blob: 9bf70c8afcdcaa48d7cdc87043a72a088d96db01 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
645an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000646
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000647Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000648:ref:`Thread Local Storage Model <tls_model>`.
649
Nico Rieck7157bb72014-01-14 15:22:47 +0000650Syntax::
651
Rafael Espindola32483a72016-05-10 18:22:45 +0000652 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000653 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
654 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000655 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000656 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000657 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659For example, the following defines a global in a numbered address space
660with an initializer, section, and alignment:
661
662.. code-block:: llvm
663
664 @G = addrspace(5) constant float 1.0, section "foo", align 4
665
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000666The following example just declares a global variable
667
668.. code-block:: llvm
669
670 @G = external global i32
671
Sean Silvab084af42012-12-07 10:36:55 +0000672The following example defines a thread-local global with the
673``initialexec`` TLS model:
674
675.. code-block:: llvm
676
677 @G = thread_local(initialexec) global i32 0, align 4
678
679.. _functionstructure:
680
681Functions
682---------
683
684LLVM function definitions consist of the "``define``" keyword, an
685optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000686style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
687an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000688an optional ``unnamed_addr`` attribute, a return type, an optional
689:ref:`parameter attribute <paramattrs>` for the return type, a function
690name, a (possibly empty) argument list (each with optional :ref:`parameter
691attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000692an optional section, an optional alignment,
693an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000694an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000695an optional :ref:`prologue <prologuedata>`,
696an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000697an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000698an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000699
700LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000701optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
702<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
703optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
704or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
705attribute <paramattrs>` for the return type, a function name, a possibly
706empty list of arguments, an optional alignment, an optional :ref:`garbage
707collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
708:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000709
Bill Wendling6822ecb2013-10-27 05:09:12 +0000710A function definition contains a list of basic blocks, forming the CFG (Control
711Flow Graph) for the function. Each basic block may optionally start with a label
712(giving the basic block a symbol table entry), contains a list of instructions,
713and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
714function return). If an explicit label is not provided, a block is assigned an
715implicit numbered label, using the next value from the same counter as used for
716unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
717entry block does not have an explicit label, it will be assigned label "%0",
718then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000719
720The first basic block in a function is special in two ways: it is
721immediately executed on entrance to the function, and it is not allowed
722to have predecessor basic blocks (i.e. there can not be any branches to
723the entry block of a function). Because the block can have no
724predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
725
726LLVM allows an explicit section to be specified for functions. If the
727target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000728Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730An explicit alignment may be specified for a function. If not present,
731or if the alignment is set to zero, the alignment of the function is set
732by the target to whatever it feels convenient. If an explicit alignment
733is specified, the function is forced to have at least that much
734alignment. All alignments must be a power of 2.
735
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000736If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000737be significant and two identical functions can be merged.
738
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000739If the ``local_unnamed_addr`` attribute is given, the address is known to
740not be significant within the module.
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Syntax::
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000745 [cconv] [ret attrs]
746 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000747 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
748 [comdat [($name)]] [align N] [gc] [prefix Constant]
749 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000750
Sean Silva706fba52015-08-06 22:56:24 +0000751The argument list is a comma separated sequence of arguments where each
752argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000753
754Syntax::
755
756 <type> [parameter Attrs] [name]
757
758
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000759.. _langref_aliases:
760
Sean Silvab084af42012-12-07 10:36:55 +0000761Aliases
762-------
763
Rafael Espindola64c1e182014-06-03 02:41:57 +0000764Aliases, unlike function or variables, don't create any new data. They
765are just a new symbol and metadata for an existing position.
766
767Aliases have a name and an aliasee that is either a global value or a
768constant expression.
769
Nico Rieck7157bb72014-01-14 15:22:47 +0000770Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000771:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
772<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000773
774Syntax::
775
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000776 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000777
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000778The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000779``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000780might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000781
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000782Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000783the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
784to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000785
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000786If the ``local_unnamed_addr`` attribute is given, the address is known to
787not be significant within the module.
788
Rafael Espindola64c1e182014-06-03 02:41:57 +0000789Since aliases are only a second name, some restrictions apply, of which
790some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000791
Rafael Espindola64c1e182014-06-03 02:41:57 +0000792* The expression defining the aliasee must be computable at assembly
793 time. Since it is just a name, no relocations can be used.
794
795* No alias in the expression can be weak as the possibility of the
796 intermediate alias being overridden cannot be represented in an
797 object file.
798
799* No global value in the expression can be a declaration, since that
800 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000801
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000802.. _langref_ifunc:
803
804IFuncs
805-------
806
807IFuncs, like as aliases, don't create any new data or func. They are just a new
808symbol that dynamic linker resolves at runtime by calling a resolver function.
809
810IFuncs have a name and a resolver that is a function called by dynamic linker
811that returns address of another function associated with the name.
812
813IFunc may have an optional :ref:`linkage type <linkage>` and an optional
814:ref:`visibility style <visibility>`.
815
816Syntax::
817
818 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821.. _langref_comdats:
822
823Comdats
824-------
825
826Comdat IR provides access to COFF and ELF object file COMDAT functionality.
827
Sean Silvaa1190322015-08-06 22:56:48 +0000828Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000829specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000830that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000831aliasee computes to, if any.
832
833Comdats have a selection kind to provide input on how the linker should
834choose between keys in two different object files.
835
836Syntax::
837
838 $<Name> = comdat SelectionKind
839
840The selection kind must be one of the following:
841
842``any``
843 The linker may choose any COMDAT key, the choice is arbitrary.
844``exactmatch``
845 The linker may choose any COMDAT key but the sections must contain the
846 same data.
847``largest``
848 The linker will choose the section containing the largest COMDAT key.
849``noduplicates``
850 The linker requires that only section with this COMDAT key exist.
851``samesize``
852 The linker may choose any COMDAT key but the sections must contain the
853 same amount of data.
854
855Note that the Mach-O platform doesn't support COMDATs and ELF only supports
856``any`` as a selection kind.
857
858Here is an example of a COMDAT group where a function will only be selected if
859the COMDAT key's section is the largest:
860
Renato Golin124f2592016-07-20 12:16:38 +0000861.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000862
863 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000864 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000865
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000867 ret void
868 }
869
Rafael Espindola83a362c2015-01-06 22:55:16 +0000870As a syntactic sugar the ``$name`` can be omitted if the name is the same as
871the global name:
872
Renato Golin124f2592016-07-20 12:16:38 +0000873.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000874
875 $foo = comdat any
876 @foo = global i32 2, comdat
877
878
David Majnemerdad0a642014-06-27 18:19:56 +0000879In a COFF object file, this will create a COMDAT section with selection kind
880``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
881and another COMDAT section with selection kind
882``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000883section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885There are some restrictions on the properties of the global object.
886It, or an alias to it, must have the same name as the COMDAT group when
887targeting COFF.
888The contents and size of this object may be used during link-time to determine
889which COMDAT groups get selected depending on the selection kind.
890Because the name of the object must match the name of the COMDAT group, the
891linkage of the global object must not be local; local symbols can get renamed
892if a collision occurs in the symbol table.
893
894The combined use of COMDATS and section attributes may yield surprising results.
895For example:
896
Renato Golin124f2592016-07-20 12:16:38 +0000897.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000898
899 $foo = comdat any
900 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901 @g1 = global i32 42, section "sec", comdat($foo)
902 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000903
904From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000905with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000906COMDAT groups and COMDATs, at the object file level, are represented by
907sections.
908
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000909Note that certain IR constructs like global variables and functions may
910create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000911COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000912in individual sections (e.g. when `-data-sections` or `-function-sections`
913is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000914
Sean Silvab084af42012-12-07 10:36:55 +0000915.. _namedmetadatastructure:
916
917Named Metadata
918--------------
919
920Named metadata is a collection of metadata. :ref:`Metadata
921nodes <metadata>` (but not metadata strings) are the only valid
922operands for a named metadata.
923
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000924#. Named metadata are represented as a string of characters with the
925 metadata prefix. The rules for metadata names are the same as for
926 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
927 are still valid, which allows any character to be part of a name.
928
Sean Silvab084af42012-12-07 10:36:55 +0000929Syntax::
930
931 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000932 !0 = !{!"zero"}
933 !1 = !{!"one"}
934 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000935 ; A named metadata.
936 !name = !{!0, !1, !2}
937
938.. _paramattrs:
939
940Parameter Attributes
941--------------------
942
943The return type and each parameter of a function type may have a set of
944*parameter attributes* associated with them. Parameter attributes are
945used to communicate additional information about the result or
946parameters of a function. Parameter attributes are considered to be part
947of the function, not of the function type, so functions with different
948parameter attributes can have the same function type.
949
950Parameter attributes are simple keywords that follow the type specified.
951If multiple parameter attributes are needed, they are space separated.
952For example:
953
954.. code-block:: llvm
955
956 declare i32 @printf(i8* noalias nocapture, ...)
957 declare i32 @atoi(i8 zeroext)
958 declare signext i8 @returns_signed_char()
959
960Note that any attributes for the function result (``nounwind``,
961``readonly``) come immediately after the argument list.
962
963Currently, only the following parameter attributes are defined:
964
965``zeroext``
966 This indicates to the code generator that the parameter or return
967 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000968 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000969``signext``
970 This indicates to the code generator that the parameter or return
971 value should be sign-extended to the extent required by the target's
972 ABI (which is usually 32-bits) by the caller (for a parameter) or
973 the callee (for a return value).
974``inreg``
975 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000976 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000977 a function call or return (usually, by putting it in a register as
978 opposed to memory, though some targets use it to distinguish between
979 two different kinds of registers). Use of this attribute is
980 target-specific.
981``byval``
982 This indicates that the pointer parameter should really be passed by
983 value to the function. The attribute implies that a hidden copy of
984 the pointee is made between the caller and the callee, so the callee
985 is unable to modify the value in the caller. This attribute is only
986 valid on LLVM pointer arguments. It is generally used to pass
987 structs and arrays by value, but is also valid on pointers to
988 scalars. The copy is considered to belong to the caller not the
989 callee (for example, ``readonly`` functions should not write to
990 ``byval`` parameters). This is not a valid attribute for return
991 values.
992
993 The byval attribute also supports specifying an alignment with the
994 align attribute. It indicates the alignment of the stack slot to
995 form and the known alignment of the pointer specified to the call
996 site. If the alignment is not specified, then the code generator
997 makes a target-specific assumption.
998
Reid Klecknera534a382013-12-19 02:14:12 +0000999.. _attr_inalloca:
1000
1001``inalloca``
1002
Reid Kleckner60d3a832014-01-16 22:59:24 +00001003 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001004 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001005 be a pointer to stack memory produced by an ``alloca`` instruction.
1006 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001007 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001008 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001009
Reid Kleckner436c42e2014-01-17 23:58:17 +00001010 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001011 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001012 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001013 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001014 ``inalloca`` attribute also disables LLVM's implicit lowering of
1015 large aggregate return values, which means that frontend authors
1016 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001017
Reid Kleckner60d3a832014-01-16 22:59:24 +00001018 When the call site is reached, the argument allocation must have
1019 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001020 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001021 space after an argument allocation and before its call site, but it
1022 must be cleared off with :ref:`llvm.stackrestore
1023 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001024
1025 See :doc:`InAlloca` for more information on how to use this
1026 attribute.
1027
Sean Silvab084af42012-12-07 10:36:55 +00001028``sret``
1029 This indicates that the pointer parameter specifies the address of a
1030 structure that is the return value of the function in the source
1031 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001032 loads and stores to the structure may be assumed by the callee not
1033 to trap and to be properly aligned. This is not a valid attribute
1034 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001035
Hal Finkelccc70902014-07-22 16:58:55 +00001036``align <n>``
1037 This indicates that the pointer value may be assumed by the optimizer to
1038 have the specified alignment.
1039
1040 Note that this attribute has additional semantics when combined with the
1041 ``byval`` attribute.
1042
Sean Silva1703e702014-04-08 21:06:22 +00001043.. _noalias:
1044
Sean Silvab084af42012-12-07 10:36:55 +00001045``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001046 This indicates that objects accessed via pointer values
1047 :ref:`based <pointeraliasing>` on the argument or return value are not also
1048 accessed, during the execution of the function, via pointer values not
1049 *based* on the argument or return value. The attribute on a return value
1050 also has additional semantics described below. The caller shares the
1051 responsibility with the callee for ensuring that these requirements are met.
1052 For further details, please see the discussion of the NoAlias response in
1053 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001054
1055 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001056 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001057
1058 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001059 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1060 attribute on return values are stronger than the semantics of the attribute
1061 when used on function arguments. On function return values, the ``noalias``
1062 attribute indicates that the function acts like a system memory allocation
1063 function, returning a pointer to allocated storage disjoint from the
1064 storage for any other object accessible to the caller.
1065
Sean Silvab084af42012-12-07 10:36:55 +00001066``nocapture``
1067 This indicates that the callee does not make any copies of the
1068 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001069 attribute for return values. Addresses used in volatile operations
1070 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001071
1072.. _nest:
1073
1074``nest``
1075 This indicates that the pointer parameter can be excised using the
1076 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001077 attribute for return values and can only be applied to one parameter.
1078
1079``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001080 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001081 value. This is a hint to the optimizer and code generator used when
1082 generating the caller, allowing value propagation, tail call optimization,
1083 and omission of register saves and restores in some cases; it is not
1084 checked or enforced when generating the callee. The parameter and the
1085 function return type must be valid operands for the
1086 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1087 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001088
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001089``nonnull``
1090 This indicates that the parameter or return pointer is not null. This
1091 attribute may only be applied to pointer typed parameters. This is not
1092 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001093 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001094 is non-null.
1095
Hal Finkelb0407ba2014-07-18 15:51:28 +00001096``dereferenceable(<n>)``
1097 This indicates that the parameter or return pointer is dereferenceable. This
1098 attribute may only be applied to pointer typed parameters. A pointer that
1099 is dereferenceable can be loaded from speculatively without a risk of
1100 trapping. The number of bytes known to be dereferenceable must be provided
1101 in parentheses. It is legal for the number of bytes to be less than the
1102 size of the pointee type. The ``nonnull`` attribute does not imply
1103 dereferenceability (consider a pointer to one element past the end of an
1104 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1105 ``addrspace(0)`` (which is the default address space).
1106
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001107``dereferenceable_or_null(<n>)``
1108 This indicates that the parameter or return value isn't both
1109 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001110 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001111 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1112 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1113 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1114 and in other address spaces ``dereferenceable_or_null(<n>)``
1115 implies that a pointer is at least one of ``dereferenceable(<n>)``
1116 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001117 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001118 pointer typed parameters.
1119
Manman Renf46262e2016-03-29 17:37:21 +00001120``swiftself``
1121 This indicates that the parameter is the self/context parameter. This is not
1122 a valid attribute for return values and can only be applied to one
1123 parameter.
1124
Manman Ren9bfd0d02016-04-01 21:41:15 +00001125``swifterror``
1126 This attribute is motivated to model and optimize Swift error handling. It
1127 can be applied to a parameter with pointer to pointer type or a
1128 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001129 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1130 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1131 the parameter or the alloca) can only be loaded and stored from, or used as
1132 a ``swifterror`` argument. This is not a valid attribute for return values
1133 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001134
1135 These constraints allow the calling convention to optimize access to
1136 ``swifterror`` variables by associating them with a specific register at
1137 call boundaries rather than placing them in memory. Since this does change
1138 the calling convention, a function which uses the ``swifterror`` attribute
1139 on a parameter is not ABI-compatible with one which does not.
1140
1141 These constraints also allow LLVM to assume that a ``swifterror`` argument
1142 does not alias any other memory visible within a function and that a
1143 ``swifterror`` alloca passed as an argument does not escape.
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _gc:
1146
Philip Reamesf80bbff2015-02-25 23:45:20 +00001147Garbage Collector Strategy Names
1148--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001149
Philip Reamesf80bbff2015-02-25 23:45:20 +00001150Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001151string:
1152
1153.. code-block:: llvm
1154
1155 define void @f() gc "name" { ... }
1156
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001157The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001158<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001159strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001160named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001161garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001162which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001163
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001164.. _prefixdata:
1165
1166Prefix Data
1167-----------
1168
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001169Prefix data is data associated with a function which the code
1170generator will emit immediately before the function's entrypoint.
1171The purpose of this feature is to allow frontends to associate
1172language-specific runtime metadata with specific functions and make it
1173available through the function pointer while still allowing the
1174function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001175
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001176To access the data for a given function, a program may bitcast the
1177function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001178index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001179the prefix data. For instance, take the example of a function annotated
1180with a single ``i32``,
1181
1182.. code-block:: llvm
1183
1184 define void @f() prefix i32 123 { ... }
1185
1186The prefix data can be referenced as,
1187
1188.. code-block:: llvm
1189
David Blaikie16a97eb2015-03-04 22:02:58 +00001190 %0 = bitcast void* () @f to i32*
1191 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001192 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001193
1194Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001195of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001196beginning of the prefix data is aligned. This means that if the size
1197of the prefix data is not a multiple of the alignment size, the
1198function's entrypoint will not be aligned. If alignment of the
1199function's entrypoint is desired, padding must be added to the prefix
1200data.
1201
Sean Silvaa1190322015-08-06 22:56:48 +00001202A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001203to the ``available_externally`` linkage in that the data may be used by the
1204optimizers but will not be emitted in the object file.
1205
1206.. _prologuedata:
1207
1208Prologue Data
1209-------------
1210
1211The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1212be inserted prior to the function body. This can be used for enabling
1213function hot-patching and instrumentation.
1214
1215To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001216have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001217bytes which decode to a sequence of machine instructions, valid for the
1218module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001219the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001221definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001222makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001223
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001225which encodes the ``nop`` instruction:
1226
Renato Golin124f2592016-07-20 12:16:38 +00001227.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001228
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001230
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231Generally prologue data can be formed by encoding a relative branch instruction
1232which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001233x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1234
Renato Golin124f2592016-07-20 12:16:38 +00001235.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001236
1237 %0 = type <{ i8, i8, i8* }>
1238
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001239 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001240
Sean Silvaa1190322015-08-06 22:56:48 +00001241A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001242to the ``available_externally`` linkage in that the data may be used by the
1243optimizers but will not be emitted in the object file.
1244
David Majnemer7fddecc2015-06-17 20:52:32 +00001245.. _personalityfn:
1246
1247Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001248--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001249
1250The ``personality`` attribute permits functions to specify what function
1251to use for exception handling.
1252
Bill Wendling63b88192013-02-06 06:52:58 +00001253.. _attrgrp:
1254
1255Attribute Groups
1256----------------
1257
1258Attribute groups are groups of attributes that are referenced by objects within
1259the IR. They are important for keeping ``.ll`` files readable, because a lot of
1260functions will use the same set of attributes. In the degenerative case of a
1261``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1262group will capture the important command line flags used to build that file.
1263
1264An attribute group is a module-level object. To use an attribute group, an
1265object references the attribute group's ID (e.g. ``#37``). An object may refer
1266to more than one attribute group. In that situation, the attributes from the
1267different groups are merged.
1268
1269Here is an example of attribute groups for a function that should always be
1270inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1271
1272.. code-block:: llvm
1273
1274 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001275 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001276
1277 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001278 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001279
1280 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1281 define void @f() #0 #1 { ... }
1282
Sean Silvab084af42012-12-07 10:36:55 +00001283.. _fnattrs:
1284
1285Function Attributes
1286-------------------
1287
1288Function attributes are set to communicate additional information about
1289a function. Function attributes are considered to be part of the
1290function, not of the function type, so functions with different function
1291attributes can have the same function type.
1292
1293Function attributes are simple keywords that follow the type specified.
1294If multiple attributes are needed, they are space separated. For
1295example:
1296
1297.. code-block:: llvm
1298
1299 define void @f() noinline { ... }
1300 define void @f() alwaysinline { ... }
1301 define void @f() alwaysinline optsize { ... }
1302 define void @f() optsize { ... }
1303
Sean Silvab084af42012-12-07 10:36:55 +00001304``alignstack(<n>)``
1305 This attribute indicates that, when emitting the prologue and
1306 epilogue, the backend should forcibly align the stack pointer.
1307 Specify the desired alignment, which must be a power of two, in
1308 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001309``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1310 This attribute indicates that the annotated function will always return at
1311 least a given number of bytes (or null). Its arguments are zero-indexed
1312 parameter numbers; if one argument is provided, then it's assumed that at
1313 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1314 returned pointer. If two are provided, then it's assumed that
1315 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1316 available. The referenced parameters must be integer types. No assumptions
1317 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001318``alwaysinline``
1319 This attribute indicates that the inliner should attempt to inline
1320 this function into callers whenever possible, ignoring any active
1321 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001322``builtin``
1323 This indicates that the callee function at a call site should be
1324 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001325 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001326 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001327 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001328``cold``
1329 This attribute indicates that this function is rarely called. When
1330 computing edge weights, basic blocks post-dominated by a cold
1331 function call are also considered to be cold; and, thus, given low
1332 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001333``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001334 In some parallel execution models, there exist operations that cannot be
1335 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001336 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001337
Justin Lebar58535b12016-02-17 17:46:41 +00001338 The ``convergent`` attribute may appear on functions or call/invoke
1339 instructions. When it appears on a function, it indicates that calls to
1340 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001341 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001342 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001343 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001344
Justin Lebar58535b12016-02-17 17:46:41 +00001345 When it appears on a call/invoke, the ``convergent`` attribute indicates
1346 that we should treat the call as though we're calling a convergent
1347 function. This is particularly useful on indirect calls; without this we
1348 may treat such calls as though the target is non-convergent.
1349
1350 The optimizer may remove the ``convergent`` attribute on functions when it
1351 can prove that the function does not execute any convergent operations.
1352 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1353 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001354``inaccessiblememonly``
1355 This attribute indicates that the function may only access memory that
1356 is not accessible by the module being compiled. This is a weaker form
1357 of ``readnone``.
1358``inaccessiblemem_or_argmemonly``
1359 This attribute indicates that the function may only access memory that is
1360 either not accessible by the module being compiled, or is pointed to
1361 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001362``inlinehint``
1363 This attribute indicates that the source code contained a hint that
1364 inlining this function is desirable (such as the "inline" keyword in
1365 C/C++). It is just a hint; it imposes no requirements on the
1366 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001367``jumptable``
1368 This attribute indicates that the function should be added to a
1369 jump-instruction table at code-generation time, and that all address-taken
1370 references to this function should be replaced with a reference to the
1371 appropriate jump-instruction-table function pointer. Note that this creates
1372 a new pointer for the original function, which means that code that depends
1373 on function-pointer identity can break. So, any function annotated with
1374 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001375``minsize``
1376 This attribute suggests that optimization passes and code generator
1377 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001378 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001379 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001380``naked``
1381 This attribute disables prologue / epilogue emission for the
1382 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001383``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001384 This indicates that the callee function at a call site is not recognized as
1385 a built-in function. LLVM will retain the original call and not replace it
1386 with equivalent code based on the semantics of the built-in function, unless
1387 the call site uses the ``builtin`` attribute. This is valid at call sites
1388 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001389``noduplicate``
1390 This attribute indicates that calls to the function cannot be
1391 duplicated. A call to a ``noduplicate`` function may be moved
1392 within its parent function, but may not be duplicated within
1393 its parent function.
1394
1395 A function containing a ``noduplicate`` call may still
1396 be an inlining candidate, provided that the call is not
1397 duplicated by inlining. That implies that the function has
1398 internal linkage and only has one call site, so the original
1399 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001400``noimplicitfloat``
1401 This attributes disables implicit floating point instructions.
1402``noinline``
1403 This attribute indicates that the inliner should never inline this
1404 function in any situation. This attribute may not be used together
1405 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001406``nonlazybind``
1407 This attribute suppresses lazy symbol binding for the function. This
1408 may make calls to the function faster, at the cost of extra program
1409 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001410``noredzone``
1411 This attribute indicates that the code generator should not use a
1412 red zone, even if the target-specific ABI normally permits it.
1413``noreturn``
1414 This function attribute indicates that the function never returns
1415 normally. This produces undefined behavior at runtime if the
1416 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001417``norecurse``
1418 This function attribute indicates that the function does not call itself
1419 either directly or indirectly down any possible call path. This produces
1420 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001421``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001422 This function attribute indicates that the function never raises an
1423 exception. If the function does raise an exception, its runtime
1424 behavior is undefined. However, functions marked nounwind may still
1425 trap or generate asynchronous exceptions. Exception handling schemes
1426 that are recognized by LLVM to handle asynchronous exceptions, such
1427 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001428``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001429 This function attribute indicates that most optimization passes will skip
1430 this function, with the exception of interprocedural optimization passes.
1431 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001432 This attribute cannot be used together with the ``alwaysinline``
1433 attribute; this attribute is also incompatible
1434 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001435
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001436 This attribute requires the ``noinline`` attribute to be specified on
1437 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001438 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001439 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001440``optsize``
1441 This attribute suggests that optimization passes and code generator
1442 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001443 and otherwise do optimizations specifically to reduce code size as
1444 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001445``"patchable-function"``
1446 This attribute tells the code generator that the code
1447 generated for this function needs to follow certain conventions that
1448 make it possible for a runtime function to patch over it later.
1449 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001450 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001451
1452 * ``"prologue-short-redirect"`` - This style of patchable
1453 function is intended to support patching a function prologue to
1454 redirect control away from the function in a thread safe
1455 manner. It guarantees that the first instruction of the
1456 function will be large enough to accommodate a short jump
1457 instruction, and will be sufficiently aligned to allow being
1458 fully changed via an atomic compare-and-swap instruction.
1459 While the first requirement can be satisfied by inserting large
1460 enough NOP, LLVM can and will try to re-purpose an existing
1461 instruction (i.e. one that would have to be emitted anyway) as
1462 the patchable instruction larger than a short jump.
1463
1464 ``"prologue-short-redirect"`` is currently only supported on
1465 x86-64.
1466
1467 This attribute by itself does not imply restrictions on
1468 inter-procedural optimizations. All of the semantic effects the
1469 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001470``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001471 On a function, this attribute indicates that the function computes its
1472 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001473 without dereferencing any pointer arguments or otherwise accessing
1474 any mutable state (e.g. memory, control registers, etc) visible to
1475 caller functions. It does not write through any pointer arguments
1476 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001477 to callers. This means while it cannot unwind exceptions by calling
1478 the ``C++`` exception throwing methods (since they write to memory), there may
1479 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1480 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001481
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001482 On an argument, this attribute indicates that the function does not
1483 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001484 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001485``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001486 On a function, this attribute indicates that the function does not write
1487 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001488 modify any state (e.g. memory, control registers, etc) visible to
1489 caller functions. It may dereference pointer arguments and read
1490 state that may be set in the caller. A readonly function always
1491 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001492 called with the same set of arguments and global state. This means while it
1493 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1494 (since they write to memory), there may be non-``C++`` mechanisms that throw
1495 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001496
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001497 On an argument, this attribute indicates that the function does not write
1498 through this pointer argument, even though it may write to the memory that
1499 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001500``writeonly``
1501 On a function, this attribute indicates that the function may write to but
1502 does not read from memory.
1503
1504 On an argument, this attribute indicates that the function may write to but
1505 does not read through this pointer argument (even though it may read from
1506 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001507``argmemonly``
1508 This attribute indicates that the only memory accesses inside function are
1509 loads and stores from objects pointed to by its pointer-typed arguments,
1510 with arbitrary offsets. Or in other words, all memory operations in the
1511 function can refer to memory only using pointers based on its function
1512 arguments.
1513 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1514 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001515``returns_twice``
1516 This attribute indicates that this function can return twice. The C
1517 ``setjmp`` is an example of such a function. The compiler disables
1518 some optimizations (like tail calls) in the caller of these
1519 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001520``safestack``
1521 This attribute indicates that
1522 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1523 protection is enabled for this function.
1524
1525 If a function that has a ``safestack`` attribute is inlined into a
1526 function that doesn't have a ``safestack`` attribute or which has an
1527 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1528 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001529``sanitize_address``
1530 This attribute indicates that AddressSanitizer checks
1531 (dynamic address safety analysis) are enabled for this function.
1532``sanitize_memory``
1533 This attribute indicates that MemorySanitizer checks (dynamic detection
1534 of accesses to uninitialized memory) are enabled for this function.
1535``sanitize_thread``
1536 This attribute indicates that ThreadSanitizer checks
1537 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001538``ssp``
1539 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001540 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001541 placed on the stack before the local variables that's checked upon
1542 return from the function to see if it has been overwritten. A
1543 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001544 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001545
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001546 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1547 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1548 - Calls to alloca() with variable sizes or constant sizes greater than
1549 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001550
Josh Magee24c7f062014-02-01 01:36:16 +00001551 Variables that are identified as requiring a protector will be arranged
1552 on the stack such that they are adjacent to the stack protector guard.
1553
Sean Silvab084af42012-12-07 10:36:55 +00001554 If a function that has an ``ssp`` attribute is inlined into a
1555 function that doesn't have an ``ssp`` attribute, then the resulting
1556 function will have an ``ssp`` attribute.
1557``sspreq``
1558 This attribute indicates that the function should *always* emit a
1559 stack smashing protector. This overrides the ``ssp`` function
1560 attribute.
1561
Josh Magee24c7f062014-02-01 01:36:16 +00001562 Variables that are identified as requiring a protector will be arranged
1563 on the stack such that they are adjacent to the stack protector guard.
1564 The specific layout rules are:
1565
1566 #. Large arrays and structures containing large arrays
1567 (``>= ssp-buffer-size``) are closest to the stack protector.
1568 #. Small arrays and structures containing small arrays
1569 (``< ssp-buffer-size``) are 2nd closest to the protector.
1570 #. Variables that have had their address taken are 3rd closest to the
1571 protector.
1572
Sean Silvab084af42012-12-07 10:36:55 +00001573 If a function that has an ``sspreq`` attribute is inlined into a
1574 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001575 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1576 an ``sspreq`` attribute.
1577``sspstrong``
1578 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001579 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001580 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001581 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001582
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001583 - Arrays of any size and type
1584 - Aggregates containing an array of any size and type.
1585 - Calls to alloca().
1586 - Local variables that have had their address taken.
1587
Josh Magee24c7f062014-02-01 01:36:16 +00001588 Variables that are identified as requiring a protector will be arranged
1589 on the stack such that they are adjacent to the stack protector guard.
1590 The specific layout rules are:
1591
1592 #. Large arrays and structures containing large arrays
1593 (``>= ssp-buffer-size``) are closest to the stack protector.
1594 #. Small arrays and structures containing small arrays
1595 (``< ssp-buffer-size``) are 2nd closest to the protector.
1596 #. Variables that have had their address taken are 3rd closest to the
1597 protector.
1598
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001599 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001600
1601 If a function that has an ``sspstrong`` attribute is inlined into a
1602 function that doesn't have an ``sspstrong`` attribute, then the
1603 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001604``"thunk"``
1605 This attribute indicates that the function will delegate to some other
1606 function with a tail call. The prototype of a thunk should not be used for
1607 optimization purposes. The caller is expected to cast the thunk prototype to
1608 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001609``uwtable``
1610 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001611 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001612 show that no exceptions passes by it. This is normally the case for
1613 the ELF x86-64 abi, but it can be disabled for some compilation
1614 units.
Sean Silvab084af42012-12-07 10:36:55 +00001615
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001616
1617.. _opbundles:
1618
1619Operand Bundles
1620---------------
1621
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001622Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001623with certain LLVM instructions (currently only ``call`` s and
1624``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001625incorrect and will change program semantics.
1626
1627Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001628
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001629 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001630 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1631 bundle operand ::= SSA value
1632 tag ::= string constant
1633
1634Operand bundles are **not** part of a function's signature, and a
1635given function may be called from multiple places with different kinds
1636of operand bundles. This reflects the fact that the operand bundles
1637are conceptually a part of the ``call`` (or ``invoke``), not the
1638callee being dispatched to.
1639
1640Operand bundles are a generic mechanism intended to support
1641runtime-introspection-like functionality for managed languages. While
1642the exact semantics of an operand bundle depend on the bundle tag,
1643there are certain limitations to how much the presence of an operand
1644bundle can influence the semantics of a program. These restrictions
1645are described as the semantics of an "unknown" operand bundle. As
1646long as the behavior of an operand bundle is describable within these
1647restrictions, LLVM does not need to have special knowledge of the
1648operand bundle to not miscompile programs containing it.
1649
David Majnemer34cacb42015-10-22 01:46:38 +00001650- The bundle operands for an unknown operand bundle escape in unknown
1651 ways before control is transferred to the callee or invokee.
1652- Calls and invokes with operand bundles have unknown read / write
1653 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001654 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001655 callsite specific attributes.
1656- An operand bundle at a call site cannot change the implementation
1657 of the called function. Inter-procedural optimizations work as
1658 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001659
Sanjoy Dascdafd842015-11-11 21:38:02 +00001660More specific types of operand bundles are described below.
1661
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001662.. _deopt_opbundles:
1663
Sanjoy Dascdafd842015-11-11 21:38:02 +00001664Deoptimization Operand Bundles
1665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1666
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001667Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001668operand bundle tag. These operand bundles represent an alternate
1669"safe" continuation for the call site they're attached to, and can be
1670used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001671specified call site. There can be at most one ``"deopt"`` operand
1672bundle attached to a call site. Exact details of deoptimization is
1673out of scope for the language reference, but it usually involves
1674rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001675
1676From the compiler's perspective, deoptimization operand bundles make
1677the call sites they're attached to at least ``readonly``. They read
1678through all of their pointer typed operands (even if they're not
1679otherwise escaped) and the entire visible heap. Deoptimization
1680operand bundles do not capture their operands except during
1681deoptimization, in which case control will not be returned to the
1682compiled frame.
1683
Sanjoy Das2d161452015-11-18 06:23:38 +00001684The inliner knows how to inline through calls that have deoptimization
1685operand bundles. Just like inlining through a normal call site
1686involves composing the normal and exceptional continuations, inlining
1687through a call site with a deoptimization operand bundle needs to
1688appropriately compose the "safe" deoptimization continuation. The
1689inliner does this by prepending the parent's deoptimization
1690continuation to every deoptimization continuation in the inlined body.
1691E.g. inlining ``@f`` into ``@g`` in the following example
1692
1693.. code-block:: llvm
1694
1695 define void @f() {
1696 call void @x() ;; no deopt state
1697 call void @y() [ "deopt"(i32 10) ]
1698 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1699 ret void
1700 }
1701
1702 define void @g() {
1703 call void @f() [ "deopt"(i32 20) ]
1704 ret void
1705 }
1706
1707will result in
1708
1709.. code-block:: llvm
1710
1711 define void @g() {
1712 call void @x() ;; still no deopt state
1713 call void @y() [ "deopt"(i32 20, i32 10) ]
1714 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1715 ret void
1716 }
1717
1718It is the frontend's responsibility to structure or encode the
1719deoptimization state in a way that syntactically prepending the
1720caller's deoptimization state to the callee's deoptimization state is
1721semantically equivalent to composing the caller's deoptimization
1722continuation after the callee's deoptimization continuation.
1723
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001724.. _ob_funclet:
1725
David Majnemer3bb88c02015-12-15 21:27:27 +00001726Funclet Operand Bundles
1727^^^^^^^^^^^^^^^^^^^^^^^
1728
1729Funclet operand bundles are characterized by the ``"funclet"``
1730operand bundle tag. These operand bundles indicate that a call site
1731is within a particular funclet. There can be at most one
1732``"funclet"`` operand bundle attached to a call site and it must have
1733exactly one bundle operand.
1734
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001735If any funclet EH pads have been "entered" but not "exited" (per the
1736`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1737it is undefined behavior to execute a ``call`` or ``invoke`` which:
1738
1739* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1740 intrinsic, or
1741* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1742 not-yet-exited funclet EH pad.
1743
1744Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1745executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1746
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001747GC Transition Operand Bundles
1748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1749
1750GC transition operand bundles are characterized by the
1751``"gc-transition"`` operand bundle tag. These operand bundles mark a
1752call as a transition between a function with one GC strategy to a
1753function with a different GC strategy. If coordinating the transition
1754between GC strategies requires additional code generation at the call
1755site, these bundles may contain any values that are needed by the
1756generated code. For more details, see :ref:`GC Transitions
1757<gc_transition_args>`.
1758
Sean Silvab084af42012-12-07 10:36:55 +00001759.. _moduleasm:
1760
1761Module-Level Inline Assembly
1762----------------------------
1763
1764Modules may contain "module-level inline asm" blocks, which corresponds
1765to the GCC "file scope inline asm" blocks. These blocks are internally
1766concatenated by LLVM and treated as a single unit, but may be separated
1767in the ``.ll`` file if desired. The syntax is very simple:
1768
1769.. code-block:: llvm
1770
1771 module asm "inline asm code goes here"
1772 module asm "more can go here"
1773
1774The strings can contain any character by escaping non-printable
1775characters. The escape sequence used is simply "\\xx" where "xx" is the
1776two digit hex code for the number.
1777
James Y Knightbc832ed2015-07-08 18:08:36 +00001778Note that the assembly string *must* be parseable by LLVM's integrated assembler
1779(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001780
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001781.. _langref_datalayout:
1782
Sean Silvab084af42012-12-07 10:36:55 +00001783Data Layout
1784-----------
1785
1786A module may specify a target specific data layout string that specifies
1787how data is to be laid out in memory. The syntax for the data layout is
1788simply:
1789
1790.. code-block:: llvm
1791
1792 target datalayout = "layout specification"
1793
1794The *layout specification* consists of a list of specifications
1795separated by the minus sign character ('-'). Each specification starts
1796with a letter and may include other information after the letter to
1797define some aspect of the data layout. The specifications accepted are
1798as follows:
1799
1800``E``
1801 Specifies that the target lays out data in big-endian form. That is,
1802 the bits with the most significance have the lowest address
1803 location.
1804``e``
1805 Specifies that the target lays out data in little-endian form. That
1806 is, the bits with the least significance have the lowest address
1807 location.
1808``S<size>``
1809 Specifies the natural alignment of the stack in bits. Alignment
1810 promotion of stack variables is limited to the natural stack
1811 alignment to avoid dynamic stack realignment. The stack alignment
1812 must be a multiple of 8-bits. If omitted, the natural stack
1813 alignment defaults to "unspecified", which does not prevent any
1814 alignment promotions.
1815``p[n]:<size>:<abi>:<pref>``
1816 This specifies the *size* of a pointer and its ``<abi>`` and
1817 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001818 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001819 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001820 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001821``i<size>:<abi>:<pref>``
1822 This specifies the alignment for an integer type of a given bit
1823 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1824``v<size>:<abi>:<pref>``
1825 This specifies the alignment for a vector type of a given bit
1826 ``<size>``.
1827``f<size>:<abi>:<pref>``
1828 This specifies the alignment for a floating point type of a given bit
1829 ``<size>``. Only values of ``<size>`` that are supported by the target
1830 will work. 32 (float) and 64 (double) are supported on all targets; 80
1831 or 128 (different flavors of long double) are also supported on some
1832 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001833``a:<abi>:<pref>``
1834 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001835``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001836 If present, specifies that llvm names are mangled in the output. The
1837 options are
1838
1839 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1840 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1841 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1842 symbols get a ``_`` prefix.
1843 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1844 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001845 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1846 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001847``n<size1>:<size2>:<size3>...``
1848 This specifies a set of native integer widths for the target CPU in
1849 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1850 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1851 this set are considered to support most general arithmetic operations
1852 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001853``ni:<address space0>:<address space1>:<address space2>...``
1854 This specifies pointer types with the specified address spaces
1855 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1856 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001857
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001858On every specification that takes a ``<abi>:<pref>``, specifying the
1859``<pref>`` alignment is optional. If omitted, the preceding ``:``
1860should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1861
Sean Silvab084af42012-12-07 10:36:55 +00001862When constructing the data layout for a given target, LLVM starts with a
1863default set of specifications which are then (possibly) overridden by
1864the specifications in the ``datalayout`` keyword. The default
1865specifications are given in this list:
1866
1867- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001868- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1869- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1870 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001871- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001872- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1873- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1874- ``i16:16:16`` - i16 is 16-bit aligned
1875- ``i32:32:32`` - i32 is 32-bit aligned
1876- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1877 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001878- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001879- ``f32:32:32`` - float is 32-bit aligned
1880- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001881- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001882- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1883- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001884- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001885
1886When LLVM is determining the alignment for a given type, it uses the
1887following rules:
1888
1889#. If the type sought is an exact match for one of the specifications,
1890 that specification is used.
1891#. If no match is found, and the type sought is an integer type, then
1892 the smallest integer type that is larger than the bitwidth of the
1893 sought type is used. If none of the specifications are larger than
1894 the bitwidth then the largest integer type is used. For example,
1895 given the default specifications above, the i7 type will use the
1896 alignment of i8 (next largest) while both i65 and i256 will use the
1897 alignment of i64 (largest specified).
1898#. If no match is found, and the type sought is a vector type, then the
1899 largest vector type that is smaller than the sought vector type will
1900 be used as a fall back. This happens because <128 x double> can be
1901 implemented in terms of 64 <2 x double>, for example.
1902
1903The function of the data layout string may not be what you expect.
1904Notably, this is not a specification from the frontend of what alignment
1905the code generator should use.
1906
1907Instead, if specified, the target data layout is required to match what
1908the ultimate *code generator* expects. This string is used by the
1909mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001910what the ultimate code generator uses. There is no way to generate IR
1911that does not embed this target-specific detail into the IR. If you
1912don't specify the string, the default specifications will be used to
1913generate a Data Layout and the optimization phases will operate
1914accordingly and introduce target specificity into the IR with respect to
1915these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001916
Bill Wendling5cc90842013-10-18 23:41:25 +00001917.. _langref_triple:
1918
1919Target Triple
1920-------------
1921
1922A module may specify a target triple string that describes the target
1923host. The syntax for the target triple is simply:
1924
1925.. code-block:: llvm
1926
1927 target triple = "x86_64-apple-macosx10.7.0"
1928
1929The *target triple* string consists of a series of identifiers delimited
1930by the minus sign character ('-'). The canonical forms are:
1931
1932::
1933
1934 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1935 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1936
1937This information is passed along to the backend so that it generates
1938code for the proper architecture. It's possible to override this on the
1939command line with the ``-mtriple`` command line option.
1940
Sean Silvab084af42012-12-07 10:36:55 +00001941.. _pointeraliasing:
1942
1943Pointer Aliasing Rules
1944----------------------
1945
1946Any memory access must be done through a pointer value associated with
1947an address range of the memory access, otherwise the behavior is
1948undefined. Pointer values are associated with address ranges according
1949to the following rules:
1950
1951- A pointer value is associated with the addresses associated with any
1952 value it is *based* on.
1953- An address of a global variable is associated with the address range
1954 of the variable's storage.
1955- The result value of an allocation instruction is associated with the
1956 address range of the allocated storage.
1957- A null pointer in the default address-space is associated with no
1958 address.
1959- An integer constant other than zero or a pointer value returned from
1960 a function not defined within LLVM may be associated with address
1961 ranges allocated through mechanisms other than those provided by
1962 LLVM. Such ranges shall not overlap with any ranges of addresses
1963 allocated by mechanisms provided by LLVM.
1964
1965A pointer value is *based* on another pointer value according to the
1966following rules:
1967
1968- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001969 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001970- The result value of a ``bitcast`` is *based* on the operand of the
1971 ``bitcast``.
1972- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1973 values that contribute (directly or indirectly) to the computation of
1974 the pointer's value.
1975- The "*based* on" relationship is transitive.
1976
1977Note that this definition of *"based"* is intentionally similar to the
1978definition of *"based"* in C99, though it is slightly weaker.
1979
1980LLVM IR does not associate types with memory. The result type of a
1981``load`` merely indicates the size and alignment of the memory from
1982which to load, as well as the interpretation of the value. The first
1983operand type of a ``store`` similarly only indicates the size and
1984alignment of the store.
1985
1986Consequently, type-based alias analysis, aka TBAA, aka
1987``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1988:ref:`Metadata <metadata>` may be used to encode additional information
1989which specialized optimization passes may use to implement type-based
1990alias analysis.
1991
1992.. _volatile:
1993
1994Volatile Memory Accesses
1995------------------------
1996
1997Certain memory accesses, such as :ref:`load <i_load>`'s,
1998:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1999marked ``volatile``. The optimizers must not change the number of
2000volatile operations or change their order of execution relative to other
2001volatile operations. The optimizers *may* change the order of volatile
2002operations relative to non-volatile operations. This is not Java's
2003"volatile" and has no cross-thread synchronization behavior.
2004
Andrew Trick89fc5a62013-01-30 21:19:35 +00002005IR-level volatile loads and stores cannot safely be optimized into
2006llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2007flagged volatile. Likewise, the backend should never split or merge
2008target-legal volatile load/store instructions.
2009
Andrew Trick7e6f9282013-01-31 00:49:39 +00002010.. admonition:: Rationale
2011
2012 Platforms may rely on volatile loads and stores of natively supported
2013 data width to be executed as single instruction. For example, in C
2014 this holds for an l-value of volatile primitive type with native
2015 hardware support, but not necessarily for aggregate types. The
2016 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002017 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002018 do not violate the frontend's contract with the language.
2019
Sean Silvab084af42012-12-07 10:36:55 +00002020.. _memmodel:
2021
2022Memory Model for Concurrent Operations
2023--------------------------------------
2024
2025The LLVM IR does not define any way to start parallel threads of
2026execution or to register signal handlers. Nonetheless, there are
2027platform-specific ways to create them, and we define LLVM IR's behavior
2028in their presence. This model is inspired by the C++0x memory model.
2029
2030For a more informal introduction to this model, see the :doc:`Atomics`.
2031
2032We define a *happens-before* partial order as the least partial order
2033that
2034
2035- Is a superset of single-thread program order, and
2036- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2037 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2038 techniques, like pthread locks, thread creation, thread joining,
2039 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2040 Constraints <ordering>`).
2041
2042Note that program order does not introduce *happens-before* edges
2043between a thread and signals executing inside that thread.
2044
2045Every (defined) read operation (load instructions, memcpy, atomic
2046loads/read-modify-writes, etc.) R reads a series of bytes written by
2047(defined) write operations (store instructions, atomic
2048stores/read-modify-writes, memcpy, etc.). For the purposes of this
2049section, initialized globals are considered to have a write of the
2050initializer which is atomic and happens before any other read or write
2051of the memory in question. For each byte of a read R, R\ :sub:`byte`
2052may see any write to the same byte, except:
2053
2054- If write\ :sub:`1` happens before write\ :sub:`2`, and
2055 write\ :sub:`2` happens before R\ :sub:`byte`, then
2056 R\ :sub:`byte` does not see write\ :sub:`1`.
2057- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2058 R\ :sub:`byte` does not see write\ :sub:`3`.
2059
2060Given that definition, R\ :sub:`byte` is defined as follows:
2061
2062- If R is volatile, the result is target-dependent. (Volatile is
2063 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002064 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002065 like normal memory. It does not generally provide cross-thread
2066 synchronization.)
2067- Otherwise, if there is no write to the same byte that happens before
2068 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2069- Otherwise, if R\ :sub:`byte` may see exactly one write,
2070 R\ :sub:`byte` returns the value written by that write.
2071- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2072 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2073 Memory Ordering Constraints <ordering>` section for additional
2074 constraints on how the choice is made.
2075- Otherwise R\ :sub:`byte` returns ``undef``.
2076
2077R returns the value composed of the series of bytes it read. This
2078implies that some bytes within the value may be ``undef`` **without**
2079the entire value being ``undef``. Note that this only defines the
2080semantics of the operation; it doesn't mean that targets will emit more
2081than one instruction to read the series of bytes.
2082
2083Note that in cases where none of the atomic intrinsics are used, this
2084model places only one restriction on IR transformations on top of what
2085is required for single-threaded execution: introducing a store to a byte
2086which might not otherwise be stored is not allowed in general.
2087(Specifically, in the case where another thread might write to and read
2088from an address, introducing a store can change a load that may see
2089exactly one write into a load that may see multiple writes.)
2090
2091.. _ordering:
2092
2093Atomic Memory Ordering Constraints
2094----------------------------------
2095
2096Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2097:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2098:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002099ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002100the same address they *synchronize with*. These semantics are borrowed
2101from Java and C++0x, but are somewhat more colloquial. If these
2102descriptions aren't precise enough, check those specs (see spec
2103references in the :doc:`atomics guide <Atomics>`).
2104:ref:`fence <i_fence>` instructions treat these orderings somewhat
2105differently since they don't take an address. See that instruction's
2106documentation for details.
2107
2108For a simpler introduction to the ordering constraints, see the
2109:doc:`Atomics`.
2110
2111``unordered``
2112 The set of values that can be read is governed by the happens-before
2113 partial order. A value cannot be read unless some operation wrote
2114 it. This is intended to provide a guarantee strong enough to model
2115 Java's non-volatile shared variables. This ordering cannot be
2116 specified for read-modify-write operations; it is not strong enough
2117 to make them atomic in any interesting way.
2118``monotonic``
2119 In addition to the guarantees of ``unordered``, there is a single
2120 total order for modifications by ``monotonic`` operations on each
2121 address. All modification orders must be compatible with the
2122 happens-before order. There is no guarantee that the modification
2123 orders can be combined to a global total order for the whole program
2124 (and this often will not be possible). The read in an atomic
2125 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2126 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2127 order immediately before the value it writes. If one atomic read
2128 happens before another atomic read of the same address, the later
2129 read must see the same value or a later value in the address's
2130 modification order. This disallows reordering of ``monotonic`` (or
2131 stronger) operations on the same address. If an address is written
2132 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2133 read that address repeatedly, the other threads must eventually see
2134 the write. This corresponds to the C++0x/C1x
2135 ``memory_order_relaxed``.
2136``acquire``
2137 In addition to the guarantees of ``monotonic``, a
2138 *synchronizes-with* edge may be formed with a ``release`` operation.
2139 This is intended to model C++'s ``memory_order_acquire``.
2140``release``
2141 In addition to the guarantees of ``monotonic``, if this operation
2142 writes a value which is subsequently read by an ``acquire``
2143 operation, it *synchronizes-with* that operation. (This isn't a
2144 complete description; see the C++0x definition of a release
2145 sequence.) This corresponds to the C++0x/C1x
2146 ``memory_order_release``.
2147``acq_rel`` (acquire+release)
2148 Acts as both an ``acquire`` and ``release`` operation on its
2149 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2150``seq_cst`` (sequentially consistent)
2151 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002152 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002153 writes), there is a global total order on all
2154 sequentially-consistent operations on all addresses, which is
2155 consistent with the *happens-before* partial order and with the
2156 modification orders of all the affected addresses. Each
2157 sequentially-consistent read sees the last preceding write to the
2158 same address in this global order. This corresponds to the C++0x/C1x
2159 ``memory_order_seq_cst`` and Java volatile.
2160
2161.. _singlethread:
2162
2163If an atomic operation is marked ``singlethread``, it only *synchronizes
2164with* or participates in modification and seq\_cst total orderings with
2165other operations running in the same thread (for example, in signal
2166handlers).
2167
2168.. _fastmath:
2169
2170Fast-Math Flags
2171---------------
2172
2173LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2174:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002175:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
2176instructions have the following flags that can be set to enable
2177otherwise unsafe floating point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002178
2179``nnan``
2180 No NaNs - Allow optimizations to assume the arguments and result are not
2181 NaN. Such optimizations are required to retain defined behavior over
2182 NaNs, but the value of the result is undefined.
2183
2184``ninf``
2185 No Infs - Allow optimizations to assume the arguments and result are not
2186 +/-Inf. Such optimizations are required to retain defined behavior over
2187 +/-Inf, but the value of the result is undefined.
2188
2189``nsz``
2190 No Signed Zeros - Allow optimizations to treat the sign of a zero
2191 argument or result as insignificant.
2192
2193``arcp``
2194 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2195 argument rather than perform division.
2196
2197``fast``
2198 Fast - Allow algebraically equivalent transformations that may
2199 dramatically change results in floating point (e.g. reassociate). This
2200 flag implies all the others.
2201
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002202.. _uselistorder:
2203
2204Use-list Order Directives
2205-------------------------
2206
2207Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002208order to be recreated. ``<order-indexes>`` is a comma-separated list of
2209indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002210value's use-list is immediately sorted by these indexes.
2211
Sean Silvaa1190322015-08-06 22:56:48 +00002212Use-list directives may appear at function scope or global scope. They are not
2213instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002214function scope, they must appear after the terminator of the final basic block.
2215
2216If basic blocks have their address taken via ``blockaddress()`` expressions,
2217``uselistorder_bb`` can be used to reorder their use-lists from outside their
2218function's scope.
2219
2220:Syntax:
2221
2222::
2223
2224 uselistorder <ty> <value>, { <order-indexes> }
2225 uselistorder_bb @function, %block { <order-indexes> }
2226
2227:Examples:
2228
2229::
2230
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002231 define void @foo(i32 %arg1, i32 %arg2) {
2232 entry:
2233 ; ... instructions ...
2234 bb:
2235 ; ... instructions ...
2236
2237 ; At function scope.
2238 uselistorder i32 %arg1, { 1, 0, 2 }
2239 uselistorder label %bb, { 1, 0 }
2240 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002241
2242 ; At global scope.
2243 uselistorder i32* @global, { 1, 2, 0 }
2244 uselistorder i32 7, { 1, 0 }
2245 uselistorder i32 (i32) @bar, { 1, 0 }
2246 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2247
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002248.. _source_filename:
2249
2250Source Filename
2251---------------
2252
2253The *source filename* string is set to the original module identifier,
2254which will be the name of the compiled source file when compiling from
2255source through the clang front end, for example. It is then preserved through
2256the IR and bitcode.
2257
2258This is currently necessary to generate a consistent unique global
2259identifier for local functions used in profile data, which prepends the
2260source file name to the local function name.
2261
2262The syntax for the source file name is simply:
2263
Renato Golin124f2592016-07-20 12:16:38 +00002264.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002265
2266 source_filename = "/path/to/source.c"
2267
Sean Silvab084af42012-12-07 10:36:55 +00002268.. _typesystem:
2269
2270Type System
2271===========
2272
2273The LLVM type system is one of the most important features of the
2274intermediate representation. Being typed enables a number of
2275optimizations to be performed on the intermediate representation
2276directly, without having to do extra analyses on the side before the
2277transformation. A strong type system makes it easier to read the
2278generated code and enables novel analyses and transformations that are
2279not feasible to perform on normal three address code representations.
2280
Rafael Espindola08013342013-12-07 19:34:20 +00002281.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002282
Rafael Espindola08013342013-12-07 19:34:20 +00002283Void Type
2284---------
Sean Silvab084af42012-12-07 10:36:55 +00002285
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002286:Overview:
2287
Rafael Espindola08013342013-12-07 19:34:20 +00002288
2289The void type does not represent any value and has no size.
2290
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002291:Syntax:
2292
Rafael Espindola08013342013-12-07 19:34:20 +00002293
2294::
2295
2296 void
Sean Silvab084af42012-12-07 10:36:55 +00002297
2298
Rafael Espindola08013342013-12-07 19:34:20 +00002299.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002300
Rafael Espindola08013342013-12-07 19:34:20 +00002301Function Type
2302-------------
Sean Silvab084af42012-12-07 10:36:55 +00002303
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002304:Overview:
2305
Sean Silvab084af42012-12-07 10:36:55 +00002306
Rafael Espindola08013342013-12-07 19:34:20 +00002307The function type can be thought of as a function signature. It consists of a
2308return type and a list of formal parameter types. The return type of a function
2309type is a void type or first class type --- except for :ref:`label <t_label>`
2310and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002311
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002312:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002313
Rafael Espindola08013342013-12-07 19:34:20 +00002314::
Sean Silvab084af42012-12-07 10:36:55 +00002315
Rafael Espindola08013342013-12-07 19:34:20 +00002316 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002317
Rafael Espindola08013342013-12-07 19:34:20 +00002318...where '``<parameter list>``' is a comma-separated list of type
2319specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002320indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002321argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002322handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002323except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002324
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002325:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002326
Rafael Espindola08013342013-12-07 19:34:20 +00002327+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2328| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2329+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2330| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2331+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2332| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2333+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2334| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2335+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2336
2337.. _t_firstclass:
2338
2339First Class Types
2340-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002341
2342The :ref:`first class <t_firstclass>` types are perhaps the most important.
2343Values of these types are the only ones which can be produced by
2344instructions.
2345
Rafael Espindola08013342013-12-07 19:34:20 +00002346.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002347
Rafael Espindola08013342013-12-07 19:34:20 +00002348Single Value Types
2349^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002350
Rafael Espindola08013342013-12-07 19:34:20 +00002351These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002352
2353.. _t_integer:
2354
2355Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002356""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002357
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002358:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002359
2360The integer type is a very simple type that simply specifies an
2361arbitrary bit width for the integer type desired. Any bit width from 1
2362bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2363
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002364:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002365
2366::
2367
2368 iN
2369
2370The number of bits the integer will occupy is specified by the ``N``
2371value.
2372
2373Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002374*********
Sean Silvab084af42012-12-07 10:36:55 +00002375
2376+----------------+------------------------------------------------+
2377| ``i1`` | a single-bit integer. |
2378+----------------+------------------------------------------------+
2379| ``i32`` | a 32-bit integer. |
2380+----------------+------------------------------------------------+
2381| ``i1942652`` | a really big integer of over 1 million bits. |
2382+----------------+------------------------------------------------+
2383
2384.. _t_floating:
2385
2386Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002387""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002388
2389.. list-table::
2390 :header-rows: 1
2391
2392 * - Type
2393 - Description
2394
2395 * - ``half``
2396 - 16-bit floating point value
2397
2398 * - ``float``
2399 - 32-bit floating point value
2400
2401 * - ``double``
2402 - 64-bit floating point value
2403
2404 * - ``fp128``
2405 - 128-bit floating point value (112-bit mantissa)
2406
2407 * - ``x86_fp80``
2408 - 80-bit floating point value (X87)
2409
2410 * - ``ppc_fp128``
2411 - 128-bit floating point value (two 64-bits)
2412
Reid Kleckner9a16d082014-03-05 02:41:37 +00002413X86_mmx Type
2414""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002415
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002416:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002417
Reid Kleckner9a16d082014-03-05 02:41:37 +00002418The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002419machine. The operations allowed on it are quite limited: parameters and
2420return values, load and store, and bitcast. User-specified MMX
2421instructions are represented as intrinsic or asm calls with arguments
2422and/or results of this type. There are no arrays, vectors or constants
2423of this type.
2424
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002425:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002426
2427::
2428
Reid Kleckner9a16d082014-03-05 02:41:37 +00002429 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002430
Sean Silvab084af42012-12-07 10:36:55 +00002431
Rafael Espindola08013342013-12-07 19:34:20 +00002432.. _t_pointer:
2433
2434Pointer Type
2435""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002436
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002437:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002438
Rafael Espindola08013342013-12-07 19:34:20 +00002439The pointer type is used to specify memory locations. Pointers are
2440commonly used to reference objects in memory.
2441
2442Pointer types may have an optional address space attribute defining the
2443numbered address space where the pointed-to object resides. The default
2444address space is number zero. The semantics of non-zero address spaces
2445are target-specific.
2446
2447Note that LLVM does not permit pointers to void (``void*``) nor does it
2448permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002449
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002450:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002451
2452::
2453
Rafael Espindola08013342013-12-07 19:34:20 +00002454 <type> *
2455
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002456:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002457
2458+-------------------------+--------------------------------------------------------------------------------------------------------------+
2459| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2460+-------------------------+--------------------------------------------------------------------------------------------------------------+
2461| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2462+-------------------------+--------------------------------------------------------------------------------------------------------------+
2463| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2464+-------------------------+--------------------------------------------------------------------------------------------------------------+
2465
2466.. _t_vector:
2467
2468Vector Type
2469"""""""""""
2470
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002471:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002472
2473A vector type is a simple derived type that represents a vector of
2474elements. Vector types are used when multiple primitive data are
2475operated in parallel using a single instruction (SIMD). A vector type
2476requires a size (number of elements) and an underlying primitive data
2477type. Vector types are considered :ref:`first class <t_firstclass>`.
2478
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002479:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002480
2481::
2482
2483 < <# elements> x <elementtype> >
2484
2485The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002486elementtype may be any integer, floating point or pointer type. Vectors
2487of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002488
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002489:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002490
2491+-------------------+--------------------------------------------------+
2492| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2493+-------------------+--------------------------------------------------+
2494| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2495+-------------------+--------------------------------------------------+
2496| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2497+-------------------+--------------------------------------------------+
2498| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2499+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002500
2501.. _t_label:
2502
2503Label Type
2504^^^^^^^^^^
2505
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002506:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002507
2508The label type represents code labels.
2509
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002510:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002511
2512::
2513
2514 label
2515
David Majnemerb611e3f2015-08-14 05:09:07 +00002516.. _t_token:
2517
2518Token Type
2519^^^^^^^^^^
2520
2521:Overview:
2522
2523The token type is used when a value is associated with an instruction
2524but all uses of the value must not attempt to introspect or obscure it.
2525As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2526:ref:`select <i_select>` of type token.
2527
2528:Syntax:
2529
2530::
2531
2532 token
2533
2534
2535
Sean Silvab084af42012-12-07 10:36:55 +00002536.. _t_metadata:
2537
2538Metadata Type
2539^^^^^^^^^^^^^
2540
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002541:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002542
2543The metadata type represents embedded metadata. No derived types may be
2544created from metadata except for :ref:`function <t_function>` arguments.
2545
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002546:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002547
2548::
2549
2550 metadata
2551
Sean Silvab084af42012-12-07 10:36:55 +00002552.. _t_aggregate:
2553
2554Aggregate Types
2555^^^^^^^^^^^^^^^
2556
2557Aggregate Types are a subset of derived types that can contain multiple
2558member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2559aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2560aggregate types.
2561
2562.. _t_array:
2563
2564Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002565""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002566
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002567:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002568
2569The array type is a very simple derived type that arranges elements
2570sequentially in memory. The array type requires a size (number of
2571elements) and an underlying data type.
2572
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002573:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002574
2575::
2576
2577 [<# elements> x <elementtype>]
2578
2579The number of elements is a constant integer value; ``elementtype`` may
2580be any type with a size.
2581
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002582:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002583
2584+------------------+--------------------------------------+
2585| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2586+------------------+--------------------------------------+
2587| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2588+------------------+--------------------------------------+
2589| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2590+------------------+--------------------------------------+
2591
2592Here are some examples of multidimensional arrays:
2593
2594+-----------------------------+----------------------------------------------------------+
2595| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2596+-----------------------------+----------------------------------------------------------+
2597| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2598+-----------------------------+----------------------------------------------------------+
2599| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2600+-----------------------------+----------------------------------------------------------+
2601
2602There is no restriction on indexing beyond the end of the array implied
2603by a static type (though there are restrictions on indexing beyond the
2604bounds of an allocated object in some cases). This means that
2605single-dimension 'variable sized array' addressing can be implemented in
2606LLVM with a zero length array type. An implementation of 'pascal style
2607arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2608example.
2609
Sean Silvab084af42012-12-07 10:36:55 +00002610.. _t_struct:
2611
2612Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002613""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002614
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002615:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002616
2617The structure type is used to represent a collection of data members
2618together in memory. The elements of a structure may be any type that has
2619a size.
2620
2621Structures in memory are accessed using '``load``' and '``store``' by
2622getting a pointer to a field with the '``getelementptr``' instruction.
2623Structures in registers are accessed using the '``extractvalue``' and
2624'``insertvalue``' instructions.
2625
2626Structures may optionally be "packed" structures, which indicate that
2627the alignment of the struct is one byte, and that there is no padding
2628between the elements. In non-packed structs, padding between field types
2629is inserted as defined by the DataLayout string in the module, which is
2630required to match what the underlying code generator expects.
2631
2632Structures can either be "literal" or "identified". A literal structure
2633is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2634identified types are always defined at the top level with a name.
2635Literal types are uniqued by their contents and can never be recursive
2636or opaque since there is no way to write one. Identified types can be
2637recursive, can be opaqued, and are never uniqued.
2638
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002639:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002640
2641::
2642
2643 %T1 = type { <type list> } ; Identified normal struct type
2644 %T2 = type <{ <type list> }> ; Identified packed struct type
2645
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002646:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002647
2648+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2649| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2650+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002651| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002652+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2653| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2654+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2655
2656.. _t_opaque:
2657
2658Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002659""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002660
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002661:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002662
2663Opaque structure types are used to represent named structure types that
2664do not have a body specified. This corresponds (for example) to the C
2665notion of a forward declared structure.
2666
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002667:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002668
2669::
2670
2671 %X = type opaque
2672 %52 = type opaque
2673
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002674:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002675
2676+--------------+-------------------+
2677| ``opaque`` | An opaque type. |
2678+--------------+-------------------+
2679
Sean Silva1703e702014-04-08 21:06:22 +00002680.. _constants:
2681
Sean Silvab084af42012-12-07 10:36:55 +00002682Constants
2683=========
2684
2685LLVM has several different basic types of constants. This section
2686describes them all and their syntax.
2687
2688Simple Constants
2689----------------
2690
2691**Boolean constants**
2692 The two strings '``true``' and '``false``' are both valid constants
2693 of the ``i1`` type.
2694**Integer constants**
2695 Standard integers (such as '4') are constants of the
2696 :ref:`integer <t_integer>` type. Negative numbers may be used with
2697 integer types.
2698**Floating point constants**
2699 Floating point constants use standard decimal notation (e.g.
2700 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2701 hexadecimal notation (see below). The assembler requires the exact
2702 decimal value of a floating-point constant. For example, the
2703 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2704 decimal in binary. Floating point constants must have a :ref:`floating
2705 point <t_floating>` type.
2706**Null pointer constants**
2707 The identifier '``null``' is recognized as a null pointer constant
2708 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002709**Token constants**
2710 The identifier '``none``' is recognized as an empty token constant
2711 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002712
2713The one non-intuitive notation for constants is the hexadecimal form of
2714floating point constants. For example, the form
2715'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2716than) '``double 4.5e+15``'. The only time hexadecimal floating point
2717constants are required (and the only time that they are generated by the
2718disassembler) is when a floating point constant must be emitted but it
2719cannot be represented as a decimal floating point number in a reasonable
2720number of digits. For example, NaN's, infinities, and other special
2721values are represented in their IEEE hexadecimal format so that assembly
2722and disassembly do not cause any bits to change in the constants.
2723
2724When using the hexadecimal form, constants of types half, float, and
2725double are represented using the 16-digit form shown above (which
2726matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002727must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002728precision, respectively. Hexadecimal format is always used for long
2729double, and there are three forms of long double. The 80-bit format used
2730by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2731128-bit format used by PowerPC (two adjacent doubles) is represented by
2732``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002733represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2734will only work if they match the long double format on your target.
2735The IEEE 16-bit format (half precision) is represented by ``0xH``
2736followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2737(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002738
Reid Kleckner9a16d082014-03-05 02:41:37 +00002739There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002740
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002741.. _complexconstants:
2742
Sean Silvab084af42012-12-07 10:36:55 +00002743Complex Constants
2744-----------------
2745
2746Complex constants are a (potentially recursive) combination of simple
2747constants and smaller complex constants.
2748
2749**Structure constants**
2750 Structure constants are represented with notation similar to
2751 structure type definitions (a comma separated list of elements,
2752 surrounded by braces (``{}``)). For example:
2753 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2754 "``@G = external global i32``". Structure constants must have
2755 :ref:`structure type <t_struct>`, and the number and types of elements
2756 must match those specified by the type.
2757**Array constants**
2758 Array constants are represented with notation similar to array type
2759 definitions (a comma separated list of elements, surrounded by
2760 square brackets (``[]``)). For example:
2761 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2762 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002763 match those specified by the type. As a special case, character array
2764 constants may also be represented as a double-quoted string using the ``c``
2765 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002766**Vector constants**
2767 Vector constants are represented with notation similar to vector
2768 type definitions (a comma separated list of elements, surrounded by
2769 less-than/greater-than's (``<>``)). For example:
2770 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2771 must have :ref:`vector type <t_vector>`, and the number and types of
2772 elements must match those specified by the type.
2773**Zero initialization**
2774 The string '``zeroinitializer``' can be used to zero initialize a
2775 value to zero of *any* type, including scalar and
2776 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2777 having to print large zero initializers (e.g. for large arrays) and
2778 is always exactly equivalent to using explicit zero initializers.
2779**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002780 A metadata node is a constant tuple without types. For example:
2781 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002782 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2783 Unlike other typed constants that are meant to be interpreted as part of
2784 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002785 information such as debug info.
2786
2787Global Variable and Function Addresses
2788--------------------------------------
2789
2790The addresses of :ref:`global variables <globalvars>` and
2791:ref:`functions <functionstructure>` are always implicitly valid
2792(link-time) constants. These constants are explicitly referenced when
2793the :ref:`identifier for the global <identifiers>` is used and always have
2794:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2795file:
2796
2797.. code-block:: llvm
2798
2799 @X = global i32 17
2800 @Y = global i32 42
2801 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2802
2803.. _undefvalues:
2804
2805Undefined Values
2806----------------
2807
2808The string '``undef``' can be used anywhere a constant is expected, and
2809indicates that the user of the value may receive an unspecified
2810bit-pattern. Undefined values may be of any type (other than '``label``'
2811or '``void``') and be used anywhere a constant is permitted.
2812
2813Undefined values are useful because they indicate to the compiler that
2814the program is well defined no matter what value is used. This gives the
2815compiler more freedom to optimize. Here are some examples of
2816(potentially surprising) transformations that are valid (in pseudo IR):
2817
2818.. code-block:: llvm
2819
2820 %A = add %X, undef
2821 %B = sub %X, undef
2822 %C = xor %X, undef
2823 Safe:
2824 %A = undef
2825 %B = undef
2826 %C = undef
2827
2828This is safe because all of the output bits are affected by the undef
2829bits. Any output bit can have a zero or one depending on the input bits.
2830
2831.. code-block:: llvm
2832
2833 %A = or %X, undef
2834 %B = and %X, undef
2835 Safe:
2836 %A = -1
2837 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002838 Safe:
2839 %A = %X ;; By choosing undef as 0
2840 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002841 Unsafe:
2842 %A = undef
2843 %B = undef
2844
2845These logical operations have bits that are not always affected by the
2846input. For example, if ``%X`` has a zero bit, then the output of the
2847'``and``' operation will always be a zero for that bit, no matter what
2848the corresponding bit from the '``undef``' is. As such, it is unsafe to
2849optimize or assume that the result of the '``and``' is '``undef``'.
2850However, it is safe to assume that all bits of the '``undef``' could be
28510, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2852all the bits of the '``undef``' operand to the '``or``' could be set,
2853allowing the '``or``' to be folded to -1.
2854
2855.. code-block:: llvm
2856
2857 %A = select undef, %X, %Y
2858 %B = select undef, 42, %Y
2859 %C = select %X, %Y, undef
2860 Safe:
2861 %A = %X (or %Y)
2862 %B = 42 (or %Y)
2863 %C = %Y
2864 Unsafe:
2865 %A = undef
2866 %B = undef
2867 %C = undef
2868
2869This set of examples shows that undefined '``select``' (and conditional
2870branch) conditions can go *either way*, but they have to come from one
2871of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2872both known to have a clear low bit, then ``%A`` would have to have a
2873cleared low bit. However, in the ``%C`` example, the optimizer is
2874allowed to assume that the '``undef``' operand could be the same as
2875``%Y``, allowing the whole '``select``' to be eliminated.
2876
Renato Golin124f2592016-07-20 12:16:38 +00002877.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002878
2879 %A = xor undef, undef
2880
2881 %B = undef
2882 %C = xor %B, %B
2883
2884 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002885 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002886 %F = icmp gte %D, 4
2887
2888 Safe:
2889 %A = undef
2890 %B = undef
2891 %C = undef
2892 %D = undef
2893 %E = undef
2894 %F = undef
2895
2896This example points out that two '``undef``' operands are not
2897necessarily the same. This can be surprising to people (and also matches
2898C semantics) where they assume that "``X^X``" is always zero, even if
2899``X`` is undefined. This isn't true for a number of reasons, but the
2900short answer is that an '``undef``' "variable" can arbitrarily change
2901its value over its "live range". This is true because the variable
2902doesn't actually *have a live range*. Instead, the value is logically
2903read from arbitrary registers that happen to be around when needed, so
2904the value is not necessarily consistent over time. In fact, ``%A`` and
2905``%C`` need to have the same semantics or the core LLVM "replace all
2906uses with" concept would not hold.
2907
2908.. code-block:: llvm
2909
2910 %A = fdiv undef, %X
2911 %B = fdiv %X, undef
2912 Safe:
2913 %A = undef
2914 b: unreachable
2915
2916These examples show the crucial difference between an *undefined value*
2917and *undefined behavior*. An undefined value (like '``undef``') is
2918allowed to have an arbitrary bit-pattern. This means that the ``%A``
2919operation can be constant folded to '``undef``', because the '``undef``'
2920could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2921However, in the second example, we can make a more aggressive
2922assumption: because the ``undef`` is allowed to be an arbitrary value,
2923we are allowed to assume that it could be zero. Since a divide by zero
2924has *undefined behavior*, we are allowed to assume that the operation
2925does not execute at all. This allows us to delete the divide and all
2926code after it. Because the undefined operation "can't happen", the
2927optimizer can assume that it occurs in dead code.
2928
Renato Golin124f2592016-07-20 12:16:38 +00002929.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002930
2931 a: store undef -> %X
2932 b: store %X -> undef
2933 Safe:
2934 a: <deleted>
2935 b: unreachable
2936
2937These examples reiterate the ``fdiv`` example: a store *of* an undefined
2938value can be assumed to not have any effect; we can assume that the
2939value is overwritten with bits that happen to match what was already
2940there. However, a store *to* an undefined location could clobber
2941arbitrary memory, therefore, it has undefined behavior.
2942
2943.. _poisonvalues:
2944
2945Poison Values
2946-------------
2947
2948Poison values are similar to :ref:`undef values <undefvalues>`, however
2949they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002950that cannot evoke side effects has nevertheless detected a condition
2951that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002952
2953There is currently no way of representing a poison value in the IR; they
2954only exist when produced by operations such as :ref:`add <i_add>` with
2955the ``nsw`` flag.
2956
2957Poison value behavior is defined in terms of value *dependence*:
2958
2959- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2960- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2961 their dynamic predecessor basic block.
2962- Function arguments depend on the corresponding actual argument values
2963 in the dynamic callers of their functions.
2964- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2965 instructions that dynamically transfer control back to them.
2966- :ref:`Invoke <i_invoke>` instructions depend on the
2967 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2968 call instructions that dynamically transfer control back to them.
2969- Non-volatile loads and stores depend on the most recent stores to all
2970 of the referenced memory addresses, following the order in the IR
2971 (including loads and stores implied by intrinsics such as
2972 :ref:`@llvm.memcpy <int_memcpy>`.)
2973- An instruction with externally visible side effects depends on the
2974 most recent preceding instruction with externally visible side
2975 effects, following the order in the IR. (This includes :ref:`volatile
2976 operations <volatile>`.)
2977- An instruction *control-depends* on a :ref:`terminator
2978 instruction <terminators>` if the terminator instruction has
2979 multiple successors and the instruction is always executed when
2980 control transfers to one of the successors, and may not be executed
2981 when control is transferred to another.
2982- Additionally, an instruction also *control-depends* on a terminator
2983 instruction if the set of instructions it otherwise depends on would
2984 be different if the terminator had transferred control to a different
2985 successor.
2986- Dependence is transitive.
2987
Richard Smith32dbdf62014-07-31 04:25:36 +00002988Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2989with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002990on a poison value has undefined behavior.
2991
2992Here are some examples:
2993
2994.. code-block:: llvm
2995
2996 entry:
2997 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2998 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002999 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003000 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3001
3002 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003003 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003004
3005 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3006
3007 %narrowaddr = bitcast i32* @g to i16*
3008 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003009 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3010 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003011
3012 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3013 br i1 %cmp, label %true, label %end ; Branch to either destination.
3014
3015 true:
3016 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3017 ; it has undefined behavior.
3018 br label %end
3019
3020 end:
3021 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3022 ; Both edges into this PHI are
3023 ; control-dependent on %cmp, so this
3024 ; always results in a poison value.
3025
3026 store volatile i32 0, i32* @g ; This would depend on the store in %true
3027 ; if %cmp is true, or the store in %entry
3028 ; otherwise, so this is undefined behavior.
3029
3030 br i1 %cmp, label %second_true, label %second_end
3031 ; The same branch again, but this time the
3032 ; true block doesn't have side effects.
3033
3034 second_true:
3035 ; No side effects!
3036 ret void
3037
3038 second_end:
3039 store volatile i32 0, i32* @g ; This time, the instruction always depends
3040 ; on the store in %end. Also, it is
3041 ; control-equivalent to %end, so this is
3042 ; well-defined (ignoring earlier undefined
3043 ; behavior in this example).
3044
3045.. _blockaddress:
3046
3047Addresses of Basic Blocks
3048-------------------------
3049
3050``blockaddress(@function, %block)``
3051
3052The '``blockaddress``' constant computes the address of the specified
3053basic block in the specified function, and always has an ``i8*`` type.
3054Taking the address of the entry block is illegal.
3055
3056This value only has defined behavior when used as an operand to the
3057':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3058against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003059undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003060no label is equal to the null pointer. This may be passed around as an
3061opaque pointer sized value as long as the bits are not inspected. This
3062allows ``ptrtoint`` and arithmetic to be performed on these values so
3063long as the original value is reconstituted before the ``indirectbr``
3064instruction.
3065
3066Finally, some targets may provide defined semantics when using the value
3067as the operand to an inline assembly, but that is target specific.
3068
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003069.. _constantexprs:
3070
Sean Silvab084af42012-12-07 10:36:55 +00003071Constant Expressions
3072--------------------
3073
3074Constant expressions are used to allow expressions involving other
3075constants to be used as constants. Constant expressions may be of any
3076:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3077that does not have side effects (e.g. load and call are not supported).
3078The following is the syntax for constant expressions:
3079
3080``trunc (CST to TYPE)``
3081 Truncate a constant to another type. The bit size of CST must be
3082 larger than the bit size of TYPE. Both types must be integers.
3083``zext (CST to TYPE)``
3084 Zero extend a constant to another type. The bit size of CST must be
3085 smaller than the bit size of TYPE. Both types must be integers.
3086``sext (CST to TYPE)``
3087 Sign extend a constant to another type. The bit size of CST must be
3088 smaller than the bit size of TYPE. Both types must be integers.
3089``fptrunc (CST to TYPE)``
3090 Truncate a floating point constant to another floating point type.
3091 The size of CST must be larger than the size of TYPE. Both types
3092 must be floating point.
3093``fpext (CST to TYPE)``
3094 Floating point extend a constant to another type. The size of CST
3095 must be smaller or equal to the size of TYPE. Both types must be
3096 floating point.
3097``fptoui (CST to TYPE)``
3098 Convert a floating point constant to the corresponding unsigned
3099 integer constant. TYPE must be a scalar or vector integer type. CST
3100 must be of scalar or vector floating point type. Both CST and TYPE
3101 must be scalars, or vectors of the same number of elements. If the
3102 value won't fit in the integer type, the results are undefined.
3103``fptosi (CST to TYPE)``
3104 Convert a floating point constant to the corresponding signed
3105 integer constant. TYPE must be a scalar or vector integer type. CST
3106 must be of scalar or vector floating point type. Both CST and TYPE
3107 must be scalars, or vectors of the same number of elements. If the
3108 value won't fit in the integer type, the results are undefined.
3109``uitofp (CST to TYPE)``
3110 Convert an unsigned integer constant to the corresponding floating
3111 point constant. TYPE must be a scalar or vector floating point type.
3112 CST must be of scalar or vector integer type. Both CST and TYPE must
3113 be scalars, or vectors of the same number of elements. If the value
3114 won't fit in the floating point type, the results are undefined.
3115``sitofp (CST to TYPE)``
3116 Convert a signed integer constant to the corresponding floating
3117 point constant. TYPE must be a scalar or vector floating point type.
3118 CST must be of scalar or vector integer type. Both CST and TYPE must
3119 be scalars, or vectors of the same number of elements. If the value
3120 won't fit in the floating point type, the results are undefined.
3121``ptrtoint (CST to TYPE)``
3122 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003123 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003124 pointer type. The ``CST`` value is zero extended, truncated, or
3125 unchanged to make it fit in ``TYPE``.
3126``inttoptr (CST to TYPE)``
3127 Convert an integer constant to a pointer constant. TYPE must be a
3128 pointer type. CST must be of integer type. The CST value is zero
3129 extended, truncated, or unchanged to make it fit in a pointer size.
3130 This one is *really* dangerous!
3131``bitcast (CST to TYPE)``
3132 Convert a constant, CST, to another TYPE. The constraints of the
3133 operands are the same as those for the :ref:`bitcast
3134 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003135``addrspacecast (CST to TYPE)``
3136 Convert a constant pointer or constant vector of pointer, CST, to another
3137 TYPE in a different address space. The constraints of the operands are the
3138 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003139``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003140 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3141 constants. As with the :ref:`getelementptr <i_getelementptr>`
3142 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003143 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003144``select (COND, VAL1, VAL2)``
3145 Perform the :ref:`select operation <i_select>` on constants.
3146``icmp COND (VAL1, VAL2)``
3147 Performs the :ref:`icmp operation <i_icmp>` on constants.
3148``fcmp COND (VAL1, VAL2)``
3149 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3150``extractelement (VAL, IDX)``
3151 Perform the :ref:`extractelement operation <i_extractelement>` on
3152 constants.
3153``insertelement (VAL, ELT, IDX)``
3154 Perform the :ref:`insertelement operation <i_insertelement>` on
3155 constants.
3156``shufflevector (VEC1, VEC2, IDXMASK)``
3157 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3158 constants.
3159``extractvalue (VAL, IDX0, IDX1, ...)``
3160 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3161 constants. The index list is interpreted in a similar manner as
3162 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3163 least one index value must be specified.
3164``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3165 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3166 The index list is interpreted in a similar manner as indices in a
3167 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3168 value must be specified.
3169``OPCODE (LHS, RHS)``
3170 Perform the specified operation of the LHS and RHS constants. OPCODE
3171 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3172 binary <bitwiseops>` operations. The constraints on operands are
3173 the same as those for the corresponding instruction (e.g. no bitwise
3174 operations on floating point values are allowed).
3175
3176Other Values
3177============
3178
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003179.. _inlineasmexprs:
3180
Sean Silvab084af42012-12-07 10:36:55 +00003181Inline Assembler Expressions
3182----------------------------
3183
3184LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003185Inline Assembly <moduleasm>`) through the use of a special value. This value
3186represents the inline assembler as a template string (containing the
3187instructions to emit), a list of operand constraints (stored as a string), a
3188flag that indicates whether or not the inline asm expression has side effects,
3189and a flag indicating whether the function containing the asm needs to align its
3190stack conservatively.
3191
3192The template string supports argument substitution of the operands using "``$``"
3193followed by a number, to indicate substitution of the given register/memory
3194location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3195be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3196operand (See :ref:`inline-asm-modifiers`).
3197
3198A literal "``$``" may be included by using "``$$``" in the template. To include
3199other special characters into the output, the usual "``\XX``" escapes may be
3200used, just as in other strings. Note that after template substitution, the
3201resulting assembly string is parsed by LLVM's integrated assembler unless it is
3202disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3203syntax known to LLVM.
3204
Reid Kleckner71cb1642017-02-06 18:08:45 +00003205LLVM also supports a few more substitions useful for writing inline assembly:
3206
3207- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3208 This substitution is useful when declaring a local label. Many standard
3209 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3210 Adding a blob-unique identifier ensures that the two labels will not conflict
3211 during assembly. This is used to implement `GCC's %= special format
3212 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3213- ``${:comment}``: Expands to the comment character of the current target's
3214 assembly dialect. This is usually ``#``, but many targets use other strings,
3215 such as ``;``, ``//``, or ``!``.
3216- ``${:private}``: Expands to the assembler private label prefix. Labels with
3217 this prefix will not appear in the symbol table of the assembled object.
3218 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3219 relatively popular.
3220
James Y Knightbc832ed2015-07-08 18:08:36 +00003221LLVM's support for inline asm is modeled closely on the requirements of Clang's
3222GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3223modifier codes listed here are similar or identical to those in GCC's inline asm
3224support. However, to be clear, the syntax of the template and constraint strings
3225described here is *not* the same as the syntax accepted by GCC and Clang, and,
3226while most constraint letters are passed through as-is by Clang, some get
3227translated to other codes when converting from the C source to the LLVM
3228assembly.
3229
3230An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003231
3232.. code-block:: llvm
3233
3234 i32 (i32) asm "bswap $0", "=r,r"
3235
3236Inline assembler expressions may **only** be used as the callee operand
3237of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3238Thus, typically we have:
3239
3240.. code-block:: llvm
3241
3242 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3243
3244Inline asms with side effects not visible in the constraint list must be
3245marked as having side effects. This is done through the use of the
3246'``sideeffect``' keyword, like so:
3247
3248.. code-block:: llvm
3249
3250 call void asm sideeffect "eieio", ""()
3251
3252In some cases inline asms will contain code that will not work unless
3253the stack is aligned in some way, such as calls or SSE instructions on
3254x86, yet will not contain code that does that alignment within the asm.
3255The compiler should make conservative assumptions about what the asm
3256might contain and should generate its usual stack alignment code in the
3257prologue if the '``alignstack``' keyword is present:
3258
3259.. code-block:: llvm
3260
3261 call void asm alignstack "eieio", ""()
3262
3263Inline asms also support using non-standard assembly dialects. The
3264assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3265the inline asm is using the Intel dialect. Currently, ATT and Intel are
3266the only supported dialects. An example is:
3267
3268.. code-block:: llvm
3269
3270 call void asm inteldialect "eieio", ""()
3271
3272If multiple keywords appear the '``sideeffect``' keyword must come
3273first, the '``alignstack``' keyword second and the '``inteldialect``'
3274keyword last.
3275
James Y Knightbc832ed2015-07-08 18:08:36 +00003276Inline Asm Constraint String
3277^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3278
3279The constraint list is a comma-separated string, each element containing one or
3280more constraint codes.
3281
3282For each element in the constraint list an appropriate register or memory
3283operand will be chosen, and it will be made available to assembly template
3284string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3285second, etc.
3286
3287There are three different types of constraints, which are distinguished by a
3288prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3289constraints must always be given in that order: outputs first, then inputs, then
3290clobbers. They cannot be intermingled.
3291
3292There are also three different categories of constraint codes:
3293
3294- Register constraint. This is either a register class, or a fixed physical
3295 register. This kind of constraint will allocate a register, and if necessary,
3296 bitcast the argument or result to the appropriate type.
3297- Memory constraint. This kind of constraint is for use with an instruction
3298 taking a memory operand. Different constraints allow for different addressing
3299 modes used by the target.
3300- Immediate value constraint. This kind of constraint is for an integer or other
3301 immediate value which can be rendered directly into an instruction. The
3302 various target-specific constraints allow the selection of a value in the
3303 proper range for the instruction you wish to use it with.
3304
3305Output constraints
3306""""""""""""""""""
3307
3308Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3309indicates that the assembly will write to this operand, and the operand will
3310then be made available as a return value of the ``asm`` expression. Output
3311constraints do not consume an argument from the call instruction. (Except, see
3312below about indirect outputs).
3313
3314Normally, it is expected that no output locations are written to by the assembly
3315expression until *all* of the inputs have been read. As such, LLVM may assign
3316the same register to an output and an input. If this is not safe (e.g. if the
3317assembly contains two instructions, where the first writes to one output, and
3318the second reads an input and writes to a second output), then the "``&``"
3319modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003320"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003321will not use the same register for any inputs (other than an input tied to this
3322output).
3323
3324Input constraints
3325"""""""""""""""""
3326
3327Input constraints do not have a prefix -- just the constraint codes. Each input
3328constraint will consume one argument from the call instruction. It is not
3329permitted for the asm to write to any input register or memory location (unless
3330that input is tied to an output). Note also that multiple inputs may all be
3331assigned to the same register, if LLVM can determine that they necessarily all
3332contain the same value.
3333
3334Instead of providing a Constraint Code, input constraints may also "tie"
3335themselves to an output constraint, by providing an integer as the constraint
3336string. Tied inputs still consume an argument from the call instruction, and
3337take up a position in the asm template numbering as is usual -- they will simply
3338be constrained to always use the same register as the output they've been tied
3339to. For example, a constraint string of "``=r,0``" says to assign a register for
3340output, and use that register as an input as well (it being the 0'th
3341constraint).
3342
3343It is permitted to tie an input to an "early-clobber" output. In that case, no
3344*other* input may share the same register as the input tied to the early-clobber
3345(even when the other input has the same value).
3346
3347You may only tie an input to an output which has a register constraint, not a
3348memory constraint. Only a single input may be tied to an output.
3349
3350There is also an "interesting" feature which deserves a bit of explanation: if a
3351register class constraint allocates a register which is too small for the value
3352type operand provided as input, the input value will be split into multiple
3353registers, and all of them passed to the inline asm.
3354
3355However, this feature is often not as useful as you might think.
3356
3357Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3358architectures that have instructions which operate on multiple consecutive
3359instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3360SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3361hardware then loads into both the named register, and the next register. This
3362feature of inline asm would not be useful to support that.)
3363
3364A few of the targets provide a template string modifier allowing explicit access
3365to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3366``D``). On such an architecture, you can actually access the second allocated
3367register (yet, still, not any subsequent ones). But, in that case, you're still
3368probably better off simply splitting the value into two separate operands, for
3369clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3370despite existing only for use with this feature, is not really a good idea to
3371use)
3372
3373Indirect inputs and outputs
3374"""""""""""""""""""""""""""
3375
3376Indirect output or input constraints can be specified by the "``*``" modifier
3377(which goes after the "``=``" in case of an output). This indicates that the asm
3378will write to or read from the contents of an *address* provided as an input
3379argument. (Note that in this way, indirect outputs act more like an *input* than
3380an output: just like an input, they consume an argument of the call expression,
3381rather than producing a return value. An indirect output constraint is an
3382"output" only in that the asm is expected to write to the contents of the input
3383memory location, instead of just read from it).
3384
3385This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3386address of a variable as a value.
3387
3388It is also possible to use an indirect *register* constraint, but only on output
3389(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3390value normally, and then, separately emit a store to the address provided as
3391input, after the provided inline asm. (It's not clear what value this
3392functionality provides, compared to writing the store explicitly after the asm
3393statement, and it can only produce worse code, since it bypasses many
3394optimization passes. I would recommend not using it.)
3395
3396
3397Clobber constraints
3398"""""""""""""""""""
3399
3400A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3401consume an input operand, nor generate an output. Clobbers cannot use any of the
3402general constraint code letters -- they may use only explicit register
3403constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3404"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3405memory locations -- not only the memory pointed to by a declared indirect
3406output.
3407
Peter Zotov00257232016-08-30 10:48:31 +00003408Note that clobbering named registers that are also present in output
3409constraints is not legal.
3410
James Y Knightbc832ed2015-07-08 18:08:36 +00003411
3412Constraint Codes
3413""""""""""""""""
3414After a potential prefix comes constraint code, or codes.
3415
3416A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3417followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3418(e.g. "``{eax}``").
3419
3420The one and two letter constraint codes are typically chosen to be the same as
3421GCC's constraint codes.
3422
3423A single constraint may include one or more than constraint code in it, leaving
3424it up to LLVM to choose which one to use. This is included mainly for
3425compatibility with the translation of GCC inline asm coming from clang.
3426
3427There are two ways to specify alternatives, and either or both may be used in an
3428inline asm constraint list:
3429
34301) Append the codes to each other, making a constraint code set. E.g. "``im``"
3431 or "``{eax}m``". This means "choose any of the options in the set". The
3432 choice of constraint is made independently for each constraint in the
3433 constraint list.
3434
34352) Use "``|``" between constraint code sets, creating alternatives. Every
3436 constraint in the constraint list must have the same number of alternative
3437 sets. With this syntax, the same alternative in *all* of the items in the
3438 constraint list will be chosen together.
3439
3440Putting those together, you might have a two operand constraint string like
3441``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3442operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3443may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3444
3445However, the use of either of the alternatives features is *NOT* recommended, as
3446LLVM is not able to make an intelligent choice about which one to use. (At the
3447point it currently needs to choose, not enough information is available to do so
3448in a smart way.) Thus, it simply tries to make a choice that's most likely to
3449compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3450always choose to use memory, not registers). And, if given multiple registers,
3451or multiple register classes, it will simply choose the first one. (In fact, it
3452doesn't currently even ensure explicitly specified physical registers are
3453unique, so specifying multiple physical registers as alternatives, like
3454``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3455intended.)
3456
3457Supported Constraint Code List
3458""""""""""""""""""""""""""""""
3459
3460The constraint codes are, in general, expected to behave the same way they do in
3461GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3462inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3463and GCC likely indicates a bug in LLVM.
3464
3465Some constraint codes are typically supported by all targets:
3466
3467- ``r``: A register in the target's general purpose register class.
3468- ``m``: A memory address operand. It is target-specific what addressing modes
3469 are supported, typical examples are register, or register + register offset,
3470 or register + immediate offset (of some target-specific size).
3471- ``i``: An integer constant (of target-specific width). Allows either a simple
3472 immediate, or a relocatable value.
3473- ``n``: An integer constant -- *not* including relocatable values.
3474- ``s``: An integer constant, but allowing *only* relocatable values.
3475- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3476 useful to pass a label for an asm branch or call.
3477
3478 .. FIXME: but that surely isn't actually okay to jump out of an asm
3479 block without telling llvm about the control transfer???)
3480
3481- ``{register-name}``: Requires exactly the named physical register.
3482
3483Other constraints are target-specific:
3484
3485AArch64:
3486
3487- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3488- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3489 i.e. 0 to 4095 with optional shift by 12.
3490- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3491 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3492- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3493 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3494- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3495 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3496- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3497 32-bit register. This is a superset of ``K``: in addition to the bitmask
3498 immediate, also allows immediate integers which can be loaded with a single
3499 ``MOVZ`` or ``MOVL`` instruction.
3500- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3501 64-bit register. This is a superset of ``L``.
3502- ``Q``: Memory address operand must be in a single register (no
3503 offsets). (However, LLVM currently does this for the ``m`` constraint as
3504 well.)
3505- ``r``: A 32 or 64-bit integer register (W* or X*).
3506- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3507- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3508
3509AMDGPU:
3510
3511- ``r``: A 32 or 64-bit integer register.
3512- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3513- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3514
3515
3516All ARM modes:
3517
3518- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3519 operand. Treated the same as operand ``m``, at the moment.
3520
3521ARM and ARM's Thumb2 mode:
3522
3523- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3524- ``I``: An immediate integer valid for a data-processing instruction.
3525- ``J``: An immediate integer between -4095 and 4095.
3526- ``K``: An immediate integer whose bitwise inverse is valid for a
3527 data-processing instruction. (Can be used with template modifier "``B``" to
3528 print the inverted value).
3529- ``L``: An immediate integer whose negation is valid for a data-processing
3530 instruction. (Can be used with template modifier "``n``" to print the negated
3531 value).
3532- ``M``: A power of two or a integer between 0 and 32.
3533- ``N``: Invalid immediate constraint.
3534- ``O``: Invalid immediate constraint.
3535- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3536- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3537 as ``r``.
3538- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3539 invalid.
3540- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3541 ``d0-d31``, or ``q0-q15``.
3542- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3543 ``d0-d7``, or ``q0-q3``.
3544- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3545 ``s0-s31``.
3546
3547ARM's Thumb1 mode:
3548
3549- ``I``: An immediate integer between 0 and 255.
3550- ``J``: An immediate integer between -255 and -1.
3551- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3552 some amount.
3553- ``L``: An immediate integer between -7 and 7.
3554- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3555- ``N``: An immediate integer between 0 and 31.
3556- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3557- ``r``: A low 32-bit GPR register (``r0-r7``).
3558- ``l``: A low 32-bit GPR register (``r0-r7``).
3559- ``h``: A high GPR register (``r0-r7``).
3560- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3561 ``d0-d31``, or ``q0-q15``.
3562- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3563 ``d0-d7``, or ``q0-q3``.
3564- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3565 ``s0-s31``.
3566
3567
3568Hexagon:
3569
3570- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3571 at the moment.
3572- ``r``: A 32 or 64-bit register.
3573
3574MSP430:
3575
3576- ``r``: An 8 or 16-bit register.
3577
3578MIPS:
3579
3580- ``I``: An immediate signed 16-bit integer.
3581- ``J``: An immediate integer zero.
3582- ``K``: An immediate unsigned 16-bit integer.
3583- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3584- ``N``: An immediate integer between -65535 and -1.
3585- ``O``: An immediate signed 15-bit integer.
3586- ``P``: An immediate integer between 1 and 65535.
3587- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3588 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3589- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3590 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3591 ``m``.
3592- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3593 ``sc`` instruction on the given subtarget (details vary).
3594- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3595- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003596 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3597 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003598- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3599 ``25``).
3600- ``l``: The ``lo`` register, 32 or 64-bit.
3601- ``x``: Invalid.
3602
3603NVPTX:
3604
3605- ``b``: A 1-bit integer register.
3606- ``c`` or ``h``: A 16-bit integer register.
3607- ``r``: A 32-bit integer register.
3608- ``l`` or ``N``: A 64-bit integer register.
3609- ``f``: A 32-bit float register.
3610- ``d``: A 64-bit float register.
3611
3612
3613PowerPC:
3614
3615- ``I``: An immediate signed 16-bit integer.
3616- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3617- ``K``: An immediate unsigned 16-bit integer.
3618- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3619- ``M``: An immediate integer greater than 31.
3620- ``N``: An immediate integer that is an exact power of 2.
3621- ``O``: The immediate integer constant 0.
3622- ``P``: An immediate integer constant whose negation is a signed 16-bit
3623 constant.
3624- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3625 treated the same as ``m``.
3626- ``r``: A 32 or 64-bit integer register.
3627- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3628 ``R1-R31``).
3629- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3630 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3631- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3632 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3633 altivec vector register (``V0-V31``).
3634
3635 .. FIXME: is this a bug that v accepts QPX registers? I think this
3636 is supposed to only use the altivec vector registers?
3637
3638- ``y``: Condition register (``CR0-CR7``).
3639- ``wc``: An individual CR bit in a CR register.
3640- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3641 register set (overlapping both the floating-point and vector register files).
3642- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3643 set.
3644
3645Sparc:
3646
3647- ``I``: An immediate 13-bit signed integer.
3648- ``r``: A 32-bit integer register.
3649
3650SystemZ:
3651
3652- ``I``: An immediate unsigned 8-bit integer.
3653- ``J``: An immediate unsigned 12-bit integer.
3654- ``K``: An immediate signed 16-bit integer.
3655- ``L``: An immediate signed 20-bit integer.
3656- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003657- ``Q``: A memory address operand with a base address and a 12-bit immediate
3658 unsigned displacement.
3659- ``R``: A memory address operand with a base address, a 12-bit immediate
3660 unsigned displacement, and an index register.
3661- ``S``: A memory address operand with a base address and a 20-bit immediate
3662 signed displacement.
3663- ``T``: A memory address operand with a base address, a 20-bit immediate
3664 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003665- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3666- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3667 address context evaluates as zero).
3668- ``h``: A 32-bit value in the high part of a 64bit data register
3669 (LLVM-specific)
3670- ``f``: A 32, 64, or 128-bit floating point register.
3671
3672X86:
3673
3674- ``I``: An immediate integer between 0 and 31.
3675- ``J``: An immediate integer between 0 and 64.
3676- ``K``: An immediate signed 8-bit integer.
3677- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3678 0xffffffff.
3679- ``M``: An immediate integer between 0 and 3.
3680- ``N``: An immediate unsigned 8-bit integer.
3681- ``O``: An immediate integer between 0 and 127.
3682- ``e``: An immediate 32-bit signed integer.
3683- ``Z``: An immediate 32-bit unsigned integer.
3684- ``o``, ``v``: Treated the same as ``m``, at the moment.
3685- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3686 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3687 registers, and on X86-64, it is all of the integer registers.
3688- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3689 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3690- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3691- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3692 existed since i386, and can be accessed without the REX prefix.
3693- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3694- ``y``: A 64-bit MMX register, if MMX is enabled.
3695- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3696 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3697 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3698 512-bit vector operand in an AVX512 register, Otherwise, an error.
3699- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3700- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3701 32-bit mode, a 64-bit integer operand will get split into two registers). It
3702 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3703 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3704 you're better off splitting it yourself, before passing it to the asm
3705 statement.
3706
3707XCore:
3708
3709- ``r``: A 32-bit integer register.
3710
3711
3712.. _inline-asm-modifiers:
3713
3714Asm template argument modifiers
3715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3716
3717In the asm template string, modifiers can be used on the operand reference, like
3718"``${0:n}``".
3719
3720The modifiers are, in general, expected to behave the same way they do in
3721GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3722inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3723and GCC likely indicates a bug in LLVM.
3724
3725Target-independent:
3726
Sean Silvaa1190322015-08-06 22:56:48 +00003727- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003728 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3729- ``n``: Negate and print immediate integer constant unadorned, without the
3730 target-specific immediate punctuation (e.g. no ``$`` prefix).
3731- ``l``: Print as an unadorned label, without the target-specific label
3732 punctuation (e.g. no ``$`` prefix).
3733
3734AArch64:
3735
3736- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3737 instead of ``x30``, print ``w30``.
3738- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3739- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3740 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3741 ``v*``.
3742
3743AMDGPU:
3744
3745- ``r``: No effect.
3746
3747ARM:
3748
3749- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3750 register).
3751- ``P``: No effect.
3752- ``q``: No effect.
3753- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3754 as ``d4[1]`` instead of ``s9``)
3755- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3756 prefix.
3757- ``L``: Print the low 16-bits of an immediate integer constant.
3758- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3759 register operands subsequent to the specified one (!), so use carefully.
3760- ``Q``: Print the low-order register of a register-pair, or the low-order
3761 register of a two-register operand.
3762- ``R``: Print the high-order register of a register-pair, or the high-order
3763 register of a two-register operand.
3764- ``H``: Print the second register of a register-pair. (On a big-endian system,
3765 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3766 to ``R``.)
3767
3768 .. FIXME: H doesn't currently support printing the second register
3769 of a two-register operand.
3770
3771- ``e``: Print the low doubleword register of a NEON quad register.
3772- ``f``: Print the high doubleword register of a NEON quad register.
3773- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3774 adornment.
3775
3776Hexagon:
3777
3778- ``L``: Print the second register of a two-register operand. Requires that it
3779 has been allocated consecutively to the first.
3780
3781 .. FIXME: why is it restricted to consecutive ones? And there's
3782 nothing that ensures that happens, is there?
3783
3784- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3785 nothing. Used to print 'addi' vs 'add' instructions.
3786
3787MSP430:
3788
3789No additional modifiers.
3790
3791MIPS:
3792
3793- ``X``: Print an immediate integer as hexadecimal
3794- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3795- ``d``: Print an immediate integer as decimal.
3796- ``m``: Subtract one and print an immediate integer as decimal.
3797- ``z``: Print $0 if an immediate zero, otherwise print normally.
3798- ``L``: Print the low-order register of a two-register operand, or prints the
3799 address of the low-order word of a double-word memory operand.
3800
3801 .. FIXME: L seems to be missing memory operand support.
3802
3803- ``M``: Print the high-order register of a two-register operand, or prints the
3804 address of the high-order word of a double-word memory operand.
3805
3806 .. FIXME: M seems to be missing memory operand support.
3807
3808- ``D``: Print the second register of a two-register operand, or prints the
3809 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3810 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3811 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003812- ``w``: No effect. Provided for compatibility with GCC which requires this
3813 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3814 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003815
3816NVPTX:
3817
3818- ``r``: No effect.
3819
3820PowerPC:
3821
3822- ``L``: Print the second register of a two-register operand. Requires that it
3823 has been allocated consecutively to the first.
3824
3825 .. FIXME: why is it restricted to consecutive ones? And there's
3826 nothing that ensures that happens, is there?
3827
3828- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3829 nothing. Used to print 'addi' vs 'add' instructions.
3830- ``y``: For a memory operand, prints formatter for a two-register X-form
3831 instruction. (Currently always prints ``r0,OPERAND``).
3832- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3833 otherwise. (NOTE: LLVM does not support update form, so this will currently
3834 always print nothing)
3835- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3836 not support indexed form, so this will currently always print nothing)
3837
3838Sparc:
3839
3840- ``r``: No effect.
3841
3842SystemZ:
3843
3844SystemZ implements only ``n``, and does *not* support any of the other
3845target-independent modifiers.
3846
3847X86:
3848
3849- ``c``: Print an unadorned integer or symbol name. (The latter is
3850 target-specific behavior for this typically target-independent modifier).
3851- ``A``: Print a register name with a '``*``' before it.
3852- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3853 operand.
3854- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3855 memory operand.
3856- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3857 operand.
3858- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3859 operand.
3860- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3861 available, otherwise the 32-bit register name; do nothing on a memory operand.
3862- ``n``: Negate and print an unadorned integer, or, for operands other than an
3863 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3864 the operand. (The behavior for relocatable symbol expressions is a
3865 target-specific behavior for this typically target-independent modifier)
3866- ``H``: Print a memory reference with additional offset +8.
3867- ``P``: Print a memory reference or operand for use as the argument of a call
3868 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3869
3870XCore:
3871
3872No additional modifiers.
3873
3874
Sean Silvab084af42012-12-07 10:36:55 +00003875Inline Asm Metadata
3876^^^^^^^^^^^^^^^^^^^
3877
3878The call instructions that wrap inline asm nodes may have a
3879"``!srcloc``" MDNode attached to it that contains a list of constant
3880integers. If present, the code generator will use the integer as the
3881location cookie value when report errors through the ``LLVMContext``
3882error reporting mechanisms. This allows a front-end to correlate backend
3883errors that occur with inline asm back to the source code that produced
3884it. For example:
3885
3886.. code-block:: llvm
3887
3888 call void asm sideeffect "something bad", ""(), !srcloc !42
3889 ...
3890 !42 = !{ i32 1234567 }
3891
3892It is up to the front-end to make sense of the magic numbers it places
3893in the IR. If the MDNode contains multiple constants, the code generator
3894will use the one that corresponds to the line of the asm that the error
3895occurs on.
3896
3897.. _metadata:
3898
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003899Metadata
3900========
Sean Silvab084af42012-12-07 10:36:55 +00003901
3902LLVM IR allows metadata to be attached to instructions in the program
3903that can convey extra information about the code to the optimizers and
3904code generator. One example application of metadata is source-level
3905debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003906
Sean Silvaa1190322015-08-06 22:56:48 +00003907Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003908``call`` instruction, it uses the ``metadata`` type.
3909
3910All metadata are identified in syntax by a exclamation point ('``!``').
3911
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003912.. _metadata-string:
3913
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003914Metadata Nodes and Metadata Strings
3915-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003916
3917A metadata string is a string surrounded by double quotes. It can
3918contain any character by escaping non-printable characters with
3919"``\xx``" where "``xx``" is the two digit hex code. For example:
3920"``!"test\00"``".
3921
3922Metadata nodes are represented with notation similar to structure
3923constants (a comma separated list of elements, surrounded by braces and
3924preceded by an exclamation point). Metadata nodes can have any values as
3925their operand. For example:
3926
3927.. code-block:: llvm
3928
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003929 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003930
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003931Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3932
Renato Golin124f2592016-07-20 12:16:38 +00003933.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003934
3935 !0 = distinct !{!"test\00", i32 10}
3936
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003937``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003938content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003939when metadata operands change.
3940
Sean Silvab084af42012-12-07 10:36:55 +00003941A :ref:`named metadata <namedmetadatastructure>` is a collection of
3942metadata nodes, which can be looked up in the module symbol table. For
3943example:
3944
3945.. code-block:: llvm
3946
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003947 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003948
3949Metadata can be used as function arguments. Here ``llvm.dbg.value``
3950function is using two metadata arguments:
3951
3952.. code-block:: llvm
3953
3954 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3955
Peter Collingbourne50108682015-11-06 02:41:02 +00003956Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3957to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003958
3959.. code-block:: llvm
3960
3961 %indvar.next = add i64 %indvar, 1, !dbg !21
3962
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003963Metadata can also be attached to a function or a global variable. Here metadata
3964``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
3965and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00003966
3967.. code-block:: llvm
3968
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003969 declare !dbg !22 void @f1()
3970 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00003971 ret void
3972 }
3973
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003974 @g1 = global i32 0, !dbg !22
3975 @g2 = external global i32, !dbg !22
3976
3977A transformation is required to drop any metadata attachment that it does not
3978know or know it can't preserve. Currently there is an exception for metadata
3979attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
3980unconditionally dropped unless the global is itself deleted.
3981
3982Metadata attached to a module using named metadata may not be dropped, with
3983the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
3984
Sean Silvab084af42012-12-07 10:36:55 +00003985More information about specific metadata nodes recognized by the
3986optimizers and code generator is found below.
3987
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003988.. _specialized-metadata:
3989
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003990Specialized Metadata Nodes
3991^^^^^^^^^^^^^^^^^^^^^^^^^^
3992
3993Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003994to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003995order.
3996
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003997These aren't inherently debug info centric, but currently all the specialized
3998metadata nodes are related to debug info.
3999
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004000.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004001
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004002DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004003"""""""""""""
4004
Sean Silvaa1190322015-08-06 22:56:48 +00004005``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004006``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
4007fields are tuples containing the debug info to be emitted along with the compile
4008unit, regardless of code optimizations (some nodes are only emitted if there are
Dehao Chenfb02f712017-02-10 21:09:07 +00004009references to them from instructions). The ``debugInfoForProfiling:`` field is a
4010boolean indicating whether or not line-table discriminators are updated to
4011provide more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004012
Renato Golin124f2592016-07-20 12:16:38 +00004013.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004014
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004015 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004016 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004017 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004018 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004019 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004020
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004021Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00004022specific compilation unit. File descriptors are defined using this scope.
4023These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004024keep track of subprograms, global variables, type information, and imported
4025entities (declarations and namespaces).
4026
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004027.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004028
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004029DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004030""""""
4031
Sean Silvaa1190322015-08-06 22:56:48 +00004032``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004033
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004034.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004035
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004036 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4037 checksumkind: CSK_MD5,
4038 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004039
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004040Files are sometimes used in ``scope:`` fields, and are the only valid target
4041for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004042Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004043
Michael Kuperstein605308a2015-05-14 10:58:59 +00004044.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004045
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004046DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004047"""""""""""
4048
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004049``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004050``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004051
Renato Golin124f2592016-07-20 12:16:38 +00004052.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004053
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004054 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004055 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004056 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004057
Sean Silvaa1190322015-08-06 22:56:48 +00004058The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004059following:
4060
Renato Golin124f2592016-07-20 12:16:38 +00004061.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004062
4063 DW_ATE_address = 1
4064 DW_ATE_boolean = 2
4065 DW_ATE_float = 4
4066 DW_ATE_signed = 5
4067 DW_ATE_signed_char = 6
4068 DW_ATE_unsigned = 7
4069 DW_ATE_unsigned_char = 8
4070
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004071.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004072
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004073DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004074""""""""""""""""
4075
Sean Silvaa1190322015-08-06 22:56:48 +00004076``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004077refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004078types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004079represents a function with no return value (such as ``void foo() {}`` in C++).
4080
Renato Golin124f2592016-07-20 12:16:38 +00004081.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004082
4083 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4084 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004085 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004086
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004087.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004088
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004089DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004090"""""""""""""
4091
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004092``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004093qualified types.
4094
Renato Golin124f2592016-07-20 12:16:38 +00004095.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004096
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004097 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004098 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004099 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004100 align: 32)
4101
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004102The following ``tag:`` values are valid:
4103
Renato Golin124f2592016-07-20 12:16:38 +00004104.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004105
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004106 DW_TAG_member = 13
4107 DW_TAG_pointer_type = 15
4108 DW_TAG_reference_type = 16
4109 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004110 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004111 DW_TAG_ptr_to_member_type = 31
4112 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004113 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004114 DW_TAG_volatile_type = 53
4115 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004116 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004117
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004118.. _DIDerivedTypeMember:
4119
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004120``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004121<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004122``offset:`` is the member's bit offset. If the composite type has an ODR
4123``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4124uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004125
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004126``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4127field of :ref:`composite types <DICompositeType>` to describe parents and
4128friends.
4129
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004130``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4131
4132``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004133``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4134are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004135
4136Note that the ``void *`` type is expressed as a type derived from NULL.
4137
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004138.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004139
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004140DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004141"""""""""""""""
4142
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004143``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004144structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004145
4146If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004147identifier used for type merging between modules. When specified,
4148:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4149derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4150``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004151
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004152For a given ``identifier:``, there should only be a single composite type that
4153does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4154together will unique such definitions at parse time via the ``identifier:``
4155field, even if the nodes are ``distinct``.
4156
Renato Golin124f2592016-07-20 12:16:38 +00004157.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004158
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004159 !0 = !DIEnumerator(name: "SixKind", value: 7)
4160 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4161 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4162 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004163 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4164 elements: !{!0, !1, !2})
4165
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004166The following ``tag:`` values are valid:
4167
Renato Golin124f2592016-07-20 12:16:38 +00004168.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004169
4170 DW_TAG_array_type = 1
4171 DW_TAG_class_type = 2
4172 DW_TAG_enumeration_type = 4
4173 DW_TAG_structure_type = 19
4174 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004175
4176For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004177descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004178level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004179array type is a native packed vector.
4180
4181For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004182descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004183value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004184``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004185
4186For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4187``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004188<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4189``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4190``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004191
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004192.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004193
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004194DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004195""""""""""
4196
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004197``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004198:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004199
4200.. code-block:: llvm
4201
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004202 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4203 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4204 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004205
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004206.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004207
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004208DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004209""""""""""""
4210
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004211``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4212variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004213
4214.. code-block:: llvm
4215
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004216 !0 = !DIEnumerator(name: "SixKind", value: 7)
4217 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4218 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004219
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004220DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004221"""""""""""""""""""""""
4222
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004223``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004224language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004225:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004226
4227.. code-block:: llvm
4228
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004229 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004230
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004231DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004232""""""""""""""""""""""""
4233
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004234``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004235language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004236but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004237``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004238:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004239
4240.. code-block:: llvm
4241
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004242 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004243
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004244DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004245"""""""""""
4246
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004247``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004248
4249.. code-block:: llvm
4250
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004251 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004252
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004253DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004254""""""""""""""""
4255
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004256``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004257
4258.. code-block:: llvm
4259
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004260 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004261 file: !2, line: 7, type: !3, isLocal: true,
4262 isDefinition: false, variable: i32* @foo,
4263 declaration: !4)
4264
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004265All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004266:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004267
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004268.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004270DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004271""""""""""""
4272
Peter Collingbourne50108682015-11-06 02:41:02 +00004273``DISubprogram`` nodes represent functions from the source language. A
4274``DISubprogram`` may be attached to a function definition using ``!dbg``
4275metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4276that must be retained, even if their IR counterparts are optimized out of
4277the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004278
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004279.. _DISubprogramDeclaration:
4280
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004281When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004282tree as opposed to a definition of a function. If the scope is a composite
4283type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4284then the subprogram declaration is uniqued based only on its ``linkageName:``
4285and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004286
Renato Golin124f2592016-07-20 12:16:38 +00004287.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004288
Peter Collingbourne50108682015-11-06 02:41:02 +00004289 define void @_Z3foov() !dbg !0 {
4290 ...
4291 }
4292
4293 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4294 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004295 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004296 containingType: !4,
4297 virtuality: DW_VIRTUALITY_pure_virtual,
4298 virtualIndex: 10, flags: DIFlagPrototyped,
4299 isOptimized: true, templateParams: !5,
4300 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004301
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004302.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004303
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004304DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004305""""""""""""""
4306
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004307``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004308<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004309two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004310fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004311
Renato Golin124f2592016-07-20 12:16:38 +00004312.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004313
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004314 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004315
4316Usually lexical blocks are ``distinct`` to prevent node merging based on
4317operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004318
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004319.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004320
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004321DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004322""""""""""""""""""
4323
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004324``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004325:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004326indicate textual inclusion, or the ``discriminator:`` field can be used to
4327discriminate between control flow within a single block in the source language.
4328
4329.. code-block:: llvm
4330
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004331 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4332 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4333 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004334
Michael Kuperstein605308a2015-05-14 10:58:59 +00004335.. _DILocation:
4336
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004337DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004338""""""""""
4339
Sean Silvaa1190322015-08-06 22:56:48 +00004340``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004341mandatory, and points at an :ref:`DILexicalBlockFile`, an
4342:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004343
4344.. code-block:: llvm
4345
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004346 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004347
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004348.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004349
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004350DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004351"""""""""""""""
4352
Sean Silvaa1190322015-08-06 22:56:48 +00004353``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004354the ``arg:`` field is set to non-zero, then this variable is a subprogram
4355parameter, and it will be included in the ``variables:`` field of its
4356:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004357
Renato Golin124f2592016-07-20 12:16:38 +00004358.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004359
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004360 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4361 type: !3, flags: DIFlagArtificial)
4362 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4363 type: !3)
4364 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004365
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004366DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004367""""""""""""
4368
Sean Silvaa1190322015-08-06 22:56:48 +00004369``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004370:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4371describe how the referenced LLVM variable relates to the source language
4372variable.
4373
4374The current supported vocabulary is limited:
4375
4376- ``DW_OP_deref`` dereferences the working expression.
4377- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4378- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4379 here, respectively) of the variable piece from the working expression.
4380
Renato Golin124f2592016-07-20 12:16:38 +00004381.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004382
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004383 !0 = !DIExpression(DW_OP_deref)
4384 !1 = !DIExpression(DW_OP_plus, 3)
4385 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4386 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004387
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004388DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004389""""""""""""""
4390
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004391``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004392
4393.. code-block:: llvm
4394
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004395 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004396 getter: "getFoo", attributes: 7, type: !2)
4397
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004398DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004399""""""""""""""""
4400
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004401``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004402compile unit.
4403
Renato Golin124f2592016-07-20 12:16:38 +00004404.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004405
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004406 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004407 entity: !1, line: 7)
4408
Amjad Abouda9bcf162015-12-10 12:56:35 +00004409DIMacro
4410"""""""
4411
4412``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4413The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004414defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004415used to expand the macro identifier.
4416
Renato Golin124f2592016-07-20 12:16:38 +00004417.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004418
4419 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4420 value: "((x) + 1)")
4421 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4422
4423DIMacroFile
4424"""""""""""
4425
4426``DIMacroFile`` nodes represent inclusion of source files.
4427The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4428appear in the included source file.
4429
Renato Golin124f2592016-07-20 12:16:38 +00004430.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004431
4432 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4433 nodes: !3)
4434
Sean Silvab084af42012-12-07 10:36:55 +00004435'``tbaa``' Metadata
4436^^^^^^^^^^^^^^^^^^^
4437
4438In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004439suitable for doing type based alias analysis (TBAA). Instead, metadata is
4440added to the IR to describe a type system of a higher level language. This
4441can be used to implement C/C++ strict type aliasing rules, but it can also
4442be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004443
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004444This description of LLVM's TBAA system is broken into two parts:
4445:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4446:ref:`Representation<tbaa_node_representation>` talks about the metadata
4447encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004448
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004449It is always possible to trace any TBAA node to a "root" TBAA node (details
4450in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4451nodes with different roots have an unknown aliasing relationship, and LLVM
4452conservatively infers ``MayAlias`` between them. The rules mentioned in
4453this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004454
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004455.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004456
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004457Semantics
4458"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004459
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004460The TBAA metadata system, referred to as "struct path TBAA" (not to be
4461confused with ``tbaa.struct``), consists of the following high level
4462concepts: *Type Descriptors*, further subdivided into scalar type
4463descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004464
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004465**Type descriptors** describe the type system of the higher level language
4466being compiled. **Scalar type descriptors** describe types that do not
4467contain other types. Each scalar type has a parent type, which must also
4468be a scalar type or the TBAA root. Via this parent relation, scalar types
4469within a TBAA root form a tree. **Struct type descriptors** denote types
4470that contain a sequence of other type descriptors, at known offsets. These
4471contained type descriptors can either be struct type descriptors themselves
4472or scalar type descriptors.
4473
4474**Access tags** are metadata nodes attached to load and store instructions.
4475Access tags use type descriptors to describe the *location* being accessed
4476in terms of the type system of the higher level language. Access tags are
4477tuples consisting of a base type, an access type and an offset. The base
4478type is a scalar type descriptor or a struct type descriptor, the access
4479type is a scalar type descriptor, and the offset is a constant integer.
4480
4481The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4482things:
4483
4484 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4485 or store) of a value of type ``AccessTy`` contained in the struct type
4486 ``BaseTy`` at offset ``Offset``.
4487
4488 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4489 ``AccessTy`` must be the same; and the access tag describes a scalar
4490 access with scalar type ``AccessTy``.
4491
4492We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4493tuples this way:
4494
4495 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4496 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4497 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4498 undefined if ``Offset`` is non-zero.
4499
4500 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4501 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4502 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4503 to be relative within that inner type.
4504
4505A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4506aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4507Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4508Offset2)`` via the ``Parent`` relation or vice versa.
4509
4510As a concrete example, the type descriptor graph for the following program
4511
4512.. code-block:: c
4513
4514 struct Inner {
4515 int i; // offset 0
4516 float f; // offset 4
4517 };
4518
4519 struct Outer {
4520 float f; // offset 0
4521 double d; // offset 4
4522 struct Inner inner_a; // offset 12
4523 };
4524
4525 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4526 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4527 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4528 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4529 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4530 }
4531
4532is (note that in C and C++, ``char`` can be used to access any arbitrary
4533type):
4534
4535.. code-block:: text
4536
4537 Root = "TBAA Root"
4538 CharScalarTy = ("char", Root, 0)
4539 FloatScalarTy = ("float", CharScalarTy, 0)
4540 DoubleScalarTy = ("double", CharScalarTy, 0)
4541 IntScalarTy = ("int", CharScalarTy, 0)
4542 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4543 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4544 (InnerStructTy, 12)}
4545
4546
4547with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
45480)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4549``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4550
4551.. _tbaa_node_representation:
4552
4553Representation
4554""""""""""""""
4555
4556The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4557with exactly one ``MDString`` operand.
4558
4559Scalar type descriptors are represented as an ``MDNode`` s with two
4560operands. The first operand is an ``MDString`` denoting the name of the
4561struct type. LLVM does not assign meaning to the value of this operand, it
4562only cares about it being an ``MDString``. The second operand is an
4563``MDNode`` which points to the parent for said scalar type descriptor,
4564which is either another scalar type descriptor or the TBAA root. Scalar
4565type descriptors can have an optional third argument, but that must be the
4566constant integer zero.
4567
4568Struct type descriptors are represented as ``MDNode`` s with an odd number
4569of operands greater than 1. The first operand is an ``MDString`` denoting
4570the name of the struct type. Like in scalar type descriptors the actual
4571value of this name operand is irrelevant to LLVM. After the name operand,
4572the struct type descriptors have a sequence of alternating ``MDNode`` and
4573``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4574an ``MDNode``, denotes a contained field, and the 2N th operand, a
4575``ConstantInt``, is the offset of the said contained field. The offsets
4576must be in non-decreasing order.
4577
4578Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4579The first operand is an ``MDNode`` pointing to the node representing the
4580base type. The second operand is an ``MDNode`` pointing to the node
4581representing the access type. The third operand is a ``ConstantInt`` that
4582states the offset of the access. If a fourth field is present, it must be
4583a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4584that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004585``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004586AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4587the access type and the base type of an access tag must be the same, and
4588that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004589
4590'``tbaa.struct``' Metadata
4591^^^^^^^^^^^^^^^^^^^^^^^^^^
4592
4593The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4594aggregate assignment operations in C and similar languages, however it
4595is defined to copy a contiguous region of memory, which is more than
4596strictly necessary for aggregate types which contain holes due to
4597padding. Also, it doesn't contain any TBAA information about the fields
4598of the aggregate.
4599
4600``!tbaa.struct`` metadata can describe which memory subregions in a
4601memcpy are padding and what the TBAA tags of the struct are.
4602
4603The current metadata format is very simple. ``!tbaa.struct`` metadata
4604nodes are a list of operands which are in conceptual groups of three.
4605For each group of three, the first operand gives the byte offset of a
4606field in bytes, the second gives its size in bytes, and the third gives
4607its tbaa tag. e.g.:
4608
4609.. code-block:: llvm
4610
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004611 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004612
4613This describes a struct with two fields. The first is at offset 0 bytes
4614with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4615and has size 4 bytes and has tbaa tag !2.
4616
4617Note that the fields need not be contiguous. In this example, there is a
46184 byte gap between the two fields. This gap represents padding which
4619does not carry useful data and need not be preserved.
4620
Hal Finkel94146652014-07-24 14:25:39 +00004621'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004622^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004623
4624``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4625noalias memory-access sets. This means that some collection of memory access
4626instructions (loads, stores, memory-accessing calls, etc.) that carry
4627``noalias`` metadata can specifically be specified not to alias with some other
4628collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004629Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004630a domain.
4631
4632When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004633of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004634subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004635instruction's ``noalias`` list, then the two memory accesses are assumed not to
4636alias.
Hal Finkel94146652014-07-24 14:25:39 +00004637
Adam Nemet569a5b32016-04-27 00:52:48 +00004638Because scopes in one domain don't affect scopes in other domains, separate
4639domains can be used to compose multiple independent noalias sets. This is
4640used for example during inlining. As the noalias function parameters are
4641turned into noalias scope metadata, a new domain is used every time the
4642function is inlined.
4643
Hal Finkel029cde62014-07-25 15:50:02 +00004644The metadata identifying each domain is itself a list containing one or two
4645entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004646string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004647self-reference can be used to create globally unique domain names. A
4648descriptive string may optionally be provided as a second list entry.
4649
4650The metadata identifying each scope is also itself a list containing two or
4651three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004652is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004653self-reference can be used to create globally unique scope names. A metadata
4654reference to the scope's domain is the second entry. A descriptive string may
4655optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004656
4657For example,
4658
4659.. code-block:: llvm
4660
Hal Finkel029cde62014-07-25 15:50:02 +00004661 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004662 !0 = !{!0}
4663 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004664
Hal Finkel029cde62014-07-25 15:50:02 +00004665 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004666 !2 = !{!2, !0}
4667 !3 = !{!3, !0}
4668 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004669
Hal Finkel029cde62014-07-25 15:50:02 +00004670 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004671 !5 = !{!4} ; A list containing only scope !4
4672 !6 = !{!4, !3, !2}
4673 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004674
4675 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004676 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004677 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004678
Hal Finkel029cde62014-07-25 15:50:02 +00004679 ; These two instructions also don't alias (for domain !1, the set of scopes
4680 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004681 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004682 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004683
Adam Nemet0a8416f2015-05-11 08:30:28 +00004684 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004685 ; the !noalias list is not a superset of, or equal to, the scopes in the
4686 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004687 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004688 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004689
Sean Silvab084af42012-12-07 10:36:55 +00004690'``fpmath``' Metadata
4691^^^^^^^^^^^^^^^^^^^^^
4692
4693``fpmath`` metadata may be attached to any instruction of floating point
4694type. It can be used to express the maximum acceptable error in the
4695result of that instruction, in ULPs, thus potentially allowing the
4696compiler to use a more efficient but less accurate method of computing
4697it. ULP is defined as follows:
4698
4699 If ``x`` is a real number that lies between two finite consecutive
4700 floating-point numbers ``a`` and ``b``, without being equal to one
4701 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4702 distance between the two non-equal finite floating-point numbers
4703 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4704
Matt Arsenault82f41512016-06-27 19:43:15 +00004705The metadata node shall consist of a single positive float type number
4706representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004707
4708.. code-block:: llvm
4709
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004710 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004711
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004712.. _range-metadata:
4713
Sean Silvab084af42012-12-07 10:36:55 +00004714'``range``' Metadata
4715^^^^^^^^^^^^^^^^^^^^
4716
Jingyue Wu37fcb592014-06-19 16:50:16 +00004717``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4718integer types. It expresses the possible ranges the loaded value or the value
4719returned by the called function at this call site is in. The ranges are
4720represented with a flattened list of integers. The loaded value or the value
4721returned is known to be in the union of the ranges defined by each consecutive
4722pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004723
4724- The type must match the type loaded by the instruction.
4725- The pair ``a,b`` represents the range ``[a,b)``.
4726- Both ``a`` and ``b`` are constants.
4727- The range is allowed to wrap.
4728- The range should not represent the full or empty set. That is,
4729 ``a!=b``.
4730
4731In addition, the pairs must be in signed order of the lower bound and
4732they must be non-contiguous.
4733
4734Examples:
4735
4736.. code-block:: llvm
4737
David Blaikiec7aabbb2015-03-04 22:06:14 +00004738 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4739 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004740 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4741 %d = invoke i8 @bar() to label %cont
4742 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004743 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004744 !0 = !{ i8 0, i8 2 }
4745 !1 = !{ i8 255, i8 2 }
4746 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4747 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004748
Peter Collingbourne235c2752016-12-08 19:01:00 +00004749'``absolute_symbol``' Metadata
4750^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4751
4752``absolute_symbol`` metadata may be attached to a global variable
4753declaration. It marks the declaration as a reference to an absolute symbol,
4754which causes the backend to use absolute relocations for the symbol even
4755in position independent code, and expresses the possible ranges that the
4756global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004757``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4758may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004759
Peter Collingbourned88f9282017-01-20 21:56:37 +00004760Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004761
4762.. code-block:: llvm
4763
4764 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004765 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004766
4767 ...
4768 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004769 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004770
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004771'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004772^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004773
4774``unpredictable`` metadata may be attached to any branch or switch
4775instruction. It can be used to express the unpredictability of control
4776flow. Similar to the llvm.expect intrinsic, it may be used to alter
4777optimizations related to compare and branch instructions. The metadata
4778is treated as a boolean value; if it exists, it signals that the branch
4779or switch that it is attached to is completely unpredictable.
4780
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004781'``llvm.loop``'
4782^^^^^^^^^^^^^^^
4783
4784It is sometimes useful to attach information to loop constructs. Currently,
4785loop metadata is implemented as metadata attached to the branch instruction
4786in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004787guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004788specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004789
4790The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004791itself to avoid merging it with any other identifier metadata, e.g.,
4792during module linkage or function inlining. That is, each loop should refer
4793to their own identification metadata even if they reside in separate functions.
4794The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004795constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004796
4797.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004798
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004799 !0 = !{!0}
4800 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004801
Mark Heffernan893752a2014-07-18 19:24:51 +00004802The loop identifier metadata can be used to specify additional
4803per-loop metadata. Any operands after the first operand can be treated
4804as user-defined metadata. For example the ``llvm.loop.unroll.count``
4805suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004806
Paul Redmond5fdf8362013-05-28 20:00:34 +00004807.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004808
Paul Redmond5fdf8362013-05-28 20:00:34 +00004809 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4810 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004811 !0 = !{!0, !1}
4812 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004813
Mark Heffernan9d20e422014-07-21 23:11:03 +00004814'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004816
Mark Heffernan9d20e422014-07-21 23:11:03 +00004817Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4818used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004819vectorization width and interleave count. These metadata should be used in
4820conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004821``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4822optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004823it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004824which contains information about loop-carried memory dependencies can be helpful
4825in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004826
Mark Heffernan9d20e422014-07-21 23:11:03 +00004827'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004828^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4829
Mark Heffernan9d20e422014-07-21 23:11:03 +00004830This metadata suggests an interleave count to the loop interleaver.
4831The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004832second operand is an integer specifying the interleave count. For
4833example:
4834
4835.. code-block:: llvm
4836
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004837 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004838
Mark Heffernan9d20e422014-07-21 23:11:03 +00004839Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004840multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004841then the interleave count will be determined automatically.
4842
4843'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004844^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004845
4846This metadata selectively enables or disables vectorization for the loop. The
4847first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004848is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000048490 disables vectorization:
4850
4851.. code-block:: llvm
4852
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004853 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4854 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004855
4856'``llvm.loop.vectorize.width``' Metadata
4857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4858
4859This metadata sets the target width of the vectorizer. The first
4860operand is the string ``llvm.loop.vectorize.width`` and the second
4861operand is an integer specifying the width. For example:
4862
4863.. code-block:: llvm
4864
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004865 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004866
4867Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004868vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000048690 or if the loop does not have this metadata the width will be
4870determined automatically.
4871
4872'``llvm.loop.unroll``'
4873^^^^^^^^^^^^^^^^^^^^^^
4874
4875Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4876optimization hints such as the unroll factor. ``llvm.loop.unroll``
4877metadata should be used in conjunction with ``llvm.loop`` loop
4878identification metadata. The ``llvm.loop.unroll`` metadata are only
4879optimization hints and the unrolling will only be performed if the
4880optimizer believes it is safe to do so.
4881
Mark Heffernan893752a2014-07-18 19:24:51 +00004882'``llvm.loop.unroll.count``' Metadata
4883^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4884
4885This metadata suggests an unroll factor to the loop unroller. The
4886first operand is the string ``llvm.loop.unroll.count`` and the second
4887operand is a positive integer specifying the unroll factor. For
4888example:
4889
4890.. code-block:: llvm
4891
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004892 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004893
4894If the trip count of the loop is less than the unroll count the loop
4895will be partially unrolled.
4896
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004897'``llvm.loop.unroll.disable``' Metadata
4898^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4899
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004900This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004901which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004902
4903.. code-block:: llvm
4904
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004905 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004906
Kevin Qin715b01e2015-03-09 06:14:18 +00004907'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004908^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004909
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004910This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004911operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004912
4913.. code-block:: llvm
4914
4915 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4916
Mark Heffernan89391542015-08-10 17:28:08 +00004917'``llvm.loop.unroll.enable``' Metadata
4918^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4919
4920This metadata suggests that the loop should be fully unrolled if the trip count
4921is known at compile time and partially unrolled if the trip count is not known
4922at compile time. The metadata has a single operand which is the string
4923``llvm.loop.unroll.enable``. For example:
4924
4925.. code-block:: llvm
4926
4927 !0 = !{!"llvm.loop.unroll.enable"}
4928
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004929'``llvm.loop.unroll.full``' Metadata
4930^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4931
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004932This metadata suggests that the loop should be unrolled fully. The
4933metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004934For example:
4935
4936.. code-block:: llvm
4937
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004938 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004939
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004940'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004941^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004942
4943This metadata indicates that the loop should not be versioned for the purpose
4944of enabling loop-invariant code motion (LICM). The metadata has a single operand
4945which is the string ``llvm.loop.licm_versioning.disable``. For example:
4946
4947.. code-block:: llvm
4948
4949 !0 = !{!"llvm.loop.licm_versioning.disable"}
4950
Adam Nemetd2fa4142016-04-27 05:28:18 +00004951'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004952^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004953
4954Loop distribution allows splitting a loop into multiple loops. Currently,
4955this is only performed if the entire loop cannot be vectorized due to unsafe
4956memory dependencies. The transformation will atempt to isolate the unsafe
4957dependencies into their own loop.
4958
4959This metadata can be used to selectively enable or disable distribution of the
4960loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4961second operand is a bit. If the bit operand value is 1 distribution is
4962enabled. A value of 0 disables distribution:
4963
4964.. code-block:: llvm
4965
4966 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4967 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4968
4969This metadata should be used in conjunction with ``llvm.loop`` loop
4970identification metadata.
4971
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004972'``llvm.mem``'
4973^^^^^^^^^^^^^^^
4974
4975Metadata types used to annotate memory accesses with information helpful
4976for optimizations are prefixed with ``llvm.mem``.
4977
4978'``llvm.mem.parallel_loop_access``' Metadata
4979^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4980
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004981The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4982or metadata containing a list of loop identifiers for nested loops.
4983The metadata is attached to memory accessing instructions and denotes that
4984no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004985with the same loop identifier. The metadata on memory reads also implies that
4986if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004987
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004988Precisely, given two instructions ``m1`` and ``m2`` that both have the
4989``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4990set of loops associated with that metadata, respectively, then there is no loop
4991carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004992``L2``.
4993
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004994As a special case, if all memory accessing instructions in a loop have
4995``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4996loop has no loop carried memory dependences and is considered to be a parallel
4997loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004998
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004999Note that if not all memory access instructions have such metadata referring to
5000the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005001memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005002safe mechanism, this causes loops that were originally parallel to be considered
5003sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005004insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005005
5006Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005007both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005008metadata types that refer to the same loop identifier metadata.
5009
5010.. code-block:: llvm
5011
5012 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005013 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005014 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005015 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005016 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005017 ...
5018 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005019
5020 for.end:
5021 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005022 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005023
5024It is also possible to have nested parallel loops. In that case the
5025memory accesses refer to a list of loop identifier metadata nodes instead of
5026the loop identifier metadata node directly:
5027
5028.. code-block:: llvm
5029
5030 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005031 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005032 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005033 ...
5034 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005035
5036 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005037 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005038 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005039 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005040 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005041 ...
5042 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005043
5044 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005045 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005046 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005047 ...
5048 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005049
5050 outer.for.end: ; preds = %for.body
5051 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005052 !0 = !{!1, !2} ; a list of loop identifiers
5053 !1 = !{!1} ; an identifier for the inner loop
5054 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005055
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005056'``invariant.group``' Metadata
5057^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5058
5059The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
5060The existence of the ``invariant.group`` metadata on the instruction tells
5061the optimizer that every ``load`` and ``store`` to the same pointer operand
5062within the same invariant group can be assumed to load or store the same
5063value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005064when two pointers are considered the same). Pointers returned by bitcast or
5065getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005066
5067Examples:
5068
5069.. code-block:: llvm
5070
5071 @unknownPtr = external global i8
5072 ...
5073 %ptr = alloca i8
5074 store i8 42, i8* %ptr, !invariant.group !0
5075 call void @foo(i8* %ptr)
5076
5077 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5078 call void @foo(i8* %ptr)
5079 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
5080
5081 %newPtr = call i8* @getPointer(i8* %ptr)
5082 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
5083
5084 %unknownValue = load i8, i8* @unknownPtr
5085 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
5086
5087 call void @foo(i8* %ptr)
5088 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5089 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
5090
5091 ...
5092 declare void @foo(i8*)
5093 declare i8* @getPointer(i8*)
5094 declare i8* @llvm.invariant.group.barrier(i8*)
5095
5096 !0 = !{!"magic ptr"}
5097 !1 = !{!"other ptr"}
5098
Peter Collingbournea333db82016-07-26 22:31:30 +00005099'``type``' Metadata
5100^^^^^^^^^^^^^^^^^^^
5101
5102See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005103
5104
Sean Silvab084af42012-12-07 10:36:55 +00005105Module Flags Metadata
5106=====================
5107
5108Information about the module as a whole is difficult to convey to LLVM's
5109subsystems. The LLVM IR isn't sufficient to transmit this information.
5110The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005111this. These flags are in the form of key / value pairs --- much like a
5112dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005113look it up.
5114
5115The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5116Each triplet has the following form:
5117
5118- The first element is a *behavior* flag, which specifies the behavior
5119 when two (or more) modules are merged together, and it encounters two
5120 (or more) metadata with the same ID. The supported behaviors are
5121 described below.
5122- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005123 metadata. Each module may only have one flag entry for each unique ID (not
5124 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005125- The third element is the value of the flag.
5126
5127When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005128``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5129each unique metadata ID string, there will be exactly one entry in the merged
5130modules ``llvm.module.flags`` metadata table, and the value for that entry will
5131be determined by the merge behavior flag, as described below. The only exception
5132is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005133
5134The following behaviors are supported:
5135
5136.. list-table::
5137 :header-rows: 1
5138 :widths: 10 90
5139
5140 * - Value
5141 - Behavior
5142
5143 * - 1
5144 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005145 Emits an error if two values disagree, otherwise the resulting value
5146 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005147
5148 * - 2
5149 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005150 Emits a warning if two values disagree. The result value will be the
5151 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005152
5153 * - 3
5154 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005155 Adds a requirement that another module flag be present and have a
5156 specified value after linking is performed. The value must be a
5157 metadata pair, where the first element of the pair is the ID of the
5158 module flag to be restricted, and the second element of the pair is
5159 the value the module flag should be restricted to. This behavior can
5160 be used to restrict the allowable results (via triggering of an
5161 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005162
5163 * - 4
5164 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005165 Uses the specified value, regardless of the behavior or value of the
5166 other module. If both modules specify **Override**, but the values
5167 differ, an error will be emitted.
5168
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005169 * - 5
5170 - **Append**
5171 Appends the two values, which are required to be metadata nodes.
5172
5173 * - 6
5174 - **AppendUnique**
5175 Appends the two values, which are required to be metadata
5176 nodes. However, duplicate entries in the second list are dropped
5177 during the append operation.
5178
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005179It is an error for a particular unique flag ID to have multiple behaviors,
5180except in the case of **Require** (which adds restrictions on another metadata
5181value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005182
5183An example of module flags:
5184
5185.. code-block:: llvm
5186
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005187 !0 = !{ i32 1, !"foo", i32 1 }
5188 !1 = !{ i32 4, !"bar", i32 37 }
5189 !2 = !{ i32 2, !"qux", i32 42 }
5190 !3 = !{ i32 3, !"qux",
5191 !{
5192 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005193 }
5194 }
5195 !llvm.module.flags = !{ !0, !1, !2, !3 }
5196
5197- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5198 if two or more ``!"foo"`` flags are seen is to emit an error if their
5199 values are not equal.
5200
5201- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5202 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005203 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005204
5205- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5206 behavior if two or more ``!"qux"`` flags are seen is to emit a
5207 warning if their values are not equal.
5208
5209- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5210
5211 ::
5212
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005213 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005214
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005215 The behavior is to emit an error if the ``llvm.module.flags`` does not
5216 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5217 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005218
5219Objective-C Garbage Collection Module Flags Metadata
5220----------------------------------------------------
5221
5222On the Mach-O platform, Objective-C stores metadata about garbage
5223collection in a special section called "image info". The metadata
5224consists of a version number and a bitmask specifying what types of
5225garbage collection are supported (if any) by the file. If two or more
5226modules are linked together their garbage collection metadata needs to
5227be merged rather than appended together.
5228
5229The Objective-C garbage collection module flags metadata consists of the
5230following key-value pairs:
5231
5232.. list-table::
5233 :header-rows: 1
5234 :widths: 30 70
5235
5236 * - Key
5237 - Value
5238
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005239 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005240 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005241
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005242 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005243 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005244 always 0.
5245
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005246 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005247 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005248 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5249 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5250 Objective-C ABI version 2.
5251
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005252 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005253 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005254 not. Valid values are 0, for no garbage collection, and 2, for garbage
5255 collection supported.
5256
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005257 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005258 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005259 If present, its value must be 6. This flag requires that the
5260 ``Objective-C Garbage Collection`` flag have the value 2.
5261
5262Some important flag interactions:
5263
5264- If a module with ``Objective-C Garbage Collection`` set to 0 is
5265 merged with a module with ``Objective-C Garbage Collection`` set to
5266 2, then the resulting module has the
5267 ``Objective-C Garbage Collection`` flag set to 0.
5268- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5269 merged with a module with ``Objective-C GC Only`` set to 6.
5270
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005271Automatic Linker Flags Module Flags Metadata
5272--------------------------------------------
5273
5274Some targets support embedding flags to the linker inside individual object
5275files. Typically this is used in conjunction with language extensions which
5276allow source files to explicitly declare the libraries they depend on, and have
5277these automatically be transmitted to the linker via object files.
5278
5279These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005280using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005281to be ``AppendUnique``, and the value for the key is expected to be a metadata
5282node which should be a list of other metadata nodes, each of which should be a
5283list of metadata strings defining linker options.
5284
5285For example, the following metadata section specifies two separate sets of
5286linker options, presumably to link against ``libz`` and the ``Cocoa``
5287framework::
5288
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005289 !0 = !{ i32 6, !"Linker Options",
5290 !{
5291 !{ !"-lz" },
5292 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005293 !llvm.module.flags = !{ !0 }
5294
5295The metadata encoding as lists of lists of options, as opposed to a collapsed
5296list of options, is chosen so that the IR encoding can use multiple option
5297strings to specify e.g., a single library, while still having that specifier be
5298preserved as an atomic element that can be recognized by a target specific
5299assembly writer or object file emitter.
5300
5301Each individual option is required to be either a valid option for the target's
5302linker, or an option that is reserved by the target specific assembly writer or
5303object file emitter. No other aspect of these options is defined by the IR.
5304
Oliver Stannard5dc29342014-06-20 10:08:11 +00005305C type width Module Flags Metadata
5306----------------------------------
5307
5308The ARM backend emits a section into each generated object file describing the
5309options that it was compiled with (in a compiler-independent way) to prevent
5310linking incompatible objects, and to allow automatic library selection. Some
5311of these options are not visible at the IR level, namely wchar_t width and enum
5312width.
5313
5314To pass this information to the backend, these options are encoded in module
5315flags metadata, using the following key-value pairs:
5316
5317.. list-table::
5318 :header-rows: 1
5319 :widths: 30 70
5320
5321 * - Key
5322 - Value
5323
5324 * - short_wchar
5325 - * 0 --- sizeof(wchar_t) == 4
5326 * 1 --- sizeof(wchar_t) == 2
5327
5328 * - short_enum
5329 - * 0 --- Enums are at least as large as an ``int``.
5330 * 1 --- Enums are stored in the smallest integer type which can
5331 represent all of its values.
5332
5333For example, the following metadata section specifies that the module was
5334compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5335enum is the smallest type which can represent all of its values::
5336
5337 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005338 !0 = !{i32 1, !"short_wchar", i32 1}
5339 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005340
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005341.. _intrinsicglobalvariables:
5342
Sean Silvab084af42012-12-07 10:36:55 +00005343Intrinsic Global Variables
5344==========================
5345
5346LLVM has a number of "magic" global variables that contain data that
5347affect code generation or other IR semantics. These are documented here.
5348All globals of this sort should have a section specified as
5349"``llvm.metadata``". This section and all globals that start with
5350"``llvm.``" are reserved for use by LLVM.
5351
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005352.. _gv_llvmused:
5353
Sean Silvab084af42012-12-07 10:36:55 +00005354The '``llvm.used``' Global Variable
5355-----------------------------------
5356
Rafael Espindola74f2e462013-04-22 14:58:02 +00005357The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005358:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005359pointers to named global variables, functions and aliases which may optionally
5360have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005361use of it is:
5362
5363.. code-block:: llvm
5364
5365 @X = global i8 4
5366 @Y = global i32 123
5367
5368 @llvm.used = appending global [2 x i8*] [
5369 i8* @X,
5370 i8* bitcast (i32* @Y to i8*)
5371 ], section "llvm.metadata"
5372
Rafael Espindola74f2e462013-04-22 14:58:02 +00005373If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5374and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005375symbol that it cannot see (which is why they have to be named). For example, if
5376a variable has internal linkage and no references other than that from the
5377``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5378references from inline asms and other things the compiler cannot "see", and
5379corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005380
5381On some targets, the code generator must emit a directive to the
5382assembler or object file to prevent the assembler and linker from
5383molesting the symbol.
5384
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005385.. _gv_llvmcompilerused:
5386
Sean Silvab084af42012-12-07 10:36:55 +00005387The '``llvm.compiler.used``' Global Variable
5388--------------------------------------------
5389
5390The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5391directive, except that it only prevents the compiler from touching the
5392symbol. On targets that support it, this allows an intelligent linker to
5393optimize references to the symbol without being impeded as it would be
5394by ``@llvm.used``.
5395
5396This is a rare construct that should only be used in rare circumstances,
5397and should not be exposed to source languages.
5398
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005399.. _gv_llvmglobalctors:
5400
Sean Silvab084af42012-12-07 10:36:55 +00005401The '``llvm.global_ctors``' Global Variable
5402-------------------------------------------
5403
5404.. code-block:: llvm
5405
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005406 %0 = type { i32, void ()*, i8* }
5407 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005408
5409The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005410functions, priorities, and an optional associated global or function.
5411The functions referenced by this array will be called in ascending order
5412of priority (i.e. lowest first) when the module is loaded. The order of
5413functions with the same priority is not defined.
5414
5415If the third field is present, non-null, and points to a global variable
5416or function, the initializer function will only run if the associated
5417data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005418
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005419.. _llvmglobaldtors:
5420
Sean Silvab084af42012-12-07 10:36:55 +00005421The '``llvm.global_dtors``' Global Variable
5422-------------------------------------------
5423
5424.. code-block:: llvm
5425
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005426 %0 = type { i32, void ()*, i8* }
5427 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005428
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005429The ``@llvm.global_dtors`` array contains a list of destructor
5430functions, priorities, and an optional associated global or function.
5431The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005432order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005433order of functions with the same priority is not defined.
5434
5435If the third field is present, non-null, and points to a global variable
5436or function, the destructor function will only run if the associated
5437data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005438
5439Instruction Reference
5440=====================
5441
5442The LLVM instruction set consists of several different classifications
5443of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5444instructions <binaryops>`, :ref:`bitwise binary
5445instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5446:ref:`other instructions <otherops>`.
5447
5448.. _terminators:
5449
5450Terminator Instructions
5451-----------------------
5452
5453As mentioned :ref:`previously <functionstructure>`, every basic block in a
5454program ends with a "Terminator" instruction, which indicates which
5455block should be executed after the current block is finished. These
5456terminator instructions typically yield a '``void``' value: they produce
5457control flow, not values (the one exception being the
5458':ref:`invoke <i_invoke>`' instruction).
5459
5460The terminator instructions are: ':ref:`ret <i_ret>`',
5461':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5462':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005463':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005464':ref:`catchret <i_catchret>`',
5465':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005466and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005467
5468.. _i_ret:
5469
5470'``ret``' Instruction
5471^^^^^^^^^^^^^^^^^^^^^
5472
5473Syntax:
5474"""""""
5475
5476::
5477
5478 ret <type> <value> ; Return a value from a non-void function
5479 ret void ; Return from void function
5480
5481Overview:
5482"""""""""
5483
5484The '``ret``' instruction is used to return control flow (and optionally
5485a value) from a function back to the caller.
5486
5487There are two forms of the '``ret``' instruction: one that returns a
5488value and then causes control flow, and one that just causes control
5489flow to occur.
5490
5491Arguments:
5492""""""""""
5493
5494The '``ret``' instruction optionally accepts a single argument, the
5495return value. The type of the return value must be a ':ref:`first
5496class <t_firstclass>`' type.
5497
5498A function is not :ref:`well formed <wellformed>` if it it has a non-void
5499return type and contains a '``ret``' instruction with no return value or
5500a return value with a type that does not match its type, or if it has a
5501void return type and contains a '``ret``' instruction with a return
5502value.
5503
5504Semantics:
5505""""""""""
5506
5507When the '``ret``' instruction is executed, control flow returns back to
5508the calling function's context. If the caller is a
5509":ref:`call <i_call>`" instruction, execution continues at the
5510instruction after the call. If the caller was an
5511":ref:`invoke <i_invoke>`" instruction, execution continues at the
5512beginning of the "normal" destination block. If the instruction returns
5513a value, that value shall set the call or invoke instruction's return
5514value.
5515
5516Example:
5517""""""""
5518
5519.. code-block:: llvm
5520
5521 ret i32 5 ; Return an integer value of 5
5522 ret void ; Return from a void function
5523 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5524
5525.. _i_br:
5526
5527'``br``' Instruction
5528^^^^^^^^^^^^^^^^^^^^
5529
5530Syntax:
5531"""""""
5532
5533::
5534
5535 br i1 <cond>, label <iftrue>, label <iffalse>
5536 br label <dest> ; Unconditional branch
5537
5538Overview:
5539"""""""""
5540
5541The '``br``' instruction is used to cause control flow to transfer to a
5542different basic block in the current function. There are two forms of
5543this instruction, corresponding to a conditional branch and an
5544unconditional branch.
5545
5546Arguments:
5547""""""""""
5548
5549The conditional branch form of the '``br``' instruction takes a single
5550'``i1``' value and two '``label``' values. The unconditional form of the
5551'``br``' instruction takes a single '``label``' value as a target.
5552
5553Semantics:
5554""""""""""
5555
5556Upon execution of a conditional '``br``' instruction, the '``i1``'
5557argument is evaluated. If the value is ``true``, control flows to the
5558'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5559to the '``iffalse``' ``label`` argument.
5560
5561Example:
5562""""""""
5563
5564.. code-block:: llvm
5565
5566 Test:
5567 %cond = icmp eq i32 %a, %b
5568 br i1 %cond, label %IfEqual, label %IfUnequal
5569 IfEqual:
5570 ret i32 1
5571 IfUnequal:
5572 ret i32 0
5573
5574.. _i_switch:
5575
5576'``switch``' Instruction
5577^^^^^^^^^^^^^^^^^^^^^^^^
5578
5579Syntax:
5580"""""""
5581
5582::
5583
5584 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5585
5586Overview:
5587"""""""""
5588
5589The '``switch``' instruction is used to transfer control flow to one of
5590several different places. It is a generalization of the '``br``'
5591instruction, allowing a branch to occur to one of many possible
5592destinations.
5593
5594Arguments:
5595""""""""""
5596
5597The '``switch``' instruction uses three parameters: an integer
5598comparison value '``value``', a default '``label``' destination, and an
5599array of pairs of comparison value constants and '``label``'s. The table
5600is not allowed to contain duplicate constant entries.
5601
5602Semantics:
5603""""""""""
5604
5605The ``switch`` instruction specifies a table of values and destinations.
5606When the '``switch``' instruction is executed, this table is searched
5607for the given value. If the value is found, control flow is transferred
5608to the corresponding destination; otherwise, control flow is transferred
5609to the default destination.
5610
5611Implementation:
5612"""""""""""""""
5613
5614Depending on properties of the target machine and the particular
5615``switch`` instruction, this instruction may be code generated in
5616different ways. For example, it could be generated as a series of
5617chained conditional branches or with a lookup table.
5618
5619Example:
5620""""""""
5621
5622.. code-block:: llvm
5623
5624 ; Emulate a conditional br instruction
5625 %Val = zext i1 %value to i32
5626 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5627
5628 ; Emulate an unconditional br instruction
5629 switch i32 0, label %dest [ ]
5630
5631 ; Implement a jump table:
5632 switch i32 %val, label %otherwise [ i32 0, label %onzero
5633 i32 1, label %onone
5634 i32 2, label %ontwo ]
5635
5636.. _i_indirectbr:
5637
5638'``indirectbr``' Instruction
5639^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5640
5641Syntax:
5642"""""""
5643
5644::
5645
5646 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5647
5648Overview:
5649"""""""""
5650
5651The '``indirectbr``' instruction implements an indirect branch to a
5652label within the current function, whose address is specified by
5653"``address``". Address must be derived from a
5654:ref:`blockaddress <blockaddress>` constant.
5655
5656Arguments:
5657""""""""""
5658
5659The '``address``' argument is the address of the label to jump to. The
5660rest of the arguments indicate the full set of possible destinations
5661that the address may point to. Blocks are allowed to occur multiple
5662times in the destination list, though this isn't particularly useful.
5663
5664This destination list is required so that dataflow analysis has an
5665accurate understanding of the CFG.
5666
5667Semantics:
5668""""""""""
5669
5670Control transfers to the block specified in the address argument. All
5671possible destination blocks must be listed in the label list, otherwise
5672this instruction has undefined behavior. This implies that jumps to
5673labels defined in other functions have undefined behavior as well.
5674
5675Implementation:
5676"""""""""""""""
5677
5678This is typically implemented with a jump through a register.
5679
5680Example:
5681""""""""
5682
5683.. code-block:: llvm
5684
5685 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5686
5687.. _i_invoke:
5688
5689'``invoke``' Instruction
5690^^^^^^^^^^^^^^^^^^^^^^^^
5691
5692Syntax:
5693"""""""
5694
5695::
5696
David Blaikieb83cf102016-07-13 17:21:34 +00005697 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005698 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005699
5700Overview:
5701"""""""""
5702
5703The '``invoke``' instruction causes control to transfer to a specified
5704function, with the possibility of control flow transfer to either the
5705'``normal``' label or the '``exception``' label. If the callee function
5706returns with the "``ret``" instruction, control flow will return to the
5707"normal" label. If the callee (or any indirect callees) returns via the
5708":ref:`resume <i_resume>`" instruction or other exception handling
5709mechanism, control is interrupted and continued at the dynamically
5710nearest "exception" label.
5711
5712The '``exception``' label is a `landing
5713pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5714'``exception``' label is required to have the
5715":ref:`landingpad <i_landingpad>`" instruction, which contains the
5716information about the behavior of the program after unwinding happens,
5717as its first non-PHI instruction. The restrictions on the
5718"``landingpad``" instruction's tightly couples it to the "``invoke``"
5719instruction, so that the important information contained within the
5720"``landingpad``" instruction can't be lost through normal code motion.
5721
5722Arguments:
5723""""""""""
5724
5725This instruction requires several arguments:
5726
5727#. The optional "cconv" marker indicates which :ref:`calling
5728 convention <callingconv>` the call should use. If none is
5729 specified, the call defaults to using C calling conventions.
5730#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5731 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5732 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005733#. '``ty``': the type of the call instruction itself which is also the
5734 type of the return value. Functions that return no value are marked
5735 ``void``.
5736#. '``fnty``': shall be the signature of the function being invoked. The
5737 argument types must match the types implied by this signature. This
5738 type can be omitted if the function is not varargs.
5739#. '``fnptrval``': An LLVM value containing a pointer to a function to
5740 be invoked. In most cases, this is a direct function invocation, but
5741 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5742 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005743#. '``function args``': argument list whose types match the function
5744 signature argument types and parameter attributes. All arguments must
5745 be of :ref:`first class <t_firstclass>` type. If the function signature
5746 indicates the function accepts a variable number of arguments, the
5747 extra arguments can be specified.
5748#. '``normal label``': the label reached when the called function
5749 executes a '``ret``' instruction.
5750#. '``exception label``': the label reached when a callee returns via
5751 the :ref:`resume <i_resume>` instruction or other exception handling
5752 mechanism.
5753#. The optional :ref:`function attributes <fnattrs>` list. Only
5754 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5755 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005756#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005757
5758Semantics:
5759""""""""""
5760
5761This instruction is designed to operate as a standard '``call``'
5762instruction in most regards. The primary difference is that it
5763establishes an association with a label, which is used by the runtime
5764library to unwind the stack.
5765
5766This instruction is used in languages with destructors to ensure that
5767proper cleanup is performed in the case of either a ``longjmp`` or a
5768thrown exception. Additionally, this is important for implementation of
5769'``catch``' clauses in high-level languages that support them.
5770
5771For the purposes of the SSA form, the definition of the value returned
5772by the '``invoke``' instruction is deemed to occur on the edge from the
5773current block to the "normal" label. If the callee unwinds then no
5774return value is available.
5775
5776Example:
5777""""""""
5778
5779.. code-block:: llvm
5780
5781 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005782 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005783 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005784 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005785
5786.. _i_resume:
5787
5788'``resume``' Instruction
5789^^^^^^^^^^^^^^^^^^^^^^^^
5790
5791Syntax:
5792"""""""
5793
5794::
5795
5796 resume <type> <value>
5797
5798Overview:
5799"""""""""
5800
5801The '``resume``' instruction is a terminator instruction that has no
5802successors.
5803
5804Arguments:
5805""""""""""
5806
5807The '``resume``' instruction requires one argument, which must have the
5808same type as the result of any '``landingpad``' instruction in the same
5809function.
5810
5811Semantics:
5812""""""""""
5813
5814The '``resume``' instruction resumes propagation of an existing
5815(in-flight) exception whose unwinding was interrupted with a
5816:ref:`landingpad <i_landingpad>` instruction.
5817
5818Example:
5819""""""""
5820
5821.. code-block:: llvm
5822
5823 resume { i8*, i32 } %exn
5824
David Majnemer8a1c45d2015-12-12 05:38:55 +00005825.. _i_catchswitch:
5826
5827'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005828^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005829
5830Syntax:
5831"""""""
5832
5833::
5834
5835 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5836 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5837
5838Overview:
5839"""""""""
5840
5841The '``catchswitch``' instruction is used by `LLVM's exception handling system
5842<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5843that may be executed by the :ref:`EH personality routine <personalityfn>`.
5844
5845Arguments:
5846""""""""""
5847
5848The ``parent`` argument is the token of the funclet that contains the
5849``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5850this operand may be the token ``none``.
5851
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005852The ``default`` argument is the label of another basic block beginning with
5853either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5854must be a legal target with respect to the ``parent`` links, as described in
5855the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005856
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005857The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005858:ref:`catchpad <i_catchpad>` instruction.
5859
5860Semantics:
5861""""""""""
5862
5863Executing this instruction transfers control to one of the successors in
5864``handlers``, if appropriate, or continues to unwind via the unwind label if
5865present.
5866
5867The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5868it must be both the first non-phi instruction and last instruction in the basic
5869block. Therefore, it must be the only non-phi instruction in the block.
5870
5871Example:
5872""""""""
5873
Renato Golin124f2592016-07-20 12:16:38 +00005874.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005875
5876 dispatch1:
5877 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5878 dispatch2:
5879 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5880
David Majnemer654e1302015-07-31 17:58:14 +00005881.. _i_catchret:
5882
5883'``catchret``' Instruction
5884^^^^^^^^^^^^^^^^^^^^^^^^^^
5885
5886Syntax:
5887"""""""
5888
5889::
5890
David Majnemer8a1c45d2015-12-12 05:38:55 +00005891 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005892
5893Overview:
5894"""""""""
5895
5896The '``catchret``' instruction is a terminator instruction that has a
5897single successor.
5898
5899
5900Arguments:
5901""""""""""
5902
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005903The first argument to a '``catchret``' indicates which ``catchpad`` it
5904exits. It must be a :ref:`catchpad <i_catchpad>`.
5905The second argument to a '``catchret``' specifies where control will
5906transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005907
5908Semantics:
5909""""""""""
5910
David Majnemer8a1c45d2015-12-12 05:38:55 +00005911The '``catchret``' instruction ends an existing (in-flight) exception whose
5912unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5913:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5914code to, for example, destroy the active exception. Control then transfers to
5915``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005916
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005917The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5918If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5919funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5920the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005921
5922Example:
5923""""""""
5924
Renato Golin124f2592016-07-20 12:16:38 +00005925.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005926
David Majnemer8a1c45d2015-12-12 05:38:55 +00005927 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005928
David Majnemer654e1302015-07-31 17:58:14 +00005929.. _i_cleanupret:
5930
5931'``cleanupret``' Instruction
5932^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5933
5934Syntax:
5935"""""""
5936
5937::
5938
David Majnemer8a1c45d2015-12-12 05:38:55 +00005939 cleanupret from <value> unwind label <continue>
5940 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005941
5942Overview:
5943"""""""""
5944
5945The '``cleanupret``' instruction is a terminator instruction that has
5946an optional successor.
5947
5948
5949Arguments:
5950""""""""""
5951
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005952The '``cleanupret``' instruction requires one argument, which indicates
5953which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005954If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5955funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5956the ``cleanupret``'s behavior is undefined.
5957
5958The '``cleanupret``' instruction also has an optional successor, ``continue``,
5959which must be the label of another basic block beginning with either a
5960``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5961be a legal target with respect to the ``parent`` links, as described in the
5962`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005963
5964Semantics:
5965""""""""""
5966
5967The '``cleanupret``' instruction indicates to the
5968:ref:`personality function <personalityfn>` that one
5969:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5970It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005971
David Majnemer654e1302015-07-31 17:58:14 +00005972Example:
5973""""""""
5974
Renato Golin124f2592016-07-20 12:16:38 +00005975.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005976
David Majnemer8a1c45d2015-12-12 05:38:55 +00005977 cleanupret from %cleanup unwind to caller
5978 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005979
Sean Silvab084af42012-12-07 10:36:55 +00005980.. _i_unreachable:
5981
5982'``unreachable``' Instruction
5983^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5984
5985Syntax:
5986"""""""
5987
5988::
5989
5990 unreachable
5991
5992Overview:
5993"""""""""
5994
5995The '``unreachable``' instruction has no defined semantics. This
5996instruction is used to inform the optimizer that a particular portion of
5997the code is not reachable. This can be used to indicate that the code
5998after a no-return function cannot be reached, and other facts.
5999
6000Semantics:
6001""""""""""
6002
6003The '``unreachable``' instruction has no defined semantics.
6004
6005.. _binaryops:
6006
6007Binary Operations
6008-----------------
6009
6010Binary operators are used to do most of the computation in a program.
6011They require two operands of the same type, execute an operation on
6012them, and produce a single value. The operands might represent multiple
6013data, as is the case with the :ref:`vector <t_vector>` data type. The
6014result value has the same type as its operands.
6015
6016There are several different binary operators:
6017
6018.. _i_add:
6019
6020'``add``' Instruction
6021^^^^^^^^^^^^^^^^^^^^^
6022
6023Syntax:
6024"""""""
6025
6026::
6027
Tim Northover675a0962014-06-13 14:24:23 +00006028 <result> = add <ty> <op1>, <op2> ; yields ty:result
6029 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6030 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6031 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006032
6033Overview:
6034"""""""""
6035
6036The '``add``' instruction returns the sum of its two operands.
6037
6038Arguments:
6039""""""""""
6040
6041The two arguments to the '``add``' instruction must be
6042:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6043arguments must have identical types.
6044
6045Semantics:
6046""""""""""
6047
6048The value produced is the integer sum of the two operands.
6049
6050If the sum has unsigned overflow, the result returned is the
6051mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6052the result.
6053
6054Because LLVM integers use a two's complement representation, this
6055instruction is appropriate for both signed and unsigned integers.
6056
6057``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6058respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6059result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6060unsigned and/or signed overflow, respectively, occurs.
6061
6062Example:
6063""""""""
6064
Renato Golin124f2592016-07-20 12:16:38 +00006065.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006066
Tim Northover675a0962014-06-13 14:24:23 +00006067 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006068
6069.. _i_fadd:
6070
6071'``fadd``' Instruction
6072^^^^^^^^^^^^^^^^^^^^^^
6073
6074Syntax:
6075"""""""
6076
6077::
6078
Tim Northover675a0962014-06-13 14:24:23 +00006079 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006080
6081Overview:
6082"""""""""
6083
6084The '``fadd``' instruction returns the sum of its two operands.
6085
6086Arguments:
6087""""""""""
6088
6089The two arguments to the '``fadd``' instruction must be :ref:`floating
6090point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6091Both arguments must have identical types.
6092
6093Semantics:
6094""""""""""
6095
6096The value produced is the floating point sum of the two operands. This
6097instruction can also take any number of :ref:`fast-math flags <fastmath>`,
6098which are optimization hints to enable otherwise unsafe floating point
6099optimizations:
6100
6101Example:
6102""""""""
6103
Renato Golin124f2592016-07-20 12:16:38 +00006104.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006105
Tim Northover675a0962014-06-13 14:24:23 +00006106 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006107
6108'``sub``' Instruction
6109^^^^^^^^^^^^^^^^^^^^^
6110
6111Syntax:
6112"""""""
6113
6114::
6115
Tim Northover675a0962014-06-13 14:24:23 +00006116 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6117 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6118 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6119 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006120
6121Overview:
6122"""""""""
6123
6124The '``sub``' instruction returns the difference of its two operands.
6125
6126Note that the '``sub``' instruction is used to represent the '``neg``'
6127instruction present in most other intermediate representations.
6128
6129Arguments:
6130""""""""""
6131
6132The two arguments to the '``sub``' instruction must be
6133:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6134arguments must have identical types.
6135
6136Semantics:
6137""""""""""
6138
6139The value produced is the integer difference of the two operands.
6140
6141If the difference has unsigned overflow, the result returned is the
6142mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6143the result.
6144
6145Because LLVM integers use a two's complement representation, this
6146instruction is appropriate for both signed and unsigned integers.
6147
6148``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6149respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6150result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6151unsigned and/or signed overflow, respectively, occurs.
6152
6153Example:
6154""""""""
6155
Renato Golin124f2592016-07-20 12:16:38 +00006156.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006157
Tim Northover675a0962014-06-13 14:24:23 +00006158 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6159 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006160
6161.. _i_fsub:
6162
6163'``fsub``' Instruction
6164^^^^^^^^^^^^^^^^^^^^^^
6165
6166Syntax:
6167"""""""
6168
6169::
6170
Tim Northover675a0962014-06-13 14:24:23 +00006171 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006172
6173Overview:
6174"""""""""
6175
6176The '``fsub``' instruction returns the difference of its two operands.
6177
6178Note that the '``fsub``' instruction is used to represent the '``fneg``'
6179instruction present in most other intermediate representations.
6180
6181Arguments:
6182""""""""""
6183
6184The two arguments to the '``fsub``' instruction must be :ref:`floating
6185point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6186Both arguments must have identical types.
6187
6188Semantics:
6189""""""""""
6190
6191The value produced is the floating point difference of the two operands.
6192This instruction can also take any number of :ref:`fast-math
6193flags <fastmath>`, which are optimization hints to enable otherwise
6194unsafe floating point optimizations:
6195
6196Example:
6197""""""""
6198
Renato Golin124f2592016-07-20 12:16:38 +00006199.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006200
Tim Northover675a0962014-06-13 14:24:23 +00006201 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6202 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006203
6204'``mul``' Instruction
6205^^^^^^^^^^^^^^^^^^^^^
6206
6207Syntax:
6208"""""""
6209
6210::
6211
Tim Northover675a0962014-06-13 14:24:23 +00006212 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6213 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6214 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6215 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006216
6217Overview:
6218"""""""""
6219
6220The '``mul``' instruction returns the product of its two operands.
6221
6222Arguments:
6223""""""""""
6224
6225The two arguments to the '``mul``' instruction must be
6226:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6227arguments must have identical types.
6228
6229Semantics:
6230""""""""""
6231
6232The value produced is the integer product of the two operands.
6233
6234If the result of the multiplication has unsigned overflow, the result
6235returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6236bit width of the result.
6237
6238Because LLVM integers use a two's complement representation, and the
6239result is the same width as the operands, this instruction returns the
6240correct result for both signed and unsigned integers. If a full product
6241(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6242sign-extended or zero-extended as appropriate to the width of the full
6243product.
6244
6245``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6246respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6247result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6248unsigned and/or signed overflow, respectively, occurs.
6249
6250Example:
6251""""""""
6252
Renato Golin124f2592016-07-20 12:16:38 +00006253.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006254
Tim Northover675a0962014-06-13 14:24:23 +00006255 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006256
6257.. _i_fmul:
6258
6259'``fmul``' Instruction
6260^^^^^^^^^^^^^^^^^^^^^^
6261
6262Syntax:
6263"""""""
6264
6265::
6266
Tim Northover675a0962014-06-13 14:24:23 +00006267 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006268
6269Overview:
6270"""""""""
6271
6272The '``fmul``' instruction returns the product of its two operands.
6273
6274Arguments:
6275""""""""""
6276
6277The two arguments to the '``fmul``' instruction must be :ref:`floating
6278point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6279Both arguments must have identical types.
6280
6281Semantics:
6282""""""""""
6283
6284The value produced is the floating point product of the two operands.
6285This instruction can also take any number of :ref:`fast-math
6286flags <fastmath>`, which are optimization hints to enable otherwise
6287unsafe floating point optimizations:
6288
6289Example:
6290""""""""
6291
Renato Golin124f2592016-07-20 12:16:38 +00006292.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006293
Tim Northover675a0962014-06-13 14:24:23 +00006294 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006295
6296'``udiv``' Instruction
6297^^^^^^^^^^^^^^^^^^^^^^
6298
6299Syntax:
6300"""""""
6301
6302::
6303
Tim Northover675a0962014-06-13 14:24:23 +00006304 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6305 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006306
6307Overview:
6308"""""""""
6309
6310The '``udiv``' instruction returns the quotient of its two operands.
6311
6312Arguments:
6313""""""""""
6314
6315The two arguments to the '``udiv``' instruction must be
6316:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6317arguments must have identical types.
6318
6319Semantics:
6320""""""""""
6321
6322The value produced is the unsigned integer quotient of the two operands.
6323
6324Note that unsigned integer division and signed integer division are
6325distinct operations; for signed integer division, use '``sdiv``'.
6326
6327Division by zero leads to undefined behavior.
6328
6329If the ``exact`` keyword is present, the result value of the ``udiv`` is
6330a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6331such, "((a udiv exact b) mul b) == a").
6332
6333Example:
6334""""""""
6335
Renato Golin124f2592016-07-20 12:16:38 +00006336.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006337
Tim Northover675a0962014-06-13 14:24:23 +00006338 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006339
6340'``sdiv``' Instruction
6341^^^^^^^^^^^^^^^^^^^^^^
6342
6343Syntax:
6344"""""""
6345
6346::
6347
Tim Northover675a0962014-06-13 14:24:23 +00006348 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6349 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006350
6351Overview:
6352"""""""""
6353
6354The '``sdiv``' instruction returns the quotient of its two operands.
6355
6356Arguments:
6357""""""""""
6358
6359The two arguments to the '``sdiv``' instruction must be
6360:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6361arguments must have identical types.
6362
6363Semantics:
6364""""""""""
6365
6366The value produced is the signed integer quotient of the two operands
6367rounded towards zero.
6368
6369Note that signed integer division and unsigned integer division are
6370distinct operations; for unsigned integer division, use '``udiv``'.
6371
6372Division by zero leads to undefined behavior. Overflow also leads to
6373undefined behavior; this is a rare case, but can occur, for example, by
6374doing a 32-bit division of -2147483648 by -1.
6375
6376If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6377a :ref:`poison value <poisonvalues>` if the result would be rounded.
6378
6379Example:
6380""""""""
6381
Renato Golin124f2592016-07-20 12:16:38 +00006382.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006383
Tim Northover675a0962014-06-13 14:24:23 +00006384 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006385
6386.. _i_fdiv:
6387
6388'``fdiv``' Instruction
6389^^^^^^^^^^^^^^^^^^^^^^
6390
6391Syntax:
6392"""""""
6393
6394::
6395
Tim Northover675a0962014-06-13 14:24:23 +00006396 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006397
6398Overview:
6399"""""""""
6400
6401The '``fdiv``' instruction returns the quotient of its two operands.
6402
6403Arguments:
6404""""""""""
6405
6406The two arguments to the '``fdiv``' instruction must be :ref:`floating
6407point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6408Both arguments must have identical types.
6409
6410Semantics:
6411""""""""""
6412
6413The value produced is the floating point quotient of the two operands.
6414This instruction can also take any number of :ref:`fast-math
6415flags <fastmath>`, which are optimization hints to enable otherwise
6416unsafe floating point optimizations:
6417
6418Example:
6419""""""""
6420
Renato Golin124f2592016-07-20 12:16:38 +00006421.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006422
Tim Northover675a0962014-06-13 14:24:23 +00006423 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006424
6425'``urem``' Instruction
6426^^^^^^^^^^^^^^^^^^^^^^
6427
6428Syntax:
6429"""""""
6430
6431::
6432
Tim Northover675a0962014-06-13 14:24:23 +00006433 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006434
6435Overview:
6436"""""""""
6437
6438The '``urem``' instruction returns the remainder from the unsigned
6439division of its two arguments.
6440
6441Arguments:
6442""""""""""
6443
6444The two arguments to the '``urem``' instruction must be
6445:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6446arguments must have identical types.
6447
6448Semantics:
6449""""""""""
6450
6451This instruction returns the unsigned integer *remainder* of a division.
6452This instruction always performs an unsigned division to get the
6453remainder.
6454
6455Note that unsigned integer remainder and signed integer remainder are
6456distinct operations; for signed integer remainder, use '``srem``'.
6457
6458Taking the remainder of a division by zero leads to undefined behavior.
6459
6460Example:
6461""""""""
6462
Renato Golin124f2592016-07-20 12:16:38 +00006463.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006464
Tim Northover675a0962014-06-13 14:24:23 +00006465 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006466
6467'``srem``' Instruction
6468^^^^^^^^^^^^^^^^^^^^^^
6469
6470Syntax:
6471"""""""
6472
6473::
6474
Tim Northover675a0962014-06-13 14:24:23 +00006475 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006476
6477Overview:
6478"""""""""
6479
6480The '``srem``' instruction returns the remainder from the signed
6481division of its two operands. This instruction can also take
6482:ref:`vector <t_vector>` versions of the values in which case the elements
6483must be integers.
6484
6485Arguments:
6486""""""""""
6487
6488The two arguments to the '``srem``' instruction must be
6489:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6490arguments must have identical types.
6491
6492Semantics:
6493""""""""""
6494
6495This instruction returns the *remainder* of a division (where the result
6496is either zero or has the same sign as the dividend, ``op1``), not the
6497*modulo* operator (where the result is either zero or has the same sign
6498as the divisor, ``op2``) of a value. For more information about the
6499difference, see `The Math
6500Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6501table of how this is implemented in various languages, please see
6502`Wikipedia: modulo
6503operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6504
6505Note that signed integer remainder and unsigned integer remainder are
6506distinct operations; for unsigned integer remainder, use '``urem``'.
6507
6508Taking the remainder of a division by zero leads to undefined behavior.
6509Overflow also leads to undefined behavior; this is a rare case, but can
6510occur, for example, by taking the remainder of a 32-bit division of
6511-2147483648 by -1. (The remainder doesn't actually overflow, but this
6512rule lets srem be implemented using instructions that return both the
6513result of the division and the remainder.)
6514
6515Example:
6516""""""""
6517
Renato Golin124f2592016-07-20 12:16:38 +00006518.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006519
Tim Northover675a0962014-06-13 14:24:23 +00006520 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006521
6522.. _i_frem:
6523
6524'``frem``' Instruction
6525^^^^^^^^^^^^^^^^^^^^^^
6526
6527Syntax:
6528"""""""
6529
6530::
6531
Tim Northover675a0962014-06-13 14:24:23 +00006532 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006533
6534Overview:
6535"""""""""
6536
6537The '``frem``' instruction returns the remainder from the division of
6538its two operands.
6539
6540Arguments:
6541""""""""""
6542
6543The two arguments to the '``frem``' instruction must be :ref:`floating
6544point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6545Both arguments must have identical types.
6546
6547Semantics:
6548""""""""""
6549
6550This instruction returns the *remainder* of a division. The remainder
6551has the same sign as the dividend. This instruction can also take any
6552number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6553to enable otherwise unsafe floating point optimizations:
6554
6555Example:
6556""""""""
6557
Renato Golin124f2592016-07-20 12:16:38 +00006558.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006559
Tim Northover675a0962014-06-13 14:24:23 +00006560 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006561
6562.. _bitwiseops:
6563
6564Bitwise Binary Operations
6565-------------------------
6566
6567Bitwise binary operators are used to do various forms of bit-twiddling
6568in a program. They are generally very efficient instructions and can
6569commonly be strength reduced from other instructions. They require two
6570operands of the same type, execute an operation on them, and produce a
6571single value. The resulting value is the same type as its operands.
6572
6573'``shl``' Instruction
6574^^^^^^^^^^^^^^^^^^^^^
6575
6576Syntax:
6577"""""""
6578
6579::
6580
Tim Northover675a0962014-06-13 14:24:23 +00006581 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6582 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6583 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6584 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006585
6586Overview:
6587"""""""""
6588
6589The '``shl``' instruction returns the first operand shifted to the left
6590a specified number of bits.
6591
6592Arguments:
6593""""""""""
6594
6595Both arguments to the '``shl``' instruction must be the same
6596:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6597'``op2``' is treated as an unsigned value.
6598
6599Semantics:
6600""""""""""
6601
6602The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6603where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006604dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006605``op1``, the result is undefined. If the arguments are vectors, each
6606vector element of ``op1`` is shifted by the corresponding shift amount
6607in ``op2``.
6608
6609If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6610value <poisonvalues>` if it shifts out any non-zero bits. If the
6611``nsw`` keyword is present, then the shift produces a :ref:`poison
6612value <poisonvalues>` if it shifts out any bits that disagree with the
Sanjoy Dasdbc58d02016-11-13 23:40:40 +00006613resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006614
6615Example:
6616""""""""
6617
Renato Golin124f2592016-07-20 12:16:38 +00006618.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006619
Tim Northover675a0962014-06-13 14:24:23 +00006620 <result> = shl i32 4, %var ; yields i32: 4 << %var
6621 <result> = shl i32 4, 2 ; yields i32: 16
6622 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006623 <result> = shl i32 1, 32 ; undefined
6624 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6625
6626'``lshr``' Instruction
6627^^^^^^^^^^^^^^^^^^^^^^
6628
6629Syntax:
6630"""""""
6631
6632::
6633
Tim Northover675a0962014-06-13 14:24:23 +00006634 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6635 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006636
6637Overview:
6638"""""""""
6639
6640The '``lshr``' instruction (logical shift right) returns the first
6641operand shifted to the right a specified number of bits with zero fill.
6642
6643Arguments:
6644""""""""""
6645
6646Both arguments to the '``lshr``' instruction must be the same
6647:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6648'``op2``' is treated as an unsigned value.
6649
6650Semantics:
6651""""""""""
6652
6653This instruction always performs a logical shift right operation. The
6654most significant bits of the result will be filled with zero bits after
6655the shift. If ``op2`` is (statically or dynamically) equal to or larger
6656than the number of bits in ``op1``, the result is undefined. If the
6657arguments are vectors, each vector element of ``op1`` is shifted by the
6658corresponding shift amount in ``op2``.
6659
6660If the ``exact`` keyword is present, the result value of the ``lshr`` is
6661a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6662non-zero.
6663
6664Example:
6665""""""""
6666
Renato Golin124f2592016-07-20 12:16:38 +00006667.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006668
Tim Northover675a0962014-06-13 14:24:23 +00006669 <result> = lshr i32 4, 1 ; yields i32:result = 2
6670 <result> = lshr i32 4, 2 ; yields i32:result = 1
6671 <result> = lshr i8 4, 3 ; yields i8:result = 0
6672 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006673 <result> = lshr i32 1, 32 ; undefined
6674 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6675
6676'``ashr``' Instruction
6677^^^^^^^^^^^^^^^^^^^^^^
6678
6679Syntax:
6680"""""""
6681
6682::
6683
Tim Northover675a0962014-06-13 14:24:23 +00006684 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6685 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006686
6687Overview:
6688"""""""""
6689
6690The '``ashr``' instruction (arithmetic shift right) returns the first
6691operand shifted to the right a specified number of bits with sign
6692extension.
6693
6694Arguments:
6695""""""""""
6696
6697Both arguments to the '``ashr``' instruction must be the same
6698:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6699'``op2``' is treated as an unsigned value.
6700
6701Semantics:
6702""""""""""
6703
6704This instruction always performs an arithmetic shift right operation,
6705The most significant bits of the result will be filled with the sign bit
6706of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6707than the number of bits in ``op1``, the result is undefined. If the
6708arguments are vectors, each vector element of ``op1`` is shifted by the
6709corresponding shift amount in ``op2``.
6710
6711If the ``exact`` keyword is present, the result value of the ``ashr`` is
6712a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6713non-zero.
6714
6715Example:
6716""""""""
6717
Renato Golin124f2592016-07-20 12:16:38 +00006718.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006719
Tim Northover675a0962014-06-13 14:24:23 +00006720 <result> = ashr i32 4, 1 ; yields i32:result = 2
6721 <result> = ashr i32 4, 2 ; yields i32:result = 1
6722 <result> = ashr i8 4, 3 ; yields i8:result = 0
6723 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006724 <result> = ashr i32 1, 32 ; undefined
6725 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6726
6727'``and``' Instruction
6728^^^^^^^^^^^^^^^^^^^^^
6729
6730Syntax:
6731"""""""
6732
6733::
6734
Tim Northover675a0962014-06-13 14:24:23 +00006735 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006736
6737Overview:
6738"""""""""
6739
6740The '``and``' instruction returns the bitwise logical and of its two
6741operands.
6742
6743Arguments:
6744""""""""""
6745
6746The two arguments to the '``and``' instruction must be
6747:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6748arguments must have identical types.
6749
6750Semantics:
6751""""""""""
6752
6753The truth table used for the '``and``' instruction is:
6754
6755+-----+-----+-----+
6756| In0 | In1 | Out |
6757+-----+-----+-----+
6758| 0 | 0 | 0 |
6759+-----+-----+-----+
6760| 0 | 1 | 0 |
6761+-----+-----+-----+
6762| 1 | 0 | 0 |
6763+-----+-----+-----+
6764| 1 | 1 | 1 |
6765+-----+-----+-----+
6766
6767Example:
6768""""""""
6769
Renato Golin124f2592016-07-20 12:16:38 +00006770.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006771
Tim Northover675a0962014-06-13 14:24:23 +00006772 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6773 <result> = and i32 15, 40 ; yields i32:result = 8
6774 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006775
6776'``or``' Instruction
6777^^^^^^^^^^^^^^^^^^^^
6778
6779Syntax:
6780"""""""
6781
6782::
6783
Tim Northover675a0962014-06-13 14:24:23 +00006784 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006785
6786Overview:
6787"""""""""
6788
6789The '``or``' instruction returns the bitwise logical inclusive or of its
6790two operands.
6791
6792Arguments:
6793""""""""""
6794
6795The two arguments to the '``or``' instruction must be
6796:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6797arguments must have identical types.
6798
6799Semantics:
6800""""""""""
6801
6802The truth table used for the '``or``' instruction is:
6803
6804+-----+-----+-----+
6805| In0 | In1 | Out |
6806+-----+-----+-----+
6807| 0 | 0 | 0 |
6808+-----+-----+-----+
6809| 0 | 1 | 1 |
6810+-----+-----+-----+
6811| 1 | 0 | 1 |
6812+-----+-----+-----+
6813| 1 | 1 | 1 |
6814+-----+-----+-----+
6815
6816Example:
6817""""""""
6818
6819::
6820
Tim Northover675a0962014-06-13 14:24:23 +00006821 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6822 <result> = or i32 15, 40 ; yields i32:result = 47
6823 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006824
6825'``xor``' Instruction
6826^^^^^^^^^^^^^^^^^^^^^
6827
6828Syntax:
6829"""""""
6830
6831::
6832
Tim Northover675a0962014-06-13 14:24:23 +00006833 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006834
6835Overview:
6836"""""""""
6837
6838The '``xor``' instruction returns the bitwise logical exclusive or of
6839its two operands. The ``xor`` is used to implement the "one's
6840complement" operation, which is the "~" operator in C.
6841
6842Arguments:
6843""""""""""
6844
6845The two arguments to the '``xor``' instruction must be
6846:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6847arguments must have identical types.
6848
6849Semantics:
6850""""""""""
6851
6852The truth table used for the '``xor``' instruction is:
6853
6854+-----+-----+-----+
6855| In0 | In1 | Out |
6856+-----+-----+-----+
6857| 0 | 0 | 0 |
6858+-----+-----+-----+
6859| 0 | 1 | 1 |
6860+-----+-----+-----+
6861| 1 | 0 | 1 |
6862+-----+-----+-----+
6863| 1 | 1 | 0 |
6864+-----+-----+-----+
6865
6866Example:
6867""""""""
6868
Renato Golin124f2592016-07-20 12:16:38 +00006869.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006870
Tim Northover675a0962014-06-13 14:24:23 +00006871 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6872 <result> = xor i32 15, 40 ; yields i32:result = 39
6873 <result> = xor i32 4, 8 ; yields i32:result = 12
6874 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006875
6876Vector Operations
6877-----------------
6878
6879LLVM supports several instructions to represent vector operations in a
6880target-independent manner. These instructions cover the element-access
6881and vector-specific operations needed to process vectors effectively.
6882While LLVM does directly support these vector operations, many
6883sophisticated algorithms will want to use target-specific intrinsics to
6884take full advantage of a specific target.
6885
6886.. _i_extractelement:
6887
6888'``extractelement``' Instruction
6889^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6890
6891Syntax:
6892"""""""
6893
6894::
6895
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006896 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006897
6898Overview:
6899"""""""""
6900
6901The '``extractelement``' instruction extracts a single scalar element
6902from a vector at a specified index.
6903
6904Arguments:
6905""""""""""
6906
6907The first operand of an '``extractelement``' instruction is a value of
6908:ref:`vector <t_vector>` type. The second operand is an index indicating
6909the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006910variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006911
6912Semantics:
6913""""""""""
6914
6915The result is a scalar of the same type as the element type of ``val``.
6916Its value is the value at position ``idx`` of ``val``. If ``idx``
6917exceeds the length of ``val``, the results are undefined.
6918
6919Example:
6920""""""""
6921
Renato Golin124f2592016-07-20 12:16:38 +00006922.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006923
6924 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6925
6926.. _i_insertelement:
6927
6928'``insertelement``' Instruction
6929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6930
6931Syntax:
6932"""""""
6933
6934::
6935
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006936 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006937
6938Overview:
6939"""""""""
6940
6941The '``insertelement``' instruction inserts a scalar element into a
6942vector at a specified index.
6943
6944Arguments:
6945""""""""""
6946
6947The first operand of an '``insertelement``' instruction is a value of
6948:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6949type must equal the element type of the first operand. The third operand
6950is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006951index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006952
6953Semantics:
6954""""""""""
6955
6956The result is a vector of the same type as ``val``. Its element values
6957are those of ``val`` except at position ``idx``, where it gets the value
6958``elt``. If ``idx`` exceeds the length of ``val``, the results are
6959undefined.
6960
6961Example:
6962""""""""
6963
Renato Golin124f2592016-07-20 12:16:38 +00006964.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006965
6966 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6967
6968.. _i_shufflevector:
6969
6970'``shufflevector``' Instruction
6971^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6972
6973Syntax:
6974"""""""
6975
6976::
6977
6978 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6979
6980Overview:
6981"""""""""
6982
6983The '``shufflevector``' instruction constructs a permutation of elements
6984from two input vectors, returning a vector with the same element type as
6985the input and length that is the same as the shuffle mask.
6986
6987Arguments:
6988""""""""""
6989
6990The first two operands of a '``shufflevector``' instruction are vectors
6991with the same type. The third argument is a shuffle mask whose element
6992type is always 'i32'. The result of the instruction is a vector whose
6993length is the same as the shuffle mask and whose element type is the
6994same as the element type of the first two operands.
6995
6996The shuffle mask operand is required to be a constant vector with either
6997constant integer or undef values.
6998
6999Semantics:
7000""""""""""
7001
7002The elements of the two input vectors are numbered from left to right
7003across both of the vectors. The shuffle mask operand specifies, for each
7004element of the result vector, which element of the two input vectors the
7005result element gets. The element selector may be undef (meaning "don't
7006care") and the second operand may be undef if performing a shuffle from
7007only one vector.
7008
7009Example:
7010""""""""
7011
Renato Golin124f2592016-07-20 12:16:38 +00007012.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007013
7014 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7015 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7016 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7017 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7018 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7019 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7020 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7021 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7022
7023Aggregate Operations
7024--------------------
7025
7026LLVM supports several instructions for working with
7027:ref:`aggregate <t_aggregate>` values.
7028
7029.. _i_extractvalue:
7030
7031'``extractvalue``' Instruction
7032^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7033
7034Syntax:
7035"""""""
7036
7037::
7038
7039 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7040
7041Overview:
7042"""""""""
7043
7044The '``extractvalue``' instruction extracts the value of a member field
7045from an :ref:`aggregate <t_aggregate>` value.
7046
7047Arguments:
7048""""""""""
7049
7050The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007051:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007052constant indices to specify which value to extract in a similar manner
7053as indices in a '``getelementptr``' instruction.
7054
7055The major differences to ``getelementptr`` indexing are:
7056
7057- Since the value being indexed is not a pointer, the first index is
7058 omitted and assumed to be zero.
7059- At least one index must be specified.
7060- Not only struct indices but also array indices must be in bounds.
7061
7062Semantics:
7063""""""""""
7064
7065The result is the value at the position in the aggregate specified by
7066the index operands.
7067
7068Example:
7069""""""""
7070
Renato Golin124f2592016-07-20 12:16:38 +00007071.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007072
7073 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7074
7075.. _i_insertvalue:
7076
7077'``insertvalue``' Instruction
7078^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7079
7080Syntax:
7081"""""""
7082
7083::
7084
7085 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7086
7087Overview:
7088"""""""""
7089
7090The '``insertvalue``' instruction inserts a value into a member field in
7091an :ref:`aggregate <t_aggregate>` value.
7092
7093Arguments:
7094""""""""""
7095
7096The first operand of an '``insertvalue``' instruction is a value of
7097:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7098a first-class value to insert. The following operands are constant
7099indices indicating the position at which to insert the value in a
7100similar manner as indices in a '``extractvalue``' instruction. The value
7101to insert must have the same type as the value identified by the
7102indices.
7103
7104Semantics:
7105""""""""""
7106
7107The result is an aggregate of the same type as ``val``. Its value is
7108that of ``val`` except that the value at the position specified by the
7109indices is that of ``elt``.
7110
7111Example:
7112""""""""
7113
7114.. code-block:: llvm
7115
7116 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7117 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007118 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007119
7120.. _memoryops:
7121
7122Memory Access and Addressing Operations
7123---------------------------------------
7124
7125A key design point of an SSA-based representation is how it represents
7126memory. In LLVM, no memory locations are in SSA form, which makes things
7127very simple. This section describes how to read, write, and allocate
7128memory in LLVM.
7129
7130.. _i_alloca:
7131
7132'``alloca``' Instruction
7133^^^^^^^^^^^^^^^^^^^^^^^^
7134
7135Syntax:
7136"""""""
7137
7138::
7139
Tim Northover675a0962014-06-13 14:24:23 +00007140 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00007141
7142Overview:
7143"""""""""
7144
7145The '``alloca``' instruction allocates memory on the stack frame of the
7146currently executing function, to be automatically released when this
7147function returns to its caller. The object is always allocated in the
7148generic address space (address space zero).
7149
7150Arguments:
7151""""""""""
7152
7153The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7154bytes of memory on the runtime stack, returning a pointer of the
7155appropriate type to the program. If "NumElements" is specified, it is
7156the number of elements allocated, otherwise "NumElements" is defaulted
7157to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007158allocation is guaranteed to be aligned to at least that boundary. The
7159alignment may not be greater than ``1 << 29``. If not specified, or if
7160zero, the target can choose to align the allocation on any convenient
7161boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007162
7163'``type``' may be any sized type.
7164
7165Semantics:
7166""""""""""
7167
7168Memory is allocated; a pointer is returned. The operation is undefined
7169if there is insufficient stack space for the allocation. '``alloca``'d
7170memory is automatically released when the function returns. The
7171'``alloca``' instruction is commonly used to represent automatic
7172variables that must have an address available. When the function returns
7173(either with the ``ret`` or ``resume`` instructions), the memory is
7174reclaimed. Allocating zero bytes is legal, but the result is undefined.
7175The order in which memory is allocated (ie., which way the stack grows)
7176is not specified.
7177
7178Example:
7179""""""""
7180
7181.. code-block:: llvm
7182
Tim Northover675a0962014-06-13 14:24:23 +00007183 %ptr = alloca i32 ; yields i32*:ptr
7184 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7185 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7186 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007187
7188.. _i_load:
7189
7190'``load``' Instruction
7191^^^^^^^^^^^^^^^^^^^^^^
7192
7193Syntax:
7194"""""""
7195
7196::
7197
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007198 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007199 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007200 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007201 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007202 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007203
7204Overview:
7205"""""""""
7206
7207The '``load``' instruction is used to read from memory.
7208
7209Arguments:
7210""""""""""
7211
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007212The argument to the ``load`` instruction specifies the memory address from which
7213to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7214known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7215the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7216modify the number or order of execution of this ``load`` with other
7217:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007218
JF Bastiend1fb5852015-12-17 22:09:19 +00007219If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7220<ordering>` and optional ``singlethread`` argument. The ``release`` and
7221``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7222produce :ref:`defined <memmodel>` results when they may see multiple atomic
7223stores. The type of the pointee must be an integer, pointer, or floating-point
7224type whose bit width is a power of two greater than or equal to eight and less
7225than or equal to a target-specific size limit. ``align`` must be explicitly
7226specified on atomic loads, and the load has undefined behavior if the alignment
7227is not set to a value which is at least the size in bytes of the
7228pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007229
7230The optional constant ``align`` argument specifies the alignment of the
7231operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007232or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007233alignment for the target. It is the responsibility of the code emitter
7234to ensure that the alignment information is correct. Overestimating the
7235alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007236may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007237maximum possible alignment is ``1 << 29``. An alignment value higher
7238than the size of the loaded type implies memory up to the alignment
7239value bytes can be safely loaded without trapping in the default
7240address space. Access of the high bytes can interfere with debugging
7241tools, so should not be accessed if the function has the
7242``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007243
7244The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007245metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007246``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007247metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007248that this load is not expected to be reused in the cache. The code
7249generator may select special instructions to save cache bandwidth, such
7250as the ``MOVNT`` instruction on x86.
7251
7252The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007253metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007254entries. If a load instruction tagged with the ``!invariant.load``
7255metadata is executed, the optimizer may assume the memory location
7256referenced by the load contains the same value at all points in the
7257program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007258
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007259The optional ``!invariant.group`` metadata must reference a single metadata name
7260 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7261
Philip Reamescdb72f32014-10-20 22:40:55 +00007262The optional ``!nonnull`` metadata must reference a single
7263metadata name ``<index>`` corresponding to a metadata node with no
7264entries. The existence of the ``!nonnull`` metadata on the
7265instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007266never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007267on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007268to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007269
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007270The optional ``!dereferenceable`` metadata must reference a single metadata
7271name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007272entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007273tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007274The number of bytes known to be dereferenceable is specified by the integer
7275value in the metadata node. This is analogous to the ''dereferenceable''
7276attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007277to loads of a pointer type.
7278
7279The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007280metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7281``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007282instruction tells the optimizer that the value loaded is known to be either
7283dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007284The number of bytes known to be dereferenceable is specified by the integer
7285value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7286attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007287to loads of a pointer type.
7288
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007289The optional ``!align`` metadata must reference a single metadata name
7290``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7291The existence of the ``!align`` metadata on the instruction tells the
7292optimizer that the value loaded is known to be aligned to a boundary specified
7293by the integer value in the metadata node. The alignment must be a power of 2.
7294This is analogous to the ''align'' attribute on parameters and return values.
7295This metadata can only be applied to loads of a pointer type.
7296
Sean Silvab084af42012-12-07 10:36:55 +00007297Semantics:
7298""""""""""
7299
7300The location of memory pointed to is loaded. If the value being loaded
7301is of scalar type then the number of bytes read does not exceed the
7302minimum number of bytes needed to hold all bits of the type. For
7303example, loading an ``i24`` reads at most three bytes. When loading a
7304value of a type like ``i20`` with a size that is not an integral number
7305of bytes, the result is undefined if the value was not originally
7306written using a store of the same type.
7307
7308Examples:
7309"""""""""
7310
7311.. code-block:: llvm
7312
Tim Northover675a0962014-06-13 14:24:23 +00007313 %ptr = alloca i32 ; yields i32*:ptr
7314 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007315 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007316
7317.. _i_store:
7318
7319'``store``' Instruction
7320^^^^^^^^^^^^^^^^^^^^^^^
7321
7322Syntax:
7323"""""""
7324
7325::
7326
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007327 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7328 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007329
7330Overview:
7331"""""""""
7332
7333The '``store``' instruction is used to write to memory.
7334
7335Arguments:
7336""""""""""
7337
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007338There are two arguments to the ``store`` instruction: a value to store and an
7339address at which to store it. The type of the ``<pointer>`` operand must be a
7340pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7341operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7342allowed to modify the number or order of execution of this ``store`` with other
7343:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7344<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7345structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007346
JF Bastiend1fb5852015-12-17 22:09:19 +00007347If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7348<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7349``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7350produce :ref:`defined <memmodel>` results when they may see multiple atomic
7351stores. The type of the pointee must be an integer, pointer, or floating-point
7352type whose bit width is a power of two greater than or equal to eight and less
7353than or equal to a target-specific size limit. ``align`` must be explicitly
7354specified on atomic stores, and the store has undefined behavior if the
7355alignment is not set to a value which is at least the size in bytes of the
7356pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007357
Eli Benderskyca380842013-04-17 17:17:20 +00007358The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007359operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007360or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007361alignment for the target. It is the responsibility of the code emitter
7362to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007363alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007364alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007365safe. The maximum possible alignment is ``1 << 29``. An alignment
7366value higher than the size of the stored type implies memory up to the
7367alignment value bytes can be stored to without trapping in the default
7368address space. Storing to the higher bytes however may result in data
7369races if another thread can access the same address. Introducing a
7370data race is not allowed. Storing to the extra bytes is not allowed
7371even in situations where a data race is known to not exist if the
7372function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007373
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007374The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007375name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007376value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007377tells the optimizer and code generator that this load is not expected to
7378be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007379instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007380x86.
7381
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007382The optional ``!invariant.group`` metadata must reference a
7383single metadata name ``<index>``. See ``invariant.group`` metadata.
7384
Sean Silvab084af42012-12-07 10:36:55 +00007385Semantics:
7386""""""""""
7387
Eli Benderskyca380842013-04-17 17:17:20 +00007388The contents of memory are updated to contain ``<value>`` at the
7389location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007390of scalar type then the number of bytes written does not exceed the
7391minimum number of bytes needed to hold all bits of the type. For
7392example, storing an ``i24`` writes at most three bytes. When writing a
7393value of a type like ``i20`` with a size that is not an integral number
7394of bytes, it is unspecified what happens to the extra bits that do not
7395belong to the type, but they will typically be overwritten.
7396
7397Example:
7398""""""""
7399
7400.. code-block:: llvm
7401
Tim Northover675a0962014-06-13 14:24:23 +00007402 %ptr = alloca i32 ; yields i32*:ptr
7403 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007404 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007405
7406.. _i_fence:
7407
7408'``fence``' Instruction
7409^^^^^^^^^^^^^^^^^^^^^^^
7410
7411Syntax:
7412"""""""
7413
7414::
7415
Tim Northover675a0962014-06-13 14:24:23 +00007416 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007417
7418Overview:
7419"""""""""
7420
7421The '``fence``' instruction is used to introduce happens-before edges
7422between operations.
7423
7424Arguments:
7425""""""""""
7426
7427'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7428defines what *synchronizes-with* edges they add. They can only be given
7429``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7430
7431Semantics:
7432""""""""""
7433
7434A fence A which has (at least) ``release`` ordering semantics
7435*synchronizes with* a fence B with (at least) ``acquire`` ordering
7436semantics if and only if there exist atomic operations X and Y, both
7437operating on some atomic object M, such that A is sequenced before X, X
7438modifies M (either directly or through some side effect of a sequence
7439headed by X), Y is sequenced before B, and Y observes M. This provides a
7440*happens-before* dependency between A and B. Rather than an explicit
7441``fence``, one (but not both) of the atomic operations X or Y might
7442provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7443still *synchronize-with* the explicit ``fence`` and establish the
7444*happens-before* edge.
7445
7446A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7447``acquire`` and ``release`` semantics specified above, participates in
7448the global program order of other ``seq_cst`` operations and/or fences.
7449
7450The optional ":ref:`singlethread <singlethread>`" argument specifies
7451that the fence only synchronizes with other fences in the same thread.
7452(This is useful for interacting with signal handlers.)
7453
7454Example:
7455""""""""
7456
7457.. code-block:: llvm
7458
Tim Northover675a0962014-06-13 14:24:23 +00007459 fence acquire ; yields void
7460 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007461
7462.. _i_cmpxchg:
7463
7464'``cmpxchg``' Instruction
7465^^^^^^^^^^^^^^^^^^^^^^^^^
7466
7467Syntax:
7468"""""""
7469
7470::
7471
Tim Northover675a0962014-06-13 14:24:23 +00007472 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007473
7474Overview:
7475"""""""""
7476
7477The '``cmpxchg``' instruction is used to atomically modify memory. It
7478loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007479equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007480
7481Arguments:
7482""""""""""
7483
7484There are three arguments to the '``cmpxchg``' instruction: an address
7485to operate on, a value to compare to the value currently be at that
7486address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007487are equal. The type of '<cmp>' must be an integer or pointer type whose
7488bit width is a power of two greater than or equal to eight and less
7489than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7490have the same type, and the type of '<pointer>' must be a pointer to
7491that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7492optimizer is not allowed to modify the number or order of execution of
7493this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007494
Tim Northovere94a5182014-03-11 10:48:52 +00007495The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007496``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7497must be at least ``monotonic``, the ordering constraint on failure must be no
7498stronger than that on success, and the failure ordering cannot be either
7499``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007500
7501The optional "``singlethread``" argument declares that the ``cmpxchg``
7502is only atomic with respect to code (usually signal handlers) running in
7503the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7504respect to all other code in the system.
7505
7506The pointer passed into cmpxchg must have alignment greater than or
7507equal to the size in memory of the operand.
7508
7509Semantics:
7510""""""""""
7511
Tim Northover420a2162014-06-13 14:24:07 +00007512The contents of memory at the location specified by the '``<pointer>``' operand
7513is read and compared to '``<cmp>``'; if the read value is the equal, the
7514'``<new>``' is written. The original value at the location is returned, together
7515with a flag indicating success (true) or failure (false).
7516
7517If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7518permitted: the operation may not write ``<new>`` even if the comparison
7519matched.
7520
7521If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7522if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007523
Tim Northovere94a5182014-03-11 10:48:52 +00007524A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7525identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7526load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007527
7528Example:
7529""""""""
7530
7531.. code-block:: llvm
7532
7533 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007534 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007535 br label %loop
7536
7537 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007538 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007539 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007540 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007541 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7542 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007543 br i1 %success, label %done, label %loop
7544
7545 done:
7546 ...
7547
7548.. _i_atomicrmw:
7549
7550'``atomicrmw``' Instruction
7551^^^^^^^^^^^^^^^^^^^^^^^^^^^
7552
7553Syntax:
7554"""""""
7555
7556::
7557
Tim Northover675a0962014-06-13 14:24:23 +00007558 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007559
7560Overview:
7561"""""""""
7562
7563The '``atomicrmw``' instruction is used to atomically modify memory.
7564
7565Arguments:
7566""""""""""
7567
7568There are three arguments to the '``atomicrmw``' instruction: an
7569operation to apply, an address whose value to modify, an argument to the
7570operation. The operation must be one of the following keywords:
7571
7572- xchg
7573- add
7574- sub
7575- and
7576- nand
7577- or
7578- xor
7579- max
7580- min
7581- umax
7582- umin
7583
7584The type of '<value>' must be an integer type whose bit width is a power
7585of two greater than or equal to eight and less than or equal to a
7586target-specific size limit. The type of the '``<pointer>``' operand must
7587be a pointer to that type. If the ``atomicrmw`` is marked as
7588``volatile``, then the optimizer is not allowed to modify the number or
7589order of execution of this ``atomicrmw`` with other :ref:`volatile
7590operations <volatile>`.
7591
7592Semantics:
7593""""""""""
7594
7595The contents of memory at the location specified by the '``<pointer>``'
7596operand are atomically read, modified, and written back. The original
7597value at the location is returned. The modification is specified by the
7598operation argument:
7599
7600- xchg: ``*ptr = val``
7601- add: ``*ptr = *ptr + val``
7602- sub: ``*ptr = *ptr - val``
7603- and: ``*ptr = *ptr & val``
7604- nand: ``*ptr = ~(*ptr & val)``
7605- or: ``*ptr = *ptr | val``
7606- xor: ``*ptr = *ptr ^ val``
7607- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7608- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7609- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7610 comparison)
7611- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7612 comparison)
7613
7614Example:
7615""""""""
7616
7617.. code-block:: llvm
7618
Tim Northover675a0962014-06-13 14:24:23 +00007619 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007620
7621.. _i_getelementptr:
7622
7623'``getelementptr``' Instruction
7624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7625
7626Syntax:
7627"""""""
7628
7629::
7630
Peter Collingbourned93620b2016-11-10 22:34:55 +00007631 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7632 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7633 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007634
7635Overview:
7636"""""""""
7637
7638The '``getelementptr``' instruction is used to get the address of a
7639subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007640address calculation only and does not access memory. The instruction can also
7641be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007642
7643Arguments:
7644""""""""""
7645
David Blaikie16a97eb2015-03-04 22:02:58 +00007646The first argument is always a type used as the basis for the calculations.
7647The second argument is always a pointer or a vector of pointers, and is the
7648base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007649that indicate which of the elements of the aggregate object are indexed.
7650The interpretation of each index is dependent on the type being indexed
7651into. The first index always indexes the pointer value given as the
7652first argument, the second index indexes a value of the type pointed to
7653(not necessarily the value directly pointed to, since the first index
7654can be non-zero), etc. The first type indexed into must be a pointer
7655value, subsequent types can be arrays, vectors, and structs. Note that
7656subsequent types being indexed into can never be pointers, since that
7657would require loading the pointer before continuing calculation.
7658
7659The type of each index argument depends on the type it is indexing into.
7660When indexing into a (optionally packed) structure, only ``i32`` integer
7661**constants** are allowed (when using a vector of indices they must all
7662be the **same** ``i32`` integer constant). When indexing into an array,
7663pointer or vector, integers of any width are allowed, and they are not
7664required to be constant. These integers are treated as signed values
7665where relevant.
7666
7667For example, let's consider a C code fragment and how it gets compiled
7668to LLVM:
7669
7670.. code-block:: c
7671
7672 struct RT {
7673 char A;
7674 int B[10][20];
7675 char C;
7676 };
7677 struct ST {
7678 int X;
7679 double Y;
7680 struct RT Z;
7681 };
7682
7683 int *foo(struct ST *s) {
7684 return &s[1].Z.B[5][13];
7685 }
7686
7687The LLVM code generated by Clang is:
7688
7689.. code-block:: llvm
7690
7691 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7692 %struct.ST = type { i32, double, %struct.RT }
7693
7694 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7695 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007696 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007697 ret i32* %arrayidx
7698 }
7699
7700Semantics:
7701""""""""""
7702
7703In the example above, the first index is indexing into the
7704'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7705= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7706indexes into the third element of the structure, yielding a
7707'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7708structure. The third index indexes into the second element of the
7709structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7710dimensions of the array are subscripted into, yielding an '``i32``'
7711type. The '``getelementptr``' instruction returns a pointer to this
7712element, thus computing a value of '``i32*``' type.
7713
7714Note that it is perfectly legal to index partially through a structure,
7715returning a pointer to an inner element. Because of this, the LLVM code
7716for the given testcase is equivalent to:
7717
7718.. code-block:: llvm
7719
7720 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007721 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7722 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7723 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7724 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7725 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007726 ret i32* %t5
7727 }
7728
7729If the ``inbounds`` keyword is present, the result value of the
7730``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7731pointer is not an *in bounds* address of an allocated object, or if any
7732of the addresses that would be formed by successive addition of the
7733offsets implied by the indices to the base address with infinitely
7734precise signed arithmetic are not an *in bounds* address of that
7735allocated object. The *in bounds* addresses for an allocated object are
7736all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00007737past the end. The only *in bounds* address for a null pointer in the
7738default address-space is the null pointer itself. In cases where the
7739base is a vector of pointers the ``inbounds`` keyword applies to each
7740of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00007741
7742If the ``inbounds`` keyword is not present, the offsets are added to the
7743base address with silently-wrapping two's complement arithmetic. If the
7744offsets have a different width from the pointer, they are sign-extended
7745or truncated to the width of the pointer. The result value of the
7746``getelementptr`` may be outside the object pointed to by the base
7747pointer. The result value may not necessarily be used to access memory
7748though, even if it happens to point into allocated storage. See the
7749:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7750information.
7751
Peter Collingbourned93620b2016-11-10 22:34:55 +00007752If the ``inrange`` keyword is present before any index, loading from or
7753storing to any pointer derived from the ``getelementptr`` has undefined
7754behavior if the load or store would access memory outside of the bounds of
7755the element selected by the index marked as ``inrange``. The result of a
7756pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7757involving memory) involving a pointer derived from a ``getelementptr`` with
7758the ``inrange`` keyword is undefined, with the exception of comparisons
7759in the case where both operands are in the range of the element selected
7760by the ``inrange`` keyword, inclusive of the address one past the end of
7761that element. Note that the ``inrange`` keyword is currently only allowed
7762in constant ``getelementptr`` expressions.
7763
Sean Silvab084af42012-12-07 10:36:55 +00007764The getelementptr instruction is often confusing. For some more insight
7765into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7766
7767Example:
7768""""""""
7769
7770.. code-block:: llvm
7771
7772 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007773 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007774 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007775 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007776 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007777 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007778 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007779 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007780
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007781Vector of pointers:
7782"""""""""""""""""""
7783
7784The ``getelementptr`` returns a vector of pointers, instead of a single address,
7785when one or more of its arguments is a vector. In such cases, all vector
7786arguments should have the same number of elements, and every scalar argument
7787will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007788
7789.. code-block:: llvm
7790
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007791 ; All arguments are vectors:
7792 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7793 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007794
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007795 ; Add the same scalar offset to each pointer of a vector:
7796 ; A[i] = ptrs[i] + offset*sizeof(i8)
7797 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007798
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007799 ; Add distinct offsets to the same pointer:
7800 ; A[i] = ptr + offsets[i]*sizeof(i8)
7801 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007802
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007803 ; In all cases described above the type of the result is <4 x i8*>
7804
7805The two following instructions are equivalent:
7806
7807.. code-block:: llvm
7808
7809 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7810 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7811 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7812 <4 x i32> %ind4,
7813 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007814
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007815 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7816 i32 2, i32 1, <4 x i32> %ind4, i64 13
7817
7818Let's look at the C code, where the vector version of ``getelementptr``
7819makes sense:
7820
7821.. code-block:: c
7822
7823 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00007824 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007825 for (int i = 0; i < size; ++i) {
7826 A[i] = B[C[i]];
7827 }
7828
7829.. code-block:: llvm
7830
7831 ; get pointers for 8 elements from array B
7832 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7833 ; load 8 elements from array B into A
7834 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7835 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007836
7837Conversion Operations
7838---------------------
7839
7840The instructions in this category are the conversion instructions
7841(casting) which all take a single operand and a type. They perform
7842various bit conversions on the operand.
7843
7844'``trunc .. to``' Instruction
7845^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7846
7847Syntax:
7848"""""""
7849
7850::
7851
7852 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7853
7854Overview:
7855"""""""""
7856
7857The '``trunc``' instruction truncates its operand to the type ``ty2``.
7858
7859Arguments:
7860""""""""""
7861
7862The '``trunc``' instruction takes a value to trunc, and a type to trunc
7863it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7864of the same number of integers. The bit size of the ``value`` must be
7865larger than the bit size of the destination type, ``ty2``. Equal sized
7866types are not allowed.
7867
7868Semantics:
7869""""""""""
7870
7871The '``trunc``' instruction truncates the high order bits in ``value``
7872and converts the remaining bits to ``ty2``. Since the source size must
7873be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7874It will always truncate bits.
7875
7876Example:
7877""""""""
7878
7879.. code-block:: llvm
7880
7881 %X = trunc i32 257 to i8 ; yields i8:1
7882 %Y = trunc i32 123 to i1 ; yields i1:true
7883 %Z = trunc i32 122 to i1 ; yields i1:false
7884 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7885
7886'``zext .. to``' Instruction
7887^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7888
7889Syntax:
7890"""""""
7891
7892::
7893
7894 <result> = zext <ty> <value> to <ty2> ; yields ty2
7895
7896Overview:
7897"""""""""
7898
7899The '``zext``' instruction zero extends its operand to type ``ty2``.
7900
7901Arguments:
7902""""""""""
7903
7904The '``zext``' instruction takes a value to cast, and a type to cast it
7905to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7906the same number of integers. The bit size of the ``value`` must be
7907smaller than the bit size of the destination type, ``ty2``.
7908
7909Semantics:
7910""""""""""
7911
7912The ``zext`` fills the high order bits of the ``value`` with zero bits
7913until it reaches the size of the destination type, ``ty2``.
7914
7915When zero extending from i1, the result will always be either 0 or 1.
7916
7917Example:
7918""""""""
7919
7920.. code-block:: llvm
7921
7922 %X = zext i32 257 to i64 ; yields i64:257
7923 %Y = zext i1 true to i32 ; yields i32:1
7924 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7925
7926'``sext .. to``' Instruction
7927^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7928
7929Syntax:
7930"""""""
7931
7932::
7933
7934 <result> = sext <ty> <value> to <ty2> ; yields ty2
7935
7936Overview:
7937"""""""""
7938
7939The '``sext``' sign extends ``value`` to the type ``ty2``.
7940
7941Arguments:
7942""""""""""
7943
7944The '``sext``' instruction takes a value to cast, and a type to cast it
7945to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7946the same number of integers. The bit size of the ``value`` must be
7947smaller than the bit size of the destination type, ``ty2``.
7948
7949Semantics:
7950""""""""""
7951
7952The '``sext``' instruction performs a sign extension by copying the sign
7953bit (highest order bit) of the ``value`` until it reaches the bit size
7954of the type ``ty2``.
7955
7956When sign extending from i1, the extension always results in -1 or 0.
7957
7958Example:
7959""""""""
7960
7961.. code-block:: llvm
7962
7963 %X = sext i8 -1 to i16 ; yields i16 :65535
7964 %Y = sext i1 true to i32 ; yields i32:-1
7965 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7966
7967'``fptrunc .. to``' Instruction
7968^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7969
7970Syntax:
7971"""""""
7972
7973::
7974
7975 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7976
7977Overview:
7978"""""""""
7979
7980The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7981
7982Arguments:
7983""""""""""
7984
7985The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7986value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7987The size of ``value`` must be larger than the size of ``ty2``. This
7988implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7989
7990Semantics:
7991""""""""""
7992
Dan Liew50456fb2015-09-03 18:43:56 +00007993The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007994:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007995point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7996destination type, ``ty2``, then the results are undefined. If the cast produces
7997an inexact result, how rounding is performed (e.g. truncation, also known as
7998round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007999
8000Example:
8001""""""""
8002
8003.. code-block:: llvm
8004
8005 %X = fptrunc double 123.0 to float ; yields float:123.0
8006 %Y = fptrunc double 1.0E+300 to float ; yields undefined
8007
8008'``fpext .. to``' Instruction
8009^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8010
8011Syntax:
8012"""""""
8013
8014::
8015
8016 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8017
8018Overview:
8019"""""""""
8020
8021The '``fpext``' extends a floating point ``value`` to a larger floating
8022point value.
8023
8024Arguments:
8025""""""""""
8026
8027The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
8028``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
8029to. The source type must be smaller than the destination type.
8030
8031Semantics:
8032""""""""""
8033
8034The '``fpext``' instruction extends the ``value`` from a smaller
8035:ref:`floating point <t_floating>` type to a larger :ref:`floating
8036point <t_floating>` type. The ``fpext`` cannot be used to make a
8037*no-op cast* because it always changes bits. Use ``bitcast`` to make a
8038*no-op cast* for a floating point cast.
8039
8040Example:
8041""""""""
8042
8043.. code-block:: llvm
8044
8045 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8046 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8047
8048'``fptoui .. to``' Instruction
8049^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8050
8051Syntax:
8052"""""""
8053
8054::
8055
8056 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8057
8058Overview:
8059"""""""""
8060
8061The '``fptoui``' converts a floating point ``value`` to its unsigned
8062integer equivalent of type ``ty2``.
8063
8064Arguments:
8065""""""""""
8066
8067The '``fptoui``' instruction takes a value to cast, which must be a
8068scalar or vector :ref:`floating point <t_floating>` value, and a type to
8069cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8070``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8071type with the same number of elements as ``ty``
8072
8073Semantics:
8074""""""""""
8075
8076The '``fptoui``' instruction converts its :ref:`floating
8077point <t_floating>` operand into the nearest (rounding towards zero)
8078unsigned integer value. If the value cannot fit in ``ty2``, the results
8079are undefined.
8080
8081Example:
8082""""""""
8083
8084.. code-block:: llvm
8085
8086 %X = fptoui double 123.0 to i32 ; yields i32:123
8087 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8088 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8089
8090'``fptosi .. to``' Instruction
8091^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8092
8093Syntax:
8094"""""""
8095
8096::
8097
8098 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8099
8100Overview:
8101"""""""""
8102
8103The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
8104``value`` to type ``ty2``.
8105
8106Arguments:
8107""""""""""
8108
8109The '``fptosi``' instruction takes a value to cast, which must be a
8110scalar or vector :ref:`floating point <t_floating>` value, and a type to
8111cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8112``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8113type with the same number of elements as ``ty``
8114
8115Semantics:
8116""""""""""
8117
8118The '``fptosi``' instruction converts its :ref:`floating
8119point <t_floating>` operand into the nearest (rounding towards zero)
8120signed integer value. If the value cannot fit in ``ty2``, the results
8121are undefined.
8122
8123Example:
8124""""""""
8125
8126.. code-block:: llvm
8127
8128 %X = fptosi double -123.0 to i32 ; yields i32:-123
8129 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8130 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8131
8132'``uitofp .. to``' Instruction
8133^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8134
8135Syntax:
8136"""""""
8137
8138::
8139
8140 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8141
8142Overview:
8143"""""""""
8144
8145The '``uitofp``' instruction regards ``value`` as an unsigned integer
8146and converts that value to the ``ty2`` type.
8147
8148Arguments:
8149""""""""""
8150
8151The '``uitofp``' instruction takes a value to cast, which must be a
8152scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8153``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8154``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8155type with the same number of elements as ``ty``
8156
8157Semantics:
8158""""""""""
8159
8160The '``uitofp``' instruction interprets its operand as an unsigned
8161integer quantity and converts it to the corresponding floating point
8162value. If the value cannot fit in the floating point value, the results
8163are undefined.
8164
8165Example:
8166""""""""
8167
8168.. code-block:: llvm
8169
8170 %X = uitofp i32 257 to float ; yields float:257.0
8171 %Y = uitofp i8 -1 to double ; yields double:255.0
8172
8173'``sitofp .. to``' Instruction
8174^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8175
8176Syntax:
8177"""""""
8178
8179::
8180
8181 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8182
8183Overview:
8184"""""""""
8185
8186The '``sitofp``' instruction regards ``value`` as a signed integer and
8187converts that value to the ``ty2`` type.
8188
8189Arguments:
8190""""""""""
8191
8192The '``sitofp``' instruction takes a value to cast, which must be a
8193scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8194``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8195``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8196type with the same number of elements as ``ty``
8197
8198Semantics:
8199""""""""""
8200
8201The '``sitofp``' instruction interprets its operand as a signed integer
8202quantity and converts it to the corresponding floating point value. If
8203the value cannot fit in the floating point value, the results are
8204undefined.
8205
8206Example:
8207""""""""
8208
8209.. code-block:: llvm
8210
8211 %X = sitofp i32 257 to float ; yields float:257.0
8212 %Y = sitofp i8 -1 to double ; yields double:-1.0
8213
8214.. _i_ptrtoint:
8215
8216'``ptrtoint .. to``' Instruction
8217^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8218
8219Syntax:
8220"""""""
8221
8222::
8223
8224 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8225
8226Overview:
8227"""""""""
8228
8229The '``ptrtoint``' instruction converts the pointer or a vector of
8230pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8231
8232Arguments:
8233""""""""""
8234
8235The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008236a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008237type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8238a vector of integers type.
8239
8240Semantics:
8241""""""""""
8242
8243The '``ptrtoint``' instruction converts ``value`` to integer type
8244``ty2`` by interpreting the pointer value as an integer and either
8245truncating or zero extending that value to the size of the integer type.
8246If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8247``value`` is larger than ``ty2`` then a truncation is done. If they are
8248the same size, then nothing is done (*no-op cast*) other than a type
8249change.
8250
8251Example:
8252""""""""
8253
8254.. code-block:: llvm
8255
8256 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8257 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8258 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8259
8260.. _i_inttoptr:
8261
8262'``inttoptr .. to``' Instruction
8263^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8264
8265Syntax:
8266"""""""
8267
8268::
8269
8270 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8271
8272Overview:
8273"""""""""
8274
8275The '``inttoptr``' instruction converts an integer ``value`` to a
8276pointer type, ``ty2``.
8277
8278Arguments:
8279""""""""""
8280
8281The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8282cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8283type.
8284
8285Semantics:
8286""""""""""
8287
8288The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8289applying either a zero extension or a truncation depending on the size
8290of the integer ``value``. If ``value`` is larger than the size of a
8291pointer then a truncation is done. If ``value`` is smaller than the size
8292of a pointer then a zero extension is done. If they are the same size,
8293nothing is done (*no-op cast*).
8294
8295Example:
8296""""""""
8297
8298.. code-block:: llvm
8299
8300 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8301 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8302 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8303 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8304
8305.. _i_bitcast:
8306
8307'``bitcast .. to``' Instruction
8308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8309
8310Syntax:
8311"""""""
8312
8313::
8314
8315 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8316
8317Overview:
8318"""""""""
8319
8320The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8321changing any bits.
8322
8323Arguments:
8324""""""""""
8325
8326The '``bitcast``' instruction takes a value to cast, which must be a
8327non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008328also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8329bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008330identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008331also be a pointer of the same size. This instruction supports bitwise
8332conversion of vectors to integers and to vectors of other types (as
8333long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008334
8335Semantics:
8336""""""""""
8337
Matt Arsenault24b49c42013-07-31 17:49:08 +00008338The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8339is always a *no-op cast* because no bits change with this
8340conversion. The conversion is done as if the ``value`` had been stored
8341to memory and read back as type ``ty2``. Pointer (or vector of
8342pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008343pointers) types with the same address space through this instruction.
8344To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8345or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008346
8347Example:
8348""""""""
8349
Renato Golin124f2592016-07-20 12:16:38 +00008350.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008351
8352 %X = bitcast i8 255 to i8 ; yields i8 :-1
8353 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8354 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8355 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8356
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008357.. _i_addrspacecast:
8358
8359'``addrspacecast .. to``' Instruction
8360^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8361
8362Syntax:
8363"""""""
8364
8365::
8366
8367 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8368
8369Overview:
8370"""""""""
8371
8372The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8373address space ``n`` to type ``pty2`` in address space ``m``.
8374
8375Arguments:
8376""""""""""
8377
8378The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8379to cast and a pointer type to cast it to, which must have a different
8380address space.
8381
8382Semantics:
8383""""""""""
8384
8385The '``addrspacecast``' instruction converts the pointer value
8386``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008387value modification, depending on the target and the address space
8388pair. Pointer conversions within the same address space must be
8389performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008390conversion is legal then both result and operand refer to the same memory
8391location.
8392
8393Example:
8394""""""""
8395
8396.. code-block:: llvm
8397
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008398 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8399 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8400 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008401
Sean Silvab084af42012-12-07 10:36:55 +00008402.. _otherops:
8403
8404Other Operations
8405----------------
8406
8407The instructions in this category are the "miscellaneous" instructions,
8408which defy better classification.
8409
8410.. _i_icmp:
8411
8412'``icmp``' Instruction
8413^^^^^^^^^^^^^^^^^^^^^^
8414
8415Syntax:
8416"""""""
8417
8418::
8419
Tim Northover675a0962014-06-13 14:24:23 +00008420 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008421
8422Overview:
8423"""""""""
8424
8425The '``icmp``' instruction returns a boolean value or a vector of
8426boolean values based on comparison of its two integer, integer vector,
8427pointer, or pointer vector operands.
8428
8429Arguments:
8430""""""""""
8431
8432The '``icmp``' instruction takes three operands. The first operand is
8433the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008434not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008435
8436#. ``eq``: equal
8437#. ``ne``: not equal
8438#. ``ugt``: unsigned greater than
8439#. ``uge``: unsigned greater or equal
8440#. ``ult``: unsigned less than
8441#. ``ule``: unsigned less or equal
8442#. ``sgt``: signed greater than
8443#. ``sge``: signed greater or equal
8444#. ``slt``: signed less than
8445#. ``sle``: signed less or equal
8446
8447The remaining two arguments must be :ref:`integer <t_integer>` or
8448:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8449must also be identical types.
8450
8451Semantics:
8452""""""""""
8453
8454The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8455code given as ``cond``. The comparison performed always yields either an
8456:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8457
8458#. ``eq``: yields ``true`` if the operands are equal, ``false``
8459 otherwise. No sign interpretation is necessary or performed.
8460#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8461 otherwise. No sign interpretation is necessary or performed.
8462#. ``ugt``: interprets the operands as unsigned values and yields
8463 ``true`` if ``op1`` is greater than ``op2``.
8464#. ``uge``: interprets the operands as unsigned values and yields
8465 ``true`` if ``op1`` is greater than or equal to ``op2``.
8466#. ``ult``: interprets the operands as unsigned values and yields
8467 ``true`` if ``op1`` is less than ``op2``.
8468#. ``ule``: interprets the operands as unsigned values and yields
8469 ``true`` if ``op1`` is less than or equal to ``op2``.
8470#. ``sgt``: interprets the operands as signed values and yields ``true``
8471 if ``op1`` is greater than ``op2``.
8472#. ``sge``: interprets the operands as signed values and yields ``true``
8473 if ``op1`` is greater than or equal to ``op2``.
8474#. ``slt``: interprets the operands as signed values and yields ``true``
8475 if ``op1`` is less than ``op2``.
8476#. ``sle``: interprets the operands as signed values and yields ``true``
8477 if ``op1`` is less than or equal to ``op2``.
8478
8479If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8480are compared as if they were integers.
8481
8482If the operands are integer vectors, then they are compared element by
8483element. The result is an ``i1`` vector with the same number of elements
8484as the values being compared. Otherwise, the result is an ``i1``.
8485
8486Example:
8487""""""""
8488
Renato Golin124f2592016-07-20 12:16:38 +00008489.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008490
8491 <result> = icmp eq i32 4, 5 ; yields: result=false
8492 <result> = icmp ne float* %X, %X ; yields: result=false
8493 <result> = icmp ult i16 4, 5 ; yields: result=true
8494 <result> = icmp sgt i16 4, 5 ; yields: result=false
8495 <result> = icmp ule i16 -4, 5 ; yields: result=false
8496 <result> = icmp sge i16 4, 5 ; yields: result=false
8497
Sean Silvab084af42012-12-07 10:36:55 +00008498.. _i_fcmp:
8499
8500'``fcmp``' Instruction
8501^^^^^^^^^^^^^^^^^^^^^^
8502
8503Syntax:
8504"""""""
8505
8506::
8507
James Molloy88eb5352015-07-10 12:52:00 +00008508 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008509
8510Overview:
8511"""""""""
8512
8513The '``fcmp``' instruction returns a boolean value or vector of boolean
8514values based on comparison of its operands.
8515
8516If the operands are floating point scalars, then the result type is a
8517boolean (:ref:`i1 <t_integer>`).
8518
8519If the operands are floating point vectors, then the result type is a
8520vector of boolean with the same number of elements as the operands being
8521compared.
8522
8523Arguments:
8524""""""""""
8525
8526The '``fcmp``' instruction takes three operands. The first operand is
8527the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008528not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008529
8530#. ``false``: no comparison, always returns false
8531#. ``oeq``: ordered and equal
8532#. ``ogt``: ordered and greater than
8533#. ``oge``: ordered and greater than or equal
8534#. ``olt``: ordered and less than
8535#. ``ole``: ordered and less than or equal
8536#. ``one``: ordered and not equal
8537#. ``ord``: ordered (no nans)
8538#. ``ueq``: unordered or equal
8539#. ``ugt``: unordered or greater than
8540#. ``uge``: unordered or greater than or equal
8541#. ``ult``: unordered or less than
8542#. ``ule``: unordered or less than or equal
8543#. ``une``: unordered or not equal
8544#. ``uno``: unordered (either nans)
8545#. ``true``: no comparison, always returns true
8546
8547*Ordered* means that neither operand is a QNAN while *unordered* means
8548that either operand may be a QNAN.
8549
8550Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8551point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8552type. They must have identical types.
8553
8554Semantics:
8555""""""""""
8556
8557The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8558condition code given as ``cond``. If the operands are vectors, then the
8559vectors are compared element by element. Each comparison performed
8560always yields an :ref:`i1 <t_integer>` result, as follows:
8561
8562#. ``false``: always yields ``false``, regardless of operands.
8563#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8564 is equal to ``op2``.
8565#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8566 is greater than ``op2``.
8567#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8568 is greater than or equal to ``op2``.
8569#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8570 is less than ``op2``.
8571#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8572 is less than or equal to ``op2``.
8573#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8574 is not equal to ``op2``.
8575#. ``ord``: yields ``true`` if both operands are not a QNAN.
8576#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8577 equal to ``op2``.
8578#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8579 greater than ``op2``.
8580#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8581 greater than or equal to ``op2``.
8582#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8583 less than ``op2``.
8584#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8585 less than or equal to ``op2``.
8586#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8587 not equal to ``op2``.
8588#. ``uno``: yields ``true`` if either operand is a QNAN.
8589#. ``true``: always yields ``true``, regardless of operands.
8590
James Molloy88eb5352015-07-10 12:52:00 +00008591The ``fcmp`` instruction can also optionally take any number of
8592:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8593otherwise unsafe floating point optimizations.
8594
8595Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8596only flags that have any effect on its semantics are those that allow
8597assumptions to be made about the values of input arguments; namely
8598``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8599
Sean Silvab084af42012-12-07 10:36:55 +00008600Example:
8601""""""""
8602
Renato Golin124f2592016-07-20 12:16:38 +00008603.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008604
8605 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8606 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8607 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8608 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8609
Sean Silvab084af42012-12-07 10:36:55 +00008610.. _i_phi:
8611
8612'``phi``' Instruction
8613^^^^^^^^^^^^^^^^^^^^^
8614
8615Syntax:
8616"""""""
8617
8618::
8619
8620 <result> = phi <ty> [ <val0>, <label0>], ...
8621
8622Overview:
8623"""""""""
8624
8625The '``phi``' instruction is used to implement the φ node in the SSA
8626graph representing the function.
8627
8628Arguments:
8629""""""""""
8630
8631The type of the incoming values is specified with the first type field.
8632After this, the '``phi``' instruction takes a list of pairs as
8633arguments, with one pair for each predecessor basic block of the current
8634block. Only values of :ref:`first class <t_firstclass>` type may be used as
8635the value arguments to the PHI node. Only labels may be used as the
8636label arguments.
8637
8638There must be no non-phi instructions between the start of a basic block
8639and the PHI instructions: i.e. PHI instructions must be first in a basic
8640block.
8641
8642For the purposes of the SSA form, the use of each incoming value is
8643deemed to occur on the edge from the corresponding predecessor block to
8644the current block (but after any definition of an '``invoke``'
8645instruction's return value on the same edge).
8646
8647Semantics:
8648""""""""""
8649
8650At runtime, the '``phi``' instruction logically takes on the value
8651specified by the pair corresponding to the predecessor basic block that
8652executed just prior to the current block.
8653
8654Example:
8655""""""""
8656
8657.. code-block:: llvm
8658
8659 Loop: ; Infinite loop that counts from 0 on up...
8660 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8661 %nextindvar = add i32 %indvar, 1
8662 br label %Loop
8663
8664.. _i_select:
8665
8666'``select``' Instruction
8667^^^^^^^^^^^^^^^^^^^^^^^^
8668
8669Syntax:
8670"""""""
8671
8672::
8673
8674 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8675
8676 selty is either i1 or {<N x i1>}
8677
8678Overview:
8679"""""""""
8680
8681The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008682condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008683
8684Arguments:
8685""""""""""
8686
8687The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8688values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008689class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008690
8691Semantics:
8692""""""""""
8693
8694If the condition is an i1 and it evaluates to 1, the instruction returns
8695the first value argument; otherwise, it returns the second value
8696argument.
8697
8698If the condition is a vector of i1, then the value arguments must be
8699vectors of the same size, and the selection is done element by element.
8700
David Majnemer40a0b592015-03-03 22:45:47 +00008701If the condition is an i1 and the value arguments are vectors of the
8702same size, then an entire vector is selected.
8703
Sean Silvab084af42012-12-07 10:36:55 +00008704Example:
8705""""""""
8706
8707.. code-block:: llvm
8708
8709 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8710
8711.. _i_call:
8712
8713'``call``' Instruction
8714^^^^^^^^^^^^^^^^^^^^^^
8715
8716Syntax:
8717"""""""
8718
8719::
8720
David Blaikieb83cf102016-07-13 17:21:34 +00008721 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008722 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008723
8724Overview:
8725"""""""""
8726
8727The '``call``' instruction represents a simple function call.
8728
8729Arguments:
8730""""""""""
8731
8732This instruction requires several arguments:
8733
Reid Kleckner5772b772014-04-24 20:14:34 +00008734#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008735 should perform tail call optimization. The ``tail`` marker is a hint that
8736 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008737 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008738 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008739
8740 #. The call will not cause unbounded stack growth if it is part of a
8741 recursive cycle in the call graph.
8742 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8743 forwarded in place.
8744
8745 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008746 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008747 rules:
8748
8749 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8750 or a pointer bitcast followed by a ret instruction.
8751 - The ret instruction must return the (possibly bitcasted) value
8752 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008753 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008754 parameters or return types may differ in pointee type, but not
8755 in address space.
8756 - The calling conventions of the caller and callee must match.
8757 - All ABI-impacting function attributes, such as sret, byval, inreg,
8758 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008759 - The callee must be varargs iff the caller is varargs. Bitcasting a
8760 non-varargs function to the appropriate varargs type is legal so
8761 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008762
8763 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8764 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008765
8766 - Caller and callee both have the calling convention ``fastcc``.
8767 - The call is in tail position (ret immediately follows call and ret
8768 uses value of call or is void).
8769 - Option ``-tailcallopt`` is enabled, or
8770 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008771 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008772 met. <CodeGenerator.html#tailcallopt>`_
8773
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008774#. The optional ``notail`` marker indicates that the optimizers should not add
8775 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8776 call optimization from being performed on the call.
8777
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008778#. The optional ``fast-math flags`` marker indicates that the call has one or more
8779 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8780 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8781 for calls that return a floating-point scalar or vector type.
8782
Sean Silvab084af42012-12-07 10:36:55 +00008783#. The optional "cconv" marker indicates which :ref:`calling
8784 convention <callingconv>` the call should use. If none is
8785 specified, the call defaults to using C calling conventions. The
8786 calling convention of the call must match the calling convention of
8787 the target function, or else the behavior is undefined.
8788#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8789 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8790 are valid here.
8791#. '``ty``': the type of the call instruction itself which is also the
8792 type of the return value. Functions that return no value are marked
8793 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008794#. '``fnty``': shall be the signature of the function being called. The
8795 argument types must match the types implied by this signature. This
8796 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008797#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008798 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008799 indirect ``call``'s are just as possible, calling an arbitrary pointer
8800 to function value.
8801#. '``function args``': argument list whose types match the function
8802 signature argument types and parameter attributes. All arguments must
8803 be of :ref:`first class <t_firstclass>` type. If the function signature
8804 indicates the function accepts a variable number of arguments, the
8805 extra arguments can be specified.
8806#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008807 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8808 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008809#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008810
8811Semantics:
8812""""""""""
8813
8814The '``call``' instruction is used to cause control flow to transfer to
8815a specified function, with its incoming arguments bound to the specified
8816values. Upon a '``ret``' instruction in the called function, control
8817flow continues with the instruction after the function call, and the
8818return value of the function is bound to the result argument.
8819
8820Example:
8821""""""""
8822
8823.. code-block:: llvm
8824
8825 %retval = call i32 @test(i32 %argc)
8826 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8827 %X = tail call i32 @foo() ; yields i32
8828 %Y = tail call fastcc i32 @foo() ; yields i32
8829 call void %foo(i8 97 signext)
8830
8831 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008832 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008833 %gr = extractvalue %struct.A %r, 0 ; yields i32
8834 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8835 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8836 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8837
8838llvm treats calls to some functions with names and arguments that match
8839the standard C99 library as being the C99 library functions, and may
8840perform optimizations or generate code for them under that assumption.
8841This is something we'd like to change in the future to provide better
8842support for freestanding environments and non-C-based languages.
8843
8844.. _i_va_arg:
8845
8846'``va_arg``' Instruction
8847^^^^^^^^^^^^^^^^^^^^^^^^
8848
8849Syntax:
8850"""""""
8851
8852::
8853
8854 <resultval> = va_arg <va_list*> <arglist>, <argty>
8855
8856Overview:
8857"""""""""
8858
8859The '``va_arg``' instruction is used to access arguments passed through
8860the "variable argument" area of a function call. It is used to implement
8861the ``va_arg`` macro in C.
8862
8863Arguments:
8864""""""""""
8865
8866This instruction takes a ``va_list*`` value and the type of the
8867argument. It returns a value of the specified argument type and
8868increments the ``va_list`` to point to the next argument. The actual
8869type of ``va_list`` is target specific.
8870
8871Semantics:
8872""""""""""
8873
8874The '``va_arg``' instruction loads an argument of the specified type
8875from the specified ``va_list`` and causes the ``va_list`` to point to
8876the next argument. For more information, see the variable argument
8877handling :ref:`Intrinsic Functions <int_varargs>`.
8878
8879It is legal for this instruction to be called in a function which does
8880not take a variable number of arguments, for example, the ``vfprintf``
8881function.
8882
8883``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8884function <intrinsics>` because it takes a type as an argument.
8885
8886Example:
8887""""""""
8888
8889See the :ref:`variable argument processing <int_varargs>` section.
8890
8891Note that the code generator does not yet fully support va\_arg on many
8892targets. Also, it does not currently support va\_arg with aggregate
8893types on any target.
8894
8895.. _i_landingpad:
8896
8897'``landingpad``' Instruction
8898^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8899
8900Syntax:
8901"""""""
8902
8903::
8904
David Majnemer7fddecc2015-06-17 20:52:32 +00008905 <resultval> = landingpad <resultty> <clause>+
8906 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008907
8908 <clause> := catch <type> <value>
8909 <clause> := filter <array constant type> <array constant>
8910
8911Overview:
8912"""""""""
8913
8914The '``landingpad``' instruction is used by `LLVM's exception handling
8915system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008916is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008917code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008918defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008919re-entry to the function. The ``resultval`` has the type ``resultty``.
8920
8921Arguments:
8922""""""""""
8923
David Majnemer7fddecc2015-06-17 20:52:32 +00008924The optional
Sean Silvab084af42012-12-07 10:36:55 +00008925``cleanup`` flag indicates that the landing pad block is a cleanup.
8926
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008927A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008928contains the global variable representing the "type" that may be caught
8929or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8930clause takes an array constant as its argument. Use
8931"``[0 x i8**] undef``" for a filter which cannot throw. The
8932'``landingpad``' instruction must contain *at least* one ``clause`` or
8933the ``cleanup`` flag.
8934
8935Semantics:
8936""""""""""
8937
8938The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008939:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008940therefore the "result type" of the ``landingpad`` instruction. As with
8941calling conventions, how the personality function results are
8942represented in LLVM IR is target specific.
8943
8944The clauses are applied in order from top to bottom. If two
8945``landingpad`` instructions are merged together through inlining, the
8946clauses from the calling function are appended to the list of clauses.
8947When the call stack is being unwound due to an exception being thrown,
8948the exception is compared against each ``clause`` in turn. If it doesn't
8949match any of the clauses, and the ``cleanup`` flag is not set, then
8950unwinding continues further up the call stack.
8951
8952The ``landingpad`` instruction has several restrictions:
8953
8954- A landing pad block is a basic block which is the unwind destination
8955 of an '``invoke``' instruction.
8956- A landing pad block must have a '``landingpad``' instruction as its
8957 first non-PHI instruction.
8958- There can be only one '``landingpad``' instruction within the landing
8959 pad block.
8960- A basic block that is not a landing pad block may not include a
8961 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008962
8963Example:
8964""""""""
8965
8966.. code-block:: llvm
8967
8968 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008969 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008970 catch i8** @_ZTIi
8971 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008972 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008973 cleanup
8974 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008975 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008976 catch i8** @_ZTIi
8977 filter [1 x i8**] [@_ZTId]
8978
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008979.. _i_catchpad:
8980
8981'``catchpad``' Instruction
8982^^^^^^^^^^^^^^^^^^^^^^^^^^
8983
8984Syntax:
8985"""""""
8986
8987::
8988
8989 <resultval> = catchpad within <catchswitch> [<args>*]
8990
8991Overview:
8992"""""""""
8993
8994The '``catchpad``' instruction is used by `LLVM's exception handling
8995system <ExceptionHandling.html#overview>`_ to specify that a basic block
8996begins a catch handler --- one where a personality routine attempts to transfer
8997control to catch an exception.
8998
8999Arguments:
9000""""""""""
9001
9002The ``catchswitch`` operand must always be a token produced by a
9003:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9004ensures that each ``catchpad`` has exactly one predecessor block, and it always
9005terminates in a ``catchswitch``.
9006
9007The ``args`` correspond to whatever information the personality routine
9008requires to know if this is an appropriate handler for the exception. Control
9009will transfer to the ``catchpad`` if this is the first appropriate handler for
9010the exception.
9011
9012The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9013``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9014pads.
9015
9016Semantics:
9017""""""""""
9018
9019When the call stack is being unwound due to an exception being thrown, the
9020exception is compared against the ``args``. If it doesn't match, control will
9021not reach the ``catchpad`` instruction. The representation of ``args`` is
9022entirely target and personality function-specific.
9023
9024Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9025instruction must be the first non-phi of its parent basic block.
9026
9027The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9028instructions is described in the
9029`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9030
9031When a ``catchpad`` has been "entered" but not yet "exited" (as
9032described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9033it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9034that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9035
9036Example:
9037""""""""
9038
Renato Golin124f2592016-07-20 12:16:38 +00009039.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009040
9041 dispatch:
9042 %cs = catchswitch within none [label %handler0] unwind to caller
9043 ;; A catch block which can catch an integer.
9044 handler0:
9045 %tok = catchpad within %cs [i8** @_ZTIi]
9046
David Majnemer654e1302015-07-31 17:58:14 +00009047.. _i_cleanuppad:
9048
9049'``cleanuppad``' Instruction
9050^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9051
9052Syntax:
9053"""""""
9054
9055::
9056
David Majnemer8a1c45d2015-12-12 05:38:55 +00009057 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009058
9059Overview:
9060"""""""""
9061
9062The '``cleanuppad``' instruction is used by `LLVM's exception handling
9063system <ExceptionHandling.html#overview>`_ to specify that a basic block
9064is a cleanup block --- one where a personality routine attempts to
9065transfer control to run cleanup actions.
9066The ``args`` correspond to whatever additional
9067information the :ref:`personality function <personalityfn>` requires to
9068execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009069The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009070match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9071The ``parent`` argument is the token of the funclet that contains the
9072``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9073this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009074
9075Arguments:
9076""""""""""
9077
9078The instruction takes a list of arbitrary values which are interpreted
9079by the :ref:`personality function <personalityfn>`.
9080
9081Semantics:
9082""""""""""
9083
David Majnemer654e1302015-07-31 17:58:14 +00009084When the call stack is being unwound due to an exception being thrown,
9085the :ref:`personality function <personalityfn>` transfers control to the
9086``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009087As with calling conventions, how the personality function results are
9088represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009089
9090The ``cleanuppad`` instruction has several restrictions:
9091
9092- A cleanup block is a basic block which is the unwind destination of
9093 an exceptional instruction.
9094- A cleanup block must have a '``cleanuppad``' instruction as its
9095 first non-PHI instruction.
9096- There can be only one '``cleanuppad``' instruction within the
9097 cleanup block.
9098- A basic block that is not a cleanup block may not include a
9099 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009100
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009101When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9102described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9103it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9104that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009105
David Majnemer654e1302015-07-31 17:58:14 +00009106Example:
9107""""""""
9108
Renato Golin124f2592016-07-20 12:16:38 +00009109.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009110
David Majnemer8a1c45d2015-12-12 05:38:55 +00009111 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009112
Sean Silvab084af42012-12-07 10:36:55 +00009113.. _intrinsics:
9114
9115Intrinsic Functions
9116===================
9117
9118LLVM supports the notion of an "intrinsic function". These functions
9119have well known names and semantics and are required to follow certain
9120restrictions. Overall, these intrinsics represent an extension mechanism
9121for the LLVM language that does not require changing all of the
9122transformations in LLVM when adding to the language (or the bitcode
9123reader/writer, the parser, etc...).
9124
9125Intrinsic function names must all start with an "``llvm.``" prefix. This
9126prefix is reserved in LLVM for intrinsic names; thus, function names may
9127not begin with this prefix. Intrinsic functions must always be external
9128functions: you cannot define the body of intrinsic functions. Intrinsic
9129functions may only be used in call or invoke instructions: it is illegal
9130to take the address of an intrinsic function. Additionally, because
9131intrinsic functions are part of the LLVM language, it is required if any
9132are added that they be documented here.
9133
9134Some intrinsic functions can be overloaded, i.e., the intrinsic
9135represents a family of functions that perform the same operation but on
9136different data types. Because LLVM can represent over 8 million
9137different integer types, overloading is used commonly to allow an
9138intrinsic function to operate on any integer type. One or more of the
9139argument types or the result type can be overloaded to accept any
9140integer type. Argument types may also be defined as exactly matching a
9141previous argument's type or the result type. This allows an intrinsic
9142function which accepts multiple arguments, but needs all of them to be
9143of the same type, to only be overloaded with respect to a single
9144argument or the result.
9145
9146Overloaded intrinsics will have the names of its overloaded argument
9147types encoded into its function name, each preceded by a period. Only
9148those types which are overloaded result in a name suffix. Arguments
9149whose type is matched against another type do not. For example, the
9150``llvm.ctpop`` function can take an integer of any width and returns an
9151integer of exactly the same integer width. This leads to a family of
9152functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9153``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9154overloaded, and only one type suffix is required. Because the argument's
9155type is matched against the return type, it does not require its own
9156name suffix.
9157
9158To learn how to add an intrinsic function, please see the `Extending
9159LLVM Guide <ExtendingLLVM.html>`_.
9160
9161.. _int_varargs:
9162
9163Variable Argument Handling Intrinsics
9164-------------------------------------
9165
9166Variable argument support is defined in LLVM with the
9167:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9168functions. These functions are related to the similarly named macros
9169defined in the ``<stdarg.h>`` header file.
9170
9171All of these functions operate on arguments that use a target-specific
9172value type "``va_list``". The LLVM assembly language reference manual
9173does not define what this type is, so all transformations should be
9174prepared to handle these functions regardless of the type used.
9175
9176This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9177variable argument handling intrinsic functions are used.
9178
9179.. code-block:: llvm
9180
Tim Northoverab60bb92014-11-02 01:21:51 +00009181 ; This struct is different for every platform. For most platforms,
9182 ; it is merely an i8*.
9183 %struct.va_list = type { i8* }
9184
9185 ; For Unix x86_64 platforms, va_list is the following struct:
9186 ; %struct.va_list = type { i32, i32, i8*, i8* }
9187
Sean Silvab084af42012-12-07 10:36:55 +00009188 define i32 @test(i32 %X, ...) {
9189 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009190 %ap = alloca %struct.va_list
9191 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009192 call void @llvm.va_start(i8* %ap2)
9193
9194 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009195 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009196
9197 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9198 %aq = alloca i8*
9199 %aq2 = bitcast i8** %aq to i8*
9200 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9201 call void @llvm.va_end(i8* %aq2)
9202
9203 ; Stop processing of arguments.
9204 call void @llvm.va_end(i8* %ap2)
9205 ret i32 %tmp
9206 }
9207
9208 declare void @llvm.va_start(i8*)
9209 declare void @llvm.va_copy(i8*, i8*)
9210 declare void @llvm.va_end(i8*)
9211
9212.. _int_va_start:
9213
9214'``llvm.va_start``' Intrinsic
9215^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9216
9217Syntax:
9218"""""""
9219
9220::
9221
Nick Lewycky04f6de02013-09-11 22:04:52 +00009222 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009223
9224Overview:
9225"""""""""
9226
9227The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9228subsequent use by ``va_arg``.
9229
9230Arguments:
9231""""""""""
9232
9233The argument is a pointer to a ``va_list`` element to initialize.
9234
9235Semantics:
9236""""""""""
9237
9238The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9239available in C. In a target-dependent way, it initializes the
9240``va_list`` element to which the argument points, so that the next call
9241to ``va_arg`` will produce the first variable argument passed to the
9242function. Unlike the C ``va_start`` macro, this intrinsic does not need
9243to know the last argument of the function as the compiler can figure
9244that out.
9245
9246'``llvm.va_end``' Intrinsic
9247^^^^^^^^^^^^^^^^^^^^^^^^^^^
9248
9249Syntax:
9250"""""""
9251
9252::
9253
9254 declare void @llvm.va_end(i8* <arglist>)
9255
9256Overview:
9257"""""""""
9258
9259The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9260initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9261
9262Arguments:
9263""""""""""
9264
9265The argument is a pointer to a ``va_list`` to destroy.
9266
9267Semantics:
9268""""""""""
9269
9270The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9271available in C. In a target-dependent way, it destroys the ``va_list``
9272element to which the argument points. Calls to
9273:ref:`llvm.va_start <int_va_start>` and
9274:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9275``llvm.va_end``.
9276
9277.. _int_va_copy:
9278
9279'``llvm.va_copy``' Intrinsic
9280^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9281
9282Syntax:
9283"""""""
9284
9285::
9286
9287 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9288
9289Overview:
9290"""""""""
9291
9292The '``llvm.va_copy``' intrinsic copies the current argument position
9293from the source argument list to the destination argument list.
9294
9295Arguments:
9296""""""""""
9297
9298The first argument is a pointer to a ``va_list`` element to initialize.
9299The second argument is a pointer to a ``va_list`` element to copy from.
9300
9301Semantics:
9302""""""""""
9303
9304The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9305available in C. In a target-dependent way, it copies the source
9306``va_list`` element into the destination ``va_list`` element. This
9307intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9308arbitrarily complex and require, for example, memory allocation.
9309
9310Accurate Garbage Collection Intrinsics
9311--------------------------------------
9312
Philip Reamesc5b0f562015-02-25 23:52:06 +00009313LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009314(GC) requires the frontend to generate code containing appropriate intrinsic
9315calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009316intrinsics in a manner which is appropriate for the target collector.
9317
Sean Silvab084af42012-12-07 10:36:55 +00009318These intrinsics allow identification of :ref:`GC roots on the
9319stack <int_gcroot>`, as well as garbage collector implementations that
9320require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009321Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009322these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009323details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009324
Philip Reamesf80bbff2015-02-25 23:45:20 +00009325Experimental Statepoint Intrinsics
9326^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9327
9328LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009329collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009330to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009331:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009332differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009333<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009334described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009335
9336.. _int_gcroot:
9337
9338'``llvm.gcroot``' Intrinsic
9339^^^^^^^^^^^^^^^^^^^^^^^^^^^
9340
9341Syntax:
9342"""""""
9343
9344::
9345
9346 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9347
9348Overview:
9349"""""""""
9350
9351The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9352the code generator, and allows some metadata to be associated with it.
9353
9354Arguments:
9355""""""""""
9356
9357The first argument specifies the address of a stack object that contains
9358the root pointer. The second pointer (which must be either a constant or
9359a global value address) contains the meta-data to be associated with the
9360root.
9361
9362Semantics:
9363""""""""""
9364
9365At runtime, a call to this intrinsic stores a null pointer into the
9366"ptrloc" location. At compile-time, the code generator generates
9367information to allow the runtime to find the pointer at GC safe points.
9368The '``llvm.gcroot``' intrinsic may only be used in a function which
9369:ref:`specifies a GC algorithm <gc>`.
9370
9371.. _int_gcread:
9372
9373'``llvm.gcread``' Intrinsic
9374^^^^^^^^^^^^^^^^^^^^^^^^^^^
9375
9376Syntax:
9377"""""""
9378
9379::
9380
9381 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9382
9383Overview:
9384"""""""""
9385
9386The '``llvm.gcread``' intrinsic identifies reads of references from heap
9387locations, allowing garbage collector implementations that require read
9388barriers.
9389
9390Arguments:
9391""""""""""
9392
9393The second argument is the address to read from, which should be an
9394address allocated from the garbage collector. The first object is a
9395pointer to the start of the referenced object, if needed by the language
9396runtime (otherwise null).
9397
9398Semantics:
9399""""""""""
9400
9401The '``llvm.gcread``' intrinsic has the same semantics as a load
9402instruction, but may be replaced with substantially more complex code by
9403the garbage collector runtime, as needed. The '``llvm.gcread``'
9404intrinsic may only be used in a function which :ref:`specifies a GC
9405algorithm <gc>`.
9406
9407.. _int_gcwrite:
9408
9409'``llvm.gcwrite``' Intrinsic
9410^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9411
9412Syntax:
9413"""""""
9414
9415::
9416
9417 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9418
9419Overview:
9420"""""""""
9421
9422The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9423locations, allowing garbage collector implementations that require write
9424barriers (such as generational or reference counting collectors).
9425
9426Arguments:
9427""""""""""
9428
9429The first argument is the reference to store, the second is the start of
9430the object to store it to, and the third is the address of the field of
9431Obj to store to. If the runtime does not require a pointer to the
9432object, Obj may be null.
9433
9434Semantics:
9435""""""""""
9436
9437The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9438instruction, but may be replaced with substantially more complex code by
9439the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9440intrinsic may only be used in a function which :ref:`specifies a GC
9441algorithm <gc>`.
9442
9443Code Generator Intrinsics
9444-------------------------
9445
9446These intrinsics are provided by LLVM to expose special features that
9447may only be implemented with code generator support.
9448
9449'``llvm.returnaddress``' Intrinsic
9450^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9451
9452Syntax:
9453"""""""
9454
9455::
9456
9457 declare i8 *@llvm.returnaddress(i32 <level>)
9458
9459Overview:
9460"""""""""
9461
9462The '``llvm.returnaddress``' intrinsic attempts to compute a
9463target-specific value indicating the return address of the current
9464function or one of its callers.
9465
9466Arguments:
9467""""""""""
9468
9469The argument to this intrinsic indicates which function to return the
9470address for. Zero indicates the calling function, one indicates its
9471caller, etc. The argument is **required** to be a constant integer
9472value.
9473
9474Semantics:
9475""""""""""
9476
9477The '``llvm.returnaddress``' intrinsic either returns a pointer
9478indicating the return address of the specified call frame, or zero if it
9479cannot be identified. The value returned by this intrinsic is likely to
9480be incorrect or 0 for arguments other than zero, so it should only be
9481used for debugging purposes.
9482
9483Note that calling this intrinsic does not prevent function inlining or
9484other aggressive transformations, so the value returned may not be that
9485of the obvious source-language caller.
9486
Albert Gutowski795d7d62016-10-12 22:13:19 +00009487'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009489
9490Syntax:
9491"""""""
9492
9493::
9494
9495 declare i8 *@llvm.addressofreturnaddress()
9496
9497Overview:
9498"""""""""
9499
9500The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9501pointer to the place in the stack frame where the return address of the
9502current function is stored.
9503
9504Semantics:
9505""""""""""
9506
9507Note that calling this intrinsic does not prevent function inlining or
9508other aggressive transformations, so the value returned may not be that
9509of the obvious source-language caller.
9510
9511This intrinsic is only implemented for x86.
9512
Sean Silvab084af42012-12-07 10:36:55 +00009513'``llvm.frameaddress``' Intrinsic
9514^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9515
9516Syntax:
9517"""""""
9518
9519::
9520
9521 declare i8* @llvm.frameaddress(i32 <level>)
9522
9523Overview:
9524"""""""""
9525
9526The '``llvm.frameaddress``' intrinsic attempts to return the
9527target-specific frame pointer value for the specified stack frame.
9528
9529Arguments:
9530""""""""""
9531
9532The argument to this intrinsic indicates which function to return the
9533frame pointer for. Zero indicates the calling function, one indicates
9534its caller, etc. The argument is **required** to be a constant integer
9535value.
9536
9537Semantics:
9538""""""""""
9539
9540The '``llvm.frameaddress``' intrinsic either returns a pointer
9541indicating the frame address of the specified call frame, or zero if it
9542cannot be identified. The value returned by this intrinsic is likely to
9543be incorrect or 0 for arguments other than zero, so it should only be
9544used for debugging purposes.
9545
9546Note that calling this intrinsic does not prevent function inlining or
9547other aggressive transformations, so the value returned may not be that
9548of the obvious source-language caller.
9549
Reid Kleckner60381792015-07-07 22:25:32 +00009550'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009551^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9552
9553Syntax:
9554"""""""
9555
9556::
9557
Reid Kleckner60381792015-07-07 22:25:32 +00009558 declare void @llvm.localescape(...)
9559 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009560
9561Overview:
9562"""""""""
9563
Reid Kleckner60381792015-07-07 22:25:32 +00009564The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9565allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009566live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009567computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009568
9569Arguments:
9570""""""""""
9571
Reid Kleckner60381792015-07-07 22:25:32 +00009572All arguments to '``llvm.localescape``' must be pointers to static allocas or
9573casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009574once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009575
Reid Kleckner60381792015-07-07 22:25:32 +00009576The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009577bitcasted pointer to a function defined in the current module. The code
9578generator cannot determine the frame allocation offset of functions defined in
9579other modules.
9580
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009581The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9582call frame that is currently live. The return value of '``llvm.localaddress``'
9583is one way to produce such a value, but various runtimes also expose a suitable
9584pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009585
Reid Kleckner60381792015-07-07 22:25:32 +00009586The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9587'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009588
Reid Klecknere9b89312015-01-13 00:48:10 +00009589Semantics:
9590""""""""""
9591
Reid Kleckner60381792015-07-07 22:25:32 +00009592These intrinsics allow a group of functions to share access to a set of local
9593stack allocations of a one parent function. The parent function may call the
9594'``llvm.localescape``' intrinsic once from the function entry block, and the
9595child functions can use '``llvm.localrecover``' to access the escaped allocas.
9596The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9597the escaped allocas are allocated, which would break attempts to use
9598'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009599
Renato Golinc7aea402014-05-06 16:51:25 +00009600.. _int_read_register:
9601.. _int_write_register:
9602
9603'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9604^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9605
9606Syntax:
9607"""""""
9608
9609::
9610
9611 declare i32 @llvm.read_register.i32(metadata)
9612 declare i64 @llvm.read_register.i64(metadata)
9613 declare void @llvm.write_register.i32(metadata, i32 @value)
9614 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009615 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009616
9617Overview:
9618"""""""""
9619
9620The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9621provides access to the named register. The register must be valid on
9622the architecture being compiled to. The type needs to be compatible
9623with the register being read.
9624
9625Semantics:
9626""""""""""
9627
9628The '``llvm.read_register``' intrinsic returns the current value of the
9629register, where possible. The '``llvm.write_register``' intrinsic sets
9630the current value of the register, where possible.
9631
9632This is useful to implement named register global variables that need
9633to always be mapped to a specific register, as is common practice on
9634bare-metal programs including OS kernels.
9635
9636The compiler doesn't check for register availability or use of the used
9637register in surrounding code, including inline assembly. Because of that,
9638allocatable registers are not supported.
9639
9640Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009641architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009642work is needed to support other registers and even more so, allocatable
9643registers.
9644
Sean Silvab084af42012-12-07 10:36:55 +00009645.. _int_stacksave:
9646
9647'``llvm.stacksave``' Intrinsic
9648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9649
9650Syntax:
9651"""""""
9652
9653::
9654
9655 declare i8* @llvm.stacksave()
9656
9657Overview:
9658"""""""""
9659
9660The '``llvm.stacksave``' intrinsic is used to remember the current state
9661of the function stack, for use with
9662:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9663implementing language features like scoped automatic variable sized
9664arrays in C99.
9665
9666Semantics:
9667""""""""""
9668
9669This intrinsic returns a opaque pointer value that can be passed to
9670:ref:`llvm.stackrestore <int_stackrestore>`. When an
9671``llvm.stackrestore`` intrinsic is executed with a value saved from
9672``llvm.stacksave``, it effectively restores the state of the stack to
9673the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9674practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9675were allocated after the ``llvm.stacksave`` was executed.
9676
9677.. _int_stackrestore:
9678
9679'``llvm.stackrestore``' Intrinsic
9680^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9681
9682Syntax:
9683"""""""
9684
9685::
9686
9687 declare void @llvm.stackrestore(i8* %ptr)
9688
9689Overview:
9690"""""""""
9691
9692The '``llvm.stackrestore``' intrinsic is used to restore the state of
9693the function stack to the state it was in when the corresponding
9694:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9695useful for implementing language features like scoped automatic variable
9696sized arrays in C99.
9697
9698Semantics:
9699""""""""""
9700
9701See the description for :ref:`llvm.stacksave <int_stacksave>`.
9702
Yury Gribovd7dbb662015-12-01 11:40:55 +00009703.. _int_get_dynamic_area_offset:
9704
9705'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009706^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009707
9708Syntax:
9709"""""""
9710
9711::
9712
9713 declare i32 @llvm.get.dynamic.area.offset.i32()
9714 declare i64 @llvm.get.dynamic.area.offset.i64()
9715
Lang Hames10239932016-10-08 00:20:42 +00009716Overview:
9717"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009718
9719 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9720 get the offset from native stack pointer to the address of the most
9721 recent dynamic alloca on the caller's stack. These intrinsics are
9722 intendend for use in combination with
9723 :ref:`llvm.stacksave <int_stacksave>` to get a
9724 pointer to the most recent dynamic alloca. This is useful, for example,
9725 for AddressSanitizer's stack unpoisoning routines.
9726
9727Semantics:
9728""""""""""
9729
9730 These intrinsics return a non-negative integer value that can be used to
9731 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9732 on the caller's stack. In particular, for targets where stack grows downwards,
9733 adding this offset to the native stack pointer would get the address of the most
9734 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009735 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009736 one past the end of the most recent dynamic alloca.
9737
9738 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9739 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9740 compile-time-known constant value.
9741
9742 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9743 must match the target's generic address space's (address space 0) pointer type.
9744
Sean Silvab084af42012-12-07 10:36:55 +00009745'``llvm.prefetch``' Intrinsic
9746^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9747
9748Syntax:
9749"""""""
9750
9751::
9752
9753 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9754
9755Overview:
9756"""""""""
9757
9758The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9759insert a prefetch instruction if supported; otherwise, it is a noop.
9760Prefetches have no effect on the behavior of the program but can change
9761its performance characteristics.
9762
9763Arguments:
9764""""""""""
9765
9766``address`` is the address to be prefetched, ``rw`` is the specifier
9767determining if the fetch should be for a read (0) or write (1), and
9768``locality`` is a temporal locality specifier ranging from (0) - no
9769locality, to (3) - extremely local keep in cache. The ``cache type``
9770specifies whether the prefetch is performed on the data (1) or
9771instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9772arguments must be constant integers.
9773
9774Semantics:
9775""""""""""
9776
9777This intrinsic does not modify the behavior of the program. In
9778particular, prefetches cannot trap and do not produce a value. On
9779targets that support this intrinsic, the prefetch can provide hints to
9780the processor cache for better performance.
9781
9782'``llvm.pcmarker``' Intrinsic
9783^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9784
9785Syntax:
9786"""""""
9787
9788::
9789
9790 declare void @llvm.pcmarker(i32 <id>)
9791
9792Overview:
9793"""""""""
9794
9795The '``llvm.pcmarker``' intrinsic is a method to export a Program
9796Counter (PC) in a region of code to simulators and other tools. The
9797method is target specific, but it is expected that the marker will use
9798exported symbols to transmit the PC of the marker. The marker makes no
9799guarantees that it will remain with any specific instruction after
9800optimizations. It is possible that the presence of a marker will inhibit
9801optimizations. The intended use is to be inserted after optimizations to
9802allow correlations of simulation runs.
9803
9804Arguments:
9805""""""""""
9806
9807``id`` is a numerical id identifying the marker.
9808
9809Semantics:
9810""""""""""
9811
9812This intrinsic does not modify the behavior of the program. Backends
9813that do not support this intrinsic may ignore it.
9814
9815'``llvm.readcyclecounter``' Intrinsic
9816^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9817
9818Syntax:
9819"""""""
9820
9821::
9822
9823 declare i64 @llvm.readcyclecounter()
9824
9825Overview:
9826"""""""""
9827
9828The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9829counter register (or similar low latency, high accuracy clocks) on those
9830targets that support it. On X86, it should map to RDTSC. On Alpha, it
9831should map to RPCC. As the backing counters overflow quickly (on the
9832order of 9 seconds on alpha), this should only be used for small
9833timings.
9834
9835Semantics:
9836""""""""""
9837
9838When directly supported, reading the cycle counter should not modify any
9839memory. Implementations are allowed to either return a application
9840specific value or a system wide value. On backends without support, this
9841is lowered to a constant 0.
9842
Tim Northoverbc933082013-05-23 19:11:20 +00009843Note that runtime support may be conditional on the privilege-level code is
9844running at and the host platform.
9845
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009846'``llvm.clear_cache``' Intrinsic
9847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9848
9849Syntax:
9850"""""""
9851
9852::
9853
9854 declare void @llvm.clear_cache(i8*, i8*)
9855
9856Overview:
9857"""""""""
9858
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009859The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9860in the specified range to the execution unit of the processor. On
9861targets with non-unified instruction and data cache, the implementation
9862flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009863
9864Semantics:
9865""""""""""
9866
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009867On platforms with coherent instruction and data caches (e.g. x86), this
9868intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009869cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009870instructions or a system call, if cache flushing requires special
9871privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009872
Sean Silvad02bf3e2014-04-07 22:29:53 +00009873The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009874time library.
Renato Golin93010e62014-03-26 14:01:32 +00009875
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009876This instrinsic does *not* empty the instruction pipeline. Modifications
9877of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009878
Justin Bogner61ba2e32014-12-08 18:02:35 +00009879'``llvm.instrprof_increment``' Intrinsic
9880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9881
9882Syntax:
9883"""""""
9884
9885::
9886
9887 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9888 i32 <num-counters>, i32 <index>)
9889
9890Overview:
9891"""""""""
9892
9893The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9894frontend for use with instrumentation based profiling. These will be
9895lowered by the ``-instrprof`` pass to generate execution counts of a
9896program at runtime.
9897
9898Arguments:
9899""""""""""
9900
9901The first argument is a pointer to a global variable containing the
9902name of the entity being instrumented. This should generally be the
9903(mangled) function name for a set of counters.
9904
9905The second argument is a hash value that can be used by the consumer
9906of the profile data to detect changes to the instrumented source, and
9907the third is the number of counters associated with ``name``. It is an
9908error if ``hash`` or ``num-counters`` differ between two instances of
9909``instrprof_increment`` that refer to the same name.
9910
9911The last argument refers to which of the counters for ``name`` should
9912be incremented. It should be a value between 0 and ``num-counters``.
9913
9914Semantics:
9915""""""""""
9916
9917This intrinsic represents an increment of a profiling counter. It will
9918cause the ``-instrprof`` pass to generate the appropriate data
9919structures and the code to increment the appropriate value, in a
9920format that can be written out by a compiler runtime and consumed via
9921the ``llvm-profdata`` tool.
9922
Xinliang David Li4ca17332016-09-18 18:34:07 +00009923'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +00009924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +00009925
9926Syntax:
9927"""""""
9928
9929::
9930
9931 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
9932 i32 <num-counters>,
9933 i32 <index>, i64 <step>)
9934
9935Overview:
9936"""""""""
9937
9938The '``llvm.instrprof_increment_step``' intrinsic is an extension to
9939the '``llvm.instrprof_increment``' intrinsic with an additional fifth
9940argument to specify the step of the increment.
9941
9942Arguments:
9943""""""""""
9944The first four arguments are the same as '``llvm.instrprof_increment``'
9945instrinsic.
9946
9947The last argument specifies the value of the increment of the counter variable.
9948
9949Semantics:
9950""""""""""
9951See description of '``llvm.instrprof_increment``' instrinsic.
9952
9953
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009954'``llvm.instrprof_value_profile``' Intrinsic
9955^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9956
9957Syntax:
9958"""""""
9959
9960::
9961
9962 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9963 i64 <value>, i32 <value_kind>,
9964 i32 <index>)
9965
9966Overview:
9967"""""""""
9968
9969The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9970frontend for use with instrumentation based profiling. This will be
9971lowered by the ``-instrprof`` pass to find out the target values,
9972instrumented expressions take in a program at runtime.
9973
9974Arguments:
9975""""""""""
9976
9977The first argument is a pointer to a global variable containing the
9978name of the entity being instrumented. ``name`` should generally be the
9979(mangled) function name for a set of counters.
9980
9981The second argument is a hash value that can be used by the consumer
9982of the profile data to detect changes to the instrumented source. It
9983is an error if ``hash`` differs between two instances of
9984``llvm.instrprof_*`` that refer to the same name.
9985
9986The third argument is the value of the expression being profiled. The profiled
9987expression's value should be representable as an unsigned 64-bit value. The
9988fourth argument represents the kind of value profiling that is being done. The
9989supported value profiling kinds are enumerated through the
9990``InstrProfValueKind`` type declared in the
9991``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9992index of the instrumented expression within ``name``. It should be >= 0.
9993
9994Semantics:
9995""""""""""
9996
9997This intrinsic represents the point where a call to a runtime routine
9998should be inserted for value profiling of target expressions. ``-instrprof``
9999pass will generate the appropriate data structures and replace the
10000``llvm.instrprof_value_profile`` intrinsic with the call to the profile
10001runtime library with proper arguments.
10002
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010003'``llvm.thread.pointer``' Intrinsic
10004^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10005
10006Syntax:
10007"""""""
10008
10009::
10010
10011 declare i8* @llvm.thread.pointer()
10012
10013Overview:
10014"""""""""
10015
10016The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10017pointer.
10018
10019Semantics:
10020""""""""""
10021
10022The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10023for the current thread. The exact semantics of this value are target
10024specific: it may point to the start of TLS area, to the end, or somewhere
10025in the middle. Depending on the target, this intrinsic may read a register,
10026call a helper function, read from an alternate memory space, or perform
10027other operations necessary to locate the TLS area. Not all targets support
10028this intrinsic.
10029
Sean Silvab084af42012-12-07 10:36:55 +000010030Standard C Library Intrinsics
10031-----------------------------
10032
10033LLVM provides intrinsics for a few important standard C library
10034functions. These intrinsics allow source-language front-ends to pass
10035information about the alignment of the pointer arguments to the code
10036generator, providing opportunity for more efficient code generation.
10037
10038.. _int_memcpy:
10039
10040'``llvm.memcpy``' Intrinsic
10041^^^^^^^^^^^^^^^^^^^^^^^^^^^
10042
10043Syntax:
10044"""""""
10045
10046This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10047integer bit width and for different address spaces. Not all targets
10048support all bit widths however.
10049
10050::
10051
10052 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10053 i32 <len>, i32 <align>, i1 <isvolatile>)
10054 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10055 i64 <len>, i32 <align>, i1 <isvolatile>)
10056
10057Overview:
10058"""""""""
10059
10060The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10061source location to the destination location.
10062
10063Note that, unlike the standard libc function, the ``llvm.memcpy.*``
10064intrinsics do not return a value, takes extra alignment/isvolatile
10065arguments and the pointers can be in specified address spaces.
10066
10067Arguments:
10068""""""""""
10069
10070The first argument is a pointer to the destination, the second is a
10071pointer to the source. The third argument is an integer argument
10072specifying the number of bytes to copy, the fourth argument is the
10073alignment of the source and destination locations, and the fifth is a
10074boolean indicating a volatile access.
10075
10076If the call to this intrinsic has an alignment value that is not 0 or 1,
10077then the caller guarantees that both the source and destination pointers
10078are aligned to that boundary.
10079
10080If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10081a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10082very cleanly specified and it is unwise to depend on it.
10083
10084Semantics:
10085""""""""""
10086
10087The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10088source location to the destination location, which are not allowed to
10089overlap. It copies "len" bytes of memory over. If the argument is known
10090to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010091argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010092
10093'``llvm.memmove``' Intrinsic
10094^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10095
10096Syntax:
10097"""""""
10098
10099This is an overloaded intrinsic. You can use llvm.memmove on any integer
10100bit width and for different address space. Not all targets support all
10101bit widths however.
10102
10103::
10104
10105 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10106 i32 <len>, i32 <align>, i1 <isvolatile>)
10107 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10108 i64 <len>, i32 <align>, i1 <isvolatile>)
10109
10110Overview:
10111"""""""""
10112
10113The '``llvm.memmove.*``' intrinsics move a block of memory from the
10114source location to the destination location. It is similar to the
10115'``llvm.memcpy``' intrinsic but allows the two memory locations to
10116overlap.
10117
10118Note that, unlike the standard libc function, the ``llvm.memmove.*``
10119intrinsics do not return a value, takes extra alignment/isvolatile
10120arguments and the pointers can be in specified address spaces.
10121
10122Arguments:
10123""""""""""
10124
10125The first argument is a pointer to the destination, the second is a
10126pointer to the source. The third argument is an integer argument
10127specifying the number of bytes to copy, the fourth argument is the
10128alignment of the source and destination locations, and the fifth is a
10129boolean indicating a volatile access.
10130
10131If the call to this intrinsic has an alignment value that is not 0 or 1,
10132then the caller guarantees that the source and destination pointers are
10133aligned to that boundary.
10134
10135If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10136is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10137not very cleanly specified and it is unwise to depend on it.
10138
10139Semantics:
10140""""""""""
10141
10142The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10143source location to the destination location, which may overlap. It
10144copies "len" bytes of memory over. If the argument is known to be
10145aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010146otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010147
10148'``llvm.memset.*``' Intrinsics
10149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10150
10151Syntax:
10152"""""""
10153
10154This is an overloaded intrinsic. You can use llvm.memset on any integer
10155bit width and for different address spaces. However, not all targets
10156support all bit widths.
10157
10158::
10159
10160 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10161 i32 <len>, i32 <align>, i1 <isvolatile>)
10162 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10163 i64 <len>, i32 <align>, i1 <isvolatile>)
10164
10165Overview:
10166"""""""""
10167
10168The '``llvm.memset.*``' intrinsics fill a block of memory with a
10169particular byte value.
10170
10171Note that, unlike the standard libc function, the ``llvm.memset``
10172intrinsic does not return a value and takes extra alignment/volatile
10173arguments. Also, the destination can be in an arbitrary address space.
10174
10175Arguments:
10176""""""""""
10177
10178The first argument is a pointer to the destination to fill, the second
10179is the byte value with which to fill it, the third argument is an
10180integer argument specifying the number of bytes to fill, and the fourth
10181argument is the known alignment of the destination location.
10182
10183If the call to this intrinsic has an alignment value that is not 0 or 1,
10184then the caller guarantees that the destination pointer is aligned to
10185that boundary.
10186
10187If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10188a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10189very cleanly specified and it is unwise to depend on it.
10190
10191Semantics:
10192""""""""""
10193
10194The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10195at the destination location. If the argument is known to be aligned to
10196some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010197it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010198
10199'``llvm.sqrt.*``' Intrinsic
10200^^^^^^^^^^^^^^^^^^^^^^^^^^^
10201
10202Syntax:
10203"""""""
10204
10205This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10206floating point or vector of floating point type. Not all targets support
10207all types however.
10208
10209::
10210
10211 declare float @llvm.sqrt.f32(float %Val)
10212 declare double @llvm.sqrt.f64(double %Val)
10213 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10214 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10215 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10216
10217Overview:
10218"""""""""
10219
10220The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
Justin Lebarcb9b41d2017-01-27 00:58:03 +000010221returning the same value as the libm '``sqrt``' functions would, but without
10222trapping or setting ``errno``.
Sean Silvab084af42012-12-07 10:36:55 +000010223
10224Arguments:
10225""""""""""
10226
10227The argument and return value are floating point numbers of the same
10228type.
10229
10230Semantics:
10231""""""""""
10232
10233This function returns the sqrt of the specified operand if it is a
10234nonnegative floating point number.
10235
10236'``llvm.powi.*``' Intrinsic
10237^^^^^^^^^^^^^^^^^^^^^^^^^^^
10238
10239Syntax:
10240"""""""
10241
10242This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10243floating point or vector of floating point type. Not all targets support
10244all types however.
10245
10246::
10247
10248 declare float @llvm.powi.f32(float %Val, i32 %power)
10249 declare double @llvm.powi.f64(double %Val, i32 %power)
10250 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10251 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10252 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10253
10254Overview:
10255"""""""""
10256
10257The '``llvm.powi.*``' intrinsics return the first operand raised to the
10258specified (positive or negative) power. The order of evaluation of
10259multiplications is not defined. When a vector of floating point type is
10260used, the second argument remains a scalar integer value.
10261
10262Arguments:
10263""""""""""
10264
10265The second argument is an integer power, and the first is a value to
10266raise to that power.
10267
10268Semantics:
10269""""""""""
10270
10271This function returns the first value raised to the second power with an
10272unspecified sequence of rounding operations.
10273
10274'``llvm.sin.*``' Intrinsic
10275^^^^^^^^^^^^^^^^^^^^^^^^^^
10276
10277Syntax:
10278"""""""
10279
10280This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10281floating point or vector of floating point type. Not all targets support
10282all types however.
10283
10284::
10285
10286 declare float @llvm.sin.f32(float %Val)
10287 declare double @llvm.sin.f64(double %Val)
10288 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10289 declare fp128 @llvm.sin.f128(fp128 %Val)
10290 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10291
10292Overview:
10293"""""""""
10294
10295The '``llvm.sin.*``' intrinsics return the sine of the operand.
10296
10297Arguments:
10298""""""""""
10299
10300The argument and return value are floating point numbers of the same
10301type.
10302
10303Semantics:
10304""""""""""
10305
10306This function returns the sine of the specified operand, returning the
10307same values as the libm ``sin`` functions would, and handles error
10308conditions in the same way.
10309
10310'``llvm.cos.*``' Intrinsic
10311^^^^^^^^^^^^^^^^^^^^^^^^^^
10312
10313Syntax:
10314"""""""
10315
10316This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10317floating point or vector of floating point type. Not all targets support
10318all types however.
10319
10320::
10321
10322 declare float @llvm.cos.f32(float %Val)
10323 declare double @llvm.cos.f64(double %Val)
10324 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10325 declare fp128 @llvm.cos.f128(fp128 %Val)
10326 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10327
10328Overview:
10329"""""""""
10330
10331The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10332
10333Arguments:
10334""""""""""
10335
10336The argument and return value are floating point numbers of the same
10337type.
10338
10339Semantics:
10340""""""""""
10341
10342This function returns the cosine of the specified operand, returning the
10343same values as the libm ``cos`` functions would, and handles error
10344conditions in the same way.
10345
10346'``llvm.pow.*``' Intrinsic
10347^^^^^^^^^^^^^^^^^^^^^^^^^^
10348
10349Syntax:
10350"""""""
10351
10352This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10353floating point or vector of floating point type. Not all targets support
10354all types however.
10355
10356::
10357
10358 declare float @llvm.pow.f32(float %Val, float %Power)
10359 declare double @llvm.pow.f64(double %Val, double %Power)
10360 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10361 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10362 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10363
10364Overview:
10365"""""""""
10366
10367The '``llvm.pow.*``' intrinsics return the first operand raised to the
10368specified (positive or negative) power.
10369
10370Arguments:
10371""""""""""
10372
10373The second argument is a floating point power, and the first is a value
10374to raise to that power.
10375
10376Semantics:
10377""""""""""
10378
10379This function returns the first value raised to the second power,
10380returning the same values as the libm ``pow`` functions would, and
10381handles error conditions in the same way.
10382
10383'``llvm.exp.*``' Intrinsic
10384^^^^^^^^^^^^^^^^^^^^^^^^^^
10385
10386Syntax:
10387"""""""
10388
10389This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10390floating point or vector of floating point type. Not all targets support
10391all types however.
10392
10393::
10394
10395 declare float @llvm.exp.f32(float %Val)
10396 declare double @llvm.exp.f64(double %Val)
10397 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10398 declare fp128 @llvm.exp.f128(fp128 %Val)
10399 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10400
10401Overview:
10402"""""""""
10403
10404The '``llvm.exp.*``' intrinsics perform the exp function.
10405
10406Arguments:
10407""""""""""
10408
10409The argument and return value are floating point numbers of the same
10410type.
10411
10412Semantics:
10413""""""""""
10414
10415This function returns the same values as the libm ``exp`` functions
10416would, and handles error conditions in the same way.
10417
10418'``llvm.exp2.*``' Intrinsic
10419^^^^^^^^^^^^^^^^^^^^^^^^^^^
10420
10421Syntax:
10422"""""""
10423
10424This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10425floating point or vector of floating point type. Not all targets support
10426all types however.
10427
10428::
10429
10430 declare float @llvm.exp2.f32(float %Val)
10431 declare double @llvm.exp2.f64(double %Val)
10432 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10433 declare fp128 @llvm.exp2.f128(fp128 %Val)
10434 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10435
10436Overview:
10437"""""""""
10438
10439The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10440
10441Arguments:
10442""""""""""
10443
10444The argument and return value are floating point numbers of the same
10445type.
10446
10447Semantics:
10448""""""""""
10449
10450This function returns the same values as the libm ``exp2`` functions
10451would, and handles error conditions in the same way.
10452
10453'``llvm.log.*``' Intrinsic
10454^^^^^^^^^^^^^^^^^^^^^^^^^^
10455
10456Syntax:
10457"""""""
10458
10459This is an overloaded intrinsic. You can use ``llvm.log`` on any
10460floating point or vector of floating point type. Not all targets support
10461all types however.
10462
10463::
10464
10465 declare float @llvm.log.f32(float %Val)
10466 declare double @llvm.log.f64(double %Val)
10467 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10468 declare fp128 @llvm.log.f128(fp128 %Val)
10469 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10470
10471Overview:
10472"""""""""
10473
10474The '``llvm.log.*``' intrinsics perform the log function.
10475
10476Arguments:
10477""""""""""
10478
10479The argument and return value are floating point numbers of the same
10480type.
10481
10482Semantics:
10483""""""""""
10484
10485This function returns the same values as the libm ``log`` functions
10486would, and handles error conditions in the same way.
10487
10488'``llvm.log10.*``' Intrinsic
10489^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10490
10491Syntax:
10492"""""""
10493
10494This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10495floating point or vector of floating point type. Not all targets support
10496all types however.
10497
10498::
10499
10500 declare float @llvm.log10.f32(float %Val)
10501 declare double @llvm.log10.f64(double %Val)
10502 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10503 declare fp128 @llvm.log10.f128(fp128 %Val)
10504 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10505
10506Overview:
10507"""""""""
10508
10509The '``llvm.log10.*``' intrinsics perform the log10 function.
10510
10511Arguments:
10512""""""""""
10513
10514The argument and return value are floating point numbers of the same
10515type.
10516
10517Semantics:
10518""""""""""
10519
10520This function returns the same values as the libm ``log10`` functions
10521would, and handles error conditions in the same way.
10522
10523'``llvm.log2.*``' Intrinsic
10524^^^^^^^^^^^^^^^^^^^^^^^^^^^
10525
10526Syntax:
10527"""""""
10528
10529This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10530floating point or vector of floating point type. Not all targets support
10531all types however.
10532
10533::
10534
10535 declare float @llvm.log2.f32(float %Val)
10536 declare double @llvm.log2.f64(double %Val)
10537 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10538 declare fp128 @llvm.log2.f128(fp128 %Val)
10539 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10540
10541Overview:
10542"""""""""
10543
10544The '``llvm.log2.*``' intrinsics perform the log2 function.
10545
10546Arguments:
10547""""""""""
10548
10549The argument and return value are floating point numbers of the same
10550type.
10551
10552Semantics:
10553""""""""""
10554
10555This function returns the same values as the libm ``log2`` functions
10556would, and handles error conditions in the same way.
10557
10558'``llvm.fma.*``' Intrinsic
10559^^^^^^^^^^^^^^^^^^^^^^^^^^
10560
10561Syntax:
10562"""""""
10563
10564This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10565floating point or vector of floating point type. Not all targets support
10566all types however.
10567
10568::
10569
10570 declare float @llvm.fma.f32(float %a, float %b, float %c)
10571 declare double @llvm.fma.f64(double %a, double %b, double %c)
10572 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10573 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10574 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10575
10576Overview:
10577"""""""""
10578
10579The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10580operation.
10581
10582Arguments:
10583""""""""""
10584
10585The argument and return value are floating point numbers of the same
10586type.
10587
10588Semantics:
10589""""""""""
10590
10591This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010592would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010593
10594'``llvm.fabs.*``' Intrinsic
10595^^^^^^^^^^^^^^^^^^^^^^^^^^^
10596
10597Syntax:
10598"""""""
10599
10600This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10601floating point or vector of floating point type. Not all targets support
10602all types however.
10603
10604::
10605
10606 declare float @llvm.fabs.f32(float %Val)
10607 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010608 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010609 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010610 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010611
10612Overview:
10613"""""""""
10614
10615The '``llvm.fabs.*``' intrinsics return the absolute value of the
10616operand.
10617
10618Arguments:
10619""""""""""
10620
10621The argument and return value are floating point numbers of the same
10622type.
10623
10624Semantics:
10625""""""""""
10626
10627This function returns the same values as the libm ``fabs`` functions
10628would, and handles error conditions in the same way.
10629
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010630'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010631^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010632
10633Syntax:
10634"""""""
10635
10636This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10637floating point or vector of floating point type. Not all targets support
10638all types however.
10639
10640::
10641
Matt Arsenault64313c92014-10-22 18:25:02 +000010642 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10643 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10644 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10645 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10646 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010647
10648Overview:
10649"""""""""
10650
10651The '``llvm.minnum.*``' intrinsics return the minimum of the two
10652arguments.
10653
10654
10655Arguments:
10656""""""""""
10657
10658The arguments and return value are floating point numbers of the same
10659type.
10660
10661Semantics:
10662""""""""""
10663
10664Follows the IEEE-754 semantics for minNum, which also match for libm's
10665fmin.
10666
10667If either operand is a NaN, returns the other non-NaN operand. Returns
10668NaN only if both operands are NaN. If the operands compare equal,
10669returns a value that compares equal to both operands. This means that
10670fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10671
10672'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010673^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010674
10675Syntax:
10676"""""""
10677
10678This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10679floating point or vector of floating point type. Not all targets support
10680all types however.
10681
10682::
10683
Matt Arsenault64313c92014-10-22 18:25:02 +000010684 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10685 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10686 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10687 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10688 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010689
10690Overview:
10691"""""""""
10692
10693The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10694arguments.
10695
10696
10697Arguments:
10698""""""""""
10699
10700The arguments and return value are floating point numbers of the same
10701type.
10702
10703Semantics:
10704""""""""""
10705Follows the IEEE-754 semantics for maxNum, which also match for libm's
10706fmax.
10707
10708If either operand is a NaN, returns the other non-NaN operand. Returns
10709NaN only if both operands are NaN. If the operands compare equal,
10710returns a value that compares equal to both operands. This means that
10711fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10712
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010713'``llvm.copysign.*``' Intrinsic
10714^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10715
10716Syntax:
10717"""""""
10718
10719This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10720floating point or vector of floating point type. Not all targets support
10721all types however.
10722
10723::
10724
10725 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10726 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10727 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10728 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10729 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10730
10731Overview:
10732"""""""""
10733
10734The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10735first operand and the sign of the second operand.
10736
10737Arguments:
10738""""""""""
10739
10740The arguments and return value are floating point numbers of the same
10741type.
10742
10743Semantics:
10744""""""""""
10745
10746This function returns the same values as the libm ``copysign``
10747functions would, and handles error conditions in the same way.
10748
Sean Silvab084af42012-12-07 10:36:55 +000010749'``llvm.floor.*``' Intrinsic
10750^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10751
10752Syntax:
10753"""""""
10754
10755This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10756floating point or vector of floating point type. Not all targets support
10757all types however.
10758
10759::
10760
10761 declare float @llvm.floor.f32(float %Val)
10762 declare double @llvm.floor.f64(double %Val)
10763 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10764 declare fp128 @llvm.floor.f128(fp128 %Val)
10765 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10766
10767Overview:
10768"""""""""
10769
10770The '``llvm.floor.*``' intrinsics return the floor of the operand.
10771
10772Arguments:
10773""""""""""
10774
10775The argument and return value are floating point numbers of the same
10776type.
10777
10778Semantics:
10779""""""""""
10780
10781This function returns the same values as the libm ``floor`` functions
10782would, and handles error conditions in the same way.
10783
10784'``llvm.ceil.*``' Intrinsic
10785^^^^^^^^^^^^^^^^^^^^^^^^^^^
10786
10787Syntax:
10788"""""""
10789
10790This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10791floating point or vector of floating point type. Not all targets support
10792all types however.
10793
10794::
10795
10796 declare float @llvm.ceil.f32(float %Val)
10797 declare double @llvm.ceil.f64(double %Val)
10798 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10799 declare fp128 @llvm.ceil.f128(fp128 %Val)
10800 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10801
10802Overview:
10803"""""""""
10804
10805The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10806
10807Arguments:
10808""""""""""
10809
10810The argument and return value are floating point numbers of the same
10811type.
10812
10813Semantics:
10814""""""""""
10815
10816This function returns the same values as the libm ``ceil`` functions
10817would, and handles error conditions in the same way.
10818
10819'``llvm.trunc.*``' Intrinsic
10820^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10821
10822Syntax:
10823"""""""
10824
10825This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10826floating point or vector of floating point type. Not all targets support
10827all types however.
10828
10829::
10830
10831 declare float @llvm.trunc.f32(float %Val)
10832 declare double @llvm.trunc.f64(double %Val)
10833 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10834 declare fp128 @llvm.trunc.f128(fp128 %Val)
10835 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10836
10837Overview:
10838"""""""""
10839
10840The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10841nearest integer not larger in magnitude than the operand.
10842
10843Arguments:
10844""""""""""
10845
10846The argument and return value are floating point numbers of the same
10847type.
10848
10849Semantics:
10850""""""""""
10851
10852This function returns the same values as the libm ``trunc`` functions
10853would, and handles error conditions in the same way.
10854
10855'``llvm.rint.*``' Intrinsic
10856^^^^^^^^^^^^^^^^^^^^^^^^^^^
10857
10858Syntax:
10859"""""""
10860
10861This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10862floating point or vector of floating point type. Not all targets support
10863all types however.
10864
10865::
10866
10867 declare float @llvm.rint.f32(float %Val)
10868 declare double @llvm.rint.f64(double %Val)
10869 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10870 declare fp128 @llvm.rint.f128(fp128 %Val)
10871 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10872
10873Overview:
10874"""""""""
10875
10876The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10877nearest integer. It may raise an inexact floating-point exception if the
10878operand isn't an integer.
10879
10880Arguments:
10881""""""""""
10882
10883The argument and return value are floating point numbers of the same
10884type.
10885
10886Semantics:
10887""""""""""
10888
10889This function returns the same values as the libm ``rint`` functions
10890would, and handles error conditions in the same way.
10891
10892'``llvm.nearbyint.*``' Intrinsic
10893^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10894
10895Syntax:
10896"""""""
10897
10898This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10899floating point or vector of floating point type. Not all targets support
10900all types however.
10901
10902::
10903
10904 declare float @llvm.nearbyint.f32(float %Val)
10905 declare double @llvm.nearbyint.f64(double %Val)
10906 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10907 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10908 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10909
10910Overview:
10911"""""""""
10912
10913The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10914nearest integer.
10915
10916Arguments:
10917""""""""""
10918
10919The argument and return value are floating point numbers of the same
10920type.
10921
10922Semantics:
10923""""""""""
10924
10925This function returns the same values as the libm ``nearbyint``
10926functions would, and handles error conditions in the same way.
10927
Hal Finkel171817e2013-08-07 22:49:12 +000010928'``llvm.round.*``' Intrinsic
10929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10930
10931Syntax:
10932"""""""
10933
10934This is an overloaded intrinsic. You can use ``llvm.round`` on any
10935floating point or vector of floating point type. Not all targets support
10936all types however.
10937
10938::
10939
10940 declare float @llvm.round.f32(float %Val)
10941 declare double @llvm.round.f64(double %Val)
10942 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10943 declare fp128 @llvm.round.f128(fp128 %Val)
10944 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10945
10946Overview:
10947"""""""""
10948
10949The '``llvm.round.*``' intrinsics returns the operand rounded to the
10950nearest integer.
10951
10952Arguments:
10953""""""""""
10954
10955The argument and return value are floating point numbers of the same
10956type.
10957
10958Semantics:
10959""""""""""
10960
10961This function returns the same values as the libm ``round``
10962functions would, and handles error conditions in the same way.
10963
Sean Silvab084af42012-12-07 10:36:55 +000010964Bit Manipulation Intrinsics
10965---------------------------
10966
10967LLVM provides intrinsics for a few important bit manipulation
10968operations. These allow efficient code generation for some algorithms.
10969
James Molloy90111f72015-11-12 12:29:09 +000010970'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010971^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010972
10973Syntax:
10974"""""""
10975
10976This is an overloaded intrinsic function. You can use bitreverse on any
10977integer type.
10978
10979::
10980
10981 declare i16 @llvm.bitreverse.i16(i16 <id>)
10982 declare i32 @llvm.bitreverse.i32(i32 <id>)
10983 declare i64 @llvm.bitreverse.i64(i64 <id>)
10984
10985Overview:
10986"""""""""
10987
10988The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010989bitpattern of an integer value; for example ``0b10110110`` becomes
10990``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010991
10992Semantics:
10993""""""""""
10994
Yichao Yu5abf14b2016-11-23 16:25:31 +000010995The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000010996``M`` in the input moved to bit ``N-M`` in the output.
10997
Sean Silvab084af42012-12-07 10:36:55 +000010998'``llvm.bswap.*``' Intrinsics
10999^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11000
11001Syntax:
11002"""""""
11003
11004This is an overloaded intrinsic function. You can use bswap on any
11005integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11006
11007::
11008
11009 declare i16 @llvm.bswap.i16(i16 <id>)
11010 declare i32 @llvm.bswap.i32(i32 <id>)
11011 declare i64 @llvm.bswap.i64(i64 <id>)
11012
11013Overview:
11014"""""""""
11015
11016The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11017values with an even number of bytes (positive multiple of 16 bits).
11018These are useful for performing operations on data that is not in the
11019target's native byte order.
11020
11021Semantics:
11022""""""""""
11023
11024The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11025and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11026intrinsic returns an i32 value that has the four bytes of the input i32
11027swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11028returned i32 will have its bytes in 3, 2, 1, 0 order. The
11029``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11030concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11031respectively).
11032
11033'``llvm.ctpop.*``' Intrinsic
11034^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11035
11036Syntax:
11037"""""""
11038
11039This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11040bit width, or on any vector with integer elements. Not all targets
11041support all bit widths or vector types, however.
11042
11043::
11044
11045 declare i8 @llvm.ctpop.i8(i8 <src>)
11046 declare i16 @llvm.ctpop.i16(i16 <src>)
11047 declare i32 @llvm.ctpop.i32(i32 <src>)
11048 declare i64 @llvm.ctpop.i64(i64 <src>)
11049 declare i256 @llvm.ctpop.i256(i256 <src>)
11050 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11051
11052Overview:
11053"""""""""
11054
11055The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11056in a value.
11057
11058Arguments:
11059""""""""""
11060
11061The only argument is the value to be counted. The argument may be of any
11062integer type, or a vector with integer elements. The return type must
11063match the argument type.
11064
11065Semantics:
11066""""""""""
11067
11068The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11069each element of a vector.
11070
11071'``llvm.ctlz.*``' Intrinsic
11072^^^^^^^^^^^^^^^^^^^^^^^^^^^
11073
11074Syntax:
11075"""""""
11076
11077This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11078integer bit width, or any vector whose elements are integers. Not all
11079targets support all bit widths or vector types, however.
11080
11081::
11082
11083 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11084 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11085 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11086 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11087 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011088 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011089
11090Overview:
11091"""""""""
11092
11093The '``llvm.ctlz``' family of intrinsic functions counts the number of
11094leading zeros in a variable.
11095
11096Arguments:
11097""""""""""
11098
11099The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011100any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011101type must match the first argument type.
11102
11103The second argument must be a constant and is a flag to indicate whether
11104the intrinsic should ensure that a zero as the first argument produces a
11105defined result. Historically some architectures did not provide a
11106defined result for zero values as efficiently, and many algorithms are
11107now predicated on avoiding zero-value inputs.
11108
11109Semantics:
11110""""""""""
11111
11112The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11113zeros in a variable, or within each element of the vector. If
11114``src == 0`` then the result is the size in bits of the type of ``src``
11115if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11116``llvm.ctlz(i32 2) = 30``.
11117
11118'``llvm.cttz.*``' Intrinsic
11119^^^^^^^^^^^^^^^^^^^^^^^^^^^
11120
11121Syntax:
11122"""""""
11123
11124This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11125integer bit width, or any vector of integer elements. Not all targets
11126support all bit widths or vector types, however.
11127
11128::
11129
11130 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11131 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11132 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11133 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11134 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011135 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011136
11137Overview:
11138"""""""""
11139
11140The '``llvm.cttz``' family of intrinsic functions counts the number of
11141trailing zeros.
11142
11143Arguments:
11144""""""""""
11145
11146The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011147any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011148type must match the first argument type.
11149
11150The second argument must be a constant and is a flag to indicate whether
11151the intrinsic should ensure that a zero as the first argument produces a
11152defined result. Historically some architectures did not provide a
11153defined result for zero values as efficiently, and many algorithms are
11154now predicated on avoiding zero-value inputs.
11155
11156Semantics:
11157""""""""""
11158
11159The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11160zeros in a variable, or within each element of a vector. If ``src == 0``
11161then the result is the size in bits of the type of ``src`` if
11162``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11163``llvm.cttz(2) = 1``.
11164
Philip Reames34843ae2015-03-05 05:55:55 +000011165.. _int_overflow:
11166
Sean Silvab084af42012-12-07 10:36:55 +000011167Arithmetic with Overflow Intrinsics
11168-----------------------------------
11169
John Regehr6a493f22016-05-12 20:55:09 +000011170LLVM provides intrinsics for fast arithmetic overflow checking.
11171
11172Each of these intrinsics returns a two-element struct. The first
11173element of this struct contains the result of the corresponding
11174arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11175the result. Therefore, for example, the first element of the struct
11176returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11177result of a 32-bit ``add`` instruction with the same operands, where
11178the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11179
11180The second element of the result is an ``i1`` that is 1 if the
11181arithmetic operation overflowed and 0 otherwise. An operation
11182overflows if, for any values of its operands ``A`` and ``B`` and for
11183any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11184not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11185``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11186``op`` is the underlying arithmetic operation.
11187
11188The behavior of these intrinsics is well-defined for all argument
11189values.
Sean Silvab084af42012-12-07 10:36:55 +000011190
11191'``llvm.sadd.with.overflow.*``' Intrinsics
11192^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11193
11194Syntax:
11195"""""""
11196
11197This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11198on any integer bit width.
11199
11200::
11201
11202 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11203 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11204 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11205
11206Overview:
11207"""""""""
11208
11209The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11210a signed addition of the two arguments, and indicate whether an overflow
11211occurred during the signed summation.
11212
11213Arguments:
11214""""""""""
11215
11216The arguments (%a and %b) and the first element of the result structure
11217may be of integer types of any bit width, but they must have the same
11218bit width. The second element of the result structure must be of type
11219``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11220addition.
11221
11222Semantics:
11223""""""""""
11224
11225The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011226a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011227first element of which is the signed summation, and the second element
11228of which is a bit specifying if the signed summation resulted in an
11229overflow.
11230
11231Examples:
11232"""""""""
11233
11234.. code-block:: llvm
11235
11236 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11237 %sum = extractvalue {i32, i1} %res, 0
11238 %obit = extractvalue {i32, i1} %res, 1
11239 br i1 %obit, label %overflow, label %normal
11240
11241'``llvm.uadd.with.overflow.*``' Intrinsics
11242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11243
11244Syntax:
11245"""""""
11246
11247This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11248on any integer bit width.
11249
11250::
11251
11252 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11253 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11254 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11255
11256Overview:
11257"""""""""
11258
11259The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11260an unsigned addition of the two arguments, and indicate whether a carry
11261occurred during the unsigned summation.
11262
11263Arguments:
11264""""""""""
11265
11266The arguments (%a and %b) and the first element of the result structure
11267may be of integer types of any bit width, but they must have the same
11268bit width. The second element of the result structure must be of type
11269``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11270addition.
11271
11272Semantics:
11273""""""""""
11274
11275The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011276an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011277first element of which is the sum, and the second element of which is a
11278bit specifying if the unsigned summation resulted in a carry.
11279
11280Examples:
11281"""""""""
11282
11283.. code-block:: llvm
11284
11285 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11286 %sum = extractvalue {i32, i1} %res, 0
11287 %obit = extractvalue {i32, i1} %res, 1
11288 br i1 %obit, label %carry, label %normal
11289
11290'``llvm.ssub.with.overflow.*``' Intrinsics
11291^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11292
11293Syntax:
11294"""""""
11295
11296This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11297on any integer bit width.
11298
11299::
11300
11301 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11302 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11303 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11304
11305Overview:
11306"""""""""
11307
11308The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11309a signed subtraction of the two arguments, and indicate whether an
11310overflow occurred during the signed subtraction.
11311
11312Arguments:
11313""""""""""
11314
11315The arguments (%a and %b) and the first element of the result structure
11316may be of integer types of any bit width, but they must have the same
11317bit width. The second element of the result structure must be of type
11318``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11319subtraction.
11320
11321Semantics:
11322""""""""""
11323
11324The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011325a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011326first element of which is the subtraction, and the second element of
11327which is a bit specifying if the signed subtraction resulted in an
11328overflow.
11329
11330Examples:
11331"""""""""
11332
11333.. code-block:: llvm
11334
11335 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11336 %sum = extractvalue {i32, i1} %res, 0
11337 %obit = extractvalue {i32, i1} %res, 1
11338 br i1 %obit, label %overflow, label %normal
11339
11340'``llvm.usub.with.overflow.*``' Intrinsics
11341^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11342
11343Syntax:
11344"""""""
11345
11346This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11347on any integer bit width.
11348
11349::
11350
11351 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11352 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11353 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11354
11355Overview:
11356"""""""""
11357
11358The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11359an unsigned subtraction of the two arguments, and indicate whether an
11360overflow occurred during the unsigned subtraction.
11361
11362Arguments:
11363""""""""""
11364
11365The arguments (%a and %b) and the first element of the result structure
11366may be of integer types of any bit width, but they must have the same
11367bit width. The second element of the result structure must be of type
11368``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11369subtraction.
11370
11371Semantics:
11372""""""""""
11373
11374The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011375an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011376the first element of which is the subtraction, and the second element of
11377which is a bit specifying if the unsigned subtraction resulted in an
11378overflow.
11379
11380Examples:
11381"""""""""
11382
11383.. code-block:: llvm
11384
11385 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11386 %sum = extractvalue {i32, i1} %res, 0
11387 %obit = extractvalue {i32, i1} %res, 1
11388 br i1 %obit, label %overflow, label %normal
11389
11390'``llvm.smul.with.overflow.*``' Intrinsics
11391^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11392
11393Syntax:
11394"""""""
11395
11396This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11397on any integer bit width.
11398
11399::
11400
11401 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11402 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11403 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11404
11405Overview:
11406"""""""""
11407
11408The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11409a signed multiplication of the two arguments, and indicate whether an
11410overflow occurred during the signed multiplication.
11411
11412Arguments:
11413""""""""""
11414
11415The arguments (%a and %b) and the first element of the result structure
11416may be of integer types of any bit width, but they must have the same
11417bit width. The second element of the result structure must be of type
11418``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11419multiplication.
11420
11421Semantics:
11422""""""""""
11423
11424The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011425a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011426the first element of which is the multiplication, and the second element
11427of which is a bit specifying if the signed multiplication resulted in an
11428overflow.
11429
11430Examples:
11431"""""""""
11432
11433.. code-block:: llvm
11434
11435 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11436 %sum = extractvalue {i32, i1} %res, 0
11437 %obit = extractvalue {i32, i1} %res, 1
11438 br i1 %obit, label %overflow, label %normal
11439
11440'``llvm.umul.with.overflow.*``' Intrinsics
11441^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11442
11443Syntax:
11444"""""""
11445
11446This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11447on any integer bit width.
11448
11449::
11450
11451 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11452 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11453 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11454
11455Overview:
11456"""""""""
11457
11458The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11459a unsigned multiplication of the two arguments, and indicate whether an
11460overflow occurred during the unsigned multiplication.
11461
11462Arguments:
11463""""""""""
11464
11465The arguments (%a and %b) and the first element of the result structure
11466may be of integer types of any bit width, but they must have the same
11467bit width. The second element of the result structure must be of type
11468``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11469multiplication.
11470
11471Semantics:
11472""""""""""
11473
11474The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011475an unsigned multiplication of the two arguments. They return a structure ---
11476the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011477element of which is a bit specifying if the unsigned multiplication
11478resulted in an overflow.
11479
11480Examples:
11481"""""""""
11482
11483.. code-block:: llvm
11484
11485 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11486 %sum = extractvalue {i32, i1} %res, 0
11487 %obit = extractvalue {i32, i1} %res, 1
11488 br i1 %obit, label %overflow, label %normal
11489
11490Specialised Arithmetic Intrinsics
11491---------------------------------
11492
Owen Anderson1056a922015-07-11 07:01:27 +000011493'``llvm.canonicalize.*``' Intrinsic
11494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11495
11496Syntax:
11497"""""""
11498
11499::
11500
11501 declare float @llvm.canonicalize.f32(float %a)
11502 declare double @llvm.canonicalize.f64(double %b)
11503
11504Overview:
11505"""""""""
11506
11507The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011508encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011509implementing certain numeric primitives such as frexp. The canonical encoding is
11510defined by IEEE-754-2008 to be:
11511
11512::
11513
11514 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011515 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011516 numbers, infinities, and NaNs, especially in decimal formats.
11517
11518This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011519conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011520according to section 6.2.
11521
11522Examples of non-canonical encodings:
11523
Sean Silvaa1190322015-08-06 22:56:48 +000011524- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011525 converted to a canonical representation per hardware-specific protocol.
11526- Many normal decimal floating point numbers have non-canonical alternative
11527 encodings.
11528- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011529 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011530 a zero of the same sign by this operation.
11531
11532Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11533default exception handling must signal an invalid exception, and produce a
11534quiet NaN result.
11535
11536This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011537that the compiler does not constant fold the operation. Likewise, division by
115381.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011539-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11540
Sean Silvaa1190322015-08-06 22:56:48 +000011541``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011542
11543- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11544- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11545 to ``(x == y)``
11546
11547Additionally, the sign of zero must be conserved:
11548``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11549
11550The payload bits of a NaN must be conserved, with two exceptions.
11551First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011552must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011553usual methods.
11554
11555The canonicalization operation may be optimized away if:
11556
Sean Silvaa1190322015-08-06 22:56:48 +000011557- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011558 floating-point operation that is required by the standard to be canonical.
11559- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011560 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011561
Sean Silvab084af42012-12-07 10:36:55 +000011562'``llvm.fmuladd.*``' Intrinsic
11563^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11564
11565Syntax:
11566"""""""
11567
11568::
11569
11570 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11571 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11572
11573Overview:
11574"""""""""
11575
11576The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011577expressions that can be fused if the code generator determines that (a) the
11578target instruction set has support for a fused operation, and (b) that the
11579fused operation is more efficient than the equivalent, separate pair of mul
11580and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011581
11582Arguments:
11583""""""""""
11584
11585The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11586multiplicands, a and b, and an addend c.
11587
11588Semantics:
11589""""""""""
11590
11591The expression:
11592
11593::
11594
11595 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11596
11597is equivalent to the expression a \* b + c, except that rounding will
11598not be performed between the multiplication and addition steps if the
11599code generator fuses the operations. Fusion is not guaranteed, even if
11600the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011601corresponding llvm.fma.\* intrinsic function should be used
11602instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011603
11604Examples:
11605"""""""""
11606
11607.. code-block:: llvm
11608
Tim Northover675a0962014-06-13 14:24:23 +000011609 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011610
11611Half Precision Floating Point Intrinsics
11612----------------------------------------
11613
11614For most target platforms, half precision floating point is a
11615storage-only format. This means that it is a dense encoding (in memory)
11616but does not support computation in the format.
11617
11618This means that code must first load the half-precision floating point
11619value as an i16, then convert it to float with
11620:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11621then be performed on the float value (including extending to double
11622etc). To store the value back to memory, it is first converted to float
11623if needed, then converted to i16 with
11624:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11625i16 value.
11626
11627.. _int_convert_to_fp16:
11628
11629'``llvm.convert.to.fp16``' Intrinsic
11630^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11631
11632Syntax:
11633"""""""
11634
11635::
11636
Tim Northoverfd7e4242014-07-17 10:51:23 +000011637 declare i16 @llvm.convert.to.fp16.f32(float %a)
11638 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011639
11640Overview:
11641"""""""""
11642
Tim Northoverfd7e4242014-07-17 10:51:23 +000011643The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11644conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011645
11646Arguments:
11647""""""""""
11648
11649The intrinsic function contains single argument - the value to be
11650converted.
11651
11652Semantics:
11653""""""""""
11654
Tim Northoverfd7e4242014-07-17 10:51:23 +000011655The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11656conventional floating point format to half precision floating point format. The
11657return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011658
11659Examples:
11660"""""""""
11661
11662.. code-block:: llvm
11663
Tim Northoverfd7e4242014-07-17 10:51:23 +000011664 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011665 store i16 %res, i16* @x, align 2
11666
11667.. _int_convert_from_fp16:
11668
11669'``llvm.convert.from.fp16``' Intrinsic
11670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11671
11672Syntax:
11673"""""""
11674
11675::
11676
Tim Northoverfd7e4242014-07-17 10:51:23 +000011677 declare float @llvm.convert.from.fp16.f32(i16 %a)
11678 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011679
11680Overview:
11681"""""""""
11682
11683The '``llvm.convert.from.fp16``' intrinsic function performs a
11684conversion from half precision floating point format to single precision
11685floating point format.
11686
11687Arguments:
11688""""""""""
11689
11690The intrinsic function contains single argument - the value to be
11691converted.
11692
11693Semantics:
11694""""""""""
11695
11696The '``llvm.convert.from.fp16``' intrinsic function performs a
11697conversion from half single precision floating point format to single
11698precision floating point format. The input half-float value is
11699represented by an ``i16`` value.
11700
11701Examples:
11702"""""""""
11703
11704.. code-block:: llvm
11705
David Blaikiec7aabbb2015-03-04 22:06:14 +000011706 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011707 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011708
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011709.. _dbg_intrinsics:
11710
Sean Silvab084af42012-12-07 10:36:55 +000011711Debugger Intrinsics
11712-------------------
11713
11714The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11715prefix), are described in the `LLVM Source Level
11716Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11717document.
11718
11719Exception Handling Intrinsics
11720-----------------------------
11721
11722The LLVM exception handling intrinsics (which all start with
11723``llvm.eh.`` prefix), are described in the `LLVM Exception
11724Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11725
11726.. _int_trampoline:
11727
11728Trampoline Intrinsics
11729---------------------
11730
11731These intrinsics make it possible to excise one parameter, marked with
11732the :ref:`nest <nest>` attribute, from a function. The result is a
11733callable function pointer lacking the nest parameter - the caller does
11734not need to provide a value for it. Instead, the value to use is stored
11735in advance in a "trampoline", a block of memory usually allocated on the
11736stack, which also contains code to splice the nest value into the
11737argument list. This is used to implement the GCC nested function address
11738extension.
11739
11740For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11741then the resulting function pointer has signature ``i32 (i32, i32)*``.
11742It can be created as follows:
11743
11744.. code-block:: llvm
11745
11746 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011747 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011748 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11749 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11750 %fp = bitcast i8* %p to i32 (i32, i32)*
11751
11752The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11753``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11754
11755.. _int_it:
11756
11757'``llvm.init.trampoline``' Intrinsic
11758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11759
11760Syntax:
11761"""""""
11762
11763::
11764
11765 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11766
11767Overview:
11768"""""""""
11769
11770This fills the memory pointed to by ``tramp`` with executable code,
11771turning it into a trampoline.
11772
11773Arguments:
11774""""""""""
11775
11776The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11777pointers. The ``tramp`` argument must point to a sufficiently large and
11778sufficiently aligned block of memory; this memory is written to by the
11779intrinsic. Note that the size and the alignment are target-specific -
11780LLVM currently provides no portable way of determining them, so a
11781front-end that generates this intrinsic needs to have some
11782target-specific knowledge. The ``func`` argument must hold a function
11783bitcast to an ``i8*``.
11784
11785Semantics:
11786""""""""""
11787
11788The block of memory pointed to by ``tramp`` is filled with target
11789dependent code, turning it into a function. Then ``tramp`` needs to be
11790passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11791be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11792function's signature is the same as that of ``func`` with any arguments
11793marked with the ``nest`` attribute removed. At most one such ``nest``
11794argument is allowed, and it must be of pointer type. Calling the new
11795function is equivalent to calling ``func`` with the same argument list,
11796but with ``nval`` used for the missing ``nest`` argument. If, after
11797calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11798modified, then the effect of any later call to the returned function
11799pointer is undefined.
11800
11801.. _int_at:
11802
11803'``llvm.adjust.trampoline``' Intrinsic
11804^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11805
11806Syntax:
11807"""""""
11808
11809::
11810
11811 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11812
11813Overview:
11814"""""""""
11815
11816This performs any required machine-specific adjustment to the address of
11817a trampoline (passed as ``tramp``).
11818
11819Arguments:
11820""""""""""
11821
11822``tramp`` must point to a block of memory which already has trampoline
11823code filled in by a previous call to
11824:ref:`llvm.init.trampoline <int_it>`.
11825
11826Semantics:
11827""""""""""
11828
11829On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011830different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011831intrinsic returns the executable address corresponding to ``tramp``
11832after performing the required machine specific adjustments. The pointer
11833returned can then be :ref:`bitcast and executed <int_trampoline>`.
11834
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011835.. _int_mload_mstore:
11836
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011837Masked Vector Load and Store Intrinsics
11838---------------------------------------
11839
11840LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11841
11842.. _int_mload:
11843
11844'``llvm.masked.load.*``' Intrinsics
11845^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11846
11847Syntax:
11848"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011849This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011850
11851::
11852
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011853 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11854 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011855 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011856 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011857 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011858 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011859
11860Overview:
11861"""""""""
11862
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011863Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011864
11865
11866Arguments:
11867""""""""""
11868
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011869The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011870
11871
11872Semantics:
11873""""""""""
11874
11875The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11876The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11877
11878
11879::
11880
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011881 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011882
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011883 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011884 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011885 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011886
11887.. _int_mstore:
11888
11889'``llvm.masked.store.*``' Intrinsics
11890^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11891
11892Syntax:
11893"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011894This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011895
11896::
11897
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011898 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11899 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011900 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011901 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011902 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011903 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011904
11905Overview:
11906"""""""""
11907
11908Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11909
11910Arguments:
11911""""""""""
11912
11913The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11914
11915
11916Semantics:
11917""""""""""
11918
11919The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11920The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11921
11922::
11923
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011924 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011925
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011926 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011927 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011928 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11929 store <16 x float> %res, <16 x float>* %ptr, align 4
11930
11931
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011932Masked Vector Gather and Scatter Intrinsics
11933-------------------------------------------
11934
11935LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11936
11937.. _int_mgather:
11938
11939'``llvm.masked.gather.*``' Intrinsics
11940^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11941
11942Syntax:
11943"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011944This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011945
11946::
11947
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011948 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11949 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11950 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011951
11952Overview:
11953"""""""""
11954
11955Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11956
11957
11958Arguments:
11959""""""""""
11960
11961The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11962
11963
11964Semantics:
11965""""""""""
11966
11967The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11968The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11969
11970
11971::
11972
Zvi Rackoverb26530c2017-01-26 20:29:15 +000011973 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011974
11975 ;; The gather with all-true mask is equivalent to the following instruction sequence
11976 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11977 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11978 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11979 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11980
11981 %val0 = load double, double* %ptr0, align 8
11982 %val1 = load double, double* %ptr1, align 8
11983 %val2 = load double, double* %ptr2, align 8
11984 %val3 = load double, double* %ptr3, align 8
11985
11986 %vec0 = insertelement <4 x double>undef, %val0, 0
11987 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11988 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11989 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11990
11991.. _int_mscatter:
11992
11993'``llvm.masked.scatter.*``' Intrinsics
11994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11995
11996Syntax:
11997"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011998This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011999
12000::
12001
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012002 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
12003 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
12004 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012005
12006Overview:
12007"""""""""
12008
12009Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12010
12011Arguments:
12012""""""""""
12013
12014The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12015
12016
12017Semantics:
12018""""""""""
12019
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012020The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012021
12022::
12023
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012024 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012025 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
12026
12027 ;; It is equivalent to a list of scalar stores
12028 %val0 = extractelement <8 x i32> %value, i32 0
12029 %val1 = extractelement <8 x i32> %value, i32 1
12030 ..
12031 %val7 = extractelement <8 x i32> %value, i32 7
12032 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12033 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12034 ..
12035 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12036 ;; Note: the order of the following stores is important when they overlap:
12037 store i32 %val0, i32* %ptr0, align 4
12038 store i32 %val1, i32* %ptr1, align 4
12039 ..
12040 store i32 %val7, i32* %ptr7, align 4
12041
12042
Sean Silvab084af42012-12-07 10:36:55 +000012043Memory Use Markers
12044------------------
12045
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012046This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012047memory objects and ranges where variables are immutable.
12048
Reid Klecknera534a382013-12-19 02:14:12 +000012049.. _int_lifestart:
12050
Sean Silvab084af42012-12-07 10:36:55 +000012051'``llvm.lifetime.start``' Intrinsic
12052^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12053
12054Syntax:
12055"""""""
12056
12057::
12058
12059 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12060
12061Overview:
12062"""""""""
12063
12064The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12065object's lifetime.
12066
12067Arguments:
12068""""""""""
12069
12070The first argument is a constant integer representing the size of the
12071object, or -1 if it is variable sized. The second argument is a pointer
12072to the object.
12073
12074Semantics:
12075""""""""""
12076
12077This intrinsic indicates that before this point in the code, the value
12078of the memory pointed to by ``ptr`` is dead. This means that it is known
12079to never be used and has an undefined value. A load from the pointer
12080that precedes this intrinsic can be replaced with ``'undef'``.
12081
Reid Klecknera534a382013-12-19 02:14:12 +000012082.. _int_lifeend:
12083
Sean Silvab084af42012-12-07 10:36:55 +000012084'``llvm.lifetime.end``' Intrinsic
12085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12086
12087Syntax:
12088"""""""
12089
12090::
12091
12092 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12093
12094Overview:
12095"""""""""
12096
12097The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12098object's lifetime.
12099
12100Arguments:
12101""""""""""
12102
12103The first argument is a constant integer representing the size of the
12104object, or -1 if it is variable sized. The second argument is a pointer
12105to the object.
12106
12107Semantics:
12108""""""""""
12109
12110This intrinsic indicates that after this point in the code, the value of
12111the memory pointed to by ``ptr`` is dead. This means that it is known to
12112never be used and has an undefined value. Any stores into the memory
12113object following this intrinsic may be removed as dead.
12114
12115'``llvm.invariant.start``' Intrinsic
12116^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12117
12118Syntax:
12119"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012120This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012121
12122::
12123
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012124 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012125
12126Overview:
12127"""""""""
12128
12129The '``llvm.invariant.start``' intrinsic specifies that the contents of
12130a memory object will not change.
12131
12132Arguments:
12133""""""""""
12134
12135The first argument is a constant integer representing the size of the
12136object, or -1 if it is variable sized. The second argument is a pointer
12137to the object.
12138
12139Semantics:
12140""""""""""
12141
12142This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12143the return value, the referenced memory location is constant and
12144unchanging.
12145
12146'``llvm.invariant.end``' Intrinsic
12147^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12148
12149Syntax:
12150"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012151This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012152
12153::
12154
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012155 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012156
12157Overview:
12158"""""""""
12159
12160The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12161memory object are mutable.
12162
12163Arguments:
12164""""""""""
12165
12166The first argument is the matching ``llvm.invariant.start`` intrinsic.
12167The second argument is a constant integer representing the size of the
12168object, or -1 if it is variable sized and the third argument is a
12169pointer to the object.
12170
12171Semantics:
12172""""""""""
12173
12174This intrinsic indicates that the memory is mutable again.
12175
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012176'``llvm.invariant.group.barrier``' Intrinsic
12177^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12178
12179Syntax:
12180"""""""
12181
12182::
12183
12184 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12185
12186Overview:
12187"""""""""
12188
12189The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12190established by invariant.group metadata no longer holds, to obtain a new pointer
12191value that does not carry the invariant information.
12192
12193
12194Arguments:
12195""""""""""
12196
12197The ``llvm.invariant.group.barrier`` takes only one argument, which is
12198the pointer to the memory for which the ``invariant.group`` no longer holds.
12199
12200Semantics:
12201""""""""""
12202
12203Returns another pointer that aliases its argument but which is considered different
12204for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12205
Andrew Kaylora0a11642017-01-26 23:27:59 +000012206Constrained Floating Point Intrinsics
12207-------------------------------------
12208
12209These intrinsics are used to provide special handling of floating point
12210operations when specific rounding mode or floating point exception behavior is
12211required. By default, LLVM optimization passes assume that the rounding mode is
12212round-to-nearest and that floating point exceptions will not be monitored.
12213Constrained FP intrinsics are used to support non-default rounding modes and
12214accurately preserve exception behavior without compromising LLVM's ability to
12215optimize FP code when the default behavior is used.
12216
12217Each of these intrinsics corresponds to a normal floating point operation. The
12218first two arguments and the return value are the same as the corresponding FP
12219operation.
12220
12221The third argument is a metadata argument specifying the rounding mode to be
12222assumed. This argument must be one of the following strings:
12223
12224::
12225 "round.dynamic"
12226 "round.tonearest"
12227 "round.downward"
12228 "round.upward"
12229 "round.towardzero"
12230
12231If this argument is "round.dynamic" optimization passes must assume that the
12232rounding mode is unknown and may change at runtime. No transformations that
12233depend on rounding mode may be performed in this case.
12234
12235The other possible values for the rounding mode argument correspond to the
12236similarly named IEEE rounding modes. If the argument is any of these values
12237optimization passes may perform transformations as long as they are consistent
12238with the specified rounding mode.
12239
12240For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12241"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12242'x-0' should evaluate to '-0' when rounding downward. However, this
12243transformation is legal for all other rounding modes.
12244
12245For values other than "round.dynamic" optimization passes may assume that the
12246actual runtime rounding mode (as defined in a target-specific manner) matches
12247the specified rounding mode, but this is not guaranteed. Using a specific
12248non-dynamic rounding mode which does not match the actual rounding mode at
12249runtime results in undefined behavior.
12250
12251The fourth argument to the constrained floating point intrinsics specifies the
12252required exception behavior. This argument must be one of the following
12253strings:
12254
12255::
12256 "fpexcept.ignore"
12257 "fpexcept.maytrap"
12258 "fpexcept.strict"
12259
12260If this argument is "fpexcept.ignore" optimization passes may assume that the
12261exception status flags will not be read and that floating point exceptions will
12262be masked. This allows transformations to be performed that may change the
12263exception semantics of the original code. For example, FP operations may be
12264speculatively executed in this case whereas they must not be for either of the
12265other possible values of this argument.
12266
12267If the exception behavior argument is "fpexcept.maytrap" optimization passes
12268must avoid transformations that may raise exceptions that would not have been
12269raised by the original code (such as speculatively executing FP operations), but
12270passes are not required to preserve all exceptions that are implied by the
12271original code. For example, exceptions may be potentially hidden by constant
12272folding.
12273
12274If the exception behavior argument is "fpexcept.strict" all transformations must
12275strictly preserve the floating point exception semantics of the original code.
12276Any FP exception that would have been raised by the original code must be raised
12277by the transformed code, and the transformed code must not raise any FP
12278exceptions that would not have been raised by the original code. This is the
12279exception behavior argument that will be used if the code being compiled reads
12280the FP exception status flags, but this mode can also be used with code that
12281unmasks FP exceptions.
12282
12283The number and order of floating point exceptions is NOT guaranteed. For
12284example, a series of FP operations that each may raise exceptions may be
12285vectorized into a single instruction that raises each unique exception a single
12286time.
12287
12288
12289'``llvm.experimental.constrained.fadd``' Intrinsic
12290^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12291
12292Syntax:
12293"""""""
12294
12295::
12296
12297 declare <type>
12298 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12299 metadata <rounding mode>,
12300 metadata <exception behavior>)
12301
12302Overview:
12303"""""""""
12304
12305The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
12306two operands.
12307
12308
12309Arguments:
12310""""""""""
12311
12312The first two arguments to the '``llvm.experimental.constrained.fadd``'
12313intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12314of floating point values. Both arguments must have identical types.
12315
12316The third and fourth arguments specify the rounding mode and exception
12317behavior as described above.
12318
12319Semantics:
12320""""""""""
12321
12322The value produced is the floating point sum of the two value operands and has
12323the same type as the operands.
12324
12325
12326'``llvm.experimental.constrained.fsub``' Intrinsic
12327^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12328
12329Syntax:
12330"""""""
12331
12332::
12333
12334 declare <type>
12335 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
12336 metadata <rounding mode>,
12337 metadata <exception behavior>)
12338
12339Overview:
12340"""""""""
12341
12342The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
12343of its two operands.
12344
12345
12346Arguments:
12347""""""""""
12348
12349The first two arguments to the '``llvm.experimental.constrained.fsub``'
12350intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12351of floating point values. Both arguments must have identical types.
12352
12353The third and fourth arguments specify the rounding mode and exception
12354behavior as described above.
12355
12356Semantics:
12357""""""""""
12358
12359The value produced is the floating point difference of the two value operands
12360and has the same type as the operands.
12361
12362
12363'``llvm.experimental.constrained.fmul``' Intrinsic
12364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12365
12366Syntax:
12367"""""""
12368
12369::
12370
12371 declare <type>
12372 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
12373 metadata <rounding mode>,
12374 metadata <exception behavior>)
12375
12376Overview:
12377"""""""""
12378
12379The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
12380its two operands.
12381
12382
12383Arguments:
12384""""""""""
12385
12386The first two arguments to the '``llvm.experimental.constrained.fmul``'
12387intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12388of floating point values. Both arguments must have identical types.
12389
12390The third and fourth arguments specify the rounding mode and exception
12391behavior as described above.
12392
12393Semantics:
12394""""""""""
12395
12396The value produced is the floating point product of the two value operands and
12397has the same type as the operands.
12398
12399
12400'``llvm.experimental.constrained.fdiv``' Intrinsic
12401^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12402
12403Syntax:
12404"""""""
12405
12406::
12407
12408 declare <type>
12409 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
12410 metadata <rounding mode>,
12411 metadata <exception behavior>)
12412
12413Overview:
12414"""""""""
12415
12416The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
12417its two operands.
12418
12419
12420Arguments:
12421""""""""""
12422
12423The first two arguments to the '``llvm.experimental.constrained.fdiv``'
12424intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12425of floating point values. Both arguments must have identical types.
12426
12427The third and fourth arguments specify the rounding mode and exception
12428behavior as described above.
12429
12430Semantics:
12431""""""""""
12432
12433The value produced is the floating point quotient of the two value operands and
12434has the same type as the operands.
12435
12436
12437'``llvm.experimental.constrained.frem``' Intrinsic
12438^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12439
12440Syntax:
12441"""""""
12442
12443::
12444
12445 declare <type>
12446 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
12447 metadata <rounding mode>,
12448 metadata <exception behavior>)
12449
12450Overview:
12451"""""""""
12452
12453The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
12454from the division of its two operands.
12455
12456
12457Arguments:
12458""""""""""
12459
12460The first two arguments to the '``llvm.experimental.constrained.frem``'
12461intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12462of floating point values. Both arguments must have identical types.
12463
12464The third and fourth arguments specify the rounding mode and exception
12465behavior as described above. The rounding mode argument has no effect, since
12466the result of frem is never rounded, but the argument is included for
12467consistency with the other constrained floating point intrinsics.
12468
12469Semantics:
12470""""""""""
12471
12472The value produced is the floating point remainder from the division of the two
12473value operands and has the same type as the operands. The remainder has the
12474same sign as the dividend.
12475
12476
Sean Silvab084af42012-12-07 10:36:55 +000012477General Intrinsics
12478------------------
12479
12480This class of intrinsics is designed to be generic and has no specific
12481purpose.
12482
12483'``llvm.var.annotation``' Intrinsic
12484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12485
12486Syntax:
12487"""""""
12488
12489::
12490
12491 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12492
12493Overview:
12494"""""""""
12495
12496The '``llvm.var.annotation``' intrinsic.
12497
12498Arguments:
12499""""""""""
12500
12501The first argument is a pointer to a value, the second is a pointer to a
12502global string, the third is a pointer to a global string which is the
12503source file name, and the last argument is the line number.
12504
12505Semantics:
12506""""""""""
12507
12508This intrinsic allows annotation of local variables with arbitrary
12509strings. This can be useful for special purpose optimizations that want
12510to look for these annotations. These have no other defined use; they are
12511ignored by code generation and optimization.
12512
Michael Gottesman88d18832013-03-26 00:34:27 +000012513'``llvm.ptr.annotation.*``' Intrinsic
12514^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12515
12516Syntax:
12517"""""""
12518
12519This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12520pointer to an integer of any width. *NOTE* you must specify an address space for
12521the pointer. The identifier for the default address space is the integer
12522'``0``'.
12523
12524::
12525
12526 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12527 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12528 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12529 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12530 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12531
12532Overview:
12533"""""""""
12534
12535The '``llvm.ptr.annotation``' intrinsic.
12536
12537Arguments:
12538""""""""""
12539
12540The first argument is a pointer to an integer value of arbitrary bitwidth
12541(result of some expression), the second is a pointer to a global string, the
12542third is a pointer to a global string which is the source file name, and the
12543last argument is the line number. It returns the value of the first argument.
12544
12545Semantics:
12546""""""""""
12547
12548This intrinsic allows annotation of a pointer to an integer with arbitrary
12549strings. This can be useful for special purpose optimizations that want to look
12550for these annotations. These have no other defined use; they are ignored by code
12551generation and optimization.
12552
Sean Silvab084af42012-12-07 10:36:55 +000012553'``llvm.annotation.*``' Intrinsic
12554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12555
12556Syntax:
12557"""""""
12558
12559This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12560any integer bit width.
12561
12562::
12563
12564 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12565 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12566 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12567 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12568 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12569
12570Overview:
12571"""""""""
12572
12573The '``llvm.annotation``' intrinsic.
12574
12575Arguments:
12576""""""""""
12577
12578The first argument is an integer value (result of some expression), the
12579second is a pointer to a global string, the third is a pointer to a
12580global string which is the source file name, and the last argument is
12581the line number. It returns the value of the first argument.
12582
12583Semantics:
12584""""""""""
12585
12586This intrinsic allows annotations to be put on arbitrary expressions
12587with arbitrary strings. This can be useful for special purpose
12588optimizations that want to look for these annotations. These have no
12589other defined use; they are ignored by code generation and optimization.
12590
12591'``llvm.trap``' Intrinsic
12592^^^^^^^^^^^^^^^^^^^^^^^^^
12593
12594Syntax:
12595"""""""
12596
12597::
12598
12599 declare void @llvm.trap() noreturn nounwind
12600
12601Overview:
12602"""""""""
12603
12604The '``llvm.trap``' intrinsic.
12605
12606Arguments:
12607""""""""""
12608
12609None.
12610
12611Semantics:
12612""""""""""
12613
12614This intrinsic is lowered to the target dependent trap instruction. If
12615the target does not have a trap instruction, this intrinsic will be
12616lowered to a call of the ``abort()`` function.
12617
12618'``llvm.debugtrap``' Intrinsic
12619^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12620
12621Syntax:
12622"""""""
12623
12624::
12625
12626 declare void @llvm.debugtrap() nounwind
12627
12628Overview:
12629"""""""""
12630
12631The '``llvm.debugtrap``' intrinsic.
12632
12633Arguments:
12634""""""""""
12635
12636None.
12637
12638Semantics:
12639""""""""""
12640
12641This intrinsic is lowered to code which is intended to cause an
12642execution trap with the intention of requesting the attention of a
12643debugger.
12644
12645'``llvm.stackprotector``' Intrinsic
12646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12647
12648Syntax:
12649"""""""
12650
12651::
12652
12653 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12654
12655Overview:
12656"""""""""
12657
12658The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12659onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12660is placed on the stack before local variables.
12661
12662Arguments:
12663""""""""""
12664
12665The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12666The first argument is the value loaded from the stack guard
12667``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12668enough space to hold the value of the guard.
12669
12670Semantics:
12671""""""""""
12672
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012673This intrinsic causes the prologue/epilogue inserter to force the position of
12674the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12675to ensure that if a local variable on the stack is overwritten, it will destroy
12676the value of the guard. When the function exits, the guard on the stack is
12677checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12678different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12679calling the ``__stack_chk_fail()`` function.
12680
Tim Shene885d5e2016-04-19 19:40:37 +000012681'``llvm.stackguard``' Intrinsic
12682^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12683
12684Syntax:
12685"""""""
12686
12687::
12688
12689 declare i8* @llvm.stackguard()
12690
12691Overview:
12692"""""""""
12693
12694The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12695
12696It should not be generated by frontends, since it is only for internal usage.
12697The reason why we create this intrinsic is that we still support IR form Stack
12698Protector in FastISel.
12699
12700Arguments:
12701""""""""""
12702
12703None.
12704
12705Semantics:
12706""""""""""
12707
12708On some platforms, the value returned by this intrinsic remains unchanged
12709between loads in the same thread. On other platforms, it returns the same
12710global variable value, if any, e.g. ``@__stack_chk_guard``.
12711
12712Currently some platforms have IR-level customized stack guard loading (e.g.
12713X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12714in the future.
12715
Sean Silvab084af42012-12-07 10:36:55 +000012716'``llvm.objectsize``' Intrinsic
12717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12718
12719Syntax:
12720"""""""
12721
12722::
12723
12724 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12725 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12726
12727Overview:
12728"""""""""
12729
12730The ``llvm.objectsize`` intrinsic is designed to provide information to
12731the optimizers to determine at compile time whether a) an operation
12732(like memcpy) will overflow a buffer that corresponds to an object, or
12733b) that a runtime check for overflow isn't necessary. An object in this
12734context means an allocation of a specific class, structure, array, or
12735other object.
12736
12737Arguments:
12738""""""""""
12739
12740The ``llvm.objectsize`` intrinsic takes two arguments. The first
12741argument is a pointer to or into the ``object``. The second argument is
12742a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12743or -1 (if false) when the object size is unknown. The second argument
12744only accepts constants.
12745
12746Semantics:
12747""""""""""
12748
12749The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12750the size of the object concerned. If the size cannot be determined at
12751compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12752on the ``min`` argument).
12753
12754'``llvm.expect``' Intrinsic
12755^^^^^^^^^^^^^^^^^^^^^^^^^^^
12756
12757Syntax:
12758"""""""
12759
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012760This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12761integer bit width.
12762
Sean Silvab084af42012-12-07 10:36:55 +000012763::
12764
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012765 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012766 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12767 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12768
12769Overview:
12770"""""""""
12771
12772The ``llvm.expect`` intrinsic provides information about expected (the
12773most probable) value of ``val``, which can be used by optimizers.
12774
12775Arguments:
12776""""""""""
12777
12778The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12779a value. The second argument is an expected value, this needs to be a
12780constant value, variables are not allowed.
12781
12782Semantics:
12783""""""""""
12784
12785This intrinsic is lowered to the ``val``.
12786
Philip Reamese0e90832015-04-26 22:23:12 +000012787.. _int_assume:
12788
Hal Finkel93046912014-07-25 21:13:35 +000012789'``llvm.assume``' Intrinsic
12790^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12791
12792Syntax:
12793"""""""
12794
12795::
12796
12797 declare void @llvm.assume(i1 %cond)
12798
12799Overview:
12800"""""""""
12801
12802The ``llvm.assume`` allows the optimizer to assume that the provided
12803condition is true. This information can then be used in simplifying other parts
12804of the code.
12805
12806Arguments:
12807""""""""""
12808
12809The condition which the optimizer may assume is always true.
12810
12811Semantics:
12812""""""""""
12813
12814The intrinsic allows the optimizer to assume that the provided condition is
12815always true whenever the control flow reaches the intrinsic call. No code is
12816generated for this intrinsic, and instructions that contribute only to the
12817provided condition are not used for code generation. If the condition is
12818violated during execution, the behavior is undefined.
12819
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012820Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012821used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12822only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012823if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012824sufficient overall improvement in code quality. For this reason,
12825``llvm.assume`` should not be used to document basic mathematical invariants
12826that the optimizer can otherwise deduce or facts that are of little use to the
12827optimizer.
12828
Daniel Berlin2c438a32017-02-07 19:29:25 +000012829.. _int_ssa_copy:
12830
12831'``llvm.ssa_copy``' Intrinsic
12832^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12833
12834Syntax:
12835"""""""
12836
12837::
12838
12839 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
12840
12841Arguments:
12842""""""""""
12843
12844The first argument is an operand which is used as the returned value.
12845
12846Overview:
12847""""""""""
12848
12849The ``llvm.ssa_copy`` intrinsic can be used to attach information to
12850operations by copying them and giving them new names. For example,
12851the PredicateInfo utility uses it to build Extended SSA form, and
12852attach various forms of information to operands that dominate specific
12853uses. It is not meant for general use, only for building temporary
12854renaming forms that require value splits at certain points.
12855
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012856.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012857
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012858'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12860
12861Syntax:
12862"""""""
12863
12864::
12865
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012866 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012867
12868
12869Arguments:
12870""""""""""
12871
12872The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012873metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012874
12875Overview:
12876"""""""""
12877
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012878The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12879with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012880
Peter Collingbourne0312f612016-06-25 00:23:04 +000012881'``llvm.type.checked.load``' Intrinsic
12882^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12883
12884Syntax:
12885"""""""
12886
12887::
12888
12889 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12890
12891
12892Arguments:
12893""""""""""
12894
12895The first argument is a pointer from which to load a function pointer. The
12896second argument is the byte offset from which to load the function pointer. The
12897third argument is a metadata object representing a :doc:`type identifier
12898<TypeMetadata>`.
12899
12900Overview:
12901"""""""""
12902
12903The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12904virtual table pointer using type metadata. This intrinsic is used to implement
12905control flow integrity in conjunction with virtual call optimization. The
12906virtual call optimization pass will optimize away ``llvm.type.checked.load``
12907intrinsics associated with devirtualized calls, thereby removing the type
12908check in cases where it is not needed to enforce the control flow integrity
12909constraint.
12910
12911If the given pointer is associated with a type metadata identifier, this
12912function returns true as the second element of its return value. (Note that
12913the function may also return true if the given pointer is not associated
12914with a type metadata identifier.) If the function's return value's second
12915element is true, the following rules apply to the first element:
12916
12917- If the given pointer is associated with the given type metadata identifier,
12918 it is the function pointer loaded from the given byte offset from the given
12919 pointer.
12920
12921- If the given pointer is not associated with the given type metadata
12922 identifier, it is one of the following (the choice of which is unspecified):
12923
12924 1. The function pointer that would have been loaded from an arbitrarily chosen
12925 (through an unspecified mechanism) pointer associated with the type
12926 metadata.
12927
12928 2. If the function has a non-void return type, a pointer to a function that
12929 returns an unspecified value without causing side effects.
12930
12931If the function's return value's second element is false, the value of the
12932first element is undefined.
12933
12934
Sean Silvab084af42012-12-07 10:36:55 +000012935'``llvm.donothing``' Intrinsic
12936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12937
12938Syntax:
12939"""""""
12940
12941::
12942
12943 declare void @llvm.donothing() nounwind readnone
12944
12945Overview:
12946"""""""""
12947
Juergen Ributzkac9161192014-10-23 22:36:13 +000012948The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012949three intrinsics (besides ``llvm.experimental.patchpoint`` and
12950``llvm.experimental.gc.statepoint``) that can be called with an invoke
12951instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012952
12953Arguments:
12954""""""""""
12955
12956None.
12957
12958Semantics:
12959""""""""""
12960
12961This intrinsic does nothing, and it's removed by optimizers and ignored
12962by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012963
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012964'``llvm.experimental.deoptimize``' Intrinsic
12965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12966
12967Syntax:
12968"""""""
12969
12970::
12971
12972 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12973
12974Overview:
12975"""""""""
12976
12977This intrinsic, together with :ref:`deoptimization operand bundles
12978<deopt_opbundles>`, allow frontends to express transfer of control and
12979frame-local state from the currently executing (typically more specialized,
12980hence faster) version of a function into another (typically more generic, hence
12981slower) version.
12982
12983In languages with a fully integrated managed runtime like Java and JavaScript
12984this intrinsic can be used to implement "uncommon trap" or "side exit" like
12985functionality. In unmanaged languages like C and C++, this intrinsic can be
12986used to represent the slow paths of specialized functions.
12987
12988
12989Arguments:
12990""""""""""
12991
12992The intrinsic takes an arbitrary number of arguments, whose meaning is
12993decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12994
12995Semantics:
12996""""""""""
12997
12998The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12999deoptimization continuation (denoted using a :ref:`deoptimization
13000operand bundle <deopt_opbundles>`) and returns the value returned by
13001the deoptimization continuation. Defining the semantic properties of
13002the continuation itself is out of scope of the language reference --
13003as far as LLVM is concerned, the deoptimization continuation can
13004invoke arbitrary side effects, including reading from and writing to
13005the entire heap.
13006
13007Deoptimization continuations expressed using ``"deopt"`` operand bundles always
13008continue execution to the end of the physical frame containing them, so all
13009calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
13010
13011 - ``@llvm.experimental.deoptimize`` cannot be invoked.
13012 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
13013 - The ``ret`` instruction must return the value produced by the
13014 ``@llvm.experimental.deoptimize`` call if there is one, or void.
13015
13016Note that the above restrictions imply that the return type for a call to
13017``@llvm.experimental.deoptimize`` will match the return type of its immediate
13018caller.
13019
13020The inliner composes the ``"deopt"`` continuations of the caller into the
13021``"deopt"`` continuations present in the inlinee, and also updates calls to this
13022intrinsic to return directly from the frame of the function it inlined into.
13023
Sanjoy Dase0aa4142016-05-12 01:17:38 +000013024All declarations of ``@llvm.experimental.deoptimize`` must share the
13025same calling convention.
13026
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013027.. _deoptimize_lowering:
13028
13029Lowering:
13030"""""""""
13031
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000013032Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
13033symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
13034ensure that this symbol is defined). The call arguments to
13035``@llvm.experimental.deoptimize`` are lowered as if they were formal
13036arguments of the specified types, and not as varargs.
13037
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013038
Sanjoy Das021de052016-03-31 00:18:46 +000013039'``llvm.experimental.guard``' Intrinsic
13040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13041
13042Syntax:
13043"""""""
13044
13045::
13046
13047 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
13048
13049Overview:
13050"""""""""
13051
13052This intrinsic, together with :ref:`deoptimization operand bundles
13053<deopt_opbundles>`, allows frontends to express guards or checks on
13054optimistic assumptions made during compilation. The semantics of
13055``@llvm.experimental.guard`` is defined in terms of
13056``@llvm.experimental.deoptimize`` -- its body is defined to be
13057equivalent to:
13058
Renato Golin124f2592016-07-20 12:16:38 +000013059.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000013060
Renato Golin124f2592016-07-20 12:16:38 +000013061 define void @llvm.experimental.guard(i1 %pred, <args...>) {
13062 %realPred = and i1 %pred, undef
13063 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000013064
Renato Golin124f2592016-07-20 12:16:38 +000013065 leave:
13066 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
13067 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000013068
Renato Golin124f2592016-07-20 12:16:38 +000013069 continue:
13070 ret void
13071 }
Sanjoy Das021de052016-03-31 00:18:46 +000013072
Sanjoy Das47cf2af2016-04-30 00:55:59 +000013073
13074with the optional ``[, !make.implicit !{}]`` present if and only if it
13075is present on the call site. For more details on ``!make.implicit``,
13076see :doc:`FaultMaps`.
13077
Sanjoy Das021de052016-03-31 00:18:46 +000013078In words, ``@llvm.experimental.guard`` executes the attached
13079``"deopt"`` continuation if (but **not** only if) its first argument
13080is ``false``. Since the optimizer is allowed to replace the ``undef``
13081with an arbitrary value, it can optimize guard to fail "spuriously",
13082i.e. without the original condition being false (hence the "not only
13083if"); and this allows for "check widening" type optimizations.
13084
13085``@llvm.experimental.guard`` cannot be invoked.
13086
13087
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000013088'``llvm.load.relative``' Intrinsic
13089^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13090
13091Syntax:
13092"""""""
13093
13094::
13095
13096 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
13097
13098Overview:
13099"""""""""
13100
13101This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
13102adds ``%ptr`` to that value and returns it. The constant folder specifically
13103recognizes the form of this intrinsic and the constant initializers it may
13104load from; if a loaded constant initializer is known to have the form
13105``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
13106
13107LLVM provides that the calculation of such a constant initializer will
13108not overflow at link time under the medium code model if ``x`` is an
13109``unnamed_addr`` function. However, it does not provide this guarantee for
13110a constant initializer folded into a function body. This intrinsic can be
13111used to avoid the possibility of overflows when loading from such a constant.
13112
Andrew Trick5e029ce2013-12-24 02:57:25 +000013113Stack Map Intrinsics
13114--------------------
13115
13116LLVM provides experimental intrinsics to support runtime patching
13117mechanisms commonly desired in dynamic language JITs. These intrinsics
13118are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000013119
13120Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000013121-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000013122
13123These intrinsics are similar to the standard library memory intrinsics except
13124that they perform memory transfer as a sequence of atomic memory accesses.
13125
13126.. _int_memcpy_element_atomic:
13127
13128'``llvm.memcpy.element.atomic``' Intrinsic
Igor Laevskyfedab152016-12-29 15:08:57 +000013129^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000013130
13131Syntax:
13132"""""""
13133
13134This is an overloaded intrinsic. You can use ``llvm.memcpy.element.atomic`` on
13135any integer bit width and for different address spaces. Not all targets
13136support all bit widths however.
13137
13138::
13139
13140 declare void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* <dest>, i8* <src>,
13141 i64 <num_elements>, i32 <element_size>)
13142
13143Overview:
13144"""""""""
13145
13146The '``llvm.memcpy.element.atomic.*``' intrinsic performs copy of a block of
13147memory from the source location to the destination location as a sequence of
13148unordered atomic memory accesses where each access is a multiple of
13149``element_size`` bytes wide and aligned at an element size boundary. For example
13150each element is accessed atomically in source and destination buffers.
13151
13152Arguments:
13153""""""""""
13154
13155The first argument is a pointer to the destination, the second is a
13156pointer to the source. The third argument is an integer argument
13157specifying the number of elements to copy, the fourth argument is size of
13158the single element in bytes.
13159
13160``element_size`` should be a power of two, greater than zero and less than
13161a target-specific atomic access size limit.
13162
13163For each of the input pointers ``align`` parameter attribute must be specified.
13164It must be a power of two and greater than or equal to the ``element_size``.
13165Caller guarantees that both the source and destination pointers are aligned to
13166that boundary.
13167
13168Semantics:
13169""""""""""
13170
13171The '``llvm.memcpy.element.atomic.*``' intrinsic copies
13172'``num_elements`` * ``element_size``' bytes of memory from the source location to
13173the destination location. These locations are not allowed to overlap. Memory copy
13174is performed as a sequence of unordered atomic memory accesses where each access
13175is guaranteed to be a multiple of ``element_size`` bytes wide and aligned at an
13176element size boundary.
13177
13178The order of the copy is unspecified. The same value may be read from the source
13179buffer many times, but only one write is issued to the destination buffer per
13180element. It is well defined to have concurrent reads and writes to both source
13181and destination provided those reads and writes are at least unordered atomic.
13182
13183This intrinsic does not provide any additional ordering guarantees over those
13184provided by a set of unordered loads from the source location and stores to the
13185destination.
13186
13187Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000013188"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000013189
13190In the most general case call to the '``llvm.memcpy.element.atomic.*``' is lowered
13191to a call to the symbol ``__llvm_memcpy_element_atomic_*``. Where '*' is replaced
13192with an actual element size.
13193
13194Optimizer is allowed to inline memory copy when it's profitable to do so.