blob: 068fb6bde61bb4407b48e11607b11aff3ee8ba52 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
645an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000646
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000647Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000648:ref:`Thread Local Storage Model <tls_model>`.
649
Nico Rieck7157bb72014-01-14 15:22:47 +0000650Syntax::
651
Rafael Espindola32483a72016-05-10 18:22:45 +0000652 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000653 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
654 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000655 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000656 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000657 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659For example, the following defines a global in a numbered address space
660with an initializer, section, and alignment:
661
662.. code-block:: llvm
663
664 @G = addrspace(5) constant float 1.0, section "foo", align 4
665
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000666The following example just declares a global variable
667
668.. code-block:: llvm
669
670 @G = external global i32
671
Sean Silvab084af42012-12-07 10:36:55 +0000672The following example defines a thread-local global with the
673``initialexec`` TLS model:
674
675.. code-block:: llvm
676
677 @G = thread_local(initialexec) global i32 0, align 4
678
679.. _functionstructure:
680
681Functions
682---------
683
684LLVM function definitions consist of the "``define``" keyword, an
685optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000686style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
687an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000688an optional ``unnamed_addr`` attribute, a return type, an optional
689:ref:`parameter attribute <paramattrs>` for the return type, a function
690name, a (possibly empty) argument list (each with optional :ref:`parameter
691attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000692an optional section, an optional alignment,
693an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000694an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000695an optional :ref:`prologue <prologuedata>`,
696an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000697an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000698an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000699
700LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000701optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
702<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
703optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
704or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
705attribute <paramattrs>` for the return type, a function name, a possibly
706empty list of arguments, an optional alignment, an optional :ref:`garbage
707collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
708:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000709
Bill Wendling6822ecb2013-10-27 05:09:12 +0000710A function definition contains a list of basic blocks, forming the CFG (Control
711Flow Graph) for the function. Each basic block may optionally start with a label
712(giving the basic block a symbol table entry), contains a list of instructions,
713and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
714function return). If an explicit label is not provided, a block is assigned an
715implicit numbered label, using the next value from the same counter as used for
716unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
717entry block does not have an explicit label, it will be assigned label "%0",
718then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000719
720The first basic block in a function is special in two ways: it is
721immediately executed on entrance to the function, and it is not allowed
722to have predecessor basic blocks (i.e. there can not be any branches to
723the entry block of a function). Because the block can have no
724predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
725
726LLVM allows an explicit section to be specified for functions. If the
727target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000728Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730An explicit alignment may be specified for a function. If not present,
731or if the alignment is set to zero, the alignment of the function is set
732by the target to whatever it feels convenient. If an explicit alignment
733is specified, the function is forced to have at least that much
734alignment. All alignments must be a power of 2.
735
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000736If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000737be significant and two identical functions can be merged.
738
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000739If the ``local_unnamed_addr`` attribute is given, the address is known to
740not be significant within the module.
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Syntax::
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000745 [cconv] [ret attrs]
746 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000747 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
748 [comdat [($name)]] [align N] [gc] [prefix Constant]
749 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000750
Sean Silva706fba52015-08-06 22:56:24 +0000751The argument list is a comma separated sequence of arguments where each
752argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000753
754Syntax::
755
756 <type> [parameter Attrs] [name]
757
758
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000759.. _langref_aliases:
760
Sean Silvab084af42012-12-07 10:36:55 +0000761Aliases
762-------
763
Rafael Espindola64c1e182014-06-03 02:41:57 +0000764Aliases, unlike function or variables, don't create any new data. They
765are just a new symbol and metadata for an existing position.
766
767Aliases have a name and an aliasee that is either a global value or a
768constant expression.
769
Nico Rieck7157bb72014-01-14 15:22:47 +0000770Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000771:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
772<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000773
774Syntax::
775
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000776 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000777
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000778The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000779``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000780might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000781
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000782Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000783the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
784to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000785
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000786If the ``local_unnamed_addr`` attribute is given, the address is known to
787not be significant within the module.
788
Rafael Espindola64c1e182014-06-03 02:41:57 +0000789Since aliases are only a second name, some restrictions apply, of which
790some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000791
Rafael Espindola64c1e182014-06-03 02:41:57 +0000792* The expression defining the aliasee must be computable at assembly
793 time. Since it is just a name, no relocations can be used.
794
795* No alias in the expression can be weak as the possibility of the
796 intermediate alias being overridden cannot be represented in an
797 object file.
798
799* No global value in the expression can be a declaration, since that
800 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000801
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000802.. _langref_ifunc:
803
804IFuncs
805-------
806
807IFuncs, like as aliases, don't create any new data or func. They are just a new
808symbol that dynamic linker resolves at runtime by calling a resolver function.
809
810IFuncs have a name and a resolver that is a function called by dynamic linker
811that returns address of another function associated with the name.
812
813IFunc may have an optional :ref:`linkage type <linkage>` and an optional
814:ref:`visibility style <visibility>`.
815
816Syntax::
817
818 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821.. _langref_comdats:
822
823Comdats
824-------
825
826Comdat IR provides access to COFF and ELF object file COMDAT functionality.
827
Sean Silvaa1190322015-08-06 22:56:48 +0000828Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000829specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000830that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000831aliasee computes to, if any.
832
833Comdats have a selection kind to provide input on how the linker should
834choose between keys in two different object files.
835
836Syntax::
837
838 $<Name> = comdat SelectionKind
839
840The selection kind must be one of the following:
841
842``any``
843 The linker may choose any COMDAT key, the choice is arbitrary.
844``exactmatch``
845 The linker may choose any COMDAT key but the sections must contain the
846 same data.
847``largest``
848 The linker will choose the section containing the largest COMDAT key.
849``noduplicates``
850 The linker requires that only section with this COMDAT key exist.
851``samesize``
852 The linker may choose any COMDAT key but the sections must contain the
853 same amount of data.
854
855Note that the Mach-O platform doesn't support COMDATs and ELF only supports
856``any`` as a selection kind.
857
858Here is an example of a COMDAT group where a function will only be selected if
859the COMDAT key's section is the largest:
860
Renato Golin124f2592016-07-20 12:16:38 +0000861.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000862
863 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000864 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000865
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000867 ret void
868 }
869
Rafael Espindola83a362c2015-01-06 22:55:16 +0000870As a syntactic sugar the ``$name`` can be omitted if the name is the same as
871the global name:
872
Renato Golin124f2592016-07-20 12:16:38 +0000873.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000874
875 $foo = comdat any
876 @foo = global i32 2, comdat
877
878
David Majnemerdad0a642014-06-27 18:19:56 +0000879In a COFF object file, this will create a COMDAT section with selection kind
880``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
881and another COMDAT section with selection kind
882``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000883section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885There are some restrictions on the properties of the global object.
886It, or an alias to it, must have the same name as the COMDAT group when
887targeting COFF.
888The contents and size of this object may be used during link-time to determine
889which COMDAT groups get selected depending on the selection kind.
890Because the name of the object must match the name of the COMDAT group, the
891linkage of the global object must not be local; local symbols can get renamed
892if a collision occurs in the symbol table.
893
894The combined use of COMDATS and section attributes may yield surprising results.
895For example:
896
Renato Golin124f2592016-07-20 12:16:38 +0000897.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000898
899 $foo = comdat any
900 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901 @g1 = global i32 42, section "sec", comdat($foo)
902 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000903
904From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000905with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000906COMDAT groups and COMDATs, at the object file level, are represented by
907sections.
908
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000909Note that certain IR constructs like global variables and functions may
910create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000911COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000912in individual sections (e.g. when `-data-sections` or `-function-sections`
913is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000914
Sean Silvab084af42012-12-07 10:36:55 +0000915.. _namedmetadatastructure:
916
917Named Metadata
918--------------
919
920Named metadata is a collection of metadata. :ref:`Metadata
921nodes <metadata>` (but not metadata strings) are the only valid
922operands for a named metadata.
923
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000924#. Named metadata are represented as a string of characters with the
925 metadata prefix. The rules for metadata names are the same as for
926 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
927 are still valid, which allows any character to be part of a name.
928
Sean Silvab084af42012-12-07 10:36:55 +0000929Syntax::
930
931 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000932 !0 = !{!"zero"}
933 !1 = !{!"one"}
934 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000935 ; A named metadata.
936 !name = !{!0, !1, !2}
937
938.. _paramattrs:
939
940Parameter Attributes
941--------------------
942
943The return type and each parameter of a function type may have a set of
944*parameter attributes* associated with them. Parameter attributes are
945used to communicate additional information about the result or
946parameters of a function. Parameter attributes are considered to be part
947of the function, not of the function type, so functions with different
948parameter attributes can have the same function type.
949
950Parameter attributes are simple keywords that follow the type specified.
951If multiple parameter attributes are needed, they are space separated.
952For example:
953
954.. code-block:: llvm
955
956 declare i32 @printf(i8* noalias nocapture, ...)
957 declare i32 @atoi(i8 zeroext)
958 declare signext i8 @returns_signed_char()
959
960Note that any attributes for the function result (``nounwind``,
961``readonly``) come immediately after the argument list.
962
963Currently, only the following parameter attributes are defined:
964
965``zeroext``
966 This indicates to the code generator that the parameter or return
967 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000968 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000969``signext``
970 This indicates to the code generator that the parameter or return
971 value should be sign-extended to the extent required by the target's
972 ABI (which is usually 32-bits) by the caller (for a parameter) or
973 the callee (for a return value).
974``inreg``
975 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000976 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000977 a function call or return (usually, by putting it in a register as
978 opposed to memory, though some targets use it to distinguish between
979 two different kinds of registers). Use of this attribute is
980 target-specific.
981``byval``
982 This indicates that the pointer parameter should really be passed by
983 value to the function. The attribute implies that a hidden copy of
984 the pointee is made between the caller and the callee, so the callee
985 is unable to modify the value in the caller. This attribute is only
986 valid on LLVM pointer arguments. It is generally used to pass
987 structs and arrays by value, but is also valid on pointers to
988 scalars. The copy is considered to belong to the caller not the
989 callee (for example, ``readonly`` functions should not write to
990 ``byval`` parameters). This is not a valid attribute for return
991 values.
992
993 The byval attribute also supports specifying an alignment with the
994 align attribute. It indicates the alignment of the stack slot to
995 form and the known alignment of the pointer specified to the call
996 site. If the alignment is not specified, then the code generator
997 makes a target-specific assumption.
998
Reid Klecknera534a382013-12-19 02:14:12 +0000999.. _attr_inalloca:
1000
1001``inalloca``
1002
Reid Kleckner60d3a832014-01-16 22:59:24 +00001003 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001004 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001005 be a pointer to stack memory produced by an ``alloca`` instruction.
1006 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001007 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001008 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001009
Reid Kleckner436c42e2014-01-17 23:58:17 +00001010 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001011 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001012 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001013 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001014 ``inalloca`` attribute also disables LLVM's implicit lowering of
1015 large aggregate return values, which means that frontend authors
1016 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001017
Reid Kleckner60d3a832014-01-16 22:59:24 +00001018 When the call site is reached, the argument allocation must have
1019 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001020 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001021 space after an argument allocation and before its call site, but it
1022 must be cleared off with :ref:`llvm.stackrestore
1023 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001024
1025 See :doc:`InAlloca` for more information on how to use this
1026 attribute.
1027
Sean Silvab084af42012-12-07 10:36:55 +00001028``sret``
1029 This indicates that the pointer parameter specifies the address of a
1030 structure that is the return value of the function in the source
1031 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001032 loads and stores to the structure may be assumed by the callee not
1033 to trap and to be properly aligned. This is not a valid attribute
1034 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001035
Hal Finkelccc70902014-07-22 16:58:55 +00001036``align <n>``
1037 This indicates that the pointer value may be assumed by the optimizer to
1038 have the specified alignment.
1039
1040 Note that this attribute has additional semantics when combined with the
1041 ``byval`` attribute.
1042
Sean Silva1703e702014-04-08 21:06:22 +00001043.. _noalias:
1044
Sean Silvab084af42012-12-07 10:36:55 +00001045``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001046 This indicates that objects accessed via pointer values
1047 :ref:`based <pointeraliasing>` on the argument or return value are not also
1048 accessed, during the execution of the function, via pointer values not
1049 *based* on the argument or return value. The attribute on a return value
1050 also has additional semantics described below. The caller shares the
1051 responsibility with the callee for ensuring that these requirements are met.
1052 For further details, please see the discussion of the NoAlias response in
1053 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001054
1055 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001056 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001057
1058 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001059 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1060 attribute on return values are stronger than the semantics of the attribute
1061 when used on function arguments. On function return values, the ``noalias``
1062 attribute indicates that the function acts like a system memory allocation
1063 function, returning a pointer to allocated storage disjoint from the
1064 storage for any other object accessible to the caller.
1065
Sean Silvab084af42012-12-07 10:36:55 +00001066``nocapture``
1067 This indicates that the callee does not make any copies of the
1068 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001069 attribute for return values. Addresses used in volatile operations
1070 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001071
1072.. _nest:
1073
1074``nest``
1075 This indicates that the pointer parameter can be excised using the
1076 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001077 attribute for return values and can only be applied to one parameter.
1078
1079``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001080 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001081 value. This is a hint to the optimizer and code generator used when
1082 generating the caller, allowing value propagation, tail call optimization,
1083 and omission of register saves and restores in some cases; it is not
1084 checked or enforced when generating the callee. The parameter and the
1085 function return type must be valid operands for the
1086 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1087 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001088
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001089``nonnull``
1090 This indicates that the parameter or return pointer is not null. This
1091 attribute may only be applied to pointer typed parameters. This is not
1092 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001093 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001094 is non-null.
1095
Hal Finkelb0407ba2014-07-18 15:51:28 +00001096``dereferenceable(<n>)``
1097 This indicates that the parameter or return pointer is dereferenceable. This
1098 attribute may only be applied to pointer typed parameters. A pointer that
1099 is dereferenceable can be loaded from speculatively without a risk of
1100 trapping. The number of bytes known to be dereferenceable must be provided
1101 in parentheses. It is legal for the number of bytes to be less than the
1102 size of the pointee type. The ``nonnull`` attribute does not imply
1103 dereferenceability (consider a pointer to one element past the end of an
1104 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1105 ``addrspace(0)`` (which is the default address space).
1106
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001107``dereferenceable_or_null(<n>)``
1108 This indicates that the parameter or return value isn't both
1109 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001110 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001111 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1112 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1113 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1114 and in other address spaces ``dereferenceable_or_null(<n>)``
1115 implies that a pointer is at least one of ``dereferenceable(<n>)``
1116 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001117 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001118 pointer typed parameters.
1119
Manman Renf46262e2016-03-29 17:37:21 +00001120``swiftself``
1121 This indicates that the parameter is the self/context parameter. This is not
1122 a valid attribute for return values and can only be applied to one
1123 parameter.
1124
Manman Ren9bfd0d02016-04-01 21:41:15 +00001125``swifterror``
1126 This attribute is motivated to model and optimize Swift error handling. It
1127 can be applied to a parameter with pointer to pointer type or a
1128 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001129 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1130 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1131 the parameter or the alloca) can only be loaded and stored from, or used as
1132 a ``swifterror`` argument. This is not a valid attribute for return values
1133 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001134
1135 These constraints allow the calling convention to optimize access to
1136 ``swifterror`` variables by associating them with a specific register at
1137 call boundaries rather than placing them in memory. Since this does change
1138 the calling convention, a function which uses the ``swifterror`` attribute
1139 on a parameter is not ABI-compatible with one which does not.
1140
1141 These constraints also allow LLVM to assume that a ``swifterror`` argument
1142 does not alias any other memory visible within a function and that a
1143 ``swifterror`` alloca passed as an argument does not escape.
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _gc:
1146
Philip Reamesf80bbff2015-02-25 23:45:20 +00001147Garbage Collector Strategy Names
1148--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001149
Philip Reamesf80bbff2015-02-25 23:45:20 +00001150Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001151string:
1152
1153.. code-block:: llvm
1154
1155 define void @f() gc "name" { ... }
1156
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001157The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001158<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001159strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001160named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001161garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001162which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001163
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001164.. _prefixdata:
1165
1166Prefix Data
1167-----------
1168
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001169Prefix data is data associated with a function which the code
1170generator will emit immediately before the function's entrypoint.
1171The purpose of this feature is to allow frontends to associate
1172language-specific runtime metadata with specific functions and make it
1173available through the function pointer while still allowing the
1174function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001175
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001176To access the data for a given function, a program may bitcast the
1177function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001178index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001179the prefix data. For instance, take the example of a function annotated
1180with a single ``i32``,
1181
1182.. code-block:: llvm
1183
1184 define void @f() prefix i32 123 { ... }
1185
1186The prefix data can be referenced as,
1187
1188.. code-block:: llvm
1189
David Blaikie16a97eb2015-03-04 22:02:58 +00001190 %0 = bitcast void* () @f to i32*
1191 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001192 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001193
1194Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001195of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001196beginning of the prefix data is aligned. This means that if the size
1197of the prefix data is not a multiple of the alignment size, the
1198function's entrypoint will not be aligned. If alignment of the
1199function's entrypoint is desired, padding must be added to the prefix
1200data.
1201
Sean Silvaa1190322015-08-06 22:56:48 +00001202A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001203to the ``available_externally`` linkage in that the data may be used by the
1204optimizers but will not be emitted in the object file.
1205
1206.. _prologuedata:
1207
1208Prologue Data
1209-------------
1210
1211The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1212be inserted prior to the function body. This can be used for enabling
1213function hot-patching and instrumentation.
1214
1215To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001216have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001217bytes which decode to a sequence of machine instructions, valid for the
1218module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001219the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001221definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001222makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001223
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001225which encodes the ``nop`` instruction:
1226
Renato Golin124f2592016-07-20 12:16:38 +00001227.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001228
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001230
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231Generally prologue data can be formed by encoding a relative branch instruction
1232which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001233x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1234
Renato Golin124f2592016-07-20 12:16:38 +00001235.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001236
1237 %0 = type <{ i8, i8, i8* }>
1238
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001239 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001240
Sean Silvaa1190322015-08-06 22:56:48 +00001241A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001242to the ``available_externally`` linkage in that the data may be used by the
1243optimizers but will not be emitted in the object file.
1244
David Majnemer7fddecc2015-06-17 20:52:32 +00001245.. _personalityfn:
1246
1247Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001248--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001249
1250The ``personality`` attribute permits functions to specify what function
1251to use for exception handling.
1252
Bill Wendling63b88192013-02-06 06:52:58 +00001253.. _attrgrp:
1254
1255Attribute Groups
1256----------------
1257
1258Attribute groups are groups of attributes that are referenced by objects within
1259the IR. They are important for keeping ``.ll`` files readable, because a lot of
1260functions will use the same set of attributes. In the degenerative case of a
1261``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1262group will capture the important command line flags used to build that file.
1263
1264An attribute group is a module-level object. To use an attribute group, an
1265object references the attribute group's ID (e.g. ``#37``). An object may refer
1266to more than one attribute group. In that situation, the attributes from the
1267different groups are merged.
1268
1269Here is an example of attribute groups for a function that should always be
1270inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1271
1272.. code-block:: llvm
1273
1274 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001275 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001276
1277 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001278 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001279
1280 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1281 define void @f() #0 #1 { ... }
1282
Sean Silvab084af42012-12-07 10:36:55 +00001283.. _fnattrs:
1284
1285Function Attributes
1286-------------------
1287
1288Function attributes are set to communicate additional information about
1289a function. Function attributes are considered to be part of the
1290function, not of the function type, so functions with different function
1291attributes can have the same function type.
1292
1293Function attributes are simple keywords that follow the type specified.
1294If multiple attributes are needed, they are space separated. For
1295example:
1296
1297.. code-block:: llvm
1298
1299 define void @f() noinline { ... }
1300 define void @f() alwaysinline { ... }
1301 define void @f() alwaysinline optsize { ... }
1302 define void @f() optsize { ... }
1303
Sean Silvab084af42012-12-07 10:36:55 +00001304``alignstack(<n>)``
1305 This attribute indicates that, when emitting the prologue and
1306 epilogue, the backend should forcibly align the stack pointer.
1307 Specify the desired alignment, which must be a power of two, in
1308 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001309``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1310 This attribute indicates that the annotated function will always return at
1311 least a given number of bytes (or null). Its arguments are zero-indexed
1312 parameter numbers; if one argument is provided, then it's assumed that at
1313 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1314 returned pointer. If two are provided, then it's assumed that
1315 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1316 available. The referenced parameters must be integer types. No assumptions
1317 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001318``alwaysinline``
1319 This attribute indicates that the inliner should attempt to inline
1320 this function into callers whenever possible, ignoring any active
1321 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001322``builtin``
1323 This indicates that the callee function at a call site should be
1324 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001325 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001326 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001327 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001328``cold``
1329 This attribute indicates that this function is rarely called. When
1330 computing edge weights, basic blocks post-dominated by a cold
1331 function call are also considered to be cold; and, thus, given low
1332 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001333``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001334 In some parallel execution models, there exist operations that cannot be
1335 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001336 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001337
Justin Lebar58535b12016-02-17 17:46:41 +00001338 The ``convergent`` attribute may appear on functions or call/invoke
1339 instructions. When it appears on a function, it indicates that calls to
1340 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001341 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001342 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001343 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001344
Justin Lebar58535b12016-02-17 17:46:41 +00001345 When it appears on a call/invoke, the ``convergent`` attribute indicates
1346 that we should treat the call as though we're calling a convergent
1347 function. This is particularly useful on indirect calls; without this we
1348 may treat such calls as though the target is non-convergent.
1349
1350 The optimizer may remove the ``convergent`` attribute on functions when it
1351 can prove that the function does not execute any convergent operations.
1352 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1353 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001354``inaccessiblememonly``
1355 This attribute indicates that the function may only access memory that
1356 is not accessible by the module being compiled. This is a weaker form
1357 of ``readnone``.
1358``inaccessiblemem_or_argmemonly``
1359 This attribute indicates that the function may only access memory that is
1360 either not accessible by the module being compiled, or is pointed to
1361 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001362``inlinehint``
1363 This attribute indicates that the source code contained a hint that
1364 inlining this function is desirable (such as the "inline" keyword in
1365 C/C++). It is just a hint; it imposes no requirements on the
1366 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001367``jumptable``
1368 This attribute indicates that the function should be added to a
1369 jump-instruction table at code-generation time, and that all address-taken
1370 references to this function should be replaced with a reference to the
1371 appropriate jump-instruction-table function pointer. Note that this creates
1372 a new pointer for the original function, which means that code that depends
1373 on function-pointer identity can break. So, any function annotated with
1374 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001375``minsize``
1376 This attribute suggests that optimization passes and code generator
1377 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001378 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001379 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001380``naked``
1381 This attribute disables prologue / epilogue emission for the
1382 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001383``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001384 This indicates that the callee function at a call site is not recognized as
1385 a built-in function. LLVM will retain the original call and not replace it
1386 with equivalent code based on the semantics of the built-in function, unless
1387 the call site uses the ``builtin`` attribute. This is valid at call sites
1388 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001389``noduplicate``
1390 This attribute indicates that calls to the function cannot be
1391 duplicated. A call to a ``noduplicate`` function may be moved
1392 within its parent function, but may not be duplicated within
1393 its parent function.
1394
1395 A function containing a ``noduplicate`` call may still
1396 be an inlining candidate, provided that the call is not
1397 duplicated by inlining. That implies that the function has
1398 internal linkage and only has one call site, so the original
1399 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001400``noimplicitfloat``
1401 This attributes disables implicit floating point instructions.
1402``noinline``
1403 This attribute indicates that the inliner should never inline this
1404 function in any situation. This attribute may not be used together
1405 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001406``nonlazybind``
1407 This attribute suppresses lazy symbol binding for the function. This
1408 may make calls to the function faster, at the cost of extra program
1409 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001410``noredzone``
1411 This attribute indicates that the code generator should not use a
1412 red zone, even if the target-specific ABI normally permits it.
1413``noreturn``
1414 This function attribute indicates that the function never returns
1415 normally. This produces undefined behavior at runtime if the
1416 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001417``norecurse``
1418 This function attribute indicates that the function does not call itself
1419 either directly or indirectly down any possible call path. This produces
1420 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001421``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001422 This function attribute indicates that the function never raises an
1423 exception. If the function does raise an exception, its runtime
1424 behavior is undefined. However, functions marked nounwind may still
1425 trap or generate asynchronous exceptions. Exception handling schemes
1426 that are recognized by LLVM to handle asynchronous exceptions, such
1427 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001428``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001429 This function attribute indicates that most optimization passes will skip
1430 this function, with the exception of interprocedural optimization passes.
1431 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001432 This attribute cannot be used together with the ``alwaysinline``
1433 attribute; this attribute is also incompatible
1434 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001435
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001436 This attribute requires the ``noinline`` attribute to be specified on
1437 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001438 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001439 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001440``optsize``
1441 This attribute suggests that optimization passes and code generator
1442 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001443 and otherwise do optimizations specifically to reduce code size as
1444 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001445``"patchable-function"``
1446 This attribute tells the code generator that the code
1447 generated for this function needs to follow certain conventions that
1448 make it possible for a runtime function to patch over it later.
1449 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001450 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001451
1452 * ``"prologue-short-redirect"`` - This style of patchable
1453 function is intended to support patching a function prologue to
1454 redirect control away from the function in a thread safe
1455 manner. It guarantees that the first instruction of the
1456 function will be large enough to accommodate a short jump
1457 instruction, and will be sufficiently aligned to allow being
1458 fully changed via an atomic compare-and-swap instruction.
1459 While the first requirement can be satisfied by inserting large
1460 enough NOP, LLVM can and will try to re-purpose an existing
1461 instruction (i.e. one that would have to be emitted anyway) as
1462 the patchable instruction larger than a short jump.
1463
1464 ``"prologue-short-redirect"`` is currently only supported on
1465 x86-64.
1466
1467 This attribute by itself does not imply restrictions on
1468 inter-procedural optimizations. All of the semantic effects the
1469 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001470``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001471 On a function, this attribute indicates that the function computes its
1472 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001473 without dereferencing any pointer arguments or otherwise accessing
1474 any mutable state (e.g. memory, control registers, etc) visible to
1475 caller functions. It does not write through any pointer arguments
1476 (including ``byval`` arguments) and never changes any state visible
1477 to callers. This means that it cannot unwind exceptions by calling
1478 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001479
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001480 On an argument, this attribute indicates that the function does not
1481 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001482 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001483``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001484 On a function, this attribute indicates that the function does not write
1485 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001486 modify any state (e.g. memory, control registers, etc) visible to
1487 caller functions. It may dereference pointer arguments and read
1488 state that may be set in the caller. A readonly function always
1489 returns the same value (or unwinds an exception identically) when
1490 called with the same set of arguments and global state. It cannot
1491 unwind an exception by calling the ``C++`` exception throwing
1492 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001493
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001494 On an argument, this attribute indicates that the function does not write
1495 through this pointer argument, even though it may write to the memory that
1496 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001497``writeonly``
1498 On a function, this attribute indicates that the function may write to but
1499 does not read from memory.
1500
1501 On an argument, this attribute indicates that the function may write to but
1502 does not read through this pointer argument (even though it may read from
1503 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001504``argmemonly``
1505 This attribute indicates that the only memory accesses inside function are
1506 loads and stores from objects pointed to by its pointer-typed arguments,
1507 with arbitrary offsets. Or in other words, all memory operations in the
1508 function can refer to memory only using pointers based on its function
1509 arguments.
1510 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1511 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001512``returns_twice``
1513 This attribute indicates that this function can return twice. The C
1514 ``setjmp`` is an example of such a function. The compiler disables
1515 some optimizations (like tail calls) in the caller of these
1516 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001517``safestack``
1518 This attribute indicates that
1519 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1520 protection is enabled for this function.
1521
1522 If a function that has a ``safestack`` attribute is inlined into a
1523 function that doesn't have a ``safestack`` attribute or which has an
1524 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1525 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001526``sanitize_address``
1527 This attribute indicates that AddressSanitizer checks
1528 (dynamic address safety analysis) are enabled for this function.
1529``sanitize_memory``
1530 This attribute indicates that MemorySanitizer checks (dynamic detection
1531 of accesses to uninitialized memory) are enabled for this function.
1532``sanitize_thread``
1533 This attribute indicates that ThreadSanitizer checks
1534 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001535``ssp``
1536 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001537 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001538 placed on the stack before the local variables that's checked upon
1539 return from the function to see if it has been overwritten. A
1540 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001541 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001542
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001543 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1544 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1545 - Calls to alloca() with variable sizes or constant sizes greater than
1546 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001547
Josh Magee24c7f062014-02-01 01:36:16 +00001548 Variables that are identified as requiring a protector will be arranged
1549 on the stack such that they are adjacent to the stack protector guard.
1550
Sean Silvab084af42012-12-07 10:36:55 +00001551 If a function that has an ``ssp`` attribute is inlined into a
1552 function that doesn't have an ``ssp`` attribute, then the resulting
1553 function will have an ``ssp`` attribute.
1554``sspreq``
1555 This attribute indicates that the function should *always* emit a
1556 stack smashing protector. This overrides the ``ssp`` function
1557 attribute.
1558
Josh Magee24c7f062014-02-01 01:36:16 +00001559 Variables that are identified as requiring a protector will be arranged
1560 on the stack such that they are adjacent to the stack protector guard.
1561 The specific layout rules are:
1562
1563 #. Large arrays and structures containing large arrays
1564 (``>= ssp-buffer-size``) are closest to the stack protector.
1565 #. Small arrays and structures containing small arrays
1566 (``< ssp-buffer-size``) are 2nd closest to the protector.
1567 #. Variables that have had their address taken are 3rd closest to the
1568 protector.
1569
Sean Silvab084af42012-12-07 10:36:55 +00001570 If a function that has an ``sspreq`` attribute is inlined into a
1571 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001572 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1573 an ``sspreq`` attribute.
1574``sspstrong``
1575 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001576 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001577 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001578 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001579
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001580 - Arrays of any size and type
1581 - Aggregates containing an array of any size and type.
1582 - Calls to alloca().
1583 - Local variables that have had their address taken.
1584
Josh Magee24c7f062014-02-01 01:36:16 +00001585 Variables that are identified as requiring a protector will be arranged
1586 on the stack such that they are adjacent to the stack protector guard.
1587 The specific layout rules are:
1588
1589 #. Large arrays and structures containing large arrays
1590 (``>= ssp-buffer-size``) are closest to the stack protector.
1591 #. Small arrays and structures containing small arrays
1592 (``< ssp-buffer-size``) are 2nd closest to the protector.
1593 #. Variables that have had their address taken are 3rd closest to the
1594 protector.
1595
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001596 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001597
1598 If a function that has an ``sspstrong`` attribute is inlined into a
1599 function that doesn't have an ``sspstrong`` attribute, then the
1600 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001601``"thunk"``
1602 This attribute indicates that the function will delegate to some other
1603 function with a tail call. The prototype of a thunk should not be used for
1604 optimization purposes. The caller is expected to cast the thunk prototype to
1605 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001606``uwtable``
1607 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001608 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001609 show that no exceptions passes by it. This is normally the case for
1610 the ELF x86-64 abi, but it can be disabled for some compilation
1611 units.
Sean Silvab084af42012-12-07 10:36:55 +00001612
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001613
1614.. _opbundles:
1615
1616Operand Bundles
1617---------------
1618
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001619Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001620with certain LLVM instructions (currently only ``call`` s and
1621``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001622incorrect and will change program semantics.
1623
1624Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001625
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001626 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001627 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1628 bundle operand ::= SSA value
1629 tag ::= string constant
1630
1631Operand bundles are **not** part of a function's signature, and a
1632given function may be called from multiple places with different kinds
1633of operand bundles. This reflects the fact that the operand bundles
1634are conceptually a part of the ``call`` (or ``invoke``), not the
1635callee being dispatched to.
1636
1637Operand bundles are a generic mechanism intended to support
1638runtime-introspection-like functionality for managed languages. While
1639the exact semantics of an operand bundle depend on the bundle tag,
1640there are certain limitations to how much the presence of an operand
1641bundle can influence the semantics of a program. These restrictions
1642are described as the semantics of an "unknown" operand bundle. As
1643long as the behavior of an operand bundle is describable within these
1644restrictions, LLVM does not need to have special knowledge of the
1645operand bundle to not miscompile programs containing it.
1646
David Majnemer34cacb42015-10-22 01:46:38 +00001647- The bundle operands for an unknown operand bundle escape in unknown
1648 ways before control is transferred to the callee or invokee.
1649- Calls and invokes with operand bundles have unknown read / write
1650 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001651 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001652 callsite specific attributes.
1653- An operand bundle at a call site cannot change the implementation
1654 of the called function. Inter-procedural optimizations work as
1655 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001656
Sanjoy Dascdafd842015-11-11 21:38:02 +00001657More specific types of operand bundles are described below.
1658
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001659.. _deopt_opbundles:
1660
Sanjoy Dascdafd842015-11-11 21:38:02 +00001661Deoptimization Operand Bundles
1662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1663
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001664Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001665operand bundle tag. These operand bundles represent an alternate
1666"safe" continuation for the call site they're attached to, and can be
1667used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001668specified call site. There can be at most one ``"deopt"`` operand
1669bundle attached to a call site. Exact details of deoptimization is
1670out of scope for the language reference, but it usually involves
1671rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001672
1673From the compiler's perspective, deoptimization operand bundles make
1674the call sites they're attached to at least ``readonly``. They read
1675through all of their pointer typed operands (even if they're not
1676otherwise escaped) and the entire visible heap. Deoptimization
1677operand bundles do not capture their operands except during
1678deoptimization, in which case control will not be returned to the
1679compiled frame.
1680
Sanjoy Das2d161452015-11-18 06:23:38 +00001681The inliner knows how to inline through calls that have deoptimization
1682operand bundles. Just like inlining through a normal call site
1683involves composing the normal and exceptional continuations, inlining
1684through a call site with a deoptimization operand bundle needs to
1685appropriately compose the "safe" deoptimization continuation. The
1686inliner does this by prepending the parent's deoptimization
1687continuation to every deoptimization continuation in the inlined body.
1688E.g. inlining ``@f`` into ``@g`` in the following example
1689
1690.. code-block:: llvm
1691
1692 define void @f() {
1693 call void @x() ;; no deopt state
1694 call void @y() [ "deopt"(i32 10) ]
1695 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1696 ret void
1697 }
1698
1699 define void @g() {
1700 call void @f() [ "deopt"(i32 20) ]
1701 ret void
1702 }
1703
1704will result in
1705
1706.. code-block:: llvm
1707
1708 define void @g() {
1709 call void @x() ;; still no deopt state
1710 call void @y() [ "deopt"(i32 20, i32 10) ]
1711 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1712 ret void
1713 }
1714
1715It is the frontend's responsibility to structure or encode the
1716deoptimization state in a way that syntactically prepending the
1717caller's deoptimization state to the callee's deoptimization state is
1718semantically equivalent to composing the caller's deoptimization
1719continuation after the callee's deoptimization continuation.
1720
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001721.. _ob_funclet:
1722
David Majnemer3bb88c02015-12-15 21:27:27 +00001723Funclet Operand Bundles
1724^^^^^^^^^^^^^^^^^^^^^^^
1725
1726Funclet operand bundles are characterized by the ``"funclet"``
1727operand bundle tag. These operand bundles indicate that a call site
1728is within a particular funclet. There can be at most one
1729``"funclet"`` operand bundle attached to a call site and it must have
1730exactly one bundle operand.
1731
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001732If any funclet EH pads have been "entered" but not "exited" (per the
1733`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1734it is undefined behavior to execute a ``call`` or ``invoke`` which:
1735
1736* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1737 intrinsic, or
1738* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1739 not-yet-exited funclet EH pad.
1740
1741Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1742executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1743
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001744GC Transition Operand Bundles
1745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1746
1747GC transition operand bundles are characterized by the
1748``"gc-transition"`` operand bundle tag. These operand bundles mark a
1749call as a transition between a function with one GC strategy to a
1750function with a different GC strategy. If coordinating the transition
1751between GC strategies requires additional code generation at the call
1752site, these bundles may contain any values that are needed by the
1753generated code. For more details, see :ref:`GC Transitions
1754<gc_transition_args>`.
1755
Sean Silvab084af42012-12-07 10:36:55 +00001756.. _moduleasm:
1757
1758Module-Level Inline Assembly
1759----------------------------
1760
1761Modules may contain "module-level inline asm" blocks, which corresponds
1762to the GCC "file scope inline asm" blocks. These blocks are internally
1763concatenated by LLVM and treated as a single unit, but may be separated
1764in the ``.ll`` file if desired. The syntax is very simple:
1765
1766.. code-block:: llvm
1767
1768 module asm "inline asm code goes here"
1769 module asm "more can go here"
1770
1771The strings can contain any character by escaping non-printable
1772characters. The escape sequence used is simply "\\xx" where "xx" is the
1773two digit hex code for the number.
1774
James Y Knightbc832ed2015-07-08 18:08:36 +00001775Note that the assembly string *must* be parseable by LLVM's integrated assembler
1776(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001777
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001778.. _langref_datalayout:
1779
Sean Silvab084af42012-12-07 10:36:55 +00001780Data Layout
1781-----------
1782
1783A module may specify a target specific data layout string that specifies
1784how data is to be laid out in memory. The syntax for the data layout is
1785simply:
1786
1787.. code-block:: llvm
1788
1789 target datalayout = "layout specification"
1790
1791The *layout specification* consists of a list of specifications
1792separated by the minus sign character ('-'). Each specification starts
1793with a letter and may include other information after the letter to
1794define some aspect of the data layout. The specifications accepted are
1795as follows:
1796
1797``E``
1798 Specifies that the target lays out data in big-endian form. That is,
1799 the bits with the most significance have the lowest address
1800 location.
1801``e``
1802 Specifies that the target lays out data in little-endian form. That
1803 is, the bits with the least significance have the lowest address
1804 location.
1805``S<size>``
1806 Specifies the natural alignment of the stack in bits. Alignment
1807 promotion of stack variables is limited to the natural stack
1808 alignment to avoid dynamic stack realignment. The stack alignment
1809 must be a multiple of 8-bits. If omitted, the natural stack
1810 alignment defaults to "unspecified", which does not prevent any
1811 alignment promotions.
1812``p[n]:<size>:<abi>:<pref>``
1813 This specifies the *size* of a pointer and its ``<abi>`` and
1814 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001815 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001816 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001817 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001818``i<size>:<abi>:<pref>``
1819 This specifies the alignment for an integer type of a given bit
1820 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1821``v<size>:<abi>:<pref>``
1822 This specifies the alignment for a vector type of a given bit
1823 ``<size>``.
1824``f<size>:<abi>:<pref>``
1825 This specifies the alignment for a floating point type of a given bit
1826 ``<size>``. Only values of ``<size>`` that are supported by the target
1827 will work. 32 (float) and 64 (double) are supported on all targets; 80
1828 or 128 (different flavors of long double) are also supported on some
1829 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001830``a:<abi>:<pref>``
1831 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001832``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001833 If present, specifies that llvm names are mangled in the output. The
1834 options are
1835
1836 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1837 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1838 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1839 symbols get a ``_`` prefix.
1840 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1841 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001842 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1843 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001844``n<size1>:<size2>:<size3>...``
1845 This specifies a set of native integer widths for the target CPU in
1846 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1847 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1848 this set are considered to support most general arithmetic operations
1849 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001850``ni:<address space0>:<address space1>:<address space2>...``
1851 This specifies pointer types with the specified address spaces
1852 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1853 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001854
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001855On every specification that takes a ``<abi>:<pref>``, specifying the
1856``<pref>`` alignment is optional. If omitted, the preceding ``:``
1857should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1858
Sean Silvab084af42012-12-07 10:36:55 +00001859When constructing the data layout for a given target, LLVM starts with a
1860default set of specifications which are then (possibly) overridden by
1861the specifications in the ``datalayout`` keyword. The default
1862specifications are given in this list:
1863
1864- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001865- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1866- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1867 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001868- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001869- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1870- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1871- ``i16:16:16`` - i16 is 16-bit aligned
1872- ``i32:32:32`` - i32 is 32-bit aligned
1873- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1874 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001875- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001876- ``f32:32:32`` - float is 32-bit aligned
1877- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001878- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001879- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1880- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001881- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001882
1883When LLVM is determining the alignment for a given type, it uses the
1884following rules:
1885
1886#. If the type sought is an exact match for one of the specifications,
1887 that specification is used.
1888#. If no match is found, and the type sought is an integer type, then
1889 the smallest integer type that is larger than the bitwidth of the
1890 sought type is used. If none of the specifications are larger than
1891 the bitwidth then the largest integer type is used. For example,
1892 given the default specifications above, the i7 type will use the
1893 alignment of i8 (next largest) while both i65 and i256 will use the
1894 alignment of i64 (largest specified).
1895#. If no match is found, and the type sought is a vector type, then the
1896 largest vector type that is smaller than the sought vector type will
1897 be used as a fall back. This happens because <128 x double> can be
1898 implemented in terms of 64 <2 x double>, for example.
1899
1900The function of the data layout string may not be what you expect.
1901Notably, this is not a specification from the frontend of what alignment
1902the code generator should use.
1903
1904Instead, if specified, the target data layout is required to match what
1905the ultimate *code generator* expects. This string is used by the
1906mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001907what the ultimate code generator uses. There is no way to generate IR
1908that does not embed this target-specific detail into the IR. If you
1909don't specify the string, the default specifications will be used to
1910generate a Data Layout and the optimization phases will operate
1911accordingly and introduce target specificity into the IR with respect to
1912these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001913
Bill Wendling5cc90842013-10-18 23:41:25 +00001914.. _langref_triple:
1915
1916Target Triple
1917-------------
1918
1919A module may specify a target triple string that describes the target
1920host. The syntax for the target triple is simply:
1921
1922.. code-block:: llvm
1923
1924 target triple = "x86_64-apple-macosx10.7.0"
1925
1926The *target triple* string consists of a series of identifiers delimited
1927by the minus sign character ('-'). The canonical forms are:
1928
1929::
1930
1931 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1932 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1933
1934This information is passed along to the backend so that it generates
1935code for the proper architecture. It's possible to override this on the
1936command line with the ``-mtriple`` command line option.
1937
Sean Silvab084af42012-12-07 10:36:55 +00001938.. _pointeraliasing:
1939
1940Pointer Aliasing Rules
1941----------------------
1942
1943Any memory access must be done through a pointer value associated with
1944an address range of the memory access, otherwise the behavior is
1945undefined. Pointer values are associated with address ranges according
1946to the following rules:
1947
1948- A pointer value is associated with the addresses associated with any
1949 value it is *based* on.
1950- An address of a global variable is associated with the address range
1951 of the variable's storage.
1952- The result value of an allocation instruction is associated with the
1953 address range of the allocated storage.
1954- A null pointer in the default address-space is associated with no
1955 address.
1956- An integer constant other than zero or a pointer value returned from
1957 a function not defined within LLVM may be associated with address
1958 ranges allocated through mechanisms other than those provided by
1959 LLVM. Such ranges shall not overlap with any ranges of addresses
1960 allocated by mechanisms provided by LLVM.
1961
1962A pointer value is *based* on another pointer value according to the
1963following rules:
1964
1965- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001966 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001967- The result value of a ``bitcast`` is *based* on the operand of the
1968 ``bitcast``.
1969- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1970 values that contribute (directly or indirectly) to the computation of
1971 the pointer's value.
1972- The "*based* on" relationship is transitive.
1973
1974Note that this definition of *"based"* is intentionally similar to the
1975definition of *"based"* in C99, though it is slightly weaker.
1976
1977LLVM IR does not associate types with memory. The result type of a
1978``load`` merely indicates the size and alignment of the memory from
1979which to load, as well as the interpretation of the value. The first
1980operand type of a ``store`` similarly only indicates the size and
1981alignment of the store.
1982
1983Consequently, type-based alias analysis, aka TBAA, aka
1984``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1985:ref:`Metadata <metadata>` may be used to encode additional information
1986which specialized optimization passes may use to implement type-based
1987alias analysis.
1988
1989.. _volatile:
1990
1991Volatile Memory Accesses
1992------------------------
1993
1994Certain memory accesses, such as :ref:`load <i_load>`'s,
1995:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1996marked ``volatile``. The optimizers must not change the number of
1997volatile operations or change their order of execution relative to other
1998volatile operations. The optimizers *may* change the order of volatile
1999operations relative to non-volatile operations. This is not Java's
2000"volatile" and has no cross-thread synchronization behavior.
2001
Andrew Trick89fc5a62013-01-30 21:19:35 +00002002IR-level volatile loads and stores cannot safely be optimized into
2003llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2004flagged volatile. Likewise, the backend should never split or merge
2005target-legal volatile load/store instructions.
2006
Andrew Trick7e6f9282013-01-31 00:49:39 +00002007.. admonition:: Rationale
2008
2009 Platforms may rely on volatile loads and stores of natively supported
2010 data width to be executed as single instruction. For example, in C
2011 this holds for an l-value of volatile primitive type with native
2012 hardware support, but not necessarily for aggregate types. The
2013 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002014 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002015 do not violate the frontend's contract with the language.
2016
Sean Silvab084af42012-12-07 10:36:55 +00002017.. _memmodel:
2018
2019Memory Model for Concurrent Operations
2020--------------------------------------
2021
2022The LLVM IR does not define any way to start parallel threads of
2023execution or to register signal handlers. Nonetheless, there are
2024platform-specific ways to create them, and we define LLVM IR's behavior
2025in their presence. This model is inspired by the C++0x memory model.
2026
2027For a more informal introduction to this model, see the :doc:`Atomics`.
2028
2029We define a *happens-before* partial order as the least partial order
2030that
2031
2032- Is a superset of single-thread program order, and
2033- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2034 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2035 techniques, like pthread locks, thread creation, thread joining,
2036 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2037 Constraints <ordering>`).
2038
2039Note that program order does not introduce *happens-before* edges
2040between a thread and signals executing inside that thread.
2041
2042Every (defined) read operation (load instructions, memcpy, atomic
2043loads/read-modify-writes, etc.) R reads a series of bytes written by
2044(defined) write operations (store instructions, atomic
2045stores/read-modify-writes, memcpy, etc.). For the purposes of this
2046section, initialized globals are considered to have a write of the
2047initializer which is atomic and happens before any other read or write
2048of the memory in question. For each byte of a read R, R\ :sub:`byte`
2049may see any write to the same byte, except:
2050
2051- If write\ :sub:`1` happens before write\ :sub:`2`, and
2052 write\ :sub:`2` happens before R\ :sub:`byte`, then
2053 R\ :sub:`byte` does not see write\ :sub:`1`.
2054- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2055 R\ :sub:`byte` does not see write\ :sub:`3`.
2056
2057Given that definition, R\ :sub:`byte` is defined as follows:
2058
2059- If R is volatile, the result is target-dependent. (Volatile is
2060 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002061 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002062 like normal memory. It does not generally provide cross-thread
2063 synchronization.)
2064- Otherwise, if there is no write to the same byte that happens before
2065 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2066- Otherwise, if R\ :sub:`byte` may see exactly one write,
2067 R\ :sub:`byte` returns the value written by that write.
2068- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2069 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2070 Memory Ordering Constraints <ordering>` section for additional
2071 constraints on how the choice is made.
2072- Otherwise R\ :sub:`byte` returns ``undef``.
2073
2074R returns the value composed of the series of bytes it read. This
2075implies that some bytes within the value may be ``undef`` **without**
2076the entire value being ``undef``. Note that this only defines the
2077semantics of the operation; it doesn't mean that targets will emit more
2078than one instruction to read the series of bytes.
2079
2080Note that in cases where none of the atomic intrinsics are used, this
2081model places only one restriction on IR transformations on top of what
2082is required for single-threaded execution: introducing a store to a byte
2083which might not otherwise be stored is not allowed in general.
2084(Specifically, in the case where another thread might write to and read
2085from an address, introducing a store can change a load that may see
2086exactly one write into a load that may see multiple writes.)
2087
2088.. _ordering:
2089
2090Atomic Memory Ordering Constraints
2091----------------------------------
2092
2093Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2094:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2095:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002096ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002097the same address they *synchronize with*. These semantics are borrowed
2098from Java and C++0x, but are somewhat more colloquial. If these
2099descriptions aren't precise enough, check those specs (see spec
2100references in the :doc:`atomics guide <Atomics>`).
2101:ref:`fence <i_fence>` instructions treat these orderings somewhat
2102differently since they don't take an address. See that instruction's
2103documentation for details.
2104
2105For a simpler introduction to the ordering constraints, see the
2106:doc:`Atomics`.
2107
2108``unordered``
2109 The set of values that can be read is governed by the happens-before
2110 partial order. A value cannot be read unless some operation wrote
2111 it. This is intended to provide a guarantee strong enough to model
2112 Java's non-volatile shared variables. This ordering cannot be
2113 specified for read-modify-write operations; it is not strong enough
2114 to make them atomic in any interesting way.
2115``monotonic``
2116 In addition to the guarantees of ``unordered``, there is a single
2117 total order for modifications by ``monotonic`` operations on each
2118 address. All modification orders must be compatible with the
2119 happens-before order. There is no guarantee that the modification
2120 orders can be combined to a global total order for the whole program
2121 (and this often will not be possible). The read in an atomic
2122 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2123 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2124 order immediately before the value it writes. If one atomic read
2125 happens before another atomic read of the same address, the later
2126 read must see the same value or a later value in the address's
2127 modification order. This disallows reordering of ``monotonic`` (or
2128 stronger) operations on the same address. If an address is written
2129 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2130 read that address repeatedly, the other threads must eventually see
2131 the write. This corresponds to the C++0x/C1x
2132 ``memory_order_relaxed``.
2133``acquire``
2134 In addition to the guarantees of ``monotonic``, a
2135 *synchronizes-with* edge may be formed with a ``release`` operation.
2136 This is intended to model C++'s ``memory_order_acquire``.
2137``release``
2138 In addition to the guarantees of ``monotonic``, if this operation
2139 writes a value which is subsequently read by an ``acquire``
2140 operation, it *synchronizes-with* that operation. (This isn't a
2141 complete description; see the C++0x definition of a release
2142 sequence.) This corresponds to the C++0x/C1x
2143 ``memory_order_release``.
2144``acq_rel`` (acquire+release)
2145 Acts as both an ``acquire`` and ``release`` operation on its
2146 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2147``seq_cst`` (sequentially consistent)
2148 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002149 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002150 writes), there is a global total order on all
2151 sequentially-consistent operations on all addresses, which is
2152 consistent with the *happens-before* partial order and with the
2153 modification orders of all the affected addresses. Each
2154 sequentially-consistent read sees the last preceding write to the
2155 same address in this global order. This corresponds to the C++0x/C1x
2156 ``memory_order_seq_cst`` and Java volatile.
2157
2158.. _singlethread:
2159
2160If an atomic operation is marked ``singlethread``, it only *synchronizes
2161with* or participates in modification and seq\_cst total orderings with
2162other operations running in the same thread (for example, in signal
2163handlers).
2164
2165.. _fastmath:
2166
2167Fast-Math Flags
2168---------------
2169
2170LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2171:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002172:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
2173instructions have the following flags that can be set to enable
2174otherwise unsafe floating point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002175
2176``nnan``
2177 No NaNs - Allow optimizations to assume the arguments and result are not
2178 NaN. Such optimizations are required to retain defined behavior over
2179 NaNs, but the value of the result is undefined.
2180
2181``ninf``
2182 No Infs - Allow optimizations to assume the arguments and result are not
2183 +/-Inf. Such optimizations are required to retain defined behavior over
2184 +/-Inf, but the value of the result is undefined.
2185
2186``nsz``
2187 No Signed Zeros - Allow optimizations to treat the sign of a zero
2188 argument or result as insignificant.
2189
2190``arcp``
2191 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2192 argument rather than perform division.
2193
2194``fast``
2195 Fast - Allow algebraically equivalent transformations that may
2196 dramatically change results in floating point (e.g. reassociate). This
2197 flag implies all the others.
2198
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002199.. _uselistorder:
2200
2201Use-list Order Directives
2202-------------------------
2203
2204Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002205order to be recreated. ``<order-indexes>`` is a comma-separated list of
2206indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002207value's use-list is immediately sorted by these indexes.
2208
Sean Silvaa1190322015-08-06 22:56:48 +00002209Use-list directives may appear at function scope or global scope. They are not
2210instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002211function scope, they must appear after the terminator of the final basic block.
2212
2213If basic blocks have their address taken via ``blockaddress()`` expressions,
2214``uselistorder_bb`` can be used to reorder their use-lists from outside their
2215function's scope.
2216
2217:Syntax:
2218
2219::
2220
2221 uselistorder <ty> <value>, { <order-indexes> }
2222 uselistorder_bb @function, %block { <order-indexes> }
2223
2224:Examples:
2225
2226::
2227
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002228 define void @foo(i32 %arg1, i32 %arg2) {
2229 entry:
2230 ; ... instructions ...
2231 bb:
2232 ; ... instructions ...
2233
2234 ; At function scope.
2235 uselistorder i32 %arg1, { 1, 0, 2 }
2236 uselistorder label %bb, { 1, 0 }
2237 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002238
2239 ; At global scope.
2240 uselistorder i32* @global, { 1, 2, 0 }
2241 uselistorder i32 7, { 1, 0 }
2242 uselistorder i32 (i32) @bar, { 1, 0 }
2243 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2244
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002245.. _source_filename:
2246
2247Source Filename
2248---------------
2249
2250The *source filename* string is set to the original module identifier,
2251which will be the name of the compiled source file when compiling from
2252source through the clang front end, for example. It is then preserved through
2253the IR and bitcode.
2254
2255This is currently necessary to generate a consistent unique global
2256identifier for local functions used in profile data, which prepends the
2257source file name to the local function name.
2258
2259The syntax for the source file name is simply:
2260
Renato Golin124f2592016-07-20 12:16:38 +00002261.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002262
2263 source_filename = "/path/to/source.c"
2264
Sean Silvab084af42012-12-07 10:36:55 +00002265.. _typesystem:
2266
2267Type System
2268===========
2269
2270The LLVM type system is one of the most important features of the
2271intermediate representation. Being typed enables a number of
2272optimizations to be performed on the intermediate representation
2273directly, without having to do extra analyses on the side before the
2274transformation. A strong type system makes it easier to read the
2275generated code and enables novel analyses and transformations that are
2276not feasible to perform on normal three address code representations.
2277
Rafael Espindola08013342013-12-07 19:34:20 +00002278.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002279
Rafael Espindola08013342013-12-07 19:34:20 +00002280Void Type
2281---------
Sean Silvab084af42012-12-07 10:36:55 +00002282
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002283:Overview:
2284
Rafael Espindola08013342013-12-07 19:34:20 +00002285
2286The void type does not represent any value and has no size.
2287
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002288:Syntax:
2289
Rafael Espindola08013342013-12-07 19:34:20 +00002290
2291::
2292
2293 void
Sean Silvab084af42012-12-07 10:36:55 +00002294
2295
Rafael Espindola08013342013-12-07 19:34:20 +00002296.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002297
Rafael Espindola08013342013-12-07 19:34:20 +00002298Function Type
2299-------------
Sean Silvab084af42012-12-07 10:36:55 +00002300
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002301:Overview:
2302
Sean Silvab084af42012-12-07 10:36:55 +00002303
Rafael Espindola08013342013-12-07 19:34:20 +00002304The function type can be thought of as a function signature. It consists of a
2305return type and a list of formal parameter types. The return type of a function
2306type is a void type or first class type --- except for :ref:`label <t_label>`
2307and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002308
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002309:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002310
Rafael Espindola08013342013-12-07 19:34:20 +00002311::
Sean Silvab084af42012-12-07 10:36:55 +00002312
Rafael Espindola08013342013-12-07 19:34:20 +00002313 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002314
Rafael Espindola08013342013-12-07 19:34:20 +00002315...where '``<parameter list>``' is a comma-separated list of type
2316specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002317indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002318argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002319handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002320except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002321
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002322:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002323
Rafael Espindola08013342013-12-07 19:34:20 +00002324+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2325| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2326+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2327| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2328+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2329| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2330+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2331| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2332+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2333
2334.. _t_firstclass:
2335
2336First Class Types
2337-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002338
2339The :ref:`first class <t_firstclass>` types are perhaps the most important.
2340Values of these types are the only ones which can be produced by
2341instructions.
2342
Rafael Espindola08013342013-12-07 19:34:20 +00002343.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002344
Rafael Espindola08013342013-12-07 19:34:20 +00002345Single Value Types
2346^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002347
Rafael Espindola08013342013-12-07 19:34:20 +00002348These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002349
2350.. _t_integer:
2351
2352Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002353""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002354
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002355:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002356
2357The integer type is a very simple type that simply specifies an
2358arbitrary bit width for the integer type desired. Any bit width from 1
2359bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2360
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002361:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002362
2363::
2364
2365 iN
2366
2367The number of bits the integer will occupy is specified by the ``N``
2368value.
2369
2370Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002371*********
Sean Silvab084af42012-12-07 10:36:55 +00002372
2373+----------------+------------------------------------------------+
2374| ``i1`` | a single-bit integer. |
2375+----------------+------------------------------------------------+
2376| ``i32`` | a 32-bit integer. |
2377+----------------+------------------------------------------------+
2378| ``i1942652`` | a really big integer of over 1 million bits. |
2379+----------------+------------------------------------------------+
2380
2381.. _t_floating:
2382
2383Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002384""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002385
2386.. list-table::
2387 :header-rows: 1
2388
2389 * - Type
2390 - Description
2391
2392 * - ``half``
2393 - 16-bit floating point value
2394
2395 * - ``float``
2396 - 32-bit floating point value
2397
2398 * - ``double``
2399 - 64-bit floating point value
2400
2401 * - ``fp128``
2402 - 128-bit floating point value (112-bit mantissa)
2403
2404 * - ``x86_fp80``
2405 - 80-bit floating point value (X87)
2406
2407 * - ``ppc_fp128``
2408 - 128-bit floating point value (two 64-bits)
2409
Reid Kleckner9a16d082014-03-05 02:41:37 +00002410X86_mmx Type
2411""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002412
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002413:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002414
Reid Kleckner9a16d082014-03-05 02:41:37 +00002415The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002416machine. The operations allowed on it are quite limited: parameters and
2417return values, load and store, and bitcast. User-specified MMX
2418instructions are represented as intrinsic or asm calls with arguments
2419and/or results of this type. There are no arrays, vectors or constants
2420of this type.
2421
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002422:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002423
2424::
2425
Reid Kleckner9a16d082014-03-05 02:41:37 +00002426 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002427
Sean Silvab084af42012-12-07 10:36:55 +00002428
Rafael Espindola08013342013-12-07 19:34:20 +00002429.. _t_pointer:
2430
2431Pointer Type
2432""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002433
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002434:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002435
Rafael Espindola08013342013-12-07 19:34:20 +00002436The pointer type is used to specify memory locations. Pointers are
2437commonly used to reference objects in memory.
2438
2439Pointer types may have an optional address space attribute defining the
2440numbered address space where the pointed-to object resides. The default
2441address space is number zero. The semantics of non-zero address spaces
2442are target-specific.
2443
2444Note that LLVM does not permit pointers to void (``void*``) nor does it
2445permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002446
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002447:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002448
2449::
2450
Rafael Espindola08013342013-12-07 19:34:20 +00002451 <type> *
2452
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002453:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002454
2455+-------------------------+--------------------------------------------------------------------------------------------------------------+
2456| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2457+-------------------------+--------------------------------------------------------------------------------------------------------------+
2458| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2459+-------------------------+--------------------------------------------------------------------------------------------------------------+
2460| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2461+-------------------------+--------------------------------------------------------------------------------------------------------------+
2462
2463.. _t_vector:
2464
2465Vector Type
2466"""""""""""
2467
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002468:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002469
2470A vector type is a simple derived type that represents a vector of
2471elements. Vector types are used when multiple primitive data are
2472operated in parallel using a single instruction (SIMD). A vector type
2473requires a size (number of elements) and an underlying primitive data
2474type. Vector types are considered :ref:`first class <t_firstclass>`.
2475
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002476:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002477
2478::
2479
2480 < <# elements> x <elementtype> >
2481
2482The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002483elementtype may be any integer, floating point or pointer type. Vectors
2484of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002485
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002486:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002487
2488+-------------------+--------------------------------------------------+
2489| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2490+-------------------+--------------------------------------------------+
2491| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2492+-------------------+--------------------------------------------------+
2493| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2494+-------------------+--------------------------------------------------+
2495| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2496+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002497
2498.. _t_label:
2499
2500Label Type
2501^^^^^^^^^^
2502
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002503:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002504
2505The label type represents code labels.
2506
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002507:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002508
2509::
2510
2511 label
2512
David Majnemerb611e3f2015-08-14 05:09:07 +00002513.. _t_token:
2514
2515Token Type
2516^^^^^^^^^^
2517
2518:Overview:
2519
2520The token type is used when a value is associated with an instruction
2521but all uses of the value must not attempt to introspect or obscure it.
2522As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2523:ref:`select <i_select>` of type token.
2524
2525:Syntax:
2526
2527::
2528
2529 token
2530
2531
2532
Sean Silvab084af42012-12-07 10:36:55 +00002533.. _t_metadata:
2534
2535Metadata Type
2536^^^^^^^^^^^^^
2537
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002538:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002539
2540The metadata type represents embedded metadata. No derived types may be
2541created from metadata except for :ref:`function <t_function>` arguments.
2542
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002543:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002544
2545::
2546
2547 metadata
2548
Sean Silvab084af42012-12-07 10:36:55 +00002549.. _t_aggregate:
2550
2551Aggregate Types
2552^^^^^^^^^^^^^^^
2553
2554Aggregate Types are a subset of derived types that can contain multiple
2555member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2556aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2557aggregate types.
2558
2559.. _t_array:
2560
2561Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002562""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002563
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002564:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002565
2566The array type is a very simple derived type that arranges elements
2567sequentially in memory. The array type requires a size (number of
2568elements) and an underlying data type.
2569
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002570:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002571
2572::
2573
2574 [<# elements> x <elementtype>]
2575
2576The number of elements is a constant integer value; ``elementtype`` may
2577be any type with a size.
2578
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002579:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002580
2581+------------------+--------------------------------------+
2582| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2583+------------------+--------------------------------------+
2584| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2585+------------------+--------------------------------------+
2586| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2587+------------------+--------------------------------------+
2588
2589Here are some examples of multidimensional arrays:
2590
2591+-----------------------------+----------------------------------------------------------+
2592| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2593+-----------------------------+----------------------------------------------------------+
2594| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2595+-----------------------------+----------------------------------------------------------+
2596| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2597+-----------------------------+----------------------------------------------------------+
2598
2599There is no restriction on indexing beyond the end of the array implied
2600by a static type (though there are restrictions on indexing beyond the
2601bounds of an allocated object in some cases). This means that
2602single-dimension 'variable sized array' addressing can be implemented in
2603LLVM with a zero length array type. An implementation of 'pascal style
2604arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2605example.
2606
Sean Silvab084af42012-12-07 10:36:55 +00002607.. _t_struct:
2608
2609Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002610""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002611
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002612:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002613
2614The structure type is used to represent a collection of data members
2615together in memory. The elements of a structure may be any type that has
2616a size.
2617
2618Structures in memory are accessed using '``load``' and '``store``' by
2619getting a pointer to a field with the '``getelementptr``' instruction.
2620Structures in registers are accessed using the '``extractvalue``' and
2621'``insertvalue``' instructions.
2622
2623Structures may optionally be "packed" structures, which indicate that
2624the alignment of the struct is one byte, and that there is no padding
2625between the elements. In non-packed structs, padding between field types
2626is inserted as defined by the DataLayout string in the module, which is
2627required to match what the underlying code generator expects.
2628
2629Structures can either be "literal" or "identified". A literal structure
2630is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2631identified types are always defined at the top level with a name.
2632Literal types are uniqued by their contents and can never be recursive
2633or opaque since there is no way to write one. Identified types can be
2634recursive, can be opaqued, and are never uniqued.
2635
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002636:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002637
2638::
2639
2640 %T1 = type { <type list> } ; Identified normal struct type
2641 %T2 = type <{ <type list> }> ; Identified packed struct type
2642
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002643:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002644
2645+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2646| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2647+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002648| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002649+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2650| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2651+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2652
2653.. _t_opaque:
2654
2655Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002656""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002657
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002658:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002659
2660Opaque structure types are used to represent named structure types that
2661do not have a body specified. This corresponds (for example) to the C
2662notion of a forward declared structure.
2663
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002664:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002665
2666::
2667
2668 %X = type opaque
2669 %52 = type opaque
2670
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002671:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002672
2673+--------------+-------------------+
2674| ``opaque`` | An opaque type. |
2675+--------------+-------------------+
2676
Sean Silva1703e702014-04-08 21:06:22 +00002677.. _constants:
2678
Sean Silvab084af42012-12-07 10:36:55 +00002679Constants
2680=========
2681
2682LLVM has several different basic types of constants. This section
2683describes them all and their syntax.
2684
2685Simple Constants
2686----------------
2687
2688**Boolean constants**
2689 The two strings '``true``' and '``false``' are both valid constants
2690 of the ``i1`` type.
2691**Integer constants**
2692 Standard integers (such as '4') are constants of the
2693 :ref:`integer <t_integer>` type. Negative numbers may be used with
2694 integer types.
2695**Floating point constants**
2696 Floating point constants use standard decimal notation (e.g.
2697 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2698 hexadecimal notation (see below). The assembler requires the exact
2699 decimal value of a floating-point constant. For example, the
2700 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2701 decimal in binary. Floating point constants must have a :ref:`floating
2702 point <t_floating>` type.
2703**Null pointer constants**
2704 The identifier '``null``' is recognized as a null pointer constant
2705 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002706**Token constants**
2707 The identifier '``none``' is recognized as an empty token constant
2708 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002709
2710The one non-intuitive notation for constants is the hexadecimal form of
2711floating point constants. For example, the form
2712'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2713than) '``double 4.5e+15``'. The only time hexadecimal floating point
2714constants are required (and the only time that they are generated by the
2715disassembler) is when a floating point constant must be emitted but it
2716cannot be represented as a decimal floating point number in a reasonable
2717number of digits. For example, NaN's, infinities, and other special
2718values are represented in their IEEE hexadecimal format so that assembly
2719and disassembly do not cause any bits to change in the constants.
2720
2721When using the hexadecimal form, constants of types half, float, and
2722double are represented using the 16-digit form shown above (which
2723matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002724must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002725precision, respectively. Hexadecimal format is always used for long
2726double, and there are three forms of long double. The 80-bit format used
2727by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2728128-bit format used by PowerPC (two adjacent doubles) is represented by
2729``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002730represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2731will only work if they match the long double format on your target.
2732The IEEE 16-bit format (half precision) is represented by ``0xH``
2733followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2734(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002735
Reid Kleckner9a16d082014-03-05 02:41:37 +00002736There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002737
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002738.. _complexconstants:
2739
Sean Silvab084af42012-12-07 10:36:55 +00002740Complex Constants
2741-----------------
2742
2743Complex constants are a (potentially recursive) combination of simple
2744constants and smaller complex constants.
2745
2746**Structure constants**
2747 Structure constants are represented with notation similar to
2748 structure type definitions (a comma separated list of elements,
2749 surrounded by braces (``{}``)). For example:
2750 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2751 "``@G = external global i32``". Structure constants must have
2752 :ref:`structure type <t_struct>`, and the number and types of elements
2753 must match those specified by the type.
2754**Array constants**
2755 Array constants are represented with notation similar to array type
2756 definitions (a comma separated list of elements, surrounded by
2757 square brackets (``[]``)). For example:
2758 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2759 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002760 match those specified by the type. As a special case, character array
2761 constants may also be represented as a double-quoted string using the ``c``
2762 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002763**Vector constants**
2764 Vector constants are represented with notation similar to vector
2765 type definitions (a comma separated list of elements, surrounded by
2766 less-than/greater-than's (``<>``)). For example:
2767 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2768 must have :ref:`vector type <t_vector>`, and the number and types of
2769 elements must match those specified by the type.
2770**Zero initialization**
2771 The string '``zeroinitializer``' can be used to zero initialize a
2772 value to zero of *any* type, including scalar and
2773 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2774 having to print large zero initializers (e.g. for large arrays) and
2775 is always exactly equivalent to using explicit zero initializers.
2776**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002777 A metadata node is a constant tuple without types. For example:
2778 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002779 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2780 Unlike other typed constants that are meant to be interpreted as part of
2781 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002782 information such as debug info.
2783
2784Global Variable and Function Addresses
2785--------------------------------------
2786
2787The addresses of :ref:`global variables <globalvars>` and
2788:ref:`functions <functionstructure>` are always implicitly valid
2789(link-time) constants. These constants are explicitly referenced when
2790the :ref:`identifier for the global <identifiers>` is used and always have
2791:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2792file:
2793
2794.. code-block:: llvm
2795
2796 @X = global i32 17
2797 @Y = global i32 42
2798 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2799
2800.. _undefvalues:
2801
2802Undefined Values
2803----------------
2804
2805The string '``undef``' can be used anywhere a constant is expected, and
2806indicates that the user of the value may receive an unspecified
2807bit-pattern. Undefined values may be of any type (other than '``label``'
2808or '``void``') and be used anywhere a constant is permitted.
2809
2810Undefined values are useful because they indicate to the compiler that
2811the program is well defined no matter what value is used. This gives the
2812compiler more freedom to optimize. Here are some examples of
2813(potentially surprising) transformations that are valid (in pseudo IR):
2814
2815.. code-block:: llvm
2816
2817 %A = add %X, undef
2818 %B = sub %X, undef
2819 %C = xor %X, undef
2820 Safe:
2821 %A = undef
2822 %B = undef
2823 %C = undef
2824
2825This is safe because all of the output bits are affected by the undef
2826bits. Any output bit can have a zero or one depending on the input bits.
2827
2828.. code-block:: llvm
2829
2830 %A = or %X, undef
2831 %B = and %X, undef
2832 Safe:
2833 %A = -1
2834 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002835 Safe:
2836 %A = %X ;; By choosing undef as 0
2837 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002838 Unsafe:
2839 %A = undef
2840 %B = undef
2841
2842These logical operations have bits that are not always affected by the
2843input. For example, if ``%X`` has a zero bit, then the output of the
2844'``and``' operation will always be a zero for that bit, no matter what
2845the corresponding bit from the '``undef``' is. As such, it is unsafe to
2846optimize or assume that the result of the '``and``' is '``undef``'.
2847However, it is safe to assume that all bits of the '``undef``' could be
28480, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2849all the bits of the '``undef``' operand to the '``or``' could be set,
2850allowing the '``or``' to be folded to -1.
2851
2852.. code-block:: llvm
2853
2854 %A = select undef, %X, %Y
2855 %B = select undef, 42, %Y
2856 %C = select %X, %Y, undef
2857 Safe:
2858 %A = %X (or %Y)
2859 %B = 42 (or %Y)
2860 %C = %Y
2861 Unsafe:
2862 %A = undef
2863 %B = undef
2864 %C = undef
2865
2866This set of examples shows that undefined '``select``' (and conditional
2867branch) conditions can go *either way*, but they have to come from one
2868of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2869both known to have a clear low bit, then ``%A`` would have to have a
2870cleared low bit. However, in the ``%C`` example, the optimizer is
2871allowed to assume that the '``undef``' operand could be the same as
2872``%Y``, allowing the whole '``select``' to be eliminated.
2873
Renato Golin124f2592016-07-20 12:16:38 +00002874.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002875
2876 %A = xor undef, undef
2877
2878 %B = undef
2879 %C = xor %B, %B
2880
2881 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002882 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002883 %F = icmp gte %D, 4
2884
2885 Safe:
2886 %A = undef
2887 %B = undef
2888 %C = undef
2889 %D = undef
2890 %E = undef
2891 %F = undef
2892
2893This example points out that two '``undef``' operands are not
2894necessarily the same. This can be surprising to people (and also matches
2895C semantics) where they assume that "``X^X``" is always zero, even if
2896``X`` is undefined. This isn't true for a number of reasons, but the
2897short answer is that an '``undef``' "variable" can arbitrarily change
2898its value over its "live range". This is true because the variable
2899doesn't actually *have a live range*. Instead, the value is logically
2900read from arbitrary registers that happen to be around when needed, so
2901the value is not necessarily consistent over time. In fact, ``%A`` and
2902``%C`` need to have the same semantics or the core LLVM "replace all
2903uses with" concept would not hold.
2904
2905.. code-block:: llvm
2906
2907 %A = fdiv undef, %X
2908 %B = fdiv %X, undef
2909 Safe:
2910 %A = undef
2911 b: unreachable
2912
2913These examples show the crucial difference between an *undefined value*
2914and *undefined behavior*. An undefined value (like '``undef``') is
2915allowed to have an arbitrary bit-pattern. This means that the ``%A``
2916operation can be constant folded to '``undef``', because the '``undef``'
2917could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2918However, in the second example, we can make a more aggressive
2919assumption: because the ``undef`` is allowed to be an arbitrary value,
2920we are allowed to assume that it could be zero. Since a divide by zero
2921has *undefined behavior*, we are allowed to assume that the operation
2922does not execute at all. This allows us to delete the divide and all
2923code after it. Because the undefined operation "can't happen", the
2924optimizer can assume that it occurs in dead code.
2925
Renato Golin124f2592016-07-20 12:16:38 +00002926.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002927
2928 a: store undef -> %X
2929 b: store %X -> undef
2930 Safe:
2931 a: <deleted>
2932 b: unreachable
2933
2934These examples reiterate the ``fdiv`` example: a store *of* an undefined
2935value can be assumed to not have any effect; we can assume that the
2936value is overwritten with bits that happen to match what was already
2937there. However, a store *to* an undefined location could clobber
2938arbitrary memory, therefore, it has undefined behavior.
2939
2940.. _poisonvalues:
2941
2942Poison Values
2943-------------
2944
2945Poison values are similar to :ref:`undef values <undefvalues>`, however
2946they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002947that cannot evoke side effects has nevertheless detected a condition
2948that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002949
2950There is currently no way of representing a poison value in the IR; they
2951only exist when produced by operations such as :ref:`add <i_add>` with
2952the ``nsw`` flag.
2953
2954Poison value behavior is defined in terms of value *dependence*:
2955
2956- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2957- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2958 their dynamic predecessor basic block.
2959- Function arguments depend on the corresponding actual argument values
2960 in the dynamic callers of their functions.
2961- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2962 instructions that dynamically transfer control back to them.
2963- :ref:`Invoke <i_invoke>` instructions depend on the
2964 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2965 call instructions that dynamically transfer control back to them.
2966- Non-volatile loads and stores depend on the most recent stores to all
2967 of the referenced memory addresses, following the order in the IR
2968 (including loads and stores implied by intrinsics such as
2969 :ref:`@llvm.memcpy <int_memcpy>`.)
2970- An instruction with externally visible side effects depends on the
2971 most recent preceding instruction with externally visible side
2972 effects, following the order in the IR. (This includes :ref:`volatile
2973 operations <volatile>`.)
2974- An instruction *control-depends* on a :ref:`terminator
2975 instruction <terminators>` if the terminator instruction has
2976 multiple successors and the instruction is always executed when
2977 control transfers to one of the successors, and may not be executed
2978 when control is transferred to another.
2979- Additionally, an instruction also *control-depends* on a terminator
2980 instruction if the set of instructions it otherwise depends on would
2981 be different if the terminator had transferred control to a different
2982 successor.
2983- Dependence is transitive.
2984
Richard Smith32dbdf62014-07-31 04:25:36 +00002985Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2986with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002987on a poison value has undefined behavior.
2988
2989Here are some examples:
2990
2991.. code-block:: llvm
2992
2993 entry:
2994 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2995 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002996 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002997 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2998
2999 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003000 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003001
3002 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3003
3004 %narrowaddr = bitcast i32* @g to i16*
3005 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003006 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3007 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003008
3009 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3010 br i1 %cmp, label %true, label %end ; Branch to either destination.
3011
3012 true:
3013 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3014 ; it has undefined behavior.
3015 br label %end
3016
3017 end:
3018 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3019 ; Both edges into this PHI are
3020 ; control-dependent on %cmp, so this
3021 ; always results in a poison value.
3022
3023 store volatile i32 0, i32* @g ; This would depend on the store in %true
3024 ; if %cmp is true, or the store in %entry
3025 ; otherwise, so this is undefined behavior.
3026
3027 br i1 %cmp, label %second_true, label %second_end
3028 ; The same branch again, but this time the
3029 ; true block doesn't have side effects.
3030
3031 second_true:
3032 ; No side effects!
3033 ret void
3034
3035 second_end:
3036 store volatile i32 0, i32* @g ; This time, the instruction always depends
3037 ; on the store in %end. Also, it is
3038 ; control-equivalent to %end, so this is
3039 ; well-defined (ignoring earlier undefined
3040 ; behavior in this example).
3041
3042.. _blockaddress:
3043
3044Addresses of Basic Blocks
3045-------------------------
3046
3047``blockaddress(@function, %block)``
3048
3049The '``blockaddress``' constant computes the address of the specified
3050basic block in the specified function, and always has an ``i8*`` type.
3051Taking the address of the entry block is illegal.
3052
3053This value only has defined behavior when used as an operand to the
3054':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3055against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003056undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003057no label is equal to the null pointer. This may be passed around as an
3058opaque pointer sized value as long as the bits are not inspected. This
3059allows ``ptrtoint`` and arithmetic to be performed on these values so
3060long as the original value is reconstituted before the ``indirectbr``
3061instruction.
3062
3063Finally, some targets may provide defined semantics when using the value
3064as the operand to an inline assembly, but that is target specific.
3065
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003066.. _constantexprs:
3067
Sean Silvab084af42012-12-07 10:36:55 +00003068Constant Expressions
3069--------------------
3070
3071Constant expressions are used to allow expressions involving other
3072constants to be used as constants. Constant expressions may be of any
3073:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3074that does not have side effects (e.g. load and call are not supported).
3075The following is the syntax for constant expressions:
3076
3077``trunc (CST to TYPE)``
3078 Truncate a constant to another type. The bit size of CST must be
3079 larger than the bit size of TYPE. Both types must be integers.
3080``zext (CST to TYPE)``
3081 Zero extend a constant to another type. The bit size of CST must be
3082 smaller than the bit size of TYPE. Both types must be integers.
3083``sext (CST to TYPE)``
3084 Sign extend a constant to another type. The bit size of CST must be
3085 smaller than the bit size of TYPE. Both types must be integers.
3086``fptrunc (CST to TYPE)``
3087 Truncate a floating point constant to another floating point type.
3088 The size of CST must be larger than the size of TYPE. Both types
3089 must be floating point.
3090``fpext (CST to TYPE)``
3091 Floating point extend a constant to another type. The size of CST
3092 must be smaller or equal to the size of TYPE. Both types must be
3093 floating point.
3094``fptoui (CST to TYPE)``
3095 Convert a floating point constant to the corresponding unsigned
3096 integer constant. TYPE must be a scalar or vector integer type. CST
3097 must be of scalar or vector floating point type. Both CST and TYPE
3098 must be scalars, or vectors of the same number of elements. If the
3099 value won't fit in the integer type, the results are undefined.
3100``fptosi (CST to TYPE)``
3101 Convert a floating point constant to the corresponding signed
3102 integer constant. TYPE must be a scalar or vector integer type. CST
3103 must be of scalar or vector floating point type. Both CST and TYPE
3104 must be scalars, or vectors of the same number of elements. If the
3105 value won't fit in the integer type, the results are undefined.
3106``uitofp (CST to TYPE)``
3107 Convert an unsigned integer constant to the corresponding floating
3108 point constant. TYPE must be a scalar or vector floating point type.
3109 CST must be of scalar or vector integer type. Both CST and TYPE must
3110 be scalars, or vectors of the same number of elements. If the value
3111 won't fit in the floating point type, the results are undefined.
3112``sitofp (CST to TYPE)``
3113 Convert a signed integer constant to the corresponding floating
3114 point constant. TYPE must be a scalar or vector floating point type.
3115 CST must be of scalar or vector integer type. Both CST and TYPE must
3116 be scalars, or vectors of the same number of elements. If the value
3117 won't fit in the floating point type, the results are undefined.
3118``ptrtoint (CST to TYPE)``
3119 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003120 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003121 pointer type. The ``CST`` value is zero extended, truncated, or
3122 unchanged to make it fit in ``TYPE``.
3123``inttoptr (CST to TYPE)``
3124 Convert an integer constant to a pointer constant. TYPE must be a
3125 pointer type. CST must be of integer type. The CST value is zero
3126 extended, truncated, or unchanged to make it fit in a pointer size.
3127 This one is *really* dangerous!
3128``bitcast (CST to TYPE)``
3129 Convert a constant, CST, to another TYPE. The constraints of the
3130 operands are the same as those for the :ref:`bitcast
3131 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003132``addrspacecast (CST to TYPE)``
3133 Convert a constant pointer or constant vector of pointer, CST, to another
3134 TYPE in a different address space. The constraints of the operands are the
3135 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003136``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003137 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3138 constants. As with the :ref:`getelementptr <i_getelementptr>`
3139 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003140 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003141``select (COND, VAL1, VAL2)``
3142 Perform the :ref:`select operation <i_select>` on constants.
3143``icmp COND (VAL1, VAL2)``
3144 Performs the :ref:`icmp operation <i_icmp>` on constants.
3145``fcmp COND (VAL1, VAL2)``
3146 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3147``extractelement (VAL, IDX)``
3148 Perform the :ref:`extractelement operation <i_extractelement>` on
3149 constants.
3150``insertelement (VAL, ELT, IDX)``
3151 Perform the :ref:`insertelement operation <i_insertelement>` on
3152 constants.
3153``shufflevector (VEC1, VEC2, IDXMASK)``
3154 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3155 constants.
3156``extractvalue (VAL, IDX0, IDX1, ...)``
3157 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3158 constants. The index list is interpreted in a similar manner as
3159 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3160 least one index value must be specified.
3161``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3162 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3163 The index list is interpreted in a similar manner as indices in a
3164 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3165 value must be specified.
3166``OPCODE (LHS, RHS)``
3167 Perform the specified operation of the LHS and RHS constants. OPCODE
3168 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3169 binary <bitwiseops>` operations. The constraints on operands are
3170 the same as those for the corresponding instruction (e.g. no bitwise
3171 operations on floating point values are allowed).
3172
3173Other Values
3174============
3175
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003176.. _inlineasmexprs:
3177
Sean Silvab084af42012-12-07 10:36:55 +00003178Inline Assembler Expressions
3179----------------------------
3180
3181LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003182Inline Assembly <moduleasm>`) through the use of a special value. This value
3183represents the inline assembler as a template string (containing the
3184instructions to emit), a list of operand constraints (stored as a string), a
3185flag that indicates whether or not the inline asm expression has side effects,
3186and a flag indicating whether the function containing the asm needs to align its
3187stack conservatively.
3188
3189The template string supports argument substitution of the operands using "``$``"
3190followed by a number, to indicate substitution of the given register/memory
3191location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3192be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3193operand (See :ref:`inline-asm-modifiers`).
3194
3195A literal "``$``" may be included by using "``$$``" in the template. To include
3196other special characters into the output, the usual "``\XX``" escapes may be
3197used, just as in other strings. Note that after template substitution, the
3198resulting assembly string is parsed by LLVM's integrated assembler unless it is
3199disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3200syntax known to LLVM.
3201
Reid Kleckner71cb1642017-02-06 18:08:45 +00003202LLVM also supports a few more substitions useful for writing inline assembly:
3203
3204- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3205 This substitution is useful when declaring a local label. Many standard
3206 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3207 Adding a blob-unique identifier ensures that the two labels will not conflict
3208 during assembly. This is used to implement `GCC's %= special format
3209 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3210- ``${:comment}``: Expands to the comment character of the current target's
3211 assembly dialect. This is usually ``#``, but many targets use other strings,
3212 such as ``;``, ``//``, or ``!``.
3213- ``${:private}``: Expands to the assembler private label prefix. Labels with
3214 this prefix will not appear in the symbol table of the assembled object.
3215 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3216 relatively popular.
3217
James Y Knightbc832ed2015-07-08 18:08:36 +00003218LLVM's support for inline asm is modeled closely on the requirements of Clang's
3219GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3220modifier codes listed here are similar or identical to those in GCC's inline asm
3221support. However, to be clear, the syntax of the template and constraint strings
3222described here is *not* the same as the syntax accepted by GCC and Clang, and,
3223while most constraint letters are passed through as-is by Clang, some get
3224translated to other codes when converting from the C source to the LLVM
3225assembly.
3226
3227An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003228
3229.. code-block:: llvm
3230
3231 i32 (i32) asm "bswap $0", "=r,r"
3232
3233Inline assembler expressions may **only** be used as the callee operand
3234of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3235Thus, typically we have:
3236
3237.. code-block:: llvm
3238
3239 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3240
3241Inline asms with side effects not visible in the constraint list must be
3242marked as having side effects. This is done through the use of the
3243'``sideeffect``' keyword, like so:
3244
3245.. code-block:: llvm
3246
3247 call void asm sideeffect "eieio", ""()
3248
3249In some cases inline asms will contain code that will not work unless
3250the stack is aligned in some way, such as calls or SSE instructions on
3251x86, yet will not contain code that does that alignment within the asm.
3252The compiler should make conservative assumptions about what the asm
3253might contain and should generate its usual stack alignment code in the
3254prologue if the '``alignstack``' keyword is present:
3255
3256.. code-block:: llvm
3257
3258 call void asm alignstack "eieio", ""()
3259
3260Inline asms also support using non-standard assembly dialects. The
3261assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3262the inline asm is using the Intel dialect. Currently, ATT and Intel are
3263the only supported dialects. An example is:
3264
3265.. code-block:: llvm
3266
3267 call void asm inteldialect "eieio", ""()
3268
3269If multiple keywords appear the '``sideeffect``' keyword must come
3270first, the '``alignstack``' keyword second and the '``inteldialect``'
3271keyword last.
3272
James Y Knightbc832ed2015-07-08 18:08:36 +00003273Inline Asm Constraint String
3274^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3275
3276The constraint list is a comma-separated string, each element containing one or
3277more constraint codes.
3278
3279For each element in the constraint list an appropriate register or memory
3280operand will be chosen, and it will be made available to assembly template
3281string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3282second, etc.
3283
3284There are three different types of constraints, which are distinguished by a
3285prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3286constraints must always be given in that order: outputs first, then inputs, then
3287clobbers. They cannot be intermingled.
3288
3289There are also three different categories of constraint codes:
3290
3291- Register constraint. This is either a register class, or a fixed physical
3292 register. This kind of constraint will allocate a register, and if necessary,
3293 bitcast the argument or result to the appropriate type.
3294- Memory constraint. This kind of constraint is for use with an instruction
3295 taking a memory operand. Different constraints allow for different addressing
3296 modes used by the target.
3297- Immediate value constraint. This kind of constraint is for an integer or other
3298 immediate value which can be rendered directly into an instruction. The
3299 various target-specific constraints allow the selection of a value in the
3300 proper range for the instruction you wish to use it with.
3301
3302Output constraints
3303""""""""""""""""""
3304
3305Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3306indicates that the assembly will write to this operand, and the operand will
3307then be made available as a return value of the ``asm`` expression. Output
3308constraints do not consume an argument from the call instruction. (Except, see
3309below about indirect outputs).
3310
3311Normally, it is expected that no output locations are written to by the assembly
3312expression until *all* of the inputs have been read. As such, LLVM may assign
3313the same register to an output and an input. If this is not safe (e.g. if the
3314assembly contains two instructions, where the first writes to one output, and
3315the second reads an input and writes to a second output), then the "``&``"
3316modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003317"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003318will not use the same register for any inputs (other than an input tied to this
3319output).
3320
3321Input constraints
3322"""""""""""""""""
3323
3324Input constraints do not have a prefix -- just the constraint codes. Each input
3325constraint will consume one argument from the call instruction. It is not
3326permitted for the asm to write to any input register or memory location (unless
3327that input is tied to an output). Note also that multiple inputs may all be
3328assigned to the same register, if LLVM can determine that they necessarily all
3329contain the same value.
3330
3331Instead of providing a Constraint Code, input constraints may also "tie"
3332themselves to an output constraint, by providing an integer as the constraint
3333string. Tied inputs still consume an argument from the call instruction, and
3334take up a position in the asm template numbering as is usual -- they will simply
3335be constrained to always use the same register as the output they've been tied
3336to. For example, a constraint string of "``=r,0``" says to assign a register for
3337output, and use that register as an input as well (it being the 0'th
3338constraint).
3339
3340It is permitted to tie an input to an "early-clobber" output. In that case, no
3341*other* input may share the same register as the input tied to the early-clobber
3342(even when the other input has the same value).
3343
3344You may only tie an input to an output which has a register constraint, not a
3345memory constraint. Only a single input may be tied to an output.
3346
3347There is also an "interesting" feature which deserves a bit of explanation: if a
3348register class constraint allocates a register which is too small for the value
3349type operand provided as input, the input value will be split into multiple
3350registers, and all of them passed to the inline asm.
3351
3352However, this feature is often not as useful as you might think.
3353
3354Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3355architectures that have instructions which operate on multiple consecutive
3356instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3357SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3358hardware then loads into both the named register, and the next register. This
3359feature of inline asm would not be useful to support that.)
3360
3361A few of the targets provide a template string modifier allowing explicit access
3362to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3363``D``). On such an architecture, you can actually access the second allocated
3364register (yet, still, not any subsequent ones). But, in that case, you're still
3365probably better off simply splitting the value into two separate operands, for
3366clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3367despite existing only for use with this feature, is not really a good idea to
3368use)
3369
3370Indirect inputs and outputs
3371"""""""""""""""""""""""""""
3372
3373Indirect output or input constraints can be specified by the "``*``" modifier
3374(which goes after the "``=``" in case of an output). This indicates that the asm
3375will write to or read from the contents of an *address* provided as an input
3376argument. (Note that in this way, indirect outputs act more like an *input* than
3377an output: just like an input, they consume an argument of the call expression,
3378rather than producing a return value. An indirect output constraint is an
3379"output" only in that the asm is expected to write to the contents of the input
3380memory location, instead of just read from it).
3381
3382This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3383address of a variable as a value.
3384
3385It is also possible to use an indirect *register* constraint, but only on output
3386(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3387value normally, and then, separately emit a store to the address provided as
3388input, after the provided inline asm. (It's not clear what value this
3389functionality provides, compared to writing the store explicitly after the asm
3390statement, and it can only produce worse code, since it bypasses many
3391optimization passes. I would recommend not using it.)
3392
3393
3394Clobber constraints
3395"""""""""""""""""""
3396
3397A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3398consume an input operand, nor generate an output. Clobbers cannot use any of the
3399general constraint code letters -- they may use only explicit register
3400constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3401"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3402memory locations -- not only the memory pointed to by a declared indirect
3403output.
3404
Peter Zotov00257232016-08-30 10:48:31 +00003405Note that clobbering named registers that are also present in output
3406constraints is not legal.
3407
James Y Knightbc832ed2015-07-08 18:08:36 +00003408
3409Constraint Codes
3410""""""""""""""""
3411After a potential prefix comes constraint code, or codes.
3412
3413A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3414followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3415(e.g. "``{eax}``").
3416
3417The one and two letter constraint codes are typically chosen to be the same as
3418GCC's constraint codes.
3419
3420A single constraint may include one or more than constraint code in it, leaving
3421it up to LLVM to choose which one to use. This is included mainly for
3422compatibility with the translation of GCC inline asm coming from clang.
3423
3424There are two ways to specify alternatives, and either or both may be used in an
3425inline asm constraint list:
3426
34271) Append the codes to each other, making a constraint code set. E.g. "``im``"
3428 or "``{eax}m``". This means "choose any of the options in the set". The
3429 choice of constraint is made independently for each constraint in the
3430 constraint list.
3431
34322) Use "``|``" between constraint code sets, creating alternatives. Every
3433 constraint in the constraint list must have the same number of alternative
3434 sets. With this syntax, the same alternative in *all* of the items in the
3435 constraint list will be chosen together.
3436
3437Putting those together, you might have a two operand constraint string like
3438``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3439operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3440may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3441
3442However, the use of either of the alternatives features is *NOT* recommended, as
3443LLVM is not able to make an intelligent choice about which one to use. (At the
3444point it currently needs to choose, not enough information is available to do so
3445in a smart way.) Thus, it simply tries to make a choice that's most likely to
3446compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3447always choose to use memory, not registers). And, if given multiple registers,
3448or multiple register classes, it will simply choose the first one. (In fact, it
3449doesn't currently even ensure explicitly specified physical registers are
3450unique, so specifying multiple physical registers as alternatives, like
3451``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3452intended.)
3453
3454Supported Constraint Code List
3455""""""""""""""""""""""""""""""
3456
3457The constraint codes are, in general, expected to behave the same way they do in
3458GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3459inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3460and GCC likely indicates a bug in LLVM.
3461
3462Some constraint codes are typically supported by all targets:
3463
3464- ``r``: A register in the target's general purpose register class.
3465- ``m``: A memory address operand. It is target-specific what addressing modes
3466 are supported, typical examples are register, or register + register offset,
3467 or register + immediate offset (of some target-specific size).
3468- ``i``: An integer constant (of target-specific width). Allows either a simple
3469 immediate, or a relocatable value.
3470- ``n``: An integer constant -- *not* including relocatable values.
3471- ``s``: An integer constant, but allowing *only* relocatable values.
3472- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3473 useful to pass a label for an asm branch or call.
3474
3475 .. FIXME: but that surely isn't actually okay to jump out of an asm
3476 block without telling llvm about the control transfer???)
3477
3478- ``{register-name}``: Requires exactly the named physical register.
3479
3480Other constraints are target-specific:
3481
3482AArch64:
3483
3484- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3485- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3486 i.e. 0 to 4095 with optional shift by 12.
3487- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3488 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3489- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3490 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3491- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3492 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3493- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3494 32-bit register. This is a superset of ``K``: in addition to the bitmask
3495 immediate, also allows immediate integers which can be loaded with a single
3496 ``MOVZ`` or ``MOVL`` instruction.
3497- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3498 64-bit register. This is a superset of ``L``.
3499- ``Q``: Memory address operand must be in a single register (no
3500 offsets). (However, LLVM currently does this for the ``m`` constraint as
3501 well.)
3502- ``r``: A 32 or 64-bit integer register (W* or X*).
3503- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3504- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3505
3506AMDGPU:
3507
3508- ``r``: A 32 or 64-bit integer register.
3509- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3510- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3511
3512
3513All ARM modes:
3514
3515- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3516 operand. Treated the same as operand ``m``, at the moment.
3517
3518ARM and ARM's Thumb2 mode:
3519
3520- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3521- ``I``: An immediate integer valid for a data-processing instruction.
3522- ``J``: An immediate integer between -4095 and 4095.
3523- ``K``: An immediate integer whose bitwise inverse is valid for a
3524 data-processing instruction. (Can be used with template modifier "``B``" to
3525 print the inverted value).
3526- ``L``: An immediate integer whose negation is valid for a data-processing
3527 instruction. (Can be used with template modifier "``n``" to print the negated
3528 value).
3529- ``M``: A power of two or a integer between 0 and 32.
3530- ``N``: Invalid immediate constraint.
3531- ``O``: Invalid immediate constraint.
3532- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3533- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3534 as ``r``.
3535- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3536 invalid.
3537- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3538 ``d0-d31``, or ``q0-q15``.
3539- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3540 ``d0-d7``, or ``q0-q3``.
3541- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3542 ``s0-s31``.
3543
3544ARM's Thumb1 mode:
3545
3546- ``I``: An immediate integer between 0 and 255.
3547- ``J``: An immediate integer between -255 and -1.
3548- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3549 some amount.
3550- ``L``: An immediate integer between -7 and 7.
3551- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3552- ``N``: An immediate integer between 0 and 31.
3553- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3554- ``r``: A low 32-bit GPR register (``r0-r7``).
3555- ``l``: A low 32-bit GPR register (``r0-r7``).
3556- ``h``: A high GPR register (``r0-r7``).
3557- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3558 ``d0-d31``, or ``q0-q15``.
3559- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3560 ``d0-d7``, or ``q0-q3``.
3561- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3562 ``s0-s31``.
3563
3564
3565Hexagon:
3566
3567- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3568 at the moment.
3569- ``r``: A 32 or 64-bit register.
3570
3571MSP430:
3572
3573- ``r``: An 8 or 16-bit register.
3574
3575MIPS:
3576
3577- ``I``: An immediate signed 16-bit integer.
3578- ``J``: An immediate integer zero.
3579- ``K``: An immediate unsigned 16-bit integer.
3580- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3581- ``N``: An immediate integer between -65535 and -1.
3582- ``O``: An immediate signed 15-bit integer.
3583- ``P``: An immediate integer between 1 and 65535.
3584- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3585 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3586- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3587 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3588 ``m``.
3589- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3590 ``sc`` instruction on the given subtarget (details vary).
3591- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3592- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003593 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3594 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003595- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3596 ``25``).
3597- ``l``: The ``lo`` register, 32 or 64-bit.
3598- ``x``: Invalid.
3599
3600NVPTX:
3601
3602- ``b``: A 1-bit integer register.
3603- ``c`` or ``h``: A 16-bit integer register.
3604- ``r``: A 32-bit integer register.
3605- ``l`` or ``N``: A 64-bit integer register.
3606- ``f``: A 32-bit float register.
3607- ``d``: A 64-bit float register.
3608
3609
3610PowerPC:
3611
3612- ``I``: An immediate signed 16-bit integer.
3613- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3614- ``K``: An immediate unsigned 16-bit integer.
3615- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3616- ``M``: An immediate integer greater than 31.
3617- ``N``: An immediate integer that is an exact power of 2.
3618- ``O``: The immediate integer constant 0.
3619- ``P``: An immediate integer constant whose negation is a signed 16-bit
3620 constant.
3621- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3622 treated the same as ``m``.
3623- ``r``: A 32 or 64-bit integer register.
3624- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3625 ``R1-R31``).
3626- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3627 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3628- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3629 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3630 altivec vector register (``V0-V31``).
3631
3632 .. FIXME: is this a bug that v accepts QPX registers? I think this
3633 is supposed to only use the altivec vector registers?
3634
3635- ``y``: Condition register (``CR0-CR7``).
3636- ``wc``: An individual CR bit in a CR register.
3637- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3638 register set (overlapping both the floating-point and vector register files).
3639- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3640 set.
3641
3642Sparc:
3643
3644- ``I``: An immediate 13-bit signed integer.
3645- ``r``: A 32-bit integer register.
3646
3647SystemZ:
3648
3649- ``I``: An immediate unsigned 8-bit integer.
3650- ``J``: An immediate unsigned 12-bit integer.
3651- ``K``: An immediate signed 16-bit integer.
3652- ``L``: An immediate signed 20-bit integer.
3653- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003654- ``Q``: A memory address operand with a base address and a 12-bit immediate
3655 unsigned displacement.
3656- ``R``: A memory address operand with a base address, a 12-bit immediate
3657 unsigned displacement, and an index register.
3658- ``S``: A memory address operand with a base address and a 20-bit immediate
3659 signed displacement.
3660- ``T``: A memory address operand with a base address, a 20-bit immediate
3661 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003662- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3663- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3664 address context evaluates as zero).
3665- ``h``: A 32-bit value in the high part of a 64bit data register
3666 (LLVM-specific)
3667- ``f``: A 32, 64, or 128-bit floating point register.
3668
3669X86:
3670
3671- ``I``: An immediate integer between 0 and 31.
3672- ``J``: An immediate integer between 0 and 64.
3673- ``K``: An immediate signed 8-bit integer.
3674- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3675 0xffffffff.
3676- ``M``: An immediate integer between 0 and 3.
3677- ``N``: An immediate unsigned 8-bit integer.
3678- ``O``: An immediate integer between 0 and 127.
3679- ``e``: An immediate 32-bit signed integer.
3680- ``Z``: An immediate 32-bit unsigned integer.
3681- ``o``, ``v``: Treated the same as ``m``, at the moment.
3682- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3683 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3684 registers, and on X86-64, it is all of the integer registers.
3685- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3686 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3687- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3688- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3689 existed since i386, and can be accessed without the REX prefix.
3690- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3691- ``y``: A 64-bit MMX register, if MMX is enabled.
3692- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3693 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3694 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3695 512-bit vector operand in an AVX512 register, Otherwise, an error.
3696- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3697- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3698 32-bit mode, a 64-bit integer operand will get split into two registers). It
3699 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3700 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3701 you're better off splitting it yourself, before passing it to the asm
3702 statement.
3703
3704XCore:
3705
3706- ``r``: A 32-bit integer register.
3707
3708
3709.. _inline-asm-modifiers:
3710
3711Asm template argument modifiers
3712^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3713
3714In the asm template string, modifiers can be used on the operand reference, like
3715"``${0:n}``".
3716
3717The modifiers are, in general, expected to behave the same way they do in
3718GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3719inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3720and GCC likely indicates a bug in LLVM.
3721
3722Target-independent:
3723
Sean Silvaa1190322015-08-06 22:56:48 +00003724- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003725 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3726- ``n``: Negate and print immediate integer constant unadorned, without the
3727 target-specific immediate punctuation (e.g. no ``$`` prefix).
3728- ``l``: Print as an unadorned label, without the target-specific label
3729 punctuation (e.g. no ``$`` prefix).
3730
3731AArch64:
3732
3733- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3734 instead of ``x30``, print ``w30``.
3735- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3736- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3737 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3738 ``v*``.
3739
3740AMDGPU:
3741
3742- ``r``: No effect.
3743
3744ARM:
3745
3746- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3747 register).
3748- ``P``: No effect.
3749- ``q``: No effect.
3750- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3751 as ``d4[1]`` instead of ``s9``)
3752- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3753 prefix.
3754- ``L``: Print the low 16-bits of an immediate integer constant.
3755- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3756 register operands subsequent to the specified one (!), so use carefully.
3757- ``Q``: Print the low-order register of a register-pair, or the low-order
3758 register of a two-register operand.
3759- ``R``: Print the high-order register of a register-pair, or the high-order
3760 register of a two-register operand.
3761- ``H``: Print the second register of a register-pair. (On a big-endian system,
3762 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3763 to ``R``.)
3764
3765 .. FIXME: H doesn't currently support printing the second register
3766 of a two-register operand.
3767
3768- ``e``: Print the low doubleword register of a NEON quad register.
3769- ``f``: Print the high doubleword register of a NEON quad register.
3770- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3771 adornment.
3772
3773Hexagon:
3774
3775- ``L``: Print the second register of a two-register operand. Requires that it
3776 has been allocated consecutively to the first.
3777
3778 .. FIXME: why is it restricted to consecutive ones? And there's
3779 nothing that ensures that happens, is there?
3780
3781- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3782 nothing. Used to print 'addi' vs 'add' instructions.
3783
3784MSP430:
3785
3786No additional modifiers.
3787
3788MIPS:
3789
3790- ``X``: Print an immediate integer as hexadecimal
3791- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3792- ``d``: Print an immediate integer as decimal.
3793- ``m``: Subtract one and print an immediate integer as decimal.
3794- ``z``: Print $0 if an immediate zero, otherwise print normally.
3795- ``L``: Print the low-order register of a two-register operand, or prints the
3796 address of the low-order word of a double-word memory operand.
3797
3798 .. FIXME: L seems to be missing memory operand support.
3799
3800- ``M``: Print the high-order register of a two-register operand, or prints the
3801 address of the high-order word of a double-word memory operand.
3802
3803 .. FIXME: M seems to be missing memory operand support.
3804
3805- ``D``: Print the second register of a two-register operand, or prints the
3806 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3807 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3808 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003809- ``w``: No effect. Provided for compatibility with GCC which requires this
3810 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3811 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003812
3813NVPTX:
3814
3815- ``r``: No effect.
3816
3817PowerPC:
3818
3819- ``L``: Print the second register of a two-register operand. Requires that it
3820 has been allocated consecutively to the first.
3821
3822 .. FIXME: why is it restricted to consecutive ones? And there's
3823 nothing that ensures that happens, is there?
3824
3825- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3826 nothing. Used to print 'addi' vs 'add' instructions.
3827- ``y``: For a memory operand, prints formatter for a two-register X-form
3828 instruction. (Currently always prints ``r0,OPERAND``).
3829- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3830 otherwise. (NOTE: LLVM does not support update form, so this will currently
3831 always print nothing)
3832- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3833 not support indexed form, so this will currently always print nothing)
3834
3835Sparc:
3836
3837- ``r``: No effect.
3838
3839SystemZ:
3840
3841SystemZ implements only ``n``, and does *not* support any of the other
3842target-independent modifiers.
3843
3844X86:
3845
3846- ``c``: Print an unadorned integer or symbol name. (The latter is
3847 target-specific behavior for this typically target-independent modifier).
3848- ``A``: Print a register name with a '``*``' before it.
3849- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3850 operand.
3851- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3852 memory operand.
3853- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3854 operand.
3855- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3856 operand.
3857- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3858 available, otherwise the 32-bit register name; do nothing on a memory operand.
3859- ``n``: Negate and print an unadorned integer, or, for operands other than an
3860 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3861 the operand. (The behavior for relocatable symbol expressions is a
3862 target-specific behavior for this typically target-independent modifier)
3863- ``H``: Print a memory reference with additional offset +8.
3864- ``P``: Print a memory reference or operand for use as the argument of a call
3865 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3866
3867XCore:
3868
3869No additional modifiers.
3870
3871
Sean Silvab084af42012-12-07 10:36:55 +00003872Inline Asm Metadata
3873^^^^^^^^^^^^^^^^^^^
3874
3875The call instructions that wrap inline asm nodes may have a
3876"``!srcloc``" MDNode attached to it that contains a list of constant
3877integers. If present, the code generator will use the integer as the
3878location cookie value when report errors through the ``LLVMContext``
3879error reporting mechanisms. This allows a front-end to correlate backend
3880errors that occur with inline asm back to the source code that produced
3881it. For example:
3882
3883.. code-block:: llvm
3884
3885 call void asm sideeffect "something bad", ""(), !srcloc !42
3886 ...
3887 !42 = !{ i32 1234567 }
3888
3889It is up to the front-end to make sense of the magic numbers it places
3890in the IR. If the MDNode contains multiple constants, the code generator
3891will use the one that corresponds to the line of the asm that the error
3892occurs on.
3893
3894.. _metadata:
3895
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003896Metadata
3897========
Sean Silvab084af42012-12-07 10:36:55 +00003898
3899LLVM IR allows metadata to be attached to instructions in the program
3900that can convey extra information about the code to the optimizers and
3901code generator. One example application of metadata is source-level
3902debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003903
Sean Silvaa1190322015-08-06 22:56:48 +00003904Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003905``call`` instruction, it uses the ``metadata`` type.
3906
3907All metadata are identified in syntax by a exclamation point ('``!``').
3908
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003909.. _metadata-string:
3910
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003911Metadata Nodes and Metadata Strings
3912-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003913
3914A metadata string is a string surrounded by double quotes. It can
3915contain any character by escaping non-printable characters with
3916"``\xx``" where "``xx``" is the two digit hex code. For example:
3917"``!"test\00"``".
3918
3919Metadata nodes are represented with notation similar to structure
3920constants (a comma separated list of elements, surrounded by braces and
3921preceded by an exclamation point). Metadata nodes can have any values as
3922their operand. For example:
3923
3924.. code-block:: llvm
3925
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003926 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003927
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003928Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3929
Renato Golin124f2592016-07-20 12:16:38 +00003930.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003931
3932 !0 = distinct !{!"test\00", i32 10}
3933
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003934``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003935content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003936when metadata operands change.
3937
Sean Silvab084af42012-12-07 10:36:55 +00003938A :ref:`named metadata <namedmetadatastructure>` is a collection of
3939metadata nodes, which can be looked up in the module symbol table. For
3940example:
3941
3942.. code-block:: llvm
3943
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003944 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003945
3946Metadata can be used as function arguments. Here ``llvm.dbg.value``
3947function is using two metadata arguments:
3948
3949.. code-block:: llvm
3950
3951 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3952
Peter Collingbourne50108682015-11-06 02:41:02 +00003953Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3954to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003955
3956.. code-block:: llvm
3957
3958 %indvar.next = add i64 %indvar, 1, !dbg !21
3959
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003960Metadata can also be attached to a function or a global variable. Here metadata
3961``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
3962and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00003963
3964.. code-block:: llvm
3965
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003966 declare !dbg !22 void @f1()
3967 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00003968 ret void
3969 }
3970
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003971 @g1 = global i32 0, !dbg !22
3972 @g2 = external global i32, !dbg !22
3973
3974A transformation is required to drop any metadata attachment that it does not
3975know or know it can't preserve. Currently there is an exception for metadata
3976attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
3977unconditionally dropped unless the global is itself deleted.
3978
3979Metadata attached to a module using named metadata may not be dropped, with
3980the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
3981
Sean Silvab084af42012-12-07 10:36:55 +00003982More information about specific metadata nodes recognized by the
3983optimizers and code generator is found below.
3984
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003985.. _specialized-metadata:
3986
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003987Specialized Metadata Nodes
3988^^^^^^^^^^^^^^^^^^^^^^^^^^
3989
3990Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003991to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003992order.
3993
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003994These aren't inherently debug info centric, but currently all the specialized
3995metadata nodes are related to debug info.
3996
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003997.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003998
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003999DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004000"""""""""""""
4001
Sean Silvaa1190322015-08-06 22:56:48 +00004002``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004003``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
4004fields are tuples containing the debug info to be emitted along with the compile
4005unit, regardless of code optimizations (some nodes are only emitted if there are
Dehao Chenfb02f712017-02-10 21:09:07 +00004006references to them from instructions). The ``debugInfoForProfiling:`` field is a
4007boolean indicating whether or not line-table discriminators are updated to
4008provide more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004009
Renato Golin124f2592016-07-20 12:16:38 +00004010.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004011
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004012 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004013 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004014 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004015 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004016 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004017
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004018Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00004019specific compilation unit. File descriptors are defined using this scope.
4020These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004021keep track of subprograms, global variables, type information, and imported
4022entities (declarations and namespaces).
4023
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004024.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004025
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004026DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004027""""""
4028
Sean Silvaa1190322015-08-06 22:56:48 +00004029``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004030
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004031.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004032
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004033 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4034 checksumkind: CSK_MD5,
4035 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004036
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004037Files are sometimes used in ``scope:`` fields, and are the only valid target
4038for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004039Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004040
Michael Kuperstein605308a2015-05-14 10:58:59 +00004041.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004042
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004043DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004044"""""""""""
4045
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004046``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004047``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048
Renato Golin124f2592016-07-20 12:16:38 +00004049.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004050
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004051 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004052 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004053 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004054
Sean Silvaa1190322015-08-06 22:56:48 +00004055The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004056following:
4057
Renato Golin124f2592016-07-20 12:16:38 +00004058.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004059
4060 DW_ATE_address = 1
4061 DW_ATE_boolean = 2
4062 DW_ATE_float = 4
4063 DW_ATE_signed = 5
4064 DW_ATE_signed_char = 6
4065 DW_ATE_unsigned = 7
4066 DW_ATE_unsigned_char = 8
4067
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004068.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004069
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004070DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004071""""""""""""""""
4072
Sean Silvaa1190322015-08-06 22:56:48 +00004073``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004074refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004075types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004076represents a function with no return value (such as ``void foo() {}`` in C++).
4077
Renato Golin124f2592016-07-20 12:16:38 +00004078.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004079
4080 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4081 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004082 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004083
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004084.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004085
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004086DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004087"""""""""""""
4088
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004089``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004090qualified types.
4091
Renato Golin124f2592016-07-20 12:16:38 +00004092.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004093
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004094 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004095 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004096 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004097 align: 32)
4098
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004099The following ``tag:`` values are valid:
4100
Renato Golin124f2592016-07-20 12:16:38 +00004101.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004102
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004103 DW_TAG_member = 13
4104 DW_TAG_pointer_type = 15
4105 DW_TAG_reference_type = 16
4106 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004107 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004108 DW_TAG_ptr_to_member_type = 31
4109 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004110 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004111 DW_TAG_volatile_type = 53
4112 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004113 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004114
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004115.. _DIDerivedTypeMember:
4116
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004117``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004118<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004119``offset:`` is the member's bit offset. If the composite type has an ODR
4120``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4121uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004122
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004123``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4124field of :ref:`composite types <DICompositeType>` to describe parents and
4125friends.
4126
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004127``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4128
4129``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004130``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4131are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004132
4133Note that the ``void *`` type is expressed as a type derived from NULL.
4134
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004135.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004136
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004137DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004138"""""""""""""""
4139
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004140``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004141structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004142
4143If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004144identifier used for type merging between modules. When specified,
4145:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4146derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4147``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004148
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004149For a given ``identifier:``, there should only be a single composite type that
4150does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4151together will unique such definitions at parse time via the ``identifier:``
4152field, even if the nodes are ``distinct``.
4153
Renato Golin124f2592016-07-20 12:16:38 +00004154.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004155
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004156 !0 = !DIEnumerator(name: "SixKind", value: 7)
4157 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4158 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4159 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004160 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4161 elements: !{!0, !1, !2})
4162
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004163The following ``tag:`` values are valid:
4164
Renato Golin124f2592016-07-20 12:16:38 +00004165.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004166
4167 DW_TAG_array_type = 1
4168 DW_TAG_class_type = 2
4169 DW_TAG_enumeration_type = 4
4170 DW_TAG_structure_type = 19
4171 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004172
4173For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004174descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004175level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004176array type is a native packed vector.
4177
4178For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004179descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004180value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004181``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004182
4183For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4184``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004185<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4186``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4187``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004188
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004189.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004190
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004191DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004192""""""""""
4193
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004194``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004195:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004196
4197.. code-block:: llvm
4198
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004199 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4200 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4201 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004202
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004203.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004204
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004205DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004206""""""""""""
4207
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004208``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4209variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004210
4211.. code-block:: llvm
4212
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004213 !0 = !DIEnumerator(name: "SixKind", value: 7)
4214 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4215 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004216
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004217DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004218"""""""""""""""""""""""
4219
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004220``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004221language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004222:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004223
4224.. code-block:: llvm
4225
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004226 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004227
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004228DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004229""""""""""""""""""""""""
4230
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004231``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004232language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004233but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004234``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004235:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004236
4237.. code-block:: llvm
4238
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004239 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004240
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004241DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004242"""""""""""
4243
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004244``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004245
4246.. code-block:: llvm
4247
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004248 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004249
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004250DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004251""""""""""""""""
4252
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004253``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004254
4255.. code-block:: llvm
4256
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004257 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004258 file: !2, line: 7, type: !3, isLocal: true,
4259 isDefinition: false, variable: i32* @foo,
4260 declaration: !4)
4261
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004262All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004263:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004264
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004265.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004266
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004267DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004268""""""""""""
4269
Peter Collingbourne50108682015-11-06 02:41:02 +00004270``DISubprogram`` nodes represent functions from the source language. A
4271``DISubprogram`` may be attached to a function definition using ``!dbg``
4272metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4273that must be retained, even if their IR counterparts are optimized out of
4274the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004275
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004276.. _DISubprogramDeclaration:
4277
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004278When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004279tree as opposed to a definition of a function. If the scope is a composite
4280type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4281then the subprogram declaration is uniqued based only on its ``linkageName:``
4282and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004283
Renato Golin124f2592016-07-20 12:16:38 +00004284.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004285
Peter Collingbourne50108682015-11-06 02:41:02 +00004286 define void @_Z3foov() !dbg !0 {
4287 ...
4288 }
4289
4290 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4291 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004292 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004293 containingType: !4,
4294 virtuality: DW_VIRTUALITY_pure_virtual,
4295 virtualIndex: 10, flags: DIFlagPrototyped,
4296 isOptimized: true, templateParams: !5,
4297 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004298
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004299.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004300
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004301DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004302""""""""""""""
4303
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004304``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004305<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004306two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004307fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004308
Renato Golin124f2592016-07-20 12:16:38 +00004309.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004310
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004311 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004312
4313Usually lexical blocks are ``distinct`` to prevent node merging based on
4314operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004315
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004316.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004317
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004318DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004319""""""""""""""""""
4320
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004321``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004322:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004323indicate textual inclusion, or the ``discriminator:`` field can be used to
4324discriminate between control flow within a single block in the source language.
4325
4326.. code-block:: llvm
4327
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004328 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4329 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4330 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004331
Michael Kuperstein605308a2015-05-14 10:58:59 +00004332.. _DILocation:
4333
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004334DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004335""""""""""
4336
Sean Silvaa1190322015-08-06 22:56:48 +00004337``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004338mandatory, and points at an :ref:`DILexicalBlockFile`, an
4339:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004340
4341.. code-block:: llvm
4342
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004343 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004344
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004345.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004346
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004347DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004348"""""""""""""""
4349
Sean Silvaa1190322015-08-06 22:56:48 +00004350``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004351the ``arg:`` field is set to non-zero, then this variable is a subprogram
4352parameter, and it will be included in the ``variables:`` field of its
4353:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004354
Renato Golin124f2592016-07-20 12:16:38 +00004355.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004356
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004357 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4358 type: !3, flags: DIFlagArtificial)
4359 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4360 type: !3)
4361 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004362
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004363DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004364""""""""""""
4365
Sean Silvaa1190322015-08-06 22:56:48 +00004366``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004367:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4368describe how the referenced LLVM variable relates to the source language
4369variable.
4370
4371The current supported vocabulary is limited:
4372
4373- ``DW_OP_deref`` dereferences the working expression.
4374- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4375- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4376 here, respectively) of the variable piece from the working expression.
4377
Renato Golin124f2592016-07-20 12:16:38 +00004378.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004379
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004380 !0 = !DIExpression(DW_OP_deref)
4381 !1 = !DIExpression(DW_OP_plus, 3)
4382 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4383 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004384
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004385DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004386""""""""""""""
4387
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004388``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004389
4390.. code-block:: llvm
4391
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004392 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004393 getter: "getFoo", attributes: 7, type: !2)
4394
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004395DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004396""""""""""""""""
4397
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004398``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004399compile unit.
4400
Renato Golin124f2592016-07-20 12:16:38 +00004401.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004402
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004403 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004404 entity: !1, line: 7)
4405
Amjad Abouda9bcf162015-12-10 12:56:35 +00004406DIMacro
4407"""""""
4408
4409``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4410The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004411defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004412used to expand the macro identifier.
4413
Renato Golin124f2592016-07-20 12:16:38 +00004414.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004415
4416 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4417 value: "((x) + 1)")
4418 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4419
4420DIMacroFile
4421"""""""""""
4422
4423``DIMacroFile`` nodes represent inclusion of source files.
4424The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4425appear in the included source file.
4426
Renato Golin124f2592016-07-20 12:16:38 +00004427.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004428
4429 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4430 nodes: !3)
4431
Sean Silvab084af42012-12-07 10:36:55 +00004432'``tbaa``' Metadata
4433^^^^^^^^^^^^^^^^^^^
4434
4435In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004436suitable for doing type based alias analysis (TBAA). Instead, metadata is
4437added to the IR to describe a type system of a higher level language. This
4438can be used to implement C/C++ strict type aliasing rules, but it can also
4439be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004440
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004441This description of LLVM's TBAA system is broken into two parts:
4442:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4443:ref:`Representation<tbaa_node_representation>` talks about the metadata
4444encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004445
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004446It is always possible to trace any TBAA node to a "root" TBAA node (details
4447in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4448nodes with different roots have an unknown aliasing relationship, and LLVM
4449conservatively infers ``MayAlias`` between them. The rules mentioned in
4450this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004451
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004452.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004453
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004454Semantics
4455"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004456
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004457The TBAA metadata system, referred to as "struct path TBAA" (not to be
4458confused with ``tbaa.struct``), consists of the following high level
4459concepts: *Type Descriptors*, further subdivided into scalar type
4460descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004461
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004462**Type descriptors** describe the type system of the higher level language
4463being compiled. **Scalar type descriptors** describe types that do not
4464contain other types. Each scalar type has a parent type, which must also
4465be a scalar type or the TBAA root. Via this parent relation, scalar types
4466within a TBAA root form a tree. **Struct type descriptors** denote types
4467that contain a sequence of other type descriptors, at known offsets. These
4468contained type descriptors can either be struct type descriptors themselves
4469or scalar type descriptors.
4470
4471**Access tags** are metadata nodes attached to load and store instructions.
4472Access tags use type descriptors to describe the *location* being accessed
4473in terms of the type system of the higher level language. Access tags are
4474tuples consisting of a base type, an access type and an offset. The base
4475type is a scalar type descriptor or a struct type descriptor, the access
4476type is a scalar type descriptor, and the offset is a constant integer.
4477
4478The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4479things:
4480
4481 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4482 or store) of a value of type ``AccessTy`` contained in the struct type
4483 ``BaseTy`` at offset ``Offset``.
4484
4485 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4486 ``AccessTy`` must be the same; and the access tag describes a scalar
4487 access with scalar type ``AccessTy``.
4488
4489We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4490tuples this way:
4491
4492 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4493 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4494 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4495 undefined if ``Offset`` is non-zero.
4496
4497 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4498 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4499 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4500 to be relative within that inner type.
4501
4502A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4503aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4504Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4505Offset2)`` via the ``Parent`` relation or vice versa.
4506
4507As a concrete example, the type descriptor graph for the following program
4508
4509.. code-block:: c
4510
4511 struct Inner {
4512 int i; // offset 0
4513 float f; // offset 4
4514 };
4515
4516 struct Outer {
4517 float f; // offset 0
4518 double d; // offset 4
4519 struct Inner inner_a; // offset 12
4520 };
4521
4522 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4523 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4524 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4525 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4526 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4527 }
4528
4529is (note that in C and C++, ``char`` can be used to access any arbitrary
4530type):
4531
4532.. code-block:: text
4533
4534 Root = "TBAA Root"
4535 CharScalarTy = ("char", Root, 0)
4536 FloatScalarTy = ("float", CharScalarTy, 0)
4537 DoubleScalarTy = ("double", CharScalarTy, 0)
4538 IntScalarTy = ("int", CharScalarTy, 0)
4539 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4540 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4541 (InnerStructTy, 12)}
4542
4543
4544with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
45450)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4546``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4547
4548.. _tbaa_node_representation:
4549
4550Representation
4551""""""""""""""
4552
4553The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4554with exactly one ``MDString`` operand.
4555
4556Scalar type descriptors are represented as an ``MDNode`` s with two
4557operands. The first operand is an ``MDString`` denoting the name of the
4558struct type. LLVM does not assign meaning to the value of this operand, it
4559only cares about it being an ``MDString``. The second operand is an
4560``MDNode`` which points to the parent for said scalar type descriptor,
4561which is either another scalar type descriptor or the TBAA root. Scalar
4562type descriptors can have an optional third argument, but that must be the
4563constant integer zero.
4564
4565Struct type descriptors are represented as ``MDNode`` s with an odd number
4566of operands greater than 1. The first operand is an ``MDString`` denoting
4567the name of the struct type. Like in scalar type descriptors the actual
4568value of this name operand is irrelevant to LLVM. After the name operand,
4569the struct type descriptors have a sequence of alternating ``MDNode`` and
4570``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4571an ``MDNode``, denotes a contained field, and the 2N th operand, a
4572``ConstantInt``, is the offset of the said contained field. The offsets
4573must be in non-decreasing order.
4574
4575Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4576The first operand is an ``MDNode`` pointing to the node representing the
4577base type. The second operand is an ``MDNode`` pointing to the node
4578representing the access type. The third operand is a ``ConstantInt`` that
4579states the offset of the access. If a fourth field is present, it must be
4580a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4581that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004582``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004583AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4584the access type and the base type of an access tag must be the same, and
4585that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004586
4587'``tbaa.struct``' Metadata
4588^^^^^^^^^^^^^^^^^^^^^^^^^^
4589
4590The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4591aggregate assignment operations in C and similar languages, however it
4592is defined to copy a contiguous region of memory, which is more than
4593strictly necessary for aggregate types which contain holes due to
4594padding. Also, it doesn't contain any TBAA information about the fields
4595of the aggregate.
4596
4597``!tbaa.struct`` metadata can describe which memory subregions in a
4598memcpy are padding and what the TBAA tags of the struct are.
4599
4600The current metadata format is very simple. ``!tbaa.struct`` metadata
4601nodes are a list of operands which are in conceptual groups of three.
4602For each group of three, the first operand gives the byte offset of a
4603field in bytes, the second gives its size in bytes, and the third gives
4604its tbaa tag. e.g.:
4605
4606.. code-block:: llvm
4607
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004608 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004609
4610This describes a struct with two fields. The first is at offset 0 bytes
4611with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4612and has size 4 bytes and has tbaa tag !2.
4613
4614Note that the fields need not be contiguous. In this example, there is a
46154 byte gap between the two fields. This gap represents padding which
4616does not carry useful data and need not be preserved.
4617
Hal Finkel94146652014-07-24 14:25:39 +00004618'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004619^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004620
4621``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4622noalias memory-access sets. This means that some collection of memory access
4623instructions (loads, stores, memory-accessing calls, etc.) that carry
4624``noalias`` metadata can specifically be specified not to alias with some other
4625collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004626Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004627a domain.
4628
4629When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004630of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004631subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004632instruction's ``noalias`` list, then the two memory accesses are assumed not to
4633alias.
Hal Finkel94146652014-07-24 14:25:39 +00004634
Adam Nemet569a5b32016-04-27 00:52:48 +00004635Because scopes in one domain don't affect scopes in other domains, separate
4636domains can be used to compose multiple independent noalias sets. This is
4637used for example during inlining. As the noalias function parameters are
4638turned into noalias scope metadata, a new domain is used every time the
4639function is inlined.
4640
Hal Finkel029cde62014-07-25 15:50:02 +00004641The metadata identifying each domain is itself a list containing one or two
4642entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004643string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004644self-reference can be used to create globally unique domain names. A
4645descriptive string may optionally be provided as a second list entry.
4646
4647The metadata identifying each scope is also itself a list containing two or
4648three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004649is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004650self-reference can be used to create globally unique scope names. A metadata
4651reference to the scope's domain is the second entry. A descriptive string may
4652optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004653
4654For example,
4655
4656.. code-block:: llvm
4657
Hal Finkel029cde62014-07-25 15:50:02 +00004658 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004659 !0 = !{!0}
4660 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004661
Hal Finkel029cde62014-07-25 15:50:02 +00004662 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004663 !2 = !{!2, !0}
4664 !3 = !{!3, !0}
4665 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004666
Hal Finkel029cde62014-07-25 15:50:02 +00004667 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004668 !5 = !{!4} ; A list containing only scope !4
4669 !6 = !{!4, !3, !2}
4670 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004671
4672 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004673 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004674 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004675
Hal Finkel029cde62014-07-25 15:50:02 +00004676 ; These two instructions also don't alias (for domain !1, the set of scopes
4677 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004678 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004679 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004680
Adam Nemet0a8416f2015-05-11 08:30:28 +00004681 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004682 ; the !noalias list is not a superset of, or equal to, the scopes in the
4683 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004684 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004685 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004686
Sean Silvab084af42012-12-07 10:36:55 +00004687'``fpmath``' Metadata
4688^^^^^^^^^^^^^^^^^^^^^
4689
4690``fpmath`` metadata may be attached to any instruction of floating point
4691type. It can be used to express the maximum acceptable error in the
4692result of that instruction, in ULPs, thus potentially allowing the
4693compiler to use a more efficient but less accurate method of computing
4694it. ULP is defined as follows:
4695
4696 If ``x`` is a real number that lies between two finite consecutive
4697 floating-point numbers ``a`` and ``b``, without being equal to one
4698 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4699 distance between the two non-equal finite floating-point numbers
4700 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4701
Matt Arsenault82f41512016-06-27 19:43:15 +00004702The metadata node shall consist of a single positive float type number
4703representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004704
4705.. code-block:: llvm
4706
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004707 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004708
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004709.. _range-metadata:
4710
Sean Silvab084af42012-12-07 10:36:55 +00004711'``range``' Metadata
4712^^^^^^^^^^^^^^^^^^^^
4713
Jingyue Wu37fcb592014-06-19 16:50:16 +00004714``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4715integer types. It expresses the possible ranges the loaded value or the value
4716returned by the called function at this call site is in. The ranges are
4717represented with a flattened list of integers. The loaded value or the value
4718returned is known to be in the union of the ranges defined by each consecutive
4719pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004720
4721- The type must match the type loaded by the instruction.
4722- The pair ``a,b`` represents the range ``[a,b)``.
4723- Both ``a`` and ``b`` are constants.
4724- The range is allowed to wrap.
4725- The range should not represent the full or empty set. That is,
4726 ``a!=b``.
4727
4728In addition, the pairs must be in signed order of the lower bound and
4729they must be non-contiguous.
4730
4731Examples:
4732
4733.. code-block:: llvm
4734
David Blaikiec7aabbb2015-03-04 22:06:14 +00004735 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4736 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004737 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4738 %d = invoke i8 @bar() to label %cont
4739 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004740 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004741 !0 = !{ i8 0, i8 2 }
4742 !1 = !{ i8 255, i8 2 }
4743 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4744 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004745
Peter Collingbourne235c2752016-12-08 19:01:00 +00004746'``absolute_symbol``' Metadata
4747^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4748
4749``absolute_symbol`` metadata may be attached to a global variable
4750declaration. It marks the declaration as a reference to an absolute symbol,
4751which causes the backend to use absolute relocations for the symbol even
4752in position independent code, and expresses the possible ranges that the
4753global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004754``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4755may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004756
Peter Collingbourned88f9282017-01-20 21:56:37 +00004757Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004758
4759.. code-block:: llvm
4760
4761 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004762 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004763
4764 ...
4765 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004766 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004767
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004768'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004769^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004770
4771``unpredictable`` metadata may be attached to any branch or switch
4772instruction. It can be used to express the unpredictability of control
4773flow. Similar to the llvm.expect intrinsic, it may be used to alter
4774optimizations related to compare and branch instructions. The metadata
4775is treated as a boolean value; if it exists, it signals that the branch
4776or switch that it is attached to is completely unpredictable.
4777
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004778'``llvm.loop``'
4779^^^^^^^^^^^^^^^
4780
4781It is sometimes useful to attach information to loop constructs. Currently,
4782loop metadata is implemented as metadata attached to the branch instruction
4783in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004784guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004785specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004786
4787The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004788itself to avoid merging it with any other identifier metadata, e.g.,
4789during module linkage or function inlining. That is, each loop should refer
4790to their own identification metadata even if they reside in separate functions.
4791The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004792constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004793
4794.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004795
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004796 !0 = !{!0}
4797 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004798
Mark Heffernan893752a2014-07-18 19:24:51 +00004799The loop identifier metadata can be used to specify additional
4800per-loop metadata. Any operands after the first operand can be treated
4801as user-defined metadata. For example the ``llvm.loop.unroll.count``
4802suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004803
Paul Redmond5fdf8362013-05-28 20:00:34 +00004804.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004805
Paul Redmond5fdf8362013-05-28 20:00:34 +00004806 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4807 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004808 !0 = !{!0, !1}
4809 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004810
Mark Heffernan9d20e422014-07-21 23:11:03 +00004811'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4812^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004813
Mark Heffernan9d20e422014-07-21 23:11:03 +00004814Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4815used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004816vectorization width and interleave count. These metadata should be used in
4817conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004818``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4819optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004820it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004821which contains information about loop-carried memory dependencies can be helpful
4822in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004823
Mark Heffernan9d20e422014-07-21 23:11:03 +00004824'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004825^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4826
Mark Heffernan9d20e422014-07-21 23:11:03 +00004827This metadata suggests an interleave count to the loop interleaver.
4828The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004829second operand is an integer specifying the interleave count. For
4830example:
4831
4832.. code-block:: llvm
4833
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004834 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004835
Mark Heffernan9d20e422014-07-21 23:11:03 +00004836Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004837multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004838then the interleave count will be determined automatically.
4839
4840'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004842
4843This metadata selectively enables or disables vectorization for the loop. The
4844first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004845is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000048460 disables vectorization:
4847
4848.. code-block:: llvm
4849
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004850 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4851 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004852
4853'``llvm.loop.vectorize.width``' Metadata
4854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4855
4856This metadata sets the target width of the vectorizer. The first
4857operand is the string ``llvm.loop.vectorize.width`` and the second
4858operand is an integer specifying the width. For example:
4859
4860.. code-block:: llvm
4861
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004862 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004863
4864Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004865vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000048660 or if the loop does not have this metadata the width will be
4867determined automatically.
4868
4869'``llvm.loop.unroll``'
4870^^^^^^^^^^^^^^^^^^^^^^
4871
4872Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4873optimization hints such as the unroll factor. ``llvm.loop.unroll``
4874metadata should be used in conjunction with ``llvm.loop`` loop
4875identification metadata. The ``llvm.loop.unroll`` metadata are only
4876optimization hints and the unrolling will only be performed if the
4877optimizer believes it is safe to do so.
4878
Mark Heffernan893752a2014-07-18 19:24:51 +00004879'``llvm.loop.unroll.count``' Metadata
4880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4881
4882This metadata suggests an unroll factor to the loop unroller. The
4883first operand is the string ``llvm.loop.unroll.count`` and the second
4884operand is a positive integer specifying the unroll factor. For
4885example:
4886
4887.. code-block:: llvm
4888
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004889 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004890
4891If the trip count of the loop is less than the unroll count the loop
4892will be partially unrolled.
4893
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004894'``llvm.loop.unroll.disable``' Metadata
4895^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4896
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004897This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004898which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004899
4900.. code-block:: llvm
4901
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004902 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004903
Kevin Qin715b01e2015-03-09 06:14:18 +00004904'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004905^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004906
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004907This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004908operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004909
4910.. code-block:: llvm
4911
4912 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4913
Mark Heffernan89391542015-08-10 17:28:08 +00004914'``llvm.loop.unroll.enable``' Metadata
4915^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4916
4917This metadata suggests that the loop should be fully unrolled if the trip count
4918is known at compile time and partially unrolled if the trip count is not known
4919at compile time. The metadata has a single operand which is the string
4920``llvm.loop.unroll.enable``. For example:
4921
4922.. code-block:: llvm
4923
4924 !0 = !{!"llvm.loop.unroll.enable"}
4925
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004926'``llvm.loop.unroll.full``' Metadata
4927^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4928
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004929This metadata suggests that the loop should be unrolled fully. The
4930metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004931For example:
4932
4933.. code-block:: llvm
4934
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004935 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004936
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004937'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004938^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004939
4940This metadata indicates that the loop should not be versioned for the purpose
4941of enabling loop-invariant code motion (LICM). The metadata has a single operand
4942which is the string ``llvm.loop.licm_versioning.disable``. For example:
4943
4944.. code-block:: llvm
4945
4946 !0 = !{!"llvm.loop.licm_versioning.disable"}
4947
Adam Nemetd2fa4142016-04-27 05:28:18 +00004948'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004949^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004950
4951Loop distribution allows splitting a loop into multiple loops. Currently,
4952this is only performed if the entire loop cannot be vectorized due to unsafe
4953memory dependencies. The transformation will atempt to isolate the unsafe
4954dependencies into their own loop.
4955
4956This metadata can be used to selectively enable or disable distribution of the
4957loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4958second operand is a bit. If the bit operand value is 1 distribution is
4959enabled. A value of 0 disables distribution:
4960
4961.. code-block:: llvm
4962
4963 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4964 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4965
4966This metadata should be used in conjunction with ``llvm.loop`` loop
4967identification metadata.
4968
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004969'``llvm.mem``'
4970^^^^^^^^^^^^^^^
4971
4972Metadata types used to annotate memory accesses with information helpful
4973for optimizations are prefixed with ``llvm.mem``.
4974
4975'``llvm.mem.parallel_loop_access``' Metadata
4976^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4977
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004978The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4979or metadata containing a list of loop identifiers for nested loops.
4980The metadata is attached to memory accessing instructions and denotes that
4981no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004982with the same loop identifier. The metadata on memory reads also implies that
4983if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004984
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004985Precisely, given two instructions ``m1`` and ``m2`` that both have the
4986``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4987set of loops associated with that metadata, respectively, then there is no loop
4988carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004989``L2``.
4990
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004991As a special case, if all memory accessing instructions in a loop have
4992``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4993loop has no loop carried memory dependences and is considered to be a parallel
4994loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004995
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004996Note that if not all memory access instructions have such metadata referring to
4997the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004998memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004999safe mechanism, this causes loops that were originally parallel to be considered
5000sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005001insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005002
5003Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005004both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005005metadata types that refer to the same loop identifier metadata.
5006
5007.. code-block:: llvm
5008
5009 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005010 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005011 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005012 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005013 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005014 ...
5015 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005016
5017 for.end:
5018 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005019 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005020
5021It is also possible to have nested parallel loops. In that case the
5022memory accesses refer to a list of loop identifier metadata nodes instead of
5023the loop identifier metadata node directly:
5024
5025.. code-block:: llvm
5026
5027 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005028 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005029 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005030 ...
5031 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005032
5033 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005034 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005035 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005036 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005037 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005038 ...
5039 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005040
5041 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005042 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005043 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005044 ...
5045 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005046
5047 outer.for.end: ; preds = %for.body
5048 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005049 !0 = !{!1, !2} ; a list of loop identifiers
5050 !1 = !{!1} ; an identifier for the inner loop
5051 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005052
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005053'``invariant.group``' Metadata
5054^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5055
5056The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
5057The existence of the ``invariant.group`` metadata on the instruction tells
5058the optimizer that every ``load`` and ``store`` to the same pointer operand
5059within the same invariant group can be assumed to load or store the same
5060value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005061when two pointers are considered the same). Pointers returned by bitcast or
5062getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005063
5064Examples:
5065
5066.. code-block:: llvm
5067
5068 @unknownPtr = external global i8
5069 ...
5070 %ptr = alloca i8
5071 store i8 42, i8* %ptr, !invariant.group !0
5072 call void @foo(i8* %ptr)
5073
5074 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5075 call void @foo(i8* %ptr)
5076 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
5077
5078 %newPtr = call i8* @getPointer(i8* %ptr)
5079 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
5080
5081 %unknownValue = load i8, i8* @unknownPtr
5082 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
5083
5084 call void @foo(i8* %ptr)
5085 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5086 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
5087
5088 ...
5089 declare void @foo(i8*)
5090 declare i8* @getPointer(i8*)
5091 declare i8* @llvm.invariant.group.barrier(i8*)
5092
5093 !0 = !{!"magic ptr"}
5094 !1 = !{!"other ptr"}
5095
Peter Collingbournea333db82016-07-26 22:31:30 +00005096'``type``' Metadata
5097^^^^^^^^^^^^^^^^^^^
5098
5099See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005100
5101
Sean Silvab084af42012-12-07 10:36:55 +00005102Module Flags Metadata
5103=====================
5104
5105Information about the module as a whole is difficult to convey to LLVM's
5106subsystems. The LLVM IR isn't sufficient to transmit this information.
5107The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005108this. These flags are in the form of key / value pairs --- much like a
5109dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005110look it up.
5111
5112The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5113Each triplet has the following form:
5114
5115- The first element is a *behavior* flag, which specifies the behavior
5116 when two (or more) modules are merged together, and it encounters two
5117 (or more) metadata with the same ID. The supported behaviors are
5118 described below.
5119- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005120 metadata. Each module may only have one flag entry for each unique ID (not
5121 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005122- The third element is the value of the flag.
5123
5124When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005125``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5126each unique metadata ID string, there will be exactly one entry in the merged
5127modules ``llvm.module.flags`` metadata table, and the value for that entry will
5128be determined by the merge behavior flag, as described below. The only exception
5129is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005130
5131The following behaviors are supported:
5132
5133.. list-table::
5134 :header-rows: 1
5135 :widths: 10 90
5136
5137 * - Value
5138 - Behavior
5139
5140 * - 1
5141 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005142 Emits an error if two values disagree, otherwise the resulting value
5143 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005144
5145 * - 2
5146 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005147 Emits a warning if two values disagree. The result value will be the
5148 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005149
5150 * - 3
5151 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005152 Adds a requirement that another module flag be present and have a
5153 specified value after linking is performed. The value must be a
5154 metadata pair, where the first element of the pair is the ID of the
5155 module flag to be restricted, and the second element of the pair is
5156 the value the module flag should be restricted to. This behavior can
5157 be used to restrict the allowable results (via triggering of an
5158 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005159
5160 * - 4
5161 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005162 Uses the specified value, regardless of the behavior or value of the
5163 other module. If both modules specify **Override**, but the values
5164 differ, an error will be emitted.
5165
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005166 * - 5
5167 - **Append**
5168 Appends the two values, which are required to be metadata nodes.
5169
5170 * - 6
5171 - **AppendUnique**
5172 Appends the two values, which are required to be metadata
5173 nodes. However, duplicate entries in the second list are dropped
5174 during the append operation.
5175
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005176It is an error for a particular unique flag ID to have multiple behaviors,
5177except in the case of **Require** (which adds restrictions on another metadata
5178value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005179
5180An example of module flags:
5181
5182.. code-block:: llvm
5183
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005184 !0 = !{ i32 1, !"foo", i32 1 }
5185 !1 = !{ i32 4, !"bar", i32 37 }
5186 !2 = !{ i32 2, !"qux", i32 42 }
5187 !3 = !{ i32 3, !"qux",
5188 !{
5189 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005190 }
5191 }
5192 !llvm.module.flags = !{ !0, !1, !2, !3 }
5193
5194- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5195 if two or more ``!"foo"`` flags are seen is to emit an error if their
5196 values are not equal.
5197
5198- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5199 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005200 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005201
5202- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5203 behavior if two or more ``!"qux"`` flags are seen is to emit a
5204 warning if their values are not equal.
5205
5206- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5207
5208 ::
5209
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005210 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005211
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005212 The behavior is to emit an error if the ``llvm.module.flags`` does not
5213 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5214 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005215
5216Objective-C Garbage Collection Module Flags Metadata
5217----------------------------------------------------
5218
5219On the Mach-O platform, Objective-C stores metadata about garbage
5220collection in a special section called "image info". The metadata
5221consists of a version number and a bitmask specifying what types of
5222garbage collection are supported (if any) by the file. If two or more
5223modules are linked together their garbage collection metadata needs to
5224be merged rather than appended together.
5225
5226The Objective-C garbage collection module flags metadata consists of the
5227following key-value pairs:
5228
5229.. list-table::
5230 :header-rows: 1
5231 :widths: 30 70
5232
5233 * - Key
5234 - Value
5235
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005236 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005237 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005238
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005239 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005240 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005241 always 0.
5242
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005243 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005244 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005245 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5246 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5247 Objective-C ABI version 2.
5248
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005249 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005250 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005251 not. Valid values are 0, for no garbage collection, and 2, for garbage
5252 collection supported.
5253
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005254 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005255 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005256 If present, its value must be 6. This flag requires that the
5257 ``Objective-C Garbage Collection`` flag have the value 2.
5258
5259Some important flag interactions:
5260
5261- If a module with ``Objective-C Garbage Collection`` set to 0 is
5262 merged with a module with ``Objective-C Garbage Collection`` set to
5263 2, then the resulting module has the
5264 ``Objective-C Garbage Collection`` flag set to 0.
5265- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5266 merged with a module with ``Objective-C GC Only`` set to 6.
5267
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005268Automatic Linker Flags Module Flags Metadata
5269--------------------------------------------
5270
5271Some targets support embedding flags to the linker inside individual object
5272files. Typically this is used in conjunction with language extensions which
5273allow source files to explicitly declare the libraries they depend on, and have
5274these automatically be transmitted to the linker via object files.
5275
5276These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005277using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005278to be ``AppendUnique``, and the value for the key is expected to be a metadata
5279node which should be a list of other metadata nodes, each of which should be a
5280list of metadata strings defining linker options.
5281
5282For example, the following metadata section specifies two separate sets of
5283linker options, presumably to link against ``libz`` and the ``Cocoa``
5284framework::
5285
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005286 !0 = !{ i32 6, !"Linker Options",
5287 !{
5288 !{ !"-lz" },
5289 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005290 !llvm.module.flags = !{ !0 }
5291
5292The metadata encoding as lists of lists of options, as opposed to a collapsed
5293list of options, is chosen so that the IR encoding can use multiple option
5294strings to specify e.g., a single library, while still having that specifier be
5295preserved as an atomic element that can be recognized by a target specific
5296assembly writer or object file emitter.
5297
5298Each individual option is required to be either a valid option for the target's
5299linker, or an option that is reserved by the target specific assembly writer or
5300object file emitter. No other aspect of these options is defined by the IR.
5301
Oliver Stannard5dc29342014-06-20 10:08:11 +00005302C type width Module Flags Metadata
5303----------------------------------
5304
5305The ARM backend emits a section into each generated object file describing the
5306options that it was compiled with (in a compiler-independent way) to prevent
5307linking incompatible objects, and to allow automatic library selection. Some
5308of these options are not visible at the IR level, namely wchar_t width and enum
5309width.
5310
5311To pass this information to the backend, these options are encoded in module
5312flags metadata, using the following key-value pairs:
5313
5314.. list-table::
5315 :header-rows: 1
5316 :widths: 30 70
5317
5318 * - Key
5319 - Value
5320
5321 * - short_wchar
5322 - * 0 --- sizeof(wchar_t) == 4
5323 * 1 --- sizeof(wchar_t) == 2
5324
5325 * - short_enum
5326 - * 0 --- Enums are at least as large as an ``int``.
5327 * 1 --- Enums are stored in the smallest integer type which can
5328 represent all of its values.
5329
5330For example, the following metadata section specifies that the module was
5331compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5332enum is the smallest type which can represent all of its values::
5333
5334 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005335 !0 = !{i32 1, !"short_wchar", i32 1}
5336 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005337
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005338.. _intrinsicglobalvariables:
5339
Sean Silvab084af42012-12-07 10:36:55 +00005340Intrinsic Global Variables
5341==========================
5342
5343LLVM has a number of "magic" global variables that contain data that
5344affect code generation or other IR semantics. These are documented here.
5345All globals of this sort should have a section specified as
5346"``llvm.metadata``". This section and all globals that start with
5347"``llvm.``" are reserved for use by LLVM.
5348
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005349.. _gv_llvmused:
5350
Sean Silvab084af42012-12-07 10:36:55 +00005351The '``llvm.used``' Global Variable
5352-----------------------------------
5353
Rafael Espindola74f2e462013-04-22 14:58:02 +00005354The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005355:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005356pointers to named global variables, functions and aliases which may optionally
5357have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005358use of it is:
5359
5360.. code-block:: llvm
5361
5362 @X = global i8 4
5363 @Y = global i32 123
5364
5365 @llvm.used = appending global [2 x i8*] [
5366 i8* @X,
5367 i8* bitcast (i32* @Y to i8*)
5368 ], section "llvm.metadata"
5369
Rafael Espindola74f2e462013-04-22 14:58:02 +00005370If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5371and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005372symbol that it cannot see (which is why they have to be named). For example, if
5373a variable has internal linkage and no references other than that from the
5374``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5375references from inline asms and other things the compiler cannot "see", and
5376corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005377
5378On some targets, the code generator must emit a directive to the
5379assembler or object file to prevent the assembler and linker from
5380molesting the symbol.
5381
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005382.. _gv_llvmcompilerused:
5383
Sean Silvab084af42012-12-07 10:36:55 +00005384The '``llvm.compiler.used``' Global Variable
5385--------------------------------------------
5386
5387The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5388directive, except that it only prevents the compiler from touching the
5389symbol. On targets that support it, this allows an intelligent linker to
5390optimize references to the symbol without being impeded as it would be
5391by ``@llvm.used``.
5392
5393This is a rare construct that should only be used in rare circumstances,
5394and should not be exposed to source languages.
5395
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005396.. _gv_llvmglobalctors:
5397
Sean Silvab084af42012-12-07 10:36:55 +00005398The '``llvm.global_ctors``' Global Variable
5399-------------------------------------------
5400
5401.. code-block:: llvm
5402
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005403 %0 = type { i32, void ()*, i8* }
5404 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005405
5406The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005407functions, priorities, and an optional associated global or function.
5408The functions referenced by this array will be called in ascending order
5409of priority (i.e. lowest first) when the module is loaded. The order of
5410functions with the same priority is not defined.
5411
5412If the third field is present, non-null, and points to a global variable
5413or function, the initializer function will only run if the associated
5414data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005415
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005416.. _llvmglobaldtors:
5417
Sean Silvab084af42012-12-07 10:36:55 +00005418The '``llvm.global_dtors``' Global Variable
5419-------------------------------------------
5420
5421.. code-block:: llvm
5422
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005423 %0 = type { i32, void ()*, i8* }
5424 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005425
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005426The ``@llvm.global_dtors`` array contains a list of destructor
5427functions, priorities, and an optional associated global or function.
5428The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005429order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005430order of functions with the same priority is not defined.
5431
5432If the third field is present, non-null, and points to a global variable
5433or function, the destructor function will only run if the associated
5434data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005435
5436Instruction Reference
5437=====================
5438
5439The LLVM instruction set consists of several different classifications
5440of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5441instructions <binaryops>`, :ref:`bitwise binary
5442instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5443:ref:`other instructions <otherops>`.
5444
5445.. _terminators:
5446
5447Terminator Instructions
5448-----------------------
5449
5450As mentioned :ref:`previously <functionstructure>`, every basic block in a
5451program ends with a "Terminator" instruction, which indicates which
5452block should be executed after the current block is finished. These
5453terminator instructions typically yield a '``void``' value: they produce
5454control flow, not values (the one exception being the
5455':ref:`invoke <i_invoke>`' instruction).
5456
5457The terminator instructions are: ':ref:`ret <i_ret>`',
5458':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5459':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005460':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005461':ref:`catchret <i_catchret>`',
5462':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005463and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005464
5465.. _i_ret:
5466
5467'``ret``' Instruction
5468^^^^^^^^^^^^^^^^^^^^^
5469
5470Syntax:
5471"""""""
5472
5473::
5474
5475 ret <type> <value> ; Return a value from a non-void function
5476 ret void ; Return from void function
5477
5478Overview:
5479"""""""""
5480
5481The '``ret``' instruction is used to return control flow (and optionally
5482a value) from a function back to the caller.
5483
5484There are two forms of the '``ret``' instruction: one that returns a
5485value and then causes control flow, and one that just causes control
5486flow to occur.
5487
5488Arguments:
5489""""""""""
5490
5491The '``ret``' instruction optionally accepts a single argument, the
5492return value. The type of the return value must be a ':ref:`first
5493class <t_firstclass>`' type.
5494
5495A function is not :ref:`well formed <wellformed>` if it it has a non-void
5496return type and contains a '``ret``' instruction with no return value or
5497a return value with a type that does not match its type, or if it has a
5498void return type and contains a '``ret``' instruction with a return
5499value.
5500
5501Semantics:
5502""""""""""
5503
5504When the '``ret``' instruction is executed, control flow returns back to
5505the calling function's context. If the caller is a
5506":ref:`call <i_call>`" instruction, execution continues at the
5507instruction after the call. If the caller was an
5508":ref:`invoke <i_invoke>`" instruction, execution continues at the
5509beginning of the "normal" destination block. If the instruction returns
5510a value, that value shall set the call or invoke instruction's return
5511value.
5512
5513Example:
5514""""""""
5515
5516.. code-block:: llvm
5517
5518 ret i32 5 ; Return an integer value of 5
5519 ret void ; Return from a void function
5520 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5521
5522.. _i_br:
5523
5524'``br``' Instruction
5525^^^^^^^^^^^^^^^^^^^^
5526
5527Syntax:
5528"""""""
5529
5530::
5531
5532 br i1 <cond>, label <iftrue>, label <iffalse>
5533 br label <dest> ; Unconditional branch
5534
5535Overview:
5536"""""""""
5537
5538The '``br``' instruction is used to cause control flow to transfer to a
5539different basic block in the current function. There are two forms of
5540this instruction, corresponding to a conditional branch and an
5541unconditional branch.
5542
5543Arguments:
5544""""""""""
5545
5546The conditional branch form of the '``br``' instruction takes a single
5547'``i1``' value and two '``label``' values. The unconditional form of the
5548'``br``' instruction takes a single '``label``' value as a target.
5549
5550Semantics:
5551""""""""""
5552
5553Upon execution of a conditional '``br``' instruction, the '``i1``'
5554argument is evaluated. If the value is ``true``, control flows to the
5555'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5556to the '``iffalse``' ``label`` argument.
5557
5558Example:
5559""""""""
5560
5561.. code-block:: llvm
5562
5563 Test:
5564 %cond = icmp eq i32 %a, %b
5565 br i1 %cond, label %IfEqual, label %IfUnequal
5566 IfEqual:
5567 ret i32 1
5568 IfUnequal:
5569 ret i32 0
5570
5571.. _i_switch:
5572
5573'``switch``' Instruction
5574^^^^^^^^^^^^^^^^^^^^^^^^
5575
5576Syntax:
5577"""""""
5578
5579::
5580
5581 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5582
5583Overview:
5584"""""""""
5585
5586The '``switch``' instruction is used to transfer control flow to one of
5587several different places. It is a generalization of the '``br``'
5588instruction, allowing a branch to occur to one of many possible
5589destinations.
5590
5591Arguments:
5592""""""""""
5593
5594The '``switch``' instruction uses three parameters: an integer
5595comparison value '``value``', a default '``label``' destination, and an
5596array of pairs of comparison value constants and '``label``'s. The table
5597is not allowed to contain duplicate constant entries.
5598
5599Semantics:
5600""""""""""
5601
5602The ``switch`` instruction specifies a table of values and destinations.
5603When the '``switch``' instruction is executed, this table is searched
5604for the given value. If the value is found, control flow is transferred
5605to the corresponding destination; otherwise, control flow is transferred
5606to the default destination.
5607
5608Implementation:
5609"""""""""""""""
5610
5611Depending on properties of the target machine and the particular
5612``switch`` instruction, this instruction may be code generated in
5613different ways. For example, it could be generated as a series of
5614chained conditional branches or with a lookup table.
5615
5616Example:
5617""""""""
5618
5619.. code-block:: llvm
5620
5621 ; Emulate a conditional br instruction
5622 %Val = zext i1 %value to i32
5623 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5624
5625 ; Emulate an unconditional br instruction
5626 switch i32 0, label %dest [ ]
5627
5628 ; Implement a jump table:
5629 switch i32 %val, label %otherwise [ i32 0, label %onzero
5630 i32 1, label %onone
5631 i32 2, label %ontwo ]
5632
5633.. _i_indirectbr:
5634
5635'``indirectbr``' Instruction
5636^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5637
5638Syntax:
5639"""""""
5640
5641::
5642
5643 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5644
5645Overview:
5646"""""""""
5647
5648The '``indirectbr``' instruction implements an indirect branch to a
5649label within the current function, whose address is specified by
5650"``address``". Address must be derived from a
5651:ref:`blockaddress <blockaddress>` constant.
5652
5653Arguments:
5654""""""""""
5655
5656The '``address``' argument is the address of the label to jump to. The
5657rest of the arguments indicate the full set of possible destinations
5658that the address may point to. Blocks are allowed to occur multiple
5659times in the destination list, though this isn't particularly useful.
5660
5661This destination list is required so that dataflow analysis has an
5662accurate understanding of the CFG.
5663
5664Semantics:
5665""""""""""
5666
5667Control transfers to the block specified in the address argument. All
5668possible destination blocks must be listed in the label list, otherwise
5669this instruction has undefined behavior. This implies that jumps to
5670labels defined in other functions have undefined behavior as well.
5671
5672Implementation:
5673"""""""""""""""
5674
5675This is typically implemented with a jump through a register.
5676
5677Example:
5678""""""""
5679
5680.. code-block:: llvm
5681
5682 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5683
5684.. _i_invoke:
5685
5686'``invoke``' Instruction
5687^^^^^^^^^^^^^^^^^^^^^^^^
5688
5689Syntax:
5690"""""""
5691
5692::
5693
David Blaikieb83cf102016-07-13 17:21:34 +00005694 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005695 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005696
5697Overview:
5698"""""""""
5699
5700The '``invoke``' instruction causes control to transfer to a specified
5701function, with the possibility of control flow transfer to either the
5702'``normal``' label or the '``exception``' label. If the callee function
5703returns with the "``ret``" instruction, control flow will return to the
5704"normal" label. If the callee (or any indirect callees) returns via the
5705":ref:`resume <i_resume>`" instruction or other exception handling
5706mechanism, control is interrupted and continued at the dynamically
5707nearest "exception" label.
5708
5709The '``exception``' label is a `landing
5710pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5711'``exception``' label is required to have the
5712":ref:`landingpad <i_landingpad>`" instruction, which contains the
5713information about the behavior of the program after unwinding happens,
5714as its first non-PHI instruction. The restrictions on the
5715"``landingpad``" instruction's tightly couples it to the "``invoke``"
5716instruction, so that the important information contained within the
5717"``landingpad``" instruction can't be lost through normal code motion.
5718
5719Arguments:
5720""""""""""
5721
5722This instruction requires several arguments:
5723
5724#. The optional "cconv" marker indicates which :ref:`calling
5725 convention <callingconv>` the call should use. If none is
5726 specified, the call defaults to using C calling conventions.
5727#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5728 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5729 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005730#. '``ty``': the type of the call instruction itself which is also the
5731 type of the return value. Functions that return no value are marked
5732 ``void``.
5733#. '``fnty``': shall be the signature of the function being invoked. The
5734 argument types must match the types implied by this signature. This
5735 type can be omitted if the function is not varargs.
5736#. '``fnptrval``': An LLVM value containing a pointer to a function to
5737 be invoked. In most cases, this is a direct function invocation, but
5738 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5739 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005740#. '``function args``': argument list whose types match the function
5741 signature argument types and parameter attributes. All arguments must
5742 be of :ref:`first class <t_firstclass>` type. If the function signature
5743 indicates the function accepts a variable number of arguments, the
5744 extra arguments can be specified.
5745#. '``normal label``': the label reached when the called function
5746 executes a '``ret``' instruction.
5747#. '``exception label``': the label reached when a callee returns via
5748 the :ref:`resume <i_resume>` instruction or other exception handling
5749 mechanism.
5750#. The optional :ref:`function attributes <fnattrs>` list. Only
5751 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5752 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005753#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005754
5755Semantics:
5756""""""""""
5757
5758This instruction is designed to operate as a standard '``call``'
5759instruction in most regards. The primary difference is that it
5760establishes an association with a label, which is used by the runtime
5761library to unwind the stack.
5762
5763This instruction is used in languages with destructors to ensure that
5764proper cleanup is performed in the case of either a ``longjmp`` or a
5765thrown exception. Additionally, this is important for implementation of
5766'``catch``' clauses in high-level languages that support them.
5767
5768For the purposes of the SSA form, the definition of the value returned
5769by the '``invoke``' instruction is deemed to occur on the edge from the
5770current block to the "normal" label. If the callee unwinds then no
5771return value is available.
5772
5773Example:
5774""""""""
5775
5776.. code-block:: llvm
5777
5778 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005779 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005780 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005781 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005782
5783.. _i_resume:
5784
5785'``resume``' Instruction
5786^^^^^^^^^^^^^^^^^^^^^^^^
5787
5788Syntax:
5789"""""""
5790
5791::
5792
5793 resume <type> <value>
5794
5795Overview:
5796"""""""""
5797
5798The '``resume``' instruction is a terminator instruction that has no
5799successors.
5800
5801Arguments:
5802""""""""""
5803
5804The '``resume``' instruction requires one argument, which must have the
5805same type as the result of any '``landingpad``' instruction in the same
5806function.
5807
5808Semantics:
5809""""""""""
5810
5811The '``resume``' instruction resumes propagation of an existing
5812(in-flight) exception whose unwinding was interrupted with a
5813:ref:`landingpad <i_landingpad>` instruction.
5814
5815Example:
5816""""""""
5817
5818.. code-block:: llvm
5819
5820 resume { i8*, i32 } %exn
5821
David Majnemer8a1c45d2015-12-12 05:38:55 +00005822.. _i_catchswitch:
5823
5824'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005825^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005826
5827Syntax:
5828"""""""
5829
5830::
5831
5832 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5833 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5834
5835Overview:
5836"""""""""
5837
5838The '``catchswitch``' instruction is used by `LLVM's exception handling system
5839<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5840that may be executed by the :ref:`EH personality routine <personalityfn>`.
5841
5842Arguments:
5843""""""""""
5844
5845The ``parent`` argument is the token of the funclet that contains the
5846``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5847this operand may be the token ``none``.
5848
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005849The ``default`` argument is the label of another basic block beginning with
5850either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5851must be a legal target with respect to the ``parent`` links, as described in
5852the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005853
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005854The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005855:ref:`catchpad <i_catchpad>` instruction.
5856
5857Semantics:
5858""""""""""
5859
5860Executing this instruction transfers control to one of the successors in
5861``handlers``, if appropriate, or continues to unwind via the unwind label if
5862present.
5863
5864The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5865it must be both the first non-phi instruction and last instruction in the basic
5866block. Therefore, it must be the only non-phi instruction in the block.
5867
5868Example:
5869""""""""
5870
Renato Golin124f2592016-07-20 12:16:38 +00005871.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005872
5873 dispatch1:
5874 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5875 dispatch2:
5876 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5877
David Majnemer654e1302015-07-31 17:58:14 +00005878.. _i_catchret:
5879
5880'``catchret``' Instruction
5881^^^^^^^^^^^^^^^^^^^^^^^^^^
5882
5883Syntax:
5884"""""""
5885
5886::
5887
David Majnemer8a1c45d2015-12-12 05:38:55 +00005888 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005889
5890Overview:
5891"""""""""
5892
5893The '``catchret``' instruction is a terminator instruction that has a
5894single successor.
5895
5896
5897Arguments:
5898""""""""""
5899
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005900The first argument to a '``catchret``' indicates which ``catchpad`` it
5901exits. It must be a :ref:`catchpad <i_catchpad>`.
5902The second argument to a '``catchret``' specifies where control will
5903transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005904
5905Semantics:
5906""""""""""
5907
David Majnemer8a1c45d2015-12-12 05:38:55 +00005908The '``catchret``' instruction ends an existing (in-flight) exception whose
5909unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5910:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5911code to, for example, destroy the active exception. Control then transfers to
5912``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005913
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005914The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5915If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5916funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5917the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005918
5919Example:
5920""""""""
5921
Renato Golin124f2592016-07-20 12:16:38 +00005922.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005923
David Majnemer8a1c45d2015-12-12 05:38:55 +00005924 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005925
David Majnemer654e1302015-07-31 17:58:14 +00005926.. _i_cleanupret:
5927
5928'``cleanupret``' Instruction
5929^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5930
5931Syntax:
5932"""""""
5933
5934::
5935
David Majnemer8a1c45d2015-12-12 05:38:55 +00005936 cleanupret from <value> unwind label <continue>
5937 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005938
5939Overview:
5940"""""""""
5941
5942The '``cleanupret``' instruction is a terminator instruction that has
5943an optional successor.
5944
5945
5946Arguments:
5947""""""""""
5948
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005949The '``cleanupret``' instruction requires one argument, which indicates
5950which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005951If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5952funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5953the ``cleanupret``'s behavior is undefined.
5954
5955The '``cleanupret``' instruction also has an optional successor, ``continue``,
5956which must be the label of another basic block beginning with either a
5957``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5958be a legal target with respect to the ``parent`` links, as described in the
5959`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005960
5961Semantics:
5962""""""""""
5963
5964The '``cleanupret``' instruction indicates to the
5965:ref:`personality function <personalityfn>` that one
5966:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5967It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005968
David Majnemer654e1302015-07-31 17:58:14 +00005969Example:
5970""""""""
5971
Renato Golin124f2592016-07-20 12:16:38 +00005972.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005973
David Majnemer8a1c45d2015-12-12 05:38:55 +00005974 cleanupret from %cleanup unwind to caller
5975 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005976
Sean Silvab084af42012-12-07 10:36:55 +00005977.. _i_unreachable:
5978
5979'``unreachable``' Instruction
5980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5981
5982Syntax:
5983"""""""
5984
5985::
5986
5987 unreachable
5988
5989Overview:
5990"""""""""
5991
5992The '``unreachable``' instruction has no defined semantics. This
5993instruction is used to inform the optimizer that a particular portion of
5994the code is not reachable. This can be used to indicate that the code
5995after a no-return function cannot be reached, and other facts.
5996
5997Semantics:
5998""""""""""
5999
6000The '``unreachable``' instruction has no defined semantics.
6001
6002.. _binaryops:
6003
6004Binary Operations
6005-----------------
6006
6007Binary operators are used to do most of the computation in a program.
6008They require two operands of the same type, execute an operation on
6009them, and produce a single value. The operands might represent multiple
6010data, as is the case with the :ref:`vector <t_vector>` data type. The
6011result value has the same type as its operands.
6012
6013There are several different binary operators:
6014
6015.. _i_add:
6016
6017'``add``' Instruction
6018^^^^^^^^^^^^^^^^^^^^^
6019
6020Syntax:
6021"""""""
6022
6023::
6024
Tim Northover675a0962014-06-13 14:24:23 +00006025 <result> = add <ty> <op1>, <op2> ; yields ty:result
6026 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6027 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6028 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006029
6030Overview:
6031"""""""""
6032
6033The '``add``' instruction returns the sum of its two operands.
6034
6035Arguments:
6036""""""""""
6037
6038The two arguments to the '``add``' instruction must be
6039:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6040arguments must have identical types.
6041
6042Semantics:
6043""""""""""
6044
6045The value produced is the integer sum of the two operands.
6046
6047If the sum has unsigned overflow, the result returned is the
6048mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6049the result.
6050
6051Because LLVM integers use a two's complement representation, this
6052instruction is appropriate for both signed and unsigned integers.
6053
6054``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6055respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6056result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6057unsigned and/or signed overflow, respectively, occurs.
6058
6059Example:
6060""""""""
6061
Renato Golin124f2592016-07-20 12:16:38 +00006062.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006063
Tim Northover675a0962014-06-13 14:24:23 +00006064 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006065
6066.. _i_fadd:
6067
6068'``fadd``' Instruction
6069^^^^^^^^^^^^^^^^^^^^^^
6070
6071Syntax:
6072"""""""
6073
6074::
6075
Tim Northover675a0962014-06-13 14:24:23 +00006076 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006077
6078Overview:
6079"""""""""
6080
6081The '``fadd``' instruction returns the sum of its two operands.
6082
6083Arguments:
6084""""""""""
6085
6086The two arguments to the '``fadd``' instruction must be :ref:`floating
6087point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6088Both arguments must have identical types.
6089
6090Semantics:
6091""""""""""
6092
6093The value produced is the floating point sum of the two operands. This
6094instruction can also take any number of :ref:`fast-math flags <fastmath>`,
6095which are optimization hints to enable otherwise unsafe floating point
6096optimizations:
6097
6098Example:
6099""""""""
6100
Renato Golin124f2592016-07-20 12:16:38 +00006101.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006102
Tim Northover675a0962014-06-13 14:24:23 +00006103 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006104
6105'``sub``' Instruction
6106^^^^^^^^^^^^^^^^^^^^^
6107
6108Syntax:
6109"""""""
6110
6111::
6112
Tim Northover675a0962014-06-13 14:24:23 +00006113 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6114 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6115 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6116 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006117
6118Overview:
6119"""""""""
6120
6121The '``sub``' instruction returns the difference of its two operands.
6122
6123Note that the '``sub``' instruction is used to represent the '``neg``'
6124instruction present in most other intermediate representations.
6125
6126Arguments:
6127""""""""""
6128
6129The two arguments to the '``sub``' instruction must be
6130:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6131arguments must have identical types.
6132
6133Semantics:
6134""""""""""
6135
6136The value produced is the integer difference of the two operands.
6137
6138If the difference has unsigned overflow, the result returned is the
6139mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6140the result.
6141
6142Because LLVM integers use a two's complement representation, this
6143instruction is appropriate for both signed and unsigned integers.
6144
6145``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6146respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6147result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6148unsigned and/or signed overflow, respectively, occurs.
6149
6150Example:
6151""""""""
6152
Renato Golin124f2592016-07-20 12:16:38 +00006153.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006154
Tim Northover675a0962014-06-13 14:24:23 +00006155 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6156 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006157
6158.. _i_fsub:
6159
6160'``fsub``' Instruction
6161^^^^^^^^^^^^^^^^^^^^^^
6162
6163Syntax:
6164"""""""
6165
6166::
6167
Tim Northover675a0962014-06-13 14:24:23 +00006168 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006169
6170Overview:
6171"""""""""
6172
6173The '``fsub``' instruction returns the difference of its two operands.
6174
6175Note that the '``fsub``' instruction is used to represent the '``fneg``'
6176instruction present in most other intermediate representations.
6177
6178Arguments:
6179""""""""""
6180
6181The two arguments to the '``fsub``' instruction must be :ref:`floating
6182point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6183Both arguments must have identical types.
6184
6185Semantics:
6186""""""""""
6187
6188The value produced is the floating point difference of the two operands.
6189This instruction can also take any number of :ref:`fast-math
6190flags <fastmath>`, which are optimization hints to enable otherwise
6191unsafe floating point optimizations:
6192
6193Example:
6194""""""""
6195
Renato Golin124f2592016-07-20 12:16:38 +00006196.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006197
Tim Northover675a0962014-06-13 14:24:23 +00006198 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6199 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006200
6201'``mul``' Instruction
6202^^^^^^^^^^^^^^^^^^^^^
6203
6204Syntax:
6205"""""""
6206
6207::
6208
Tim Northover675a0962014-06-13 14:24:23 +00006209 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6210 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6211 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6212 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006213
6214Overview:
6215"""""""""
6216
6217The '``mul``' instruction returns the product of its two operands.
6218
6219Arguments:
6220""""""""""
6221
6222The two arguments to the '``mul``' instruction must be
6223:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6224arguments must have identical types.
6225
6226Semantics:
6227""""""""""
6228
6229The value produced is the integer product of the two operands.
6230
6231If the result of the multiplication has unsigned overflow, the result
6232returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6233bit width of the result.
6234
6235Because LLVM integers use a two's complement representation, and the
6236result is the same width as the operands, this instruction returns the
6237correct result for both signed and unsigned integers. If a full product
6238(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6239sign-extended or zero-extended as appropriate to the width of the full
6240product.
6241
6242``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6243respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6244result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6245unsigned and/or signed overflow, respectively, occurs.
6246
6247Example:
6248""""""""
6249
Renato Golin124f2592016-07-20 12:16:38 +00006250.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006251
Tim Northover675a0962014-06-13 14:24:23 +00006252 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006253
6254.. _i_fmul:
6255
6256'``fmul``' Instruction
6257^^^^^^^^^^^^^^^^^^^^^^
6258
6259Syntax:
6260"""""""
6261
6262::
6263
Tim Northover675a0962014-06-13 14:24:23 +00006264 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006265
6266Overview:
6267"""""""""
6268
6269The '``fmul``' instruction returns the product of its two operands.
6270
6271Arguments:
6272""""""""""
6273
6274The two arguments to the '``fmul``' instruction must be :ref:`floating
6275point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6276Both arguments must have identical types.
6277
6278Semantics:
6279""""""""""
6280
6281The value produced is the floating point product of the two operands.
6282This instruction can also take any number of :ref:`fast-math
6283flags <fastmath>`, which are optimization hints to enable otherwise
6284unsafe floating point optimizations:
6285
6286Example:
6287""""""""
6288
Renato Golin124f2592016-07-20 12:16:38 +00006289.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006290
Tim Northover675a0962014-06-13 14:24:23 +00006291 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006292
6293'``udiv``' Instruction
6294^^^^^^^^^^^^^^^^^^^^^^
6295
6296Syntax:
6297"""""""
6298
6299::
6300
Tim Northover675a0962014-06-13 14:24:23 +00006301 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6302 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006303
6304Overview:
6305"""""""""
6306
6307The '``udiv``' instruction returns the quotient of its two operands.
6308
6309Arguments:
6310""""""""""
6311
6312The two arguments to the '``udiv``' instruction must be
6313:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6314arguments must have identical types.
6315
6316Semantics:
6317""""""""""
6318
6319The value produced is the unsigned integer quotient of the two operands.
6320
6321Note that unsigned integer division and signed integer division are
6322distinct operations; for signed integer division, use '``sdiv``'.
6323
6324Division by zero leads to undefined behavior.
6325
6326If the ``exact`` keyword is present, the result value of the ``udiv`` is
6327a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6328such, "((a udiv exact b) mul b) == a").
6329
6330Example:
6331""""""""
6332
Renato Golin124f2592016-07-20 12:16:38 +00006333.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006334
Tim Northover675a0962014-06-13 14:24:23 +00006335 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006336
6337'``sdiv``' Instruction
6338^^^^^^^^^^^^^^^^^^^^^^
6339
6340Syntax:
6341"""""""
6342
6343::
6344
Tim Northover675a0962014-06-13 14:24:23 +00006345 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6346 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006347
6348Overview:
6349"""""""""
6350
6351The '``sdiv``' instruction returns the quotient of its two operands.
6352
6353Arguments:
6354""""""""""
6355
6356The two arguments to the '``sdiv``' instruction must be
6357:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6358arguments must have identical types.
6359
6360Semantics:
6361""""""""""
6362
6363The value produced is the signed integer quotient of the two operands
6364rounded towards zero.
6365
6366Note that signed integer division and unsigned integer division are
6367distinct operations; for unsigned integer division, use '``udiv``'.
6368
6369Division by zero leads to undefined behavior. Overflow also leads to
6370undefined behavior; this is a rare case, but can occur, for example, by
6371doing a 32-bit division of -2147483648 by -1.
6372
6373If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6374a :ref:`poison value <poisonvalues>` if the result would be rounded.
6375
6376Example:
6377""""""""
6378
Renato Golin124f2592016-07-20 12:16:38 +00006379.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006380
Tim Northover675a0962014-06-13 14:24:23 +00006381 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006382
6383.. _i_fdiv:
6384
6385'``fdiv``' Instruction
6386^^^^^^^^^^^^^^^^^^^^^^
6387
6388Syntax:
6389"""""""
6390
6391::
6392
Tim Northover675a0962014-06-13 14:24:23 +00006393 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006394
6395Overview:
6396"""""""""
6397
6398The '``fdiv``' instruction returns the quotient of its two operands.
6399
6400Arguments:
6401""""""""""
6402
6403The two arguments to the '``fdiv``' instruction must be :ref:`floating
6404point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6405Both arguments must have identical types.
6406
6407Semantics:
6408""""""""""
6409
6410The value produced is the floating point quotient of the two operands.
6411This instruction can also take any number of :ref:`fast-math
6412flags <fastmath>`, which are optimization hints to enable otherwise
6413unsafe floating point optimizations:
6414
6415Example:
6416""""""""
6417
Renato Golin124f2592016-07-20 12:16:38 +00006418.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006419
Tim Northover675a0962014-06-13 14:24:23 +00006420 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006421
6422'``urem``' Instruction
6423^^^^^^^^^^^^^^^^^^^^^^
6424
6425Syntax:
6426"""""""
6427
6428::
6429
Tim Northover675a0962014-06-13 14:24:23 +00006430 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006431
6432Overview:
6433"""""""""
6434
6435The '``urem``' instruction returns the remainder from the unsigned
6436division of its two arguments.
6437
6438Arguments:
6439""""""""""
6440
6441The two arguments to the '``urem``' instruction must be
6442:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6443arguments must have identical types.
6444
6445Semantics:
6446""""""""""
6447
6448This instruction returns the unsigned integer *remainder* of a division.
6449This instruction always performs an unsigned division to get the
6450remainder.
6451
6452Note that unsigned integer remainder and signed integer remainder are
6453distinct operations; for signed integer remainder, use '``srem``'.
6454
6455Taking the remainder of a division by zero leads to undefined behavior.
6456
6457Example:
6458""""""""
6459
Renato Golin124f2592016-07-20 12:16:38 +00006460.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006461
Tim Northover675a0962014-06-13 14:24:23 +00006462 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006463
6464'``srem``' Instruction
6465^^^^^^^^^^^^^^^^^^^^^^
6466
6467Syntax:
6468"""""""
6469
6470::
6471
Tim Northover675a0962014-06-13 14:24:23 +00006472 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006473
6474Overview:
6475"""""""""
6476
6477The '``srem``' instruction returns the remainder from the signed
6478division of its two operands. This instruction can also take
6479:ref:`vector <t_vector>` versions of the values in which case the elements
6480must be integers.
6481
6482Arguments:
6483""""""""""
6484
6485The two arguments to the '``srem``' instruction must be
6486:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6487arguments must have identical types.
6488
6489Semantics:
6490""""""""""
6491
6492This instruction returns the *remainder* of a division (where the result
6493is either zero or has the same sign as the dividend, ``op1``), not the
6494*modulo* operator (where the result is either zero or has the same sign
6495as the divisor, ``op2``) of a value. For more information about the
6496difference, see `The Math
6497Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6498table of how this is implemented in various languages, please see
6499`Wikipedia: modulo
6500operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6501
6502Note that signed integer remainder and unsigned integer remainder are
6503distinct operations; for unsigned integer remainder, use '``urem``'.
6504
6505Taking the remainder of a division by zero leads to undefined behavior.
6506Overflow also leads to undefined behavior; this is a rare case, but can
6507occur, for example, by taking the remainder of a 32-bit division of
6508-2147483648 by -1. (The remainder doesn't actually overflow, but this
6509rule lets srem be implemented using instructions that return both the
6510result of the division and the remainder.)
6511
6512Example:
6513""""""""
6514
Renato Golin124f2592016-07-20 12:16:38 +00006515.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006516
Tim Northover675a0962014-06-13 14:24:23 +00006517 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006518
6519.. _i_frem:
6520
6521'``frem``' Instruction
6522^^^^^^^^^^^^^^^^^^^^^^
6523
6524Syntax:
6525"""""""
6526
6527::
6528
Tim Northover675a0962014-06-13 14:24:23 +00006529 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006530
6531Overview:
6532"""""""""
6533
6534The '``frem``' instruction returns the remainder from the division of
6535its two operands.
6536
6537Arguments:
6538""""""""""
6539
6540The two arguments to the '``frem``' instruction must be :ref:`floating
6541point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6542Both arguments must have identical types.
6543
6544Semantics:
6545""""""""""
6546
6547This instruction returns the *remainder* of a division. The remainder
6548has the same sign as the dividend. This instruction can also take any
6549number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6550to enable otherwise unsafe floating point optimizations:
6551
6552Example:
6553""""""""
6554
Renato Golin124f2592016-07-20 12:16:38 +00006555.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006556
Tim Northover675a0962014-06-13 14:24:23 +00006557 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006558
6559.. _bitwiseops:
6560
6561Bitwise Binary Operations
6562-------------------------
6563
6564Bitwise binary operators are used to do various forms of bit-twiddling
6565in a program. They are generally very efficient instructions and can
6566commonly be strength reduced from other instructions. They require two
6567operands of the same type, execute an operation on them, and produce a
6568single value. The resulting value is the same type as its operands.
6569
6570'``shl``' Instruction
6571^^^^^^^^^^^^^^^^^^^^^
6572
6573Syntax:
6574"""""""
6575
6576::
6577
Tim Northover675a0962014-06-13 14:24:23 +00006578 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6579 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6580 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6581 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006582
6583Overview:
6584"""""""""
6585
6586The '``shl``' instruction returns the first operand shifted to the left
6587a specified number of bits.
6588
6589Arguments:
6590""""""""""
6591
6592Both arguments to the '``shl``' instruction must be the same
6593:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6594'``op2``' is treated as an unsigned value.
6595
6596Semantics:
6597""""""""""
6598
6599The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6600where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006601dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006602``op1``, the result is undefined. If the arguments are vectors, each
6603vector element of ``op1`` is shifted by the corresponding shift amount
6604in ``op2``.
6605
6606If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6607value <poisonvalues>` if it shifts out any non-zero bits. If the
6608``nsw`` keyword is present, then the shift produces a :ref:`poison
6609value <poisonvalues>` if it shifts out any bits that disagree with the
Sanjoy Dasdbc58d02016-11-13 23:40:40 +00006610resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006611
6612Example:
6613""""""""
6614
Renato Golin124f2592016-07-20 12:16:38 +00006615.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006616
Tim Northover675a0962014-06-13 14:24:23 +00006617 <result> = shl i32 4, %var ; yields i32: 4 << %var
6618 <result> = shl i32 4, 2 ; yields i32: 16
6619 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006620 <result> = shl i32 1, 32 ; undefined
6621 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6622
6623'``lshr``' Instruction
6624^^^^^^^^^^^^^^^^^^^^^^
6625
6626Syntax:
6627"""""""
6628
6629::
6630
Tim Northover675a0962014-06-13 14:24:23 +00006631 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6632 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006633
6634Overview:
6635"""""""""
6636
6637The '``lshr``' instruction (logical shift right) returns the first
6638operand shifted to the right a specified number of bits with zero fill.
6639
6640Arguments:
6641""""""""""
6642
6643Both arguments to the '``lshr``' instruction must be the same
6644:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6645'``op2``' is treated as an unsigned value.
6646
6647Semantics:
6648""""""""""
6649
6650This instruction always performs a logical shift right operation. The
6651most significant bits of the result will be filled with zero bits after
6652the shift. If ``op2`` is (statically or dynamically) equal to or larger
6653than the number of bits in ``op1``, the result is undefined. If the
6654arguments are vectors, each vector element of ``op1`` is shifted by the
6655corresponding shift amount in ``op2``.
6656
6657If the ``exact`` keyword is present, the result value of the ``lshr`` is
6658a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6659non-zero.
6660
6661Example:
6662""""""""
6663
Renato Golin124f2592016-07-20 12:16:38 +00006664.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006665
Tim Northover675a0962014-06-13 14:24:23 +00006666 <result> = lshr i32 4, 1 ; yields i32:result = 2
6667 <result> = lshr i32 4, 2 ; yields i32:result = 1
6668 <result> = lshr i8 4, 3 ; yields i8:result = 0
6669 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006670 <result> = lshr i32 1, 32 ; undefined
6671 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6672
6673'``ashr``' Instruction
6674^^^^^^^^^^^^^^^^^^^^^^
6675
6676Syntax:
6677"""""""
6678
6679::
6680
Tim Northover675a0962014-06-13 14:24:23 +00006681 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6682 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006683
6684Overview:
6685"""""""""
6686
6687The '``ashr``' instruction (arithmetic shift right) returns the first
6688operand shifted to the right a specified number of bits with sign
6689extension.
6690
6691Arguments:
6692""""""""""
6693
6694Both arguments to the '``ashr``' instruction must be the same
6695:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6696'``op2``' is treated as an unsigned value.
6697
6698Semantics:
6699""""""""""
6700
6701This instruction always performs an arithmetic shift right operation,
6702The most significant bits of the result will be filled with the sign bit
6703of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6704than the number of bits in ``op1``, the result is undefined. If the
6705arguments are vectors, each vector element of ``op1`` is shifted by the
6706corresponding shift amount in ``op2``.
6707
6708If the ``exact`` keyword is present, the result value of the ``ashr`` is
6709a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6710non-zero.
6711
6712Example:
6713""""""""
6714
Renato Golin124f2592016-07-20 12:16:38 +00006715.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006716
Tim Northover675a0962014-06-13 14:24:23 +00006717 <result> = ashr i32 4, 1 ; yields i32:result = 2
6718 <result> = ashr i32 4, 2 ; yields i32:result = 1
6719 <result> = ashr i8 4, 3 ; yields i8:result = 0
6720 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006721 <result> = ashr i32 1, 32 ; undefined
6722 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6723
6724'``and``' Instruction
6725^^^^^^^^^^^^^^^^^^^^^
6726
6727Syntax:
6728"""""""
6729
6730::
6731
Tim Northover675a0962014-06-13 14:24:23 +00006732 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006733
6734Overview:
6735"""""""""
6736
6737The '``and``' instruction returns the bitwise logical and of its two
6738operands.
6739
6740Arguments:
6741""""""""""
6742
6743The two arguments to the '``and``' instruction must be
6744:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6745arguments must have identical types.
6746
6747Semantics:
6748""""""""""
6749
6750The truth table used for the '``and``' instruction is:
6751
6752+-----+-----+-----+
6753| In0 | In1 | Out |
6754+-----+-----+-----+
6755| 0 | 0 | 0 |
6756+-----+-----+-----+
6757| 0 | 1 | 0 |
6758+-----+-----+-----+
6759| 1 | 0 | 0 |
6760+-----+-----+-----+
6761| 1 | 1 | 1 |
6762+-----+-----+-----+
6763
6764Example:
6765""""""""
6766
Renato Golin124f2592016-07-20 12:16:38 +00006767.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006768
Tim Northover675a0962014-06-13 14:24:23 +00006769 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6770 <result> = and i32 15, 40 ; yields i32:result = 8
6771 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006772
6773'``or``' Instruction
6774^^^^^^^^^^^^^^^^^^^^
6775
6776Syntax:
6777"""""""
6778
6779::
6780
Tim Northover675a0962014-06-13 14:24:23 +00006781 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006782
6783Overview:
6784"""""""""
6785
6786The '``or``' instruction returns the bitwise logical inclusive or of its
6787two operands.
6788
6789Arguments:
6790""""""""""
6791
6792The two arguments to the '``or``' instruction must be
6793:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6794arguments must have identical types.
6795
6796Semantics:
6797""""""""""
6798
6799The truth table used for the '``or``' instruction is:
6800
6801+-----+-----+-----+
6802| In0 | In1 | Out |
6803+-----+-----+-----+
6804| 0 | 0 | 0 |
6805+-----+-----+-----+
6806| 0 | 1 | 1 |
6807+-----+-----+-----+
6808| 1 | 0 | 1 |
6809+-----+-----+-----+
6810| 1 | 1 | 1 |
6811+-----+-----+-----+
6812
6813Example:
6814""""""""
6815
6816::
6817
Tim Northover675a0962014-06-13 14:24:23 +00006818 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6819 <result> = or i32 15, 40 ; yields i32:result = 47
6820 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006821
6822'``xor``' Instruction
6823^^^^^^^^^^^^^^^^^^^^^
6824
6825Syntax:
6826"""""""
6827
6828::
6829
Tim Northover675a0962014-06-13 14:24:23 +00006830 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006831
6832Overview:
6833"""""""""
6834
6835The '``xor``' instruction returns the bitwise logical exclusive or of
6836its two operands. The ``xor`` is used to implement the "one's
6837complement" operation, which is the "~" operator in C.
6838
6839Arguments:
6840""""""""""
6841
6842The two arguments to the '``xor``' instruction must be
6843:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6844arguments must have identical types.
6845
6846Semantics:
6847""""""""""
6848
6849The truth table used for the '``xor``' instruction is:
6850
6851+-----+-----+-----+
6852| In0 | In1 | Out |
6853+-----+-----+-----+
6854| 0 | 0 | 0 |
6855+-----+-----+-----+
6856| 0 | 1 | 1 |
6857+-----+-----+-----+
6858| 1 | 0 | 1 |
6859+-----+-----+-----+
6860| 1 | 1 | 0 |
6861+-----+-----+-----+
6862
6863Example:
6864""""""""
6865
Renato Golin124f2592016-07-20 12:16:38 +00006866.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006867
Tim Northover675a0962014-06-13 14:24:23 +00006868 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6869 <result> = xor i32 15, 40 ; yields i32:result = 39
6870 <result> = xor i32 4, 8 ; yields i32:result = 12
6871 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006872
6873Vector Operations
6874-----------------
6875
6876LLVM supports several instructions to represent vector operations in a
6877target-independent manner. These instructions cover the element-access
6878and vector-specific operations needed to process vectors effectively.
6879While LLVM does directly support these vector operations, many
6880sophisticated algorithms will want to use target-specific intrinsics to
6881take full advantage of a specific target.
6882
6883.. _i_extractelement:
6884
6885'``extractelement``' Instruction
6886^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6887
6888Syntax:
6889"""""""
6890
6891::
6892
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006893 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006894
6895Overview:
6896"""""""""
6897
6898The '``extractelement``' instruction extracts a single scalar element
6899from a vector at a specified index.
6900
6901Arguments:
6902""""""""""
6903
6904The first operand of an '``extractelement``' instruction is a value of
6905:ref:`vector <t_vector>` type. The second operand is an index indicating
6906the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006907variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006908
6909Semantics:
6910""""""""""
6911
6912The result is a scalar of the same type as the element type of ``val``.
6913Its value is the value at position ``idx`` of ``val``. If ``idx``
6914exceeds the length of ``val``, the results are undefined.
6915
6916Example:
6917""""""""
6918
Renato Golin124f2592016-07-20 12:16:38 +00006919.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006920
6921 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6922
6923.. _i_insertelement:
6924
6925'``insertelement``' Instruction
6926^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6927
6928Syntax:
6929"""""""
6930
6931::
6932
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006933 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006934
6935Overview:
6936"""""""""
6937
6938The '``insertelement``' instruction inserts a scalar element into a
6939vector at a specified index.
6940
6941Arguments:
6942""""""""""
6943
6944The first operand of an '``insertelement``' instruction is a value of
6945:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6946type must equal the element type of the first operand. The third operand
6947is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006948index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006949
6950Semantics:
6951""""""""""
6952
6953The result is a vector of the same type as ``val``. Its element values
6954are those of ``val`` except at position ``idx``, where it gets the value
6955``elt``. If ``idx`` exceeds the length of ``val``, the results are
6956undefined.
6957
6958Example:
6959""""""""
6960
Renato Golin124f2592016-07-20 12:16:38 +00006961.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006962
6963 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6964
6965.. _i_shufflevector:
6966
6967'``shufflevector``' Instruction
6968^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6969
6970Syntax:
6971"""""""
6972
6973::
6974
6975 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6976
6977Overview:
6978"""""""""
6979
6980The '``shufflevector``' instruction constructs a permutation of elements
6981from two input vectors, returning a vector with the same element type as
6982the input and length that is the same as the shuffle mask.
6983
6984Arguments:
6985""""""""""
6986
6987The first two operands of a '``shufflevector``' instruction are vectors
6988with the same type. The third argument is a shuffle mask whose element
6989type is always 'i32'. The result of the instruction is a vector whose
6990length is the same as the shuffle mask and whose element type is the
6991same as the element type of the first two operands.
6992
6993The shuffle mask operand is required to be a constant vector with either
6994constant integer or undef values.
6995
6996Semantics:
6997""""""""""
6998
6999The elements of the two input vectors are numbered from left to right
7000across both of the vectors. The shuffle mask operand specifies, for each
7001element of the result vector, which element of the two input vectors the
7002result element gets. The element selector may be undef (meaning "don't
7003care") and the second operand may be undef if performing a shuffle from
7004only one vector.
7005
7006Example:
7007""""""""
7008
Renato Golin124f2592016-07-20 12:16:38 +00007009.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007010
7011 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7012 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7013 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7014 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7015 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7016 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7017 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7018 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7019
7020Aggregate Operations
7021--------------------
7022
7023LLVM supports several instructions for working with
7024:ref:`aggregate <t_aggregate>` values.
7025
7026.. _i_extractvalue:
7027
7028'``extractvalue``' Instruction
7029^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7030
7031Syntax:
7032"""""""
7033
7034::
7035
7036 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7037
7038Overview:
7039"""""""""
7040
7041The '``extractvalue``' instruction extracts the value of a member field
7042from an :ref:`aggregate <t_aggregate>` value.
7043
7044Arguments:
7045""""""""""
7046
7047The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007048:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007049constant indices to specify which value to extract in a similar manner
7050as indices in a '``getelementptr``' instruction.
7051
7052The major differences to ``getelementptr`` indexing are:
7053
7054- Since the value being indexed is not a pointer, the first index is
7055 omitted and assumed to be zero.
7056- At least one index must be specified.
7057- Not only struct indices but also array indices must be in bounds.
7058
7059Semantics:
7060""""""""""
7061
7062The result is the value at the position in the aggregate specified by
7063the index operands.
7064
7065Example:
7066""""""""
7067
Renato Golin124f2592016-07-20 12:16:38 +00007068.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007069
7070 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7071
7072.. _i_insertvalue:
7073
7074'``insertvalue``' Instruction
7075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7076
7077Syntax:
7078"""""""
7079
7080::
7081
7082 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7083
7084Overview:
7085"""""""""
7086
7087The '``insertvalue``' instruction inserts a value into a member field in
7088an :ref:`aggregate <t_aggregate>` value.
7089
7090Arguments:
7091""""""""""
7092
7093The first operand of an '``insertvalue``' instruction is a value of
7094:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7095a first-class value to insert. The following operands are constant
7096indices indicating the position at which to insert the value in a
7097similar manner as indices in a '``extractvalue``' instruction. The value
7098to insert must have the same type as the value identified by the
7099indices.
7100
7101Semantics:
7102""""""""""
7103
7104The result is an aggregate of the same type as ``val``. Its value is
7105that of ``val`` except that the value at the position specified by the
7106indices is that of ``elt``.
7107
7108Example:
7109""""""""
7110
7111.. code-block:: llvm
7112
7113 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7114 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007115 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007116
7117.. _memoryops:
7118
7119Memory Access and Addressing Operations
7120---------------------------------------
7121
7122A key design point of an SSA-based representation is how it represents
7123memory. In LLVM, no memory locations are in SSA form, which makes things
7124very simple. This section describes how to read, write, and allocate
7125memory in LLVM.
7126
7127.. _i_alloca:
7128
7129'``alloca``' Instruction
7130^^^^^^^^^^^^^^^^^^^^^^^^
7131
7132Syntax:
7133"""""""
7134
7135::
7136
Tim Northover675a0962014-06-13 14:24:23 +00007137 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00007138
7139Overview:
7140"""""""""
7141
7142The '``alloca``' instruction allocates memory on the stack frame of the
7143currently executing function, to be automatically released when this
7144function returns to its caller. The object is always allocated in the
7145generic address space (address space zero).
7146
7147Arguments:
7148""""""""""
7149
7150The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7151bytes of memory on the runtime stack, returning a pointer of the
7152appropriate type to the program. If "NumElements" is specified, it is
7153the number of elements allocated, otherwise "NumElements" is defaulted
7154to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007155allocation is guaranteed to be aligned to at least that boundary. The
7156alignment may not be greater than ``1 << 29``. If not specified, or if
7157zero, the target can choose to align the allocation on any convenient
7158boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007159
7160'``type``' may be any sized type.
7161
7162Semantics:
7163""""""""""
7164
7165Memory is allocated; a pointer is returned. The operation is undefined
7166if there is insufficient stack space for the allocation. '``alloca``'d
7167memory is automatically released when the function returns. The
7168'``alloca``' instruction is commonly used to represent automatic
7169variables that must have an address available. When the function returns
7170(either with the ``ret`` or ``resume`` instructions), the memory is
7171reclaimed. Allocating zero bytes is legal, but the result is undefined.
7172The order in which memory is allocated (ie., which way the stack grows)
7173is not specified.
7174
7175Example:
7176""""""""
7177
7178.. code-block:: llvm
7179
Tim Northover675a0962014-06-13 14:24:23 +00007180 %ptr = alloca i32 ; yields i32*:ptr
7181 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7182 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7183 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007184
7185.. _i_load:
7186
7187'``load``' Instruction
7188^^^^^^^^^^^^^^^^^^^^^^
7189
7190Syntax:
7191"""""""
7192
7193::
7194
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007195 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007196 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007197 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007198 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007199 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007200
7201Overview:
7202"""""""""
7203
7204The '``load``' instruction is used to read from memory.
7205
7206Arguments:
7207""""""""""
7208
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007209The argument to the ``load`` instruction specifies the memory address from which
7210to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7211known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7212the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7213modify the number or order of execution of this ``load`` with other
7214:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007215
JF Bastiend1fb5852015-12-17 22:09:19 +00007216If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7217<ordering>` and optional ``singlethread`` argument. The ``release`` and
7218``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7219produce :ref:`defined <memmodel>` results when they may see multiple atomic
7220stores. The type of the pointee must be an integer, pointer, or floating-point
7221type whose bit width is a power of two greater than or equal to eight and less
7222than or equal to a target-specific size limit. ``align`` must be explicitly
7223specified on atomic loads, and the load has undefined behavior if the alignment
7224is not set to a value which is at least the size in bytes of the
7225pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007226
7227The optional constant ``align`` argument specifies the alignment of the
7228operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007229or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007230alignment for the target. It is the responsibility of the code emitter
7231to ensure that the alignment information is correct. Overestimating the
7232alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007233may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007234maximum possible alignment is ``1 << 29``. An alignment value higher
7235than the size of the loaded type implies memory up to the alignment
7236value bytes can be safely loaded without trapping in the default
7237address space. Access of the high bytes can interfere with debugging
7238tools, so should not be accessed if the function has the
7239``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007240
7241The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007242metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007243``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007244metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007245that this load is not expected to be reused in the cache. The code
7246generator may select special instructions to save cache bandwidth, such
7247as the ``MOVNT`` instruction on x86.
7248
7249The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007250metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007251entries. If a load instruction tagged with the ``!invariant.load``
7252metadata is executed, the optimizer may assume the memory location
7253referenced by the load contains the same value at all points in the
7254program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007255
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007256The optional ``!invariant.group`` metadata must reference a single metadata name
7257 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7258
Philip Reamescdb72f32014-10-20 22:40:55 +00007259The optional ``!nonnull`` metadata must reference a single
7260metadata name ``<index>`` corresponding to a metadata node with no
7261entries. The existence of the ``!nonnull`` metadata on the
7262instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007263never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007264on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007265to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007266
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007267The optional ``!dereferenceable`` metadata must reference a single metadata
7268name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007269entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007270tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007271The number of bytes known to be dereferenceable is specified by the integer
7272value in the metadata node. This is analogous to the ''dereferenceable''
7273attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007274to loads of a pointer type.
7275
7276The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007277metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7278``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007279instruction tells the optimizer that the value loaded is known to be either
7280dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007281The number of bytes known to be dereferenceable is specified by the integer
7282value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7283attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007284to loads of a pointer type.
7285
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007286The optional ``!align`` metadata must reference a single metadata name
7287``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7288The existence of the ``!align`` metadata on the instruction tells the
7289optimizer that the value loaded is known to be aligned to a boundary specified
7290by the integer value in the metadata node. The alignment must be a power of 2.
7291This is analogous to the ''align'' attribute on parameters and return values.
7292This metadata can only be applied to loads of a pointer type.
7293
Sean Silvab084af42012-12-07 10:36:55 +00007294Semantics:
7295""""""""""
7296
7297The location of memory pointed to is loaded. If the value being loaded
7298is of scalar type then the number of bytes read does not exceed the
7299minimum number of bytes needed to hold all bits of the type. For
7300example, loading an ``i24`` reads at most three bytes. When loading a
7301value of a type like ``i20`` with a size that is not an integral number
7302of bytes, the result is undefined if the value was not originally
7303written using a store of the same type.
7304
7305Examples:
7306"""""""""
7307
7308.. code-block:: llvm
7309
Tim Northover675a0962014-06-13 14:24:23 +00007310 %ptr = alloca i32 ; yields i32*:ptr
7311 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007312 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007313
7314.. _i_store:
7315
7316'``store``' Instruction
7317^^^^^^^^^^^^^^^^^^^^^^^
7318
7319Syntax:
7320"""""""
7321
7322::
7323
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007324 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7325 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007326
7327Overview:
7328"""""""""
7329
7330The '``store``' instruction is used to write to memory.
7331
7332Arguments:
7333""""""""""
7334
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007335There are two arguments to the ``store`` instruction: a value to store and an
7336address at which to store it. The type of the ``<pointer>`` operand must be a
7337pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7338operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7339allowed to modify the number or order of execution of this ``store`` with other
7340:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7341<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7342structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007343
JF Bastiend1fb5852015-12-17 22:09:19 +00007344If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7345<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7346``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7347produce :ref:`defined <memmodel>` results when they may see multiple atomic
7348stores. The type of the pointee must be an integer, pointer, or floating-point
7349type whose bit width is a power of two greater than or equal to eight and less
7350than or equal to a target-specific size limit. ``align`` must be explicitly
7351specified on atomic stores, and the store has undefined behavior if the
7352alignment is not set to a value which is at least the size in bytes of the
7353pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007354
Eli Benderskyca380842013-04-17 17:17:20 +00007355The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007356operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007357or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007358alignment for the target. It is the responsibility of the code emitter
7359to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007360alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007361alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007362safe. The maximum possible alignment is ``1 << 29``. An alignment
7363value higher than the size of the stored type implies memory up to the
7364alignment value bytes can be stored to without trapping in the default
7365address space. Storing to the higher bytes however may result in data
7366races if another thread can access the same address. Introducing a
7367data race is not allowed. Storing to the extra bytes is not allowed
7368even in situations where a data race is known to not exist if the
7369function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007370
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007371The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007372name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007373value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007374tells the optimizer and code generator that this load is not expected to
7375be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007376instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007377x86.
7378
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007379The optional ``!invariant.group`` metadata must reference a
7380single metadata name ``<index>``. See ``invariant.group`` metadata.
7381
Sean Silvab084af42012-12-07 10:36:55 +00007382Semantics:
7383""""""""""
7384
Eli Benderskyca380842013-04-17 17:17:20 +00007385The contents of memory are updated to contain ``<value>`` at the
7386location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007387of scalar type then the number of bytes written does not exceed the
7388minimum number of bytes needed to hold all bits of the type. For
7389example, storing an ``i24`` writes at most three bytes. When writing a
7390value of a type like ``i20`` with a size that is not an integral number
7391of bytes, it is unspecified what happens to the extra bits that do not
7392belong to the type, but they will typically be overwritten.
7393
7394Example:
7395""""""""
7396
7397.. code-block:: llvm
7398
Tim Northover675a0962014-06-13 14:24:23 +00007399 %ptr = alloca i32 ; yields i32*:ptr
7400 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007401 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007402
7403.. _i_fence:
7404
7405'``fence``' Instruction
7406^^^^^^^^^^^^^^^^^^^^^^^
7407
7408Syntax:
7409"""""""
7410
7411::
7412
Tim Northover675a0962014-06-13 14:24:23 +00007413 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007414
7415Overview:
7416"""""""""
7417
7418The '``fence``' instruction is used to introduce happens-before edges
7419between operations.
7420
7421Arguments:
7422""""""""""
7423
7424'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7425defines what *synchronizes-with* edges they add. They can only be given
7426``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7427
7428Semantics:
7429""""""""""
7430
7431A fence A which has (at least) ``release`` ordering semantics
7432*synchronizes with* a fence B with (at least) ``acquire`` ordering
7433semantics if and only if there exist atomic operations X and Y, both
7434operating on some atomic object M, such that A is sequenced before X, X
7435modifies M (either directly or through some side effect of a sequence
7436headed by X), Y is sequenced before B, and Y observes M. This provides a
7437*happens-before* dependency between A and B. Rather than an explicit
7438``fence``, one (but not both) of the atomic operations X or Y might
7439provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7440still *synchronize-with* the explicit ``fence`` and establish the
7441*happens-before* edge.
7442
7443A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7444``acquire`` and ``release`` semantics specified above, participates in
7445the global program order of other ``seq_cst`` operations and/or fences.
7446
7447The optional ":ref:`singlethread <singlethread>`" argument specifies
7448that the fence only synchronizes with other fences in the same thread.
7449(This is useful for interacting with signal handlers.)
7450
7451Example:
7452""""""""
7453
7454.. code-block:: llvm
7455
Tim Northover675a0962014-06-13 14:24:23 +00007456 fence acquire ; yields void
7457 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007458
7459.. _i_cmpxchg:
7460
7461'``cmpxchg``' Instruction
7462^^^^^^^^^^^^^^^^^^^^^^^^^
7463
7464Syntax:
7465"""""""
7466
7467::
7468
Tim Northover675a0962014-06-13 14:24:23 +00007469 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007470
7471Overview:
7472"""""""""
7473
7474The '``cmpxchg``' instruction is used to atomically modify memory. It
7475loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007476equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007477
7478Arguments:
7479""""""""""
7480
7481There are three arguments to the '``cmpxchg``' instruction: an address
7482to operate on, a value to compare to the value currently be at that
7483address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007484are equal. The type of '<cmp>' must be an integer or pointer type whose
7485bit width is a power of two greater than or equal to eight and less
7486than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7487have the same type, and the type of '<pointer>' must be a pointer to
7488that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7489optimizer is not allowed to modify the number or order of execution of
7490this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007491
Tim Northovere94a5182014-03-11 10:48:52 +00007492The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007493``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7494must be at least ``monotonic``, the ordering constraint on failure must be no
7495stronger than that on success, and the failure ordering cannot be either
7496``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007497
7498The optional "``singlethread``" argument declares that the ``cmpxchg``
7499is only atomic with respect to code (usually signal handlers) running in
7500the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7501respect to all other code in the system.
7502
7503The pointer passed into cmpxchg must have alignment greater than or
7504equal to the size in memory of the operand.
7505
7506Semantics:
7507""""""""""
7508
Tim Northover420a2162014-06-13 14:24:07 +00007509The contents of memory at the location specified by the '``<pointer>``' operand
7510is read and compared to '``<cmp>``'; if the read value is the equal, the
7511'``<new>``' is written. The original value at the location is returned, together
7512with a flag indicating success (true) or failure (false).
7513
7514If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7515permitted: the operation may not write ``<new>`` even if the comparison
7516matched.
7517
7518If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7519if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007520
Tim Northovere94a5182014-03-11 10:48:52 +00007521A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7522identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7523load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007524
7525Example:
7526""""""""
7527
7528.. code-block:: llvm
7529
7530 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007531 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007532 br label %loop
7533
7534 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007535 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007536 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007537 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007538 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7539 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007540 br i1 %success, label %done, label %loop
7541
7542 done:
7543 ...
7544
7545.. _i_atomicrmw:
7546
7547'``atomicrmw``' Instruction
7548^^^^^^^^^^^^^^^^^^^^^^^^^^^
7549
7550Syntax:
7551"""""""
7552
7553::
7554
Tim Northover675a0962014-06-13 14:24:23 +00007555 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007556
7557Overview:
7558"""""""""
7559
7560The '``atomicrmw``' instruction is used to atomically modify memory.
7561
7562Arguments:
7563""""""""""
7564
7565There are three arguments to the '``atomicrmw``' instruction: an
7566operation to apply, an address whose value to modify, an argument to the
7567operation. The operation must be one of the following keywords:
7568
7569- xchg
7570- add
7571- sub
7572- and
7573- nand
7574- or
7575- xor
7576- max
7577- min
7578- umax
7579- umin
7580
7581The type of '<value>' must be an integer type whose bit width is a power
7582of two greater than or equal to eight and less than or equal to a
7583target-specific size limit. The type of the '``<pointer>``' operand must
7584be a pointer to that type. If the ``atomicrmw`` is marked as
7585``volatile``, then the optimizer is not allowed to modify the number or
7586order of execution of this ``atomicrmw`` with other :ref:`volatile
7587operations <volatile>`.
7588
7589Semantics:
7590""""""""""
7591
7592The contents of memory at the location specified by the '``<pointer>``'
7593operand are atomically read, modified, and written back. The original
7594value at the location is returned. The modification is specified by the
7595operation argument:
7596
7597- xchg: ``*ptr = val``
7598- add: ``*ptr = *ptr + val``
7599- sub: ``*ptr = *ptr - val``
7600- and: ``*ptr = *ptr & val``
7601- nand: ``*ptr = ~(*ptr & val)``
7602- or: ``*ptr = *ptr | val``
7603- xor: ``*ptr = *ptr ^ val``
7604- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7605- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7606- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7607 comparison)
7608- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7609 comparison)
7610
7611Example:
7612""""""""
7613
7614.. code-block:: llvm
7615
Tim Northover675a0962014-06-13 14:24:23 +00007616 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007617
7618.. _i_getelementptr:
7619
7620'``getelementptr``' Instruction
7621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7622
7623Syntax:
7624"""""""
7625
7626::
7627
Peter Collingbourned93620b2016-11-10 22:34:55 +00007628 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7629 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7630 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007631
7632Overview:
7633"""""""""
7634
7635The '``getelementptr``' instruction is used to get the address of a
7636subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007637address calculation only and does not access memory. The instruction can also
7638be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007639
7640Arguments:
7641""""""""""
7642
David Blaikie16a97eb2015-03-04 22:02:58 +00007643The first argument is always a type used as the basis for the calculations.
7644The second argument is always a pointer or a vector of pointers, and is the
7645base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007646that indicate which of the elements of the aggregate object are indexed.
7647The interpretation of each index is dependent on the type being indexed
7648into. The first index always indexes the pointer value given as the
7649first argument, the second index indexes a value of the type pointed to
7650(not necessarily the value directly pointed to, since the first index
7651can be non-zero), etc. The first type indexed into must be a pointer
7652value, subsequent types can be arrays, vectors, and structs. Note that
7653subsequent types being indexed into can never be pointers, since that
7654would require loading the pointer before continuing calculation.
7655
7656The type of each index argument depends on the type it is indexing into.
7657When indexing into a (optionally packed) structure, only ``i32`` integer
7658**constants** are allowed (when using a vector of indices they must all
7659be the **same** ``i32`` integer constant). When indexing into an array,
7660pointer or vector, integers of any width are allowed, and they are not
7661required to be constant. These integers are treated as signed values
7662where relevant.
7663
7664For example, let's consider a C code fragment and how it gets compiled
7665to LLVM:
7666
7667.. code-block:: c
7668
7669 struct RT {
7670 char A;
7671 int B[10][20];
7672 char C;
7673 };
7674 struct ST {
7675 int X;
7676 double Y;
7677 struct RT Z;
7678 };
7679
7680 int *foo(struct ST *s) {
7681 return &s[1].Z.B[5][13];
7682 }
7683
7684The LLVM code generated by Clang is:
7685
7686.. code-block:: llvm
7687
7688 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7689 %struct.ST = type { i32, double, %struct.RT }
7690
7691 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7692 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007693 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007694 ret i32* %arrayidx
7695 }
7696
7697Semantics:
7698""""""""""
7699
7700In the example above, the first index is indexing into the
7701'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7702= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7703indexes into the third element of the structure, yielding a
7704'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7705structure. The third index indexes into the second element of the
7706structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7707dimensions of the array are subscripted into, yielding an '``i32``'
7708type. The '``getelementptr``' instruction returns a pointer to this
7709element, thus computing a value of '``i32*``' type.
7710
7711Note that it is perfectly legal to index partially through a structure,
7712returning a pointer to an inner element. Because of this, the LLVM code
7713for the given testcase is equivalent to:
7714
7715.. code-block:: llvm
7716
7717 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007718 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7719 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7720 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7721 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7722 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007723 ret i32* %t5
7724 }
7725
7726If the ``inbounds`` keyword is present, the result value of the
7727``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7728pointer is not an *in bounds* address of an allocated object, or if any
7729of the addresses that would be formed by successive addition of the
7730offsets implied by the indices to the base address with infinitely
7731precise signed arithmetic are not an *in bounds* address of that
7732allocated object. The *in bounds* addresses for an allocated object are
7733all the addresses that point into the object, plus the address one byte
7734past the end. In cases where the base is a vector of pointers the
7735``inbounds`` keyword applies to each of the computations element-wise.
7736
7737If the ``inbounds`` keyword is not present, the offsets are added to the
7738base address with silently-wrapping two's complement arithmetic. If the
7739offsets have a different width from the pointer, they are sign-extended
7740or truncated to the width of the pointer. The result value of the
7741``getelementptr`` may be outside the object pointed to by the base
7742pointer. The result value may not necessarily be used to access memory
7743though, even if it happens to point into allocated storage. See the
7744:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7745information.
7746
Peter Collingbourned93620b2016-11-10 22:34:55 +00007747If the ``inrange`` keyword is present before any index, loading from or
7748storing to any pointer derived from the ``getelementptr`` has undefined
7749behavior if the load or store would access memory outside of the bounds of
7750the element selected by the index marked as ``inrange``. The result of a
7751pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7752involving memory) involving a pointer derived from a ``getelementptr`` with
7753the ``inrange`` keyword is undefined, with the exception of comparisons
7754in the case where both operands are in the range of the element selected
7755by the ``inrange`` keyword, inclusive of the address one past the end of
7756that element. Note that the ``inrange`` keyword is currently only allowed
7757in constant ``getelementptr`` expressions.
7758
Sean Silvab084af42012-12-07 10:36:55 +00007759The getelementptr instruction is often confusing. For some more insight
7760into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7761
7762Example:
7763""""""""
7764
7765.. code-block:: llvm
7766
7767 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007768 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007769 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007770 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007771 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007772 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007773 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007774 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007775
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007776Vector of pointers:
7777"""""""""""""""""""
7778
7779The ``getelementptr`` returns a vector of pointers, instead of a single address,
7780when one or more of its arguments is a vector. In such cases, all vector
7781arguments should have the same number of elements, and every scalar argument
7782will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007783
7784.. code-block:: llvm
7785
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007786 ; All arguments are vectors:
7787 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7788 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007789
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007790 ; Add the same scalar offset to each pointer of a vector:
7791 ; A[i] = ptrs[i] + offset*sizeof(i8)
7792 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007793
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007794 ; Add distinct offsets to the same pointer:
7795 ; A[i] = ptr + offsets[i]*sizeof(i8)
7796 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007797
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007798 ; In all cases described above the type of the result is <4 x i8*>
7799
7800The two following instructions are equivalent:
7801
7802.. code-block:: llvm
7803
7804 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7805 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7806 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7807 <4 x i32> %ind4,
7808 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007809
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007810 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7811 i32 2, i32 1, <4 x i32> %ind4, i64 13
7812
7813Let's look at the C code, where the vector version of ``getelementptr``
7814makes sense:
7815
7816.. code-block:: c
7817
7818 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00007819 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007820 for (int i = 0; i < size; ++i) {
7821 A[i] = B[C[i]];
7822 }
7823
7824.. code-block:: llvm
7825
7826 ; get pointers for 8 elements from array B
7827 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7828 ; load 8 elements from array B into A
7829 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7830 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007831
7832Conversion Operations
7833---------------------
7834
7835The instructions in this category are the conversion instructions
7836(casting) which all take a single operand and a type. They perform
7837various bit conversions on the operand.
7838
7839'``trunc .. to``' Instruction
7840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7841
7842Syntax:
7843"""""""
7844
7845::
7846
7847 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7848
7849Overview:
7850"""""""""
7851
7852The '``trunc``' instruction truncates its operand to the type ``ty2``.
7853
7854Arguments:
7855""""""""""
7856
7857The '``trunc``' instruction takes a value to trunc, and a type to trunc
7858it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7859of the same number of integers. The bit size of the ``value`` must be
7860larger than the bit size of the destination type, ``ty2``. Equal sized
7861types are not allowed.
7862
7863Semantics:
7864""""""""""
7865
7866The '``trunc``' instruction truncates the high order bits in ``value``
7867and converts the remaining bits to ``ty2``. Since the source size must
7868be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7869It will always truncate bits.
7870
7871Example:
7872""""""""
7873
7874.. code-block:: llvm
7875
7876 %X = trunc i32 257 to i8 ; yields i8:1
7877 %Y = trunc i32 123 to i1 ; yields i1:true
7878 %Z = trunc i32 122 to i1 ; yields i1:false
7879 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7880
7881'``zext .. to``' Instruction
7882^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7883
7884Syntax:
7885"""""""
7886
7887::
7888
7889 <result> = zext <ty> <value> to <ty2> ; yields ty2
7890
7891Overview:
7892"""""""""
7893
7894The '``zext``' instruction zero extends its operand to type ``ty2``.
7895
7896Arguments:
7897""""""""""
7898
7899The '``zext``' instruction takes a value to cast, and a type to cast it
7900to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7901the same number of integers. The bit size of the ``value`` must be
7902smaller than the bit size of the destination type, ``ty2``.
7903
7904Semantics:
7905""""""""""
7906
7907The ``zext`` fills the high order bits of the ``value`` with zero bits
7908until it reaches the size of the destination type, ``ty2``.
7909
7910When zero extending from i1, the result will always be either 0 or 1.
7911
7912Example:
7913""""""""
7914
7915.. code-block:: llvm
7916
7917 %X = zext i32 257 to i64 ; yields i64:257
7918 %Y = zext i1 true to i32 ; yields i32:1
7919 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7920
7921'``sext .. to``' Instruction
7922^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7923
7924Syntax:
7925"""""""
7926
7927::
7928
7929 <result> = sext <ty> <value> to <ty2> ; yields ty2
7930
7931Overview:
7932"""""""""
7933
7934The '``sext``' sign extends ``value`` to the type ``ty2``.
7935
7936Arguments:
7937""""""""""
7938
7939The '``sext``' instruction takes a value to cast, and a type to cast it
7940to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7941the same number of integers. The bit size of the ``value`` must be
7942smaller than the bit size of the destination type, ``ty2``.
7943
7944Semantics:
7945""""""""""
7946
7947The '``sext``' instruction performs a sign extension by copying the sign
7948bit (highest order bit) of the ``value`` until it reaches the bit size
7949of the type ``ty2``.
7950
7951When sign extending from i1, the extension always results in -1 or 0.
7952
7953Example:
7954""""""""
7955
7956.. code-block:: llvm
7957
7958 %X = sext i8 -1 to i16 ; yields i16 :65535
7959 %Y = sext i1 true to i32 ; yields i32:-1
7960 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7961
7962'``fptrunc .. to``' Instruction
7963^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7964
7965Syntax:
7966"""""""
7967
7968::
7969
7970 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7971
7972Overview:
7973"""""""""
7974
7975The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7976
7977Arguments:
7978""""""""""
7979
7980The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7981value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7982The size of ``value`` must be larger than the size of ``ty2``. This
7983implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7984
7985Semantics:
7986""""""""""
7987
Dan Liew50456fb2015-09-03 18:43:56 +00007988The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007989:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007990point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7991destination type, ``ty2``, then the results are undefined. If the cast produces
7992an inexact result, how rounding is performed (e.g. truncation, also known as
7993round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007994
7995Example:
7996""""""""
7997
7998.. code-block:: llvm
7999
8000 %X = fptrunc double 123.0 to float ; yields float:123.0
8001 %Y = fptrunc double 1.0E+300 to float ; yields undefined
8002
8003'``fpext .. to``' Instruction
8004^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8005
8006Syntax:
8007"""""""
8008
8009::
8010
8011 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8012
8013Overview:
8014"""""""""
8015
8016The '``fpext``' extends a floating point ``value`` to a larger floating
8017point value.
8018
8019Arguments:
8020""""""""""
8021
8022The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
8023``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
8024to. The source type must be smaller than the destination type.
8025
8026Semantics:
8027""""""""""
8028
8029The '``fpext``' instruction extends the ``value`` from a smaller
8030:ref:`floating point <t_floating>` type to a larger :ref:`floating
8031point <t_floating>` type. The ``fpext`` cannot be used to make a
8032*no-op cast* because it always changes bits. Use ``bitcast`` to make a
8033*no-op cast* for a floating point cast.
8034
8035Example:
8036""""""""
8037
8038.. code-block:: llvm
8039
8040 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8041 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8042
8043'``fptoui .. to``' Instruction
8044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8045
8046Syntax:
8047"""""""
8048
8049::
8050
8051 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8052
8053Overview:
8054"""""""""
8055
8056The '``fptoui``' converts a floating point ``value`` to its unsigned
8057integer equivalent of type ``ty2``.
8058
8059Arguments:
8060""""""""""
8061
8062The '``fptoui``' instruction takes a value to cast, which must be a
8063scalar or vector :ref:`floating point <t_floating>` value, and a type to
8064cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8065``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8066type with the same number of elements as ``ty``
8067
8068Semantics:
8069""""""""""
8070
8071The '``fptoui``' instruction converts its :ref:`floating
8072point <t_floating>` operand into the nearest (rounding towards zero)
8073unsigned integer value. If the value cannot fit in ``ty2``, the results
8074are undefined.
8075
8076Example:
8077""""""""
8078
8079.. code-block:: llvm
8080
8081 %X = fptoui double 123.0 to i32 ; yields i32:123
8082 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8083 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8084
8085'``fptosi .. to``' Instruction
8086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8087
8088Syntax:
8089"""""""
8090
8091::
8092
8093 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8094
8095Overview:
8096"""""""""
8097
8098The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
8099``value`` to type ``ty2``.
8100
8101Arguments:
8102""""""""""
8103
8104The '``fptosi``' instruction takes a value to cast, which must be a
8105scalar or vector :ref:`floating point <t_floating>` value, and a type to
8106cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8107``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8108type with the same number of elements as ``ty``
8109
8110Semantics:
8111""""""""""
8112
8113The '``fptosi``' instruction converts its :ref:`floating
8114point <t_floating>` operand into the nearest (rounding towards zero)
8115signed integer value. If the value cannot fit in ``ty2``, the results
8116are undefined.
8117
8118Example:
8119""""""""
8120
8121.. code-block:: llvm
8122
8123 %X = fptosi double -123.0 to i32 ; yields i32:-123
8124 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8125 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8126
8127'``uitofp .. to``' Instruction
8128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8129
8130Syntax:
8131"""""""
8132
8133::
8134
8135 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8136
8137Overview:
8138"""""""""
8139
8140The '``uitofp``' instruction regards ``value`` as an unsigned integer
8141and converts that value to the ``ty2`` type.
8142
8143Arguments:
8144""""""""""
8145
8146The '``uitofp``' instruction takes a value to cast, which must be a
8147scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8148``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8149``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8150type with the same number of elements as ``ty``
8151
8152Semantics:
8153""""""""""
8154
8155The '``uitofp``' instruction interprets its operand as an unsigned
8156integer quantity and converts it to the corresponding floating point
8157value. If the value cannot fit in the floating point value, the results
8158are undefined.
8159
8160Example:
8161""""""""
8162
8163.. code-block:: llvm
8164
8165 %X = uitofp i32 257 to float ; yields float:257.0
8166 %Y = uitofp i8 -1 to double ; yields double:255.0
8167
8168'``sitofp .. to``' Instruction
8169^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8170
8171Syntax:
8172"""""""
8173
8174::
8175
8176 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8177
8178Overview:
8179"""""""""
8180
8181The '``sitofp``' instruction regards ``value`` as a signed integer and
8182converts that value to the ``ty2`` type.
8183
8184Arguments:
8185""""""""""
8186
8187The '``sitofp``' instruction takes a value to cast, which must be a
8188scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8189``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8190``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8191type with the same number of elements as ``ty``
8192
8193Semantics:
8194""""""""""
8195
8196The '``sitofp``' instruction interprets its operand as a signed integer
8197quantity and converts it to the corresponding floating point value. If
8198the value cannot fit in the floating point value, the results are
8199undefined.
8200
8201Example:
8202""""""""
8203
8204.. code-block:: llvm
8205
8206 %X = sitofp i32 257 to float ; yields float:257.0
8207 %Y = sitofp i8 -1 to double ; yields double:-1.0
8208
8209.. _i_ptrtoint:
8210
8211'``ptrtoint .. to``' Instruction
8212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8213
8214Syntax:
8215"""""""
8216
8217::
8218
8219 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8220
8221Overview:
8222"""""""""
8223
8224The '``ptrtoint``' instruction converts the pointer or a vector of
8225pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8226
8227Arguments:
8228""""""""""
8229
8230The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008231a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008232type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8233a vector of integers type.
8234
8235Semantics:
8236""""""""""
8237
8238The '``ptrtoint``' instruction converts ``value`` to integer type
8239``ty2`` by interpreting the pointer value as an integer and either
8240truncating or zero extending that value to the size of the integer type.
8241If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8242``value`` is larger than ``ty2`` then a truncation is done. If they are
8243the same size, then nothing is done (*no-op cast*) other than a type
8244change.
8245
8246Example:
8247""""""""
8248
8249.. code-block:: llvm
8250
8251 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8252 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8253 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8254
8255.. _i_inttoptr:
8256
8257'``inttoptr .. to``' Instruction
8258^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8259
8260Syntax:
8261"""""""
8262
8263::
8264
8265 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8266
8267Overview:
8268"""""""""
8269
8270The '``inttoptr``' instruction converts an integer ``value`` to a
8271pointer type, ``ty2``.
8272
8273Arguments:
8274""""""""""
8275
8276The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8277cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8278type.
8279
8280Semantics:
8281""""""""""
8282
8283The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8284applying either a zero extension or a truncation depending on the size
8285of the integer ``value``. If ``value`` is larger than the size of a
8286pointer then a truncation is done. If ``value`` is smaller than the size
8287of a pointer then a zero extension is done. If they are the same size,
8288nothing is done (*no-op cast*).
8289
8290Example:
8291""""""""
8292
8293.. code-block:: llvm
8294
8295 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8296 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8297 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8298 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8299
8300.. _i_bitcast:
8301
8302'``bitcast .. to``' Instruction
8303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8304
8305Syntax:
8306"""""""
8307
8308::
8309
8310 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8311
8312Overview:
8313"""""""""
8314
8315The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8316changing any bits.
8317
8318Arguments:
8319""""""""""
8320
8321The '``bitcast``' instruction takes a value to cast, which must be a
8322non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008323also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8324bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008325identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008326also be a pointer of the same size. This instruction supports bitwise
8327conversion of vectors to integers and to vectors of other types (as
8328long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008329
8330Semantics:
8331""""""""""
8332
Matt Arsenault24b49c42013-07-31 17:49:08 +00008333The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8334is always a *no-op cast* because no bits change with this
8335conversion. The conversion is done as if the ``value`` had been stored
8336to memory and read back as type ``ty2``. Pointer (or vector of
8337pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008338pointers) types with the same address space through this instruction.
8339To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8340or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008341
8342Example:
8343""""""""
8344
Renato Golin124f2592016-07-20 12:16:38 +00008345.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008346
8347 %X = bitcast i8 255 to i8 ; yields i8 :-1
8348 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8349 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8350 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8351
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008352.. _i_addrspacecast:
8353
8354'``addrspacecast .. to``' Instruction
8355^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8356
8357Syntax:
8358"""""""
8359
8360::
8361
8362 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8363
8364Overview:
8365"""""""""
8366
8367The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8368address space ``n`` to type ``pty2`` in address space ``m``.
8369
8370Arguments:
8371""""""""""
8372
8373The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8374to cast and a pointer type to cast it to, which must have a different
8375address space.
8376
8377Semantics:
8378""""""""""
8379
8380The '``addrspacecast``' instruction converts the pointer value
8381``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008382value modification, depending on the target and the address space
8383pair. Pointer conversions within the same address space must be
8384performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008385conversion is legal then both result and operand refer to the same memory
8386location.
8387
8388Example:
8389""""""""
8390
8391.. code-block:: llvm
8392
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008393 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8394 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8395 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008396
Sean Silvab084af42012-12-07 10:36:55 +00008397.. _otherops:
8398
8399Other Operations
8400----------------
8401
8402The instructions in this category are the "miscellaneous" instructions,
8403which defy better classification.
8404
8405.. _i_icmp:
8406
8407'``icmp``' Instruction
8408^^^^^^^^^^^^^^^^^^^^^^
8409
8410Syntax:
8411"""""""
8412
8413::
8414
Tim Northover675a0962014-06-13 14:24:23 +00008415 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008416
8417Overview:
8418"""""""""
8419
8420The '``icmp``' instruction returns a boolean value or a vector of
8421boolean values based on comparison of its two integer, integer vector,
8422pointer, or pointer vector operands.
8423
8424Arguments:
8425""""""""""
8426
8427The '``icmp``' instruction takes three operands. The first operand is
8428the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008429not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008430
8431#. ``eq``: equal
8432#. ``ne``: not equal
8433#. ``ugt``: unsigned greater than
8434#. ``uge``: unsigned greater or equal
8435#. ``ult``: unsigned less than
8436#. ``ule``: unsigned less or equal
8437#. ``sgt``: signed greater than
8438#. ``sge``: signed greater or equal
8439#. ``slt``: signed less than
8440#. ``sle``: signed less or equal
8441
8442The remaining two arguments must be :ref:`integer <t_integer>` or
8443:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8444must also be identical types.
8445
8446Semantics:
8447""""""""""
8448
8449The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8450code given as ``cond``. The comparison performed always yields either an
8451:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8452
8453#. ``eq``: yields ``true`` if the operands are equal, ``false``
8454 otherwise. No sign interpretation is necessary or performed.
8455#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8456 otherwise. No sign interpretation is necessary or performed.
8457#. ``ugt``: interprets the operands as unsigned values and yields
8458 ``true`` if ``op1`` is greater than ``op2``.
8459#. ``uge``: interprets the operands as unsigned values and yields
8460 ``true`` if ``op1`` is greater than or equal to ``op2``.
8461#. ``ult``: interprets the operands as unsigned values and yields
8462 ``true`` if ``op1`` is less than ``op2``.
8463#. ``ule``: interprets the operands as unsigned values and yields
8464 ``true`` if ``op1`` is less than or equal to ``op2``.
8465#. ``sgt``: interprets the operands as signed values and yields ``true``
8466 if ``op1`` is greater than ``op2``.
8467#. ``sge``: interprets the operands as signed values and yields ``true``
8468 if ``op1`` is greater than or equal to ``op2``.
8469#. ``slt``: interprets the operands as signed values and yields ``true``
8470 if ``op1`` is less than ``op2``.
8471#. ``sle``: interprets the operands as signed values and yields ``true``
8472 if ``op1`` is less than or equal to ``op2``.
8473
8474If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8475are compared as if they were integers.
8476
8477If the operands are integer vectors, then they are compared element by
8478element. The result is an ``i1`` vector with the same number of elements
8479as the values being compared. Otherwise, the result is an ``i1``.
8480
8481Example:
8482""""""""
8483
Renato Golin124f2592016-07-20 12:16:38 +00008484.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008485
8486 <result> = icmp eq i32 4, 5 ; yields: result=false
8487 <result> = icmp ne float* %X, %X ; yields: result=false
8488 <result> = icmp ult i16 4, 5 ; yields: result=true
8489 <result> = icmp sgt i16 4, 5 ; yields: result=false
8490 <result> = icmp ule i16 -4, 5 ; yields: result=false
8491 <result> = icmp sge i16 4, 5 ; yields: result=false
8492
Sean Silvab084af42012-12-07 10:36:55 +00008493.. _i_fcmp:
8494
8495'``fcmp``' Instruction
8496^^^^^^^^^^^^^^^^^^^^^^
8497
8498Syntax:
8499"""""""
8500
8501::
8502
James Molloy88eb5352015-07-10 12:52:00 +00008503 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008504
8505Overview:
8506"""""""""
8507
8508The '``fcmp``' instruction returns a boolean value or vector of boolean
8509values based on comparison of its operands.
8510
8511If the operands are floating point scalars, then the result type is a
8512boolean (:ref:`i1 <t_integer>`).
8513
8514If the operands are floating point vectors, then the result type is a
8515vector of boolean with the same number of elements as the operands being
8516compared.
8517
8518Arguments:
8519""""""""""
8520
8521The '``fcmp``' instruction takes three operands. The first operand is
8522the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008523not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008524
8525#. ``false``: no comparison, always returns false
8526#. ``oeq``: ordered and equal
8527#. ``ogt``: ordered and greater than
8528#. ``oge``: ordered and greater than or equal
8529#. ``olt``: ordered and less than
8530#. ``ole``: ordered and less than or equal
8531#. ``one``: ordered and not equal
8532#. ``ord``: ordered (no nans)
8533#. ``ueq``: unordered or equal
8534#. ``ugt``: unordered or greater than
8535#. ``uge``: unordered or greater than or equal
8536#. ``ult``: unordered or less than
8537#. ``ule``: unordered or less than or equal
8538#. ``une``: unordered or not equal
8539#. ``uno``: unordered (either nans)
8540#. ``true``: no comparison, always returns true
8541
8542*Ordered* means that neither operand is a QNAN while *unordered* means
8543that either operand may be a QNAN.
8544
8545Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8546point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8547type. They must have identical types.
8548
8549Semantics:
8550""""""""""
8551
8552The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8553condition code given as ``cond``. If the operands are vectors, then the
8554vectors are compared element by element. Each comparison performed
8555always yields an :ref:`i1 <t_integer>` result, as follows:
8556
8557#. ``false``: always yields ``false``, regardless of operands.
8558#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8559 is equal to ``op2``.
8560#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8561 is greater than ``op2``.
8562#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8563 is greater than or equal to ``op2``.
8564#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8565 is less than ``op2``.
8566#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8567 is less than or equal to ``op2``.
8568#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8569 is not equal to ``op2``.
8570#. ``ord``: yields ``true`` if both operands are not a QNAN.
8571#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8572 equal to ``op2``.
8573#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8574 greater than ``op2``.
8575#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8576 greater than or equal to ``op2``.
8577#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8578 less than ``op2``.
8579#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8580 less than or equal to ``op2``.
8581#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8582 not equal to ``op2``.
8583#. ``uno``: yields ``true`` if either operand is a QNAN.
8584#. ``true``: always yields ``true``, regardless of operands.
8585
James Molloy88eb5352015-07-10 12:52:00 +00008586The ``fcmp`` instruction can also optionally take any number of
8587:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8588otherwise unsafe floating point optimizations.
8589
8590Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8591only flags that have any effect on its semantics are those that allow
8592assumptions to be made about the values of input arguments; namely
8593``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8594
Sean Silvab084af42012-12-07 10:36:55 +00008595Example:
8596""""""""
8597
Renato Golin124f2592016-07-20 12:16:38 +00008598.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008599
8600 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8601 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8602 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8603 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8604
Sean Silvab084af42012-12-07 10:36:55 +00008605.. _i_phi:
8606
8607'``phi``' Instruction
8608^^^^^^^^^^^^^^^^^^^^^
8609
8610Syntax:
8611"""""""
8612
8613::
8614
8615 <result> = phi <ty> [ <val0>, <label0>], ...
8616
8617Overview:
8618"""""""""
8619
8620The '``phi``' instruction is used to implement the φ node in the SSA
8621graph representing the function.
8622
8623Arguments:
8624""""""""""
8625
8626The type of the incoming values is specified with the first type field.
8627After this, the '``phi``' instruction takes a list of pairs as
8628arguments, with one pair for each predecessor basic block of the current
8629block. Only values of :ref:`first class <t_firstclass>` type may be used as
8630the value arguments to the PHI node. Only labels may be used as the
8631label arguments.
8632
8633There must be no non-phi instructions between the start of a basic block
8634and the PHI instructions: i.e. PHI instructions must be first in a basic
8635block.
8636
8637For the purposes of the SSA form, the use of each incoming value is
8638deemed to occur on the edge from the corresponding predecessor block to
8639the current block (but after any definition of an '``invoke``'
8640instruction's return value on the same edge).
8641
8642Semantics:
8643""""""""""
8644
8645At runtime, the '``phi``' instruction logically takes on the value
8646specified by the pair corresponding to the predecessor basic block that
8647executed just prior to the current block.
8648
8649Example:
8650""""""""
8651
8652.. code-block:: llvm
8653
8654 Loop: ; Infinite loop that counts from 0 on up...
8655 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8656 %nextindvar = add i32 %indvar, 1
8657 br label %Loop
8658
8659.. _i_select:
8660
8661'``select``' Instruction
8662^^^^^^^^^^^^^^^^^^^^^^^^
8663
8664Syntax:
8665"""""""
8666
8667::
8668
8669 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8670
8671 selty is either i1 or {<N x i1>}
8672
8673Overview:
8674"""""""""
8675
8676The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008677condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008678
8679Arguments:
8680""""""""""
8681
8682The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8683values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008684class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008685
8686Semantics:
8687""""""""""
8688
8689If the condition is an i1 and it evaluates to 1, the instruction returns
8690the first value argument; otherwise, it returns the second value
8691argument.
8692
8693If the condition is a vector of i1, then the value arguments must be
8694vectors of the same size, and the selection is done element by element.
8695
David Majnemer40a0b592015-03-03 22:45:47 +00008696If the condition is an i1 and the value arguments are vectors of the
8697same size, then an entire vector is selected.
8698
Sean Silvab084af42012-12-07 10:36:55 +00008699Example:
8700""""""""
8701
8702.. code-block:: llvm
8703
8704 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8705
8706.. _i_call:
8707
8708'``call``' Instruction
8709^^^^^^^^^^^^^^^^^^^^^^
8710
8711Syntax:
8712"""""""
8713
8714::
8715
David Blaikieb83cf102016-07-13 17:21:34 +00008716 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008717 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008718
8719Overview:
8720"""""""""
8721
8722The '``call``' instruction represents a simple function call.
8723
8724Arguments:
8725""""""""""
8726
8727This instruction requires several arguments:
8728
Reid Kleckner5772b772014-04-24 20:14:34 +00008729#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008730 should perform tail call optimization. The ``tail`` marker is a hint that
8731 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008732 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008733 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008734
8735 #. The call will not cause unbounded stack growth if it is part of a
8736 recursive cycle in the call graph.
8737 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8738 forwarded in place.
8739
8740 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008741 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008742 rules:
8743
8744 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8745 or a pointer bitcast followed by a ret instruction.
8746 - The ret instruction must return the (possibly bitcasted) value
8747 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008748 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008749 parameters or return types may differ in pointee type, but not
8750 in address space.
8751 - The calling conventions of the caller and callee must match.
8752 - All ABI-impacting function attributes, such as sret, byval, inreg,
8753 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008754 - The callee must be varargs iff the caller is varargs. Bitcasting a
8755 non-varargs function to the appropriate varargs type is legal so
8756 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008757
8758 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8759 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008760
8761 - Caller and callee both have the calling convention ``fastcc``.
8762 - The call is in tail position (ret immediately follows call and ret
8763 uses value of call or is void).
8764 - Option ``-tailcallopt`` is enabled, or
8765 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008766 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008767 met. <CodeGenerator.html#tailcallopt>`_
8768
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008769#. The optional ``notail`` marker indicates that the optimizers should not add
8770 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8771 call optimization from being performed on the call.
8772
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008773#. The optional ``fast-math flags`` marker indicates that the call has one or more
8774 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8775 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8776 for calls that return a floating-point scalar or vector type.
8777
Sean Silvab084af42012-12-07 10:36:55 +00008778#. The optional "cconv" marker indicates which :ref:`calling
8779 convention <callingconv>` the call should use. If none is
8780 specified, the call defaults to using C calling conventions. The
8781 calling convention of the call must match the calling convention of
8782 the target function, or else the behavior is undefined.
8783#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8784 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8785 are valid here.
8786#. '``ty``': the type of the call instruction itself which is also the
8787 type of the return value. Functions that return no value are marked
8788 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008789#. '``fnty``': shall be the signature of the function being called. The
8790 argument types must match the types implied by this signature. This
8791 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008792#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008793 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008794 indirect ``call``'s are just as possible, calling an arbitrary pointer
8795 to function value.
8796#. '``function args``': argument list whose types match the function
8797 signature argument types and parameter attributes. All arguments must
8798 be of :ref:`first class <t_firstclass>` type. If the function signature
8799 indicates the function accepts a variable number of arguments, the
8800 extra arguments can be specified.
8801#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008802 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8803 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008804#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008805
8806Semantics:
8807""""""""""
8808
8809The '``call``' instruction is used to cause control flow to transfer to
8810a specified function, with its incoming arguments bound to the specified
8811values. Upon a '``ret``' instruction in the called function, control
8812flow continues with the instruction after the function call, and the
8813return value of the function is bound to the result argument.
8814
8815Example:
8816""""""""
8817
8818.. code-block:: llvm
8819
8820 %retval = call i32 @test(i32 %argc)
8821 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8822 %X = tail call i32 @foo() ; yields i32
8823 %Y = tail call fastcc i32 @foo() ; yields i32
8824 call void %foo(i8 97 signext)
8825
8826 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008827 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008828 %gr = extractvalue %struct.A %r, 0 ; yields i32
8829 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8830 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8831 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8832
8833llvm treats calls to some functions with names and arguments that match
8834the standard C99 library as being the C99 library functions, and may
8835perform optimizations or generate code for them under that assumption.
8836This is something we'd like to change in the future to provide better
8837support for freestanding environments and non-C-based languages.
8838
8839.. _i_va_arg:
8840
8841'``va_arg``' Instruction
8842^^^^^^^^^^^^^^^^^^^^^^^^
8843
8844Syntax:
8845"""""""
8846
8847::
8848
8849 <resultval> = va_arg <va_list*> <arglist>, <argty>
8850
8851Overview:
8852"""""""""
8853
8854The '``va_arg``' instruction is used to access arguments passed through
8855the "variable argument" area of a function call. It is used to implement
8856the ``va_arg`` macro in C.
8857
8858Arguments:
8859""""""""""
8860
8861This instruction takes a ``va_list*`` value and the type of the
8862argument. It returns a value of the specified argument type and
8863increments the ``va_list`` to point to the next argument. The actual
8864type of ``va_list`` is target specific.
8865
8866Semantics:
8867""""""""""
8868
8869The '``va_arg``' instruction loads an argument of the specified type
8870from the specified ``va_list`` and causes the ``va_list`` to point to
8871the next argument. For more information, see the variable argument
8872handling :ref:`Intrinsic Functions <int_varargs>`.
8873
8874It is legal for this instruction to be called in a function which does
8875not take a variable number of arguments, for example, the ``vfprintf``
8876function.
8877
8878``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8879function <intrinsics>` because it takes a type as an argument.
8880
8881Example:
8882""""""""
8883
8884See the :ref:`variable argument processing <int_varargs>` section.
8885
8886Note that the code generator does not yet fully support va\_arg on many
8887targets. Also, it does not currently support va\_arg with aggregate
8888types on any target.
8889
8890.. _i_landingpad:
8891
8892'``landingpad``' Instruction
8893^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8894
8895Syntax:
8896"""""""
8897
8898::
8899
David Majnemer7fddecc2015-06-17 20:52:32 +00008900 <resultval> = landingpad <resultty> <clause>+
8901 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008902
8903 <clause> := catch <type> <value>
8904 <clause> := filter <array constant type> <array constant>
8905
8906Overview:
8907"""""""""
8908
8909The '``landingpad``' instruction is used by `LLVM's exception handling
8910system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008911is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008912code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008913defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008914re-entry to the function. The ``resultval`` has the type ``resultty``.
8915
8916Arguments:
8917""""""""""
8918
David Majnemer7fddecc2015-06-17 20:52:32 +00008919The optional
Sean Silvab084af42012-12-07 10:36:55 +00008920``cleanup`` flag indicates that the landing pad block is a cleanup.
8921
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008922A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008923contains the global variable representing the "type" that may be caught
8924or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8925clause takes an array constant as its argument. Use
8926"``[0 x i8**] undef``" for a filter which cannot throw. The
8927'``landingpad``' instruction must contain *at least* one ``clause`` or
8928the ``cleanup`` flag.
8929
8930Semantics:
8931""""""""""
8932
8933The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008934:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008935therefore the "result type" of the ``landingpad`` instruction. As with
8936calling conventions, how the personality function results are
8937represented in LLVM IR is target specific.
8938
8939The clauses are applied in order from top to bottom. If two
8940``landingpad`` instructions are merged together through inlining, the
8941clauses from the calling function are appended to the list of clauses.
8942When the call stack is being unwound due to an exception being thrown,
8943the exception is compared against each ``clause`` in turn. If it doesn't
8944match any of the clauses, and the ``cleanup`` flag is not set, then
8945unwinding continues further up the call stack.
8946
8947The ``landingpad`` instruction has several restrictions:
8948
8949- A landing pad block is a basic block which is the unwind destination
8950 of an '``invoke``' instruction.
8951- A landing pad block must have a '``landingpad``' instruction as its
8952 first non-PHI instruction.
8953- There can be only one '``landingpad``' instruction within the landing
8954 pad block.
8955- A basic block that is not a landing pad block may not include a
8956 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008957
8958Example:
8959""""""""
8960
8961.. code-block:: llvm
8962
8963 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008964 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008965 catch i8** @_ZTIi
8966 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008967 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008968 cleanup
8969 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008970 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008971 catch i8** @_ZTIi
8972 filter [1 x i8**] [@_ZTId]
8973
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008974.. _i_catchpad:
8975
8976'``catchpad``' Instruction
8977^^^^^^^^^^^^^^^^^^^^^^^^^^
8978
8979Syntax:
8980"""""""
8981
8982::
8983
8984 <resultval> = catchpad within <catchswitch> [<args>*]
8985
8986Overview:
8987"""""""""
8988
8989The '``catchpad``' instruction is used by `LLVM's exception handling
8990system <ExceptionHandling.html#overview>`_ to specify that a basic block
8991begins a catch handler --- one where a personality routine attempts to transfer
8992control to catch an exception.
8993
8994Arguments:
8995""""""""""
8996
8997The ``catchswitch`` operand must always be a token produced by a
8998:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8999ensures that each ``catchpad`` has exactly one predecessor block, and it always
9000terminates in a ``catchswitch``.
9001
9002The ``args`` correspond to whatever information the personality routine
9003requires to know if this is an appropriate handler for the exception. Control
9004will transfer to the ``catchpad`` if this is the first appropriate handler for
9005the exception.
9006
9007The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9008``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9009pads.
9010
9011Semantics:
9012""""""""""
9013
9014When the call stack is being unwound due to an exception being thrown, the
9015exception is compared against the ``args``. If it doesn't match, control will
9016not reach the ``catchpad`` instruction. The representation of ``args`` is
9017entirely target and personality function-specific.
9018
9019Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9020instruction must be the first non-phi of its parent basic block.
9021
9022The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9023instructions is described in the
9024`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9025
9026When a ``catchpad`` has been "entered" but not yet "exited" (as
9027described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9028it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9029that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9030
9031Example:
9032""""""""
9033
Renato Golin124f2592016-07-20 12:16:38 +00009034.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009035
9036 dispatch:
9037 %cs = catchswitch within none [label %handler0] unwind to caller
9038 ;; A catch block which can catch an integer.
9039 handler0:
9040 %tok = catchpad within %cs [i8** @_ZTIi]
9041
David Majnemer654e1302015-07-31 17:58:14 +00009042.. _i_cleanuppad:
9043
9044'``cleanuppad``' Instruction
9045^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9046
9047Syntax:
9048"""""""
9049
9050::
9051
David Majnemer8a1c45d2015-12-12 05:38:55 +00009052 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009053
9054Overview:
9055"""""""""
9056
9057The '``cleanuppad``' instruction is used by `LLVM's exception handling
9058system <ExceptionHandling.html#overview>`_ to specify that a basic block
9059is a cleanup block --- one where a personality routine attempts to
9060transfer control to run cleanup actions.
9061The ``args`` correspond to whatever additional
9062information the :ref:`personality function <personalityfn>` requires to
9063execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009064The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009065match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9066The ``parent`` argument is the token of the funclet that contains the
9067``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9068this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009069
9070Arguments:
9071""""""""""
9072
9073The instruction takes a list of arbitrary values which are interpreted
9074by the :ref:`personality function <personalityfn>`.
9075
9076Semantics:
9077""""""""""
9078
David Majnemer654e1302015-07-31 17:58:14 +00009079When the call stack is being unwound due to an exception being thrown,
9080the :ref:`personality function <personalityfn>` transfers control to the
9081``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009082As with calling conventions, how the personality function results are
9083represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009084
9085The ``cleanuppad`` instruction has several restrictions:
9086
9087- A cleanup block is a basic block which is the unwind destination of
9088 an exceptional instruction.
9089- A cleanup block must have a '``cleanuppad``' instruction as its
9090 first non-PHI instruction.
9091- There can be only one '``cleanuppad``' instruction within the
9092 cleanup block.
9093- A basic block that is not a cleanup block may not include a
9094 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009095
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009096When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9097described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9098it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9099that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009100
David Majnemer654e1302015-07-31 17:58:14 +00009101Example:
9102""""""""
9103
Renato Golin124f2592016-07-20 12:16:38 +00009104.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009105
David Majnemer8a1c45d2015-12-12 05:38:55 +00009106 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009107
Sean Silvab084af42012-12-07 10:36:55 +00009108.. _intrinsics:
9109
9110Intrinsic Functions
9111===================
9112
9113LLVM supports the notion of an "intrinsic function". These functions
9114have well known names and semantics and are required to follow certain
9115restrictions. Overall, these intrinsics represent an extension mechanism
9116for the LLVM language that does not require changing all of the
9117transformations in LLVM when adding to the language (or the bitcode
9118reader/writer, the parser, etc...).
9119
9120Intrinsic function names must all start with an "``llvm.``" prefix. This
9121prefix is reserved in LLVM for intrinsic names; thus, function names may
9122not begin with this prefix. Intrinsic functions must always be external
9123functions: you cannot define the body of intrinsic functions. Intrinsic
9124functions may only be used in call or invoke instructions: it is illegal
9125to take the address of an intrinsic function. Additionally, because
9126intrinsic functions are part of the LLVM language, it is required if any
9127are added that they be documented here.
9128
9129Some intrinsic functions can be overloaded, i.e., the intrinsic
9130represents a family of functions that perform the same operation but on
9131different data types. Because LLVM can represent over 8 million
9132different integer types, overloading is used commonly to allow an
9133intrinsic function to operate on any integer type. One or more of the
9134argument types or the result type can be overloaded to accept any
9135integer type. Argument types may also be defined as exactly matching a
9136previous argument's type or the result type. This allows an intrinsic
9137function which accepts multiple arguments, but needs all of them to be
9138of the same type, to only be overloaded with respect to a single
9139argument or the result.
9140
9141Overloaded intrinsics will have the names of its overloaded argument
9142types encoded into its function name, each preceded by a period. Only
9143those types which are overloaded result in a name suffix. Arguments
9144whose type is matched against another type do not. For example, the
9145``llvm.ctpop`` function can take an integer of any width and returns an
9146integer of exactly the same integer width. This leads to a family of
9147functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9148``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9149overloaded, and only one type suffix is required. Because the argument's
9150type is matched against the return type, it does not require its own
9151name suffix.
9152
9153To learn how to add an intrinsic function, please see the `Extending
9154LLVM Guide <ExtendingLLVM.html>`_.
9155
9156.. _int_varargs:
9157
9158Variable Argument Handling Intrinsics
9159-------------------------------------
9160
9161Variable argument support is defined in LLVM with the
9162:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9163functions. These functions are related to the similarly named macros
9164defined in the ``<stdarg.h>`` header file.
9165
9166All of these functions operate on arguments that use a target-specific
9167value type "``va_list``". The LLVM assembly language reference manual
9168does not define what this type is, so all transformations should be
9169prepared to handle these functions regardless of the type used.
9170
9171This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9172variable argument handling intrinsic functions are used.
9173
9174.. code-block:: llvm
9175
Tim Northoverab60bb92014-11-02 01:21:51 +00009176 ; This struct is different for every platform. For most platforms,
9177 ; it is merely an i8*.
9178 %struct.va_list = type { i8* }
9179
9180 ; For Unix x86_64 platforms, va_list is the following struct:
9181 ; %struct.va_list = type { i32, i32, i8*, i8* }
9182
Sean Silvab084af42012-12-07 10:36:55 +00009183 define i32 @test(i32 %X, ...) {
9184 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009185 %ap = alloca %struct.va_list
9186 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009187 call void @llvm.va_start(i8* %ap2)
9188
9189 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009190 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009191
9192 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9193 %aq = alloca i8*
9194 %aq2 = bitcast i8** %aq to i8*
9195 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9196 call void @llvm.va_end(i8* %aq2)
9197
9198 ; Stop processing of arguments.
9199 call void @llvm.va_end(i8* %ap2)
9200 ret i32 %tmp
9201 }
9202
9203 declare void @llvm.va_start(i8*)
9204 declare void @llvm.va_copy(i8*, i8*)
9205 declare void @llvm.va_end(i8*)
9206
9207.. _int_va_start:
9208
9209'``llvm.va_start``' Intrinsic
9210^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9211
9212Syntax:
9213"""""""
9214
9215::
9216
Nick Lewycky04f6de02013-09-11 22:04:52 +00009217 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009218
9219Overview:
9220"""""""""
9221
9222The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9223subsequent use by ``va_arg``.
9224
9225Arguments:
9226""""""""""
9227
9228The argument is a pointer to a ``va_list`` element to initialize.
9229
9230Semantics:
9231""""""""""
9232
9233The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9234available in C. In a target-dependent way, it initializes the
9235``va_list`` element to which the argument points, so that the next call
9236to ``va_arg`` will produce the first variable argument passed to the
9237function. Unlike the C ``va_start`` macro, this intrinsic does not need
9238to know the last argument of the function as the compiler can figure
9239that out.
9240
9241'``llvm.va_end``' Intrinsic
9242^^^^^^^^^^^^^^^^^^^^^^^^^^^
9243
9244Syntax:
9245"""""""
9246
9247::
9248
9249 declare void @llvm.va_end(i8* <arglist>)
9250
9251Overview:
9252"""""""""
9253
9254The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9255initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9256
9257Arguments:
9258""""""""""
9259
9260The argument is a pointer to a ``va_list`` to destroy.
9261
9262Semantics:
9263""""""""""
9264
9265The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9266available in C. In a target-dependent way, it destroys the ``va_list``
9267element to which the argument points. Calls to
9268:ref:`llvm.va_start <int_va_start>` and
9269:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9270``llvm.va_end``.
9271
9272.. _int_va_copy:
9273
9274'``llvm.va_copy``' Intrinsic
9275^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9276
9277Syntax:
9278"""""""
9279
9280::
9281
9282 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9283
9284Overview:
9285"""""""""
9286
9287The '``llvm.va_copy``' intrinsic copies the current argument position
9288from the source argument list to the destination argument list.
9289
9290Arguments:
9291""""""""""
9292
9293The first argument is a pointer to a ``va_list`` element to initialize.
9294The second argument is a pointer to a ``va_list`` element to copy from.
9295
9296Semantics:
9297""""""""""
9298
9299The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9300available in C. In a target-dependent way, it copies the source
9301``va_list`` element into the destination ``va_list`` element. This
9302intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9303arbitrarily complex and require, for example, memory allocation.
9304
9305Accurate Garbage Collection Intrinsics
9306--------------------------------------
9307
Philip Reamesc5b0f562015-02-25 23:52:06 +00009308LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009309(GC) requires the frontend to generate code containing appropriate intrinsic
9310calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009311intrinsics in a manner which is appropriate for the target collector.
9312
Sean Silvab084af42012-12-07 10:36:55 +00009313These intrinsics allow identification of :ref:`GC roots on the
9314stack <int_gcroot>`, as well as garbage collector implementations that
9315require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009316Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009317these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009318details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009319
Philip Reamesf80bbff2015-02-25 23:45:20 +00009320Experimental Statepoint Intrinsics
9321^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9322
9323LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009324collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009325to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009326:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009327differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009328<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009329described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009330
9331.. _int_gcroot:
9332
9333'``llvm.gcroot``' Intrinsic
9334^^^^^^^^^^^^^^^^^^^^^^^^^^^
9335
9336Syntax:
9337"""""""
9338
9339::
9340
9341 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9342
9343Overview:
9344"""""""""
9345
9346The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9347the code generator, and allows some metadata to be associated with it.
9348
9349Arguments:
9350""""""""""
9351
9352The first argument specifies the address of a stack object that contains
9353the root pointer. The second pointer (which must be either a constant or
9354a global value address) contains the meta-data to be associated with the
9355root.
9356
9357Semantics:
9358""""""""""
9359
9360At runtime, a call to this intrinsic stores a null pointer into the
9361"ptrloc" location. At compile-time, the code generator generates
9362information to allow the runtime to find the pointer at GC safe points.
9363The '``llvm.gcroot``' intrinsic may only be used in a function which
9364:ref:`specifies a GC algorithm <gc>`.
9365
9366.. _int_gcread:
9367
9368'``llvm.gcread``' Intrinsic
9369^^^^^^^^^^^^^^^^^^^^^^^^^^^
9370
9371Syntax:
9372"""""""
9373
9374::
9375
9376 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9377
9378Overview:
9379"""""""""
9380
9381The '``llvm.gcread``' intrinsic identifies reads of references from heap
9382locations, allowing garbage collector implementations that require read
9383barriers.
9384
9385Arguments:
9386""""""""""
9387
9388The second argument is the address to read from, which should be an
9389address allocated from the garbage collector. The first object is a
9390pointer to the start of the referenced object, if needed by the language
9391runtime (otherwise null).
9392
9393Semantics:
9394""""""""""
9395
9396The '``llvm.gcread``' intrinsic has the same semantics as a load
9397instruction, but may be replaced with substantially more complex code by
9398the garbage collector runtime, as needed. The '``llvm.gcread``'
9399intrinsic may only be used in a function which :ref:`specifies a GC
9400algorithm <gc>`.
9401
9402.. _int_gcwrite:
9403
9404'``llvm.gcwrite``' Intrinsic
9405^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9406
9407Syntax:
9408"""""""
9409
9410::
9411
9412 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9413
9414Overview:
9415"""""""""
9416
9417The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9418locations, allowing garbage collector implementations that require write
9419barriers (such as generational or reference counting collectors).
9420
9421Arguments:
9422""""""""""
9423
9424The first argument is the reference to store, the second is the start of
9425the object to store it to, and the third is the address of the field of
9426Obj to store to. If the runtime does not require a pointer to the
9427object, Obj may be null.
9428
9429Semantics:
9430""""""""""
9431
9432The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9433instruction, but may be replaced with substantially more complex code by
9434the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9435intrinsic may only be used in a function which :ref:`specifies a GC
9436algorithm <gc>`.
9437
9438Code Generator Intrinsics
9439-------------------------
9440
9441These intrinsics are provided by LLVM to expose special features that
9442may only be implemented with code generator support.
9443
9444'``llvm.returnaddress``' Intrinsic
9445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9446
9447Syntax:
9448"""""""
9449
9450::
9451
9452 declare i8 *@llvm.returnaddress(i32 <level>)
9453
9454Overview:
9455"""""""""
9456
9457The '``llvm.returnaddress``' intrinsic attempts to compute a
9458target-specific value indicating the return address of the current
9459function or one of its callers.
9460
9461Arguments:
9462""""""""""
9463
9464The argument to this intrinsic indicates which function to return the
9465address for. Zero indicates the calling function, one indicates its
9466caller, etc. The argument is **required** to be a constant integer
9467value.
9468
9469Semantics:
9470""""""""""
9471
9472The '``llvm.returnaddress``' intrinsic either returns a pointer
9473indicating the return address of the specified call frame, or zero if it
9474cannot be identified. The value returned by this intrinsic is likely to
9475be incorrect or 0 for arguments other than zero, so it should only be
9476used for debugging purposes.
9477
9478Note that calling this intrinsic does not prevent function inlining or
9479other aggressive transformations, so the value returned may not be that
9480of the obvious source-language caller.
9481
Albert Gutowski795d7d62016-10-12 22:13:19 +00009482'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009483^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009484
9485Syntax:
9486"""""""
9487
9488::
9489
9490 declare i8 *@llvm.addressofreturnaddress()
9491
9492Overview:
9493"""""""""
9494
9495The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9496pointer to the place in the stack frame where the return address of the
9497current function is stored.
9498
9499Semantics:
9500""""""""""
9501
9502Note that calling this intrinsic does not prevent function inlining or
9503other aggressive transformations, so the value returned may not be that
9504of the obvious source-language caller.
9505
9506This intrinsic is only implemented for x86.
9507
Sean Silvab084af42012-12-07 10:36:55 +00009508'``llvm.frameaddress``' Intrinsic
9509^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9510
9511Syntax:
9512"""""""
9513
9514::
9515
9516 declare i8* @llvm.frameaddress(i32 <level>)
9517
9518Overview:
9519"""""""""
9520
9521The '``llvm.frameaddress``' intrinsic attempts to return the
9522target-specific frame pointer value for the specified stack frame.
9523
9524Arguments:
9525""""""""""
9526
9527The argument to this intrinsic indicates which function to return the
9528frame pointer for. Zero indicates the calling function, one indicates
9529its caller, etc. The argument is **required** to be a constant integer
9530value.
9531
9532Semantics:
9533""""""""""
9534
9535The '``llvm.frameaddress``' intrinsic either returns a pointer
9536indicating the frame address of the specified call frame, or zero if it
9537cannot be identified. The value returned by this intrinsic is likely to
9538be incorrect or 0 for arguments other than zero, so it should only be
9539used for debugging purposes.
9540
9541Note that calling this intrinsic does not prevent function inlining or
9542other aggressive transformations, so the value returned may not be that
9543of the obvious source-language caller.
9544
Reid Kleckner60381792015-07-07 22:25:32 +00009545'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009546^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9547
9548Syntax:
9549"""""""
9550
9551::
9552
Reid Kleckner60381792015-07-07 22:25:32 +00009553 declare void @llvm.localescape(...)
9554 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009555
9556Overview:
9557"""""""""
9558
Reid Kleckner60381792015-07-07 22:25:32 +00009559The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9560allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009561live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009562computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009563
9564Arguments:
9565""""""""""
9566
Reid Kleckner60381792015-07-07 22:25:32 +00009567All arguments to '``llvm.localescape``' must be pointers to static allocas or
9568casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009569once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009570
Reid Kleckner60381792015-07-07 22:25:32 +00009571The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009572bitcasted pointer to a function defined in the current module. The code
9573generator cannot determine the frame allocation offset of functions defined in
9574other modules.
9575
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009576The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9577call frame that is currently live. The return value of '``llvm.localaddress``'
9578is one way to produce such a value, but various runtimes also expose a suitable
9579pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009580
Reid Kleckner60381792015-07-07 22:25:32 +00009581The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9582'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009583
Reid Klecknere9b89312015-01-13 00:48:10 +00009584Semantics:
9585""""""""""
9586
Reid Kleckner60381792015-07-07 22:25:32 +00009587These intrinsics allow a group of functions to share access to a set of local
9588stack allocations of a one parent function. The parent function may call the
9589'``llvm.localescape``' intrinsic once from the function entry block, and the
9590child functions can use '``llvm.localrecover``' to access the escaped allocas.
9591The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9592the escaped allocas are allocated, which would break attempts to use
9593'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009594
Renato Golinc7aea402014-05-06 16:51:25 +00009595.. _int_read_register:
9596.. _int_write_register:
9597
9598'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9600
9601Syntax:
9602"""""""
9603
9604::
9605
9606 declare i32 @llvm.read_register.i32(metadata)
9607 declare i64 @llvm.read_register.i64(metadata)
9608 declare void @llvm.write_register.i32(metadata, i32 @value)
9609 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009610 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009611
9612Overview:
9613"""""""""
9614
9615The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9616provides access to the named register. The register must be valid on
9617the architecture being compiled to. The type needs to be compatible
9618with the register being read.
9619
9620Semantics:
9621""""""""""
9622
9623The '``llvm.read_register``' intrinsic returns the current value of the
9624register, where possible. The '``llvm.write_register``' intrinsic sets
9625the current value of the register, where possible.
9626
9627This is useful to implement named register global variables that need
9628to always be mapped to a specific register, as is common practice on
9629bare-metal programs including OS kernels.
9630
9631The compiler doesn't check for register availability or use of the used
9632register in surrounding code, including inline assembly. Because of that,
9633allocatable registers are not supported.
9634
9635Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009636architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009637work is needed to support other registers and even more so, allocatable
9638registers.
9639
Sean Silvab084af42012-12-07 10:36:55 +00009640.. _int_stacksave:
9641
9642'``llvm.stacksave``' Intrinsic
9643^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9644
9645Syntax:
9646"""""""
9647
9648::
9649
9650 declare i8* @llvm.stacksave()
9651
9652Overview:
9653"""""""""
9654
9655The '``llvm.stacksave``' intrinsic is used to remember the current state
9656of the function stack, for use with
9657:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9658implementing language features like scoped automatic variable sized
9659arrays in C99.
9660
9661Semantics:
9662""""""""""
9663
9664This intrinsic returns a opaque pointer value that can be passed to
9665:ref:`llvm.stackrestore <int_stackrestore>`. When an
9666``llvm.stackrestore`` intrinsic is executed with a value saved from
9667``llvm.stacksave``, it effectively restores the state of the stack to
9668the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9669practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9670were allocated after the ``llvm.stacksave`` was executed.
9671
9672.. _int_stackrestore:
9673
9674'``llvm.stackrestore``' Intrinsic
9675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9676
9677Syntax:
9678"""""""
9679
9680::
9681
9682 declare void @llvm.stackrestore(i8* %ptr)
9683
9684Overview:
9685"""""""""
9686
9687The '``llvm.stackrestore``' intrinsic is used to restore the state of
9688the function stack to the state it was in when the corresponding
9689:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9690useful for implementing language features like scoped automatic variable
9691sized arrays in C99.
9692
9693Semantics:
9694""""""""""
9695
9696See the description for :ref:`llvm.stacksave <int_stacksave>`.
9697
Yury Gribovd7dbb662015-12-01 11:40:55 +00009698.. _int_get_dynamic_area_offset:
9699
9700'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009702
9703Syntax:
9704"""""""
9705
9706::
9707
9708 declare i32 @llvm.get.dynamic.area.offset.i32()
9709 declare i64 @llvm.get.dynamic.area.offset.i64()
9710
Lang Hames10239932016-10-08 00:20:42 +00009711Overview:
9712"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009713
9714 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9715 get the offset from native stack pointer to the address of the most
9716 recent dynamic alloca on the caller's stack. These intrinsics are
9717 intendend for use in combination with
9718 :ref:`llvm.stacksave <int_stacksave>` to get a
9719 pointer to the most recent dynamic alloca. This is useful, for example,
9720 for AddressSanitizer's stack unpoisoning routines.
9721
9722Semantics:
9723""""""""""
9724
9725 These intrinsics return a non-negative integer value that can be used to
9726 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9727 on the caller's stack. In particular, for targets where stack grows downwards,
9728 adding this offset to the native stack pointer would get the address of the most
9729 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009730 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009731 one past the end of the most recent dynamic alloca.
9732
9733 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9734 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9735 compile-time-known constant value.
9736
9737 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9738 must match the target's generic address space's (address space 0) pointer type.
9739
Sean Silvab084af42012-12-07 10:36:55 +00009740'``llvm.prefetch``' Intrinsic
9741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9742
9743Syntax:
9744"""""""
9745
9746::
9747
9748 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9749
9750Overview:
9751"""""""""
9752
9753The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9754insert a prefetch instruction if supported; otherwise, it is a noop.
9755Prefetches have no effect on the behavior of the program but can change
9756its performance characteristics.
9757
9758Arguments:
9759""""""""""
9760
9761``address`` is the address to be prefetched, ``rw`` is the specifier
9762determining if the fetch should be for a read (0) or write (1), and
9763``locality`` is a temporal locality specifier ranging from (0) - no
9764locality, to (3) - extremely local keep in cache. The ``cache type``
9765specifies whether the prefetch is performed on the data (1) or
9766instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9767arguments must be constant integers.
9768
9769Semantics:
9770""""""""""
9771
9772This intrinsic does not modify the behavior of the program. In
9773particular, prefetches cannot trap and do not produce a value. On
9774targets that support this intrinsic, the prefetch can provide hints to
9775the processor cache for better performance.
9776
9777'``llvm.pcmarker``' Intrinsic
9778^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9779
9780Syntax:
9781"""""""
9782
9783::
9784
9785 declare void @llvm.pcmarker(i32 <id>)
9786
9787Overview:
9788"""""""""
9789
9790The '``llvm.pcmarker``' intrinsic is a method to export a Program
9791Counter (PC) in a region of code to simulators and other tools. The
9792method is target specific, but it is expected that the marker will use
9793exported symbols to transmit the PC of the marker. The marker makes no
9794guarantees that it will remain with any specific instruction after
9795optimizations. It is possible that the presence of a marker will inhibit
9796optimizations. The intended use is to be inserted after optimizations to
9797allow correlations of simulation runs.
9798
9799Arguments:
9800""""""""""
9801
9802``id`` is a numerical id identifying the marker.
9803
9804Semantics:
9805""""""""""
9806
9807This intrinsic does not modify the behavior of the program. Backends
9808that do not support this intrinsic may ignore it.
9809
9810'``llvm.readcyclecounter``' Intrinsic
9811^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9812
9813Syntax:
9814"""""""
9815
9816::
9817
9818 declare i64 @llvm.readcyclecounter()
9819
9820Overview:
9821"""""""""
9822
9823The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9824counter register (or similar low latency, high accuracy clocks) on those
9825targets that support it. On X86, it should map to RDTSC. On Alpha, it
9826should map to RPCC. As the backing counters overflow quickly (on the
9827order of 9 seconds on alpha), this should only be used for small
9828timings.
9829
9830Semantics:
9831""""""""""
9832
9833When directly supported, reading the cycle counter should not modify any
9834memory. Implementations are allowed to either return a application
9835specific value or a system wide value. On backends without support, this
9836is lowered to a constant 0.
9837
Tim Northoverbc933082013-05-23 19:11:20 +00009838Note that runtime support may be conditional on the privilege-level code is
9839running at and the host platform.
9840
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009841'``llvm.clear_cache``' Intrinsic
9842^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9843
9844Syntax:
9845"""""""
9846
9847::
9848
9849 declare void @llvm.clear_cache(i8*, i8*)
9850
9851Overview:
9852"""""""""
9853
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009854The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9855in the specified range to the execution unit of the processor. On
9856targets with non-unified instruction and data cache, the implementation
9857flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009858
9859Semantics:
9860""""""""""
9861
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009862On platforms with coherent instruction and data caches (e.g. x86), this
9863intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009864cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009865instructions or a system call, if cache flushing requires special
9866privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009867
Sean Silvad02bf3e2014-04-07 22:29:53 +00009868The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009869time library.
Renato Golin93010e62014-03-26 14:01:32 +00009870
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009871This instrinsic does *not* empty the instruction pipeline. Modifications
9872of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009873
Justin Bogner61ba2e32014-12-08 18:02:35 +00009874'``llvm.instrprof_increment``' Intrinsic
9875^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9876
9877Syntax:
9878"""""""
9879
9880::
9881
9882 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9883 i32 <num-counters>, i32 <index>)
9884
9885Overview:
9886"""""""""
9887
9888The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9889frontend for use with instrumentation based profiling. These will be
9890lowered by the ``-instrprof`` pass to generate execution counts of a
9891program at runtime.
9892
9893Arguments:
9894""""""""""
9895
9896The first argument is a pointer to a global variable containing the
9897name of the entity being instrumented. This should generally be the
9898(mangled) function name for a set of counters.
9899
9900The second argument is a hash value that can be used by the consumer
9901of the profile data to detect changes to the instrumented source, and
9902the third is the number of counters associated with ``name``. It is an
9903error if ``hash`` or ``num-counters`` differ between two instances of
9904``instrprof_increment`` that refer to the same name.
9905
9906The last argument refers to which of the counters for ``name`` should
9907be incremented. It should be a value between 0 and ``num-counters``.
9908
9909Semantics:
9910""""""""""
9911
9912This intrinsic represents an increment of a profiling counter. It will
9913cause the ``-instrprof`` pass to generate the appropriate data
9914structures and the code to increment the appropriate value, in a
9915format that can be written out by a compiler runtime and consumed via
9916the ``llvm-profdata`` tool.
9917
Xinliang David Li4ca17332016-09-18 18:34:07 +00009918'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +00009919^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +00009920
9921Syntax:
9922"""""""
9923
9924::
9925
9926 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
9927 i32 <num-counters>,
9928 i32 <index>, i64 <step>)
9929
9930Overview:
9931"""""""""
9932
9933The '``llvm.instrprof_increment_step``' intrinsic is an extension to
9934the '``llvm.instrprof_increment``' intrinsic with an additional fifth
9935argument to specify the step of the increment.
9936
9937Arguments:
9938""""""""""
9939The first four arguments are the same as '``llvm.instrprof_increment``'
9940instrinsic.
9941
9942The last argument specifies the value of the increment of the counter variable.
9943
9944Semantics:
9945""""""""""
9946See description of '``llvm.instrprof_increment``' instrinsic.
9947
9948
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009949'``llvm.instrprof_value_profile``' Intrinsic
9950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9951
9952Syntax:
9953"""""""
9954
9955::
9956
9957 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9958 i64 <value>, i32 <value_kind>,
9959 i32 <index>)
9960
9961Overview:
9962"""""""""
9963
9964The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9965frontend for use with instrumentation based profiling. This will be
9966lowered by the ``-instrprof`` pass to find out the target values,
9967instrumented expressions take in a program at runtime.
9968
9969Arguments:
9970""""""""""
9971
9972The first argument is a pointer to a global variable containing the
9973name of the entity being instrumented. ``name`` should generally be the
9974(mangled) function name for a set of counters.
9975
9976The second argument is a hash value that can be used by the consumer
9977of the profile data to detect changes to the instrumented source. It
9978is an error if ``hash`` differs between two instances of
9979``llvm.instrprof_*`` that refer to the same name.
9980
9981The third argument is the value of the expression being profiled. The profiled
9982expression's value should be representable as an unsigned 64-bit value. The
9983fourth argument represents the kind of value profiling that is being done. The
9984supported value profiling kinds are enumerated through the
9985``InstrProfValueKind`` type declared in the
9986``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9987index of the instrumented expression within ``name``. It should be >= 0.
9988
9989Semantics:
9990""""""""""
9991
9992This intrinsic represents the point where a call to a runtime routine
9993should be inserted for value profiling of target expressions. ``-instrprof``
9994pass will generate the appropriate data structures and replace the
9995``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9996runtime library with proper arguments.
9997
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009998'``llvm.thread.pointer``' Intrinsic
9999^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10000
10001Syntax:
10002"""""""
10003
10004::
10005
10006 declare i8* @llvm.thread.pointer()
10007
10008Overview:
10009"""""""""
10010
10011The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10012pointer.
10013
10014Semantics:
10015""""""""""
10016
10017The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10018for the current thread. The exact semantics of this value are target
10019specific: it may point to the start of TLS area, to the end, or somewhere
10020in the middle. Depending on the target, this intrinsic may read a register,
10021call a helper function, read from an alternate memory space, or perform
10022other operations necessary to locate the TLS area. Not all targets support
10023this intrinsic.
10024
Sean Silvab084af42012-12-07 10:36:55 +000010025Standard C Library Intrinsics
10026-----------------------------
10027
10028LLVM provides intrinsics for a few important standard C library
10029functions. These intrinsics allow source-language front-ends to pass
10030information about the alignment of the pointer arguments to the code
10031generator, providing opportunity for more efficient code generation.
10032
10033.. _int_memcpy:
10034
10035'``llvm.memcpy``' Intrinsic
10036^^^^^^^^^^^^^^^^^^^^^^^^^^^
10037
10038Syntax:
10039"""""""
10040
10041This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10042integer bit width and for different address spaces. Not all targets
10043support all bit widths however.
10044
10045::
10046
10047 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10048 i32 <len>, i32 <align>, i1 <isvolatile>)
10049 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10050 i64 <len>, i32 <align>, i1 <isvolatile>)
10051
10052Overview:
10053"""""""""
10054
10055The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10056source location to the destination location.
10057
10058Note that, unlike the standard libc function, the ``llvm.memcpy.*``
10059intrinsics do not return a value, takes extra alignment/isvolatile
10060arguments and the pointers can be in specified address spaces.
10061
10062Arguments:
10063""""""""""
10064
10065The first argument is a pointer to the destination, the second is a
10066pointer to the source. The third argument is an integer argument
10067specifying the number of bytes to copy, the fourth argument is the
10068alignment of the source and destination locations, and the fifth is a
10069boolean indicating a volatile access.
10070
10071If the call to this intrinsic has an alignment value that is not 0 or 1,
10072then the caller guarantees that both the source and destination pointers
10073are aligned to that boundary.
10074
10075If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10076a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10077very cleanly specified and it is unwise to depend on it.
10078
10079Semantics:
10080""""""""""
10081
10082The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10083source location to the destination location, which are not allowed to
10084overlap. It copies "len" bytes of memory over. If the argument is known
10085to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010086argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010087
10088'``llvm.memmove``' Intrinsic
10089^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10090
10091Syntax:
10092"""""""
10093
10094This is an overloaded intrinsic. You can use llvm.memmove on any integer
10095bit width and for different address space. Not all targets support all
10096bit widths however.
10097
10098::
10099
10100 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10101 i32 <len>, i32 <align>, i1 <isvolatile>)
10102 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10103 i64 <len>, i32 <align>, i1 <isvolatile>)
10104
10105Overview:
10106"""""""""
10107
10108The '``llvm.memmove.*``' intrinsics move a block of memory from the
10109source location to the destination location. It is similar to the
10110'``llvm.memcpy``' intrinsic but allows the two memory locations to
10111overlap.
10112
10113Note that, unlike the standard libc function, the ``llvm.memmove.*``
10114intrinsics do not return a value, takes extra alignment/isvolatile
10115arguments and the pointers can be in specified address spaces.
10116
10117Arguments:
10118""""""""""
10119
10120The first argument is a pointer to the destination, the second is a
10121pointer to the source. The third argument is an integer argument
10122specifying the number of bytes to copy, the fourth argument is the
10123alignment of the source and destination locations, and the fifth is a
10124boolean indicating a volatile access.
10125
10126If the call to this intrinsic has an alignment value that is not 0 or 1,
10127then the caller guarantees that the source and destination pointers are
10128aligned to that boundary.
10129
10130If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10131is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10132not very cleanly specified and it is unwise to depend on it.
10133
10134Semantics:
10135""""""""""
10136
10137The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10138source location to the destination location, which may overlap. It
10139copies "len" bytes of memory over. If the argument is known to be
10140aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010141otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010142
10143'``llvm.memset.*``' Intrinsics
10144^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10145
10146Syntax:
10147"""""""
10148
10149This is an overloaded intrinsic. You can use llvm.memset on any integer
10150bit width and for different address spaces. However, not all targets
10151support all bit widths.
10152
10153::
10154
10155 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10156 i32 <len>, i32 <align>, i1 <isvolatile>)
10157 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10158 i64 <len>, i32 <align>, i1 <isvolatile>)
10159
10160Overview:
10161"""""""""
10162
10163The '``llvm.memset.*``' intrinsics fill a block of memory with a
10164particular byte value.
10165
10166Note that, unlike the standard libc function, the ``llvm.memset``
10167intrinsic does not return a value and takes extra alignment/volatile
10168arguments. Also, the destination can be in an arbitrary address space.
10169
10170Arguments:
10171""""""""""
10172
10173The first argument is a pointer to the destination to fill, the second
10174is the byte value with which to fill it, the third argument is an
10175integer argument specifying the number of bytes to fill, and the fourth
10176argument is the known alignment of the destination location.
10177
10178If the call to this intrinsic has an alignment value that is not 0 or 1,
10179then the caller guarantees that the destination pointer is aligned to
10180that boundary.
10181
10182If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10183a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10184very cleanly specified and it is unwise to depend on it.
10185
10186Semantics:
10187""""""""""
10188
10189The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10190at the destination location. If the argument is known to be aligned to
10191some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010192it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010193
10194'``llvm.sqrt.*``' Intrinsic
10195^^^^^^^^^^^^^^^^^^^^^^^^^^^
10196
10197Syntax:
10198"""""""
10199
10200This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10201floating point or vector of floating point type. Not all targets support
10202all types however.
10203
10204::
10205
10206 declare float @llvm.sqrt.f32(float %Val)
10207 declare double @llvm.sqrt.f64(double %Val)
10208 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10209 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10210 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10211
10212Overview:
10213"""""""""
10214
10215The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
Justin Lebarcb9b41d2017-01-27 00:58:03 +000010216returning the same value as the libm '``sqrt``' functions would, but without
10217trapping or setting ``errno``.
Sean Silvab084af42012-12-07 10:36:55 +000010218
10219Arguments:
10220""""""""""
10221
10222The argument and return value are floating point numbers of the same
10223type.
10224
10225Semantics:
10226""""""""""
10227
10228This function returns the sqrt of the specified operand if it is a
10229nonnegative floating point number.
10230
10231'``llvm.powi.*``' Intrinsic
10232^^^^^^^^^^^^^^^^^^^^^^^^^^^
10233
10234Syntax:
10235"""""""
10236
10237This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10238floating point or vector of floating point type. Not all targets support
10239all types however.
10240
10241::
10242
10243 declare float @llvm.powi.f32(float %Val, i32 %power)
10244 declare double @llvm.powi.f64(double %Val, i32 %power)
10245 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10246 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10247 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10248
10249Overview:
10250"""""""""
10251
10252The '``llvm.powi.*``' intrinsics return the first operand raised to the
10253specified (positive or negative) power. The order of evaluation of
10254multiplications is not defined. When a vector of floating point type is
10255used, the second argument remains a scalar integer value.
10256
10257Arguments:
10258""""""""""
10259
10260The second argument is an integer power, and the first is a value to
10261raise to that power.
10262
10263Semantics:
10264""""""""""
10265
10266This function returns the first value raised to the second power with an
10267unspecified sequence of rounding operations.
10268
10269'``llvm.sin.*``' Intrinsic
10270^^^^^^^^^^^^^^^^^^^^^^^^^^
10271
10272Syntax:
10273"""""""
10274
10275This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10276floating point or vector of floating point type. Not all targets support
10277all types however.
10278
10279::
10280
10281 declare float @llvm.sin.f32(float %Val)
10282 declare double @llvm.sin.f64(double %Val)
10283 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10284 declare fp128 @llvm.sin.f128(fp128 %Val)
10285 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10286
10287Overview:
10288"""""""""
10289
10290The '``llvm.sin.*``' intrinsics return the sine of the operand.
10291
10292Arguments:
10293""""""""""
10294
10295The argument and return value are floating point numbers of the same
10296type.
10297
10298Semantics:
10299""""""""""
10300
10301This function returns the sine of the specified operand, returning the
10302same values as the libm ``sin`` functions would, and handles error
10303conditions in the same way.
10304
10305'``llvm.cos.*``' Intrinsic
10306^^^^^^^^^^^^^^^^^^^^^^^^^^
10307
10308Syntax:
10309"""""""
10310
10311This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10312floating point or vector of floating point type. Not all targets support
10313all types however.
10314
10315::
10316
10317 declare float @llvm.cos.f32(float %Val)
10318 declare double @llvm.cos.f64(double %Val)
10319 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10320 declare fp128 @llvm.cos.f128(fp128 %Val)
10321 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10322
10323Overview:
10324"""""""""
10325
10326The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10327
10328Arguments:
10329""""""""""
10330
10331The argument and return value are floating point numbers of the same
10332type.
10333
10334Semantics:
10335""""""""""
10336
10337This function returns the cosine of the specified operand, returning the
10338same values as the libm ``cos`` functions would, and handles error
10339conditions in the same way.
10340
10341'``llvm.pow.*``' Intrinsic
10342^^^^^^^^^^^^^^^^^^^^^^^^^^
10343
10344Syntax:
10345"""""""
10346
10347This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10348floating point or vector of floating point type. Not all targets support
10349all types however.
10350
10351::
10352
10353 declare float @llvm.pow.f32(float %Val, float %Power)
10354 declare double @llvm.pow.f64(double %Val, double %Power)
10355 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10356 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10357 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10358
10359Overview:
10360"""""""""
10361
10362The '``llvm.pow.*``' intrinsics return the first operand raised to the
10363specified (positive or negative) power.
10364
10365Arguments:
10366""""""""""
10367
10368The second argument is a floating point power, and the first is a value
10369to raise to that power.
10370
10371Semantics:
10372""""""""""
10373
10374This function returns the first value raised to the second power,
10375returning the same values as the libm ``pow`` functions would, and
10376handles error conditions in the same way.
10377
10378'``llvm.exp.*``' Intrinsic
10379^^^^^^^^^^^^^^^^^^^^^^^^^^
10380
10381Syntax:
10382"""""""
10383
10384This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10385floating point or vector of floating point type. Not all targets support
10386all types however.
10387
10388::
10389
10390 declare float @llvm.exp.f32(float %Val)
10391 declare double @llvm.exp.f64(double %Val)
10392 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10393 declare fp128 @llvm.exp.f128(fp128 %Val)
10394 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10395
10396Overview:
10397"""""""""
10398
10399The '``llvm.exp.*``' intrinsics perform the exp function.
10400
10401Arguments:
10402""""""""""
10403
10404The argument and return value are floating point numbers of the same
10405type.
10406
10407Semantics:
10408""""""""""
10409
10410This function returns the same values as the libm ``exp`` functions
10411would, and handles error conditions in the same way.
10412
10413'``llvm.exp2.*``' Intrinsic
10414^^^^^^^^^^^^^^^^^^^^^^^^^^^
10415
10416Syntax:
10417"""""""
10418
10419This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10420floating point or vector of floating point type. Not all targets support
10421all types however.
10422
10423::
10424
10425 declare float @llvm.exp2.f32(float %Val)
10426 declare double @llvm.exp2.f64(double %Val)
10427 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10428 declare fp128 @llvm.exp2.f128(fp128 %Val)
10429 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10430
10431Overview:
10432"""""""""
10433
10434The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10435
10436Arguments:
10437""""""""""
10438
10439The argument and return value are floating point numbers of the same
10440type.
10441
10442Semantics:
10443""""""""""
10444
10445This function returns the same values as the libm ``exp2`` functions
10446would, and handles error conditions in the same way.
10447
10448'``llvm.log.*``' Intrinsic
10449^^^^^^^^^^^^^^^^^^^^^^^^^^
10450
10451Syntax:
10452"""""""
10453
10454This is an overloaded intrinsic. You can use ``llvm.log`` on any
10455floating point or vector of floating point type. Not all targets support
10456all types however.
10457
10458::
10459
10460 declare float @llvm.log.f32(float %Val)
10461 declare double @llvm.log.f64(double %Val)
10462 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10463 declare fp128 @llvm.log.f128(fp128 %Val)
10464 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10465
10466Overview:
10467"""""""""
10468
10469The '``llvm.log.*``' intrinsics perform the log function.
10470
10471Arguments:
10472""""""""""
10473
10474The argument and return value are floating point numbers of the same
10475type.
10476
10477Semantics:
10478""""""""""
10479
10480This function returns the same values as the libm ``log`` functions
10481would, and handles error conditions in the same way.
10482
10483'``llvm.log10.*``' Intrinsic
10484^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10485
10486Syntax:
10487"""""""
10488
10489This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10490floating point or vector of floating point type. Not all targets support
10491all types however.
10492
10493::
10494
10495 declare float @llvm.log10.f32(float %Val)
10496 declare double @llvm.log10.f64(double %Val)
10497 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10498 declare fp128 @llvm.log10.f128(fp128 %Val)
10499 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10500
10501Overview:
10502"""""""""
10503
10504The '``llvm.log10.*``' intrinsics perform the log10 function.
10505
10506Arguments:
10507""""""""""
10508
10509The argument and return value are floating point numbers of the same
10510type.
10511
10512Semantics:
10513""""""""""
10514
10515This function returns the same values as the libm ``log10`` functions
10516would, and handles error conditions in the same way.
10517
10518'``llvm.log2.*``' Intrinsic
10519^^^^^^^^^^^^^^^^^^^^^^^^^^^
10520
10521Syntax:
10522"""""""
10523
10524This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10525floating point or vector of floating point type. Not all targets support
10526all types however.
10527
10528::
10529
10530 declare float @llvm.log2.f32(float %Val)
10531 declare double @llvm.log2.f64(double %Val)
10532 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10533 declare fp128 @llvm.log2.f128(fp128 %Val)
10534 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10535
10536Overview:
10537"""""""""
10538
10539The '``llvm.log2.*``' intrinsics perform the log2 function.
10540
10541Arguments:
10542""""""""""
10543
10544The argument and return value are floating point numbers of the same
10545type.
10546
10547Semantics:
10548""""""""""
10549
10550This function returns the same values as the libm ``log2`` functions
10551would, and handles error conditions in the same way.
10552
10553'``llvm.fma.*``' Intrinsic
10554^^^^^^^^^^^^^^^^^^^^^^^^^^
10555
10556Syntax:
10557"""""""
10558
10559This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10560floating point or vector of floating point type. Not all targets support
10561all types however.
10562
10563::
10564
10565 declare float @llvm.fma.f32(float %a, float %b, float %c)
10566 declare double @llvm.fma.f64(double %a, double %b, double %c)
10567 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10568 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10569 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10570
10571Overview:
10572"""""""""
10573
10574The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10575operation.
10576
10577Arguments:
10578""""""""""
10579
10580The argument and return value are floating point numbers of the same
10581type.
10582
10583Semantics:
10584""""""""""
10585
10586This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010587would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010588
10589'``llvm.fabs.*``' Intrinsic
10590^^^^^^^^^^^^^^^^^^^^^^^^^^^
10591
10592Syntax:
10593"""""""
10594
10595This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10596floating point or vector of floating point type. Not all targets support
10597all types however.
10598
10599::
10600
10601 declare float @llvm.fabs.f32(float %Val)
10602 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010603 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010604 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010605 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010606
10607Overview:
10608"""""""""
10609
10610The '``llvm.fabs.*``' intrinsics return the absolute value of the
10611operand.
10612
10613Arguments:
10614""""""""""
10615
10616The argument and return value are floating point numbers of the same
10617type.
10618
10619Semantics:
10620""""""""""
10621
10622This function returns the same values as the libm ``fabs`` functions
10623would, and handles error conditions in the same way.
10624
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010625'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010626^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010627
10628Syntax:
10629"""""""
10630
10631This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10632floating point or vector of floating point type. Not all targets support
10633all types however.
10634
10635::
10636
Matt Arsenault64313c92014-10-22 18:25:02 +000010637 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10638 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10639 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10640 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10641 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010642
10643Overview:
10644"""""""""
10645
10646The '``llvm.minnum.*``' intrinsics return the minimum of the two
10647arguments.
10648
10649
10650Arguments:
10651""""""""""
10652
10653The arguments and return value are floating point numbers of the same
10654type.
10655
10656Semantics:
10657""""""""""
10658
10659Follows the IEEE-754 semantics for minNum, which also match for libm's
10660fmin.
10661
10662If either operand is a NaN, returns the other non-NaN operand. Returns
10663NaN only if both operands are NaN. If the operands compare equal,
10664returns a value that compares equal to both operands. This means that
10665fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10666
10667'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010669
10670Syntax:
10671"""""""
10672
10673This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10674floating point or vector of floating point type. Not all targets support
10675all types however.
10676
10677::
10678
Matt Arsenault64313c92014-10-22 18:25:02 +000010679 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10680 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10681 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10682 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10683 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010684
10685Overview:
10686"""""""""
10687
10688The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10689arguments.
10690
10691
10692Arguments:
10693""""""""""
10694
10695The arguments and return value are floating point numbers of the same
10696type.
10697
10698Semantics:
10699""""""""""
10700Follows the IEEE-754 semantics for maxNum, which also match for libm's
10701fmax.
10702
10703If either operand is a NaN, returns the other non-NaN operand. Returns
10704NaN only if both operands are NaN. If the operands compare equal,
10705returns a value that compares equal to both operands. This means that
10706fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10707
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010708'``llvm.copysign.*``' Intrinsic
10709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10710
10711Syntax:
10712"""""""
10713
10714This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10715floating point or vector of floating point type. Not all targets support
10716all types however.
10717
10718::
10719
10720 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10721 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10722 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10723 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10724 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10725
10726Overview:
10727"""""""""
10728
10729The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10730first operand and the sign of the second operand.
10731
10732Arguments:
10733""""""""""
10734
10735The arguments and return value are floating point numbers of the same
10736type.
10737
10738Semantics:
10739""""""""""
10740
10741This function returns the same values as the libm ``copysign``
10742functions would, and handles error conditions in the same way.
10743
Sean Silvab084af42012-12-07 10:36:55 +000010744'``llvm.floor.*``' Intrinsic
10745^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10746
10747Syntax:
10748"""""""
10749
10750This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10751floating point or vector of floating point type. Not all targets support
10752all types however.
10753
10754::
10755
10756 declare float @llvm.floor.f32(float %Val)
10757 declare double @llvm.floor.f64(double %Val)
10758 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10759 declare fp128 @llvm.floor.f128(fp128 %Val)
10760 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10761
10762Overview:
10763"""""""""
10764
10765The '``llvm.floor.*``' intrinsics return the floor of the operand.
10766
10767Arguments:
10768""""""""""
10769
10770The argument and return value are floating point numbers of the same
10771type.
10772
10773Semantics:
10774""""""""""
10775
10776This function returns the same values as the libm ``floor`` functions
10777would, and handles error conditions in the same way.
10778
10779'``llvm.ceil.*``' Intrinsic
10780^^^^^^^^^^^^^^^^^^^^^^^^^^^
10781
10782Syntax:
10783"""""""
10784
10785This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10786floating point or vector of floating point type. Not all targets support
10787all types however.
10788
10789::
10790
10791 declare float @llvm.ceil.f32(float %Val)
10792 declare double @llvm.ceil.f64(double %Val)
10793 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10794 declare fp128 @llvm.ceil.f128(fp128 %Val)
10795 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10796
10797Overview:
10798"""""""""
10799
10800The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10801
10802Arguments:
10803""""""""""
10804
10805The argument and return value are floating point numbers of the same
10806type.
10807
10808Semantics:
10809""""""""""
10810
10811This function returns the same values as the libm ``ceil`` functions
10812would, and handles error conditions in the same way.
10813
10814'``llvm.trunc.*``' Intrinsic
10815^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10816
10817Syntax:
10818"""""""
10819
10820This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10821floating point or vector of floating point type. Not all targets support
10822all types however.
10823
10824::
10825
10826 declare float @llvm.trunc.f32(float %Val)
10827 declare double @llvm.trunc.f64(double %Val)
10828 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10829 declare fp128 @llvm.trunc.f128(fp128 %Val)
10830 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10831
10832Overview:
10833"""""""""
10834
10835The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10836nearest integer not larger in magnitude than the operand.
10837
10838Arguments:
10839""""""""""
10840
10841The argument and return value are floating point numbers of the same
10842type.
10843
10844Semantics:
10845""""""""""
10846
10847This function returns the same values as the libm ``trunc`` functions
10848would, and handles error conditions in the same way.
10849
10850'``llvm.rint.*``' Intrinsic
10851^^^^^^^^^^^^^^^^^^^^^^^^^^^
10852
10853Syntax:
10854"""""""
10855
10856This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10857floating point or vector of floating point type. Not all targets support
10858all types however.
10859
10860::
10861
10862 declare float @llvm.rint.f32(float %Val)
10863 declare double @llvm.rint.f64(double %Val)
10864 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10865 declare fp128 @llvm.rint.f128(fp128 %Val)
10866 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10867
10868Overview:
10869"""""""""
10870
10871The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10872nearest integer. It may raise an inexact floating-point exception if the
10873operand isn't an integer.
10874
10875Arguments:
10876""""""""""
10877
10878The argument and return value are floating point numbers of the same
10879type.
10880
10881Semantics:
10882""""""""""
10883
10884This function returns the same values as the libm ``rint`` functions
10885would, and handles error conditions in the same way.
10886
10887'``llvm.nearbyint.*``' Intrinsic
10888^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10889
10890Syntax:
10891"""""""
10892
10893This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10894floating point or vector of floating point type. Not all targets support
10895all types however.
10896
10897::
10898
10899 declare float @llvm.nearbyint.f32(float %Val)
10900 declare double @llvm.nearbyint.f64(double %Val)
10901 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10902 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10903 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10904
10905Overview:
10906"""""""""
10907
10908The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10909nearest integer.
10910
10911Arguments:
10912""""""""""
10913
10914The argument and return value are floating point numbers of the same
10915type.
10916
10917Semantics:
10918""""""""""
10919
10920This function returns the same values as the libm ``nearbyint``
10921functions would, and handles error conditions in the same way.
10922
Hal Finkel171817e2013-08-07 22:49:12 +000010923'``llvm.round.*``' Intrinsic
10924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10925
10926Syntax:
10927"""""""
10928
10929This is an overloaded intrinsic. You can use ``llvm.round`` on any
10930floating point or vector of floating point type. Not all targets support
10931all types however.
10932
10933::
10934
10935 declare float @llvm.round.f32(float %Val)
10936 declare double @llvm.round.f64(double %Val)
10937 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10938 declare fp128 @llvm.round.f128(fp128 %Val)
10939 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10940
10941Overview:
10942"""""""""
10943
10944The '``llvm.round.*``' intrinsics returns the operand rounded to the
10945nearest integer.
10946
10947Arguments:
10948""""""""""
10949
10950The argument and return value are floating point numbers of the same
10951type.
10952
10953Semantics:
10954""""""""""
10955
10956This function returns the same values as the libm ``round``
10957functions would, and handles error conditions in the same way.
10958
Sean Silvab084af42012-12-07 10:36:55 +000010959Bit Manipulation Intrinsics
10960---------------------------
10961
10962LLVM provides intrinsics for a few important bit manipulation
10963operations. These allow efficient code generation for some algorithms.
10964
James Molloy90111f72015-11-12 12:29:09 +000010965'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010966^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010967
10968Syntax:
10969"""""""
10970
10971This is an overloaded intrinsic function. You can use bitreverse on any
10972integer type.
10973
10974::
10975
10976 declare i16 @llvm.bitreverse.i16(i16 <id>)
10977 declare i32 @llvm.bitreverse.i32(i32 <id>)
10978 declare i64 @llvm.bitreverse.i64(i64 <id>)
10979
10980Overview:
10981"""""""""
10982
10983The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010984bitpattern of an integer value; for example ``0b10110110`` becomes
10985``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010986
10987Semantics:
10988""""""""""
10989
Yichao Yu5abf14b2016-11-23 16:25:31 +000010990The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000010991``M`` in the input moved to bit ``N-M`` in the output.
10992
Sean Silvab084af42012-12-07 10:36:55 +000010993'``llvm.bswap.*``' Intrinsics
10994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10995
10996Syntax:
10997"""""""
10998
10999This is an overloaded intrinsic function. You can use bswap on any
11000integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11001
11002::
11003
11004 declare i16 @llvm.bswap.i16(i16 <id>)
11005 declare i32 @llvm.bswap.i32(i32 <id>)
11006 declare i64 @llvm.bswap.i64(i64 <id>)
11007
11008Overview:
11009"""""""""
11010
11011The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11012values with an even number of bytes (positive multiple of 16 bits).
11013These are useful for performing operations on data that is not in the
11014target's native byte order.
11015
11016Semantics:
11017""""""""""
11018
11019The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11020and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11021intrinsic returns an i32 value that has the four bytes of the input i32
11022swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11023returned i32 will have its bytes in 3, 2, 1, 0 order. The
11024``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11025concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11026respectively).
11027
11028'``llvm.ctpop.*``' Intrinsic
11029^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11030
11031Syntax:
11032"""""""
11033
11034This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11035bit width, or on any vector with integer elements. Not all targets
11036support all bit widths or vector types, however.
11037
11038::
11039
11040 declare i8 @llvm.ctpop.i8(i8 <src>)
11041 declare i16 @llvm.ctpop.i16(i16 <src>)
11042 declare i32 @llvm.ctpop.i32(i32 <src>)
11043 declare i64 @llvm.ctpop.i64(i64 <src>)
11044 declare i256 @llvm.ctpop.i256(i256 <src>)
11045 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11046
11047Overview:
11048"""""""""
11049
11050The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11051in a value.
11052
11053Arguments:
11054""""""""""
11055
11056The only argument is the value to be counted. The argument may be of any
11057integer type, or a vector with integer elements. The return type must
11058match the argument type.
11059
11060Semantics:
11061""""""""""
11062
11063The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11064each element of a vector.
11065
11066'``llvm.ctlz.*``' Intrinsic
11067^^^^^^^^^^^^^^^^^^^^^^^^^^^
11068
11069Syntax:
11070"""""""
11071
11072This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11073integer bit width, or any vector whose elements are integers. Not all
11074targets support all bit widths or vector types, however.
11075
11076::
11077
11078 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11079 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11080 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11081 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11082 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011083 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011084
11085Overview:
11086"""""""""
11087
11088The '``llvm.ctlz``' family of intrinsic functions counts the number of
11089leading zeros in a variable.
11090
11091Arguments:
11092""""""""""
11093
11094The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011095any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011096type must match the first argument type.
11097
11098The second argument must be a constant and is a flag to indicate whether
11099the intrinsic should ensure that a zero as the first argument produces a
11100defined result. Historically some architectures did not provide a
11101defined result for zero values as efficiently, and many algorithms are
11102now predicated on avoiding zero-value inputs.
11103
11104Semantics:
11105""""""""""
11106
11107The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11108zeros in a variable, or within each element of the vector. If
11109``src == 0`` then the result is the size in bits of the type of ``src``
11110if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11111``llvm.ctlz(i32 2) = 30``.
11112
11113'``llvm.cttz.*``' Intrinsic
11114^^^^^^^^^^^^^^^^^^^^^^^^^^^
11115
11116Syntax:
11117"""""""
11118
11119This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11120integer bit width, or any vector of integer elements. Not all targets
11121support all bit widths or vector types, however.
11122
11123::
11124
11125 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11126 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11127 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11128 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11129 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011130 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011131
11132Overview:
11133"""""""""
11134
11135The '``llvm.cttz``' family of intrinsic functions counts the number of
11136trailing zeros.
11137
11138Arguments:
11139""""""""""
11140
11141The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011142any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011143type must match the first argument type.
11144
11145The second argument must be a constant and is a flag to indicate whether
11146the intrinsic should ensure that a zero as the first argument produces a
11147defined result. Historically some architectures did not provide a
11148defined result for zero values as efficiently, and many algorithms are
11149now predicated on avoiding zero-value inputs.
11150
11151Semantics:
11152""""""""""
11153
11154The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11155zeros in a variable, or within each element of a vector. If ``src == 0``
11156then the result is the size in bits of the type of ``src`` if
11157``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11158``llvm.cttz(2) = 1``.
11159
Philip Reames34843ae2015-03-05 05:55:55 +000011160.. _int_overflow:
11161
Sean Silvab084af42012-12-07 10:36:55 +000011162Arithmetic with Overflow Intrinsics
11163-----------------------------------
11164
John Regehr6a493f22016-05-12 20:55:09 +000011165LLVM provides intrinsics for fast arithmetic overflow checking.
11166
11167Each of these intrinsics returns a two-element struct. The first
11168element of this struct contains the result of the corresponding
11169arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11170the result. Therefore, for example, the first element of the struct
11171returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11172result of a 32-bit ``add`` instruction with the same operands, where
11173the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11174
11175The second element of the result is an ``i1`` that is 1 if the
11176arithmetic operation overflowed and 0 otherwise. An operation
11177overflows if, for any values of its operands ``A`` and ``B`` and for
11178any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11179not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11180``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11181``op`` is the underlying arithmetic operation.
11182
11183The behavior of these intrinsics is well-defined for all argument
11184values.
Sean Silvab084af42012-12-07 10:36:55 +000011185
11186'``llvm.sadd.with.overflow.*``' Intrinsics
11187^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11188
11189Syntax:
11190"""""""
11191
11192This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11193on any integer bit width.
11194
11195::
11196
11197 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11198 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11199 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11200
11201Overview:
11202"""""""""
11203
11204The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11205a signed addition of the two arguments, and indicate whether an overflow
11206occurred during the signed summation.
11207
11208Arguments:
11209""""""""""
11210
11211The arguments (%a and %b) and the first element of the result structure
11212may be of integer types of any bit width, but they must have the same
11213bit width. The second element of the result structure must be of type
11214``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11215addition.
11216
11217Semantics:
11218""""""""""
11219
11220The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011221a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011222first element of which is the signed summation, and the second element
11223of which is a bit specifying if the signed summation resulted in an
11224overflow.
11225
11226Examples:
11227"""""""""
11228
11229.. code-block:: llvm
11230
11231 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11232 %sum = extractvalue {i32, i1} %res, 0
11233 %obit = extractvalue {i32, i1} %res, 1
11234 br i1 %obit, label %overflow, label %normal
11235
11236'``llvm.uadd.with.overflow.*``' Intrinsics
11237^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11238
11239Syntax:
11240"""""""
11241
11242This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11243on any integer bit width.
11244
11245::
11246
11247 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11248 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11249 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11250
11251Overview:
11252"""""""""
11253
11254The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11255an unsigned addition of the two arguments, and indicate whether a carry
11256occurred during the unsigned summation.
11257
11258Arguments:
11259""""""""""
11260
11261The arguments (%a and %b) and the first element of the result structure
11262may be of integer types of any bit width, but they must have the same
11263bit width. The second element of the result structure must be of type
11264``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11265addition.
11266
11267Semantics:
11268""""""""""
11269
11270The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011271an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011272first element of which is the sum, and the second element of which is a
11273bit specifying if the unsigned summation resulted in a carry.
11274
11275Examples:
11276"""""""""
11277
11278.. code-block:: llvm
11279
11280 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11281 %sum = extractvalue {i32, i1} %res, 0
11282 %obit = extractvalue {i32, i1} %res, 1
11283 br i1 %obit, label %carry, label %normal
11284
11285'``llvm.ssub.with.overflow.*``' Intrinsics
11286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11287
11288Syntax:
11289"""""""
11290
11291This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11292on any integer bit width.
11293
11294::
11295
11296 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11297 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11298 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11299
11300Overview:
11301"""""""""
11302
11303The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11304a signed subtraction of the two arguments, and indicate whether an
11305overflow occurred during the signed subtraction.
11306
11307Arguments:
11308""""""""""
11309
11310The arguments (%a and %b) and the first element of the result structure
11311may be of integer types of any bit width, but they must have the same
11312bit width. The second element of the result structure must be of type
11313``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11314subtraction.
11315
11316Semantics:
11317""""""""""
11318
11319The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011320a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011321first element of which is the subtraction, and the second element of
11322which is a bit specifying if the signed subtraction resulted in an
11323overflow.
11324
11325Examples:
11326"""""""""
11327
11328.. code-block:: llvm
11329
11330 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11331 %sum = extractvalue {i32, i1} %res, 0
11332 %obit = extractvalue {i32, i1} %res, 1
11333 br i1 %obit, label %overflow, label %normal
11334
11335'``llvm.usub.with.overflow.*``' Intrinsics
11336^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11337
11338Syntax:
11339"""""""
11340
11341This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11342on any integer bit width.
11343
11344::
11345
11346 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11347 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11348 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11349
11350Overview:
11351"""""""""
11352
11353The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11354an unsigned subtraction of the two arguments, and indicate whether an
11355overflow occurred during the unsigned subtraction.
11356
11357Arguments:
11358""""""""""
11359
11360The arguments (%a and %b) and the first element of the result structure
11361may be of integer types of any bit width, but they must have the same
11362bit width. The second element of the result structure must be of type
11363``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11364subtraction.
11365
11366Semantics:
11367""""""""""
11368
11369The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011370an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011371the first element of which is the subtraction, and the second element of
11372which is a bit specifying if the unsigned subtraction resulted in an
11373overflow.
11374
11375Examples:
11376"""""""""
11377
11378.. code-block:: llvm
11379
11380 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11381 %sum = extractvalue {i32, i1} %res, 0
11382 %obit = extractvalue {i32, i1} %res, 1
11383 br i1 %obit, label %overflow, label %normal
11384
11385'``llvm.smul.with.overflow.*``' Intrinsics
11386^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11387
11388Syntax:
11389"""""""
11390
11391This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11392on any integer bit width.
11393
11394::
11395
11396 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11397 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11398 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11399
11400Overview:
11401"""""""""
11402
11403The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11404a signed multiplication of the two arguments, and indicate whether an
11405overflow occurred during the signed multiplication.
11406
11407Arguments:
11408""""""""""
11409
11410The arguments (%a and %b) and the first element of the result structure
11411may be of integer types of any bit width, but they must have the same
11412bit width. The second element of the result structure must be of type
11413``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11414multiplication.
11415
11416Semantics:
11417""""""""""
11418
11419The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011420a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011421the first element of which is the multiplication, and the second element
11422of which is a bit specifying if the signed multiplication resulted in an
11423overflow.
11424
11425Examples:
11426"""""""""
11427
11428.. code-block:: llvm
11429
11430 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11431 %sum = extractvalue {i32, i1} %res, 0
11432 %obit = extractvalue {i32, i1} %res, 1
11433 br i1 %obit, label %overflow, label %normal
11434
11435'``llvm.umul.with.overflow.*``' Intrinsics
11436^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11437
11438Syntax:
11439"""""""
11440
11441This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11442on any integer bit width.
11443
11444::
11445
11446 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11447 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11448 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11449
11450Overview:
11451"""""""""
11452
11453The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11454a unsigned multiplication of the two arguments, and indicate whether an
11455overflow occurred during the unsigned multiplication.
11456
11457Arguments:
11458""""""""""
11459
11460The arguments (%a and %b) and the first element of the result structure
11461may be of integer types of any bit width, but they must have the same
11462bit width. The second element of the result structure must be of type
11463``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11464multiplication.
11465
11466Semantics:
11467""""""""""
11468
11469The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011470an unsigned multiplication of the two arguments. They return a structure ---
11471the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011472element of which is a bit specifying if the unsigned multiplication
11473resulted in an overflow.
11474
11475Examples:
11476"""""""""
11477
11478.. code-block:: llvm
11479
11480 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11481 %sum = extractvalue {i32, i1} %res, 0
11482 %obit = extractvalue {i32, i1} %res, 1
11483 br i1 %obit, label %overflow, label %normal
11484
11485Specialised Arithmetic Intrinsics
11486---------------------------------
11487
Owen Anderson1056a922015-07-11 07:01:27 +000011488'``llvm.canonicalize.*``' Intrinsic
11489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11490
11491Syntax:
11492"""""""
11493
11494::
11495
11496 declare float @llvm.canonicalize.f32(float %a)
11497 declare double @llvm.canonicalize.f64(double %b)
11498
11499Overview:
11500"""""""""
11501
11502The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011503encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011504implementing certain numeric primitives such as frexp. The canonical encoding is
11505defined by IEEE-754-2008 to be:
11506
11507::
11508
11509 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011510 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011511 numbers, infinities, and NaNs, especially in decimal formats.
11512
11513This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011514conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011515according to section 6.2.
11516
11517Examples of non-canonical encodings:
11518
Sean Silvaa1190322015-08-06 22:56:48 +000011519- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011520 converted to a canonical representation per hardware-specific protocol.
11521- Many normal decimal floating point numbers have non-canonical alternative
11522 encodings.
11523- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011524 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011525 a zero of the same sign by this operation.
11526
11527Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11528default exception handling must signal an invalid exception, and produce a
11529quiet NaN result.
11530
11531This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011532that the compiler does not constant fold the operation. Likewise, division by
115331.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011534-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11535
Sean Silvaa1190322015-08-06 22:56:48 +000011536``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011537
11538- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11539- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11540 to ``(x == y)``
11541
11542Additionally, the sign of zero must be conserved:
11543``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11544
11545The payload bits of a NaN must be conserved, with two exceptions.
11546First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011547must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011548usual methods.
11549
11550The canonicalization operation may be optimized away if:
11551
Sean Silvaa1190322015-08-06 22:56:48 +000011552- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011553 floating-point operation that is required by the standard to be canonical.
11554- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011555 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011556
Sean Silvab084af42012-12-07 10:36:55 +000011557'``llvm.fmuladd.*``' Intrinsic
11558^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11559
11560Syntax:
11561"""""""
11562
11563::
11564
11565 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11566 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11567
11568Overview:
11569"""""""""
11570
11571The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011572expressions that can be fused if the code generator determines that (a) the
11573target instruction set has support for a fused operation, and (b) that the
11574fused operation is more efficient than the equivalent, separate pair of mul
11575and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011576
11577Arguments:
11578""""""""""
11579
11580The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11581multiplicands, a and b, and an addend c.
11582
11583Semantics:
11584""""""""""
11585
11586The expression:
11587
11588::
11589
11590 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11591
11592is equivalent to the expression a \* b + c, except that rounding will
11593not be performed between the multiplication and addition steps if the
11594code generator fuses the operations. Fusion is not guaranteed, even if
11595the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011596corresponding llvm.fma.\* intrinsic function should be used
11597instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011598
11599Examples:
11600"""""""""
11601
11602.. code-block:: llvm
11603
Tim Northover675a0962014-06-13 14:24:23 +000011604 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011605
11606Half Precision Floating Point Intrinsics
11607----------------------------------------
11608
11609For most target platforms, half precision floating point is a
11610storage-only format. This means that it is a dense encoding (in memory)
11611but does not support computation in the format.
11612
11613This means that code must first load the half-precision floating point
11614value as an i16, then convert it to float with
11615:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11616then be performed on the float value (including extending to double
11617etc). To store the value back to memory, it is first converted to float
11618if needed, then converted to i16 with
11619:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11620i16 value.
11621
11622.. _int_convert_to_fp16:
11623
11624'``llvm.convert.to.fp16``' Intrinsic
11625^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11626
11627Syntax:
11628"""""""
11629
11630::
11631
Tim Northoverfd7e4242014-07-17 10:51:23 +000011632 declare i16 @llvm.convert.to.fp16.f32(float %a)
11633 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011634
11635Overview:
11636"""""""""
11637
Tim Northoverfd7e4242014-07-17 10:51:23 +000011638The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11639conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011640
11641Arguments:
11642""""""""""
11643
11644The intrinsic function contains single argument - the value to be
11645converted.
11646
11647Semantics:
11648""""""""""
11649
Tim Northoverfd7e4242014-07-17 10:51:23 +000011650The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11651conventional floating point format to half precision floating point format. The
11652return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011653
11654Examples:
11655"""""""""
11656
11657.. code-block:: llvm
11658
Tim Northoverfd7e4242014-07-17 10:51:23 +000011659 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011660 store i16 %res, i16* @x, align 2
11661
11662.. _int_convert_from_fp16:
11663
11664'``llvm.convert.from.fp16``' Intrinsic
11665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11666
11667Syntax:
11668"""""""
11669
11670::
11671
Tim Northoverfd7e4242014-07-17 10:51:23 +000011672 declare float @llvm.convert.from.fp16.f32(i16 %a)
11673 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011674
11675Overview:
11676"""""""""
11677
11678The '``llvm.convert.from.fp16``' intrinsic function performs a
11679conversion from half precision floating point format to single precision
11680floating point format.
11681
11682Arguments:
11683""""""""""
11684
11685The intrinsic function contains single argument - the value to be
11686converted.
11687
11688Semantics:
11689""""""""""
11690
11691The '``llvm.convert.from.fp16``' intrinsic function performs a
11692conversion from half single precision floating point format to single
11693precision floating point format. The input half-float value is
11694represented by an ``i16`` value.
11695
11696Examples:
11697"""""""""
11698
11699.. code-block:: llvm
11700
David Blaikiec7aabbb2015-03-04 22:06:14 +000011701 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011702 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011703
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011704.. _dbg_intrinsics:
11705
Sean Silvab084af42012-12-07 10:36:55 +000011706Debugger Intrinsics
11707-------------------
11708
11709The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11710prefix), are described in the `LLVM Source Level
11711Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11712document.
11713
11714Exception Handling Intrinsics
11715-----------------------------
11716
11717The LLVM exception handling intrinsics (which all start with
11718``llvm.eh.`` prefix), are described in the `LLVM Exception
11719Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11720
11721.. _int_trampoline:
11722
11723Trampoline Intrinsics
11724---------------------
11725
11726These intrinsics make it possible to excise one parameter, marked with
11727the :ref:`nest <nest>` attribute, from a function. The result is a
11728callable function pointer lacking the nest parameter - the caller does
11729not need to provide a value for it. Instead, the value to use is stored
11730in advance in a "trampoline", a block of memory usually allocated on the
11731stack, which also contains code to splice the nest value into the
11732argument list. This is used to implement the GCC nested function address
11733extension.
11734
11735For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11736then the resulting function pointer has signature ``i32 (i32, i32)*``.
11737It can be created as follows:
11738
11739.. code-block:: llvm
11740
11741 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011742 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011743 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11744 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11745 %fp = bitcast i8* %p to i32 (i32, i32)*
11746
11747The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11748``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11749
11750.. _int_it:
11751
11752'``llvm.init.trampoline``' Intrinsic
11753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11754
11755Syntax:
11756"""""""
11757
11758::
11759
11760 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11761
11762Overview:
11763"""""""""
11764
11765This fills the memory pointed to by ``tramp`` with executable code,
11766turning it into a trampoline.
11767
11768Arguments:
11769""""""""""
11770
11771The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11772pointers. The ``tramp`` argument must point to a sufficiently large and
11773sufficiently aligned block of memory; this memory is written to by the
11774intrinsic. Note that the size and the alignment are target-specific -
11775LLVM currently provides no portable way of determining them, so a
11776front-end that generates this intrinsic needs to have some
11777target-specific knowledge. The ``func`` argument must hold a function
11778bitcast to an ``i8*``.
11779
11780Semantics:
11781""""""""""
11782
11783The block of memory pointed to by ``tramp`` is filled with target
11784dependent code, turning it into a function. Then ``tramp`` needs to be
11785passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11786be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11787function's signature is the same as that of ``func`` with any arguments
11788marked with the ``nest`` attribute removed. At most one such ``nest``
11789argument is allowed, and it must be of pointer type. Calling the new
11790function is equivalent to calling ``func`` with the same argument list,
11791but with ``nval`` used for the missing ``nest`` argument. If, after
11792calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11793modified, then the effect of any later call to the returned function
11794pointer is undefined.
11795
11796.. _int_at:
11797
11798'``llvm.adjust.trampoline``' Intrinsic
11799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11800
11801Syntax:
11802"""""""
11803
11804::
11805
11806 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11807
11808Overview:
11809"""""""""
11810
11811This performs any required machine-specific adjustment to the address of
11812a trampoline (passed as ``tramp``).
11813
11814Arguments:
11815""""""""""
11816
11817``tramp`` must point to a block of memory which already has trampoline
11818code filled in by a previous call to
11819:ref:`llvm.init.trampoline <int_it>`.
11820
11821Semantics:
11822""""""""""
11823
11824On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011825different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011826intrinsic returns the executable address corresponding to ``tramp``
11827after performing the required machine specific adjustments. The pointer
11828returned can then be :ref:`bitcast and executed <int_trampoline>`.
11829
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011830.. _int_mload_mstore:
11831
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011832Masked Vector Load and Store Intrinsics
11833---------------------------------------
11834
11835LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11836
11837.. _int_mload:
11838
11839'``llvm.masked.load.*``' Intrinsics
11840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11841
11842Syntax:
11843"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011844This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011845
11846::
11847
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011848 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11849 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011850 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011851 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011852 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011853 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011854
11855Overview:
11856"""""""""
11857
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011858Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011859
11860
11861Arguments:
11862""""""""""
11863
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011864The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011865
11866
11867Semantics:
11868""""""""""
11869
11870The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11871The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11872
11873
11874::
11875
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011876 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011877
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011878 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011879 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011880 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011881
11882.. _int_mstore:
11883
11884'``llvm.masked.store.*``' Intrinsics
11885^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11886
11887Syntax:
11888"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011889This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011890
11891::
11892
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011893 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11894 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011895 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011896 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011897 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011898 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011899
11900Overview:
11901"""""""""
11902
11903Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11904
11905Arguments:
11906""""""""""
11907
11908The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11909
11910
11911Semantics:
11912""""""""""
11913
11914The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11915The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11916
11917::
11918
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011919 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011920
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011921 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011922 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011923 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11924 store <16 x float> %res, <16 x float>* %ptr, align 4
11925
11926
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011927Masked Vector Gather and Scatter Intrinsics
11928-------------------------------------------
11929
11930LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11931
11932.. _int_mgather:
11933
11934'``llvm.masked.gather.*``' Intrinsics
11935^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11936
11937Syntax:
11938"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011939This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011940
11941::
11942
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011943 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11944 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11945 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011946
11947Overview:
11948"""""""""
11949
11950Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11951
11952
11953Arguments:
11954""""""""""
11955
11956The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11957
11958
11959Semantics:
11960""""""""""
11961
11962The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11963The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11964
11965
11966::
11967
Zvi Rackoverb26530c2017-01-26 20:29:15 +000011968 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011969
11970 ;; The gather with all-true mask is equivalent to the following instruction sequence
11971 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11972 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11973 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11974 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11975
11976 %val0 = load double, double* %ptr0, align 8
11977 %val1 = load double, double* %ptr1, align 8
11978 %val2 = load double, double* %ptr2, align 8
11979 %val3 = load double, double* %ptr3, align 8
11980
11981 %vec0 = insertelement <4 x double>undef, %val0, 0
11982 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11983 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11984 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11985
11986.. _int_mscatter:
11987
11988'``llvm.masked.scatter.*``' Intrinsics
11989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11990
11991Syntax:
11992"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011993This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011994
11995::
11996
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011997 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11998 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11999 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012000
12001Overview:
12002"""""""""
12003
12004Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12005
12006Arguments:
12007""""""""""
12008
12009The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12010
12011
12012Semantics:
12013""""""""""
12014
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012015The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012016
12017::
12018
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012019 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012020 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
12021
12022 ;; It is equivalent to a list of scalar stores
12023 %val0 = extractelement <8 x i32> %value, i32 0
12024 %val1 = extractelement <8 x i32> %value, i32 1
12025 ..
12026 %val7 = extractelement <8 x i32> %value, i32 7
12027 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12028 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12029 ..
12030 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12031 ;; Note: the order of the following stores is important when they overlap:
12032 store i32 %val0, i32* %ptr0, align 4
12033 store i32 %val1, i32* %ptr1, align 4
12034 ..
12035 store i32 %val7, i32* %ptr7, align 4
12036
12037
Sean Silvab084af42012-12-07 10:36:55 +000012038Memory Use Markers
12039------------------
12040
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012041This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012042memory objects and ranges where variables are immutable.
12043
Reid Klecknera534a382013-12-19 02:14:12 +000012044.. _int_lifestart:
12045
Sean Silvab084af42012-12-07 10:36:55 +000012046'``llvm.lifetime.start``' Intrinsic
12047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12048
12049Syntax:
12050"""""""
12051
12052::
12053
12054 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12055
12056Overview:
12057"""""""""
12058
12059The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12060object's lifetime.
12061
12062Arguments:
12063""""""""""
12064
12065The first argument is a constant integer representing the size of the
12066object, or -1 if it is variable sized. The second argument is a pointer
12067to the object.
12068
12069Semantics:
12070""""""""""
12071
12072This intrinsic indicates that before this point in the code, the value
12073of the memory pointed to by ``ptr`` is dead. This means that it is known
12074to never be used and has an undefined value. A load from the pointer
12075that precedes this intrinsic can be replaced with ``'undef'``.
12076
Reid Klecknera534a382013-12-19 02:14:12 +000012077.. _int_lifeend:
12078
Sean Silvab084af42012-12-07 10:36:55 +000012079'``llvm.lifetime.end``' Intrinsic
12080^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12081
12082Syntax:
12083"""""""
12084
12085::
12086
12087 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12088
12089Overview:
12090"""""""""
12091
12092The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12093object's lifetime.
12094
12095Arguments:
12096""""""""""
12097
12098The first argument is a constant integer representing the size of the
12099object, or -1 if it is variable sized. The second argument is a pointer
12100to the object.
12101
12102Semantics:
12103""""""""""
12104
12105This intrinsic indicates that after this point in the code, the value of
12106the memory pointed to by ``ptr`` is dead. This means that it is known to
12107never be used and has an undefined value. Any stores into the memory
12108object following this intrinsic may be removed as dead.
12109
12110'``llvm.invariant.start``' Intrinsic
12111^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12112
12113Syntax:
12114"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012115This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012116
12117::
12118
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012119 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012120
12121Overview:
12122"""""""""
12123
12124The '``llvm.invariant.start``' intrinsic specifies that the contents of
12125a memory object will not change.
12126
12127Arguments:
12128""""""""""
12129
12130The first argument is a constant integer representing the size of the
12131object, or -1 if it is variable sized. The second argument is a pointer
12132to the object.
12133
12134Semantics:
12135""""""""""
12136
12137This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12138the return value, the referenced memory location is constant and
12139unchanging.
12140
12141'``llvm.invariant.end``' Intrinsic
12142^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12143
12144Syntax:
12145"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012146This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012147
12148::
12149
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012150 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012151
12152Overview:
12153"""""""""
12154
12155The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12156memory object are mutable.
12157
12158Arguments:
12159""""""""""
12160
12161The first argument is the matching ``llvm.invariant.start`` intrinsic.
12162The second argument is a constant integer representing the size of the
12163object, or -1 if it is variable sized and the third argument is a
12164pointer to the object.
12165
12166Semantics:
12167""""""""""
12168
12169This intrinsic indicates that the memory is mutable again.
12170
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012171'``llvm.invariant.group.barrier``' Intrinsic
12172^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12173
12174Syntax:
12175"""""""
12176
12177::
12178
12179 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12180
12181Overview:
12182"""""""""
12183
12184The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12185established by invariant.group metadata no longer holds, to obtain a new pointer
12186value that does not carry the invariant information.
12187
12188
12189Arguments:
12190""""""""""
12191
12192The ``llvm.invariant.group.barrier`` takes only one argument, which is
12193the pointer to the memory for which the ``invariant.group`` no longer holds.
12194
12195Semantics:
12196""""""""""
12197
12198Returns another pointer that aliases its argument but which is considered different
12199for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12200
Andrew Kaylora0a11642017-01-26 23:27:59 +000012201Constrained Floating Point Intrinsics
12202-------------------------------------
12203
12204These intrinsics are used to provide special handling of floating point
12205operations when specific rounding mode or floating point exception behavior is
12206required. By default, LLVM optimization passes assume that the rounding mode is
12207round-to-nearest and that floating point exceptions will not be monitored.
12208Constrained FP intrinsics are used to support non-default rounding modes and
12209accurately preserve exception behavior without compromising LLVM's ability to
12210optimize FP code when the default behavior is used.
12211
12212Each of these intrinsics corresponds to a normal floating point operation. The
12213first two arguments and the return value are the same as the corresponding FP
12214operation.
12215
12216The third argument is a metadata argument specifying the rounding mode to be
12217assumed. This argument must be one of the following strings:
12218
12219::
12220 "round.dynamic"
12221 "round.tonearest"
12222 "round.downward"
12223 "round.upward"
12224 "round.towardzero"
12225
12226If this argument is "round.dynamic" optimization passes must assume that the
12227rounding mode is unknown and may change at runtime. No transformations that
12228depend on rounding mode may be performed in this case.
12229
12230The other possible values for the rounding mode argument correspond to the
12231similarly named IEEE rounding modes. If the argument is any of these values
12232optimization passes may perform transformations as long as they are consistent
12233with the specified rounding mode.
12234
12235For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12236"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12237'x-0' should evaluate to '-0' when rounding downward. However, this
12238transformation is legal for all other rounding modes.
12239
12240For values other than "round.dynamic" optimization passes may assume that the
12241actual runtime rounding mode (as defined in a target-specific manner) matches
12242the specified rounding mode, but this is not guaranteed. Using a specific
12243non-dynamic rounding mode which does not match the actual rounding mode at
12244runtime results in undefined behavior.
12245
12246The fourth argument to the constrained floating point intrinsics specifies the
12247required exception behavior. This argument must be one of the following
12248strings:
12249
12250::
12251 "fpexcept.ignore"
12252 "fpexcept.maytrap"
12253 "fpexcept.strict"
12254
12255If this argument is "fpexcept.ignore" optimization passes may assume that the
12256exception status flags will not be read and that floating point exceptions will
12257be masked. This allows transformations to be performed that may change the
12258exception semantics of the original code. For example, FP operations may be
12259speculatively executed in this case whereas they must not be for either of the
12260other possible values of this argument.
12261
12262If the exception behavior argument is "fpexcept.maytrap" optimization passes
12263must avoid transformations that may raise exceptions that would not have been
12264raised by the original code (such as speculatively executing FP operations), but
12265passes are not required to preserve all exceptions that are implied by the
12266original code. For example, exceptions may be potentially hidden by constant
12267folding.
12268
12269If the exception behavior argument is "fpexcept.strict" all transformations must
12270strictly preserve the floating point exception semantics of the original code.
12271Any FP exception that would have been raised by the original code must be raised
12272by the transformed code, and the transformed code must not raise any FP
12273exceptions that would not have been raised by the original code. This is the
12274exception behavior argument that will be used if the code being compiled reads
12275the FP exception status flags, but this mode can also be used with code that
12276unmasks FP exceptions.
12277
12278The number and order of floating point exceptions is NOT guaranteed. For
12279example, a series of FP operations that each may raise exceptions may be
12280vectorized into a single instruction that raises each unique exception a single
12281time.
12282
12283
12284'``llvm.experimental.constrained.fadd``' Intrinsic
12285^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12286
12287Syntax:
12288"""""""
12289
12290::
12291
12292 declare <type>
12293 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12294 metadata <rounding mode>,
12295 metadata <exception behavior>)
12296
12297Overview:
12298"""""""""
12299
12300The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
12301two operands.
12302
12303
12304Arguments:
12305""""""""""
12306
12307The first two arguments to the '``llvm.experimental.constrained.fadd``'
12308intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12309of floating point values. Both arguments must have identical types.
12310
12311The third and fourth arguments specify the rounding mode and exception
12312behavior as described above.
12313
12314Semantics:
12315""""""""""
12316
12317The value produced is the floating point sum of the two value operands and has
12318the same type as the operands.
12319
12320
12321'``llvm.experimental.constrained.fsub``' Intrinsic
12322^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12323
12324Syntax:
12325"""""""
12326
12327::
12328
12329 declare <type>
12330 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
12331 metadata <rounding mode>,
12332 metadata <exception behavior>)
12333
12334Overview:
12335"""""""""
12336
12337The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
12338of its two operands.
12339
12340
12341Arguments:
12342""""""""""
12343
12344The first two arguments to the '``llvm.experimental.constrained.fsub``'
12345intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12346of floating point values. Both arguments must have identical types.
12347
12348The third and fourth arguments specify the rounding mode and exception
12349behavior as described above.
12350
12351Semantics:
12352""""""""""
12353
12354The value produced is the floating point difference of the two value operands
12355and has the same type as the operands.
12356
12357
12358'``llvm.experimental.constrained.fmul``' Intrinsic
12359^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12360
12361Syntax:
12362"""""""
12363
12364::
12365
12366 declare <type>
12367 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
12368 metadata <rounding mode>,
12369 metadata <exception behavior>)
12370
12371Overview:
12372"""""""""
12373
12374The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
12375its two operands.
12376
12377
12378Arguments:
12379""""""""""
12380
12381The first two arguments to the '``llvm.experimental.constrained.fmul``'
12382intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12383of floating point values. Both arguments must have identical types.
12384
12385The third and fourth arguments specify the rounding mode and exception
12386behavior as described above.
12387
12388Semantics:
12389""""""""""
12390
12391The value produced is the floating point product of the two value operands and
12392has the same type as the operands.
12393
12394
12395'``llvm.experimental.constrained.fdiv``' Intrinsic
12396^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12397
12398Syntax:
12399"""""""
12400
12401::
12402
12403 declare <type>
12404 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
12405 metadata <rounding mode>,
12406 metadata <exception behavior>)
12407
12408Overview:
12409"""""""""
12410
12411The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
12412its two operands.
12413
12414
12415Arguments:
12416""""""""""
12417
12418The first two arguments to the '``llvm.experimental.constrained.fdiv``'
12419intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12420of floating point values. Both arguments must have identical types.
12421
12422The third and fourth arguments specify the rounding mode and exception
12423behavior as described above.
12424
12425Semantics:
12426""""""""""
12427
12428The value produced is the floating point quotient of the two value operands and
12429has the same type as the operands.
12430
12431
12432'``llvm.experimental.constrained.frem``' Intrinsic
12433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12434
12435Syntax:
12436"""""""
12437
12438::
12439
12440 declare <type>
12441 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
12442 metadata <rounding mode>,
12443 metadata <exception behavior>)
12444
12445Overview:
12446"""""""""
12447
12448The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
12449from the division of its two operands.
12450
12451
12452Arguments:
12453""""""""""
12454
12455The first two arguments to the '``llvm.experimental.constrained.frem``'
12456intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12457of floating point values. Both arguments must have identical types.
12458
12459The third and fourth arguments specify the rounding mode and exception
12460behavior as described above. The rounding mode argument has no effect, since
12461the result of frem is never rounded, but the argument is included for
12462consistency with the other constrained floating point intrinsics.
12463
12464Semantics:
12465""""""""""
12466
12467The value produced is the floating point remainder from the division of the two
12468value operands and has the same type as the operands. The remainder has the
12469same sign as the dividend.
12470
12471
Sean Silvab084af42012-12-07 10:36:55 +000012472General Intrinsics
12473------------------
12474
12475This class of intrinsics is designed to be generic and has no specific
12476purpose.
12477
12478'``llvm.var.annotation``' Intrinsic
12479^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12480
12481Syntax:
12482"""""""
12483
12484::
12485
12486 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12487
12488Overview:
12489"""""""""
12490
12491The '``llvm.var.annotation``' intrinsic.
12492
12493Arguments:
12494""""""""""
12495
12496The first argument is a pointer to a value, the second is a pointer to a
12497global string, the third is a pointer to a global string which is the
12498source file name, and the last argument is the line number.
12499
12500Semantics:
12501""""""""""
12502
12503This intrinsic allows annotation of local variables with arbitrary
12504strings. This can be useful for special purpose optimizations that want
12505to look for these annotations. These have no other defined use; they are
12506ignored by code generation and optimization.
12507
Michael Gottesman88d18832013-03-26 00:34:27 +000012508'``llvm.ptr.annotation.*``' Intrinsic
12509^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12510
12511Syntax:
12512"""""""
12513
12514This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12515pointer to an integer of any width. *NOTE* you must specify an address space for
12516the pointer. The identifier for the default address space is the integer
12517'``0``'.
12518
12519::
12520
12521 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12522 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12523 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12524 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12525 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12526
12527Overview:
12528"""""""""
12529
12530The '``llvm.ptr.annotation``' intrinsic.
12531
12532Arguments:
12533""""""""""
12534
12535The first argument is a pointer to an integer value of arbitrary bitwidth
12536(result of some expression), the second is a pointer to a global string, the
12537third is a pointer to a global string which is the source file name, and the
12538last argument is the line number. It returns the value of the first argument.
12539
12540Semantics:
12541""""""""""
12542
12543This intrinsic allows annotation of a pointer to an integer with arbitrary
12544strings. This can be useful for special purpose optimizations that want to look
12545for these annotations. These have no other defined use; they are ignored by code
12546generation and optimization.
12547
Sean Silvab084af42012-12-07 10:36:55 +000012548'``llvm.annotation.*``' Intrinsic
12549^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12550
12551Syntax:
12552"""""""
12553
12554This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12555any integer bit width.
12556
12557::
12558
12559 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12560 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12561 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12562 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12563 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12564
12565Overview:
12566"""""""""
12567
12568The '``llvm.annotation``' intrinsic.
12569
12570Arguments:
12571""""""""""
12572
12573The first argument is an integer value (result of some expression), the
12574second is a pointer to a global string, the third is a pointer to a
12575global string which is the source file name, and the last argument is
12576the line number. It returns the value of the first argument.
12577
12578Semantics:
12579""""""""""
12580
12581This intrinsic allows annotations to be put on arbitrary expressions
12582with arbitrary strings. This can be useful for special purpose
12583optimizations that want to look for these annotations. These have no
12584other defined use; they are ignored by code generation and optimization.
12585
12586'``llvm.trap``' Intrinsic
12587^^^^^^^^^^^^^^^^^^^^^^^^^
12588
12589Syntax:
12590"""""""
12591
12592::
12593
12594 declare void @llvm.trap() noreturn nounwind
12595
12596Overview:
12597"""""""""
12598
12599The '``llvm.trap``' intrinsic.
12600
12601Arguments:
12602""""""""""
12603
12604None.
12605
12606Semantics:
12607""""""""""
12608
12609This intrinsic is lowered to the target dependent trap instruction. If
12610the target does not have a trap instruction, this intrinsic will be
12611lowered to a call of the ``abort()`` function.
12612
12613'``llvm.debugtrap``' Intrinsic
12614^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12615
12616Syntax:
12617"""""""
12618
12619::
12620
12621 declare void @llvm.debugtrap() nounwind
12622
12623Overview:
12624"""""""""
12625
12626The '``llvm.debugtrap``' intrinsic.
12627
12628Arguments:
12629""""""""""
12630
12631None.
12632
12633Semantics:
12634""""""""""
12635
12636This intrinsic is lowered to code which is intended to cause an
12637execution trap with the intention of requesting the attention of a
12638debugger.
12639
12640'``llvm.stackprotector``' Intrinsic
12641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12642
12643Syntax:
12644"""""""
12645
12646::
12647
12648 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12649
12650Overview:
12651"""""""""
12652
12653The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12654onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12655is placed on the stack before local variables.
12656
12657Arguments:
12658""""""""""
12659
12660The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12661The first argument is the value loaded from the stack guard
12662``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12663enough space to hold the value of the guard.
12664
12665Semantics:
12666""""""""""
12667
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012668This intrinsic causes the prologue/epilogue inserter to force the position of
12669the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12670to ensure that if a local variable on the stack is overwritten, it will destroy
12671the value of the guard. When the function exits, the guard on the stack is
12672checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12673different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12674calling the ``__stack_chk_fail()`` function.
12675
Tim Shene885d5e2016-04-19 19:40:37 +000012676'``llvm.stackguard``' Intrinsic
12677^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12678
12679Syntax:
12680"""""""
12681
12682::
12683
12684 declare i8* @llvm.stackguard()
12685
12686Overview:
12687"""""""""
12688
12689The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12690
12691It should not be generated by frontends, since it is only for internal usage.
12692The reason why we create this intrinsic is that we still support IR form Stack
12693Protector in FastISel.
12694
12695Arguments:
12696""""""""""
12697
12698None.
12699
12700Semantics:
12701""""""""""
12702
12703On some platforms, the value returned by this intrinsic remains unchanged
12704between loads in the same thread. On other platforms, it returns the same
12705global variable value, if any, e.g. ``@__stack_chk_guard``.
12706
12707Currently some platforms have IR-level customized stack guard loading (e.g.
12708X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12709in the future.
12710
Sean Silvab084af42012-12-07 10:36:55 +000012711'``llvm.objectsize``' Intrinsic
12712^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12713
12714Syntax:
12715"""""""
12716
12717::
12718
12719 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12720 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12721
12722Overview:
12723"""""""""
12724
12725The ``llvm.objectsize`` intrinsic is designed to provide information to
12726the optimizers to determine at compile time whether a) an operation
12727(like memcpy) will overflow a buffer that corresponds to an object, or
12728b) that a runtime check for overflow isn't necessary. An object in this
12729context means an allocation of a specific class, structure, array, or
12730other object.
12731
12732Arguments:
12733""""""""""
12734
12735The ``llvm.objectsize`` intrinsic takes two arguments. The first
12736argument is a pointer to or into the ``object``. The second argument is
12737a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12738or -1 (if false) when the object size is unknown. The second argument
12739only accepts constants.
12740
12741Semantics:
12742""""""""""
12743
12744The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12745the size of the object concerned. If the size cannot be determined at
12746compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12747on the ``min`` argument).
12748
12749'``llvm.expect``' Intrinsic
12750^^^^^^^^^^^^^^^^^^^^^^^^^^^
12751
12752Syntax:
12753"""""""
12754
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012755This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12756integer bit width.
12757
Sean Silvab084af42012-12-07 10:36:55 +000012758::
12759
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012760 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012761 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12762 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12763
12764Overview:
12765"""""""""
12766
12767The ``llvm.expect`` intrinsic provides information about expected (the
12768most probable) value of ``val``, which can be used by optimizers.
12769
12770Arguments:
12771""""""""""
12772
12773The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12774a value. The second argument is an expected value, this needs to be a
12775constant value, variables are not allowed.
12776
12777Semantics:
12778""""""""""
12779
12780This intrinsic is lowered to the ``val``.
12781
Philip Reamese0e90832015-04-26 22:23:12 +000012782.. _int_assume:
12783
Hal Finkel93046912014-07-25 21:13:35 +000012784'``llvm.assume``' Intrinsic
12785^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12786
12787Syntax:
12788"""""""
12789
12790::
12791
12792 declare void @llvm.assume(i1 %cond)
12793
12794Overview:
12795"""""""""
12796
12797The ``llvm.assume`` allows the optimizer to assume that the provided
12798condition is true. This information can then be used in simplifying other parts
12799of the code.
12800
12801Arguments:
12802""""""""""
12803
12804The condition which the optimizer may assume is always true.
12805
12806Semantics:
12807""""""""""
12808
12809The intrinsic allows the optimizer to assume that the provided condition is
12810always true whenever the control flow reaches the intrinsic call. No code is
12811generated for this intrinsic, and instructions that contribute only to the
12812provided condition are not used for code generation. If the condition is
12813violated during execution, the behavior is undefined.
12814
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012815Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012816used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12817only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012818if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012819sufficient overall improvement in code quality. For this reason,
12820``llvm.assume`` should not be used to document basic mathematical invariants
12821that the optimizer can otherwise deduce or facts that are of little use to the
12822optimizer.
12823
Daniel Berlin2c438a32017-02-07 19:29:25 +000012824.. _int_ssa_copy:
12825
12826'``llvm.ssa_copy``' Intrinsic
12827^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12828
12829Syntax:
12830"""""""
12831
12832::
12833
12834 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
12835
12836Arguments:
12837""""""""""
12838
12839The first argument is an operand which is used as the returned value.
12840
12841Overview:
12842""""""""""
12843
12844The ``llvm.ssa_copy`` intrinsic can be used to attach information to
12845operations by copying them and giving them new names. For example,
12846the PredicateInfo utility uses it to build Extended SSA form, and
12847attach various forms of information to operands that dominate specific
12848uses. It is not meant for general use, only for building temporary
12849renaming forms that require value splits at certain points.
12850
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012851.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012852
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012853'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12855
12856Syntax:
12857"""""""
12858
12859::
12860
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012861 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012862
12863
12864Arguments:
12865""""""""""
12866
12867The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012868metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012869
12870Overview:
12871"""""""""
12872
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012873The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12874with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012875
Peter Collingbourne0312f612016-06-25 00:23:04 +000012876'``llvm.type.checked.load``' Intrinsic
12877^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12878
12879Syntax:
12880"""""""
12881
12882::
12883
12884 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12885
12886
12887Arguments:
12888""""""""""
12889
12890The first argument is a pointer from which to load a function pointer. The
12891second argument is the byte offset from which to load the function pointer. The
12892third argument is a metadata object representing a :doc:`type identifier
12893<TypeMetadata>`.
12894
12895Overview:
12896"""""""""
12897
12898The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12899virtual table pointer using type metadata. This intrinsic is used to implement
12900control flow integrity in conjunction with virtual call optimization. The
12901virtual call optimization pass will optimize away ``llvm.type.checked.load``
12902intrinsics associated with devirtualized calls, thereby removing the type
12903check in cases where it is not needed to enforce the control flow integrity
12904constraint.
12905
12906If the given pointer is associated with a type metadata identifier, this
12907function returns true as the second element of its return value. (Note that
12908the function may also return true if the given pointer is not associated
12909with a type metadata identifier.) If the function's return value's second
12910element is true, the following rules apply to the first element:
12911
12912- If the given pointer is associated with the given type metadata identifier,
12913 it is the function pointer loaded from the given byte offset from the given
12914 pointer.
12915
12916- If the given pointer is not associated with the given type metadata
12917 identifier, it is one of the following (the choice of which is unspecified):
12918
12919 1. The function pointer that would have been loaded from an arbitrarily chosen
12920 (through an unspecified mechanism) pointer associated with the type
12921 metadata.
12922
12923 2. If the function has a non-void return type, a pointer to a function that
12924 returns an unspecified value without causing side effects.
12925
12926If the function's return value's second element is false, the value of the
12927first element is undefined.
12928
12929
Sean Silvab084af42012-12-07 10:36:55 +000012930'``llvm.donothing``' Intrinsic
12931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12932
12933Syntax:
12934"""""""
12935
12936::
12937
12938 declare void @llvm.donothing() nounwind readnone
12939
12940Overview:
12941"""""""""
12942
Juergen Ributzkac9161192014-10-23 22:36:13 +000012943The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012944three intrinsics (besides ``llvm.experimental.patchpoint`` and
12945``llvm.experimental.gc.statepoint``) that can be called with an invoke
12946instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012947
12948Arguments:
12949""""""""""
12950
12951None.
12952
12953Semantics:
12954""""""""""
12955
12956This intrinsic does nothing, and it's removed by optimizers and ignored
12957by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012958
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012959'``llvm.experimental.deoptimize``' Intrinsic
12960^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12961
12962Syntax:
12963"""""""
12964
12965::
12966
12967 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12968
12969Overview:
12970"""""""""
12971
12972This intrinsic, together with :ref:`deoptimization operand bundles
12973<deopt_opbundles>`, allow frontends to express transfer of control and
12974frame-local state from the currently executing (typically more specialized,
12975hence faster) version of a function into another (typically more generic, hence
12976slower) version.
12977
12978In languages with a fully integrated managed runtime like Java and JavaScript
12979this intrinsic can be used to implement "uncommon trap" or "side exit" like
12980functionality. In unmanaged languages like C and C++, this intrinsic can be
12981used to represent the slow paths of specialized functions.
12982
12983
12984Arguments:
12985""""""""""
12986
12987The intrinsic takes an arbitrary number of arguments, whose meaning is
12988decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12989
12990Semantics:
12991""""""""""
12992
12993The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12994deoptimization continuation (denoted using a :ref:`deoptimization
12995operand bundle <deopt_opbundles>`) and returns the value returned by
12996the deoptimization continuation. Defining the semantic properties of
12997the continuation itself is out of scope of the language reference --
12998as far as LLVM is concerned, the deoptimization continuation can
12999invoke arbitrary side effects, including reading from and writing to
13000the entire heap.
13001
13002Deoptimization continuations expressed using ``"deopt"`` operand bundles always
13003continue execution to the end of the physical frame containing them, so all
13004calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
13005
13006 - ``@llvm.experimental.deoptimize`` cannot be invoked.
13007 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
13008 - The ``ret`` instruction must return the value produced by the
13009 ``@llvm.experimental.deoptimize`` call if there is one, or void.
13010
13011Note that the above restrictions imply that the return type for a call to
13012``@llvm.experimental.deoptimize`` will match the return type of its immediate
13013caller.
13014
13015The inliner composes the ``"deopt"`` continuations of the caller into the
13016``"deopt"`` continuations present in the inlinee, and also updates calls to this
13017intrinsic to return directly from the frame of the function it inlined into.
13018
Sanjoy Dase0aa4142016-05-12 01:17:38 +000013019All declarations of ``@llvm.experimental.deoptimize`` must share the
13020same calling convention.
13021
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013022.. _deoptimize_lowering:
13023
13024Lowering:
13025"""""""""
13026
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000013027Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
13028symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
13029ensure that this symbol is defined). The call arguments to
13030``@llvm.experimental.deoptimize`` are lowered as if they were formal
13031arguments of the specified types, and not as varargs.
13032
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013033
Sanjoy Das021de052016-03-31 00:18:46 +000013034'``llvm.experimental.guard``' Intrinsic
13035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13036
13037Syntax:
13038"""""""
13039
13040::
13041
13042 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
13043
13044Overview:
13045"""""""""
13046
13047This intrinsic, together with :ref:`deoptimization operand bundles
13048<deopt_opbundles>`, allows frontends to express guards or checks on
13049optimistic assumptions made during compilation. The semantics of
13050``@llvm.experimental.guard`` is defined in terms of
13051``@llvm.experimental.deoptimize`` -- its body is defined to be
13052equivalent to:
13053
Renato Golin124f2592016-07-20 12:16:38 +000013054.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000013055
Renato Golin124f2592016-07-20 12:16:38 +000013056 define void @llvm.experimental.guard(i1 %pred, <args...>) {
13057 %realPred = and i1 %pred, undef
13058 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000013059
Renato Golin124f2592016-07-20 12:16:38 +000013060 leave:
13061 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
13062 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000013063
Renato Golin124f2592016-07-20 12:16:38 +000013064 continue:
13065 ret void
13066 }
Sanjoy Das021de052016-03-31 00:18:46 +000013067
Sanjoy Das47cf2af2016-04-30 00:55:59 +000013068
13069with the optional ``[, !make.implicit !{}]`` present if and only if it
13070is present on the call site. For more details on ``!make.implicit``,
13071see :doc:`FaultMaps`.
13072
Sanjoy Das021de052016-03-31 00:18:46 +000013073In words, ``@llvm.experimental.guard`` executes the attached
13074``"deopt"`` continuation if (but **not** only if) its first argument
13075is ``false``. Since the optimizer is allowed to replace the ``undef``
13076with an arbitrary value, it can optimize guard to fail "spuriously",
13077i.e. without the original condition being false (hence the "not only
13078if"); and this allows for "check widening" type optimizations.
13079
13080``@llvm.experimental.guard`` cannot be invoked.
13081
13082
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000013083'``llvm.load.relative``' Intrinsic
13084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13085
13086Syntax:
13087"""""""
13088
13089::
13090
13091 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
13092
13093Overview:
13094"""""""""
13095
13096This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
13097adds ``%ptr`` to that value and returns it. The constant folder specifically
13098recognizes the form of this intrinsic and the constant initializers it may
13099load from; if a loaded constant initializer is known to have the form
13100``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
13101
13102LLVM provides that the calculation of such a constant initializer will
13103not overflow at link time under the medium code model if ``x`` is an
13104``unnamed_addr`` function. However, it does not provide this guarantee for
13105a constant initializer folded into a function body. This intrinsic can be
13106used to avoid the possibility of overflows when loading from such a constant.
13107
Andrew Trick5e029ce2013-12-24 02:57:25 +000013108Stack Map Intrinsics
13109--------------------
13110
13111LLVM provides experimental intrinsics to support runtime patching
13112mechanisms commonly desired in dynamic language JITs. These intrinsics
13113are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000013114
13115Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000013116-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000013117
13118These intrinsics are similar to the standard library memory intrinsics except
13119that they perform memory transfer as a sequence of atomic memory accesses.
13120
13121.. _int_memcpy_element_atomic:
13122
13123'``llvm.memcpy.element.atomic``' Intrinsic
Igor Laevskyfedab152016-12-29 15:08:57 +000013124^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000013125
13126Syntax:
13127"""""""
13128
13129This is an overloaded intrinsic. You can use ``llvm.memcpy.element.atomic`` on
13130any integer bit width and for different address spaces. Not all targets
13131support all bit widths however.
13132
13133::
13134
13135 declare void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* <dest>, i8* <src>,
13136 i64 <num_elements>, i32 <element_size>)
13137
13138Overview:
13139"""""""""
13140
13141The '``llvm.memcpy.element.atomic.*``' intrinsic performs copy of a block of
13142memory from the source location to the destination location as a sequence of
13143unordered atomic memory accesses where each access is a multiple of
13144``element_size`` bytes wide and aligned at an element size boundary. For example
13145each element is accessed atomically in source and destination buffers.
13146
13147Arguments:
13148""""""""""
13149
13150The first argument is a pointer to the destination, the second is a
13151pointer to the source. The third argument is an integer argument
13152specifying the number of elements to copy, the fourth argument is size of
13153the single element in bytes.
13154
13155``element_size`` should be a power of two, greater than zero and less than
13156a target-specific atomic access size limit.
13157
13158For each of the input pointers ``align`` parameter attribute must be specified.
13159It must be a power of two and greater than or equal to the ``element_size``.
13160Caller guarantees that both the source and destination pointers are aligned to
13161that boundary.
13162
13163Semantics:
13164""""""""""
13165
13166The '``llvm.memcpy.element.atomic.*``' intrinsic copies
13167'``num_elements`` * ``element_size``' bytes of memory from the source location to
13168the destination location. These locations are not allowed to overlap. Memory copy
13169is performed as a sequence of unordered atomic memory accesses where each access
13170is guaranteed to be a multiple of ``element_size`` bytes wide and aligned at an
13171element size boundary.
13172
13173The order of the copy is unspecified. The same value may be read from the source
13174buffer many times, but only one write is issued to the destination buffer per
13175element. It is well defined to have concurrent reads and writes to both source
13176and destination provided those reads and writes are at least unordered atomic.
13177
13178This intrinsic does not provide any additional ordering guarantees over those
13179provided by a set of unordered loads from the source location and stores to the
13180destination.
13181
13182Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000013183"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000013184
13185In the most general case call to the '``llvm.memcpy.element.atomic.*``' is lowered
13186to a call to the symbol ``__llvm_memcpy_element_atomic_*``. Where '*' is replaced
13187with an actual element size.
13188
13189Optimizer is allowed to inline memory copy when it's profitable to do so.