11614extension.
11615
11616For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11617then the resulting function pointer has signature ``i32 (i32, i32)*``.
11618It can be created as follows:
11619
11620.. code-block:: llvm
11621
11622 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011623 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011624 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11625 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11626 %fp = bitcast i8* %p to i32 (i32, i32)*
11627
11628The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11629``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11630
11631.. _int_it:
11632
11633'``llvm.init.trampoline``' Intrinsic
11634^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11635
11636Syntax:
11637"""""""
11638
11639::
11640
11641 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11642
11643Overview:
11644"""""""""
11645
11646This fills the memory pointed to by ``tramp`` with executable code,
11647turning it into a trampoline.
11648
11649Arguments:
11650""""""""""
11651
11652The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11653pointers. The ``tramp`` argument must point to a sufficiently large and
11654sufficiently aligned block of memory; this memory is written to by the
11655intrinsic. Note that the size and the alignment are target-specific -
11656LLVM currently provides no portable way of determining them, so a
11657front-end that generates this intrinsic needs to have some
11658target-specific knowledge. The ``func`` argument must hold a function
11659bitcast to an ``i8*``.
11660
11661Semantics:
11662""""""""""
11663
11664The block of memory pointed to by ``tramp`` is filled with target
11665dependent code, turning it into a function. Then ``tramp`` needs to be
11666passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11667be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11668function's signature is the same as that of ``func`` with any arguments
11669marked with the ``nest`` attribute removed. At most one such ``nest``
11670argument is allowed, and it must be of pointer type. Calling the new
11671function is equivalent to calling ``func`` with the same argument list,
11672but with ``nval`` used for the missing ``nest`` argument. If, after
11673calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11674modified, then the effect of any later call to the returned function
11675pointer is undefined.
11676
11677.. _int_at:
11678
11679'``llvm.adjust.trampoline``' Intrinsic
11680^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11681
11682Syntax:
11683"""""""
11684
11685::
11686
11687 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11688
11689Overview:
11690"""""""""
11691
11692This performs any required machine-specific adjustment to the address of
11693a trampoline (passed as ``tramp``).
11694
11695Arguments:
11696""""""""""
11697
11698``tramp`` must point to a block of memory which already has trampoline
11699code filled in by a previous call to
11700:ref:`llvm.init.trampoline <int_it>`.
11701
11702Semantics:
11703""""""""""
11704
11705On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011706different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011707intrinsic returns the executable address corresponding to ``tramp``
11708after performing the required machine specific adjustments. The pointer
11709returned can then be :ref:`bitcast and executed <int_trampoline>`.
11710
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011711.. _int_mload_mstore:
11712
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011713Masked Vector Load and Store Intrinsics
11714---------------------------------------
11715
11716LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11717
11718.. _int_mload:
11719
11720'``llvm.masked.load.*``' Intrinsics
11721^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11722
11723Syntax:
11724"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011725This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011726
11727::
11728
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011729 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11730 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011731 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011732 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011733 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011734 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011735
11736Overview:
11737"""""""""
11738
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011739Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011740
11741
11742Arguments:
11743""""""""""
11744
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011745The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011746
11747
11748Semantics:
11749""""""""""
11750
11751The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11752The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11753
11754
11755::
11756
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011757 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011758
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011759 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011760 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011761 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011762
11763.. _int_mstore:
11764
11765'``llvm.masked.store.*``' Intrinsics
11766^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11767
11768Syntax:
11769"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011770This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011771
11772::
11773
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011774 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11775 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011776 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011777 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011778 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011779 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011780
11781Overview:
11782"""""""""
11783
11784Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11785
11786Arguments:
11787""""""""""
11788
11789The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11790
11791
11792Semantics:
11793""""""""""
11794
11795The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11796The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11797
11798::
11799
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011800 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011801
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011802 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011803 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011804 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11805 store <16 x float> %res, <16 x float>* %ptr, align 4
11806
11807
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011808Masked Vector Gather and Scatter Intrinsics
11809-------------------------------------------
11810
11811LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11812
11813.. _int_mgather:
11814
11815'``llvm.masked.gather.*``' Intrinsics
11816^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11817
11818Syntax:
11819"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011820This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011821
11822::
11823
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011824 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11825 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11826 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011827
11828Overview:
11829"""""""""
11830
11831Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11832
11833
11834Arguments:
11835""""""""""
11836
11837The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11838
11839
11840Semantics:
11841""""""""""
11842
11843The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11844The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11845
11846
11847::
11848
Zvi Rackoverb26530c2017-01-26 20:29:15 +000011849 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011850
11851 ;; The gather with all-true mask is equivalent to the following instruction sequence
11852 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11853 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11854 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11855 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11856
11857 %val0 = load double, double* %ptr0, align 8
11858 %val1 = load double, double* %ptr1, align 8
11859 %val2 = load double, double* %ptr2, align 8
11860 %val3 = load double, double* %ptr3, align 8
11861
11862 %vec0 = insertelement <4 x double>undef, %val0, 0
11863 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11864 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11865 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11866
11867.. _int_mscatter:
11868
11869'``llvm.masked.scatter.*``' Intrinsics
11870^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11871
11872Syntax:
11873"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011874This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011875
11876::
11877
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011878 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11879 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11880 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011881
11882Overview:
11883"""""""""
11884
11885Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11886
11887Arguments:
11888""""""""""
11889
11890The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11891
11892
11893Semantics:
11894""""""""""
11895
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011896The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011897
11898::
11899
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011900 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011901 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11902
11903 ;; It is equivalent to a list of scalar stores
11904 %val0 = extractelement <8 x i32> %value, i32 0
11905 %val1 = extractelement <8 x i32> %value, i32 1
11906 ..
11907 %val7 = extractelement <8 x i32> %value, i32 7
11908 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11909 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11910 ..
11911 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11912 ;; Note: the order of the following stores is important when they overlap:
11913 store i32 %val0, i32* %ptr0, align 4
11914 store i32 %val1, i32* %ptr1, align 4
11915 ..
11916 store i32 %val7, i32* %ptr7, align 4
11917
11918
Sean Silvab084af42012-12-07 10:36:55 +000011919Memory Use Markers
11920------------------
11921
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011922This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011923memory objects and ranges where variables are immutable.
11924
Reid Klecknera534a382013-12-19 02:14:12 +000011925.. _int_lifestart:
11926
Sean Silvab084af42012-12-07 10:36:55 +000011927'``llvm.lifetime.start``' Intrinsic
11928^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11929
11930Syntax:
11931"""""""
11932
11933::
11934
11935 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11936
11937Overview:
11938"""""""""
11939
11940The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11941object's lifetime.
11942
11943Arguments:
11944""""""""""
11945
11946The first argument is a constant integer representing the size of the
11947object, or -1 if it is variable sized. The second argument is a pointer
11948to the object.
11949
11950Semantics:
11951""""""""""
11952
11953This intrinsic indicates that before this point in the code, the value
11954of the memory pointed to by ``ptr`` is dead. This means that it is known
11955to never be used and has an undefined value. A load from the pointer
11956that precedes this intrinsic can be replaced with ``'undef'``.
11957
Reid Klecknera534a382013-12-19 02:14:12 +000011958.. _int_lifeend:
11959
Sean Silvab084af42012-12-07 10:36:55 +000011960'``llvm.lifetime.end``' Intrinsic
11961^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11962
11963Syntax:
11964"""""""
11965
11966::
11967
11968 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11969
11970Overview:
11971"""""""""
11972
11973The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11974object's lifetime.
11975
11976Arguments:
11977""""""""""
11978
11979The first argument is a constant integer representing the size of the
11980object, or -1 if it is variable sized. The second argument is a pointer
11981to the object.
11982
11983Semantics:
11984""""""""""
11985
11986This intrinsic indicates that after this point in the code, the value of
11987the memory pointed to by ``ptr`` is dead. This means that it is known to
11988never be used and has an undefined value. Any stores into the memory
11989object following this intrinsic may be removed as dead.
11990
11991'``llvm.invariant.start``' Intrinsic
11992^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11993
11994Syntax:
11995"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011996This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011997
11998::
11999
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012000 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012001
12002Overview:
12003"""""""""
12004
12005The '``llvm.invariant.start``' intrinsic specifies that the contents of
12006a memory object will not change.
12007
12008Arguments:
12009""""""""""
12010
12011The first argument is a constant integer representing the size of the
12012object, or -1 if it is variable sized. The second argument is a pointer
12013to the object.
12014
12015Semantics:
12016""""""""""
12017
12018This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12019the return value, the referenced memory location is constant and
12020unchanging.
12021
12022'``llvm.invariant.end``' Intrinsic
12023^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12024
12025Syntax:
12026"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012027This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012028
12029::
12030
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012031 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012032
12033Overview:
12034"""""""""
12035
12036The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12037memory object are mutable.
12038
12039Arguments:
12040""""""""""
12041
12042The first argument is the matching ``llvm.invariant.start`` intrinsic.
12043The second argument is a constant integer representing the size of the
12044object, or -1 if it is variable sized and the third argument is a
12045pointer to the object.
12046
12047Semantics:
12048""""""""""
12049
12050This intrinsic indicates that the memory is mutable again.
12051
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012052'``llvm.invariant.group.barrier``' Intrinsic
12053^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12054
12055Syntax:
12056"""""""
12057
12058::
12059
12060 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12061
12062Overview:
12063"""""""""
12064
12065The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12066established by invariant.group metadata no longer holds, to obtain a new pointer
12067value that does not carry the invariant information.
12068
12069
12070Arguments:
12071""""""""""
12072
12073The ``llvm.invariant.group.barrier`` takes only one argument, which is
12074the pointer to the memory for which the ``invariant.group`` no longer holds.
12075
12076Semantics:
12077""""""""""
12078
12079Returns another pointer that aliases its argument but which is considered different
12080for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12081
Andrew Kaylora0a11642017-01-26 23:27:59 +000012082Constrained Floating Point Intrinsics
12083-------------------------------------
12084
12085These intrinsics are used to provide special handling of floating point
12086operations when specific rounding mode or floating point exception behavior is
12087required. By default, LLVM optimization passes assume that the rounding mode is
12088round-to-nearest and that floating point exceptions will not be monitored.
12089Constrained FP intrinsics are used to support non-default rounding modes and
12090accurately preserve exception behavior without compromising LLVM's ability to
12091optimize FP code when the default behavior is used.
12092
12093Each of these intrinsics corresponds to a normal floating point operation. The
12094first two arguments and the return value are the same as the corresponding FP
12095operation.
12096
12097The third argument is a metadata argument specifying the rounding mode to be
12098assumed. This argument must be one of the following strings:
12099
12100::
12101 "round.dynamic"
12102 "round.tonearest"
12103 "round.downward"
12104 "round.upward"
12105 "round.towardzero"
12106
12107If this argument is "round.dynamic" optimization passes must assume that the
12108rounding mode is unknown and may change at runtime. No transformations that
12109depend on rounding mode may be performed in this case.
12110
12111The other possible values for the rounding mode argument correspond to the
12112similarly named IEEE rounding modes. If the argument is any of these values
12113optimization passes may perform transformations as long as they are consistent
12114with the specified rounding mode.
12115
12116For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12117"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12118'x-0' should evaluate to '-0' when rounding downward. However, this
12119transformation is legal for all other rounding modes.
12120
12121For values other than "round.dynamic" optimization passes may assume that the
12122actual runtime rounding mode (as defined in a target-specific manner) matches
12123the specified rounding mode, but this is not guaranteed. Using a specific
12124non-dynamic rounding mode which does not match the actual rounding mode at
12125runtime results in undefined behavior.
12126
12127The fourth argument to the constrained floating point intrinsics specifies the
12128required exception behavior. This argument must be one of the following
12129strings:
12130
12131::
12132 "fpexcept.ignore"
12133 "fpexcept.maytrap"
12134 "fpexcept.strict"
12135
12136If this argument is "fpexcept.ignore" optimization passes may assume that the
12137exception status flags will not be read and that floating point exceptions will
12138be masked. This allows transformations to be performed that may change the
12139exception semantics of the original code. For example, FP operations may be
12140speculatively executed in this case whereas they must not be for either of the
12141other possible values of this argument.
12142
12143If the exception behavior argument is "fpexcept.maytrap" optimization passes
12144must avoid transformations that may raise exceptions that would not have been
12145raised by the original code (such as speculatively executing FP operations), but
12146passes are not required to preserve all exceptions that are implied by the
12147original code. For example, exceptions may be potentially hidden by constant
12148folding.
12149
12150If the exception behavior argument is "fpexcept.strict" all transformations must
12151strictly preserve the floating point exception semantics of the original code.
12152Any FP exception that would have been raised by the original code must be raised
12153by the transformed code, and the transformed code must not raise any FP
12154exceptions that would not have been raised by the original code. This is the
12155exception behavior argument that will be used if the code being compiled reads
12156the FP exception status flags, but this mode can also be used with code that
12157unmasks FP exceptions.
12158
12159The number and order of floating point exceptions is NOT guaranteed. For
12160example, a series of FP operations that each may raise exceptions may be
12161vectorized into a single instruction that raises each unique exception a single
12162time.
12163
12164
12165'``llvm.experimental.constrained.fadd``' Intrinsic
12166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12167
12168Syntax:
12169"""""""
12170
12171::
12172
12173 declare <type>
12174 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12175 metadata <rounding mode>,
12176 metadata <exception behavior>)
12177
12178Overview:
12179"""""""""
12180
12181The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
12182two operands.
12183
12184
12185Arguments:
12186""""""""""
12187
12188The first two arguments to the '``llvm.experimental.constrained.fadd``'
12189intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12190of floating point values. Both arguments must have identical types.
12191
12192The third and fourth arguments specify the rounding mode and exception
12193behavior as described above.
12194
12195Semantics:
12196""""""""""
12197
12198The value produced is the floating point sum of the two value operands and has
12199the same type as the operands.
12200
12201
12202'``llvm.experimental.constrained.fsub``' Intrinsic
12203^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12204
12205Syntax:
12206"""""""
12207
12208::
12209
12210 declare <type>
12211 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
12212 metadata <rounding mode>,
12213 metadata <exception behavior>)
12214
12215Overview:
12216"""""""""
12217
12218The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
12219of its two operands.
12220
12221
12222Arguments:
12223""""""""""
12224
12225The first two arguments to the '``llvm.experimental.constrained.fsub``'
12226intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12227of floating point values. Both arguments must have identical types.
12228
12229The third and fourth arguments specify the rounding mode and exception
12230behavior as described above.
12231
12232Semantics:
12233""""""""""
12234
12235The value produced is the floating point difference of the two value operands
12236and has the same type as the operands.
12237
12238
12239'``llvm.experimental.constrained.fmul``' Intrinsic
12240^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12241
12242Syntax:
12243"""""""
12244
12245::
12246
12247 declare <type>
12248 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
12249 metadata <rounding mode>,
12250 metadata <exception behavior>)
12251
12252Overview:
12253"""""""""
12254
12255The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
12256its two operands.
12257
12258
12259Arguments:
12260""""""""""
12261
12262The first two arguments to the '``llvm.experimental.constrained.fmul``'
12263intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12264of floating point values. Both arguments must have identical types.
12265
12266The third and fourth arguments specify the rounding mode and exception
12267behavior as described above.
12268
12269Semantics:
12270""""""""""
12271
12272The value produced is the floating point product of the two value operands and
12273has the same type as the operands.
12274
12275
12276'``llvm.experimental.constrained.fdiv``' Intrinsic
12277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12278
12279Syntax:
12280"""""""
12281
12282::
12283
12284 declare <type>
12285 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
12286 metadata <rounding mode>,
12287 metadata <exception behavior>)
12288
12289Overview:
12290"""""""""
12291
12292The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
12293its two operands.
12294
12295
12296Arguments:
12297""""""""""
12298
12299The first two arguments to the '``llvm.experimental.constrained.fdiv``'
12300intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12301of floating point values. Both arguments must have identical types.
12302
12303The third and fourth arguments specify the rounding mode and exception
12304behavior as described above.
12305
12306Semantics:
12307""""""""""
12308
12309The value produced is the floating point quotient of the two value operands and
12310has the same type as the operands.
12311
12312
12313'``llvm.experimental.constrained.frem``' Intrinsic
12314^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12315
12316Syntax:
12317"""""""
12318
12319::
12320
12321 declare <type>
12322 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
12323 metadata <rounding mode>,
12324 metadata <exception behavior>)
12325
12326Overview:
12327"""""""""
12328
12329The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
12330from the division of its two operands.
12331
12332
12333Arguments:
12334""""""""""
12335
12336The first two arguments to the '``llvm.experimental.constrained.frem``'
12337intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12338of floating point values. Both arguments must have identical types.
12339
12340The third and fourth arguments specify the rounding mode and exception
12341behavior as described above. The rounding mode argument has no effect, since
12342the result of frem is never rounded, but the argument is included for
12343consistency with the other constrained floating point intrinsics.
12344
12345Semantics:
12346""""""""""
12347
12348The value produced is the floating point remainder from the division of the two
12349value operands and has the same type as the operands. The remainder has the
12350same sign as the dividend.
12351
12352
Sean Silvab084af42012-12-07 10:36:55 +000012353General Intrinsics
12354------------------
12355
12356This class of intrinsics is designed to be generic and has no specific
12357purpose.
12358
12359'``llvm.var.annotation``' Intrinsic
12360^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12361
12362Syntax:
12363"""""""
12364
12365::
12366
12367 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12368
12369Overview:
12370"""""""""
12371
12372The '``llvm.var.annotation``' intrinsic.
12373
12374Arguments:
12375""""""""""
12376
12377The first argument is a pointer to a value, the second is a pointer to a
12378global string, the third is a pointer to a global string which is the
12379source file name, and the last argument is the line number.
12380
12381Semantics:
12382""""""""""
12383
12384This intrinsic allows annotation of local variables with arbitrary
12385strings. This can be useful for special purpose optimizations that want
12386to look for these annotations. These have no other defined use; they are
12387ignored by code generation and optimization.
12388
Michael Gottesman88d18832013-03-26 00:34:27 +000012389'``llvm.ptr.annotation.*``' Intrinsic
12390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12391
12392Syntax:
12393"""""""
12394
12395This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12396pointer to an integer of any width. *NOTE* you must specify an address space for
12397the pointer. The identifier for the default address space is the integer
12398'``0``'.
12399
12400::
12401
12402 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12403 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12404 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12405 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12406 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12407
12408Overview:
12409"""""""""
12410
12411The '``llvm.ptr.annotation``' intrinsic.
12412
12413Arguments:
12414""""""""""
12415
12416The first argument is a pointer to an integer value of arbitrary bitwidth
12417(result of some expression), the second is a pointer to a global string, the
12418third is a pointer to a global string which is the source file name, and the
12419last argument is the line number. It returns the value of the first argument.
12420
12421Semantics:
12422""""""""""
12423
12424This intrinsic allows annotation of a pointer to an integer with arbitrary
12425strings. This can be useful for special purpose optimizations that want to look
12426for these annotations. These have no other defined use; they are ignored by code
12427generation and optimization.
12428
Sean Silvab084af42012-12-07 10:36:55 +000012429'``llvm.annotation.*``' Intrinsic
12430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12431
12432Syntax:
12433"""""""
12434
12435This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12436any integer bit width.
12437
12438::
12439
12440 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12441 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12442 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12443 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12444 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12445
12446Overview:
12447"""""""""
12448
12449The '``llvm.annotation``' intrinsic.
12450
12451Arguments:
12452""""""""""
12453
12454The first argument is an integer value (result of some expression), the
12455second is a pointer to a global string, the third is a pointer to a
12456global string which is the source file name, and the last argument is
12457the line number. It returns the value of the first argument.
12458
12459Semantics:
12460""""""""""
12461
12462This intrinsic allows annotations to be put on arbitrary expressions
12463with arbitrary strings. This can be useful for special purpose
12464optimizations that want to look for these annotations. These have no
12465other defined use; they are ignored by code generation and optimization.
12466
12467'``llvm.trap``' Intrinsic
12468^^^^^^^^^^^^^^^^^^^^^^^^^
12469
12470Syntax:
12471"""""""
12472
12473::
12474
12475 declare void @llvm.trap() noreturn nounwind
12476
12477Overview:
12478"""""""""
12479
12480The '``llvm.trap``' intrinsic.
12481
12482Arguments:
12483""""""""""
12484
12485None.
12486
12487Semantics:
12488""""""""""
12489
12490This intrinsic is lowered to the target dependent trap instruction. If
12491the target does not have a trap instruction, this intrinsic will be
12492lowered to a call of the ``abort()`` function.
12493
12494'``llvm.debugtrap``' Intrinsic
12495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12496
12497Syntax:
12498"""""""
12499
12500::
12501
12502 declare void @llvm.debugtrap() nounwind
12503
12504Overview:
12505"""""""""
12506
12507The '``llvm.debugtrap``' intrinsic.
12508
12509Arguments:
12510""""""""""
12511
12512None.
12513
12514Semantics:
12515""""""""""
12516
12517This intrinsic is lowered to code which is intended to cause an
12518execution trap with the intention of requesting the attention of a
12519debugger.
12520
12521'``llvm.stackprotector``' Intrinsic
12522^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12523
12524Syntax:
12525"""""""
12526
12527::
12528
12529 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12530
12531Overview:
12532"""""""""
12533
12534The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12535onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12536is placed on the stack before local variables.
12537
12538Arguments:
12539""""""""""
12540
12541The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12542The first argument is the value loaded from the stack guard
12543``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12544enough space to hold the value of the guard.
12545
12546Semantics:
12547""""""""""
12548
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012549This intrinsic causes the prologue/epilogue inserter to force the position of
12550the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12551to ensure that if a local variable on the stack is overwritten, it will destroy
12552the value of the guard. When the function exits, the guard on the stack is
12553checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12554different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12555calling the ``__stack_chk_fail()`` function.
12556
Tim Shene885d5e2016-04-19 19:40:37 +000012557'``llvm.stackguard``' Intrinsic
12558^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12559
12560Syntax:
12561"""""""
12562
12563::
12564
12565 declare i8* @llvm.stackguard()
12566
12567Overview:
12568"""""""""
12569
12570The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12571
12572It should not be generated by frontends, since it is only for internal usage.
12573The reason why we create this intrinsic is that we still support IR form Stack
12574Protector in FastISel.
12575
12576Arguments:
12577""""""""""
12578
12579None.
12580
12581Semantics:
12582""""""""""
12583
12584On some platforms, the value returned by this intrinsic remains unchanged
12585between loads in the same thread. On other platforms, it returns the same
12586global variable value, if any, e.g. ``@__stack_chk_guard``.
12587
12588Currently some platforms have IR-level customized stack guard loading (e.g.
12589X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12590in the future.
12591
Sean Silvab084af42012-12-07 10:36:55 +000012592'``llvm.objectsize``' Intrinsic
12593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12594
12595Syntax:
12596"""""""
12597
12598::
12599
12600 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12601 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12602
12603Overview:
12604"""""""""
12605
12606The ``llvm.objectsize`` intrinsic is designed to provide information to
12607the optimizers to determine at compile time whether a) an operation
12608(like memcpy) will overflow a buffer that corresponds to an object, or
12609b) that a runtime check for overflow isn't necessary. An object in this
12610context means an allocation of a specific class, structure, array, or
12611other object.
12612
12613Arguments:
12614""""""""""
12615
12616The ``llvm.objectsize`` intrinsic takes two arguments. The first
12617argument is a pointer to or into the ``object``. The second argument is
12618a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12619or -1 (if false) when the object size is unknown. The second argument
12620only accepts constants.
12621
12622Semantics:
12623""""""""""
12624
12625The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12626the size of the object concerned. If the size cannot be determined at
12627compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12628on the ``min`` argument).
12629
12630'``llvm.expect``' Intrinsic
12631^^^^^^^^^^^^^^^^^^^^^^^^^^^
12632
12633Syntax:
12634"""""""
12635
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012636This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12637integer bit width.
12638
Sean Silvab084af42012-12-07 10:36:55 +000012639::
12640
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012641 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012642 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12643 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12644
12645Overview:
12646"""""""""
12647
12648The ``llvm.expect`` intrinsic provides information about expected (the
12649most probable) value of ``val``, which can be used by optimizers.
12650
12651Arguments:
12652""""""""""
12653
12654The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12655a value. The second argument is an expected value, this needs to be a
12656constant value, variables are not allowed.
12657
12658Semantics:
12659""""""""""
12660
12661This intrinsic is lowered to the ``val``.
12662
Philip Reamese0e90832015-04-26 22:23:12 +000012663.. _int_assume:
12664
Hal Finkel93046912014-07-25 21:13:35 +000012665'``llvm.assume``' Intrinsic
12666^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12667
12668Syntax:
12669"""""""
12670
12671::
12672
12673 declare void @llvm.assume(i1 %cond)
12674
12675Overview:
12676"""""""""
12677
12678The ``llvm.assume`` allows the optimizer to assume that the provided
12679condition is true. This information can then be used in simplifying other parts
12680of the code.
12681
12682Arguments:
12683""""""""""
12684
12685The condition which the optimizer may assume is always true.
12686
12687Semantics:
12688""""""""""
12689
12690The intrinsic allows the optimizer to assume that the provided condition is
12691always true whenever the control flow reaches the intrinsic call. No code is
12692generated for this intrinsic, and instructions that contribute only to the
12693provided condition are not used for code generation. If the condition is
12694violated during execution, the behavior is undefined.
12695
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012696Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012697used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12698only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012699if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012700sufficient overall improvement in code quality. For this reason,
12701``llvm.assume`` should not be used to document basic mathematical invariants
12702that the optimizer can otherwise deduce or facts that are of little use to the
12703optimizer.
12704
Daniel Berlin2c438a32017-02-07 19:29:25 +000012705.. _int_ssa_copy:
12706
12707'``llvm.ssa_copy``' Intrinsic
12708^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12709
12710Syntax:
12711"""""""
12712
12713::
12714
12715 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
12716
12717Arguments:
12718""""""""""
12719
12720The first argument is an operand which is used as the returned value.
12721
12722Overview:
12723""""""""""
12724
12725The ``llvm.ssa_copy`` intrinsic can be used to attach information to
12726operations by copying them and giving them new names. For example,
12727the PredicateInfo utility uses it to build Extended SSA form, and
12728attach various forms of information to operands that dominate specific
12729uses. It is not meant for general use, only for building temporary
12730renaming forms that require value splits at certain points.
12731
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012732.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012733
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012734'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12736
12737Syntax:
12738"""""""
12739
12740::
12741
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012742 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012743
12744
12745Arguments:
12746""""""""""
12747
12748The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012749metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012750
12751Overview:
12752"""""""""
12753
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012754The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12755with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012756
Peter Collingbourne0312f612016-06-25 00:23:04 +000012757'``llvm.type.checked.load``' Intrinsic
12758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12759
12760Syntax:
12761"""""""
12762
12763::
12764
12765 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12766
12767
12768Arguments:
12769""""""""""
12770
12771The first argument is a pointer from which to load a function pointer. The
12772second argument is the byte offset from which to load the function pointer. The
12773third argument is a metadata object representing a :doc:`type identifier
12774<TypeMetadata>`.
12775
12776Overview:
12777"""""""""
12778
12779The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12780virtual table pointer using type metadata. This intrinsic is used to implement
12781control flow integrity in conjunction with virtual call optimization. The
12782virtual call optimization pass will optimize away ``llvm.type.checked.load``
12783intrinsics associated with devirtualized calls, thereby removing the type
12784check in cases where it is not needed to enforce the control flow integrity
12785constraint.
12786
12787If the given pointer is associated with a type metadata identifier, this
12788function returns true as the second element of its return value. (Note that
12789the function may also return true if the given pointer is not associated
12790with a type metadata identifier.) If the function's return value's second
12791element is true, the following rules apply to the first element:
12792
12793- If the given pointer is associated with the given type metadata identifier,
12794 it is the function pointer loaded from the given byte offset from the given
12795 pointer.
12796
12797- If the given pointer is not associated with the given type metadata
12798 identifier, it is one of the following (the choice of which is unspecified):
12799
12800 1. The function pointer that would have been loaded from an arbitrarily chosen
12801 (through an unspecified mechanism) pointer associated with the type
12802 metadata.
12803
12804 2. If the function has a non-void return type, a pointer to a function that
12805 returns an unspecified value without causing side effects.
12806
12807If the function's return value's second element is false, the value of the
12808first element is undefined.
12809
12810
Sean Silvab084af42012-12-07 10:36:55 +000012811'``llvm.donothing``' Intrinsic
12812^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12813
12814Syntax:
12815"""""""
12816
12817::
12818
12819 declare void @llvm.donothing() nounwind readnone
12820
12821Overview:
12822"""""""""
12823
Juergen Ributzkac9161192014-10-23 22:36:13 +000012824The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012825three intrinsics (besides ``llvm.experimental.patchpoint`` and
12826``llvm.experimental.gc.statepoint``) that can be called with an invoke
12827instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012828
12829Arguments:
12830""""""""""
12831
12832None.
12833
12834Semantics:
12835""""""""""
12836
12837This intrinsic does nothing, and it's removed by optimizers and ignored
12838by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012839
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012840'``llvm.experimental.deoptimize``' Intrinsic
12841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12842
12843Syntax:
12844"""""""
12845
12846::
12847
12848 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12849
12850Overview:
12851"""""""""
12852
12853This intrinsic, together with :ref:`deoptimization operand bundles
12854<deopt_opbundles>`, allow frontends to express transfer of control and
12855frame-local state from the currently executing (typically more specialized,
12856hence faster) version of a function into another (typically more generic, hence
12857slower) version.
12858
12859In languages with a fully integrated managed runtime like Java and JavaScript
12860this intrinsic can be used to implement "uncommon trap" or "side exit" like
12861functionality. In unmanaged languages like C and C++, this intrinsic can be
12862used to represent the slow paths of specialized functions.
12863
12864
12865Arguments:
12866""""""""""
12867
12868The intrinsic takes an arbitrary number of arguments, whose meaning is
12869decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12870
12871Semantics:
12872""""""""""
12873
12874The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12875deoptimization continuation (denoted using a :ref:`deoptimization
12876operand bundle <deopt_opbundles>`) and returns the value returned by
12877the deoptimization continuation. Defining the semantic properties of
12878the continuation itself is out of scope of the language reference --
12879as far as LLVM is concerned, the deoptimization continuation can
12880invoke arbitrary side effects, including reading from and writing to
12881the entire heap.
12882
12883Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12884continue execution to the end of the physical frame containing them, so all
12885calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12886
12887 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12888 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12889 - The ``ret`` instruction must return the value produced by the
12890 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12891
12892Note that the above restrictions imply that the return type for a call to
12893``@llvm.experimental.deoptimize`` will match the return type of its immediate
12894caller.
12895
12896The inliner composes the ``"deopt"`` continuations of the caller into the
12897``"deopt"`` continuations present in the inlinee, and also updates calls to this
12898intrinsic to return directly from the frame of the function it inlined into.
12899
Sanjoy Dase0aa4142016-05-12 01:17:38 +000012900All declarations of ``@llvm.experimental.deoptimize`` must share the
12901same calling convention.
12902
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012903.. _deoptimize_lowering:
12904
12905Lowering:
12906"""""""""
12907
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012908Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12909symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12910ensure that this symbol is defined). The call arguments to
12911``@llvm.experimental.deoptimize`` are lowered as if they were formal
12912arguments of the specified types, and not as varargs.
12913
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012914
Sanjoy Das021de052016-03-31 00:18:46 +000012915'``llvm.experimental.guard``' Intrinsic
12916^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12917
12918Syntax:
12919"""""""
12920
12921::
12922
12923 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12924
12925Overview:
12926"""""""""
12927
12928This intrinsic, together with :ref:`deoptimization operand bundles
12929<deopt_opbundles>`, allows frontends to express guards or checks on
12930optimistic assumptions made during compilation. The semantics of
12931``@llvm.experimental.guard`` is defined in terms of
12932``@llvm.experimental.deoptimize`` -- its body is defined to be
12933equivalent to:
12934
Renato Golin124f2592016-07-20 12:16:38 +000012935.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000012936
Renato Golin124f2592016-07-20 12:16:38 +000012937 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12938 %realPred = and i1 %pred, undef
12939 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000012940
Renato Golin124f2592016-07-20 12:16:38 +000012941 leave:
12942 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12943 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000012944
Renato Golin124f2592016-07-20 12:16:38 +000012945 continue:
12946 ret void
12947 }
Sanjoy Das021de052016-03-31 00:18:46 +000012948
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012949
12950with the optional ``[, !make.implicit !{}]`` present if and only if it
12951is present on the call site. For more details on ``!make.implicit``,
12952see :doc:`FaultMaps`.
12953
Sanjoy Das021de052016-03-31 00:18:46 +000012954In words, ``@llvm.experimental.guard`` executes the attached
12955``"deopt"`` continuation if (but **not** only if) its first argument
12956is ``false``. Since the optimizer is allowed to replace the ``undef``
12957with an arbitrary value, it can optimize guard to fail "spuriously",
12958i.e. without the original condition being false (hence the "not only
12959if"); and this allows for "check widening" type optimizations.
12960
12961``@llvm.experimental.guard`` cannot be invoked.
12962
12963
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012964'``llvm.load.relative``' Intrinsic
12965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12966
12967Syntax:
12968"""""""
12969
12970::
12971
12972 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12973
12974Overview:
12975"""""""""
12976
12977This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12978adds ``%ptr`` to that value and returns it. The constant folder specifically
12979recognizes the form of this intrinsic and the constant initializers it may
12980load from; if a loaded constant initializer is known to have the form
12981``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12982
12983LLVM provides that the calculation of such a constant initializer will
12984not overflow at link time under the medium code model if ``x`` is an
12985``unnamed_addr`` function. However, it does not provide this guarantee for
12986a constant initializer folded into a function body. This intrinsic can be
12987used to avoid the possibility of overflows when loading from such a constant.
12988
Andrew Trick5e029ce2013-12-24 02:57:25 +000012989Stack Map Intrinsics
12990--------------------
12991
12992LLVM provides experimental intrinsics to support runtime patching
12993mechanisms commonly desired in dynamic language JITs. These intrinsics
12994are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000012995
12996Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000012997-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000012998
12999These intrinsics are similar to the standard library memory intrinsics except
13000that they perform memory transfer as a sequence of atomic memory accesses.
13001
13002.. _int_memcpy_element_atomic:
13003
13004'``llvm.memcpy.element.atomic``' Intrinsic
Igor Laevskyfedab152016-12-29 15:08:57 +000013005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000013006
13007Syntax:
13008"""""""
13009
13010This is an overloaded intrinsic. You can use ``llvm.memcpy.element.atomic`` on
13011any integer bit width and for different address spaces. Not all targets
13012support all bit widths however.
13013
13014::
13015
13016 declare void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* <dest>, i8* <src>,
13017 i64 <num_elements>, i32 <element_size>)
13018
13019Overview:
13020"""""""""
13021
13022The '``llvm.memcpy.element.atomic.*``' intrinsic performs copy of a block of
13023memory from the source location to the destination location as a sequence of
13024unordered atomic memory accesses where each access is a multiple of
13025``element_size`` bytes wide and aligned at an element size boundary. For example
13026each element is accessed atomically in source and destination buffers.
13027
13028Arguments:
13029""""""""""
13030
13031The first argument is a pointer to the destination, the second is a
13032pointer to the source. The third argument is an integer argument
13033specifying the number of elements to copy, the fourth argument is size of
13034the single element in bytes.
13035
13036``element_size`` should be a power of two, greater than zero and less than
13037a target-specific atomic access size limit.
13038
13039For each of the input pointers ``align`` parameter attribute must be specified.
13040It must be a power of two and greater than or equal to the ``element_size``.
13041Caller guarantees that both the source and destination pointers are aligned to
13042that boundary.
13043
13044Semantics:
13045""""""""""
13046
13047The '``llvm.memcpy.element.atomic.*``' intrinsic copies
13048'``num_elements`` * ``element_size``' bytes of memory from the source location to
13049the destination location. These locations are not allowed to overlap. Memory copy
13050is performed as a sequence of unordered atomic memory accesses where each access
13051is guaranteed to be a multiple of ``element_size`` bytes wide and aligned at an
13052element size boundary.
13053
13054The order of the copy is unspecified. The same value may be read from the source
13055buffer many times, but only one write is issued to the destination buffer per
13056element. It is well defined to have concurrent reads and writes to both source
13057and destination provided those reads and writes are at least unordered atomic.
13058
13059This intrinsic does not provide any additional ordering guarantees over those
13060provided by a set of unordered loads from the source location and stores to the
13061destination.
13062
13063Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000013064"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000013065
13066In the most general case call to the '``llvm.memcpy.element.atomic.*``' is lowered
13067to a call to the symbol ``__llvm_memcpy_element_atomic_*``. Where '*' is replaced
13068with an actual element size.
13069
13070Optimizer is allowed to inline memory copy when it's profitable to do so.