blob: 2eab1b8a3dba0d23a511b40e6c32de57b503ee05 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
645an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000646
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000647Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000648:ref:`Thread Local Storage Model <tls_model>`.
649
Nico Rieck7157bb72014-01-14 15:22:47 +0000650Syntax::
651
Rafael Espindola32483a72016-05-10 18:22:45 +0000652 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000653 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
654 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000655 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000656 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000657 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659For example, the following defines a global in a numbered address space
660with an initializer, section, and alignment:
661
662.. code-block:: llvm
663
664 @G = addrspace(5) constant float 1.0, section "foo", align 4
665
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000666The following example just declares a global variable
667
668.. code-block:: llvm
669
670 @G = external global i32
671
Sean Silvab084af42012-12-07 10:36:55 +0000672The following example defines a thread-local global with the
673``initialexec`` TLS model:
674
675.. code-block:: llvm
676
677 @G = thread_local(initialexec) global i32 0, align 4
678
679.. _functionstructure:
680
681Functions
682---------
683
684LLVM function definitions consist of the "``define``" keyword, an
685optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000686style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
687an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000688an optional ``unnamed_addr`` attribute, a return type, an optional
689:ref:`parameter attribute <paramattrs>` for the return type, a function
690name, a (possibly empty) argument list (each with optional :ref:`parameter
691attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000692an optional section, an optional alignment,
693an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000694an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000695an optional :ref:`prologue <prologuedata>`,
696an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000697an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000698an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000699
700LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000701optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
702<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
703optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
704or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
705attribute <paramattrs>` for the return type, a function name, a possibly
706empty list of arguments, an optional alignment, an optional :ref:`garbage
707collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
708:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000709
Bill Wendling6822ecb2013-10-27 05:09:12 +0000710A function definition contains a list of basic blocks, forming the CFG (Control
711Flow Graph) for the function. Each basic block may optionally start with a label
712(giving the basic block a symbol table entry), contains a list of instructions,
713and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
714function return). If an explicit label is not provided, a block is assigned an
715implicit numbered label, using the next value from the same counter as used for
716unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
717entry block does not have an explicit label, it will be assigned label "%0",
718then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000719
720The first basic block in a function is special in two ways: it is
721immediately executed on entrance to the function, and it is not allowed
722to have predecessor basic blocks (i.e. there can not be any branches to
723the entry block of a function). Because the block can have no
724predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
725
726LLVM allows an explicit section to be specified for functions. If the
727target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000728Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730An explicit alignment may be specified for a function. If not present,
731or if the alignment is set to zero, the alignment of the function is set
732by the target to whatever it feels convenient. If an explicit alignment
733is specified, the function is forced to have at least that much
734alignment. All alignments must be a power of 2.
735
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000736If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000737be significant and two identical functions can be merged.
738
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000739If the ``local_unnamed_addr`` attribute is given, the address is known to
740not be significant within the module.
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Syntax::
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000745 [cconv] [ret attrs]
746 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000747 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
748 [comdat [($name)]] [align N] [gc] [prefix Constant]
749 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000750
Sean Silva706fba52015-08-06 22:56:24 +0000751The argument list is a comma separated sequence of arguments where each
752argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000753
754Syntax::
755
756 <type> [parameter Attrs] [name]
757
758
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000759.. _langref_aliases:
760
Sean Silvab084af42012-12-07 10:36:55 +0000761Aliases
762-------
763
Rafael Espindola64c1e182014-06-03 02:41:57 +0000764Aliases, unlike function or variables, don't create any new data. They
765are just a new symbol and metadata for an existing position.
766
767Aliases have a name and an aliasee that is either a global value or a
768constant expression.
769
Nico Rieck7157bb72014-01-14 15:22:47 +0000770Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000771:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
772<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000773
774Syntax::
775
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000776 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000777
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000778The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000779``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000780might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000781
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000782Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000783the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
784to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000785
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000786If the ``local_unnamed_addr`` attribute is given, the address is known to
787not be significant within the module.
788
Rafael Espindola64c1e182014-06-03 02:41:57 +0000789Since aliases are only a second name, some restrictions apply, of which
790some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000791
Rafael Espindola64c1e182014-06-03 02:41:57 +0000792* The expression defining the aliasee must be computable at assembly
793 time. Since it is just a name, no relocations can be used.
794
795* No alias in the expression can be weak as the possibility of the
796 intermediate alias being overridden cannot be represented in an
797 object file.
798
799* No global value in the expression can be a declaration, since that
800 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000801
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000802.. _langref_ifunc:
803
804IFuncs
805-------
806
807IFuncs, like as aliases, don't create any new data or func. They are just a new
808symbol that dynamic linker resolves at runtime by calling a resolver function.
809
810IFuncs have a name and a resolver that is a function called by dynamic linker
811that returns address of another function associated with the name.
812
813IFunc may have an optional :ref:`linkage type <linkage>` and an optional
814:ref:`visibility style <visibility>`.
815
816Syntax::
817
818 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821.. _langref_comdats:
822
823Comdats
824-------
825
826Comdat IR provides access to COFF and ELF object file COMDAT functionality.
827
Sean Silvaa1190322015-08-06 22:56:48 +0000828Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000829specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000830that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000831aliasee computes to, if any.
832
833Comdats have a selection kind to provide input on how the linker should
834choose between keys in two different object files.
835
836Syntax::
837
838 $<Name> = comdat SelectionKind
839
840The selection kind must be one of the following:
841
842``any``
843 The linker may choose any COMDAT key, the choice is arbitrary.
844``exactmatch``
845 The linker may choose any COMDAT key but the sections must contain the
846 same data.
847``largest``
848 The linker will choose the section containing the largest COMDAT key.
849``noduplicates``
850 The linker requires that only section with this COMDAT key exist.
851``samesize``
852 The linker may choose any COMDAT key but the sections must contain the
853 same amount of data.
854
855Note that the Mach-O platform doesn't support COMDATs and ELF only supports
856``any`` as a selection kind.
857
858Here is an example of a COMDAT group where a function will only be selected if
859the COMDAT key's section is the largest:
860
Renato Golin124f2592016-07-20 12:16:38 +0000861.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000862
863 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000864 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000865
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000867 ret void
868 }
869
Rafael Espindola83a362c2015-01-06 22:55:16 +0000870As a syntactic sugar the ``$name`` can be omitted if the name is the same as
871the global name:
872
Renato Golin124f2592016-07-20 12:16:38 +0000873.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000874
875 $foo = comdat any
876 @foo = global i32 2, comdat
877
878
David Majnemerdad0a642014-06-27 18:19:56 +0000879In a COFF object file, this will create a COMDAT section with selection kind
880``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
881and another COMDAT section with selection kind
882``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000883section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885There are some restrictions on the properties of the global object.
886It, or an alias to it, must have the same name as the COMDAT group when
887targeting COFF.
888The contents and size of this object may be used during link-time to determine
889which COMDAT groups get selected depending on the selection kind.
890Because the name of the object must match the name of the COMDAT group, the
891linkage of the global object must not be local; local symbols can get renamed
892if a collision occurs in the symbol table.
893
894The combined use of COMDATS and section attributes may yield surprising results.
895For example:
896
Renato Golin124f2592016-07-20 12:16:38 +0000897.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000898
899 $foo = comdat any
900 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901 @g1 = global i32 42, section "sec", comdat($foo)
902 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000903
904From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000905with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000906COMDAT groups and COMDATs, at the object file level, are represented by
907sections.
908
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000909Note that certain IR constructs like global variables and functions may
910create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000911COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000912in individual sections (e.g. when `-data-sections` or `-function-sections`
913is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000914
Sean Silvab084af42012-12-07 10:36:55 +0000915.. _namedmetadatastructure:
916
917Named Metadata
918--------------
919
920Named metadata is a collection of metadata. :ref:`Metadata
921nodes <metadata>` (but not metadata strings) are the only valid
922operands for a named metadata.
923
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000924#. Named metadata are represented as a string of characters with the
925 metadata prefix. The rules for metadata names are the same as for
926 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
927 are still valid, which allows any character to be part of a name.
928
Sean Silvab084af42012-12-07 10:36:55 +0000929Syntax::
930
931 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000932 !0 = !{!"zero"}
933 !1 = !{!"one"}
934 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000935 ; A named metadata.
936 !name = !{!0, !1, !2}
937
938.. _paramattrs:
939
940Parameter Attributes
941--------------------
942
943The return type and each parameter of a function type may have a set of
944*parameter attributes* associated with them. Parameter attributes are
945used to communicate additional information about the result or
946parameters of a function. Parameter attributes are considered to be part
947of the function, not of the function type, so functions with different
948parameter attributes can have the same function type.
949
950Parameter attributes are simple keywords that follow the type specified.
951If multiple parameter attributes are needed, they are space separated.
952For example:
953
954.. code-block:: llvm
955
956 declare i32 @printf(i8* noalias nocapture, ...)
957 declare i32 @atoi(i8 zeroext)
958 declare signext i8 @returns_signed_char()
959
960Note that any attributes for the function result (``nounwind``,
961``readonly``) come immediately after the argument list.
962
963Currently, only the following parameter attributes are defined:
964
965``zeroext``
966 This indicates to the code generator that the parameter or return
967 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000968 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000969``signext``
970 This indicates to the code generator that the parameter or return
971 value should be sign-extended to the extent required by the target's
972 ABI (which is usually 32-bits) by the caller (for a parameter) or
973 the callee (for a return value).
974``inreg``
975 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000976 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000977 a function call or return (usually, by putting it in a register as
978 opposed to memory, though some targets use it to distinguish between
979 two different kinds of registers). Use of this attribute is
980 target-specific.
981``byval``
982 This indicates that the pointer parameter should really be passed by
983 value to the function. The attribute implies that a hidden copy of
984 the pointee is made between the caller and the callee, so the callee
985 is unable to modify the value in the caller. This attribute is only
986 valid on LLVM pointer arguments. It is generally used to pass
987 structs and arrays by value, but is also valid on pointers to
988 scalars. The copy is considered to belong to the caller not the
989 callee (for example, ``readonly`` functions should not write to
990 ``byval`` parameters). This is not a valid attribute for return
991 values.
992
993 The byval attribute also supports specifying an alignment with the
994 align attribute. It indicates the alignment of the stack slot to
995 form and the known alignment of the pointer specified to the call
996 site. If the alignment is not specified, then the code generator
997 makes a target-specific assumption.
998
Reid Klecknera534a382013-12-19 02:14:12 +0000999.. _attr_inalloca:
1000
1001``inalloca``
1002
Reid Kleckner60d3a832014-01-16 22:59:24 +00001003 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001004 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001005 be a pointer to stack memory produced by an ``alloca`` instruction.
1006 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001007 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001008 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001009
Reid Kleckner436c42e2014-01-17 23:58:17 +00001010 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001011 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001012 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001013 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001014 ``inalloca`` attribute also disables LLVM's implicit lowering of
1015 large aggregate return values, which means that frontend authors
1016 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001017
Reid Kleckner60d3a832014-01-16 22:59:24 +00001018 When the call site is reached, the argument allocation must have
1019 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001020 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001021 space after an argument allocation and before its call site, but it
1022 must be cleared off with :ref:`llvm.stackrestore
1023 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001024
1025 See :doc:`InAlloca` for more information on how to use this
1026 attribute.
1027
Sean Silvab084af42012-12-07 10:36:55 +00001028``sret``
1029 This indicates that the pointer parameter specifies the address of a
1030 structure that is the return value of the function in the source
1031 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001032 loads and stores to the structure may be assumed by the callee not
1033 to trap and to be properly aligned. This is not a valid attribute
1034 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001035
Hal Finkelccc70902014-07-22 16:58:55 +00001036``align <n>``
1037 This indicates that the pointer value may be assumed by the optimizer to
1038 have the specified alignment.
1039
1040 Note that this attribute has additional semantics when combined with the
1041 ``byval`` attribute.
1042
Sean Silva1703e702014-04-08 21:06:22 +00001043.. _noalias:
1044
Sean Silvab084af42012-12-07 10:36:55 +00001045``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001046 This indicates that objects accessed via pointer values
1047 :ref:`based <pointeraliasing>` on the argument or return value are not also
1048 accessed, during the execution of the function, via pointer values not
1049 *based* on the argument or return value. The attribute on a return value
1050 also has additional semantics described below. The caller shares the
1051 responsibility with the callee for ensuring that these requirements are met.
1052 For further details, please see the discussion of the NoAlias response in
1053 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001054
1055 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001056 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001057
1058 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001059 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1060 attribute on return values are stronger than the semantics of the attribute
1061 when used on function arguments. On function return values, the ``noalias``
1062 attribute indicates that the function acts like a system memory allocation
1063 function, returning a pointer to allocated storage disjoint from the
1064 storage for any other object accessible to the caller.
1065
Sean Silvab084af42012-12-07 10:36:55 +00001066``nocapture``
1067 This indicates that the callee does not make any copies of the
1068 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001069 attribute for return values. Addresses used in volatile operations
1070 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001071
1072.. _nest:
1073
1074``nest``
1075 This indicates that the pointer parameter can be excised using the
1076 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001077 attribute for return values and can only be applied to one parameter.
1078
1079``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001080 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001081 value. This is a hint to the optimizer and code generator used when
1082 generating the caller, allowing value propagation, tail call optimization,
1083 and omission of register saves and restores in some cases; it is not
1084 checked or enforced when generating the callee. The parameter and the
1085 function return type must be valid operands for the
1086 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1087 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001088
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001089``nonnull``
1090 This indicates that the parameter or return pointer is not null. This
1091 attribute may only be applied to pointer typed parameters. This is not
1092 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001093 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001094 is non-null.
1095
Hal Finkelb0407ba2014-07-18 15:51:28 +00001096``dereferenceable(<n>)``
1097 This indicates that the parameter or return pointer is dereferenceable. This
1098 attribute may only be applied to pointer typed parameters. A pointer that
1099 is dereferenceable can be loaded from speculatively without a risk of
1100 trapping. The number of bytes known to be dereferenceable must be provided
1101 in parentheses. It is legal for the number of bytes to be less than the
1102 size of the pointee type. The ``nonnull`` attribute does not imply
1103 dereferenceability (consider a pointer to one element past the end of an
1104 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1105 ``addrspace(0)`` (which is the default address space).
1106
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001107``dereferenceable_or_null(<n>)``
1108 This indicates that the parameter or return value isn't both
1109 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001110 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001111 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1112 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1113 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1114 and in other address spaces ``dereferenceable_or_null(<n>)``
1115 implies that a pointer is at least one of ``dereferenceable(<n>)``
1116 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001117 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001118 pointer typed parameters.
1119
Manman Renf46262e2016-03-29 17:37:21 +00001120``swiftself``
1121 This indicates that the parameter is the self/context parameter. This is not
1122 a valid attribute for return values and can only be applied to one
1123 parameter.
1124
Manman Ren9bfd0d02016-04-01 21:41:15 +00001125``swifterror``
1126 This attribute is motivated to model and optimize Swift error handling. It
1127 can be applied to a parameter with pointer to pointer type or a
1128 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001129 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1130 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1131 the parameter or the alloca) can only be loaded and stored from, or used as
1132 a ``swifterror`` argument. This is not a valid attribute for return values
1133 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001134
1135 These constraints allow the calling convention to optimize access to
1136 ``swifterror`` variables by associating them with a specific register at
1137 call boundaries rather than placing them in memory. Since this does change
1138 the calling convention, a function which uses the ``swifterror`` attribute
1139 on a parameter is not ABI-compatible with one which does not.
1140
1141 These constraints also allow LLVM to assume that a ``swifterror`` argument
1142 does not alias any other memory visible within a function and that a
1143 ``swifterror`` alloca passed as an argument does not escape.
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _gc:
1146
Philip Reamesf80bbff2015-02-25 23:45:20 +00001147Garbage Collector Strategy Names
1148--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001149
Philip Reamesf80bbff2015-02-25 23:45:20 +00001150Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001151string:
1152
1153.. code-block:: llvm
1154
1155 define void @f() gc "name" { ... }
1156
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001157The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001158<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001159strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001160named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001161garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001162which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001163
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001164.. _prefixdata:
1165
1166Prefix Data
1167-----------
1168
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001169Prefix data is data associated with a function which the code
1170generator will emit immediately before the function's entrypoint.
1171The purpose of this feature is to allow frontends to associate
1172language-specific runtime metadata with specific functions and make it
1173available through the function pointer while still allowing the
1174function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001175
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001176To access the data for a given function, a program may bitcast the
1177function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001178index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001179the prefix data. For instance, take the example of a function annotated
1180with a single ``i32``,
1181
1182.. code-block:: llvm
1183
1184 define void @f() prefix i32 123 { ... }
1185
1186The prefix data can be referenced as,
1187
1188.. code-block:: llvm
1189
David Blaikie16a97eb2015-03-04 22:02:58 +00001190 %0 = bitcast void* () @f to i32*
1191 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001192 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001193
1194Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001195of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001196beginning of the prefix data is aligned. This means that if the size
1197of the prefix data is not a multiple of the alignment size, the
1198function's entrypoint will not be aligned. If alignment of the
1199function's entrypoint is desired, padding must be added to the prefix
1200data.
1201
Sean Silvaa1190322015-08-06 22:56:48 +00001202A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001203to the ``available_externally`` linkage in that the data may be used by the
1204optimizers but will not be emitted in the object file.
1205
1206.. _prologuedata:
1207
1208Prologue Data
1209-------------
1210
1211The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1212be inserted prior to the function body. This can be used for enabling
1213function hot-patching and instrumentation.
1214
1215To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001216have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001217bytes which decode to a sequence of machine instructions, valid for the
1218module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001219the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001221definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001222makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001223
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001225which encodes the ``nop`` instruction:
1226
Renato Golin124f2592016-07-20 12:16:38 +00001227.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001228
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001230
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231Generally prologue data can be formed by encoding a relative branch instruction
1232which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001233x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1234
Renato Golin124f2592016-07-20 12:16:38 +00001235.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001236
1237 %0 = type <{ i8, i8, i8* }>
1238
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001239 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001240
Sean Silvaa1190322015-08-06 22:56:48 +00001241A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001242to the ``available_externally`` linkage in that the data may be used by the
1243optimizers but will not be emitted in the object file.
1244
David Majnemer7fddecc2015-06-17 20:52:32 +00001245.. _personalityfn:
1246
1247Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001248--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001249
1250The ``personality`` attribute permits functions to specify what function
1251to use for exception handling.
1252
Bill Wendling63b88192013-02-06 06:52:58 +00001253.. _attrgrp:
1254
1255Attribute Groups
1256----------------
1257
1258Attribute groups are groups of attributes that are referenced by objects within
1259the IR. They are important for keeping ``.ll`` files readable, because a lot of
1260functions will use the same set of attributes. In the degenerative case of a
1261``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1262group will capture the important command line flags used to build that file.
1263
1264An attribute group is a module-level object. To use an attribute group, an
1265object references the attribute group's ID (e.g. ``#37``). An object may refer
1266to more than one attribute group. In that situation, the attributes from the
1267different groups are merged.
1268
1269Here is an example of attribute groups for a function that should always be
1270inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1271
1272.. code-block:: llvm
1273
1274 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001275 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001276
1277 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001278 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001279
1280 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1281 define void @f() #0 #1 { ... }
1282
Sean Silvab084af42012-12-07 10:36:55 +00001283.. _fnattrs:
1284
1285Function Attributes
1286-------------------
1287
1288Function attributes are set to communicate additional information about
1289a function. Function attributes are considered to be part of the
1290function, not of the function type, so functions with different function
1291attributes can have the same function type.
1292
1293Function attributes are simple keywords that follow the type specified.
1294If multiple attributes are needed, they are space separated. For
1295example:
1296
1297.. code-block:: llvm
1298
1299 define void @f() noinline { ... }
1300 define void @f() alwaysinline { ... }
1301 define void @f() alwaysinline optsize { ... }
1302 define void @f() optsize { ... }
1303
Sean Silvab084af42012-12-07 10:36:55 +00001304``alignstack(<n>)``
1305 This attribute indicates that, when emitting the prologue and
1306 epilogue, the backend should forcibly align the stack pointer.
1307 Specify the desired alignment, which must be a power of two, in
1308 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001309``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1310 This attribute indicates that the annotated function will always return at
1311 least a given number of bytes (or null). Its arguments are zero-indexed
1312 parameter numbers; if one argument is provided, then it's assumed that at
1313 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1314 returned pointer. If two are provided, then it's assumed that
1315 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1316 available. The referenced parameters must be integer types. No assumptions
1317 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001318``alwaysinline``
1319 This attribute indicates that the inliner should attempt to inline
1320 this function into callers whenever possible, ignoring any active
1321 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001322``builtin``
1323 This indicates that the callee function at a call site should be
1324 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001325 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001326 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001327 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001328``cold``
1329 This attribute indicates that this function is rarely called. When
1330 computing edge weights, basic blocks post-dominated by a cold
1331 function call are also considered to be cold; and, thus, given low
1332 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001333``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001334 In some parallel execution models, there exist operations that cannot be
1335 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001336 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001337
Justin Lebar58535b12016-02-17 17:46:41 +00001338 The ``convergent`` attribute may appear on functions or call/invoke
1339 instructions. When it appears on a function, it indicates that calls to
1340 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001341 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001342 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001343 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001344
Justin Lebar58535b12016-02-17 17:46:41 +00001345 When it appears on a call/invoke, the ``convergent`` attribute indicates
1346 that we should treat the call as though we're calling a convergent
1347 function. This is particularly useful on indirect calls; without this we
1348 may treat such calls as though the target is non-convergent.
1349
1350 The optimizer may remove the ``convergent`` attribute on functions when it
1351 can prove that the function does not execute any convergent operations.
1352 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1353 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001354``inaccessiblememonly``
1355 This attribute indicates that the function may only access memory that
1356 is not accessible by the module being compiled. This is a weaker form
1357 of ``readnone``.
1358``inaccessiblemem_or_argmemonly``
1359 This attribute indicates that the function may only access memory that is
1360 either not accessible by the module being compiled, or is pointed to
1361 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001362``inlinehint``
1363 This attribute indicates that the source code contained a hint that
1364 inlining this function is desirable (such as the "inline" keyword in
1365 C/C++). It is just a hint; it imposes no requirements on the
1366 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001367``jumptable``
1368 This attribute indicates that the function should be added to a
1369 jump-instruction table at code-generation time, and that all address-taken
1370 references to this function should be replaced with a reference to the
1371 appropriate jump-instruction-table function pointer. Note that this creates
1372 a new pointer for the original function, which means that code that depends
1373 on function-pointer identity can break. So, any function annotated with
1374 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001375``minsize``
1376 This attribute suggests that optimization passes and code generator
1377 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001378 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001379 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001380``naked``
1381 This attribute disables prologue / epilogue emission for the
1382 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001383``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001384 This indicates that the callee function at a call site is not recognized as
1385 a built-in function. LLVM will retain the original call and not replace it
1386 with equivalent code based on the semantics of the built-in function, unless
1387 the call site uses the ``builtin`` attribute. This is valid at call sites
1388 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001389``noduplicate``
1390 This attribute indicates that calls to the function cannot be
1391 duplicated. A call to a ``noduplicate`` function may be moved
1392 within its parent function, but may not be duplicated within
1393 its parent function.
1394
1395 A function containing a ``noduplicate`` call may still
1396 be an inlining candidate, provided that the call is not
1397 duplicated by inlining. That implies that the function has
1398 internal linkage and only has one call site, so the original
1399 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001400``noimplicitfloat``
1401 This attributes disables implicit floating point instructions.
1402``noinline``
1403 This attribute indicates that the inliner should never inline this
1404 function in any situation. This attribute may not be used together
1405 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001406``nonlazybind``
1407 This attribute suppresses lazy symbol binding for the function. This
1408 may make calls to the function faster, at the cost of extra program
1409 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001410``noredzone``
1411 This attribute indicates that the code generator should not use a
1412 red zone, even if the target-specific ABI normally permits it.
1413``noreturn``
1414 This function attribute indicates that the function never returns
1415 normally. This produces undefined behavior at runtime if the
1416 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001417``norecurse``
1418 This function attribute indicates that the function does not call itself
1419 either directly or indirectly down any possible call path. This produces
1420 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001421``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001422 This function attribute indicates that the function never raises an
1423 exception. If the function does raise an exception, its runtime
1424 behavior is undefined. However, functions marked nounwind may still
1425 trap or generate asynchronous exceptions. Exception handling schemes
1426 that are recognized by LLVM to handle asynchronous exceptions, such
1427 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001428``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001429 This function attribute indicates that most optimization passes will skip
1430 this function, with the exception of interprocedural optimization passes.
1431 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001432 This attribute cannot be used together with the ``alwaysinline``
1433 attribute; this attribute is also incompatible
1434 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001435
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001436 This attribute requires the ``noinline`` attribute to be specified on
1437 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001438 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001439 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001440``optsize``
1441 This attribute suggests that optimization passes and code generator
1442 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001443 and otherwise do optimizations specifically to reduce code size as
1444 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001445``"patchable-function"``
1446 This attribute tells the code generator that the code
1447 generated for this function needs to follow certain conventions that
1448 make it possible for a runtime function to patch over it later.
1449 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001450 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001451
1452 * ``"prologue-short-redirect"`` - This style of patchable
1453 function is intended to support patching a function prologue to
1454 redirect control away from the function in a thread safe
1455 manner. It guarantees that the first instruction of the
1456 function will be large enough to accommodate a short jump
1457 instruction, and will be sufficiently aligned to allow being
1458 fully changed via an atomic compare-and-swap instruction.
1459 While the first requirement can be satisfied by inserting large
1460 enough NOP, LLVM can and will try to re-purpose an existing
1461 instruction (i.e. one that would have to be emitted anyway) as
1462 the patchable instruction larger than a short jump.
1463
1464 ``"prologue-short-redirect"`` is currently only supported on
1465 x86-64.
1466
1467 This attribute by itself does not imply restrictions on
1468 inter-procedural optimizations. All of the semantic effects the
1469 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001470``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001471 On a function, this attribute indicates that the function computes its
1472 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001473 without dereferencing any pointer arguments or otherwise accessing
1474 any mutable state (e.g. memory, control registers, etc) visible to
1475 caller functions. It does not write through any pointer arguments
1476 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001477 to callers. This means while it cannot unwind exceptions by calling
1478 the ``C++`` exception throwing methods (since they write to memory), there may
1479 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1480 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001481
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001482 On an argument, this attribute indicates that the function does not
1483 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001484 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001485``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001486 On a function, this attribute indicates that the function does not write
1487 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001488 modify any state (e.g. memory, control registers, etc) visible to
1489 caller functions. It may dereference pointer arguments and read
1490 state that may be set in the caller. A readonly function always
1491 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001492 called with the same set of arguments and global state. This means while it
1493 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1494 (since they write to memory), there may be non-``C++`` mechanisms that throw
1495 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001496
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001497 On an argument, this attribute indicates that the function does not write
1498 through this pointer argument, even though it may write to the memory that
1499 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001500``writeonly``
1501 On a function, this attribute indicates that the function may write to but
1502 does not read from memory.
1503
1504 On an argument, this attribute indicates that the function may write to but
1505 does not read through this pointer argument (even though it may read from
1506 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001507``argmemonly``
1508 This attribute indicates that the only memory accesses inside function are
1509 loads and stores from objects pointed to by its pointer-typed arguments,
1510 with arbitrary offsets. Or in other words, all memory operations in the
1511 function can refer to memory only using pointers based on its function
1512 arguments.
1513 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1514 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001515``returns_twice``
1516 This attribute indicates that this function can return twice. The C
1517 ``setjmp`` is an example of such a function. The compiler disables
1518 some optimizations (like tail calls) in the caller of these
1519 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001520``safestack``
1521 This attribute indicates that
1522 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1523 protection is enabled for this function.
1524
1525 If a function that has a ``safestack`` attribute is inlined into a
1526 function that doesn't have a ``safestack`` attribute or which has an
1527 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1528 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001529``sanitize_address``
1530 This attribute indicates that AddressSanitizer checks
1531 (dynamic address safety analysis) are enabled for this function.
1532``sanitize_memory``
1533 This attribute indicates that MemorySanitizer checks (dynamic detection
1534 of accesses to uninitialized memory) are enabled for this function.
1535``sanitize_thread``
1536 This attribute indicates that ThreadSanitizer checks
1537 (dynamic thread safety analysis) are enabled for this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001538``speculatable``
1539 This function attribute indicates that the function does not have any
1540 effects besides calculating its result and does not have undefined behavior.
1541 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001542 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001543 externally observable. This attribute is only valid on functions
1544 and declarations, not on individual call sites. If a function is
1545 incorrectly marked as speculatable and really does exhibit
1546 undefined behavior, the undefined behavior may be observed even
1547 if the call site is dead code.
1548
Sean Silvab084af42012-12-07 10:36:55 +00001549``ssp``
1550 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001551 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001552 placed on the stack before the local variables that's checked upon
1553 return from the function to see if it has been overwritten. A
1554 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001555 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001556
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001557 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1558 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1559 - Calls to alloca() with variable sizes or constant sizes greater than
1560 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001561
Josh Magee24c7f062014-02-01 01:36:16 +00001562 Variables that are identified as requiring a protector will be arranged
1563 on the stack such that they are adjacent to the stack protector guard.
1564
Sean Silvab084af42012-12-07 10:36:55 +00001565 If a function that has an ``ssp`` attribute is inlined into a
1566 function that doesn't have an ``ssp`` attribute, then the resulting
1567 function will have an ``ssp`` attribute.
1568``sspreq``
1569 This attribute indicates that the function should *always* emit a
1570 stack smashing protector. This overrides the ``ssp`` function
1571 attribute.
1572
Josh Magee24c7f062014-02-01 01:36:16 +00001573 Variables that are identified as requiring a protector will be arranged
1574 on the stack such that they are adjacent to the stack protector guard.
1575 The specific layout rules are:
1576
1577 #. Large arrays and structures containing large arrays
1578 (``>= ssp-buffer-size``) are closest to the stack protector.
1579 #. Small arrays and structures containing small arrays
1580 (``< ssp-buffer-size``) are 2nd closest to the protector.
1581 #. Variables that have had their address taken are 3rd closest to the
1582 protector.
1583
Sean Silvab084af42012-12-07 10:36:55 +00001584 If a function that has an ``sspreq`` attribute is inlined into a
1585 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001586 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1587 an ``sspreq`` attribute.
1588``sspstrong``
1589 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001590 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001591 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001592 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001593
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001594 - Arrays of any size and type
1595 - Aggregates containing an array of any size and type.
1596 - Calls to alloca().
1597 - Local variables that have had their address taken.
1598
Josh Magee24c7f062014-02-01 01:36:16 +00001599 Variables that are identified as requiring a protector will be arranged
1600 on the stack such that they are adjacent to the stack protector guard.
1601 The specific layout rules are:
1602
1603 #. Large arrays and structures containing large arrays
1604 (``>= ssp-buffer-size``) are closest to the stack protector.
1605 #. Small arrays and structures containing small arrays
1606 (``< ssp-buffer-size``) are 2nd closest to the protector.
1607 #. Variables that have had their address taken are 3rd closest to the
1608 protector.
1609
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001610 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001611
1612 If a function that has an ``sspstrong`` attribute is inlined into a
1613 function that doesn't have an ``sspstrong`` attribute, then the
1614 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001615``"thunk"``
1616 This attribute indicates that the function will delegate to some other
1617 function with a tail call. The prototype of a thunk should not be used for
1618 optimization purposes. The caller is expected to cast the thunk prototype to
1619 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001620``uwtable``
1621 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001622 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001623 show that no exceptions passes by it. This is normally the case for
1624 the ELF x86-64 abi, but it can be disabled for some compilation
1625 units.
Sean Silvab084af42012-12-07 10:36:55 +00001626
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001627
1628.. _opbundles:
1629
1630Operand Bundles
1631---------------
1632
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001633Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001634with certain LLVM instructions (currently only ``call`` s and
1635``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001636incorrect and will change program semantics.
1637
1638Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001639
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001640 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001641 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1642 bundle operand ::= SSA value
1643 tag ::= string constant
1644
1645Operand bundles are **not** part of a function's signature, and a
1646given function may be called from multiple places with different kinds
1647of operand bundles. This reflects the fact that the operand bundles
1648are conceptually a part of the ``call`` (or ``invoke``), not the
1649callee being dispatched to.
1650
1651Operand bundles are a generic mechanism intended to support
1652runtime-introspection-like functionality for managed languages. While
1653the exact semantics of an operand bundle depend on the bundle tag,
1654there are certain limitations to how much the presence of an operand
1655bundle can influence the semantics of a program. These restrictions
1656are described as the semantics of an "unknown" operand bundle. As
1657long as the behavior of an operand bundle is describable within these
1658restrictions, LLVM does not need to have special knowledge of the
1659operand bundle to not miscompile programs containing it.
1660
David Majnemer34cacb42015-10-22 01:46:38 +00001661- The bundle operands for an unknown operand bundle escape in unknown
1662 ways before control is transferred to the callee or invokee.
1663- Calls and invokes with operand bundles have unknown read / write
1664 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001665 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001666 callsite specific attributes.
1667- An operand bundle at a call site cannot change the implementation
1668 of the called function. Inter-procedural optimizations work as
1669 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001670
Sanjoy Dascdafd842015-11-11 21:38:02 +00001671More specific types of operand bundles are described below.
1672
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001673.. _deopt_opbundles:
1674
Sanjoy Dascdafd842015-11-11 21:38:02 +00001675Deoptimization Operand Bundles
1676^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1677
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001678Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001679operand bundle tag. These operand bundles represent an alternate
1680"safe" continuation for the call site they're attached to, and can be
1681used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001682specified call site. There can be at most one ``"deopt"`` operand
1683bundle attached to a call site. Exact details of deoptimization is
1684out of scope for the language reference, but it usually involves
1685rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001686
1687From the compiler's perspective, deoptimization operand bundles make
1688the call sites they're attached to at least ``readonly``. They read
1689through all of their pointer typed operands (even if they're not
1690otherwise escaped) and the entire visible heap. Deoptimization
1691operand bundles do not capture their operands except during
1692deoptimization, in which case control will not be returned to the
1693compiled frame.
1694
Sanjoy Das2d161452015-11-18 06:23:38 +00001695The inliner knows how to inline through calls that have deoptimization
1696operand bundles. Just like inlining through a normal call site
1697involves composing the normal and exceptional continuations, inlining
1698through a call site with a deoptimization operand bundle needs to
1699appropriately compose the "safe" deoptimization continuation. The
1700inliner does this by prepending the parent's deoptimization
1701continuation to every deoptimization continuation in the inlined body.
1702E.g. inlining ``@f`` into ``@g`` in the following example
1703
1704.. code-block:: llvm
1705
1706 define void @f() {
1707 call void @x() ;; no deopt state
1708 call void @y() [ "deopt"(i32 10) ]
1709 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1710 ret void
1711 }
1712
1713 define void @g() {
1714 call void @f() [ "deopt"(i32 20) ]
1715 ret void
1716 }
1717
1718will result in
1719
1720.. code-block:: llvm
1721
1722 define void @g() {
1723 call void @x() ;; still no deopt state
1724 call void @y() [ "deopt"(i32 20, i32 10) ]
1725 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1726 ret void
1727 }
1728
1729It is the frontend's responsibility to structure or encode the
1730deoptimization state in a way that syntactically prepending the
1731caller's deoptimization state to the callee's deoptimization state is
1732semantically equivalent to composing the caller's deoptimization
1733continuation after the callee's deoptimization continuation.
1734
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001735.. _ob_funclet:
1736
David Majnemer3bb88c02015-12-15 21:27:27 +00001737Funclet Operand Bundles
1738^^^^^^^^^^^^^^^^^^^^^^^
1739
1740Funclet operand bundles are characterized by the ``"funclet"``
1741operand bundle tag. These operand bundles indicate that a call site
1742is within a particular funclet. There can be at most one
1743``"funclet"`` operand bundle attached to a call site and it must have
1744exactly one bundle operand.
1745
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001746If any funclet EH pads have been "entered" but not "exited" (per the
1747`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1748it is undefined behavior to execute a ``call`` or ``invoke`` which:
1749
1750* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1751 intrinsic, or
1752* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1753 not-yet-exited funclet EH pad.
1754
1755Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1756executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1757
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001758GC Transition Operand Bundles
1759^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1760
1761GC transition operand bundles are characterized by the
1762``"gc-transition"`` operand bundle tag. These operand bundles mark a
1763call as a transition between a function with one GC strategy to a
1764function with a different GC strategy. If coordinating the transition
1765between GC strategies requires additional code generation at the call
1766site, these bundles may contain any values that are needed by the
1767generated code. For more details, see :ref:`GC Transitions
1768<gc_transition_args>`.
1769
Sean Silvab084af42012-12-07 10:36:55 +00001770.. _moduleasm:
1771
1772Module-Level Inline Assembly
1773----------------------------
1774
1775Modules may contain "module-level inline asm" blocks, which corresponds
1776to the GCC "file scope inline asm" blocks. These blocks are internally
1777concatenated by LLVM and treated as a single unit, but may be separated
1778in the ``.ll`` file if desired. The syntax is very simple:
1779
1780.. code-block:: llvm
1781
1782 module asm "inline asm code goes here"
1783 module asm "more can go here"
1784
1785The strings can contain any character by escaping non-printable
1786characters. The escape sequence used is simply "\\xx" where "xx" is the
1787two digit hex code for the number.
1788
James Y Knightbc832ed2015-07-08 18:08:36 +00001789Note that the assembly string *must* be parseable by LLVM's integrated assembler
1790(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001791
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001792.. _langref_datalayout:
1793
Sean Silvab084af42012-12-07 10:36:55 +00001794Data Layout
1795-----------
1796
1797A module may specify a target specific data layout string that specifies
1798how data is to be laid out in memory. The syntax for the data layout is
1799simply:
1800
1801.. code-block:: llvm
1802
1803 target datalayout = "layout specification"
1804
1805The *layout specification* consists of a list of specifications
1806separated by the minus sign character ('-'). Each specification starts
1807with a letter and may include other information after the letter to
1808define some aspect of the data layout. The specifications accepted are
1809as follows:
1810
1811``E``
1812 Specifies that the target lays out data in big-endian form. That is,
1813 the bits with the most significance have the lowest address
1814 location.
1815``e``
1816 Specifies that the target lays out data in little-endian form. That
1817 is, the bits with the least significance have the lowest address
1818 location.
1819``S<size>``
1820 Specifies the natural alignment of the stack in bits. Alignment
1821 promotion of stack variables is limited to the natural stack
1822 alignment to avoid dynamic stack realignment. The stack alignment
1823 must be a multiple of 8-bits. If omitted, the natural stack
1824 alignment defaults to "unspecified", which does not prevent any
1825 alignment promotions.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001826``A<address space>``
1827 Specifies the address space of objects created by '``alloca``'.
1828 Defaults to the default address space of 0.
Sean Silvab084af42012-12-07 10:36:55 +00001829``p[n]:<size>:<abi>:<pref>``
1830 This specifies the *size* of a pointer and its ``<abi>`` and
1831 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001832 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001833 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001834 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001835``i<size>:<abi>:<pref>``
1836 This specifies the alignment for an integer type of a given bit
1837 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1838``v<size>:<abi>:<pref>``
1839 This specifies the alignment for a vector type of a given bit
1840 ``<size>``.
1841``f<size>:<abi>:<pref>``
1842 This specifies the alignment for a floating point type of a given bit
1843 ``<size>``. Only values of ``<size>`` that are supported by the target
1844 will work. 32 (float) and 64 (double) are supported on all targets; 80
1845 or 128 (different flavors of long double) are also supported on some
1846 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001847``a:<abi>:<pref>``
1848 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001849``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001850 If present, specifies that llvm names are mangled in the output. The
1851 options are
1852
1853 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1854 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1855 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1856 symbols get a ``_`` prefix.
1857 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1858 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001859 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1860 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001861``n<size1>:<size2>:<size3>...``
1862 This specifies a set of native integer widths for the target CPU in
1863 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1864 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1865 this set are considered to support most general arithmetic operations
1866 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001867``ni:<address space0>:<address space1>:<address space2>...``
1868 This specifies pointer types with the specified address spaces
1869 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1870 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001871
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001872On every specification that takes a ``<abi>:<pref>``, specifying the
1873``<pref>`` alignment is optional. If omitted, the preceding ``:``
1874should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1875
Sean Silvab084af42012-12-07 10:36:55 +00001876When constructing the data layout for a given target, LLVM starts with a
1877default set of specifications which are then (possibly) overridden by
1878the specifications in the ``datalayout`` keyword. The default
1879specifications are given in this list:
1880
1881- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001882- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1883- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1884 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001885- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001886- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1887- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1888- ``i16:16:16`` - i16 is 16-bit aligned
1889- ``i32:32:32`` - i32 is 32-bit aligned
1890- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1891 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001892- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001893- ``f32:32:32`` - float is 32-bit aligned
1894- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001895- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001896- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1897- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001898- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001899
1900When LLVM is determining the alignment for a given type, it uses the
1901following rules:
1902
1903#. If the type sought is an exact match for one of the specifications,
1904 that specification is used.
1905#. If no match is found, and the type sought is an integer type, then
1906 the smallest integer type that is larger than the bitwidth of the
1907 sought type is used. If none of the specifications are larger than
1908 the bitwidth then the largest integer type is used. For example,
1909 given the default specifications above, the i7 type will use the
1910 alignment of i8 (next largest) while both i65 and i256 will use the
1911 alignment of i64 (largest specified).
1912#. If no match is found, and the type sought is a vector type, then the
1913 largest vector type that is smaller than the sought vector type will
1914 be used as a fall back. This happens because <128 x double> can be
1915 implemented in terms of 64 <2 x double>, for example.
1916
1917The function of the data layout string may not be what you expect.
1918Notably, this is not a specification from the frontend of what alignment
1919the code generator should use.
1920
1921Instead, if specified, the target data layout is required to match what
1922the ultimate *code generator* expects. This string is used by the
1923mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001924what the ultimate code generator uses. There is no way to generate IR
1925that does not embed this target-specific detail into the IR. If you
1926don't specify the string, the default specifications will be used to
1927generate a Data Layout and the optimization phases will operate
1928accordingly and introduce target specificity into the IR with respect to
1929these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001930
Bill Wendling5cc90842013-10-18 23:41:25 +00001931.. _langref_triple:
1932
1933Target Triple
1934-------------
1935
1936A module may specify a target triple string that describes the target
1937host. The syntax for the target triple is simply:
1938
1939.. code-block:: llvm
1940
1941 target triple = "x86_64-apple-macosx10.7.0"
1942
1943The *target triple* string consists of a series of identifiers delimited
1944by the minus sign character ('-'). The canonical forms are:
1945
1946::
1947
1948 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1949 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1950
1951This information is passed along to the backend so that it generates
1952code for the proper architecture. It's possible to override this on the
1953command line with the ``-mtriple`` command line option.
1954
Sean Silvab084af42012-12-07 10:36:55 +00001955.. _pointeraliasing:
1956
1957Pointer Aliasing Rules
1958----------------------
1959
1960Any memory access must be done through a pointer value associated with
1961an address range of the memory access, otherwise the behavior is
1962undefined. Pointer values are associated with address ranges according
1963to the following rules:
1964
1965- A pointer value is associated with the addresses associated with any
1966 value it is *based* on.
1967- An address of a global variable is associated with the address range
1968 of the variable's storage.
1969- The result value of an allocation instruction is associated with the
1970 address range of the allocated storage.
1971- A null pointer in the default address-space is associated with no
1972 address.
1973- An integer constant other than zero or a pointer value returned from
1974 a function not defined within LLVM may be associated with address
1975 ranges allocated through mechanisms other than those provided by
1976 LLVM. Such ranges shall not overlap with any ranges of addresses
1977 allocated by mechanisms provided by LLVM.
1978
1979A pointer value is *based* on another pointer value according to the
1980following rules:
1981
1982- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001983 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001984- The result value of a ``bitcast`` is *based* on the operand of the
1985 ``bitcast``.
1986- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1987 values that contribute (directly or indirectly) to the computation of
1988 the pointer's value.
1989- The "*based* on" relationship is transitive.
1990
1991Note that this definition of *"based"* is intentionally similar to the
1992definition of *"based"* in C99, though it is slightly weaker.
1993
1994LLVM IR does not associate types with memory. The result type of a
1995``load`` merely indicates the size and alignment of the memory from
1996which to load, as well as the interpretation of the value. The first
1997operand type of a ``store`` similarly only indicates the size and
1998alignment of the store.
1999
2000Consequently, type-based alias analysis, aka TBAA, aka
2001``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2002:ref:`Metadata <metadata>` may be used to encode additional information
2003which specialized optimization passes may use to implement type-based
2004alias analysis.
2005
2006.. _volatile:
2007
2008Volatile Memory Accesses
2009------------------------
2010
2011Certain memory accesses, such as :ref:`load <i_load>`'s,
2012:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2013marked ``volatile``. The optimizers must not change the number of
2014volatile operations or change their order of execution relative to other
2015volatile operations. The optimizers *may* change the order of volatile
2016operations relative to non-volatile operations. This is not Java's
2017"volatile" and has no cross-thread synchronization behavior.
2018
Andrew Trick89fc5a62013-01-30 21:19:35 +00002019IR-level volatile loads and stores cannot safely be optimized into
2020llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2021flagged volatile. Likewise, the backend should never split or merge
2022target-legal volatile load/store instructions.
2023
Andrew Trick7e6f9282013-01-31 00:49:39 +00002024.. admonition:: Rationale
2025
2026 Platforms may rely on volatile loads and stores of natively supported
2027 data width to be executed as single instruction. For example, in C
2028 this holds for an l-value of volatile primitive type with native
2029 hardware support, but not necessarily for aggregate types. The
2030 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002031 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002032 do not violate the frontend's contract with the language.
2033
Sean Silvab084af42012-12-07 10:36:55 +00002034.. _memmodel:
2035
2036Memory Model for Concurrent Operations
2037--------------------------------------
2038
2039The LLVM IR does not define any way to start parallel threads of
2040execution or to register signal handlers. Nonetheless, there are
2041platform-specific ways to create them, and we define LLVM IR's behavior
2042in their presence. This model is inspired by the C++0x memory model.
2043
2044For a more informal introduction to this model, see the :doc:`Atomics`.
2045
2046We define a *happens-before* partial order as the least partial order
2047that
2048
2049- Is a superset of single-thread program order, and
2050- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2051 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2052 techniques, like pthread locks, thread creation, thread joining,
2053 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2054 Constraints <ordering>`).
2055
2056Note that program order does not introduce *happens-before* edges
2057between a thread and signals executing inside that thread.
2058
2059Every (defined) read operation (load instructions, memcpy, atomic
2060loads/read-modify-writes, etc.) R reads a series of bytes written by
2061(defined) write operations (store instructions, atomic
2062stores/read-modify-writes, memcpy, etc.). For the purposes of this
2063section, initialized globals are considered to have a write of the
2064initializer which is atomic and happens before any other read or write
2065of the memory in question. For each byte of a read R, R\ :sub:`byte`
2066may see any write to the same byte, except:
2067
2068- If write\ :sub:`1` happens before write\ :sub:`2`, and
2069 write\ :sub:`2` happens before R\ :sub:`byte`, then
2070 R\ :sub:`byte` does not see write\ :sub:`1`.
2071- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2072 R\ :sub:`byte` does not see write\ :sub:`3`.
2073
2074Given that definition, R\ :sub:`byte` is defined as follows:
2075
2076- If R is volatile, the result is target-dependent. (Volatile is
2077 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002078 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002079 like normal memory. It does not generally provide cross-thread
2080 synchronization.)
2081- Otherwise, if there is no write to the same byte that happens before
2082 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2083- Otherwise, if R\ :sub:`byte` may see exactly one write,
2084 R\ :sub:`byte` returns the value written by that write.
2085- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2086 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2087 Memory Ordering Constraints <ordering>` section for additional
2088 constraints on how the choice is made.
2089- Otherwise R\ :sub:`byte` returns ``undef``.
2090
2091R returns the value composed of the series of bytes it read. This
2092implies that some bytes within the value may be ``undef`` **without**
2093the entire value being ``undef``. Note that this only defines the
2094semantics of the operation; it doesn't mean that targets will emit more
2095than one instruction to read the series of bytes.
2096
2097Note that in cases where none of the atomic intrinsics are used, this
2098model places only one restriction on IR transformations on top of what
2099is required for single-threaded execution: introducing a store to a byte
2100which might not otherwise be stored is not allowed in general.
2101(Specifically, in the case where another thread might write to and read
2102from an address, introducing a store can change a load that may see
2103exactly one write into a load that may see multiple writes.)
2104
2105.. _ordering:
2106
2107Atomic Memory Ordering Constraints
2108----------------------------------
2109
2110Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2111:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2112:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002113ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002114the same address they *synchronize with*. These semantics are borrowed
2115from Java and C++0x, but are somewhat more colloquial. If these
2116descriptions aren't precise enough, check those specs (see spec
2117references in the :doc:`atomics guide <Atomics>`).
2118:ref:`fence <i_fence>` instructions treat these orderings somewhat
2119differently since they don't take an address. See that instruction's
2120documentation for details.
2121
2122For a simpler introduction to the ordering constraints, see the
2123:doc:`Atomics`.
2124
2125``unordered``
2126 The set of values that can be read is governed by the happens-before
2127 partial order. A value cannot be read unless some operation wrote
2128 it. This is intended to provide a guarantee strong enough to model
2129 Java's non-volatile shared variables. This ordering cannot be
2130 specified for read-modify-write operations; it is not strong enough
2131 to make them atomic in any interesting way.
2132``monotonic``
2133 In addition to the guarantees of ``unordered``, there is a single
2134 total order for modifications by ``monotonic`` operations on each
2135 address. All modification orders must be compatible with the
2136 happens-before order. There is no guarantee that the modification
2137 orders can be combined to a global total order for the whole program
2138 (and this often will not be possible). The read in an atomic
2139 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2140 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2141 order immediately before the value it writes. If one atomic read
2142 happens before another atomic read of the same address, the later
2143 read must see the same value or a later value in the address's
2144 modification order. This disallows reordering of ``monotonic`` (or
2145 stronger) operations on the same address. If an address is written
2146 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2147 read that address repeatedly, the other threads must eventually see
2148 the write. This corresponds to the C++0x/C1x
2149 ``memory_order_relaxed``.
2150``acquire``
2151 In addition to the guarantees of ``monotonic``, a
2152 *synchronizes-with* edge may be formed with a ``release`` operation.
2153 This is intended to model C++'s ``memory_order_acquire``.
2154``release``
2155 In addition to the guarantees of ``monotonic``, if this operation
2156 writes a value which is subsequently read by an ``acquire``
2157 operation, it *synchronizes-with* that operation. (This isn't a
2158 complete description; see the C++0x definition of a release
2159 sequence.) This corresponds to the C++0x/C1x
2160 ``memory_order_release``.
2161``acq_rel`` (acquire+release)
2162 Acts as both an ``acquire`` and ``release`` operation on its
2163 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2164``seq_cst`` (sequentially consistent)
2165 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002166 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002167 writes), there is a global total order on all
2168 sequentially-consistent operations on all addresses, which is
2169 consistent with the *happens-before* partial order and with the
2170 modification orders of all the affected addresses. Each
2171 sequentially-consistent read sees the last preceding write to the
2172 same address in this global order. This corresponds to the C++0x/C1x
2173 ``memory_order_seq_cst`` and Java volatile.
2174
2175.. _singlethread:
2176
2177If an atomic operation is marked ``singlethread``, it only *synchronizes
2178with* or participates in modification and seq\_cst total orderings with
2179other operations running in the same thread (for example, in signal
2180handlers).
2181
2182.. _fastmath:
2183
2184Fast-Math Flags
2185---------------
2186
2187LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2188:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002189:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
2190instructions have the following flags that can be set to enable
2191otherwise unsafe floating point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002192
2193``nnan``
2194 No NaNs - Allow optimizations to assume the arguments and result are not
2195 NaN. Such optimizations are required to retain defined behavior over
2196 NaNs, but the value of the result is undefined.
2197
2198``ninf``
2199 No Infs - Allow optimizations to assume the arguments and result are not
2200 +/-Inf. Such optimizations are required to retain defined behavior over
2201 +/-Inf, but the value of the result is undefined.
2202
2203``nsz``
2204 No Signed Zeros - Allow optimizations to treat the sign of a zero
2205 argument or result as insignificant.
2206
2207``arcp``
2208 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2209 argument rather than perform division.
2210
Adam Nemetcd847a82017-03-28 20:11:52 +00002211``contract``
2212 Allow floating-point contraction (e.g. fusing a multiply followed by an
2213 addition into a fused multiply-and-add).
2214
Sean Silvab084af42012-12-07 10:36:55 +00002215``fast``
2216 Fast - Allow algebraically equivalent transformations that may
2217 dramatically change results in floating point (e.g. reassociate). This
2218 flag implies all the others.
2219
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002220.. _uselistorder:
2221
2222Use-list Order Directives
2223-------------------------
2224
2225Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002226order to be recreated. ``<order-indexes>`` is a comma-separated list of
2227indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002228value's use-list is immediately sorted by these indexes.
2229
Sean Silvaa1190322015-08-06 22:56:48 +00002230Use-list directives may appear at function scope or global scope. They are not
2231instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002232function scope, they must appear after the terminator of the final basic block.
2233
2234If basic blocks have their address taken via ``blockaddress()`` expressions,
2235``uselistorder_bb`` can be used to reorder their use-lists from outside their
2236function's scope.
2237
2238:Syntax:
2239
2240::
2241
2242 uselistorder <ty> <value>, { <order-indexes> }
2243 uselistorder_bb @function, %block { <order-indexes> }
2244
2245:Examples:
2246
2247::
2248
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002249 define void @foo(i32 %arg1, i32 %arg2) {
2250 entry:
2251 ; ... instructions ...
2252 bb:
2253 ; ... instructions ...
2254
2255 ; At function scope.
2256 uselistorder i32 %arg1, { 1, 0, 2 }
2257 uselistorder label %bb, { 1, 0 }
2258 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002259
2260 ; At global scope.
2261 uselistorder i32* @global, { 1, 2, 0 }
2262 uselistorder i32 7, { 1, 0 }
2263 uselistorder i32 (i32) @bar, { 1, 0 }
2264 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2265
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002266.. _source_filename:
2267
2268Source Filename
2269---------------
2270
2271The *source filename* string is set to the original module identifier,
2272which will be the name of the compiled source file when compiling from
2273source through the clang front end, for example. It is then preserved through
2274the IR and bitcode.
2275
2276This is currently necessary to generate a consistent unique global
2277identifier for local functions used in profile data, which prepends the
2278source file name to the local function name.
2279
2280The syntax for the source file name is simply:
2281
Renato Golin124f2592016-07-20 12:16:38 +00002282.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002283
2284 source_filename = "/path/to/source.c"
2285
Sean Silvab084af42012-12-07 10:36:55 +00002286.. _typesystem:
2287
2288Type System
2289===========
2290
2291The LLVM type system is one of the most important features of the
2292intermediate representation. Being typed enables a number of
2293optimizations to be performed on the intermediate representation
2294directly, without having to do extra analyses on the side before the
2295transformation. A strong type system makes it easier to read the
2296generated code and enables novel analyses and transformations that are
2297not feasible to perform on normal three address code representations.
2298
Rafael Espindola08013342013-12-07 19:34:20 +00002299.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002300
Rafael Espindola08013342013-12-07 19:34:20 +00002301Void Type
2302---------
Sean Silvab084af42012-12-07 10:36:55 +00002303
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002304:Overview:
2305
Rafael Espindola08013342013-12-07 19:34:20 +00002306
2307The void type does not represent any value and has no size.
2308
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002309:Syntax:
2310
Rafael Espindola08013342013-12-07 19:34:20 +00002311
2312::
2313
2314 void
Sean Silvab084af42012-12-07 10:36:55 +00002315
2316
Rafael Espindola08013342013-12-07 19:34:20 +00002317.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002318
Rafael Espindola08013342013-12-07 19:34:20 +00002319Function Type
2320-------------
Sean Silvab084af42012-12-07 10:36:55 +00002321
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002322:Overview:
2323
Sean Silvab084af42012-12-07 10:36:55 +00002324
Rafael Espindola08013342013-12-07 19:34:20 +00002325The function type can be thought of as a function signature. It consists of a
2326return type and a list of formal parameter types. The return type of a function
2327type is a void type or first class type --- except for :ref:`label <t_label>`
2328and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002329
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002330:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002331
Rafael Espindola08013342013-12-07 19:34:20 +00002332::
Sean Silvab084af42012-12-07 10:36:55 +00002333
Rafael Espindola08013342013-12-07 19:34:20 +00002334 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002335
Rafael Espindola08013342013-12-07 19:34:20 +00002336...where '``<parameter list>``' is a comma-separated list of type
2337specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002338indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002339argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002340handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002341except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002342
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002343:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002344
Rafael Espindola08013342013-12-07 19:34:20 +00002345+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2346| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2347+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2348| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2349+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2350| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2351+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2352| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2353+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2354
2355.. _t_firstclass:
2356
2357First Class Types
2358-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002359
2360The :ref:`first class <t_firstclass>` types are perhaps the most important.
2361Values of these types are the only ones which can be produced by
2362instructions.
2363
Rafael Espindola08013342013-12-07 19:34:20 +00002364.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002365
Rafael Espindola08013342013-12-07 19:34:20 +00002366Single Value Types
2367^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002368
Rafael Espindola08013342013-12-07 19:34:20 +00002369These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002370
2371.. _t_integer:
2372
2373Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002374""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002375
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002376:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002377
2378The integer type is a very simple type that simply specifies an
2379arbitrary bit width for the integer type desired. Any bit width from 1
2380bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2381
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002382:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002383
2384::
2385
2386 iN
2387
2388The number of bits the integer will occupy is specified by the ``N``
2389value.
2390
2391Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002392*********
Sean Silvab084af42012-12-07 10:36:55 +00002393
2394+----------------+------------------------------------------------+
2395| ``i1`` | a single-bit integer. |
2396+----------------+------------------------------------------------+
2397| ``i32`` | a 32-bit integer. |
2398+----------------+------------------------------------------------+
2399| ``i1942652`` | a really big integer of over 1 million bits. |
2400+----------------+------------------------------------------------+
2401
2402.. _t_floating:
2403
2404Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002405""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002406
2407.. list-table::
2408 :header-rows: 1
2409
2410 * - Type
2411 - Description
2412
2413 * - ``half``
2414 - 16-bit floating point value
2415
2416 * - ``float``
2417 - 32-bit floating point value
2418
2419 * - ``double``
2420 - 64-bit floating point value
2421
2422 * - ``fp128``
2423 - 128-bit floating point value (112-bit mantissa)
2424
2425 * - ``x86_fp80``
2426 - 80-bit floating point value (X87)
2427
2428 * - ``ppc_fp128``
2429 - 128-bit floating point value (two 64-bits)
2430
Reid Kleckner9a16d082014-03-05 02:41:37 +00002431X86_mmx Type
2432""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002433
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002434:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002435
Reid Kleckner9a16d082014-03-05 02:41:37 +00002436The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002437machine. The operations allowed on it are quite limited: parameters and
2438return values, load and store, and bitcast. User-specified MMX
2439instructions are represented as intrinsic or asm calls with arguments
2440and/or results of this type. There are no arrays, vectors or constants
2441of this type.
2442
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002443:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002444
2445::
2446
Reid Kleckner9a16d082014-03-05 02:41:37 +00002447 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002448
Sean Silvab084af42012-12-07 10:36:55 +00002449
Rafael Espindola08013342013-12-07 19:34:20 +00002450.. _t_pointer:
2451
2452Pointer Type
2453""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002454
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002455:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002456
Rafael Espindola08013342013-12-07 19:34:20 +00002457The pointer type is used to specify memory locations. Pointers are
2458commonly used to reference objects in memory.
2459
2460Pointer types may have an optional address space attribute defining the
2461numbered address space where the pointed-to object resides. The default
2462address space is number zero. The semantics of non-zero address spaces
2463are target-specific.
2464
2465Note that LLVM does not permit pointers to void (``void*``) nor does it
2466permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002467
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002468:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002469
2470::
2471
Rafael Espindola08013342013-12-07 19:34:20 +00002472 <type> *
2473
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002474:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002475
2476+-------------------------+--------------------------------------------------------------------------------------------------------------+
2477| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2478+-------------------------+--------------------------------------------------------------------------------------------------------------+
2479| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2480+-------------------------+--------------------------------------------------------------------------------------------------------------+
2481| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2482+-------------------------+--------------------------------------------------------------------------------------------------------------+
2483
2484.. _t_vector:
2485
2486Vector Type
2487"""""""""""
2488
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002489:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002490
2491A vector type is a simple derived type that represents a vector of
2492elements. Vector types are used when multiple primitive data are
2493operated in parallel using a single instruction (SIMD). A vector type
2494requires a size (number of elements) and an underlying primitive data
2495type. Vector types are considered :ref:`first class <t_firstclass>`.
2496
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002497:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002498
2499::
2500
2501 < <# elements> x <elementtype> >
2502
2503The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002504elementtype may be any integer, floating point or pointer type. Vectors
2505of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002506
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002507:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002508
2509+-------------------+--------------------------------------------------+
2510| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2511+-------------------+--------------------------------------------------+
2512| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2513+-------------------+--------------------------------------------------+
2514| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2515+-------------------+--------------------------------------------------+
2516| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2517+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002518
2519.. _t_label:
2520
2521Label Type
2522^^^^^^^^^^
2523
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002524:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002525
2526The label type represents code labels.
2527
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002528:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002529
2530::
2531
2532 label
2533
David Majnemerb611e3f2015-08-14 05:09:07 +00002534.. _t_token:
2535
2536Token Type
2537^^^^^^^^^^
2538
2539:Overview:
2540
2541The token type is used when a value is associated with an instruction
2542but all uses of the value must not attempt to introspect or obscure it.
2543As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2544:ref:`select <i_select>` of type token.
2545
2546:Syntax:
2547
2548::
2549
2550 token
2551
2552
2553
Sean Silvab084af42012-12-07 10:36:55 +00002554.. _t_metadata:
2555
2556Metadata Type
2557^^^^^^^^^^^^^
2558
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002559:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002560
2561The metadata type represents embedded metadata. No derived types may be
2562created from metadata except for :ref:`function <t_function>` arguments.
2563
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002564:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002565
2566::
2567
2568 metadata
2569
Sean Silvab084af42012-12-07 10:36:55 +00002570.. _t_aggregate:
2571
2572Aggregate Types
2573^^^^^^^^^^^^^^^
2574
2575Aggregate Types are a subset of derived types that can contain multiple
2576member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2577aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2578aggregate types.
2579
2580.. _t_array:
2581
2582Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002583""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002584
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002585:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002586
2587The array type is a very simple derived type that arranges elements
2588sequentially in memory. The array type requires a size (number of
2589elements) and an underlying data type.
2590
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002591:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002592
2593::
2594
2595 [<# elements> x <elementtype>]
2596
2597The number of elements is a constant integer value; ``elementtype`` may
2598be any type with a size.
2599
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002600:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002601
2602+------------------+--------------------------------------+
2603| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2604+------------------+--------------------------------------+
2605| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2606+------------------+--------------------------------------+
2607| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2608+------------------+--------------------------------------+
2609
2610Here are some examples of multidimensional arrays:
2611
2612+-----------------------------+----------------------------------------------------------+
2613| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2614+-----------------------------+----------------------------------------------------------+
2615| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2616+-----------------------------+----------------------------------------------------------+
2617| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2618+-----------------------------+----------------------------------------------------------+
2619
2620There is no restriction on indexing beyond the end of the array implied
2621by a static type (though there are restrictions on indexing beyond the
2622bounds of an allocated object in some cases). This means that
2623single-dimension 'variable sized array' addressing can be implemented in
2624LLVM with a zero length array type. An implementation of 'pascal style
2625arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2626example.
2627
Sean Silvab084af42012-12-07 10:36:55 +00002628.. _t_struct:
2629
2630Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002631""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002632
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002633:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002634
2635The structure type is used to represent a collection of data members
2636together in memory. The elements of a structure may be any type that has
2637a size.
2638
2639Structures in memory are accessed using '``load``' and '``store``' by
2640getting a pointer to a field with the '``getelementptr``' instruction.
2641Structures in registers are accessed using the '``extractvalue``' and
2642'``insertvalue``' instructions.
2643
2644Structures may optionally be "packed" structures, which indicate that
2645the alignment of the struct is one byte, and that there is no padding
2646between the elements. In non-packed structs, padding between field types
2647is inserted as defined by the DataLayout string in the module, which is
2648required to match what the underlying code generator expects.
2649
2650Structures can either be "literal" or "identified". A literal structure
2651is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2652identified types are always defined at the top level with a name.
2653Literal types are uniqued by their contents and can never be recursive
2654or opaque since there is no way to write one. Identified types can be
2655recursive, can be opaqued, and are never uniqued.
2656
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002657:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002658
2659::
2660
2661 %T1 = type { <type list> } ; Identified normal struct type
2662 %T2 = type <{ <type list> }> ; Identified packed struct type
2663
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002664:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002665
2666+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2667| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2668+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002669| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002670+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2671| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2672+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2673
2674.. _t_opaque:
2675
2676Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002677""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002678
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002679:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002680
2681Opaque structure types are used to represent named structure types that
2682do not have a body specified. This corresponds (for example) to the C
2683notion of a forward declared structure.
2684
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002685:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002686
2687::
2688
2689 %X = type opaque
2690 %52 = type opaque
2691
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002692:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002693
2694+--------------+-------------------+
2695| ``opaque`` | An opaque type. |
2696+--------------+-------------------+
2697
Sean Silva1703e702014-04-08 21:06:22 +00002698.. _constants:
2699
Sean Silvab084af42012-12-07 10:36:55 +00002700Constants
2701=========
2702
2703LLVM has several different basic types of constants. This section
2704describes them all and their syntax.
2705
2706Simple Constants
2707----------------
2708
2709**Boolean constants**
2710 The two strings '``true``' and '``false``' are both valid constants
2711 of the ``i1`` type.
2712**Integer constants**
2713 Standard integers (such as '4') are constants of the
2714 :ref:`integer <t_integer>` type. Negative numbers may be used with
2715 integer types.
2716**Floating point constants**
2717 Floating point constants use standard decimal notation (e.g.
2718 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2719 hexadecimal notation (see below). The assembler requires the exact
2720 decimal value of a floating-point constant. For example, the
2721 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2722 decimal in binary. Floating point constants must have a :ref:`floating
2723 point <t_floating>` type.
2724**Null pointer constants**
2725 The identifier '``null``' is recognized as a null pointer constant
2726 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002727**Token constants**
2728 The identifier '``none``' is recognized as an empty token constant
2729 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002730
2731The one non-intuitive notation for constants is the hexadecimal form of
2732floating point constants. For example, the form
2733'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2734than) '``double 4.5e+15``'. The only time hexadecimal floating point
2735constants are required (and the only time that they are generated by the
2736disassembler) is when a floating point constant must be emitted but it
2737cannot be represented as a decimal floating point number in a reasonable
2738number of digits. For example, NaN's, infinities, and other special
2739values are represented in their IEEE hexadecimal format so that assembly
2740and disassembly do not cause any bits to change in the constants.
2741
2742When using the hexadecimal form, constants of types half, float, and
2743double are represented using the 16-digit form shown above (which
2744matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002745must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002746precision, respectively. Hexadecimal format is always used for long
2747double, and there are three forms of long double. The 80-bit format used
2748by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2749128-bit format used by PowerPC (two adjacent doubles) is represented by
2750``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002751represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2752will only work if they match the long double format on your target.
2753The IEEE 16-bit format (half precision) is represented by ``0xH``
2754followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2755(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002756
Reid Kleckner9a16d082014-03-05 02:41:37 +00002757There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002758
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002759.. _complexconstants:
2760
Sean Silvab084af42012-12-07 10:36:55 +00002761Complex Constants
2762-----------------
2763
2764Complex constants are a (potentially recursive) combination of simple
2765constants and smaller complex constants.
2766
2767**Structure constants**
2768 Structure constants are represented with notation similar to
2769 structure type definitions (a comma separated list of elements,
2770 surrounded by braces (``{}``)). For example:
2771 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2772 "``@G = external global i32``". Structure constants must have
2773 :ref:`structure type <t_struct>`, and the number and types of elements
2774 must match those specified by the type.
2775**Array constants**
2776 Array constants are represented with notation similar to array type
2777 definitions (a comma separated list of elements, surrounded by
2778 square brackets (``[]``)). For example:
2779 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2780 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002781 match those specified by the type. As a special case, character array
2782 constants may also be represented as a double-quoted string using the ``c``
2783 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002784**Vector constants**
2785 Vector constants are represented with notation similar to vector
2786 type definitions (a comma separated list of elements, surrounded by
2787 less-than/greater-than's (``<>``)). For example:
2788 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2789 must have :ref:`vector type <t_vector>`, and the number and types of
2790 elements must match those specified by the type.
2791**Zero initialization**
2792 The string '``zeroinitializer``' can be used to zero initialize a
2793 value to zero of *any* type, including scalar and
2794 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2795 having to print large zero initializers (e.g. for large arrays) and
2796 is always exactly equivalent to using explicit zero initializers.
2797**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002798 A metadata node is a constant tuple without types. For example:
2799 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002800 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2801 Unlike other typed constants that are meant to be interpreted as part of
2802 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002803 information such as debug info.
2804
2805Global Variable and Function Addresses
2806--------------------------------------
2807
2808The addresses of :ref:`global variables <globalvars>` and
2809:ref:`functions <functionstructure>` are always implicitly valid
2810(link-time) constants. These constants are explicitly referenced when
2811the :ref:`identifier for the global <identifiers>` is used and always have
2812:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2813file:
2814
2815.. code-block:: llvm
2816
2817 @X = global i32 17
2818 @Y = global i32 42
2819 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2820
2821.. _undefvalues:
2822
2823Undefined Values
2824----------------
2825
2826The string '``undef``' can be used anywhere a constant is expected, and
2827indicates that the user of the value may receive an unspecified
2828bit-pattern. Undefined values may be of any type (other than '``label``'
2829or '``void``') and be used anywhere a constant is permitted.
2830
2831Undefined values are useful because they indicate to the compiler that
2832the program is well defined no matter what value is used. This gives the
2833compiler more freedom to optimize. Here are some examples of
2834(potentially surprising) transformations that are valid (in pseudo IR):
2835
2836.. code-block:: llvm
2837
2838 %A = add %X, undef
2839 %B = sub %X, undef
2840 %C = xor %X, undef
2841 Safe:
2842 %A = undef
2843 %B = undef
2844 %C = undef
2845
2846This is safe because all of the output bits are affected by the undef
2847bits. Any output bit can have a zero or one depending on the input bits.
2848
2849.. code-block:: llvm
2850
2851 %A = or %X, undef
2852 %B = and %X, undef
2853 Safe:
2854 %A = -1
2855 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002856 Safe:
2857 %A = %X ;; By choosing undef as 0
2858 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002859 Unsafe:
2860 %A = undef
2861 %B = undef
2862
2863These logical operations have bits that are not always affected by the
2864input. For example, if ``%X`` has a zero bit, then the output of the
2865'``and``' operation will always be a zero for that bit, no matter what
2866the corresponding bit from the '``undef``' is. As such, it is unsafe to
2867optimize or assume that the result of the '``and``' is '``undef``'.
2868However, it is safe to assume that all bits of the '``undef``' could be
28690, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2870all the bits of the '``undef``' operand to the '``or``' could be set,
2871allowing the '``or``' to be folded to -1.
2872
2873.. code-block:: llvm
2874
2875 %A = select undef, %X, %Y
2876 %B = select undef, 42, %Y
2877 %C = select %X, %Y, undef
2878 Safe:
2879 %A = %X (or %Y)
2880 %B = 42 (or %Y)
2881 %C = %Y
2882 Unsafe:
2883 %A = undef
2884 %B = undef
2885 %C = undef
2886
2887This set of examples shows that undefined '``select``' (and conditional
2888branch) conditions can go *either way*, but they have to come from one
2889of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2890both known to have a clear low bit, then ``%A`` would have to have a
2891cleared low bit. However, in the ``%C`` example, the optimizer is
2892allowed to assume that the '``undef``' operand could be the same as
2893``%Y``, allowing the whole '``select``' to be eliminated.
2894
Renato Golin124f2592016-07-20 12:16:38 +00002895.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002896
2897 %A = xor undef, undef
2898
2899 %B = undef
2900 %C = xor %B, %B
2901
2902 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002903 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002904 %F = icmp gte %D, 4
2905
2906 Safe:
2907 %A = undef
2908 %B = undef
2909 %C = undef
2910 %D = undef
2911 %E = undef
2912 %F = undef
2913
2914This example points out that two '``undef``' operands are not
2915necessarily the same. This can be surprising to people (and also matches
2916C semantics) where they assume that "``X^X``" is always zero, even if
2917``X`` is undefined. This isn't true for a number of reasons, but the
2918short answer is that an '``undef``' "variable" can arbitrarily change
2919its value over its "live range". This is true because the variable
2920doesn't actually *have a live range*. Instead, the value is logically
2921read from arbitrary registers that happen to be around when needed, so
2922the value is not necessarily consistent over time. In fact, ``%A`` and
2923``%C`` need to have the same semantics or the core LLVM "replace all
2924uses with" concept would not hold.
2925
2926.. code-block:: llvm
2927
2928 %A = fdiv undef, %X
2929 %B = fdiv %X, undef
2930 Safe:
2931 %A = undef
2932 b: unreachable
2933
2934These examples show the crucial difference between an *undefined value*
2935and *undefined behavior*. An undefined value (like '``undef``') is
2936allowed to have an arbitrary bit-pattern. This means that the ``%A``
2937operation can be constant folded to '``undef``', because the '``undef``'
2938could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2939However, in the second example, we can make a more aggressive
2940assumption: because the ``undef`` is allowed to be an arbitrary value,
2941we are allowed to assume that it could be zero. Since a divide by zero
2942has *undefined behavior*, we are allowed to assume that the operation
2943does not execute at all. This allows us to delete the divide and all
2944code after it. Because the undefined operation "can't happen", the
2945optimizer can assume that it occurs in dead code.
2946
Renato Golin124f2592016-07-20 12:16:38 +00002947.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002948
2949 a: store undef -> %X
2950 b: store %X -> undef
2951 Safe:
2952 a: <deleted>
2953 b: unreachable
2954
2955These examples reiterate the ``fdiv`` example: a store *of* an undefined
2956value can be assumed to not have any effect; we can assume that the
2957value is overwritten with bits that happen to match what was already
2958there. However, a store *to* an undefined location could clobber
2959arbitrary memory, therefore, it has undefined behavior.
2960
2961.. _poisonvalues:
2962
2963Poison Values
2964-------------
2965
2966Poison values are similar to :ref:`undef values <undefvalues>`, however
2967they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002968that cannot evoke side effects has nevertheless detected a condition
2969that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002970
2971There is currently no way of representing a poison value in the IR; they
2972only exist when produced by operations such as :ref:`add <i_add>` with
2973the ``nsw`` flag.
2974
2975Poison value behavior is defined in terms of value *dependence*:
2976
2977- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2978- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2979 their dynamic predecessor basic block.
2980- Function arguments depend on the corresponding actual argument values
2981 in the dynamic callers of their functions.
2982- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2983 instructions that dynamically transfer control back to them.
2984- :ref:`Invoke <i_invoke>` instructions depend on the
2985 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2986 call instructions that dynamically transfer control back to them.
2987- Non-volatile loads and stores depend on the most recent stores to all
2988 of the referenced memory addresses, following the order in the IR
2989 (including loads and stores implied by intrinsics such as
2990 :ref:`@llvm.memcpy <int_memcpy>`.)
2991- An instruction with externally visible side effects depends on the
2992 most recent preceding instruction with externally visible side
2993 effects, following the order in the IR. (This includes :ref:`volatile
2994 operations <volatile>`.)
2995- An instruction *control-depends* on a :ref:`terminator
2996 instruction <terminators>` if the terminator instruction has
2997 multiple successors and the instruction is always executed when
2998 control transfers to one of the successors, and may not be executed
2999 when control is transferred to another.
3000- Additionally, an instruction also *control-depends* on a terminator
3001 instruction if the set of instructions it otherwise depends on would
3002 be different if the terminator had transferred control to a different
3003 successor.
3004- Dependence is transitive.
3005
Richard Smith32dbdf62014-07-31 04:25:36 +00003006Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3007with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003008on a poison value has undefined behavior.
3009
3010Here are some examples:
3011
3012.. code-block:: llvm
3013
3014 entry:
3015 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3016 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003017 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003018 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3019
3020 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003021 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003022
3023 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3024
3025 %narrowaddr = bitcast i32* @g to i16*
3026 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003027 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3028 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003029
3030 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3031 br i1 %cmp, label %true, label %end ; Branch to either destination.
3032
3033 true:
3034 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3035 ; it has undefined behavior.
3036 br label %end
3037
3038 end:
3039 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3040 ; Both edges into this PHI are
3041 ; control-dependent on %cmp, so this
3042 ; always results in a poison value.
3043
3044 store volatile i32 0, i32* @g ; This would depend on the store in %true
3045 ; if %cmp is true, or the store in %entry
3046 ; otherwise, so this is undefined behavior.
3047
3048 br i1 %cmp, label %second_true, label %second_end
3049 ; The same branch again, but this time the
3050 ; true block doesn't have side effects.
3051
3052 second_true:
3053 ; No side effects!
3054 ret void
3055
3056 second_end:
3057 store volatile i32 0, i32* @g ; This time, the instruction always depends
3058 ; on the store in %end. Also, it is
3059 ; control-equivalent to %end, so this is
3060 ; well-defined (ignoring earlier undefined
3061 ; behavior in this example).
3062
3063.. _blockaddress:
3064
3065Addresses of Basic Blocks
3066-------------------------
3067
3068``blockaddress(@function, %block)``
3069
3070The '``blockaddress``' constant computes the address of the specified
3071basic block in the specified function, and always has an ``i8*`` type.
3072Taking the address of the entry block is illegal.
3073
3074This value only has defined behavior when used as an operand to the
3075':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3076against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003077undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003078no label is equal to the null pointer. This may be passed around as an
3079opaque pointer sized value as long as the bits are not inspected. This
3080allows ``ptrtoint`` and arithmetic to be performed on these values so
3081long as the original value is reconstituted before the ``indirectbr``
3082instruction.
3083
3084Finally, some targets may provide defined semantics when using the value
3085as the operand to an inline assembly, but that is target specific.
3086
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003087.. _constantexprs:
3088
Sean Silvab084af42012-12-07 10:36:55 +00003089Constant Expressions
3090--------------------
3091
3092Constant expressions are used to allow expressions involving other
3093constants to be used as constants. Constant expressions may be of any
3094:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3095that does not have side effects (e.g. load and call are not supported).
3096The following is the syntax for constant expressions:
3097
3098``trunc (CST to TYPE)``
3099 Truncate a constant to another type. The bit size of CST must be
3100 larger than the bit size of TYPE. Both types must be integers.
3101``zext (CST to TYPE)``
3102 Zero extend a constant to another type. The bit size of CST must be
3103 smaller than the bit size of TYPE. Both types must be integers.
3104``sext (CST to TYPE)``
3105 Sign extend a constant to another type. The bit size of CST must be
3106 smaller than the bit size of TYPE. Both types must be integers.
3107``fptrunc (CST to TYPE)``
3108 Truncate a floating point constant to another floating point type.
3109 The size of CST must be larger than the size of TYPE. Both types
3110 must be floating point.
3111``fpext (CST to TYPE)``
3112 Floating point extend a constant to another type. The size of CST
3113 must be smaller or equal to the size of TYPE. Both types must be
3114 floating point.
3115``fptoui (CST to TYPE)``
3116 Convert a floating point constant to the corresponding unsigned
3117 integer constant. TYPE must be a scalar or vector integer type. CST
3118 must be of scalar or vector floating point type. Both CST and TYPE
3119 must be scalars, or vectors of the same number of elements. If the
3120 value won't fit in the integer type, the results are undefined.
3121``fptosi (CST to TYPE)``
3122 Convert a floating point constant to the corresponding signed
3123 integer constant. TYPE must be a scalar or vector integer type. CST
3124 must be of scalar or vector floating point type. Both CST and TYPE
3125 must be scalars, or vectors of the same number of elements. If the
3126 value won't fit in the integer type, the results are undefined.
3127``uitofp (CST to TYPE)``
3128 Convert an unsigned integer constant to the corresponding floating
3129 point constant. TYPE must be a scalar or vector floating point type.
3130 CST must be of scalar or vector integer type. Both CST and TYPE must
3131 be scalars, or vectors of the same number of elements. If the value
3132 won't fit in the floating point type, the results are undefined.
3133``sitofp (CST to TYPE)``
3134 Convert a signed integer constant to the corresponding floating
3135 point constant. TYPE must be a scalar or vector floating point type.
3136 CST must be of scalar or vector integer type. Both CST and TYPE must
3137 be scalars, or vectors of the same number of elements. If the value
3138 won't fit in the floating point type, the results are undefined.
3139``ptrtoint (CST to TYPE)``
3140 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003141 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003142 pointer type. The ``CST`` value is zero extended, truncated, or
3143 unchanged to make it fit in ``TYPE``.
3144``inttoptr (CST to TYPE)``
3145 Convert an integer constant to a pointer constant. TYPE must be a
3146 pointer type. CST must be of integer type. The CST value is zero
3147 extended, truncated, or unchanged to make it fit in a pointer size.
3148 This one is *really* dangerous!
3149``bitcast (CST to TYPE)``
3150 Convert a constant, CST, to another TYPE. The constraints of the
3151 operands are the same as those for the :ref:`bitcast
3152 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003153``addrspacecast (CST to TYPE)``
3154 Convert a constant pointer or constant vector of pointer, CST, to another
3155 TYPE in a different address space. The constraints of the operands are the
3156 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003157``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003158 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3159 constants. As with the :ref:`getelementptr <i_getelementptr>`
3160 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003161 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003162``select (COND, VAL1, VAL2)``
3163 Perform the :ref:`select operation <i_select>` on constants.
3164``icmp COND (VAL1, VAL2)``
3165 Performs the :ref:`icmp operation <i_icmp>` on constants.
3166``fcmp COND (VAL1, VAL2)``
3167 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3168``extractelement (VAL, IDX)``
3169 Perform the :ref:`extractelement operation <i_extractelement>` on
3170 constants.
3171``insertelement (VAL, ELT, IDX)``
3172 Perform the :ref:`insertelement operation <i_insertelement>` on
3173 constants.
3174``shufflevector (VEC1, VEC2, IDXMASK)``
3175 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3176 constants.
3177``extractvalue (VAL, IDX0, IDX1, ...)``
3178 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3179 constants. The index list is interpreted in a similar manner as
3180 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3181 least one index value must be specified.
3182``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3183 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3184 The index list is interpreted in a similar manner as indices in a
3185 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3186 value must be specified.
3187``OPCODE (LHS, RHS)``
3188 Perform the specified operation of the LHS and RHS constants. OPCODE
3189 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3190 binary <bitwiseops>` operations. The constraints on operands are
3191 the same as those for the corresponding instruction (e.g. no bitwise
3192 operations on floating point values are allowed).
3193
3194Other Values
3195============
3196
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003197.. _inlineasmexprs:
3198
Sean Silvab084af42012-12-07 10:36:55 +00003199Inline Assembler Expressions
3200----------------------------
3201
3202LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003203Inline Assembly <moduleasm>`) through the use of a special value. This value
3204represents the inline assembler as a template string (containing the
3205instructions to emit), a list of operand constraints (stored as a string), a
3206flag that indicates whether or not the inline asm expression has side effects,
3207and a flag indicating whether the function containing the asm needs to align its
3208stack conservatively.
3209
3210The template string supports argument substitution of the operands using "``$``"
3211followed by a number, to indicate substitution of the given register/memory
3212location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3213be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3214operand (See :ref:`inline-asm-modifiers`).
3215
3216A literal "``$``" may be included by using "``$$``" in the template. To include
3217other special characters into the output, the usual "``\XX``" escapes may be
3218used, just as in other strings. Note that after template substitution, the
3219resulting assembly string is parsed by LLVM's integrated assembler unless it is
3220disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3221syntax known to LLVM.
3222
Reid Kleckner71cb1642017-02-06 18:08:45 +00003223LLVM also supports a few more substitions useful for writing inline assembly:
3224
3225- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3226 This substitution is useful when declaring a local label. Many standard
3227 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3228 Adding a blob-unique identifier ensures that the two labels will not conflict
3229 during assembly. This is used to implement `GCC's %= special format
3230 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3231- ``${:comment}``: Expands to the comment character of the current target's
3232 assembly dialect. This is usually ``#``, but many targets use other strings,
3233 such as ``;``, ``//``, or ``!``.
3234- ``${:private}``: Expands to the assembler private label prefix. Labels with
3235 this prefix will not appear in the symbol table of the assembled object.
3236 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3237 relatively popular.
3238
James Y Knightbc832ed2015-07-08 18:08:36 +00003239LLVM's support for inline asm is modeled closely on the requirements of Clang's
3240GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3241modifier codes listed here are similar or identical to those in GCC's inline asm
3242support. However, to be clear, the syntax of the template and constraint strings
3243described here is *not* the same as the syntax accepted by GCC and Clang, and,
3244while most constraint letters are passed through as-is by Clang, some get
3245translated to other codes when converting from the C source to the LLVM
3246assembly.
3247
3248An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003249
3250.. code-block:: llvm
3251
3252 i32 (i32) asm "bswap $0", "=r,r"
3253
3254Inline assembler expressions may **only** be used as the callee operand
3255of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3256Thus, typically we have:
3257
3258.. code-block:: llvm
3259
3260 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3261
3262Inline asms with side effects not visible in the constraint list must be
3263marked as having side effects. This is done through the use of the
3264'``sideeffect``' keyword, like so:
3265
3266.. code-block:: llvm
3267
3268 call void asm sideeffect "eieio", ""()
3269
3270In some cases inline asms will contain code that will not work unless
3271the stack is aligned in some way, such as calls or SSE instructions on
3272x86, yet will not contain code that does that alignment within the asm.
3273The compiler should make conservative assumptions about what the asm
3274might contain and should generate its usual stack alignment code in the
3275prologue if the '``alignstack``' keyword is present:
3276
3277.. code-block:: llvm
3278
3279 call void asm alignstack "eieio", ""()
3280
3281Inline asms also support using non-standard assembly dialects. The
3282assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3283the inline asm is using the Intel dialect. Currently, ATT and Intel are
3284the only supported dialects. An example is:
3285
3286.. code-block:: llvm
3287
3288 call void asm inteldialect "eieio", ""()
3289
3290If multiple keywords appear the '``sideeffect``' keyword must come
3291first, the '``alignstack``' keyword second and the '``inteldialect``'
3292keyword last.
3293
James Y Knightbc832ed2015-07-08 18:08:36 +00003294Inline Asm Constraint String
3295^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3296
3297The constraint list is a comma-separated string, each element containing one or
3298more constraint codes.
3299
3300For each element in the constraint list an appropriate register or memory
3301operand will be chosen, and it will be made available to assembly template
3302string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3303second, etc.
3304
3305There are three different types of constraints, which are distinguished by a
3306prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3307constraints must always be given in that order: outputs first, then inputs, then
3308clobbers. They cannot be intermingled.
3309
3310There are also three different categories of constraint codes:
3311
3312- Register constraint. This is either a register class, or a fixed physical
3313 register. This kind of constraint will allocate a register, and if necessary,
3314 bitcast the argument or result to the appropriate type.
3315- Memory constraint. This kind of constraint is for use with an instruction
3316 taking a memory operand. Different constraints allow for different addressing
3317 modes used by the target.
3318- Immediate value constraint. This kind of constraint is for an integer or other
3319 immediate value which can be rendered directly into an instruction. The
3320 various target-specific constraints allow the selection of a value in the
3321 proper range for the instruction you wish to use it with.
3322
3323Output constraints
3324""""""""""""""""""
3325
3326Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3327indicates that the assembly will write to this operand, and the operand will
3328then be made available as a return value of the ``asm`` expression. Output
3329constraints do not consume an argument from the call instruction. (Except, see
3330below about indirect outputs).
3331
3332Normally, it is expected that no output locations are written to by the assembly
3333expression until *all* of the inputs have been read. As such, LLVM may assign
3334the same register to an output and an input. If this is not safe (e.g. if the
3335assembly contains two instructions, where the first writes to one output, and
3336the second reads an input and writes to a second output), then the "``&``"
3337modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003338"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003339will not use the same register for any inputs (other than an input tied to this
3340output).
3341
3342Input constraints
3343"""""""""""""""""
3344
3345Input constraints do not have a prefix -- just the constraint codes. Each input
3346constraint will consume one argument from the call instruction. It is not
3347permitted for the asm to write to any input register or memory location (unless
3348that input is tied to an output). Note also that multiple inputs may all be
3349assigned to the same register, if LLVM can determine that they necessarily all
3350contain the same value.
3351
3352Instead of providing a Constraint Code, input constraints may also "tie"
3353themselves to an output constraint, by providing an integer as the constraint
3354string. Tied inputs still consume an argument from the call instruction, and
3355take up a position in the asm template numbering as is usual -- they will simply
3356be constrained to always use the same register as the output they've been tied
3357to. For example, a constraint string of "``=r,0``" says to assign a register for
3358output, and use that register as an input as well (it being the 0'th
3359constraint).
3360
3361It is permitted to tie an input to an "early-clobber" output. In that case, no
3362*other* input may share the same register as the input tied to the early-clobber
3363(even when the other input has the same value).
3364
3365You may only tie an input to an output which has a register constraint, not a
3366memory constraint. Only a single input may be tied to an output.
3367
3368There is also an "interesting" feature which deserves a bit of explanation: if a
3369register class constraint allocates a register which is too small for the value
3370type operand provided as input, the input value will be split into multiple
3371registers, and all of them passed to the inline asm.
3372
3373However, this feature is often not as useful as you might think.
3374
3375Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3376architectures that have instructions which operate on multiple consecutive
3377instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3378SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3379hardware then loads into both the named register, and the next register. This
3380feature of inline asm would not be useful to support that.)
3381
3382A few of the targets provide a template string modifier allowing explicit access
3383to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3384``D``). On such an architecture, you can actually access the second allocated
3385register (yet, still, not any subsequent ones). But, in that case, you're still
3386probably better off simply splitting the value into two separate operands, for
3387clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3388despite existing only for use with this feature, is not really a good idea to
3389use)
3390
3391Indirect inputs and outputs
3392"""""""""""""""""""""""""""
3393
3394Indirect output or input constraints can be specified by the "``*``" modifier
3395(which goes after the "``=``" in case of an output). This indicates that the asm
3396will write to or read from the contents of an *address* provided as an input
3397argument. (Note that in this way, indirect outputs act more like an *input* than
3398an output: just like an input, they consume an argument of the call expression,
3399rather than producing a return value. An indirect output constraint is an
3400"output" only in that the asm is expected to write to the contents of the input
3401memory location, instead of just read from it).
3402
3403This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3404address of a variable as a value.
3405
3406It is also possible to use an indirect *register* constraint, but only on output
3407(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3408value normally, and then, separately emit a store to the address provided as
3409input, after the provided inline asm. (It's not clear what value this
3410functionality provides, compared to writing the store explicitly after the asm
3411statement, and it can only produce worse code, since it bypasses many
3412optimization passes. I would recommend not using it.)
3413
3414
3415Clobber constraints
3416"""""""""""""""""""
3417
3418A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3419consume an input operand, nor generate an output. Clobbers cannot use any of the
3420general constraint code letters -- they may use only explicit register
3421constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3422"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3423memory locations -- not only the memory pointed to by a declared indirect
3424output.
3425
Peter Zotov00257232016-08-30 10:48:31 +00003426Note that clobbering named registers that are also present in output
3427constraints is not legal.
3428
James Y Knightbc832ed2015-07-08 18:08:36 +00003429
3430Constraint Codes
3431""""""""""""""""
3432After a potential prefix comes constraint code, or codes.
3433
3434A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3435followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3436(e.g. "``{eax}``").
3437
3438The one and two letter constraint codes are typically chosen to be the same as
3439GCC's constraint codes.
3440
3441A single constraint may include one or more than constraint code in it, leaving
3442it up to LLVM to choose which one to use. This is included mainly for
3443compatibility with the translation of GCC inline asm coming from clang.
3444
3445There are two ways to specify alternatives, and either or both may be used in an
3446inline asm constraint list:
3447
34481) Append the codes to each other, making a constraint code set. E.g. "``im``"
3449 or "``{eax}m``". This means "choose any of the options in the set". The
3450 choice of constraint is made independently for each constraint in the
3451 constraint list.
3452
34532) Use "``|``" between constraint code sets, creating alternatives. Every
3454 constraint in the constraint list must have the same number of alternative
3455 sets. With this syntax, the same alternative in *all* of the items in the
3456 constraint list will be chosen together.
3457
3458Putting those together, you might have a two operand constraint string like
3459``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3460operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3461may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3462
3463However, the use of either of the alternatives features is *NOT* recommended, as
3464LLVM is not able to make an intelligent choice about which one to use. (At the
3465point it currently needs to choose, not enough information is available to do so
3466in a smart way.) Thus, it simply tries to make a choice that's most likely to
3467compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3468always choose to use memory, not registers). And, if given multiple registers,
3469or multiple register classes, it will simply choose the first one. (In fact, it
3470doesn't currently even ensure explicitly specified physical registers are
3471unique, so specifying multiple physical registers as alternatives, like
3472``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3473intended.)
3474
3475Supported Constraint Code List
3476""""""""""""""""""""""""""""""
3477
3478The constraint codes are, in general, expected to behave the same way they do in
3479GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3480inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3481and GCC likely indicates a bug in LLVM.
3482
3483Some constraint codes are typically supported by all targets:
3484
3485- ``r``: A register in the target's general purpose register class.
3486- ``m``: A memory address operand. It is target-specific what addressing modes
3487 are supported, typical examples are register, or register + register offset,
3488 or register + immediate offset (of some target-specific size).
3489- ``i``: An integer constant (of target-specific width). Allows either a simple
3490 immediate, or a relocatable value.
3491- ``n``: An integer constant -- *not* including relocatable values.
3492- ``s``: An integer constant, but allowing *only* relocatable values.
3493- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3494 useful to pass a label for an asm branch or call.
3495
3496 .. FIXME: but that surely isn't actually okay to jump out of an asm
3497 block without telling llvm about the control transfer???)
3498
3499- ``{register-name}``: Requires exactly the named physical register.
3500
3501Other constraints are target-specific:
3502
3503AArch64:
3504
3505- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3506- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3507 i.e. 0 to 4095 with optional shift by 12.
3508- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3509 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3510- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3511 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3512- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3513 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3514- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3515 32-bit register. This is a superset of ``K``: in addition to the bitmask
3516 immediate, also allows immediate integers which can be loaded with a single
3517 ``MOVZ`` or ``MOVL`` instruction.
3518- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3519 64-bit register. This is a superset of ``L``.
3520- ``Q``: Memory address operand must be in a single register (no
3521 offsets). (However, LLVM currently does this for the ``m`` constraint as
3522 well.)
3523- ``r``: A 32 or 64-bit integer register (W* or X*).
3524- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3525- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3526
3527AMDGPU:
3528
3529- ``r``: A 32 or 64-bit integer register.
3530- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3531- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3532
3533
3534All ARM modes:
3535
3536- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3537 operand. Treated the same as operand ``m``, at the moment.
3538
3539ARM and ARM's Thumb2 mode:
3540
3541- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3542- ``I``: An immediate integer valid for a data-processing instruction.
3543- ``J``: An immediate integer between -4095 and 4095.
3544- ``K``: An immediate integer whose bitwise inverse is valid for a
3545 data-processing instruction. (Can be used with template modifier "``B``" to
3546 print the inverted value).
3547- ``L``: An immediate integer whose negation is valid for a data-processing
3548 instruction. (Can be used with template modifier "``n``" to print the negated
3549 value).
3550- ``M``: A power of two or a integer between 0 and 32.
3551- ``N``: Invalid immediate constraint.
3552- ``O``: Invalid immediate constraint.
3553- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3554- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3555 as ``r``.
3556- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3557 invalid.
3558- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3559 ``d0-d31``, or ``q0-q15``.
3560- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3561 ``d0-d7``, or ``q0-q3``.
3562- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3563 ``s0-s31``.
3564
3565ARM's Thumb1 mode:
3566
3567- ``I``: An immediate integer between 0 and 255.
3568- ``J``: An immediate integer between -255 and -1.
3569- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3570 some amount.
3571- ``L``: An immediate integer between -7 and 7.
3572- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3573- ``N``: An immediate integer between 0 and 31.
3574- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3575- ``r``: A low 32-bit GPR register (``r0-r7``).
3576- ``l``: A low 32-bit GPR register (``r0-r7``).
3577- ``h``: A high GPR register (``r0-r7``).
3578- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3579 ``d0-d31``, or ``q0-q15``.
3580- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3581 ``d0-d7``, or ``q0-q3``.
3582- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3583 ``s0-s31``.
3584
3585
3586Hexagon:
3587
3588- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3589 at the moment.
3590- ``r``: A 32 or 64-bit register.
3591
3592MSP430:
3593
3594- ``r``: An 8 or 16-bit register.
3595
3596MIPS:
3597
3598- ``I``: An immediate signed 16-bit integer.
3599- ``J``: An immediate integer zero.
3600- ``K``: An immediate unsigned 16-bit integer.
3601- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3602- ``N``: An immediate integer between -65535 and -1.
3603- ``O``: An immediate signed 15-bit integer.
3604- ``P``: An immediate integer between 1 and 65535.
3605- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3606 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3607- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3608 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3609 ``m``.
3610- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3611 ``sc`` instruction on the given subtarget (details vary).
3612- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3613- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003614 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3615 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003616- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3617 ``25``).
3618- ``l``: The ``lo`` register, 32 or 64-bit.
3619- ``x``: Invalid.
3620
3621NVPTX:
3622
3623- ``b``: A 1-bit integer register.
3624- ``c`` or ``h``: A 16-bit integer register.
3625- ``r``: A 32-bit integer register.
3626- ``l`` or ``N``: A 64-bit integer register.
3627- ``f``: A 32-bit float register.
3628- ``d``: A 64-bit float register.
3629
3630
3631PowerPC:
3632
3633- ``I``: An immediate signed 16-bit integer.
3634- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3635- ``K``: An immediate unsigned 16-bit integer.
3636- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3637- ``M``: An immediate integer greater than 31.
3638- ``N``: An immediate integer that is an exact power of 2.
3639- ``O``: The immediate integer constant 0.
3640- ``P``: An immediate integer constant whose negation is a signed 16-bit
3641 constant.
3642- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3643 treated the same as ``m``.
3644- ``r``: A 32 or 64-bit integer register.
3645- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3646 ``R1-R31``).
3647- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3648 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3649- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3650 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3651 altivec vector register (``V0-V31``).
3652
3653 .. FIXME: is this a bug that v accepts QPX registers? I think this
3654 is supposed to only use the altivec vector registers?
3655
3656- ``y``: Condition register (``CR0-CR7``).
3657- ``wc``: An individual CR bit in a CR register.
3658- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3659 register set (overlapping both the floating-point and vector register files).
3660- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3661 set.
3662
3663Sparc:
3664
3665- ``I``: An immediate 13-bit signed integer.
3666- ``r``: A 32-bit integer register.
3667
3668SystemZ:
3669
3670- ``I``: An immediate unsigned 8-bit integer.
3671- ``J``: An immediate unsigned 12-bit integer.
3672- ``K``: An immediate signed 16-bit integer.
3673- ``L``: An immediate signed 20-bit integer.
3674- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003675- ``Q``: A memory address operand with a base address and a 12-bit immediate
3676 unsigned displacement.
3677- ``R``: A memory address operand with a base address, a 12-bit immediate
3678 unsigned displacement, and an index register.
3679- ``S``: A memory address operand with a base address and a 20-bit immediate
3680 signed displacement.
3681- ``T``: A memory address operand with a base address, a 20-bit immediate
3682 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003683- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3684- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3685 address context evaluates as zero).
3686- ``h``: A 32-bit value in the high part of a 64bit data register
3687 (LLVM-specific)
3688- ``f``: A 32, 64, or 128-bit floating point register.
3689
3690X86:
3691
3692- ``I``: An immediate integer between 0 and 31.
3693- ``J``: An immediate integer between 0 and 64.
3694- ``K``: An immediate signed 8-bit integer.
3695- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3696 0xffffffff.
3697- ``M``: An immediate integer between 0 and 3.
3698- ``N``: An immediate unsigned 8-bit integer.
3699- ``O``: An immediate integer between 0 and 127.
3700- ``e``: An immediate 32-bit signed integer.
3701- ``Z``: An immediate 32-bit unsigned integer.
3702- ``o``, ``v``: Treated the same as ``m``, at the moment.
3703- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3704 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3705 registers, and on X86-64, it is all of the integer registers.
3706- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3707 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3708- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3709- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3710 existed since i386, and can be accessed without the REX prefix.
3711- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3712- ``y``: A 64-bit MMX register, if MMX is enabled.
3713- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3714 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3715 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3716 512-bit vector operand in an AVX512 register, Otherwise, an error.
3717- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3718- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3719 32-bit mode, a 64-bit integer operand will get split into two registers). It
3720 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3721 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3722 you're better off splitting it yourself, before passing it to the asm
3723 statement.
3724
3725XCore:
3726
3727- ``r``: A 32-bit integer register.
3728
3729
3730.. _inline-asm-modifiers:
3731
3732Asm template argument modifiers
3733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3734
3735In the asm template string, modifiers can be used on the operand reference, like
3736"``${0:n}``".
3737
3738The modifiers are, in general, expected to behave the same way they do in
3739GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3740inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3741and GCC likely indicates a bug in LLVM.
3742
3743Target-independent:
3744
Sean Silvaa1190322015-08-06 22:56:48 +00003745- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003746 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3747- ``n``: Negate and print immediate integer constant unadorned, without the
3748 target-specific immediate punctuation (e.g. no ``$`` prefix).
3749- ``l``: Print as an unadorned label, without the target-specific label
3750 punctuation (e.g. no ``$`` prefix).
3751
3752AArch64:
3753
3754- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3755 instead of ``x30``, print ``w30``.
3756- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3757- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3758 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3759 ``v*``.
3760
3761AMDGPU:
3762
3763- ``r``: No effect.
3764
3765ARM:
3766
3767- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3768 register).
3769- ``P``: No effect.
3770- ``q``: No effect.
3771- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3772 as ``d4[1]`` instead of ``s9``)
3773- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3774 prefix.
3775- ``L``: Print the low 16-bits of an immediate integer constant.
3776- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3777 register operands subsequent to the specified one (!), so use carefully.
3778- ``Q``: Print the low-order register of a register-pair, or the low-order
3779 register of a two-register operand.
3780- ``R``: Print the high-order register of a register-pair, or the high-order
3781 register of a two-register operand.
3782- ``H``: Print the second register of a register-pair. (On a big-endian system,
3783 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3784 to ``R``.)
3785
3786 .. FIXME: H doesn't currently support printing the second register
3787 of a two-register operand.
3788
3789- ``e``: Print the low doubleword register of a NEON quad register.
3790- ``f``: Print the high doubleword register of a NEON quad register.
3791- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3792 adornment.
3793
3794Hexagon:
3795
3796- ``L``: Print the second register of a two-register operand. Requires that it
3797 has been allocated consecutively to the first.
3798
3799 .. FIXME: why is it restricted to consecutive ones? And there's
3800 nothing that ensures that happens, is there?
3801
3802- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3803 nothing. Used to print 'addi' vs 'add' instructions.
3804
3805MSP430:
3806
3807No additional modifiers.
3808
3809MIPS:
3810
3811- ``X``: Print an immediate integer as hexadecimal
3812- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3813- ``d``: Print an immediate integer as decimal.
3814- ``m``: Subtract one and print an immediate integer as decimal.
3815- ``z``: Print $0 if an immediate zero, otherwise print normally.
3816- ``L``: Print the low-order register of a two-register operand, or prints the
3817 address of the low-order word of a double-word memory operand.
3818
3819 .. FIXME: L seems to be missing memory operand support.
3820
3821- ``M``: Print the high-order register of a two-register operand, or prints the
3822 address of the high-order word of a double-word memory operand.
3823
3824 .. FIXME: M seems to be missing memory operand support.
3825
3826- ``D``: Print the second register of a two-register operand, or prints the
3827 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3828 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3829 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003830- ``w``: No effect. Provided for compatibility with GCC which requires this
3831 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3832 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003833
3834NVPTX:
3835
3836- ``r``: No effect.
3837
3838PowerPC:
3839
3840- ``L``: Print the second register of a two-register operand. Requires that it
3841 has been allocated consecutively to the first.
3842
3843 .. FIXME: why is it restricted to consecutive ones? And there's
3844 nothing that ensures that happens, is there?
3845
3846- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3847 nothing. Used to print 'addi' vs 'add' instructions.
3848- ``y``: For a memory operand, prints formatter for a two-register X-form
3849 instruction. (Currently always prints ``r0,OPERAND``).
3850- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3851 otherwise. (NOTE: LLVM does not support update form, so this will currently
3852 always print nothing)
3853- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3854 not support indexed form, so this will currently always print nothing)
3855
3856Sparc:
3857
3858- ``r``: No effect.
3859
3860SystemZ:
3861
3862SystemZ implements only ``n``, and does *not* support any of the other
3863target-independent modifiers.
3864
3865X86:
3866
3867- ``c``: Print an unadorned integer or symbol name. (The latter is
3868 target-specific behavior for this typically target-independent modifier).
3869- ``A``: Print a register name with a '``*``' before it.
3870- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3871 operand.
3872- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3873 memory operand.
3874- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3875 operand.
3876- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3877 operand.
3878- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3879 available, otherwise the 32-bit register name; do nothing on a memory operand.
3880- ``n``: Negate and print an unadorned integer, or, for operands other than an
3881 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3882 the operand. (The behavior for relocatable symbol expressions is a
3883 target-specific behavior for this typically target-independent modifier)
3884- ``H``: Print a memory reference with additional offset +8.
3885- ``P``: Print a memory reference or operand for use as the argument of a call
3886 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3887
3888XCore:
3889
3890No additional modifiers.
3891
3892
Sean Silvab084af42012-12-07 10:36:55 +00003893Inline Asm Metadata
3894^^^^^^^^^^^^^^^^^^^
3895
3896The call instructions that wrap inline asm nodes may have a
3897"``!srcloc``" MDNode attached to it that contains a list of constant
3898integers. If present, the code generator will use the integer as the
3899location cookie value when report errors through the ``LLVMContext``
3900error reporting mechanisms. This allows a front-end to correlate backend
3901errors that occur with inline asm back to the source code that produced
3902it. For example:
3903
3904.. code-block:: llvm
3905
3906 call void asm sideeffect "something bad", ""(), !srcloc !42
3907 ...
3908 !42 = !{ i32 1234567 }
3909
3910It is up to the front-end to make sense of the magic numbers it places
3911in the IR. If the MDNode contains multiple constants, the code generator
3912will use the one that corresponds to the line of the asm that the error
3913occurs on.
3914
3915.. _metadata:
3916
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003917Metadata
3918========
Sean Silvab084af42012-12-07 10:36:55 +00003919
3920LLVM IR allows metadata to be attached to instructions in the program
3921that can convey extra information about the code to the optimizers and
3922code generator. One example application of metadata is source-level
3923debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003924
Sean Silvaa1190322015-08-06 22:56:48 +00003925Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003926``call`` instruction, it uses the ``metadata`` type.
3927
3928All metadata are identified in syntax by a exclamation point ('``!``').
3929
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003930.. _metadata-string:
3931
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003932Metadata Nodes and Metadata Strings
3933-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003934
3935A metadata string is a string surrounded by double quotes. It can
3936contain any character by escaping non-printable characters with
3937"``\xx``" where "``xx``" is the two digit hex code. For example:
3938"``!"test\00"``".
3939
3940Metadata nodes are represented with notation similar to structure
3941constants (a comma separated list of elements, surrounded by braces and
3942preceded by an exclamation point). Metadata nodes can have any values as
3943their operand. For example:
3944
3945.. code-block:: llvm
3946
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003947 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003948
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003949Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3950
Renato Golin124f2592016-07-20 12:16:38 +00003951.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003952
3953 !0 = distinct !{!"test\00", i32 10}
3954
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003955``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003956content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003957when metadata operands change.
3958
Sean Silvab084af42012-12-07 10:36:55 +00003959A :ref:`named metadata <namedmetadatastructure>` is a collection of
3960metadata nodes, which can be looked up in the module symbol table. For
3961example:
3962
3963.. code-block:: llvm
3964
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003965 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003966
3967Metadata can be used as function arguments. Here ``llvm.dbg.value``
3968function is using two metadata arguments:
3969
3970.. code-block:: llvm
3971
3972 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3973
Peter Collingbourne50108682015-11-06 02:41:02 +00003974Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3975to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003976
3977.. code-block:: llvm
3978
3979 %indvar.next = add i64 %indvar, 1, !dbg !21
3980
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003981Metadata can also be attached to a function or a global variable. Here metadata
3982``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
3983and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00003984
3985.. code-block:: llvm
3986
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003987 declare !dbg !22 void @f1()
3988 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00003989 ret void
3990 }
3991
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003992 @g1 = global i32 0, !dbg !22
3993 @g2 = external global i32, !dbg !22
3994
3995A transformation is required to drop any metadata attachment that it does not
3996know or know it can't preserve. Currently there is an exception for metadata
3997attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
3998unconditionally dropped unless the global is itself deleted.
3999
4000Metadata attached to a module using named metadata may not be dropped, with
4001the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4002
Sean Silvab084af42012-12-07 10:36:55 +00004003More information about specific metadata nodes recognized by the
4004optimizers and code generator is found below.
4005
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004006.. _specialized-metadata:
4007
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004008Specialized Metadata Nodes
4009^^^^^^^^^^^^^^^^^^^^^^^^^^
4010
4011Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004012to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004013order.
4014
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004015These aren't inherently debug info centric, but currently all the specialized
4016metadata nodes are related to debug info.
4017
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004018.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004019
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004020DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004021"""""""""""""
4022
Sean Silvaa1190322015-08-06 22:56:48 +00004023``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004024``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
4025fields are tuples containing the debug info to be emitted along with the compile
4026unit, regardless of code optimizations (some nodes are only emitted if there are
Dehao Chenfb02f712017-02-10 21:09:07 +00004027references to them from instructions). The ``debugInfoForProfiling:`` field is a
4028boolean indicating whether or not line-table discriminators are updated to
4029provide more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004030
Renato Golin124f2592016-07-20 12:16:38 +00004031.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004032
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004033 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004034 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004035 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004036 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004037 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004038
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004039Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00004040specific compilation unit. File descriptors are defined using this scope.
4041These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004042keep track of subprograms, global variables, type information, and imported
4043entities (declarations and namespaces).
4044
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004045.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004046
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004047DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048""""""
4049
Sean Silvaa1190322015-08-06 22:56:48 +00004050``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004051
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004052.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004053
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004054 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4055 checksumkind: CSK_MD5,
4056 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004057
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004058Files are sometimes used in ``scope:`` fields, and are the only valid target
4059for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004060Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004061
Michael Kuperstein605308a2015-05-14 10:58:59 +00004062.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004063
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004064DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004065"""""""""""
4066
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004067``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004068``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004069
Renato Golin124f2592016-07-20 12:16:38 +00004070.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004071
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004072 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004073 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004074 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004075
Sean Silvaa1190322015-08-06 22:56:48 +00004076The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004077following:
4078
Renato Golin124f2592016-07-20 12:16:38 +00004079.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004080
4081 DW_ATE_address = 1
4082 DW_ATE_boolean = 2
4083 DW_ATE_float = 4
4084 DW_ATE_signed = 5
4085 DW_ATE_signed_char = 6
4086 DW_ATE_unsigned = 7
4087 DW_ATE_unsigned_char = 8
4088
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004089.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004090
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004091DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004092""""""""""""""""
4093
Sean Silvaa1190322015-08-06 22:56:48 +00004094``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004095refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004096types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004097represents a function with no return value (such as ``void foo() {}`` in C++).
4098
Renato Golin124f2592016-07-20 12:16:38 +00004099.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004100
4101 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4102 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004103 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004104
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004105.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004106
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004107DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004108"""""""""""""
4109
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004110``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004111qualified types.
4112
Renato Golin124f2592016-07-20 12:16:38 +00004113.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004114
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004115 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004116 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004117 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004118 align: 32)
4119
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004120The following ``tag:`` values are valid:
4121
Renato Golin124f2592016-07-20 12:16:38 +00004122.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004123
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004124 DW_TAG_member = 13
4125 DW_TAG_pointer_type = 15
4126 DW_TAG_reference_type = 16
4127 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004128 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004129 DW_TAG_ptr_to_member_type = 31
4130 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004131 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004132 DW_TAG_volatile_type = 53
4133 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004134 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004135
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004136.. _DIDerivedTypeMember:
4137
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004138``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004139<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004140``offset:`` is the member's bit offset. If the composite type has an ODR
4141``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4142uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004143
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004144``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4145field of :ref:`composite types <DICompositeType>` to describe parents and
4146friends.
4147
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004148``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4149
4150``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004151``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4152are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004153
4154Note that the ``void *`` type is expressed as a type derived from NULL.
4155
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004156.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004157
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004158DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004159"""""""""""""""
4160
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004161``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004162structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004163
4164If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004165identifier used for type merging between modules. When specified,
4166:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4167derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4168``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004169
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004170For a given ``identifier:``, there should only be a single composite type that
4171does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4172together will unique such definitions at parse time via the ``identifier:``
4173field, even if the nodes are ``distinct``.
4174
Renato Golin124f2592016-07-20 12:16:38 +00004175.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004176
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004177 !0 = !DIEnumerator(name: "SixKind", value: 7)
4178 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4179 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4180 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004181 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4182 elements: !{!0, !1, !2})
4183
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004184The following ``tag:`` values are valid:
4185
Renato Golin124f2592016-07-20 12:16:38 +00004186.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004187
4188 DW_TAG_array_type = 1
4189 DW_TAG_class_type = 2
4190 DW_TAG_enumeration_type = 4
4191 DW_TAG_structure_type = 19
4192 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004193
4194For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004195descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004196level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004197array type is a native packed vector.
4198
4199For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004200descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004201value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004202``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004203
4204For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4205``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004206<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4207``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4208``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004209
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004210.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004211
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004212DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004213""""""""""
4214
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004215``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004216:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004217
4218.. code-block:: llvm
4219
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004220 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4221 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4222 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004223
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004224.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004225
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004226DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004227""""""""""""
4228
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004229``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4230variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004231
4232.. code-block:: llvm
4233
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004234 !0 = !DIEnumerator(name: "SixKind", value: 7)
4235 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4236 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004237
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004238DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004239"""""""""""""""""""""""
4240
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004241``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004242language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004243:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004244
4245.. code-block:: llvm
4246
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004247 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004248
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004249DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004250""""""""""""""""""""""""
4251
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004252``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004253language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004254but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004255``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004256:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004257
4258.. code-block:: llvm
4259
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004260 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004261
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004262DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004263"""""""""""
4264
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004265``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004266
4267.. code-block:: llvm
4268
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004269 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004270
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004271DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004272""""""""""""""""
4273
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004274``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004275
4276.. code-block:: llvm
4277
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004278 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004279 file: !2, line: 7, type: !3, isLocal: true,
4280 isDefinition: false, variable: i32* @foo,
4281 declaration: !4)
4282
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004283All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004284:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004285
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004286.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004287
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004288DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004289""""""""""""
4290
Peter Collingbourne50108682015-11-06 02:41:02 +00004291``DISubprogram`` nodes represent functions from the source language. A
4292``DISubprogram`` may be attached to a function definition using ``!dbg``
4293metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4294that must be retained, even if their IR counterparts are optimized out of
4295the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004296
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004297.. _DISubprogramDeclaration:
4298
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004299When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004300tree as opposed to a definition of a function. If the scope is a composite
4301type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4302then the subprogram declaration is uniqued based only on its ``linkageName:``
4303and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004304
Renato Golin124f2592016-07-20 12:16:38 +00004305.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004306
Peter Collingbourne50108682015-11-06 02:41:02 +00004307 define void @_Z3foov() !dbg !0 {
4308 ...
4309 }
4310
4311 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4312 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004313 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004314 containingType: !4,
4315 virtuality: DW_VIRTUALITY_pure_virtual,
4316 virtualIndex: 10, flags: DIFlagPrototyped,
4317 isOptimized: true, templateParams: !5,
4318 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004319
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004320.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004321
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004322DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004323""""""""""""""
4324
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004325``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004326<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004327two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004328fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004329
Renato Golin124f2592016-07-20 12:16:38 +00004330.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004331
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004332 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004333
4334Usually lexical blocks are ``distinct`` to prevent node merging based on
4335operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004336
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004337.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004338
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004339DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004340""""""""""""""""""
4341
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004342``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004343:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004344indicate textual inclusion, or the ``discriminator:`` field can be used to
4345discriminate between control flow within a single block in the source language.
4346
4347.. code-block:: llvm
4348
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004349 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4350 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4351 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004352
Michael Kuperstein605308a2015-05-14 10:58:59 +00004353.. _DILocation:
4354
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004355DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004356""""""""""
4357
Sean Silvaa1190322015-08-06 22:56:48 +00004358``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004359mandatory, and points at an :ref:`DILexicalBlockFile`, an
4360:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004361
4362.. code-block:: llvm
4363
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004364 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004365
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004366.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004367
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004368DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004369"""""""""""""""
4370
Sean Silvaa1190322015-08-06 22:56:48 +00004371``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004372the ``arg:`` field is set to non-zero, then this variable is a subprogram
4373parameter, and it will be included in the ``variables:`` field of its
4374:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004375
Renato Golin124f2592016-07-20 12:16:38 +00004376.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004377
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004378 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4379 type: !3, flags: DIFlagArtificial)
4380 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4381 type: !3)
4382 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004383
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004384DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004385""""""""""""
4386
Adrian Prantlb44c7762017-03-22 18:01:01 +00004387``DIExpression`` nodes represent expressions that are inspired by the DWARF
4388expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4389(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4390referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004391
4392The current supported vocabulary is limited:
4393
Adrian Prantl6825fb62017-04-18 01:21:53 +00004394- ``DW_OP_deref`` dereferences the top of the expression stack.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004395- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004396- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4397 here, respectively) of the variable fragment from the working expression. Note
4398 that contrary to DW_OP_bit_piece, the offset is describing the the location
4399 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004400- ``DW_OP_swap`` swaps top two stack entries.
4401- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4402 of the stack is treated as an address. The second stack entry is treated as an
4403 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004404- ``DW_OP_stack_value`` marks a constant value.
4405
4406DIExpression nodes that contain a ``DW_OP_stack_value`` operator are standalone
4407location descriptions that describe constant values. This form is used to
4408describe global constants that have been optimized away. All other expressions
4409are modifiers to another location: A debug intrinsic ties a location and a
Adrian Prantl6825fb62017-04-18 01:21:53 +00004410DIExpression together.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004411
Adrian Prantl6825fb62017-04-18 01:21:53 +00004412DWARF specifies three kinds of simple location descriptions: Register, memory,
4413and implicit location descriptions. Register and memory location descriptions
4414describe the *location* of a source variable (in the sense that a debugger might
4415modify its value), whereas implicit locations describe merely the *value* of a
4416source variable. DIExpressions also follow this model: A DIExpression that
4417doesn't have a trailing ``DW_OP_stack_value`` will describe an *address* when
4418combined with a concrete location.
4419
4420.. code-block:: llvm
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004421
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004422 !0 = !DIExpression(DW_OP_deref)
4423 !1 = !DIExpression(DW_OP_plus, 3)
4424 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004425 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004426 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004427 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004428
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004429DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004430""""""""""""""
4431
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004432``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004433
4434.. code-block:: llvm
4435
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004436 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004437 getter: "getFoo", attributes: 7, type: !2)
4438
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004439DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004440""""""""""""""""
4441
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004442``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004443compile unit.
4444
Renato Golin124f2592016-07-20 12:16:38 +00004445.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004446
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004447 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004448 entity: !1, line: 7)
4449
Amjad Abouda9bcf162015-12-10 12:56:35 +00004450DIMacro
4451"""""""
4452
4453``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4454The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004455defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004456used to expand the macro identifier.
4457
Renato Golin124f2592016-07-20 12:16:38 +00004458.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004459
4460 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4461 value: "((x) + 1)")
4462 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4463
4464DIMacroFile
4465"""""""""""
4466
4467``DIMacroFile`` nodes represent inclusion of source files.
4468The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4469appear in the included source file.
4470
Renato Golin124f2592016-07-20 12:16:38 +00004471.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004472
4473 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4474 nodes: !3)
4475
Sean Silvab084af42012-12-07 10:36:55 +00004476'``tbaa``' Metadata
4477^^^^^^^^^^^^^^^^^^^
4478
4479In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004480suitable for doing type based alias analysis (TBAA). Instead, metadata is
4481added to the IR to describe a type system of a higher level language. This
4482can be used to implement C/C++ strict type aliasing rules, but it can also
4483be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004484
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004485This description of LLVM's TBAA system is broken into two parts:
4486:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4487:ref:`Representation<tbaa_node_representation>` talks about the metadata
4488encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004489
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004490It is always possible to trace any TBAA node to a "root" TBAA node (details
4491in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4492nodes with different roots have an unknown aliasing relationship, and LLVM
4493conservatively infers ``MayAlias`` between them. The rules mentioned in
4494this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004495
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004496.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004497
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004498Semantics
4499"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004500
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004501The TBAA metadata system, referred to as "struct path TBAA" (not to be
4502confused with ``tbaa.struct``), consists of the following high level
4503concepts: *Type Descriptors*, further subdivided into scalar type
4504descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004505
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004506**Type descriptors** describe the type system of the higher level language
4507being compiled. **Scalar type descriptors** describe types that do not
4508contain other types. Each scalar type has a parent type, which must also
4509be a scalar type or the TBAA root. Via this parent relation, scalar types
4510within a TBAA root form a tree. **Struct type descriptors** denote types
4511that contain a sequence of other type descriptors, at known offsets. These
4512contained type descriptors can either be struct type descriptors themselves
4513or scalar type descriptors.
4514
4515**Access tags** are metadata nodes attached to load and store instructions.
4516Access tags use type descriptors to describe the *location* being accessed
4517in terms of the type system of the higher level language. Access tags are
4518tuples consisting of a base type, an access type and an offset. The base
4519type is a scalar type descriptor or a struct type descriptor, the access
4520type is a scalar type descriptor, and the offset is a constant integer.
4521
4522The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4523things:
4524
4525 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4526 or store) of a value of type ``AccessTy`` contained in the struct type
4527 ``BaseTy`` at offset ``Offset``.
4528
4529 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4530 ``AccessTy`` must be the same; and the access tag describes a scalar
4531 access with scalar type ``AccessTy``.
4532
4533We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4534tuples this way:
4535
4536 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4537 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4538 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4539 undefined if ``Offset`` is non-zero.
4540
4541 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4542 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4543 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4544 to be relative within that inner type.
4545
4546A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4547aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4548Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4549Offset2)`` via the ``Parent`` relation or vice versa.
4550
4551As a concrete example, the type descriptor graph for the following program
4552
4553.. code-block:: c
4554
4555 struct Inner {
4556 int i; // offset 0
4557 float f; // offset 4
4558 };
4559
4560 struct Outer {
4561 float f; // offset 0
4562 double d; // offset 4
4563 struct Inner inner_a; // offset 12
4564 };
4565
4566 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4567 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4568 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4569 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4570 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4571 }
4572
4573is (note that in C and C++, ``char`` can be used to access any arbitrary
4574type):
4575
4576.. code-block:: text
4577
4578 Root = "TBAA Root"
4579 CharScalarTy = ("char", Root, 0)
4580 FloatScalarTy = ("float", CharScalarTy, 0)
4581 DoubleScalarTy = ("double", CharScalarTy, 0)
4582 IntScalarTy = ("int", CharScalarTy, 0)
4583 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4584 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4585 (InnerStructTy, 12)}
4586
4587
4588with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
45890)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4590``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4591
4592.. _tbaa_node_representation:
4593
4594Representation
4595""""""""""""""
4596
4597The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4598with exactly one ``MDString`` operand.
4599
4600Scalar type descriptors are represented as an ``MDNode`` s with two
4601operands. The first operand is an ``MDString`` denoting the name of the
4602struct type. LLVM does not assign meaning to the value of this operand, it
4603only cares about it being an ``MDString``. The second operand is an
4604``MDNode`` which points to the parent for said scalar type descriptor,
4605which is either another scalar type descriptor or the TBAA root. Scalar
4606type descriptors can have an optional third argument, but that must be the
4607constant integer zero.
4608
4609Struct type descriptors are represented as ``MDNode`` s with an odd number
4610of operands greater than 1. The first operand is an ``MDString`` denoting
4611the name of the struct type. Like in scalar type descriptors the actual
4612value of this name operand is irrelevant to LLVM. After the name operand,
4613the struct type descriptors have a sequence of alternating ``MDNode`` and
4614``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4615an ``MDNode``, denotes a contained field, and the 2N th operand, a
4616``ConstantInt``, is the offset of the said contained field. The offsets
4617must be in non-decreasing order.
4618
4619Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4620The first operand is an ``MDNode`` pointing to the node representing the
4621base type. The second operand is an ``MDNode`` pointing to the node
4622representing the access type. The third operand is a ``ConstantInt`` that
4623states the offset of the access. If a fourth field is present, it must be
4624a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4625that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004626``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004627AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4628the access type and the base type of an access tag must be the same, and
4629that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004630
4631'``tbaa.struct``' Metadata
4632^^^^^^^^^^^^^^^^^^^^^^^^^^
4633
4634The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4635aggregate assignment operations in C and similar languages, however it
4636is defined to copy a contiguous region of memory, which is more than
4637strictly necessary for aggregate types which contain holes due to
4638padding. Also, it doesn't contain any TBAA information about the fields
4639of the aggregate.
4640
4641``!tbaa.struct`` metadata can describe which memory subregions in a
4642memcpy are padding and what the TBAA tags of the struct are.
4643
4644The current metadata format is very simple. ``!tbaa.struct`` metadata
4645nodes are a list of operands which are in conceptual groups of three.
4646For each group of three, the first operand gives the byte offset of a
4647field in bytes, the second gives its size in bytes, and the third gives
4648its tbaa tag. e.g.:
4649
4650.. code-block:: llvm
4651
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004652 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004653
4654This describes a struct with two fields. The first is at offset 0 bytes
4655with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4656and has size 4 bytes and has tbaa tag !2.
4657
4658Note that the fields need not be contiguous. In this example, there is a
46594 byte gap between the two fields. This gap represents padding which
4660does not carry useful data and need not be preserved.
4661
Hal Finkel94146652014-07-24 14:25:39 +00004662'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004664
4665``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4666noalias memory-access sets. This means that some collection of memory access
4667instructions (loads, stores, memory-accessing calls, etc.) that carry
4668``noalias`` metadata can specifically be specified not to alias with some other
4669collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004670Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004671a domain.
4672
4673When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004674of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004675subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004676instruction's ``noalias`` list, then the two memory accesses are assumed not to
4677alias.
Hal Finkel94146652014-07-24 14:25:39 +00004678
Adam Nemet569a5b32016-04-27 00:52:48 +00004679Because scopes in one domain don't affect scopes in other domains, separate
4680domains can be used to compose multiple independent noalias sets. This is
4681used for example during inlining. As the noalias function parameters are
4682turned into noalias scope metadata, a new domain is used every time the
4683function is inlined.
4684
Hal Finkel029cde62014-07-25 15:50:02 +00004685The metadata identifying each domain is itself a list containing one or two
4686entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004687string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004688self-reference can be used to create globally unique domain names. A
4689descriptive string may optionally be provided as a second list entry.
4690
4691The metadata identifying each scope is also itself a list containing two or
4692three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004693is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004694self-reference can be used to create globally unique scope names. A metadata
4695reference to the scope's domain is the second entry. A descriptive string may
4696optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004697
4698For example,
4699
4700.. code-block:: llvm
4701
Hal Finkel029cde62014-07-25 15:50:02 +00004702 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004703 !0 = !{!0}
4704 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004705
Hal Finkel029cde62014-07-25 15:50:02 +00004706 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004707 !2 = !{!2, !0}
4708 !3 = !{!3, !0}
4709 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004710
Hal Finkel029cde62014-07-25 15:50:02 +00004711 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004712 !5 = !{!4} ; A list containing only scope !4
4713 !6 = !{!4, !3, !2}
4714 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004715
4716 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004717 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004718 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004719
Hal Finkel029cde62014-07-25 15:50:02 +00004720 ; These two instructions also don't alias (for domain !1, the set of scopes
4721 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004722 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004723 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004724
Adam Nemet0a8416f2015-05-11 08:30:28 +00004725 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004726 ; the !noalias list is not a superset of, or equal to, the scopes in the
4727 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004728 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004729 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004730
Sean Silvab084af42012-12-07 10:36:55 +00004731'``fpmath``' Metadata
4732^^^^^^^^^^^^^^^^^^^^^
4733
4734``fpmath`` metadata may be attached to any instruction of floating point
4735type. It can be used to express the maximum acceptable error in the
4736result of that instruction, in ULPs, thus potentially allowing the
4737compiler to use a more efficient but less accurate method of computing
4738it. ULP is defined as follows:
4739
4740 If ``x`` is a real number that lies between two finite consecutive
4741 floating-point numbers ``a`` and ``b``, without being equal to one
4742 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4743 distance between the two non-equal finite floating-point numbers
4744 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4745
Matt Arsenault82f41512016-06-27 19:43:15 +00004746The metadata node shall consist of a single positive float type number
4747representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004748
4749.. code-block:: llvm
4750
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004751 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004752
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004753.. _range-metadata:
4754
Sean Silvab084af42012-12-07 10:36:55 +00004755'``range``' Metadata
4756^^^^^^^^^^^^^^^^^^^^
4757
Jingyue Wu37fcb592014-06-19 16:50:16 +00004758``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4759integer types. It expresses the possible ranges the loaded value or the value
4760returned by the called function at this call site is in. The ranges are
4761represented with a flattened list of integers. The loaded value or the value
4762returned is known to be in the union of the ranges defined by each consecutive
4763pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004764
4765- The type must match the type loaded by the instruction.
4766- The pair ``a,b`` represents the range ``[a,b)``.
4767- Both ``a`` and ``b`` are constants.
4768- The range is allowed to wrap.
4769- The range should not represent the full or empty set. That is,
4770 ``a!=b``.
4771
4772In addition, the pairs must be in signed order of the lower bound and
4773they must be non-contiguous.
4774
4775Examples:
4776
4777.. code-block:: llvm
4778
David Blaikiec7aabbb2015-03-04 22:06:14 +00004779 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4780 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004781 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4782 %d = invoke i8 @bar() to label %cont
4783 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004784 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004785 !0 = !{ i8 0, i8 2 }
4786 !1 = !{ i8 255, i8 2 }
4787 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4788 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004789
Peter Collingbourne235c2752016-12-08 19:01:00 +00004790'``absolute_symbol``' Metadata
4791^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4792
4793``absolute_symbol`` metadata may be attached to a global variable
4794declaration. It marks the declaration as a reference to an absolute symbol,
4795which causes the backend to use absolute relocations for the symbol even
4796in position independent code, and expresses the possible ranges that the
4797global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004798``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4799may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004800
Peter Collingbourned88f9282017-01-20 21:56:37 +00004801Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004802
4803.. code-block:: llvm
4804
4805 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004806 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004807
4808 ...
4809 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004810 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004811
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004812'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004813^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004814
4815``unpredictable`` metadata may be attached to any branch or switch
4816instruction. It can be used to express the unpredictability of control
4817flow. Similar to the llvm.expect intrinsic, it may be used to alter
4818optimizations related to compare and branch instructions. The metadata
4819is treated as a boolean value; if it exists, it signals that the branch
4820or switch that it is attached to is completely unpredictable.
4821
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004822'``llvm.loop``'
4823^^^^^^^^^^^^^^^
4824
4825It is sometimes useful to attach information to loop constructs. Currently,
4826loop metadata is implemented as metadata attached to the branch instruction
4827in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004828guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004829specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004830
4831The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004832itself to avoid merging it with any other identifier metadata, e.g.,
4833during module linkage or function inlining. That is, each loop should refer
4834to their own identification metadata even if they reside in separate functions.
4835The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004836constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004837
4838.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004839
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004840 !0 = !{!0}
4841 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004842
Mark Heffernan893752a2014-07-18 19:24:51 +00004843The loop identifier metadata can be used to specify additional
4844per-loop metadata. Any operands after the first operand can be treated
4845as user-defined metadata. For example the ``llvm.loop.unroll.count``
4846suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004847
Paul Redmond5fdf8362013-05-28 20:00:34 +00004848.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004849
Paul Redmond5fdf8362013-05-28 20:00:34 +00004850 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4851 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004852 !0 = !{!0, !1}
4853 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004854
Mark Heffernan9d20e422014-07-21 23:11:03 +00004855'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004857
Mark Heffernan9d20e422014-07-21 23:11:03 +00004858Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4859used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004860vectorization width and interleave count. These metadata should be used in
4861conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004862``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4863optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004864it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004865which contains information about loop-carried memory dependencies can be helpful
4866in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004867
Mark Heffernan9d20e422014-07-21 23:11:03 +00004868'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004869^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4870
Mark Heffernan9d20e422014-07-21 23:11:03 +00004871This metadata suggests an interleave count to the loop interleaver.
4872The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004873second operand is an integer specifying the interleave count. For
4874example:
4875
4876.. code-block:: llvm
4877
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004878 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004879
Mark Heffernan9d20e422014-07-21 23:11:03 +00004880Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004881multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004882then the interleave count will be determined automatically.
4883
4884'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004885^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004886
4887This metadata selectively enables or disables vectorization for the loop. The
4888first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004889is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000048900 disables vectorization:
4891
4892.. code-block:: llvm
4893
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004894 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4895 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004896
4897'``llvm.loop.vectorize.width``' Metadata
4898^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4899
4900This metadata sets the target width of the vectorizer. The first
4901operand is the string ``llvm.loop.vectorize.width`` and the second
4902operand is an integer specifying the width. For example:
4903
4904.. code-block:: llvm
4905
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004906 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004907
4908Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004909vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000049100 or if the loop does not have this metadata the width will be
4911determined automatically.
4912
4913'``llvm.loop.unroll``'
4914^^^^^^^^^^^^^^^^^^^^^^
4915
4916Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4917optimization hints such as the unroll factor. ``llvm.loop.unroll``
4918metadata should be used in conjunction with ``llvm.loop`` loop
4919identification metadata. The ``llvm.loop.unroll`` metadata are only
4920optimization hints and the unrolling will only be performed if the
4921optimizer believes it is safe to do so.
4922
Mark Heffernan893752a2014-07-18 19:24:51 +00004923'``llvm.loop.unroll.count``' Metadata
4924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4925
4926This metadata suggests an unroll factor to the loop unroller. The
4927first operand is the string ``llvm.loop.unroll.count`` and the second
4928operand is a positive integer specifying the unroll factor. For
4929example:
4930
4931.. code-block:: llvm
4932
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004933 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004934
4935If the trip count of the loop is less than the unroll count the loop
4936will be partially unrolled.
4937
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004938'``llvm.loop.unroll.disable``' Metadata
4939^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4940
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004941This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004942which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004943
4944.. code-block:: llvm
4945
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004946 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004947
Kevin Qin715b01e2015-03-09 06:14:18 +00004948'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004949^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004950
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004951This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004952operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004953
4954.. code-block:: llvm
4955
4956 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4957
Mark Heffernan89391542015-08-10 17:28:08 +00004958'``llvm.loop.unroll.enable``' Metadata
4959^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4960
4961This metadata suggests that the loop should be fully unrolled if the trip count
4962is known at compile time and partially unrolled if the trip count is not known
4963at compile time. The metadata has a single operand which is the string
4964``llvm.loop.unroll.enable``. For example:
4965
4966.. code-block:: llvm
4967
4968 !0 = !{!"llvm.loop.unroll.enable"}
4969
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004970'``llvm.loop.unroll.full``' Metadata
4971^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4972
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004973This metadata suggests that the loop should be unrolled fully. The
4974metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004975For example:
4976
4977.. code-block:: llvm
4978
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004979 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004980
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004981'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004982^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004983
4984This metadata indicates that the loop should not be versioned for the purpose
4985of enabling loop-invariant code motion (LICM). The metadata has a single operand
4986which is the string ``llvm.loop.licm_versioning.disable``. For example:
4987
4988.. code-block:: llvm
4989
4990 !0 = !{!"llvm.loop.licm_versioning.disable"}
4991
Adam Nemetd2fa4142016-04-27 05:28:18 +00004992'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004993^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004994
4995Loop distribution allows splitting a loop into multiple loops. Currently,
4996this is only performed if the entire loop cannot be vectorized due to unsafe
4997memory dependencies. The transformation will atempt to isolate the unsafe
4998dependencies into their own loop.
4999
5000This metadata can be used to selectively enable or disable distribution of the
5001loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5002second operand is a bit. If the bit operand value is 1 distribution is
5003enabled. A value of 0 disables distribution:
5004
5005.. code-block:: llvm
5006
5007 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5008 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5009
5010This metadata should be used in conjunction with ``llvm.loop`` loop
5011identification metadata.
5012
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005013'``llvm.mem``'
5014^^^^^^^^^^^^^^^
5015
5016Metadata types used to annotate memory accesses with information helpful
5017for optimizations are prefixed with ``llvm.mem``.
5018
5019'``llvm.mem.parallel_loop_access``' Metadata
5020^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5021
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005022The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5023or metadata containing a list of loop identifiers for nested loops.
5024The metadata is attached to memory accessing instructions and denotes that
5025no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005026with the same loop identifier. The metadata on memory reads also implies that
5027if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005028
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005029Precisely, given two instructions ``m1`` and ``m2`` that both have the
5030``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5031set of loops associated with that metadata, respectively, then there is no loop
5032carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005033``L2``.
5034
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005035As a special case, if all memory accessing instructions in a loop have
5036``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5037loop has no loop carried memory dependences and is considered to be a parallel
5038loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005039
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005040Note that if not all memory access instructions have such metadata referring to
5041the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005042memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005043safe mechanism, this causes loops that were originally parallel to be considered
5044sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005045insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005046
5047Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005048both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005049metadata types that refer to the same loop identifier metadata.
5050
5051.. code-block:: llvm
5052
5053 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005054 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005055 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005056 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005057 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005058 ...
5059 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005060
5061 for.end:
5062 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005063 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005064
5065It is also possible to have nested parallel loops. In that case the
5066memory accesses refer to a list of loop identifier metadata nodes instead of
5067the loop identifier metadata node directly:
5068
5069.. code-block:: llvm
5070
5071 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005072 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005073 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005074 ...
5075 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005076
5077 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005078 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005079 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005080 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005081 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005082 ...
5083 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005084
5085 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005086 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005087 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005088 ...
5089 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005090
5091 outer.for.end: ; preds = %for.body
5092 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005093 !0 = !{!1, !2} ; a list of loop identifiers
5094 !1 = !{!1} ; an identifier for the inner loop
5095 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005096
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005097'``invariant.group``' Metadata
5098^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5099
5100The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
5101The existence of the ``invariant.group`` metadata on the instruction tells
5102the optimizer that every ``load`` and ``store`` to the same pointer operand
5103within the same invariant group can be assumed to load or store the same
5104value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005105when two pointers are considered the same). Pointers returned by bitcast or
5106getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005107
5108Examples:
5109
5110.. code-block:: llvm
5111
5112 @unknownPtr = external global i8
5113 ...
5114 %ptr = alloca i8
5115 store i8 42, i8* %ptr, !invariant.group !0
5116 call void @foo(i8* %ptr)
5117
5118 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5119 call void @foo(i8* %ptr)
5120 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
5121
5122 %newPtr = call i8* @getPointer(i8* %ptr)
5123 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
5124
5125 %unknownValue = load i8, i8* @unknownPtr
5126 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
5127
5128 call void @foo(i8* %ptr)
5129 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5130 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
5131
5132 ...
5133 declare void @foo(i8*)
5134 declare i8* @getPointer(i8*)
5135 declare i8* @llvm.invariant.group.barrier(i8*)
5136
5137 !0 = !{!"magic ptr"}
5138 !1 = !{!"other ptr"}
5139
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005140The invariant.group metadata must be dropped when replacing one pointer by
5141another based on aliasing information. This is because invariant.group is tied
5142to the SSA value of the pointer operand.
5143
5144.. code-block:: llvm
Piotr Padlewskiaa1b2412017-04-12 11:18:19 +00005145
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005146 %v = load i8, i8* %x, !invariant.group !0
5147 ; if %x mustalias %y then we can replace the above instruction with
5148 %v = load i8, i8* %y
5149
5150
Peter Collingbournea333db82016-07-26 22:31:30 +00005151'``type``' Metadata
5152^^^^^^^^^^^^^^^^^^^
5153
5154See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005155
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005156'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005157^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005158
5159The ``associated`` metadata may be attached to a global object
5160declaration with a single argument that references another global object.
5161
5162This metadata prevents discarding of the global object in linker GC
5163unless the referenced object is also discarded. The linker support for
5164this feature is spotty. For best compatibility, globals carrying this
5165metadata may also:
5166
5167- Be in a comdat with the referenced global.
5168- Be in @llvm.compiler.used.
5169- Have an explicit section with a name which is a valid C identifier.
5170
5171It does not have any effect on non-ELF targets.
5172
5173Example:
5174
5175.. code-block:: llvm
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005176
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005177 $a = comdat any
5178 @a = global i32 1, comdat $a
5179 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5180 !0 = !{i32* @a}
5181
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005182
Sean Silvab084af42012-12-07 10:36:55 +00005183Module Flags Metadata
5184=====================
5185
5186Information about the module as a whole is difficult to convey to LLVM's
5187subsystems. The LLVM IR isn't sufficient to transmit this information.
5188The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005189this. These flags are in the form of key / value pairs --- much like a
5190dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005191look it up.
5192
5193The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5194Each triplet has the following form:
5195
5196- The first element is a *behavior* flag, which specifies the behavior
5197 when two (or more) modules are merged together, and it encounters two
5198 (or more) metadata with the same ID. The supported behaviors are
5199 described below.
5200- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005201 metadata. Each module may only have one flag entry for each unique ID (not
5202 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005203- The third element is the value of the flag.
5204
5205When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005206``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5207each unique metadata ID string, there will be exactly one entry in the merged
5208modules ``llvm.module.flags`` metadata table, and the value for that entry will
5209be determined by the merge behavior flag, as described below. The only exception
5210is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005211
5212The following behaviors are supported:
5213
5214.. list-table::
5215 :header-rows: 1
5216 :widths: 10 90
5217
5218 * - Value
5219 - Behavior
5220
5221 * - 1
5222 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005223 Emits an error if two values disagree, otherwise the resulting value
5224 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005225
5226 * - 2
5227 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005228 Emits a warning if two values disagree. The result value will be the
5229 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005230
5231 * - 3
5232 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005233 Adds a requirement that another module flag be present and have a
5234 specified value after linking is performed. The value must be a
5235 metadata pair, where the first element of the pair is the ID of the
5236 module flag to be restricted, and the second element of the pair is
5237 the value the module flag should be restricted to. This behavior can
5238 be used to restrict the allowable results (via triggering of an
5239 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005240
5241 * - 4
5242 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005243 Uses the specified value, regardless of the behavior or value of the
5244 other module. If both modules specify **Override**, but the values
5245 differ, an error will be emitted.
5246
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005247 * - 5
5248 - **Append**
5249 Appends the two values, which are required to be metadata nodes.
5250
5251 * - 6
5252 - **AppendUnique**
5253 Appends the two values, which are required to be metadata
5254 nodes. However, duplicate entries in the second list are dropped
5255 during the append operation.
5256
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005257It is an error for a particular unique flag ID to have multiple behaviors,
5258except in the case of **Require** (which adds restrictions on another metadata
5259value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005260
5261An example of module flags:
5262
5263.. code-block:: llvm
5264
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005265 !0 = !{ i32 1, !"foo", i32 1 }
5266 !1 = !{ i32 4, !"bar", i32 37 }
5267 !2 = !{ i32 2, !"qux", i32 42 }
5268 !3 = !{ i32 3, !"qux",
5269 !{
5270 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005271 }
5272 }
5273 !llvm.module.flags = !{ !0, !1, !2, !3 }
5274
5275- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5276 if two or more ``!"foo"`` flags are seen is to emit an error if their
5277 values are not equal.
5278
5279- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5280 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005281 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005282
5283- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5284 behavior if two or more ``!"qux"`` flags are seen is to emit a
5285 warning if their values are not equal.
5286
5287- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5288
5289 ::
5290
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005291 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005292
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005293 The behavior is to emit an error if the ``llvm.module.flags`` does not
5294 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5295 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005296
5297Objective-C Garbage Collection Module Flags Metadata
5298----------------------------------------------------
5299
5300On the Mach-O platform, Objective-C stores metadata about garbage
5301collection in a special section called "image info". The metadata
5302consists of a version number and a bitmask specifying what types of
5303garbage collection are supported (if any) by the file. If two or more
5304modules are linked together their garbage collection metadata needs to
5305be merged rather than appended together.
5306
5307The Objective-C garbage collection module flags metadata consists of the
5308following key-value pairs:
5309
5310.. list-table::
5311 :header-rows: 1
5312 :widths: 30 70
5313
5314 * - Key
5315 - Value
5316
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005317 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005318 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005319
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005320 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005321 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005322 always 0.
5323
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005324 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005325 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005326 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5327 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5328 Objective-C ABI version 2.
5329
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005330 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005331 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005332 not. Valid values are 0, for no garbage collection, and 2, for garbage
5333 collection supported.
5334
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005335 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005336 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005337 If present, its value must be 6. This flag requires that the
5338 ``Objective-C Garbage Collection`` flag have the value 2.
5339
5340Some important flag interactions:
5341
5342- If a module with ``Objective-C Garbage Collection`` set to 0 is
5343 merged with a module with ``Objective-C Garbage Collection`` set to
5344 2, then the resulting module has the
5345 ``Objective-C Garbage Collection`` flag set to 0.
5346- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5347 merged with a module with ``Objective-C GC Only`` set to 6.
5348
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005349Automatic Linker Flags Module Flags Metadata
5350--------------------------------------------
5351
5352Some targets support embedding flags to the linker inside individual object
5353files. Typically this is used in conjunction with language extensions which
5354allow source files to explicitly declare the libraries they depend on, and have
5355these automatically be transmitted to the linker via object files.
5356
5357These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005358using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005359to be ``AppendUnique``, and the value for the key is expected to be a metadata
5360node which should be a list of other metadata nodes, each of which should be a
5361list of metadata strings defining linker options.
5362
5363For example, the following metadata section specifies two separate sets of
5364linker options, presumably to link against ``libz`` and the ``Cocoa``
5365framework::
5366
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005367 !0 = !{ i32 6, !"Linker Options",
5368 !{
5369 !{ !"-lz" },
5370 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005371 !llvm.module.flags = !{ !0 }
5372
5373The metadata encoding as lists of lists of options, as opposed to a collapsed
5374list of options, is chosen so that the IR encoding can use multiple option
5375strings to specify e.g., a single library, while still having that specifier be
5376preserved as an atomic element that can be recognized by a target specific
5377assembly writer or object file emitter.
5378
5379Each individual option is required to be either a valid option for the target's
5380linker, or an option that is reserved by the target specific assembly writer or
5381object file emitter. No other aspect of these options is defined by the IR.
5382
Oliver Stannard5dc29342014-06-20 10:08:11 +00005383C type width Module Flags Metadata
5384----------------------------------
5385
5386The ARM backend emits a section into each generated object file describing the
5387options that it was compiled with (in a compiler-independent way) to prevent
5388linking incompatible objects, and to allow automatic library selection. Some
5389of these options are not visible at the IR level, namely wchar_t width and enum
5390width.
5391
5392To pass this information to the backend, these options are encoded in module
5393flags metadata, using the following key-value pairs:
5394
5395.. list-table::
5396 :header-rows: 1
5397 :widths: 30 70
5398
5399 * - Key
5400 - Value
5401
5402 * - short_wchar
5403 - * 0 --- sizeof(wchar_t) == 4
5404 * 1 --- sizeof(wchar_t) == 2
5405
5406 * - short_enum
5407 - * 0 --- Enums are at least as large as an ``int``.
5408 * 1 --- Enums are stored in the smallest integer type which can
5409 represent all of its values.
5410
5411For example, the following metadata section specifies that the module was
5412compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5413enum is the smallest type which can represent all of its values::
5414
5415 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005416 !0 = !{i32 1, !"short_wchar", i32 1}
5417 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005418
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005419.. _intrinsicglobalvariables:
5420
Sean Silvab084af42012-12-07 10:36:55 +00005421Intrinsic Global Variables
5422==========================
5423
5424LLVM has a number of "magic" global variables that contain data that
5425affect code generation or other IR semantics. These are documented here.
5426All globals of this sort should have a section specified as
5427"``llvm.metadata``". This section and all globals that start with
5428"``llvm.``" are reserved for use by LLVM.
5429
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005430.. _gv_llvmused:
5431
Sean Silvab084af42012-12-07 10:36:55 +00005432The '``llvm.used``' Global Variable
5433-----------------------------------
5434
Rafael Espindola74f2e462013-04-22 14:58:02 +00005435The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005436:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005437pointers to named global variables, functions and aliases which may optionally
5438have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005439use of it is:
5440
5441.. code-block:: llvm
5442
5443 @X = global i8 4
5444 @Y = global i32 123
5445
5446 @llvm.used = appending global [2 x i8*] [
5447 i8* @X,
5448 i8* bitcast (i32* @Y to i8*)
5449 ], section "llvm.metadata"
5450
Rafael Espindola74f2e462013-04-22 14:58:02 +00005451If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5452and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005453symbol that it cannot see (which is why they have to be named). For example, if
5454a variable has internal linkage and no references other than that from the
5455``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5456references from inline asms and other things the compiler cannot "see", and
5457corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005458
5459On some targets, the code generator must emit a directive to the
5460assembler or object file to prevent the assembler and linker from
5461molesting the symbol.
5462
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005463.. _gv_llvmcompilerused:
5464
Sean Silvab084af42012-12-07 10:36:55 +00005465The '``llvm.compiler.used``' Global Variable
5466--------------------------------------------
5467
5468The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5469directive, except that it only prevents the compiler from touching the
5470symbol. On targets that support it, this allows an intelligent linker to
5471optimize references to the symbol without being impeded as it would be
5472by ``@llvm.used``.
5473
5474This is a rare construct that should only be used in rare circumstances,
5475and should not be exposed to source languages.
5476
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005477.. _gv_llvmglobalctors:
5478
Sean Silvab084af42012-12-07 10:36:55 +00005479The '``llvm.global_ctors``' Global Variable
5480-------------------------------------------
5481
5482.. code-block:: llvm
5483
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005484 %0 = type { i32, void ()*, i8* }
5485 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005486
5487The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005488functions, priorities, and an optional associated global or function.
5489The functions referenced by this array will be called in ascending order
5490of priority (i.e. lowest first) when the module is loaded. The order of
5491functions with the same priority is not defined.
5492
5493If the third field is present, non-null, and points to a global variable
5494or function, the initializer function will only run if the associated
5495data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005496
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005497.. _llvmglobaldtors:
5498
Sean Silvab084af42012-12-07 10:36:55 +00005499The '``llvm.global_dtors``' Global Variable
5500-------------------------------------------
5501
5502.. code-block:: llvm
5503
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005504 %0 = type { i32, void ()*, i8* }
5505 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005506
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005507The ``@llvm.global_dtors`` array contains a list of destructor
5508functions, priorities, and an optional associated global or function.
5509The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005510order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005511order of functions with the same priority is not defined.
5512
5513If the third field is present, non-null, and points to a global variable
5514or function, the destructor function will only run if the associated
5515data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005516
5517Instruction Reference
5518=====================
5519
5520The LLVM instruction set consists of several different classifications
5521of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5522instructions <binaryops>`, :ref:`bitwise binary
5523instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5524:ref:`other instructions <otherops>`.
5525
5526.. _terminators:
5527
5528Terminator Instructions
5529-----------------------
5530
5531As mentioned :ref:`previously <functionstructure>`, every basic block in a
5532program ends with a "Terminator" instruction, which indicates which
5533block should be executed after the current block is finished. These
5534terminator instructions typically yield a '``void``' value: they produce
5535control flow, not values (the one exception being the
5536':ref:`invoke <i_invoke>`' instruction).
5537
5538The terminator instructions are: ':ref:`ret <i_ret>`',
5539':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5540':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005541':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005542':ref:`catchret <i_catchret>`',
5543':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005544and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005545
5546.. _i_ret:
5547
5548'``ret``' Instruction
5549^^^^^^^^^^^^^^^^^^^^^
5550
5551Syntax:
5552"""""""
5553
5554::
5555
5556 ret <type> <value> ; Return a value from a non-void function
5557 ret void ; Return from void function
5558
5559Overview:
5560"""""""""
5561
5562The '``ret``' instruction is used to return control flow (and optionally
5563a value) from a function back to the caller.
5564
5565There are two forms of the '``ret``' instruction: one that returns a
5566value and then causes control flow, and one that just causes control
5567flow to occur.
5568
5569Arguments:
5570""""""""""
5571
5572The '``ret``' instruction optionally accepts a single argument, the
5573return value. The type of the return value must be a ':ref:`first
5574class <t_firstclass>`' type.
5575
5576A function is not :ref:`well formed <wellformed>` if it it has a non-void
5577return type and contains a '``ret``' instruction with no return value or
5578a return value with a type that does not match its type, or if it has a
5579void return type and contains a '``ret``' instruction with a return
5580value.
5581
5582Semantics:
5583""""""""""
5584
5585When the '``ret``' instruction is executed, control flow returns back to
5586the calling function's context. If the caller is a
5587":ref:`call <i_call>`" instruction, execution continues at the
5588instruction after the call. If the caller was an
5589":ref:`invoke <i_invoke>`" instruction, execution continues at the
5590beginning of the "normal" destination block. If the instruction returns
5591a value, that value shall set the call or invoke instruction's return
5592value.
5593
5594Example:
5595""""""""
5596
5597.. code-block:: llvm
5598
5599 ret i32 5 ; Return an integer value of 5
5600 ret void ; Return from a void function
5601 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5602
5603.. _i_br:
5604
5605'``br``' Instruction
5606^^^^^^^^^^^^^^^^^^^^
5607
5608Syntax:
5609"""""""
5610
5611::
5612
5613 br i1 <cond>, label <iftrue>, label <iffalse>
5614 br label <dest> ; Unconditional branch
5615
5616Overview:
5617"""""""""
5618
5619The '``br``' instruction is used to cause control flow to transfer to a
5620different basic block in the current function. There are two forms of
5621this instruction, corresponding to a conditional branch and an
5622unconditional branch.
5623
5624Arguments:
5625""""""""""
5626
5627The conditional branch form of the '``br``' instruction takes a single
5628'``i1``' value and two '``label``' values. The unconditional form of the
5629'``br``' instruction takes a single '``label``' value as a target.
5630
5631Semantics:
5632""""""""""
5633
5634Upon execution of a conditional '``br``' instruction, the '``i1``'
5635argument is evaluated. If the value is ``true``, control flows to the
5636'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5637to the '``iffalse``' ``label`` argument.
5638
5639Example:
5640""""""""
5641
5642.. code-block:: llvm
5643
5644 Test:
5645 %cond = icmp eq i32 %a, %b
5646 br i1 %cond, label %IfEqual, label %IfUnequal
5647 IfEqual:
5648 ret i32 1
5649 IfUnequal:
5650 ret i32 0
5651
5652.. _i_switch:
5653
5654'``switch``' Instruction
5655^^^^^^^^^^^^^^^^^^^^^^^^
5656
5657Syntax:
5658"""""""
5659
5660::
5661
5662 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5663
5664Overview:
5665"""""""""
5666
5667The '``switch``' instruction is used to transfer control flow to one of
5668several different places. It is a generalization of the '``br``'
5669instruction, allowing a branch to occur to one of many possible
5670destinations.
5671
5672Arguments:
5673""""""""""
5674
5675The '``switch``' instruction uses three parameters: an integer
5676comparison value '``value``', a default '``label``' destination, and an
5677array of pairs of comparison value constants and '``label``'s. The table
5678is not allowed to contain duplicate constant entries.
5679
5680Semantics:
5681""""""""""
5682
5683The ``switch`` instruction specifies a table of values and destinations.
5684When the '``switch``' instruction is executed, this table is searched
5685for the given value. If the value is found, control flow is transferred
5686to the corresponding destination; otherwise, control flow is transferred
5687to the default destination.
5688
5689Implementation:
5690"""""""""""""""
5691
5692Depending on properties of the target machine and the particular
5693``switch`` instruction, this instruction may be code generated in
5694different ways. For example, it could be generated as a series of
5695chained conditional branches or with a lookup table.
5696
5697Example:
5698""""""""
5699
5700.. code-block:: llvm
5701
5702 ; Emulate a conditional br instruction
5703 %Val = zext i1 %value to i32
5704 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5705
5706 ; Emulate an unconditional br instruction
5707 switch i32 0, label %dest [ ]
5708
5709 ; Implement a jump table:
5710 switch i32 %val, label %otherwise [ i32 0, label %onzero
5711 i32 1, label %onone
5712 i32 2, label %ontwo ]
5713
5714.. _i_indirectbr:
5715
5716'``indirectbr``' Instruction
5717^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5718
5719Syntax:
5720"""""""
5721
5722::
5723
5724 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5725
5726Overview:
5727"""""""""
5728
5729The '``indirectbr``' instruction implements an indirect branch to a
5730label within the current function, whose address is specified by
5731"``address``". Address must be derived from a
5732:ref:`blockaddress <blockaddress>` constant.
5733
5734Arguments:
5735""""""""""
5736
5737The '``address``' argument is the address of the label to jump to. The
5738rest of the arguments indicate the full set of possible destinations
5739that the address may point to. Blocks are allowed to occur multiple
5740times in the destination list, though this isn't particularly useful.
5741
5742This destination list is required so that dataflow analysis has an
5743accurate understanding of the CFG.
5744
5745Semantics:
5746""""""""""
5747
5748Control transfers to the block specified in the address argument. All
5749possible destination blocks must be listed in the label list, otherwise
5750this instruction has undefined behavior. This implies that jumps to
5751labels defined in other functions have undefined behavior as well.
5752
5753Implementation:
5754"""""""""""""""
5755
5756This is typically implemented with a jump through a register.
5757
5758Example:
5759""""""""
5760
5761.. code-block:: llvm
5762
5763 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5764
5765.. _i_invoke:
5766
5767'``invoke``' Instruction
5768^^^^^^^^^^^^^^^^^^^^^^^^
5769
5770Syntax:
5771"""""""
5772
5773::
5774
David Blaikieb83cf102016-07-13 17:21:34 +00005775 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005776 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005777
5778Overview:
5779"""""""""
5780
5781The '``invoke``' instruction causes control to transfer to a specified
5782function, with the possibility of control flow transfer to either the
5783'``normal``' label or the '``exception``' label. If the callee function
5784returns with the "``ret``" instruction, control flow will return to the
5785"normal" label. If the callee (or any indirect callees) returns via the
5786":ref:`resume <i_resume>`" instruction or other exception handling
5787mechanism, control is interrupted and continued at the dynamically
5788nearest "exception" label.
5789
5790The '``exception``' label is a `landing
5791pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5792'``exception``' label is required to have the
5793":ref:`landingpad <i_landingpad>`" instruction, which contains the
5794information about the behavior of the program after unwinding happens,
5795as its first non-PHI instruction. The restrictions on the
5796"``landingpad``" instruction's tightly couples it to the "``invoke``"
5797instruction, so that the important information contained within the
5798"``landingpad``" instruction can't be lost through normal code motion.
5799
5800Arguments:
5801""""""""""
5802
5803This instruction requires several arguments:
5804
5805#. The optional "cconv" marker indicates which :ref:`calling
5806 convention <callingconv>` the call should use. If none is
5807 specified, the call defaults to using C calling conventions.
5808#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5809 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5810 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005811#. '``ty``': the type of the call instruction itself which is also the
5812 type of the return value. Functions that return no value are marked
5813 ``void``.
5814#. '``fnty``': shall be the signature of the function being invoked. The
5815 argument types must match the types implied by this signature. This
5816 type can be omitted if the function is not varargs.
5817#. '``fnptrval``': An LLVM value containing a pointer to a function to
5818 be invoked. In most cases, this is a direct function invocation, but
5819 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5820 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005821#. '``function args``': argument list whose types match the function
5822 signature argument types and parameter attributes. All arguments must
5823 be of :ref:`first class <t_firstclass>` type. If the function signature
5824 indicates the function accepts a variable number of arguments, the
5825 extra arguments can be specified.
5826#. '``normal label``': the label reached when the called function
5827 executes a '``ret``' instruction.
5828#. '``exception label``': the label reached when a callee returns via
5829 the :ref:`resume <i_resume>` instruction or other exception handling
5830 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00005831#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005832#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005833
5834Semantics:
5835""""""""""
5836
5837This instruction is designed to operate as a standard '``call``'
5838instruction in most regards. The primary difference is that it
5839establishes an association with a label, which is used by the runtime
5840library to unwind the stack.
5841
5842This instruction is used in languages with destructors to ensure that
5843proper cleanup is performed in the case of either a ``longjmp`` or a
5844thrown exception. Additionally, this is important for implementation of
5845'``catch``' clauses in high-level languages that support them.
5846
5847For the purposes of the SSA form, the definition of the value returned
5848by the '``invoke``' instruction is deemed to occur on the edge from the
5849current block to the "normal" label. If the callee unwinds then no
5850return value is available.
5851
5852Example:
5853""""""""
5854
5855.. code-block:: llvm
5856
5857 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005858 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005859 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005860 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005861
5862.. _i_resume:
5863
5864'``resume``' Instruction
5865^^^^^^^^^^^^^^^^^^^^^^^^
5866
5867Syntax:
5868"""""""
5869
5870::
5871
5872 resume <type> <value>
5873
5874Overview:
5875"""""""""
5876
5877The '``resume``' instruction is a terminator instruction that has no
5878successors.
5879
5880Arguments:
5881""""""""""
5882
5883The '``resume``' instruction requires one argument, which must have the
5884same type as the result of any '``landingpad``' instruction in the same
5885function.
5886
5887Semantics:
5888""""""""""
5889
5890The '``resume``' instruction resumes propagation of an existing
5891(in-flight) exception whose unwinding was interrupted with a
5892:ref:`landingpad <i_landingpad>` instruction.
5893
5894Example:
5895""""""""
5896
5897.. code-block:: llvm
5898
5899 resume { i8*, i32 } %exn
5900
David Majnemer8a1c45d2015-12-12 05:38:55 +00005901.. _i_catchswitch:
5902
5903'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005904^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005905
5906Syntax:
5907"""""""
5908
5909::
5910
5911 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5912 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5913
5914Overview:
5915"""""""""
5916
5917The '``catchswitch``' instruction is used by `LLVM's exception handling system
5918<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5919that may be executed by the :ref:`EH personality routine <personalityfn>`.
5920
5921Arguments:
5922""""""""""
5923
5924The ``parent`` argument is the token of the funclet that contains the
5925``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5926this operand may be the token ``none``.
5927
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005928The ``default`` argument is the label of another basic block beginning with
5929either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5930must be a legal target with respect to the ``parent`` links, as described in
5931the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005932
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005933The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005934:ref:`catchpad <i_catchpad>` instruction.
5935
5936Semantics:
5937""""""""""
5938
5939Executing this instruction transfers control to one of the successors in
5940``handlers``, if appropriate, or continues to unwind via the unwind label if
5941present.
5942
5943The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5944it must be both the first non-phi instruction and last instruction in the basic
5945block. Therefore, it must be the only non-phi instruction in the block.
5946
5947Example:
5948""""""""
5949
Renato Golin124f2592016-07-20 12:16:38 +00005950.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005951
5952 dispatch1:
5953 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5954 dispatch2:
5955 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5956
David Majnemer654e1302015-07-31 17:58:14 +00005957.. _i_catchret:
5958
5959'``catchret``' Instruction
5960^^^^^^^^^^^^^^^^^^^^^^^^^^
5961
5962Syntax:
5963"""""""
5964
5965::
5966
David Majnemer8a1c45d2015-12-12 05:38:55 +00005967 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005968
5969Overview:
5970"""""""""
5971
5972The '``catchret``' instruction is a terminator instruction that has a
5973single successor.
5974
5975
5976Arguments:
5977""""""""""
5978
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005979The first argument to a '``catchret``' indicates which ``catchpad`` it
5980exits. It must be a :ref:`catchpad <i_catchpad>`.
5981The second argument to a '``catchret``' specifies where control will
5982transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005983
5984Semantics:
5985""""""""""
5986
David Majnemer8a1c45d2015-12-12 05:38:55 +00005987The '``catchret``' instruction ends an existing (in-flight) exception whose
5988unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5989:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5990code to, for example, destroy the active exception. Control then transfers to
5991``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005992
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005993The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5994If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5995funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5996the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005997
5998Example:
5999""""""""
6000
Renato Golin124f2592016-07-20 12:16:38 +00006001.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006002
David Majnemer8a1c45d2015-12-12 05:38:55 +00006003 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006004
David Majnemer654e1302015-07-31 17:58:14 +00006005.. _i_cleanupret:
6006
6007'``cleanupret``' Instruction
6008^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6009
6010Syntax:
6011"""""""
6012
6013::
6014
David Majnemer8a1c45d2015-12-12 05:38:55 +00006015 cleanupret from <value> unwind label <continue>
6016 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006017
6018Overview:
6019"""""""""
6020
6021The '``cleanupret``' instruction is a terminator instruction that has
6022an optional successor.
6023
6024
6025Arguments:
6026""""""""""
6027
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006028The '``cleanupret``' instruction requires one argument, which indicates
6029which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006030If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6031funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6032the ``cleanupret``'s behavior is undefined.
6033
6034The '``cleanupret``' instruction also has an optional successor, ``continue``,
6035which must be the label of another basic block beginning with either a
6036``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6037be a legal target with respect to the ``parent`` links, as described in the
6038`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006039
6040Semantics:
6041""""""""""
6042
6043The '``cleanupret``' instruction indicates to the
6044:ref:`personality function <personalityfn>` that one
6045:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6046It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006047
David Majnemer654e1302015-07-31 17:58:14 +00006048Example:
6049""""""""
6050
Renato Golin124f2592016-07-20 12:16:38 +00006051.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006052
David Majnemer8a1c45d2015-12-12 05:38:55 +00006053 cleanupret from %cleanup unwind to caller
6054 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006055
Sean Silvab084af42012-12-07 10:36:55 +00006056.. _i_unreachable:
6057
6058'``unreachable``' Instruction
6059^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6060
6061Syntax:
6062"""""""
6063
6064::
6065
6066 unreachable
6067
6068Overview:
6069"""""""""
6070
6071The '``unreachable``' instruction has no defined semantics. This
6072instruction is used to inform the optimizer that a particular portion of
6073the code is not reachable. This can be used to indicate that the code
6074after a no-return function cannot be reached, and other facts.
6075
6076Semantics:
6077""""""""""
6078
6079The '``unreachable``' instruction has no defined semantics.
6080
6081.. _binaryops:
6082
6083Binary Operations
6084-----------------
6085
6086Binary operators are used to do most of the computation in a program.
6087They require two operands of the same type, execute an operation on
6088them, and produce a single value. The operands might represent multiple
6089data, as is the case with the :ref:`vector <t_vector>` data type. The
6090result value has the same type as its operands.
6091
6092There are several different binary operators:
6093
6094.. _i_add:
6095
6096'``add``' Instruction
6097^^^^^^^^^^^^^^^^^^^^^
6098
6099Syntax:
6100"""""""
6101
6102::
6103
Tim Northover675a0962014-06-13 14:24:23 +00006104 <result> = add <ty> <op1>, <op2> ; yields ty:result
6105 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6106 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6107 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006108
6109Overview:
6110"""""""""
6111
6112The '``add``' instruction returns the sum of its two operands.
6113
6114Arguments:
6115""""""""""
6116
6117The two arguments to the '``add``' instruction must be
6118:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6119arguments must have identical types.
6120
6121Semantics:
6122""""""""""
6123
6124The value produced is the integer sum of the two operands.
6125
6126If the sum has unsigned overflow, the result returned is the
6127mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6128the result.
6129
6130Because LLVM integers use a two's complement representation, this
6131instruction is appropriate for both signed and unsigned integers.
6132
6133``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6134respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6135result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6136unsigned and/or signed overflow, respectively, occurs.
6137
6138Example:
6139""""""""
6140
Renato Golin124f2592016-07-20 12:16:38 +00006141.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006142
Tim Northover675a0962014-06-13 14:24:23 +00006143 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006144
6145.. _i_fadd:
6146
6147'``fadd``' Instruction
6148^^^^^^^^^^^^^^^^^^^^^^
6149
6150Syntax:
6151"""""""
6152
6153::
6154
Tim Northover675a0962014-06-13 14:24:23 +00006155 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006156
6157Overview:
6158"""""""""
6159
6160The '``fadd``' instruction returns the sum of its two operands.
6161
6162Arguments:
6163""""""""""
6164
6165The two arguments to the '``fadd``' instruction must be :ref:`floating
6166point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6167Both arguments must have identical types.
6168
6169Semantics:
6170""""""""""
6171
6172The value produced is the floating point sum of the two operands. This
6173instruction can also take any number of :ref:`fast-math flags <fastmath>`,
6174which are optimization hints to enable otherwise unsafe floating point
6175optimizations:
6176
6177Example:
6178""""""""
6179
Renato Golin124f2592016-07-20 12:16:38 +00006180.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006181
Tim Northover675a0962014-06-13 14:24:23 +00006182 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006183
6184'``sub``' Instruction
6185^^^^^^^^^^^^^^^^^^^^^
6186
6187Syntax:
6188"""""""
6189
6190::
6191
Tim Northover675a0962014-06-13 14:24:23 +00006192 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6193 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6194 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6195 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006196
6197Overview:
6198"""""""""
6199
6200The '``sub``' instruction returns the difference of its two operands.
6201
6202Note that the '``sub``' instruction is used to represent the '``neg``'
6203instruction present in most other intermediate representations.
6204
6205Arguments:
6206""""""""""
6207
6208The two arguments to the '``sub``' instruction must be
6209:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6210arguments must have identical types.
6211
6212Semantics:
6213""""""""""
6214
6215The value produced is the integer difference of the two operands.
6216
6217If the difference has unsigned overflow, the result returned is the
6218mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6219the result.
6220
6221Because LLVM integers use a two's complement representation, this
6222instruction is appropriate for both signed and unsigned integers.
6223
6224``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6225respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6226result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6227unsigned and/or signed overflow, respectively, occurs.
6228
6229Example:
6230""""""""
6231
Renato Golin124f2592016-07-20 12:16:38 +00006232.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006233
Tim Northover675a0962014-06-13 14:24:23 +00006234 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6235 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006236
6237.. _i_fsub:
6238
6239'``fsub``' Instruction
6240^^^^^^^^^^^^^^^^^^^^^^
6241
6242Syntax:
6243"""""""
6244
6245::
6246
Tim Northover675a0962014-06-13 14:24:23 +00006247 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006248
6249Overview:
6250"""""""""
6251
6252The '``fsub``' instruction returns the difference of its two operands.
6253
6254Note that the '``fsub``' instruction is used to represent the '``fneg``'
6255instruction present in most other intermediate representations.
6256
6257Arguments:
6258""""""""""
6259
6260The two arguments to the '``fsub``' instruction must be :ref:`floating
6261point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6262Both arguments must have identical types.
6263
6264Semantics:
6265""""""""""
6266
6267The value produced is the floating point difference of the two operands.
6268This instruction can also take any number of :ref:`fast-math
6269flags <fastmath>`, which are optimization hints to enable otherwise
6270unsafe floating point optimizations:
6271
6272Example:
6273""""""""
6274
Renato Golin124f2592016-07-20 12:16:38 +00006275.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006276
Tim Northover675a0962014-06-13 14:24:23 +00006277 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6278 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006279
6280'``mul``' Instruction
6281^^^^^^^^^^^^^^^^^^^^^
6282
6283Syntax:
6284"""""""
6285
6286::
6287
Tim Northover675a0962014-06-13 14:24:23 +00006288 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6289 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6290 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6291 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006292
6293Overview:
6294"""""""""
6295
6296The '``mul``' instruction returns the product of its two operands.
6297
6298Arguments:
6299""""""""""
6300
6301The two arguments to the '``mul``' instruction must be
6302:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6303arguments must have identical types.
6304
6305Semantics:
6306""""""""""
6307
6308The value produced is the integer product of the two operands.
6309
6310If the result of the multiplication has unsigned overflow, the result
6311returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6312bit width of the result.
6313
6314Because LLVM integers use a two's complement representation, and the
6315result is the same width as the operands, this instruction returns the
6316correct result for both signed and unsigned integers. If a full product
6317(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6318sign-extended or zero-extended as appropriate to the width of the full
6319product.
6320
6321``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6322respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6323result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6324unsigned and/or signed overflow, respectively, occurs.
6325
6326Example:
6327""""""""
6328
Renato Golin124f2592016-07-20 12:16:38 +00006329.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006330
Tim Northover675a0962014-06-13 14:24:23 +00006331 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006332
6333.. _i_fmul:
6334
6335'``fmul``' Instruction
6336^^^^^^^^^^^^^^^^^^^^^^
6337
6338Syntax:
6339"""""""
6340
6341::
6342
Tim Northover675a0962014-06-13 14:24:23 +00006343 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006344
6345Overview:
6346"""""""""
6347
6348The '``fmul``' instruction returns the product of its two operands.
6349
6350Arguments:
6351""""""""""
6352
6353The two arguments to the '``fmul``' instruction must be :ref:`floating
6354point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6355Both arguments must have identical types.
6356
6357Semantics:
6358""""""""""
6359
6360The value produced is the floating point product of the two operands.
6361This instruction can also take any number of :ref:`fast-math
6362flags <fastmath>`, which are optimization hints to enable otherwise
6363unsafe floating point optimizations:
6364
6365Example:
6366""""""""
6367
Renato Golin124f2592016-07-20 12:16:38 +00006368.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006369
Tim Northover675a0962014-06-13 14:24:23 +00006370 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006371
6372'``udiv``' Instruction
6373^^^^^^^^^^^^^^^^^^^^^^
6374
6375Syntax:
6376"""""""
6377
6378::
6379
Tim Northover675a0962014-06-13 14:24:23 +00006380 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6381 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006382
6383Overview:
6384"""""""""
6385
6386The '``udiv``' instruction returns the quotient of its two operands.
6387
6388Arguments:
6389""""""""""
6390
6391The two arguments to the '``udiv``' instruction must be
6392:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6393arguments must have identical types.
6394
6395Semantics:
6396""""""""""
6397
6398The value produced is the unsigned integer quotient of the two operands.
6399
6400Note that unsigned integer division and signed integer division are
6401distinct operations; for signed integer division, use '``sdiv``'.
6402
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006403Division by zero is undefined behavior. For vectors, if any element
6404of the divisor is zero, the operation has undefined behavior.
6405
Sean Silvab084af42012-12-07 10:36:55 +00006406
6407If the ``exact`` keyword is present, the result value of the ``udiv`` is
6408a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6409such, "((a udiv exact b) mul b) == a").
6410
6411Example:
6412""""""""
6413
Renato Golin124f2592016-07-20 12:16:38 +00006414.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006415
Tim Northover675a0962014-06-13 14:24:23 +00006416 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006417
6418'``sdiv``' Instruction
6419^^^^^^^^^^^^^^^^^^^^^^
6420
6421Syntax:
6422"""""""
6423
6424::
6425
Tim Northover675a0962014-06-13 14:24:23 +00006426 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6427 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006428
6429Overview:
6430"""""""""
6431
6432The '``sdiv``' instruction returns the quotient of its two operands.
6433
6434Arguments:
6435""""""""""
6436
6437The two arguments to the '``sdiv``' instruction must be
6438:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6439arguments must have identical types.
6440
6441Semantics:
6442""""""""""
6443
6444The value produced is the signed integer quotient of the two operands
6445rounded towards zero.
6446
6447Note that signed integer division and unsigned integer division are
6448distinct operations; for unsigned integer division, use '``udiv``'.
6449
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006450Division by zero is undefined behavior. For vectors, if any element
6451of the divisor is zero, the operation has undefined behavior.
6452Overflow also leads to undefined behavior; this is a rare case, but can
6453occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00006454
6455If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6456a :ref:`poison value <poisonvalues>` if the result would be rounded.
6457
6458Example:
6459""""""""
6460
Renato Golin124f2592016-07-20 12:16:38 +00006461.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006462
Tim Northover675a0962014-06-13 14:24:23 +00006463 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006464
6465.. _i_fdiv:
6466
6467'``fdiv``' Instruction
6468^^^^^^^^^^^^^^^^^^^^^^
6469
6470Syntax:
6471"""""""
6472
6473::
6474
Tim Northover675a0962014-06-13 14:24:23 +00006475 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006476
6477Overview:
6478"""""""""
6479
6480The '``fdiv``' instruction returns the quotient of its two operands.
6481
6482Arguments:
6483""""""""""
6484
6485The two arguments to the '``fdiv``' instruction must be :ref:`floating
6486point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6487Both arguments must have identical types.
6488
6489Semantics:
6490""""""""""
6491
6492The value produced is the floating point quotient of the two operands.
6493This instruction can also take any number of :ref:`fast-math
6494flags <fastmath>`, which are optimization hints to enable otherwise
6495unsafe floating point optimizations:
6496
6497Example:
6498""""""""
6499
Renato Golin124f2592016-07-20 12:16:38 +00006500.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006501
Tim Northover675a0962014-06-13 14:24:23 +00006502 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006503
6504'``urem``' Instruction
6505^^^^^^^^^^^^^^^^^^^^^^
6506
6507Syntax:
6508"""""""
6509
6510::
6511
Tim Northover675a0962014-06-13 14:24:23 +00006512 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006513
6514Overview:
6515"""""""""
6516
6517The '``urem``' instruction returns the remainder from the unsigned
6518division of its two arguments.
6519
6520Arguments:
6521""""""""""
6522
6523The two arguments to the '``urem``' instruction must be
6524:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6525arguments must have identical types.
6526
6527Semantics:
6528""""""""""
6529
6530This instruction returns the unsigned integer *remainder* of a division.
6531This instruction always performs an unsigned division to get the
6532remainder.
6533
6534Note that unsigned integer remainder and signed integer remainder are
6535distinct operations; for signed integer remainder, use '``srem``'.
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006536
6537Taking the remainder of a division by zero is undefined behavior.
6538For vectors, if any element of the divisor is zero, the operation has
6539undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006540
6541Example:
6542""""""""
6543
Renato Golin124f2592016-07-20 12:16:38 +00006544.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006545
Tim Northover675a0962014-06-13 14:24:23 +00006546 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006547
6548'``srem``' Instruction
6549^^^^^^^^^^^^^^^^^^^^^^
6550
6551Syntax:
6552"""""""
6553
6554::
6555
Tim Northover675a0962014-06-13 14:24:23 +00006556 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006557
6558Overview:
6559"""""""""
6560
6561The '``srem``' instruction returns the remainder from the signed
6562division of its two operands. This instruction can also take
6563:ref:`vector <t_vector>` versions of the values in which case the elements
6564must be integers.
6565
6566Arguments:
6567""""""""""
6568
6569The two arguments to the '``srem``' instruction must be
6570:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6571arguments must have identical types.
6572
6573Semantics:
6574""""""""""
6575
6576This instruction returns the *remainder* of a division (where the result
6577is either zero or has the same sign as the dividend, ``op1``), not the
6578*modulo* operator (where the result is either zero or has the same sign
6579as the divisor, ``op2``) of a value. For more information about the
6580difference, see `The Math
6581Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6582table of how this is implemented in various languages, please see
6583`Wikipedia: modulo
6584operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6585
6586Note that signed integer remainder and unsigned integer remainder are
6587distinct operations; for unsigned integer remainder, use '``urem``'.
6588
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006589Taking the remainder of a division by zero is undefined behavior.
6590For vectors, if any element of the divisor is zero, the operation has
6591undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006592Overflow also leads to undefined behavior; this is a rare case, but can
6593occur, for example, by taking the remainder of a 32-bit division of
6594-2147483648 by -1. (The remainder doesn't actually overflow, but this
6595rule lets srem be implemented using instructions that return both the
6596result of the division and the remainder.)
6597
6598Example:
6599""""""""
6600
Renato Golin124f2592016-07-20 12:16:38 +00006601.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006602
Tim Northover675a0962014-06-13 14:24:23 +00006603 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006604
6605.. _i_frem:
6606
6607'``frem``' Instruction
6608^^^^^^^^^^^^^^^^^^^^^^
6609
6610Syntax:
6611"""""""
6612
6613::
6614
Tim Northover675a0962014-06-13 14:24:23 +00006615 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006616
6617Overview:
6618"""""""""
6619
6620The '``frem``' instruction returns the remainder from the division of
6621its two operands.
6622
6623Arguments:
6624""""""""""
6625
6626The two arguments to the '``frem``' instruction must be :ref:`floating
6627point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6628Both arguments must have identical types.
6629
6630Semantics:
6631""""""""""
6632
6633This instruction returns the *remainder* of a division. The remainder
6634has the same sign as the dividend. This instruction can also take any
6635number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6636to enable otherwise unsafe floating point optimizations:
6637
6638Example:
6639""""""""
6640
Renato Golin124f2592016-07-20 12:16:38 +00006641.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006642
Tim Northover675a0962014-06-13 14:24:23 +00006643 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006644
6645.. _bitwiseops:
6646
6647Bitwise Binary Operations
6648-------------------------
6649
6650Bitwise binary operators are used to do various forms of bit-twiddling
6651in a program. They are generally very efficient instructions and can
6652commonly be strength reduced from other instructions. They require two
6653operands of the same type, execute an operation on them, and produce a
6654single value. The resulting value is the same type as its operands.
6655
6656'``shl``' Instruction
6657^^^^^^^^^^^^^^^^^^^^^
6658
6659Syntax:
6660"""""""
6661
6662::
6663
Tim Northover675a0962014-06-13 14:24:23 +00006664 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6665 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6666 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6667 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006668
6669Overview:
6670"""""""""
6671
6672The '``shl``' instruction returns the first operand shifted to the left
6673a specified number of bits.
6674
6675Arguments:
6676""""""""""
6677
6678Both arguments to the '``shl``' instruction must be the same
6679:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6680'``op2``' is treated as an unsigned value.
6681
6682Semantics:
6683""""""""""
6684
6685The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6686where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006687dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006688``op1``, the result is undefined. If the arguments are vectors, each
6689vector element of ``op1`` is shifted by the corresponding shift amount
6690in ``op2``.
6691
6692If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6693value <poisonvalues>` if it shifts out any non-zero bits. If the
6694``nsw`` keyword is present, then the shift produces a :ref:`poison
6695value <poisonvalues>` if it shifts out any bits that disagree with the
Sanjoy Dasdbc58d02016-11-13 23:40:40 +00006696resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006697
6698Example:
6699""""""""
6700
Renato Golin124f2592016-07-20 12:16:38 +00006701.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006702
Tim Northover675a0962014-06-13 14:24:23 +00006703 <result> = shl i32 4, %var ; yields i32: 4 << %var
6704 <result> = shl i32 4, 2 ; yields i32: 16
6705 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006706 <result> = shl i32 1, 32 ; undefined
6707 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6708
6709'``lshr``' Instruction
6710^^^^^^^^^^^^^^^^^^^^^^
6711
6712Syntax:
6713"""""""
6714
6715::
6716
Tim Northover675a0962014-06-13 14:24:23 +00006717 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6718 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006719
6720Overview:
6721"""""""""
6722
6723The '``lshr``' instruction (logical shift right) returns the first
6724operand shifted to the right a specified number of bits with zero fill.
6725
6726Arguments:
6727""""""""""
6728
6729Both arguments to the '``lshr``' instruction must be the same
6730:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6731'``op2``' is treated as an unsigned value.
6732
6733Semantics:
6734""""""""""
6735
6736This instruction always performs a logical shift right operation. The
6737most significant bits of the result will be filled with zero bits after
6738the shift. If ``op2`` is (statically or dynamically) equal to or larger
6739than the number of bits in ``op1``, the result is undefined. If the
6740arguments are vectors, each vector element of ``op1`` is shifted by the
6741corresponding shift amount in ``op2``.
6742
6743If the ``exact`` keyword is present, the result value of the ``lshr`` is
6744a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6745non-zero.
6746
6747Example:
6748""""""""
6749
Renato Golin124f2592016-07-20 12:16:38 +00006750.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006751
Tim Northover675a0962014-06-13 14:24:23 +00006752 <result> = lshr i32 4, 1 ; yields i32:result = 2
6753 <result> = lshr i32 4, 2 ; yields i32:result = 1
6754 <result> = lshr i8 4, 3 ; yields i8:result = 0
6755 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006756 <result> = lshr i32 1, 32 ; undefined
6757 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6758
6759'``ashr``' Instruction
6760^^^^^^^^^^^^^^^^^^^^^^
6761
6762Syntax:
6763"""""""
6764
6765::
6766
Tim Northover675a0962014-06-13 14:24:23 +00006767 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6768 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006769
6770Overview:
6771"""""""""
6772
6773The '``ashr``' instruction (arithmetic shift right) returns the first
6774operand shifted to the right a specified number of bits with sign
6775extension.
6776
6777Arguments:
6778""""""""""
6779
6780Both arguments to the '``ashr``' instruction must be the same
6781:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6782'``op2``' is treated as an unsigned value.
6783
6784Semantics:
6785""""""""""
6786
6787This instruction always performs an arithmetic shift right operation,
6788The most significant bits of the result will be filled with the sign bit
6789of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6790than the number of bits in ``op1``, the result is undefined. If the
6791arguments are vectors, each vector element of ``op1`` is shifted by the
6792corresponding shift amount in ``op2``.
6793
6794If the ``exact`` keyword is present, the result value of the ``ashr`` is
6795a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6796non-zero.
6797
6798Example:
6799""""""""
6800
Renato Golin124f2592016-07-20 12:16:38 +00006801.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006802
Tim Northover675a0962014-06-13 14:24:23 +00006803 <result> = ashr i32 4, 1 ; yields i32:result = 2
6804 <result> = ashr i32 4, 2 ; yields i32:result = 1
6805 <result> = ashr i8 4, 3 ; yields i8:result = 0
6806 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006807 <result> = ashr i32 1, 32 ; undefined
6808 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6809
6810'``and``' Instruction
6811^^^^^^^^^^^^^^^^^^^^^
6812
6813Syntax:
6814"""""""
6815
6816::
6817
Tim Northover675a0962014-06-13 14:24:23 +00006818 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006819
6820Overview:
6821"""""""""
6822
6823The '``and``' instruction returns the bitwise logical and of its two
6824operands.
6825
6826Arguments:
6827""""""""""
6828
6829The two arguments to the '``and``' instruction must be
6830:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6831arguments must have identical types.
6832
6833Semantics:
6834""""""""""
6835
6836The truth table used for the '``and``' instruction is:
6837
6838+-----+-----+-----+
6839| In0 | In1 | Out |
6840+-----+-----+-----+
6841| 0 | 0 | 0 |
6842+-----+-----+-----+
6843| 0 | 1 | 0 |
6844+-----+-----+-----+
6845| 1 | 0 | 0 |
6846+-----+-----+-----+
6847| 1 | 1 | 1 |
6848+-----+-----+-----+
6849
6850Example:
6851""""""""
6852
Renato Golin124f2592016-07-20 12:16:38 +00006853.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006854
Tim Northover675a0962014-06-13 14:24:23 +00006855 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6856 <result> = and i32 15, 40 ; yields i32:result = 8
6857 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006858
6859'``or``' Instruction
6860^^^^^^^^^^^^^^^^^^^^
6861
6862Syntax:
6863"""""""
6864
6865::
6866
Tim Northover675a0962014-06-13 14:24:23 +00006867 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006868
6869Overview:
6870"""""""""
6871
6872The '``or``' instruction returns the bitwise logical inclusive or of its
6873two operands.
6874
6875Arguments:
6876""""""""""
6877
6878The two arguments to the '``or``' instruction must be
6879:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6880arguments must have identical types.
6881
6882Semantics:
6883""""""""""
6884
6885The truth table used for the '``or``' instruction is:
6886
6887+-----+-----+-----+
6888| In0 | In1 | Out |
6889+-----+-----+-----+
6890| 0 | 0 | 0 |
6891+-----+-----+-----+
6892| 0 | 1 | 1 |
6893+-----+-----+-----+
6894| 1 | 0 | 1 |
6895+-----+-----+-----+
6896| 1 | 1 | 1 |
6897+-----+-----+-----+
6898
6899Example:
6900""""""""
6901
6902::
6903
Tim Northover675a0962014-06-13 14:24:23 +00006904 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6905 <result> = or i32 15, 40 ; yields i32:result = 47
6906 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006907
6908'``xor``' Instruction
6909^^^^^^^^^^^^^^^^^^^^^
6910
6911Syntax:
6912"""""""
6913
6914::
6915
Tim Northover675a0962014-06-13 14:24:23 +00006916 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006917
6918Overview:
6919"""""""""
6920
6921The '``xor``' instruction returns the bitwise logical exclusive or of
6922its two operands. The ``xor`` is used to implement the "one's
6923complement" operation, which is the "~" operator in C.
6924
6925Arguments:
6926""""""""""
6927
6928The two arguments to the '``xor``' instruction must be
6929:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6930arguments must have identical types.
6931
6932Semantics:
6933""""""""""
6934
6935The truth table used for the '``xor``' instruction is:
6936
6937+-----+-----+-----+
6938| In0 | In1 | Out |
6939+-----+-----+-----+
6940| 0 | 0 | 0 |
6941+-----+-----+-----+
6942| 0 | 1 | 1 |
6943+-----+-----+-----+
6944| 1 | 0 | 1 |
6945+-----+-----+-----+
6946| 1 | 1 | 0 |
6947+-----+-----+-----+
6948
6949Example:
6950""""""""
6951
Renato Golin124f2592016-07-20 12:16:38 +00006952.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006953
Tim Northover675a0962014-06-13 14:24:23 +00006954 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6955 <result> = xor i32 15, 40 ; yields i32:result = 39
6956 <result> = xor i32 4, 8 ; yields i32:result = 12
6957 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006958
6959Vector Operations
6960-----------------
6961
6962LLVM supports several instructions to represent vector operations in a
6963target-independent manner. These instructions cover the element-access
6964and vector-specific operations needed to process vectors effectively.
6965While LLVM does directly support these vector operations, many
6966sophisticated algorithms will want to use target-specific intrinsics to
6967take full advantage of a specific target.
6968
6969.. _i_extractelement:
6970
6971'``extractelement``' Instruction
6972^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6973
6974Syntax:
6975"""""""
6976
6977::
6978
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006979 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006980
6981Overview:
6982"""""""""
6983
6984The '``extractelement``' instruction extracts a single scalar element
6985from a vector at a specified index.
6986
6987Arguments:
6988""""""""""
6989
6990The first operand of an '``extractelement``' instruction is a value of
6991:ref:`vector <t_vector>` type. The second operand is an index indicating
6992the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006993variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006994
6995Semantics:
6996""""""""""
6997
6998The result is a scalar of the same type as the element type of ``val``.
6999Its value is the value at position ``idx`` of ``val``. If ``idx``
7000exceeds the length of ``val``, the results are undefined.
7001
7002Example:
7003""""""""
7004
Renato Golin124f2592016-07-20 12:16:38 +00007005.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007006
7007 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7008
7009.. _i_insertelement:
7010
7011'``insertelement``' Instruction
7012^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7013
7014Syntax:
7015"""""""
7016
7017::
7018
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007019 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007020
7021Overview:
7022"""""""""
7023
7024The '``insertelement``' instruction inserts a scalar element into a
7025vector at a specified index.
7026
7027Arguments:
7028""""""""""
7029
7030The first operand of an '``insertelement``' instruction is a value of
7031:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7032type must equal the element type of the first operand. The third operand
7033is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007034index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007035
7036Semantics:
7037""""""""""
7038
7039The result is a vector of the same type as ``val``. Its element values
7040are those of ``val`` except at position ``idx``, where it gets the value
7041``elt``. If ``idx`` exceeds the length of ``val``, the results are
7042undefined.
7043
7044Example:
7045""""""""
7046
Renato Golin124f2592016-07-20 12:16:38 +00007047.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007048
7049 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7050
7051.. _i_shufflevector:
7052
7053'``shufflevector``' Instruction
7054^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7055
7056Syntax:
7057"""""""
7058
7059::
7060
7061 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7062
7063Overview:
7064"""""""""
7065
7066The '``shufflevector``' instruction constructs a permutation of elements
7067from two input vectors, returning a vector with the same element type as
7068the input and length that is the same as the shuffle mask.
7069
7070Arguments:
7071""""""""""
7072
7073The first two operands of a '``shufflevector``' instruction are vectors
7074with the same type. The third argument is a shuffle mask whose element
7075type is always 'i32'. The result of the instruction is a vector whose
7076length is the same as the shuffle mask and whose element type is the
7077same as the element type of the first two operands.
7078
7079The shuffle mask operand is required to be a constant vector with either
7080constant integer or undef values.
7081
7082Semantics:
7083""""""""""
7084
7085The elements of the two input vectors are numbered from left to right
7086across both of the vectors. The shuffle mask operand specifies, for each
7087element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007088result element gets. If the shuffle mask is undef, the result vector is
7089undef. If any element of the mask operand is undef, that element of the
7090result is undef. If the shuffle mask selects an undef element from one
7091of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007092
7093Example:
7094""""""""
7095
Renato Golin124f2592016-07-20 12:16:38 +00007096.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007097
7098 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7099 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7100 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7101 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7102 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7103 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7104 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7105 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7106
7107Aggregate Operations
7108--------------------
7109
7110LLVM supports several instructions for working with
7111:ref:`aggregate <t_aggregate>` values.
7112
7113.. _i_extractvalue:
7114
7115'``extractvalue``' Instruction
7116^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7117
7118Syntax:
7119"""""""
7120
7121::
7122
7123 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7124
7125Overview:
7126"""""""""
7127
7128The '``extractvalue``' instruction extracts the value of a member field
7129from an :ref:`aggregate <t_aggregate>` value.
7130
7131Arguments:
7132""""""""""
7133
7134The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007135:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007136constant indices to specify which value to extract in a similar manner
7137as indices in a '``getelementptr``' instruction.
7138
7139The major differences to ``getelementptr`` indexing are:
7140
7141- Since the value being indexed is not a pointer, the first index is
7142 omitted and assumed to be zero.
7143- At least one index must be specified.
7144- Not only struct indices but also array indices must be in bounds.
7145
7146Semantics:
7147""""""""""
7148
7149The result is the value at the position in the aggregate specified by
7150the index operands.
7151
7152Example:
7153""""""""
7154
Renato Golin124f2592016-07-20 12:16:38 +00007155.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007156
7157 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7158
7159.. _i_insertvalue:
7160
7161'``insertvalue``' Instruction
7162^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7163
7164Syntax:
7165"""""""
7166
7167::
7168
7169 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7170
7171Overview:
7172"""""""""
7173
7174The '``insertvalue``' instruction inserts a value into a member field in
7175an :ref:`aggregate <t_aggregate>` value.
7176
7177Arguments:
7178""""""""""
7179
7180The first operand of an '``insertvalue``' instruction is a value of
7181:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7182a first-class value to insert. The following operands are constant
7183indices indicating the position at which to insert the value in a
7184similar manner as indices in a '``extractvalue``' instruction. The value
7185to insert must have the same type as the value identified by the
7186indices.
7187
7188Semantics:
7189""""""""""
7190
7191The result is an aggregate of the same type as ``val``. Its value is
7192that of ``val`` except that the value at the position specified by the
7193indices is that of ``elt``.
7194
7195Example:
7196""""""""
7197
7198.. code-block:: llvm
7199
7200 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7201 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007202 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007203
7204.. _memoryops:
7205
7206Memory Access and Addressing Operations
7207---------------------------------------
7208
7209A key design point of an SSA-based representation is how it represents
7210memory. In LLVM, no memory locations are in SSA form, which makes things
7211very simple. This section describes how to read, write, and allocate
7212memory in LLVM.
7213
7214.. _i_alloca:
7215
7216'``alloca``' Instruction
7217^^^^^^^^^^^^^^^^^^^^^^^^
7218
7219Syntax:
7220"""""""
7221
7222::
7223
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007224 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007225
7226Overview:
7227"""""""""
7228
7229The '``alloca``' instruction allocates memory on the stack frame of the
7230currently executing function, to be automatically released when this
7231function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007232address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007233
7234Arguments:
7235""""""""""
7236
7237The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7238bytes of memory on the runtime stack, returning a pointer of the
7239appropriate type to the program. If "NumElements" is specified, it is
7240the number of elements allocated, otherwise "NumElements" is defaulted
7241to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007242allocation is guaranteed to be aligned to at least that boundary. The
7243alignment may not be greater than ``1 << 29``. If not specified, or if
7244zero, the target can choose to align the allocation on any convenient
7245boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007246
7247'``type``' may be any sized type.
7248
7249Semantics:
7250""""""""""
7251
7252Memory is allocated; a pointer is returned. The operation is undefined
7253if there is insufficient stack space for the allocation. '``alloca``'d
7254memory is automatically released when the function returns. The
7255'``alloca``' instruction is commonly used to represent automatic
7256variables that must have an address available. When the function returns
7257(either with the ``ret`` or ``resume`` instructions), the memory is
7258reclaimed. Allocating zero bytes is legal, but the result is undefined.
7259The order in which memory is allocated (ie., which way the stack grows)
7260is not specified.
7261
7262Example:
7263""""""""
7264
7265.. code-block:: llvm
7266
Tim Northover675a0962014-06-13 14:24:23 +00007267 %ptr = alloca i32 ; yields i32*:ptr
7268 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7269 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7270 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007271
7272.. _i_load:
7273
7274'``load``' Instruction
7275^^^^^^^^^^^^^^^^^^^^^^
7276
7277Syntax:
7278"""""""
7279
7280::
7281
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007282 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007283 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007284 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007285 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007286 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007287
7288Overview:
7289"""""""""
7290
7291The '``load``' instruction is used to read from memory.
7292
7293Arguments:
7294""""""""""
7295
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007296The argument to the ``load`` instruction specifies the memory address from which
7297to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7298known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7299the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7300modify the number or order of execution of this ``load`` with other
7301:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007302
JF Bastiend1fb5852015-12-17 22:09:19 +00007303If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7304<ordering>` and optional ``singlethread`` argument. The ``release`` and
7305``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7306produce :ref:`defined <memmodel>` results when they may see multiple atomic
7307stores. The type of the pointee must be an integer, pointer, or floating-point
7308type whose bit width is a power of two greater than or equal to eight and less
7309than or equal to a target-specific size limit. ``align`` must be explicitly
7310specified on atomic loads, and the load has undefined behavior if the alignment
7311is not set to a value which is at least the size in bytes of the
7312pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007313
7314The optional constant ``align`` argument specifies the alignment of the
7315operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007316or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007317alignment for the target. It is the responsibility of the code emitter
7318to ensure that the alignment information is correct. Overestimating the
7319alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007320may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007321maximum possible alignment is ``1 << 29``. An alignment value higher
7322than the size of the loaded type implies memory up to the alignment
7323value bytes can be safely loaded without trapping in the default
7324address space. Access of the high bytes can interfere with debugging
7325tools, so should not be accessed if the function has the
7326``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007327
7328The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007329metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007330``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007331metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007332that this load is not expected to be reused in the cache. The code
7333generator may select special instructions to save cache bandwidth, such
7334as the ``MOVNT`` instruction on x86.
7335
7336The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007337metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007338entries. If a load instruction tagged with the ``!invariant.load``
7339metadata is executed, the optimizer may assume the memory location
7340referenced by the load contains the same value at all points in the
7341program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007342
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007343The optional ``!invariant.group`` metadata must reference a single metadata name
7344 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7345
Philip Reamescdb72f32014-10-20 22:40:55 +00007346The optional ``!nonnull`` metadata must reference a single
7347metadata name ``<index>`` corresponding to a metadata node with no
7348entries. The existence of the ``!nonnull`` metadata on the
7349instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007350never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007351on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007352to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007353
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007354The optional ``!dereferenceable`` metadata must reference a single metadata
7355name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007356entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007357tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007358The number of bytes known to be dereferenceable is specified by the integer
7359value in the metadata node. This is analogous to the ''dereferenceable''
7360attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007361to loads of a pointer type.
7362
7363The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007364metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7365``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007366instruction tells the optimizer that the value loaded is known to be either
7367dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007368The number of bytes known to be dereferenceable is specified by the integer
7369value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7370attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007371to loads of a pointer type.
7372
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007373The optional ``!align`` metadata must reference a single metadata name
7374``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7375The existence of the ``!align`` metadata on the instruction tells the
7376optimizer that the value loaded is known to be aligned to a boundary specified
7377by the integer value in the metadata node. The alignment must be a power of 2.
7378This is analogous to the ''align'' attribute on parameters and return values.
7379This metadata can only be applied to loads of a pointer type.
7380
Sean Silvab084af42012-12-07 10:36:55 +00007381Semantics:
7382""""""""""
7383
7384The location of memory pointed to is loaded. If the value being loaded
7385is of scalar type then the number of bytes read does not exceed the
7386minimum number of bytes needed to hold all bits of the type. For
7387example, loading an ``i24`` reads at most three bytes. When loading a
7388value of a type like ``i20`` with a size that is not an integral number
7389of bytes, the result is undefined if the value was not originally
7390written using a store of the same type.
7391
7392Examples:
7393"""""""""
7394
7395.. code-block:: llvm
7396
Tim Northover675a0962014-06-13 14:24:23 +00007397 %ptr = alloca i32 ; yields i32*:ptr
7398 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007399 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007400
7401.. _i_store:
7402
7403'``store``' Instruction
7404^^^^^^^^^^^^^^^^^^^^^^^
7405
7406Syntax:
7407"""""""
7408
7409::
7410
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007411 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7412 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007413
7414Overview:
7415"""""""""
7416
7417The '``store``' instruction is used to write to memory.
7418
7419Arguments:
7420""""""""""
7421
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007422There are two arguments to the ``store`` instruction: a value to store and an
7423address at which to store it. The type of the ``<pointer>`` operand must be a
7424pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7425operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7426allowed to modify the number or order of execution of this ``store`` with other
7427:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7428<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7429structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007430
JF Bastiend1fb5852015-12-17 22:09:19 +00007431If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7432<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7433``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7434produce :ref:`defined <memmodel>` results when they may see multiple atomic
7435stores. The type of the pointee must be an integer, pointer, or floating-point
7436type whose bit width is a power of two greater than or equal to eight and less
7437than or equal to a target-specific size limit. ``align`` must be explicitly
7438specified on atomic stores, and the store has undefined behavior if the
7439alignment is not set to a value which is at least the size in bytes of the
7440pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007441
Eli Benderskyca380842013-04-17 17:17:20 +00007442The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007443operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007444or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007445alignment for the target. It is the responsibility of the code emitter
7446to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007447alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007448alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007449safe. The maximum possible alignment is ``1 << 29``. An alignment
7450value higher than the size of the stored type implies memory up to the
7451alignment value bytes can be stored to without trapping in the default
7452address space. Storing to the higher bytes however may result in data
7453races if another thread can access the same address. Introducing a
7454data race is not allowed. Storing to the extra bytes is not allowed
7455even in situations where a data race is known to not exist if the
7456function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007457
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007458The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007459name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007460value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007461tells the optimizer and code generator that this load is not expected to
7462be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007463instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007464x86.
7465
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007466The optional ``!invariant.group`` metadata must reference a
7467single metadata name ``<index>``. See ``invariant.group`` metadata.
7468
Sean Silvab084af42012-12-07 10:36:55 +00007469Semantics:
7470""""""""""
7471
Eli Benderskyca380842013-04-17 17:17:20 +00007472The contents of memory are updated to contain ``<value>`` at the
7473location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007474of scalar type then the number of bytes written does not exceed the
7475minimum number of bytes needed to hold all bits of the type. For
7476example, storing an ``i24`` writes at most three bytes. When writing a
7477value of a type like ``i20`` with a size that is not an integral number
7478of bytes, it is unspecified what happens to the extra bits that do not
7479belong to the type, but they will typically be overwritten.
7480
7481Example:
7482""""""""
7483
7484.. code-block:: llvm
7485
Tim Northover675a0962014-06-13 14:24:23 +00007486 %ptr = alloca i32 ; yields i32*:ptr
7487 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007488 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007489
7490.. _i_fence:
7491
7492'``fence``' Instruction
7493^^^^^^^^^^^^^^^^^^^^^^^
7494
7495Syntax:
7496"""""""
7497
7498::
7499
Tim Northover675a0962014-06-13 14:24:23 +00007500 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007501
7502Overview:
7503"""""""""
7504
7505The '``fence``' instruction is used to introduce happens-before edges
7506between operations.
7507
7508Arguments:
7509""""""""""
7510
7511'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7512defines what *synchronizes-with* edges they add. They can only be given
7513``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7514
7515Semantics:
7516""""""""""
7517
7518A fence A which has (at least) ``release`` ordering semantics
7519*synchronizes with* a fence B with (at least) ``acquire`` ordering
7520semantics if and only if there exist atomic operations X and Y, both
7521operating on some atomic object M, such that A is sequenced before X, X
7522modifies M (either directly or through some side effect of a sequence
7523headed by X), Y is sequenced before B, and Y observes M. This provides a
7524*happens-before* dependency between A and B. Rather than an explicit
7525``fence``, one (but not both) of the atomic operations X or Y might
7526provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7527still *synchronize-with* the explicit ``fence`` and establish the
7528*happens-before* edge.
7529
7530A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7531``acquire`` and ``release`` semantics specified above, participates in
7532the global program order of other ``seq_cst`` operations and/or fences.
7533
7534The optional ":ref:`singlethread <singlethread>`" argument specifies
7535that the fence only synchronizes with other fences in the same thread.
7536(This is useful for interacting with signal handlers.)
7537
7538Example:
7539""""""""
7540
7541.. code-block:: llvm
7542
Tim Northover675a0962014-06-13 14:24:23 +00007543 fence acquire ; yields void
7544 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007545
7546.. _i_cmpxchg:
7547
7548'``cmpxchg``' Instruction
7549^^^^^^^^^^^^^^^^^^^^^^^^^
7550
7551Syntax:
7552"""""""
7553
7554::
7555
Tim Northover675a0962014-06-13 14:24:23 +00007556 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007557
7558Overview:
7559"""""""""
7560
7561The '``cmpxchg``' instruction is used to atomically modify memory. It
7562loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007563equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007564
7565Arguments:
7566""""""""""
7567
7568There are three arguments to the '``cmpxchg``' instruction: an address
7569to operate on, a value to compare to the value currently be at that
7570address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007571are equal. The type of '<cmp>' must be an integer or pointer type whose
7572bit width is a power of two greater than or equal to eight and less
7573than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7574have the same type, and the type of '<pointer>' must be a pointer to
7575that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7576optimizer is not allowed to modify the number or order of execution of
7577this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007578
Tim Northovere94a5182014-03-11 10:48:52 +00007579The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007580``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7581must be at least ``monotonic``, the ordering constraint on failure must be no
7582stronger than that on success, and the failure ordering cannot be either
7583``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007584
7585The optional "``singlethread``" argument declares that the ``cmpxchg``
7586is only atomic with respect to code (usually signal handlers) running in
7587the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7588respect to all other code in the system.
7589
7590The pointer passed into cmpxchg must have alignment greater than or
7591equal to the size in memory of the operand.
7592
7593Semantics:
7594""""""""""
7595
Tim Northover420a2162014-06-13 14:24:07 +00007596The contents of memory at the location specified by the '``<pointer>``' operand
7597is read and compared to '``<cmp>``'; if the read value is the equal, the
7598'``<new>``' is written. The original value at the location is returned, together
7599with a flag indicating success (true) or failure (false).
7600
7601If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7602permitted: the operation may not write ``<new>`` even if the comparison
7603matched.
7604
7605If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7606if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007607
Tim Northovere94a5182014-03-11 10:48:52 +00007608A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7609identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7610load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007611
7612Example:
7613""""""""
7614
7615.. code-block:: llvm
7616
7617 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007618 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007619 br label %loop
7620
7621 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007622 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007623 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007624 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007625 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7626 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007627 br i1 %success, label %done, label %loop
7628
7629 done:
7630 ...
7631
7632.. _i_atomicrmw:
7633
7634'``atomicrmw``' Instruction
7635^^^^^^^^^^^^^^^^^^^^^^^^^^^
7636
7637Syntax:
7638"""""""
7639
7640::
7641
Tim Northover675a0962014-06-13 14:24:23 +00007642 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007643
7644Overview:
7645"""""""""
7646
7647The '``atomicrmw``' instruction is used to atomically modify memory.
7648
7649Arguments:
7650""""""""""
7651
7652There are three arguments to the '``atomicrmw``' instruction: an
7653operation to apply, an address whose value to modify, an argument to the
7654operation. The operation must be one of the following keywords:
7655
7656- xchg
7657- add
7658- sub
7659- and
7660- nand
7661- or
7662- xor
7663- max
7664- min
7665- umax
7666- umin
7667
7668The type of '<value>' must be an integer type whose bit width is a power
7669of two greater than or equal to eight and less than or equal to a
7670target-specific size limit. The type of the '``<pointer>``' operand must
7671be a pointer to that type. If the ``atomicrmw`` is marked as
7672``volatile``, then the optimizer is not allowed to modify the number or
7673order of execution of this ``atomicrmw`` with other :ref:`volatile
7674operations <volatile>`.
7675
7676Semantics:
7677""""""""""
7678
7679The contents of memory at the location specified by the '``<pointer>``'
7680operand are atomically read, modified, and written back. The original
7681value at the location is returned. The modification is specified by the
7682operation argument:
7683
7684- xchg: ``*ptr = val``
7685- add: ``*ptr = *ptr + val``
7686- sub: ``*ptr = *ptr - val``
7687- and: ``*ptr = *ptr & val``
7688- nand: ``*ptr = ~(*ptr & val)``
7689- or: ``*ptr = *ptr | val``
7690- xor: ``*ptr = *ptr ^ val``
7691- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7692- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7693- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7694 comparison)
7695- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7696 comparison)
7697
7698Example:
7699""""""""
7700
7701.. code-block:: llvm
7702
Tim Northover675a0962014-06-13 14:24:23 +00007703 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007704
7705.. _i_getelementptr:
7706
7707'``getelementptr``' Instruction
7708^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7709
7710Syntax:
7711"""""""
7712
7713::
7714
Peter Collingbourned93620b2016-11-10 22:34:55 +00007715 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7716 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7717 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007718
7719Overview:
7720"""""""""
7721
7722The '``getelementptr``' instruction is used to get the address of a
7723subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007724address calculation only and does not access memory. The instruction can also
7725be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007726
7727Arguments:
7728""""""""""
7729
David Blaikie16a97eb2015-03-04 22:02:58 +00007730The first argument is always a type used as the basis for the calculations.
7731The second argument is always a pointer or a vector of pointers, and is the
7732base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007733that indicate which of the elements of the aggregate object are indexed.
7734The interpretation of each index is dependent on the type being indexed
7735into. The first index always indexes the pointer value given as the
7736first argument, the second index indexes a value of the type pointed to
7737(not necessarily the value directly pointed to, since the first index
7738can be non-zero), etc. The first type indexed into must be a pointer
7739value, subsequent types can be arrays, vectors, and structs. Note that
7740subsequent types being indexed into can never be pointers, since that
7741would require loading the pointer before continuing calculation.
7742
7743The type of each index argument depends on the type it is indexing into.
7744When indexing into a (optionally packed) structure, only ``i32`` integer
7745**constants** are allowed (when using a vector of indices they must all
7746be the **same** ``i32`` integer constant). When indexing into an array,
7747pointer or vector, integers of any width are allowed, and they are not
7748required to be constant. These integers are treated as signed values
7749where relevant.
7750
7751For example, let's consider a C code fragment and how it gets compiled
7752to LLVM:
7753
7754.. code-block:: c
7755
7756 struct RT {
7757 char A;
7758 int B[10][20];
7759 char C;
7760 };
7761 struct ST {
7762 int X;
7763 double Y;
7764 struct RT Z;
7765 };
7766
7767 int *foo(struct ST *s) {
7768 return &s[1].Z.B[5][13];
7769 }
7770
7771The LLVM code generated by Clang is:
7772
7773.. code-block:: llvm
7774
7775 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7776 %struct.ST = type { i32, double, %struct.RT }
7777
7778 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7779 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007780 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007781 ret i32* %arrayidx
7782 }
7783
7784Semantics:
7785""""""""""
7786
7787In the example above, the first index is indexing into the
7788'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7789= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7790indexes into the third element of the structure, yielding a
7791'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7792structure. The third index indexes into the second element of the
7793structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7794dimensions of the array are subscripted into, yielding an '``i32``'
7795type. The '``getelementptr``' instruction returns a pointer to this
7796element, thus computing a value of '``i32*``' type.
7797
7798Note that it is perfectly legal to index partially through a structure,
7799returning a pointer to an inner element. Because of this, the LLVM code
7800for the given testcase is equivalent to:
7801
7802.. code-block:: llvm
7803
7804 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007805 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7806 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7807 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7808 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7809 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007810 ret i32* %t5
7811 }
7812
7813If the ``inbounds`` keyword is present, the result value of the
7814``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7815pointer is not an *in bounds* address of an allocated object, or if any
7816of the addresses that would be formed by successive addition of the
7817offsets implied by the indices to the base address with infinitely
7818precise signed arithmetic are not an *in bounds* address of that
7819allocated object. The *in bounds* addresses for an allocated object are
7820all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00007821past the end. The only *in bounds* address for a null pointer in the
7822default address-space is the null pointer itself. In cases where the
7823base is a vector of pointers the ``inbounds`` keyword applies to each
7824of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00007825
7826If the ``inbounds`` keyword is not present, the offsets are added to the
7827base address with silently-wrapping two's complement arithmetic. If the
7828offsets have a different width from the pointer, they are sign-extended
7829or truncated to the width of the pointer. The result value of the
7830``getelementptr`` may be outside the object pointed to by the base
7831pointer. The result value may not necessarily be used to access memory
7832though, even if it happens to point into allocated storage. See the
7833:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7834information.
7835
Peter Collingbourned93620b2016-11-10 22:34:55 +00007836If the ``inrange`` keyword is present before any index, loading from or
7837storing to any pointer derived from the ``getelementptr`` has undefined
7838behavior if the load or store would access memory outside of the bounds of
7839the element selected by the index marked as ``inrange``. The result of a
7840pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7841involving memory) involving a pointer derived from a ``getelementptr`` with
7842the ``inrange`` keyword is undefined, with the exception of comparisons
7843in the case where both operands are in the range of the element selected
7844by the ``inrange`` keyword, inclusive of the address one past the end of
7845that element. Note that the ``inrange`` keyword is currently only allowed
7846in constant ``getelementptr`` expressions.
7847
Sean Silvab084af42012-12-07 10:36:55 +00007848The getelementptr instruction is often confusing. For some more insight
7849into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7850
7851Example:
7852""""""""
7853
7854.. code-block:: llvm
7855
7856 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007857 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007858 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007859 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007860 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007861 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007862 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007863 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007864
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007865Vector of pointers:
7866"""""""""""""""""""
7867
7868The ``getelementptr`` returns a vector of pointers, instead of a single address,
7869when one or more of its arguments is a vector. In such cases, all vector
7870arguments should have the same number of elements, and every scalar argument
7871will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007872
7873.. code-block:: llvm
7874
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007875 ; All arguments are vectors:
7876 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7877 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007878
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007879 ; Add the same scalar offset to each pointer of a vector:
7880 ; A[i] = ptrs[i] + offset*sizeof(i8)
7881 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007882
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007883 ; Add distinct offsets to the same pointer:
7884 ; A[i] = ptr + offsets[i]*sizeof(i8)
7885 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007886
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007887 ; In all cases described above the type of the result is <4 x i8*>
7888
7889The two following instructions are equivalent:
7890
7891.. code-block:: llvm
7892
7893 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7894 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7895 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7896 <4 x i32> %ind4,
7897 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007898
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007899 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7900 i32 2, i32 1, <4 x i32> %ind4, i64 13
7901
7902Let's look at the C code, where the vector version of ``getelementptr``
7903makes sense:
7904
7905.. code-block:: c
7906
7907 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00007908 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007909 for (int i = 0; i < size; ++i) {
7910 A[i] = B[C[i]];
7911 }
7912
7913.. code-block:: llvm
7914
7915 ; get pointers for 8 elements from array B
7916 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7917 ; load 8 elements from array B into A
7918 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7919 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007920
7921Conversion Operations
7922---------------------
7923
7924The instructions in this category are the conversion instructions
7925(casting) which all take a single operand and a type. They perform
7926various bit conversions on the operand.
7927
7928'``trunc .. to``' Instruction
7929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7930
7931Syntax:
7932"""""""
7933
7934::
7935
7936 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7937
7938Overview:
7939"""""""""
7940
7941The '``trunc``' instruction truncates its operand to the type ``ty2``.
7942
7943Arguments:
7944""""""""""
7945
7946The '``trunc``' instruction takes a value to trunc, and a type to trunc
7947it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7948of the same number of integers. The bit size of the ``value`` must be
7949larger than the bit size of the destination type, ``ty2``. Equal sized
7950types are not allowed.
7951
7952Semantics:
7953""""""""""
7954
7955The '``trunc``' instruction truncates the high order bits in ``value``
7956and converts the remaining bits to ``ty2``. Since the source size must
7957be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7958It will always truncate bits.
7959
7960Example:
7961""""""""
7962
7963.. code-block:: llvm
7964
7965 %X = trunc i32 257 to i8 ; yields i8:1
7966 %Y = trunc i32 123 to i1 ; yields i1:true
7967 %Z = trunc i32 122 to i1 ; yields i1:false
7968 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7969
7970'``zext .. to``' Instruction
7971^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7972
7973Syntax:
7974"""""""
7975
7976::
7977
7978 <result> = zext <ty> <value> to <ty2> ; yields ty2
7979
7980Overview:
7981"""""""""
7982
7983The '``zext``' instruction zero extends its operand to type ``ty2``.
7984
7985Arguments:
7986""""""""""
7987
7988The '``zext``' instruction takes a value to cast, and a type to cast it
7989to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7990the same number of integers. The bit size of the ``value`` must be
7991smaller than the bit size of the destination type, ``ty2``.
7992
7993Semantics:
7994""""""""""
7995
7996The ``zext`` fills the high order bits of the ``value`` with zero bits
7997until it reaches the size of the destination type, ``ty2``.
7998
7999When zero extending from i1, the result will always be either 0 or 1.
8000
8001Example:
8002""""""""
8003
8004.. code-block:: llvm
8005
8006 %X = zext i32 257 to i64 ; yields i64:257
8007 %Y = zext i1 true to i32 ; yields i32:1
8008 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8009
8010'``sext .. to``' Instruction
8011^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8012
8013Syntax:
8014"""""""
8015
8016::
8017
8018 <result> = sext <ty> <value> to <ty2> ; yields ty2
8019
8020Overview:
8021"""""""""
8022
8023The '``sext``' sign extends ``value`` to the type ``ty2``.
8024
8025Arguments:
8026""""""""""
8027
8028The '``sext``' instruction takes a value to cast, and a type to cast it
8029to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8030the same number of integers. The bit size of the ``value`` must be
8031smaller than the bit size of the destination type, ``ty2``.
8032
8033Semantics:
8034""""""""""
8035
8036The '``sext``' instruction performs a sign extension by copying the sign
8037bit (highest order bit) of the ``value`` until it reaches the bit size
8038of the type ``ty2``.
8039
8040When sign extending from i1, the extension always results in -1 or 0.
8041
8042Example:
8043""""""""
8044
8045.. code-block:: llvm
8046
8047 %X = sext i8 -1 to i16 ; yields i16 :65535
8048 %Y = sext i1 true to i32 ; yields i32:-1
8049 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8050
8051'``fptrunc .. to``' Instruction
8052^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8053
8054Syntax:
8055"""""""
8056
8057::
8058
8059 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8060
8061Overview:
8062"""""""""
8063
8064The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8065
8066Arguments:
8067""""""""""
8068
8069The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
8070value to cast and a :ref:`floating point <t_floating>` type to cast it to.
8071The size of ``value`` must be larger than the size of ``ty2``. This
8072implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8073
8074Semantics:
8075""""""""""
8076
Dan Liew50456fb2015-09-03 18:43:56 +00008077The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00008078:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00008079point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
8080destination type, ``ty2``, then the results are undefined. If the cast produces
8081an inexact result, how rounding is performed (e.g. truncation, also known as
8082round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008083
8084Example:
8085""""""""
8086
8087.. code-block:: llvm
8088
8089 %X = fptrunc double 123.0 to float ; yields float:123.0
8090 %Y = fptrunc double 1.0E+300 to float ; yields undefined
8091
8092'``fpext .. to``' Instruction
8093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8094
8095Syntax:
8096"""""""
8097
8098::
8099
8100 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8101
8102Overview:
8103"""""""""
8104
8105The '``fpext``' extends a floating point ``value`` to a larger floating
8106point value.
8107
8108Arguments:
8109""""""""""
8110
8111The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
8112``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
8113to. The source type must be smaller than the destination type.
8114
8115Semantics:
8116""""""""""
8117
8118The '``fpext``' instruction extends the ``value`` from a smaller
8119:ref:`floating point <t_floating>` type to a larger :ref:`floating
8120point <t_floating>` type. The ``fpext`` cannot be used to make a
8121*no-op cast* because it always changes bits. Use ``bitcast`` to make a
8122*no-op cast* for a floating point cast.
8123
8124Example:
8125""""""""
8126
8127.. code-block:: llvm
8128
8129 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8130 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8131
8132'``fptoui .. to``' Instruction
8133^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8134
8135Syntax:
8136"""""""
8137
8138::
8139
8140 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8141
8142Overview:
8143"""""""""
8144
8145The '``fptoui``' converts a floating point ``value`` to its unsigned
8146integer equivalent of type ``ty2``.
8147
8148Arguments:
8149""""""""""
8150
8151The '``fptoui``' instruction takes a value to cast, which must be a
8152scalar or vector :ref:`floating point <t_floating>` value, and a type to
8153cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8154``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8155type with the same number of elements as ``ty``
8156
8157Semantics:
8158""""""""""
8159
8160The '``fptoui``' instruction converts its :ref:`floating
8161point <t_floating>` operand into the nearest (rounding towards zero)
8162unsigned integer value. If the value cannot fit in ``ty2``, the results
8163are undefined.
8164
8165Example:
8166""""""""
8167
8168.. code-block:: llvm
8169
8170 %X = fptoui double 123.0 to i32 ; yields i32:123
8171 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8172 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8173
8174'``fptosi .. to``' Instruction
8175^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8176
8177Syntax:
8178"""""""
8179
8180::
8181
8182 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8183
8184Overview:
8185"""""""""
8186
8187The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
8188``value`` to type ``ty2``.
8189
8190Arguments:
8191""""""""""
8192
8193The '``fptosi``' instruction takes a value to cast, which must be a
8194scalar or vector :ref:`floating point <t_floating>` value, and a type to
8195cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8196``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8197type with the same number of elements as ``ty``
8198
8199Semantics:
8200""""""""""
8201
8202The '``fptosi``' instruction converts its :ref:`floating
8203point <t_floating>` operand into the nearest (rounding towards zero)
8204signed integer value. If the value cannot fit in ``ty2``, the results
8205are undefined.
8206
8207Example:
8208""""""""
8209
8210.. code-block:: llvm
8211
8212 %X = fptosi double -123.0 to i32 ; yields i32:-123
8213 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8214 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8215
8216'``uitofp .. to``' Instruction
8217^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8218
8219Syntax:
8220"""""""
8221
8222::
8223
8224 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8225
8226Overview:
8227"""""""""
8228
8229The '``uitofp``' instruction regards ``value`` as an unsigned integer
8230and converts that value to the ``ty2`` type.
8231
8232Arguments:
8233""""""""""
8234
8235The '``uitofp``' instruction takes a value to cast, which must be a
8236scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8237``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8238``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8239type with the same number of elements as ``ty``
8240
8241Semantics:
8242""""""""""
8243
8244The '``uitofp``' instruction interprets its operand as an unsigned
8245integer quantity and converts it to the corresponding floating point
8246value. If the value cannot fit in the floating point value, the results
8247are undefined.
8248
8249Example:
8250""""""""
8251
8252.. code-block:: llvm
8253
8254 %X = uitofp i32 257 to float ; yields float:257.0
8255 %Y = uitofp i8 -1 to double ; yields double:255.0
8256
8257'``sitofp .. to``' Instruction
8258^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8259
8260Syntax:
8261"""""""
8262
8263::
8264
8265 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8266
8267Overview:
8268"""""""""
8269
8270The '``sitofp``' instruction regards ``value`` as a signed integer and
8271converts that value to the ``ty2`` type.
8272
8273Arguments:
8274""""""""""
8275
8276The '``sitofp``' instruction takes a value to cast, which must be a
8277scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8278``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8279``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8280type with the same number of elements as ``ty``
8281
8282Semantics:
8283""""""""""
8284
8285The '``sitofp``' instruction interprets its operand as a signed integer
8286quantity and converts it to the corresponding floating point value. If
8287the value cannot fit in the floating point value, the results are
8288undefined.
8289
8290Example:
8291""""""""
8292
8293.. code-block:: llvm
8294
8295 %X = sitofp i32 257 to float ; yields float:257.0
8296 %Y = sitofp i8 -1 to double ; yields double:-1.0
8297
8298.. _i_ptrtoint:
8299
8300'``ptrtoint .. to``' Instruction
8301^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8302
8303Syntax:
8304"""""""
8305
8306::
8307
8308 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8309
8310Overview:
8311"""""""""
8312
8313The '``ptrtoint``' instruction converts the pointer or a vector of
8314pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8315
8316Arguments:
8317""""""""""
8318
8319The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008320a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008321type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8322a vector of integers type.
8323
8324Semantics:
8325""""""""""
8326
8327The '``ptrtoint``' instruction converts ``value`` to integer type
8328``ty2`` by interpreting the pointer value as an integer and either
8329truncating or zero extending that value to the size of the integer type.
8330If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8331``value`` is larger than ``ty2`` then a truncation is done. If they are
8332the same size, then nothing is done (*no-op cast*) other than a type
8333change.
8334
8335Example:
8336""""""""
8337
8338.. code-block:: llvm
8339
8340 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8341 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8342 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8343
8344.. _i_inttoptr:
8345
8346'``inttoptr .. to``' Instruction
8347^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8348
8349Syntax:
8350"""""""
8351
8352::
8353
8354 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8355
8356Overview:
8357"""""""""
8358
8359The '``inttoptr``' instruction converts an integer ``value`` to a
8360pointer type, ``ty2``.
8361
8362Arguments:
8363""""""""""
8364
8365The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8366cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8367type.
8368
8369Semantics:
8370""""""""""
8371
8372The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8373applying either a zero extension or a truncation depending on the size
8374of the integer ``value``. If ``value`` is larger than the size of a
8375pointer then a truncation is done. If ``value`` is smaller than the size
8376of a pointer then a zero extension is done. If they are the same size,
8377nothing is done (*no-op cast*).
8378
8379Example:
8380""""""""
8381
8382.. code-block:: llvm
8383
8384 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8385 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8386 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8387 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8388
8389.. _i_bitcast:
8390
8391'``bitcast .. to``' Instruction
8392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8393
8394Syntax:
8395"""""""
8396
8397::
8398
8399 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8400
8401Overview:
8402"""""""""
8403
8404The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8405changing any bits.
8406
8407Arguments:
8408""""""""""
8409
8410The '``bitcast``' instruction takes a value to cast, which must be a
8411non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008412also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8413bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008414identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008415also be a pointer of the same size. This instruction supports bitwise
8416conversion of vectors to integers and to vectors of other types (as
8417long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008418
8419Semantics:
8420""""""""""
8421
Matt Arsenault24b49c42013-07-31 17:49:08 +00008422The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8423is always a *no-op cast* because no bits change with this
8424conversion. The conversion is done as if the ``value`` had been stored
8425to memory and read back as type ``ty2``. Pointer (or vector of
8426pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008427pointers) types with the same address space through this instruction.
8428To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8429or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008430
8431Example:
8432""""""""
8433
Renato Golin124f2592016-07-20 12:16:38 +00008434.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008435
8436 %X = bitcast i8 255 to i8 ; yields i8 :-1
8437 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8438 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8439 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8440
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008441.. _i_addrspacecast:
8442
8443'``addrspacecast .. to``' Instruction
8444^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8445
8446Syntax:
8447"""""""
8448
8449::
8450
8451 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8452
8453Overview:
8454"""""""""
8455
8456The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8457address space ``n`` to type ``pty2`` in address space ``m``.
8458
8459Arguments:
8460""""""""""
8461
8462The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8463to cast and a pointer type to cast it to, which must have a different
8464address space.
8465
8466Semantics:
8467""""""""""
8468
8469The '``addrspacecast``' instruction converts the pointer value
8470``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008471value modification, depending on the target and the address space
8472pair. Pointer conversions within the same address space must be
8473performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008474conversion is legal then both result and operand refer to the same memory
8475location.
8476
8477Example:
8478""""""""
8479
8480.. code-block:: llvm
8481
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008482 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8483 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8484 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008485
Sean Silvab084af42012-12-07 10:36:55 +00008486.. _otherops:
8487
8488Other Operations
8489----------------
8490
8491The instructions in this category are the "miscellaneous" instructions,
8492which defy better classification.
8493
8494.. _i_icmp:
8495
8496'``icmp``' Instruction
8497^^^^^^^^^^^^^^^^^^^^^^
8498
8499Syntax:
8500"""""""
8501
8502::
8503
Tim Northover675a0962014-06-13 14:24:23 +00008504 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008505
8506Overview:
8507"""""""""
8508
8509The '``icmp``' instruction returns a boolean value or a vector of
8510boolean values based on comparison of its two integer, integer vector,
8511pointer, or pointer vector operands.
8512
8513Arguments:
8514""""""""""
8515
8516The '``icmp``' instruction takes three operands. The first operand is
8517the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008518not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008519
8520#. ``eq``: equal
8521#. ``ne``: not equal
8522#. ``ugt``: unsigned greater than
8523#. ``uge``: unsigned greater or equal
8524#. ``ult``: unsigned less than
8525#. ``ule``: unsigned less or equal
8526#. ``sgt``: signed greater than
8527#. ``sge``: signed greater or equal
8528#. ``slt``: signed less than
8529#. ``sle``: signed less or equal
8530
8531The remaining two arguments must be :ref:`integer <t_integer>` or
8532:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8533must also be identical types.
8534
8535Semantics:
8536""""""""""
8537
8538The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8539code given as ``cond``. The comparison performed always yields either an
8540:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8541
8542#. ``eq``: yields ``true`` if the operands are equal, ``false``
8543 otherwise. No sign interpretation is necessary or performed.
8544#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8545 otherwise. No sign interpretation is necessary or performed.
8546#. ``ugt``: interprets the operands as unsigned values and yields
8547 ``true`` if ``op1`` is greater than ``op2``.
8548#. ``uge``: interprets the operands as unsigned values and yields
8549 ``true`` if ``op1`` is greater than or equal to ``op2``.
8550#. ``ult``: interprets the operands as unsigned values and yields
8551 ``true`` if ``op1`` is less than ``op2``.
8552#. ``ule``: interprets the operands as unsigned values and yields
8553 ``true`` if ``op1`` is less than or equal to ``op2``.
8554#. ``sgt``: interprets the operands as signed values and yields ``true``
8555 if ``op1`` is greater than ``op2``.
8556#. ``sge``: interprets the operands as signed values and yields ``true``
8557 if ``op1`` is greater than or equal to ``op2``.
8558#. ``slt``: interprets the operands as signed values and yields ``true``
8559 if ``op1`` is less than ``op2``.
8560#. ``sle``: interprets the operands as signed values and yields ``true``
8561 if ``op1`` is less than or equal to ``op2``.
8562
8563If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8564are compared as if they were integers.
8565
8566If the operands are integer vectors, then they are compared element by
8567element. The result is an ``i1`` vector with the same number of elements
8568as the values being compared. Otherwise, the result is an ``i1``.
8569
8570Example:
8571""""""""
8572
Renato Golin124f2592016-07-20 12:16:38 +00008573.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008574
8575 <result> = icmp eq i32 4, 5 ; yields: result=false
8576 <result> = icmp ne float* %X, %X ; yields: result=false
8577 <result> = icmp ult i16 4, 5 ; yields: result=true
8578 <result> = icmp sgt i16 4, 5 ; yields: result=false
8579 <result> = icmp ule i16 -4, 5 ; yields: result=false
8580 <result> = icmp sge i16 4, 5 ; yields: result=false
8581
Sean Silvab084af42012-12-07 10:36:55 +00008582.. _i_fcmp:
8583
8584'``fcmp``' Instruction
8585^^^^^^^^^^^^^^^^^^^^^^
8586
8587Syntax:
8588"""""""
8589
8590::
8591
James Molloy88eb5352015-07-10 12:52:00 +00008592 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008593
8594Overview:
8595"""""""""
8596
8597The '``fcmp``' instruction returns a boolean value or vector of boolean
8598values based on comparison of its operands.
8599
8600If the operands are floating point scalars, then the result type is a
8601boolean (:ref:`i1 <t_integer>`).
8602
8603If the operands are floating point vectors, then the result type is a
8604vector of boolean with the same number of elements as the operands being
8605compared.
8606
8607Arguments:
8608""""""""""
8609
8610The '``fcmp``' instruction takes three operands. The first operand is
8611the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008612not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008613
8614#. ``false``: no comparison, always returns false
8615#. ``oeq``: ordered and equal
8616#. ``ogt``: ordered and greater than
8617#. ``oge``: ordered and greater than or equal
8618#. ``olt``: ordered and less than
8619#. ``ole``: ordered and less than or equal
8620#. ``one``: ordered and not equal
8621#. ``ord``: ordered (no nans)
8622#. ``ueq``: unordered or equal
8623#. ``ugt``: unordered or greater than
8624#. ``uge``: unordered or greater than or equal
8625#. ``ult``: unordered or less than
8626#. ``ule``: unordered or less than or equal
8627#. ``une``: unordered or not equal
8628#. ``uno``: unordered (either nans)
8629#. ``true``: no comparison, always returns true
8630
8631*Ordered* means that neither operand is a QNAN while *unordered* means
8632that either operand may be a QNAN.
8633
8634Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8635point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8636type. They must have identical types.
8637
8638Semantics:
8639""""""""""
8640
8641The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8642condition code given as ``cond``. If the operands are vectors, then the
8643vectors are compared element by element. Each comparison performed
8644always yields an :ref:`i1 <t_integer>` result, as follows:
8645
8646#. ``false``: always yields ``false``, regardless of operands.
8647#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8648 is equal to ``op2``.
8649#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8650 is greater than ``op2``.
8651#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8652 is greater than or equal to ``op2``.
8653#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8654 is less than ``op2``.
8655#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8656 is less than or equal to ``op2``.
8657#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8658 is not equal to ``op2``.
8659#. ``ord``: yields ``true`` if both operands are not a QNAN.
8660#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8661 equal to ``op2``.
8662#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8663 greater than ``op2``.
8664#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8665 greater than or equal to ``op2``.
8666#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8667 less than ``op2``.
8668#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8669 less than or equal to ``op2``.
8670#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8671 not equal to ``op2``.
8672#. ``uno``: yields ``true`` if either operand is a QNAN.
8673#. ``true``: always yields ``true``, regardless of operands.
8674
James Molloy88eb5352015-07-10 12:52:00 +00008675The ``fcmp`` instruction can also optionally take any number of
8676:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8677otherwise unsafe floating point optimizations.
8678
8679Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8680only flags that have any effect on its semantics are those that allow
8681assumptions to be made about the values of input arguments; namely
8682``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8683
Sean Silvab084af42012-12-07 10:36:55 +00008684Example:
8685""""""""
8686
Renato Golin124f2592016-07-20 12:16:38 +00008687.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008688
8689 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8690 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8691 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8692 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8693
Sean Silvab084af42012-12-07 10:36:55 +00008694.. _i_phi:
8695
8696'``phi``' Instruction
8697^^^^^^^^^^^^^^^^^^^^^
8698
8699Syntax:
8700"""""""
8701
8702::
8703
8704 <result> = phi <ty> [ <val0>, <label0>], ...
8705
8706Overview:
8707"""""""""
8708
8709The '``phi``' instruction is used to implement the φ node in the SSA
8710graph representing the function.
8711
8712Arguments:
8713""""""""""
8714
8715The type of the incoming values is specified with the first type field.
8716After this, the '``phi``' instruction takes a list of pairs as
8717arguments, with one pair for each predecessor basic block of the current
8718block. Only values of :ref:`first class <t_firstclass>` type may be used as
8719the value arguments to the PHI node. Only labels may be used as the
8720label arguments.
8721
8722There must be no non-phi instructions between the start of a basic block
8723and the PHI instructions: i.e. PHI instructions must be first in a basic
8724block.
8725
8726For the purposes of the SSA form, the use of each incoming value is
8727deemed to occur on the edge from the corresponding predecessor block to
8728the current block (but after any definition of an '``invoke``'
8729instruction's return value on the same edge).
8730
8731Semantics:
8732""""""""""
8733
8734At runtime, the '``phi``' instruction logically takes on the value
8735specified by the pair corresponding to the predecessor basic block that
8736executed just prior to the current block.
8737
8738Example:
8739""""""""
8740
8741.. code-block:: llvm
8742
8743 Loop: ; Infinite loop that counts from 0 on up...
8744 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8745 %nextindvar = add i32 %indvar, 1
8746 br label %Loop
8747
8748.. _i_select:
8749
8750'``select``' Instruction
8751^^^^^^^^^^^^^^^^^^^^^^^^
8752
8753Syntax:
8754"""""""
8755
8756::
8757
8758 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8759
8760 selty is either i1 or {<N x i1>}
8761
8762Overview:
8763"""""""""
8764
8765The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008766condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008767
8768Arguments:
8769""""""""""
8770
8771The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8772values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008773class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008774
8775Semantics:
8776""""""""""
8777
8778If the condition is an i1 and it evaluates to 1, the instruction returns
8779the first value argument; otherwise, it returns the second value
8780argument.
8781
8782If the condition is a vector of i1, then the value arguments must be
8783vectors of the same size, and the selection is done element by element.
8784
David Majnemer40a0b592015-03-03 22:45:47 +00008785If the condition is an i1 and the value arguments are vectors of the
8786same size, then an entire vector is selected.
8787
Sean Silvab084af42012-12-07 10:36:55 +00008788Example:
8789""""""""
8790
8791.. code-block:: llvm
8792
8793 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8794
8795.. _i_call:
8796
8797'``call``' Instruction
8798^^^^^^^^^^^^^^^^^^^^^^
8799
8800Syntax:
8801"""""""
8802
8803::
8804
David Blaikieb83cf102016-07-13 17:21:34 +00008805 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008806 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008807
8808Overview:
8809"""""""""
8810
8811The '``call``' instruction represents a simple function call.
8812
8813Arguments:
8814""""""""""
8815
8816This instruction requires several arguments:
8817
Reid Kleckner5772b772014-04-24 20:14:34 +00008818#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008819 should perform tail call optimization. The ``tail`` marker is a hint that
8820 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008821 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008822 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008823
8824 #. The call will not cause unbounded stack growth if it is part of a
8825 recursive cycle in the call graph.
8826 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8827 forwarded in place.
8828
8829 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008830 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008831 rules:
8832
8833 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8834 or a pointer bitcast followed by a ret instruction.
8835 - The ret instruction must return the (possibly bitcasted) value
8836 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008837 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008838 parameters or return types may differ in pointee type, but not
8839 in address space.
8840 - The calling conventions of the caller and callee must match.
8841 - All ABI-impacting function attributes, such as sret, byval, inreg,
8842 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008843 - The callee must be varargs iff the caller is varargs. Bitcasting a
8844 non-varargs function to the appropriate varargs type is legal so
8845 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008846
8847 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8848 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008849
8850 - Caller and callee both have the calling convention ``fastcc``.
8851 - The call is in tail position (ret immediately follows call and ret
8852 uses value of call or is void).
8853 - Option ``-tailcallopt`` is enabled, or
8854 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008855 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008856 met. <CodeGenerator.html#tailcallopt>`_
8857
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008858#. The optional ``notail`` marker indicates that the optimizers should not add
8859 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8860 call optimization from being performed on the call.
8861
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008862#. The optional ``fast-math flags`` marker indicates that the call has one or more
8863 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8864 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8865 for calls that return a floating-point scalar or vector type.
8866
Sean Silvab084af42012-12-07 10:36:55 +00008867#. The optional "cconv" marker indicates which :ref:`calling
8868 convention <callingconv>` the call should use. If none is
8869 specified, the call defaults to using C calling conventions. The
8870 calling convention of the call must match the calling convention of
8871 the target function, or else the behavior is undefined.
8872#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8873 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8874 are valid here.
8875#. '``ty``': the type of the call instruction itself which is also the
8876 type of the return value. Functions that return no value are marked
8877 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008878#. '``fnty``': shall be the signature of the function being called. The
8879 argument types must match the types implied by this signature. This
8880 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008881#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008882 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008883 indirect ``call``'s are just as possible, calling an arbitrary pointer
8884 to function value.
8885#. '``function args``': argument list whose types match the function
8886 signature argument types and parameter attributes. All arguments must
8887 be of :ref:`first class <t_firstclass>` type. If the function signature
8888 indicates the function accepts a variable number of arguments, the
8889 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00008890#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008891#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008892
8893Semantics:
8894""""""""""
8895
8896The '``call``' instruction is used to cause control flow to transfer to
8897a specified function, with its incoming arguments bound to the specified
8898values. Upon a '``ret``' instruction in the called function, control
8899flow continues with the instruction after the function call, and the
8900return value of the function is bound to the result argument.
8901
8902Example:
8903""""""""
8904
8905.. code-block:: llvm
8906
8907 %retval = call i32 @test(i32 %argc)
8908 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8909 %X = tail call i32 @foo() ; yields i32
8910 %Y = tail call fastcc i32 @foo() ; yields i32
8911 call void %foo(i8 97 signext)
8912
8913 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008914 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008915 %gr = extractvalue %struct.A %r, 0 ; yields i32
8916 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8917 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8918 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8919
8920llvm treats calls to some functions with names and arguments that match
8921the standard C99 library as being the C99 library functions, and may
8922perform optimizations or generate code for them under that assumption.
8923This is something we'd like to change in the future to provide better
8924support for freestanding environments and non-C-based languages.
8925
8926.. _i_va_arg:
8927
8928'``va_arg``' Instruction
8929^^^^^^^^^^^^^^^^^^^^^^^^
8930
8931Syntax:
8932"""""""
8933
8934::
8935
8936 <resultval> = va_arg <va_list*> <arglist>, <argty>
8937
8938Overview:
8939"""""""""
8940
8941The '``va_arg``' instruction is used to access arguments passed through
8942the "variable argument" area of a function call. It is used to implement
8943the ``va_arg`` macro in C.
8944
8945Arguments:
8946""""""""""
8947
8948This instruction takes a ``va_list*`` value and the type of the
8949argument. It returns a value of the specified argument type and
8950increments the ``va_list`` to point to the next argument. The actual
8951type of ``va_list`` is target specific.
8952
8953Semantics:
8954""""""""""
8955
8956The '``va_arg``' instruction loads an argument of the specified type
8957from the specified ``va_list`` and causes the ``va_list`` to point to
8958the next argument. For more information, see the variable argument
8959handling :ref:`Intrinsic Functions <int_varargs>`.
8960
8961It is legal for this instruction to be called in a function which does
8962not take a variable number of arguments, for example, the ``vfprintf``
8963function.
8964
8965``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8966function <intrinsics>` because it takes a type as an argument.
8967
8968Example:
8969""""""""
8970
8971See the :ref:`variable argument processing <int_varargs>` section.
8972
8973Note that the code generator does not yet fully support va\_arg on many
8974targets. Also, it does not currently support va\_arg with aggregate
8975types on any target.
8976
8977.. _i_landingpad:
8978
8979'``landingpad``' Instruction
8980^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8981
8982Syntax:
8983"""""""
8984
8985::
8986
David Majnemer7fddecc2015-06-17 20:52:32 +00008987 <resultval> = landingpad <resultty> <clause>+
8988 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008989
8990 <clause> := catch <type> <value>
8991 <clause> := filter <array constant type> <array constant>
8992
8993Overview:
8994"""""""""
8995
8996The '``landingpad``' instruction is used by `LLVM's exception handling
8997system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008998is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008999code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009000defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009001re-entry to the function. The ``resultval`` has the type ``resultty``.
9002
9003Arguments:
9004""""""""""
9005
David Majnemer7fddecc2015-06-17 20:52:32 +00009006The optional
Sean Silvab084af42012-12-07 10:36:55 +00009007``cleanup`` flag indicates that the landing pad block is a cleanup.
9008
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009009A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009010contains the global variable representing the "type" that may be caught
9011or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9012clause takes an array constant as its argument. Use
9013"``[0 x i8**] undef``" for a filter which cannot throw. The
9014'``landingpad``' instruction must contain *at least* one ``clause`` or
9015the ``cleanup`` flag.
9016
9017Semantics:
9018""""""""""
9019
9020The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009021:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009022therefore the "result type" of the ``landingpad`` instruction. As with
9023calling conventions, how the personality function results are
9024represented in LLVM IR is target specific.
9025
9026The clauses are applied in order from top to bottom. If two
9027``landingpad`` instructions are merged together through inlining, the
9028clauses from the calling function are appended to the list of clauses.
9029When the call stack is being unwound due to an exception being thrown,
9030the exception is compared against each ``clause`` in turn. If it doesn't
9031match any of the clauses, and the ``cleanup`` flag is not set, then
9032unwinding continues further up the call stack.
9033
9034The ``landingpad`` instruction has several restrictions:
9035
9036- A landing pad block is a basic block which is the unwind destination
9037 of an '``invoke``' instruction.
9038- A landing pad block must have a '``landingpad``' instruction as its
9039 first non-PHI instruction.
9040- There can be only one '``landingpad``' instruction within the landing
9041 pad block.
9042- A basic block that is not a landing pad block may not include a
9043 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009044
9045Example:
9046""""""""
9047
9048.. code-block:: llvm
9049
9050 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009051 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009052 catch i8** @_ZTIi
9053 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009054 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009055 cleanup
9056 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009057 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009058 catch i8** @_ZTIi
9059 filter [1 x i8**] [@_ZTId]
9060
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009061.. _i_catchpad:
9062
9063'``catchpad``' Instruction
9064^^^^^^^^^^^^^^^^^^^^^^^^^^
9065
9066Syntax:
9067"""""""
9068
9069::
9070
9071 <resultval> = catchpad within <catchswitch> [<args>*]
9072
9073Overview:
9074"""""""""
9075
9076The '``catchpad``' instruction is used by `LLVM's exception handling
9077system <ExceptionHandling.html#overview>`_ to specify that a basic block
9078begins a catch handler --- one where a personality routine attempts to transfer
9079control to catch an exception.
9080
9081Arguments:
9082""""""""""
9083
9084The ``catchswitch`` operand must always be a token produced by a
9085:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9086ensures that each ``catchpad`` has exactly one predecessor block, and it always
9087terminates in a ``catchswitch``.
9088
9089The ``args`` correspond to whatever information the personality routine
9090requires to know if this is an appropriate handler for the exception. Control
9091will transfer to the ``catchpad`` if this is the first appropriate handler for
9092the exception.
9093
9094The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9095``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9096pads.
9097
9098Semantics:
9099""""""""""
9100
9101When the call stack is being unwound due to an exception being thrown, the
9102exception is compared against the ``args``. If it doesn't match, control will
9103not reach the ``catchpad`` instruction. The representation of ``args`` is
9104entirely target and personality function-specific.
9105
9106Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9107instruction must be the first non-phi of its parent basic block.
9108
9109The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9110instructions is described in the
9111`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9112
9113When a ``catchpad`` has been "entered" but not yet "exited" (as
9114described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9115it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9116that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9117
9118Example:
9119""""""""
9120
Renato Golin124f2592016-07-20 12:16:38 +00009121.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009122
9123 dispatch:
9124 %cs = catchswitch within none [label %handler0] unwind to caller
9125 ;; A catch block which can catch an integer.
9126 handler0:
9127 %tok = catchpad within %cs [i8** @_ZTIi]
9128
David Majnemer654e1302015-07-31 17:58:14 +00009129.. _i_cleanuppad:
9130
9131'``cleanuppad``' Instruction
9132^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9133
9134Syntax:
9135"""""""
9136
9137::
9138
David Majnemer8a1c45d2015-12-12 05:38:55 +00009139 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009140
9141Overview:
9142"""""""""
9143
9144The '``cleanuppad``' instruction is used by `LLVM's exception handling
9145system <ExceptionHandling.html#overview>`_ to specify that a basic block
9146is a cleanup block --- one where a personality routine attempts to
9147transfer control to run cleanup actions.
9148The ``args`` correspond to whatever additional
9149information the :ref:`personality function <personalityfn>` requires to
9150execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009151The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009152match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9153The ``parent`` argument is the token of the funclet that contains the
9154``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9155this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009156
9157Arguments:
9158""""""""""
9159
9160The instruction takes a list of arbitrary values which are interpreted
9161by the :ref:`personality function <personalityfn>`.
9162
9163Semantics:
9164""""""""""
9165
David Majnemer654e1302015-07-31 17:58:14 +00009166When the call stack is being unwound due to an exception being thrown,
9167the :ref:`personality function <personalityfn>` transfers control to the
9168``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009169As with calling conventions, how the personality function results are
9170represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009171
9172The ``cleanuppad`` instruction has several restrictions:
9173
9174- A cleanup block is a basic block which is the unwind destination of
9175 an exceptional instruction.
9176- A cleanup block must have a '``cleanuppad``' instruction as its
9177 first non-PHI instruction.
9178- There can be only one '``cleanuppad``' instruction within the
9179 cleanup block.
9180- A basic block that is not a cleanup block may not include a
9181 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009182
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009183When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9184described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9185it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9186that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009187
David Majnemer654e1302015-07-31 17:58:14 +00009188Example:
9189""""""""
9190
Renato Golin124f2592016-07-20 12:16:38 +00009191.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009192
David Majnemer8a1c45d2015-12-12 05:38:55 +00009193 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009194
Sean Silvab084af42012-12-07 10:36:55 +00009195.. _intrinsics:
9196
9197Intrinsic Functions
9198===================
9199
9200LLVM supports the notion of an "intrinsic function". These functions
9201have well known names and semantics and are required to follow certain
9202restrictions. Overall, these intrinsics represent an extension mechanism
9203for the LLVM language that does not require changing all of the
9204transformations in LLVM when adding to the language (or the bitcode
9205reader/writer, the parser, etc...).
9206
9207Intrinsic function names must all start with an "``llvm.``" prefix. This
9208prefix is reserved in LLVM for intrinsic names; thus, function names may
9209not begin with this prefix. Intrinsic functions must always be external
9210functions: you cannot define the body of intrinsic functions. Intrinsic
9211functions may only be used in call or invoke instructions: it is illegal
9212to take the address of an intrinsic function. Additionally, because
9213intrinsic functions are part of the LLVM language, it is required if any
9214are added that they be documented here.
9215
9216Some intrinsic functions can be overloaded, i.e., the intrinsic
9217represents a family of functions that perform the same operation but on
9218different data types. Because LLVM can represent over 8 million
9219different integer types, overloading is used commonly to allow an
9220intrinsic function to operate on any integer type. One or more of the
9221argument types or the result type can be overloaded to accept any
9222integer type. Argument types may also be defined as exactly matching a
9223previous argument's type or the result type. This allows an intrinsic
9224function which accepts multiple arguments, but needs all of them to be
9225of the same type, to only be overloaded with respect to a single
9226argument or the result.
9227
9228Overloaded intrinsics will have the names of its overloaded argument
9229types encoded into its function name, each preceded by a period. Only
9230those types which are overloaded result in a name suffix. Arguments
9231whose type is matched against another type do not. For example, the
9232``llvm.ctpop`` function can take an integer of any width and returns an
9233integer of exactly the same integer width. This leads to a family of
9234functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9235``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9236overloaded, and only one type suffix is required. Because the argument's
9237type is matched against the return type, it does not require its own
9238name suffix.
9239
9240To learn how to add an intrinsic function, please see the `Extending
9241LLVM Guide <ExtendingLLVM.html>`_.
9242
9243.. _int_varargs:
9244
9245Variable Argument Handling Intrinsics
9246-------------------------------------
9247
9248Variable argument support is defined in LLVM with the
9249:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9250functions. These functions are related to the similarly named macros
9251defined in the ``<stdarg.h>`` header file.
9252
9253All of these functions operate on arguments that use a target-specific
9254value type "``va_list``". The LLVM assembly language reference manual
9255does not define what this type is, so all transformations should be
9256prepared to handle these functions regardless of the type used.
9257
9258This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9259variable argument handling intrinsic functions are used.
9260
9261.. code-block:: llvm
9262
Tim Northoverab60bb92014-11-02 01:21:51 +00009263 ; This struct is different for every platform. For most platforms,
9264 ; it is merely an i8*.
9265 %struct.va_list = type { i8* }
9266
9267 ; For Unix x86_64 platforms, va_list is the following struct:
9268 ; %struct.va_list = type { i32, i32, i8*, i8* }
9269
Sean Silvab084af42012-12-07 10:36:55 +00009270 define i32 @test(i32 %X, ...) {
9271 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009272 %ap = alloca %struct.va_list
9273 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009274 call void @llvm.va_start(i8* %ap2)
9275
9276 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009277 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009278
9279 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9280 %aq = alloca i8*
9281 %aq2 = bitcast i8** %aq to i8*
9282 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9283 call void @llvm.va_end(i8* %aq2)
9284
9285 ; Stop processing of arguments.
9286 call void @llvm.va_end(i8* %ap2)
9287 ret i32 %tmp
9288 }
9289
9290 declare void @llvm.va_start(i8*)
9291 declare void @llvm.va_copy(i8*, i8*)
9292 declare void @llvm.va_end(i8*)
9293
9294.. _int_va_start:
9295
9296'``llvm.va_start``' Intrinsic
9297^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9298
9299Syntax:
9300"""""""
9301
9302::
9303
Nick Lewycky04f6de02013-09-11 22:04:52 +00009304 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009305
9306Overview:
9307"""""""""
9308
9309The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9310subsequent use by ``va_arg``.
9311
9312Arguments:
9313""""""""""
9314
9315The argument is a pointer to a ``va_list`` element to initialize.
9316
9317Semantics:
9318""""""""""
9319
9320The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9321available in C. In a target-dependent way, it initializes the
9322``va_list`` element to which the argument points, so that the next call
9323to ``va_arg`` will produce the first variable argument passed to the
9324function. Unlike the C ``va_start`` macro, this intrinsic does not need
9325to know the last argument of the function as the compiler can figure
9326that out.
9327
9328'``llvm.va_end``' Intrinsic
9329^^^^^^^^^^^^^^^^^^^^^^^^^^^
9330
9331Syntax:
9332"""""""
9333
9334::
9335
9336 declare void @llvm.va_end(i8* <arglist>)
9337
9338Overview:
9339"""""""""
9340
9341The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9342initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9343
9344Arguments:
9345""""""""""
9346
9347The argument is a pointer to a ``va_list`` to destroy.
9348
9349Semantics:
9350""""""""""
9351
9352The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9353available in C. In a target-dependent way, it destroys the ``va_list``
9354element to which the argument points. Calls to
9355:ref:`llvm.va_start <int_va_start>` and
9356:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9357``llvm.va_end``.
9358
9359.. _int_va_copy:
9360
9361'``llvm.va_copy``' Intrinsic
9362^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9363
9364Syntax:
9365"""""""
9366
9367::
9368
9369 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9370
9371Overview:
9372"""""""""
9373
9374The '``llvm.va_copy``' intrinsic copies the current argument position
9375from the source argument list to the destination argument list.
9376
9377Arguments:
9378""""""""""
9379
9380The first argument is a pointer to a ``va_list`` element to initialize.
9381The second argument is a pointer to a ``va_list`` element to copy from.
9382
9383Semantics:
9384""""""""""
9385
9386The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9387available in C. In a target-dependent way, it copies the source
9388``va_list`` element into the destination ``va_list`` element. This
9389intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9390arbitrarily complex and require, for example, memory allocation.
9391
9392Accurate Garbage Collection Intrinsics
9393--------------------------------------
9394
Philip Reamesc5b0f562015-02-25 23:52:06 +00009395LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009396(GC) requires the frontend to generate code containing appropriate intrinsic
9397calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009398intrinsics in a manner which is appropriate for the target collector.
9399
Sean Silvab084af42012-12-07 10:36:55 +00009400These intrinsics allow identification of :ref:`GC roots on the
9401stack <int_gcroot>`, as well as garbage collector implementations that
9402require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009403Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009404these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009405details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009406
Philip Reamesf80bbff2015-02-25 23:45:20 +00009407Experimental Statepoint Intrinsics
9408^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9409
9410LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009411collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009412to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009413:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009414differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009415<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009416described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009417
9418.. _int_gcroot:
9419
9420'``llvm.gcroot``' Intrinsic
9421^^^^^^^^^^^^^^^^^^^^^^^^^^^
9422
9423Syntax:
9424"""""""
9425
9426::
9427
9428 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9429
9430Overview:
9431"""""""""
9432
9433The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9434the code generator, and allows some metadata to be associated with it.
9435
9436Arguments:
9437""""""""""
9438
9439The first argument specifies the address of a stack object that contains
9440the root pointer. The second pointer (which must be either a constant or
9441a global value address) contains the meta-data to be associated with the
9442root.
9443
9444Semantics:
9445""""""""""
9446
9447At runtime, a call to this intrinsic stores a null pointer into the
9448"ptrloc" location. At compile-time, the code generator generates
9449information to allow the runtime to find the pointer at GC safe points.
9450The '``llvm.gcroot``' intrinsic may only be used in a function which
9451:ref:`specifies a GC algorithm <gc>`.
9452
9453.. _int_gcread:
9454
9455'``llvm.gcread``' Intrinsic
9456^^^^^^^^^^^^^^^^^^^^^^^^^^^
9457
9458Syntax:
9459"""""""
9460
9461::
9462
9463 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9464
9465Overview:
9466"""""""""
9467
9468The '``llvm.gcread``' intrinsic identifies reads of references from heap
9469locations, allowing garbage collector implementations that require read
9470barriers.
9471
9472Arguments:
9473""""""""""
9474
9475The second argument is the address to read from, which should be an
9476address allocated from the garbage collector. The first object is a
9477pointer to the start of the referenced object, if needed by the language
9478runtime (otherwise null).
9479
9480Semantics:
9481""""""""""
9482
9483The '``llvm.gcread``' intrinsic has the same semantics as a load
9484instruction, but may be replaced with substantially more complex code by
9485the garbage collector runtime, as needed. The '``llvm.gcread``'
9486intrinsic may only be used in a function which :ref:`specifies a GC
9487algorithm <gc>`.
9488
9489.. _int_gcwrite:
9490
9491'``llvm.gcwrite``' Intrinsic
9492^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9493
9494Syntax:
9495"""""""
9496
9497::
9498
9499 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9500
9501Overview:
9502"""""""""
9503
9504The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9505locations, allowing garbage collector implementations that require write
9506barriers (such as generational or reference counting collectors).
9507
9508Arguments:
9509""""""""""
9510
9511The first argument is the reference to store, the second is the start of
9512the object to store it to, and the third is the address of the field of
9513Obj to store to. If the runtime does not require a pointer to the
9514object, Obj may be null.
9515
9516Semantics:
9517""""""""""
9518
9519The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9520instruction, but may be replaced with substantially more complex code by
9521the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9522intrinsic may only be used in a function which :ref:`specifies a GC
9523algorithm <gc>`.
9524
9525Code Generator Intrinsics
9526-------------------------
9527
9528These intrinsics are provided by LLVM to expose special features that
9529may only be implemented with code generator support.
9530
9531'``llvm.returnaddress``' Intrinsic
9532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9533
9534Syntax:
9535"""""""
9536
9537::
9538
9539 declare i8 *@llvm.returnaddress(i32 <level>)
9540
9541Overview:
9542"""""""""
9543
9544The '``llvm.returnaddress``' intrinsic attempts to compute a
9545target-specific value indicating the return address of the current
9546function or one of its callers.
9547
9548Arguments:
9549""""""""""
9550
9551The argument to this intrinsic indicates which function to return the
9552address for. Zero indicates the calling function, one indicates its
9553caller, etc. The argument is **required** to be a constant integer
9554value.
9555
9556Semantics:
9557""""""""""
9558
9559The '``llvm.returnaddress``' intrinsic either returns a pointer
9560indicating the return address of the specified call frame, or zero if it
9561cannot be identified. The value returned by this intrinsic is likely to
9562be incorrect or 0 for arguments other than zero, so it should only be
9563used for debugging purposes.
9564
9565Note that calling this intrinsic does not prevent function inlining or
9566other aggressive transformations, so the value returned may not be that
9567of the obvious source-language caller.
9568
Albert Gutowski795d7d62016-10-12 22:13:19 +00009569'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009571
9572Syntax:
9573"""""""
9574
9575::
9576
9577 declare i8 *@llvm.addressofreturnaddress()
9578
9579Overview:
9580"""""""""
9581
9582The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9583pointer to the place in the stack frame where the return address of the
9584current function is stored.
9585
9586Semantics:
9587""""""""""
9588
9589Note that calling this intrinsic does not prevent function inlining or
9590other aggressive transformations, so the value returned may not be that
9591of the obvious source-language caller.
9592
9593This intrinsic is only implemented for x86.
9594
Sean Silvab084af42012-12-07 10:36:55 +00009595'``llvm.frameaddress``' Intrinsic
9596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9597
9598Syntax:
9599"""""""
9600
9601::
9602
9603 declare i8* @llvm.frameaddress(i32 <level>)
9604
9605Overview:
9606"""""""""
9607
9608The '``llvm.frameaddress``' intrinsic attempts to return the
9609target-specific frame pointer value for the specified stack frame.
9610
9611Arguments:
9612""""""""""
9613
9614The argument to this intrinsic indicates which function to return the
9615frame pointer for. Zero indicates the calling function, one indicates
9616its caller, etc. The argument is **required** to be a constant integer
9617value.
9618
9619Semantics:
9620""""""""""
9621
9622The '``llvm.frameaddress``' intrinsic either returns a pointer
9623indicating the frame address of the specified call frame, or zero if it
9624cannot be identified. The value returned by this intrinsic is likely to
9625be incorrect or 0 for arguments other than zero, so it should only be
9626used for debugging purposes.
9627
9628Note that calling this intrinsic does not prevent function inlining or
9629other aggressive transformations, so the value returned may not be that
9630of the obvious source-language caller.
9631
Reid Kleckner60381792015-07-07 22:25:32 +00009632'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9634
9635Syntax:
9636"""""""
9637
9638::
9639
Reid Kleckner60381792015-07-07 22:25:32 +00009640 declare void @llvm.localescape(...)
9641 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009642
9643Overview:
9644"""""""""
9645
Reid Kleckner60381792015-07-07 22:25:32 +00009646The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9647allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009648live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009649computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009650
9651Arguments:
9652""""""""""
9653
Reid Kleckner60381792015-07-07 22:25:32 +00009654All arguments to '``llvm.localescape``' must be pointers to static allocas or
9655casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009656once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009657
Reid Kleckner60381792015-07-07 22:25:32 +00009658The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009659bitcasted pointer to a function defined in the current module. The code
9660generator cannot determine the frame allocation offset of functions defined in
9661other modules.
9662
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009663The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9664call frame that is currently live. The return value of '``llvm.localaddress``'
9665is one way to produce such a value, but various runtimes also expose a suitable
9666pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009667
Reid Kleckner60381792015-07-07 22:25:32 +00009668The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9669'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009670
Reid Klecknere9b89312015-01-13 00:48:10 +00009671Semantics:
9672""""""""""
9673
Reid Kleckner60381792015-07-07 22:25:32 +00009674These intrinsics allow a group of functions to share access to a set of local
9675stack allocations of a one parent function. The parent function may call the
9676'``llvm.localescape``' intrinsic once from the function entry block, and the
9677child functions can use '``llvm.localrecover``' to access the escaped allocas.
9678The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9679the escaped allocas are allocated, which would break attempts to use
9680'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009681
Renato Golinc7aea402014-05-06 16:51:25 +00009682.. _int_read_register:
9683.. _int_write_register:
9684
9685'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9686^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9687
9688Syntax:
9689"""""""
9690
9691::
9692
9693 declare i32 @llvm.read_register.i32(metadata)
9694 declare i64 @llvm.read_register.i64(metadata)
9695 declare void @llvm.write_register.i32(metadata, i32 @value)
9696 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009697 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009698
9699Overview:
9700"""""""""
9701
9702The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9703provides access to the named register. The register must be valid on
9704the architecture being compiled to. The type needs to be compatible
9705with the register being read.
9706
9707Semantics:
9708""""""""""
9709
9710The '``llvm.read_register``' intrinsic returns the current value of the
9711register, where possible. The '``llvm.write_register``' intrinsic sets
9712the current value of the register, where possible.
9713
9714This is useful to implement named register global variables that need
9715to always be mapped to a specific register, as is common practice on
9716bare-metal programs including OS kernels.
9717
9718The compiler doesn't check for register availability or use of the used
9719register in surrounding code, including inline assembly. Because of that,
9720allocatable registers are not supported.
9721
9722Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009723architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009724work is needed to support other registers and even more so, allocatable
9725registers.
9726
Sean Silvab084af42012-12-07 10:36:55 +00009727.. _int_stacksave:
9728
9729'``llvm.stacksave``' Intrinsic
9730^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9731
9732Syntax:
9733"""""""
9734
9735::
9736
9737 declare i8* @llvm.stacksave()
9738
9739Overview:
9740"""""""""
9741
9742The '``llvm.stacksave``' intrinsic is used to remember the current state
9743of the function stack, for use with
9744:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9745implementing language features like scoped automatic variable sized
9746arrays in C99.
9747
9748Semantics:
9749""""""""""
9750
9751This intrinsic returns a opaque pointer value that can be passed to
9752:ref:`llvm.stackrestore <int_stackrestore>`. When an
9753``llvm.stackrestore`` intrinsic is executed with a value saved from
9754``llvm.stacksave``, it effectively restores the state of the stack to
9755the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9756practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9757were allocated after the ``llvm.stacksave`` was executed.
9758
9759.. _int_stackrestore:
9760
9761'``llvm.stackrestore``' Intrinsic
9762^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9763
9764Syntax:
9765"""""""
9766
9767::
9768
9769 declare void @llvm.stackrestore(i8* %ptr)
9770
9771Overview:
9772"""""""""
9773
9774The '``llvm.stackrestore``' intrinsic is used to restore the state of
9775the function stack to the state it was in when the corresponding
9776:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9777useful for implementing language features like scoped automatic variable
9778sized arrays in C99.
9779
9780Semantics:
9781""""""""""
9782
9783See the description for :ref:`llvm.stacksave <int_stacksave>`.
9784
Yury Gribovd7dbb662015-12-01 11:40:55 +00009785.. _int_get_dynamic_area_offset:
9786
9787'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009788^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009789
9790Syntax:
9791"""""""
9792
9793::
9794
9795 declare i32 @llvm.get.dynamic.area.offset.i32()
9796 declare i64 @llvm.get.dynamic.area.offset.i64()
9797
Lang Hames10239932016-10-08 00:20:42 +00009798Overview:
9799"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009800
9801 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9802 get the offset from native stack pointer to the address of the most
9803 recent dynamic alloca on the caller's stack. These intrinsics are
9804 intendend for use in combination with
9805 :ref:`llvm.stacksave <int_stacksave>` to get a
9806 pointer to the most recent dynamic alloca. This is useful, for example,
9807 for AddressSanitizer's stack unpoisoning routines.
9808
9809Semantics:
9810""""""""""
9811
9812 These intrinsics return a non-negative integer value that can be used to
9813 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9814 on the caller's stack. In particular, for targets where stack grows downwards,
9815 adding this offset to the native stack pointer would get the address of the most
9816 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009817 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009818 one past the end of the most recent dynamic alloca.
9819
9820 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9821 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9822 compile-time-known constant value.
9823
9824 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +00009825 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +00009826
Sean Silvab084af42012-12-07 10:36:55 +00009827'``llvm.prefetch``' Intrinsic
9828^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9829
9830Syntax:
9831"""""""
9832
9833::
9834
9835 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9836
9837Overview:
9838"""""""""
9839
9840The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9841insert a prefetch instruction if supported; otherwise, it is a noop.
9842Prefetches have no effect on the behavior of the program but can change
9843its performance characteristics.
9844
9845Arguments:
9846""""""""""
9847
9848``address`` is the address to be prefetched, ``rw`` is the specifier
9849determining if the fetch should be for a read (0) or write (1), and
9850``locality`` is a temporal locality specifier ranging from (0) - no
9851locality, to (3) - extremely local keep in cache. The ``cache type``
9852specifies whether the prefetch is performed on the data (1) or
9853instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9854arguments must be constant integers.
9855
9856Semantics:
9857""""""""""
9858
9859This intrinsic does not modify the behavior of the program. In
9860particular, prefetches cannot trap and do not produce a value. On
9861targets that support this intrinsic, the prefetch can provide hints to
9862the processor cache for better performance.
9863
9864'``llvm.pcmarker``' Intrinsic
9865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9866
9867Syntax:
9868"""""""
9869
9870::
9871
9872 declare void @llvm.pcmarker(i32 <id>)
9873
9874Overview:
9875"""""""""
9876
9877The '``llvm.pcmarker``' intrinsic is a method to export a Program
9878Counter (PC) in a region of code to simulators and other tools. The
9879method is target specific, but it is expected that the marker will use
9880exported symbols to transmit the PC of the marker. The marker makes no
9881guarantees that it will remain with any specific instruction after
9882optimizations. It is possible that the presence of a marker will inhibit
9883optimizations. The intended use is to be inserted after optimizations to
9884allow correlations of simulation runs.
9885
9886Arguments:
9887""""""""""
9888
9889``id`` is a numerical id identifying the marker.
9890
9891Semantics:
9892""""""""""
9893
9894This intrinsic does not modify the behavior of the program. Backends
9895that do not support this intrinsic may ignore it.
9896
9897'``llvm.readcyclecounter``' Intrinsic
9898^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9899
9900Syntax:
9901"""""""
9902
9903::
9904
9905 declare i64 @llvm.readcyclecounter()
9906
9907Overview:
9908"""""""""
9909
9910The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9911counter register (or similar low latency, high accuracy clocks) on those
9912targets that support it. On X86, it should map to RDTSC. On Alpha, it
9913should map to RPCC. As the backing counters overflow quickly (on the
9914order of 9 seconds on alpha), this should only be used for small
9915timings.
9916
9917Semantics:
9918""""""""""
9919
9920When directly supported, reading the cycle counter should not modify any
9921memory. Implementations are allowed to either return a application
9922specific value or a system wide value. On backends without support, this
9923is lowered to a constant 0.
9924
Tim Northoverbc933082013-05-23 19:11:20 +00009925Note that runtime support may be conditional on the privilege-level code is
9926running at and the host platform.
9927
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009928'``llvm.clear_cache``' Intrinsic
9929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9930
9931Syntax:
9932"""""""
9933
9934::
9935
9936 declare void @llvm.clear_cache(i8*, i8*)
9937
9938Overview:
9939"""""""""
9940
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009941The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9942in the specified range to the execution unit of the processor. On
9943targets with non-unified instruction and data cache, the implementation
9944flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009945
9946Semantics:
9947""""""""""
9948
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009949On platforms with coherent instruction and data caches (e.g. x86), this
9950intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009951cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009952instructions or a system call, if cache flushing requires special
9953privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009954
Sean Silvad02bf3e2014-04-07 22:29:53 +00009955The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009956time library.
Renato Golin93010e62014-03-26 14:01:32 +00009957
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009958This instrinsic does *not* empty the instruction pipeline. Modifications
9959of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009960
Justin Bogner61ba2e32014-12-08 18:02:35 +00009961'``llvm.instrprof_increment``' Intrinsic
9962^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9963
9964Syntax:
9965"""""""
9966
9967::
9968
9969 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9970 i32 <num-counters>, i32 <index>)
9971
9972Overview:
9973"""""""""
9974
9975The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9976frontend for use with instrumentation based profiling. These will be
9977lowered by the ``-instrprof`` pass to generate execution counts of a
9978program at runtime.
9979
9980Arguments:
9981""""""""""
9982
9983The first argument is a pointer to a global variable containing the
9984name of the entity being instrumented. This should generally be the
9985(mangled) function name for a set of counters.
9986
9987The second argument is a hash value that can be used by the consumer
9988of the profile data to detect changes to the instrumented source, and
9989the third is the number of counters associated with ``name``. It is an
9990error if ``hash`` or ``num-counters`` differ between two instances of
9991``instrprof_increment`` that refer to the same name.
9992
9993The last argument refers to which of the counters for ``name`` should
9994be incremented. It should be a value between 0 and ``num-counters``.
9995
9996Semantics:
9997""""""""""
9998
9999This intrinsic represents an increment of a profiling counter. It will
10000cause the ``-instrprof`` pass to generate the appropriate data
10001structures and the code to increment the appropriate value, in a
10002format that can be written out by a compiler runtime and consumed via
10003the ``llvm-profdata`` tool.
10004
Xinliang David Li4ca17332016-09-18 18:34:07 +000010005'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010006^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010007
10008Syntax:
10009"""""""
10010
10011::
10012
10013 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
10014 i32 <num-counters>,
10015 i32 <index>, i64 <step>)
10016
10017Overview:
10018"""""""""
10019
10020The '``llvm.instrprof_increment_step``' intrinsic is an extension to
10021the '``llvm.instrprof_increment``' intrinsic with an additional fifth
10022argument to specify the step of the increment.
10023
10024Arguments:
10025""""""""""
10026The first four arguments are the same as '``llvm.instrprof_increment``'
10027instrinsic.
10028
10029The last argument specifies the value of the increment of the counter variable.
10030
10031Semantics:
10032""""""""""
10033See description of '``llvm.instrprof_increment``' instrinsic.
10034
10035
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010036'``llvm.instrprof_value_profile``' Intrinsic
10037^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10038
10039Syntax:
10040"""""""
10041
10042::
10043
10044 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
10045 i64 <value>, i32 <value_kind>,
10046 i32 <index>)
10047
10048Overview:
10049"""""""""
10050
10051The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
10052frontend for use with instrumentation based profiling. This will be
10053lowered by the ``-instrprof`` pass to find out the target values,
10054instrumented expressions take in a program at runtime.
10055
10056Arguments:
10057""""""""""
10058
10059The first argument is a pointer to a global variable containing the
10060name of the entity being instrumented. ``name`` should generally be the
10061(mangled) function name for a set of counters.
10062
10063The second argument is a hash value that can be used by the consumer
10064of the profile data to detect changes to the instrumented source. It
10065is an error if ``hash`` differs between two instances of
10066``llvm.instrprof_*`` that refer to the same name.
10067
10068The third argument is the value of the expression being profiled. The profiled
10069expression's value should be representable as an unsigned 64-bit value. The
10070fourth argument represents the kind of value profiling that is being done. The
10071supported value profiling kinds are enumerated through the
10072``InstrProfValueKind`` type declared in the
10073``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10074index of the instrumented expression within ``name``. It should be >= 0.
10075
10076Semantics:
10077""""""""""
10078
10079This intrinsic represents the point where a call to a runtime routine
10080should be inserted for value profiling of target expressions. ``-instrprof``
10081pass will generate the appropriate data structures and replace the
10082``llvm.instrprof_value_profile`` intrinsic with the call to the profile
10083runtime library with proper arguments.
10084
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010085'``llvm.thread.pointer``' Intrinsic
10086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10087
10088Syntax:
10089"""""""
10090
10091::
10092
10093 declare i8* @llvm.thread.pointer()
10094
10095Overview:
10096"""""""""
10097
10098The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10099pointer.
10100
10101Semantics:
10102""""""""""
10103
10104The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10105for the current thread. The exact semantics of this value are target
10106specific: it may point to the start of TLS area, to the end, or somewhere
10107in the middle. Depending on the target, this intrinsic may read a register,
10108call a helper function, read from an alternate memory space, or perform
10109other operations necessary to locate the TLS area. Not all targets support
10110this intrinsic.
10111
Sean Silvab084af42012-12-07 10:36:55 +000010112Standard C Library Intrinsics
10113-----------------------------
10114
10115LLVM provides intrinsics for a few important standard C library
10116functions. These intrinsics allow source-language front-ends to pass
10117information about the alignment of the pointer arguments to the code
10118generator, providing opportunity for more efficient code generation.
10119
10120.. _int_memcpy:
10121
10122'``llvm.memcpy``' Intrinsic
10123^^^^^^^^^^^^^^^^^^^^^^^^^^^
10124
10125Syntax:
10126"""""""
10127
10128This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10129integer bit width and for different address spaces. Not all targets
10130support all bit widths however.
10131
10132::
10133
10134 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10135 i32 <len>, i32 <align>, i1 <isvolatile>)
10136 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10137 i64 <len>, i32 <align>, i1 <isvolatile>)
10138
10139Overview:
10140"""""""""
10141
10142The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10143source location to the destination location.
10144
10145Note that, unlike the standard libc function, the ``llvm.memcpy.*``
10146intrinsics do not return a value, takes extra alignment/isvolatile
10147arguments and the pointers can be in specified address spaces.
10148
10149Arguments:
10150""""""""""
10151
10152The first argument is a pointer to the destination, the second is a
10153pointer to the source. The third argument is an integer argument
10154specifying the number of bytes to copy, the fourth argument is the
10155alignment of the source and destination locations, and the fifth is a
10156boolean indicating a volatile access.
10157
10158If the call to this intrinsic has an alignment value that is not 0 or 1,
10159then the caller guarantees that both the source and destination pointers
10160are aligned to that boundary.
10161
10162If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10163a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10164very cleanly specified and it is unwise to depend on it.
10165
10166Semantics:
10167""""""""""
10168
10169The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10170source location to the destination location, which are not allowed to
10171overlap. It copies "len" bytes of memory over. If the argument is known
10172to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010173argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010174
10175'``llvm.memmove``' Intrinsic
10176^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10177
10178Syntax:
10179"""""""
10180
10181This is an overloaded intrinsic. You can use llvm.memmove on any integer
10182bit width and for different address space. Not all targets support all
10183bit widths however.
10184
10185::
10186
10187 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10188 i32 <len>, i32 <align>, i1 <isvolatile>)
10189 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10190 i64 <len>, i32 <align>, i1 <isvolatile>)
10191
10192Overview:
10193"""""""""
10194
10195The '``llvm.memmove.*``' intrinsics move a block of memory from the
10196source location to the destination location. It is similar to the
10197'``llvm.memcpy``' intrinsic but allows the two memory locations to
10198overlap.
10199
10200Note that, unlike the standard libc function, the ``llvm.memmove.*``
10201intrinsics do not return a value, takes extra alignment/isvolatile
10202arguments and the pointers can be in specified address spaces.
10203
10204Arguments:
10205""""""""""
10206
10207The first argument is a pointer to the destination, the second is a
10208pointer to the source. The third argument is an integer argument
10209specifying the number of bytes to copy, the fourth argument is the
10210alignment of the source and destination locations, and the fifth is a
10211boolean indicating a volatile access.
10212
10213If the call to this intrinsic has an alignment value that is not 0 or 1,
10214then the caller guarantees that the source and destination pointers are
10215aligned to that boundary.
10216
10217If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10218is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10219not very cleanly specified and it is unwise to depend on it.
10220
10221Semantics:
10222""""""""""
10223
10224The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10225source location to the destination location, which may overlap. It
10226copies "len" bytes of memory over. If the argument is known to be
10227aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010228otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010229
10230'``llvm.memset.*``' Intrinsics
10231^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10232
10233Syntax:
10234"""""""
10235
10236This is an overloaded intrinsic. You can use llvm.memset on any integer
10237bit width and for different address spaces. However, not all targets
10238support all bit widths.
10239
10240::
10241
10242 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10243 i32 <len>, i32 <align>, i1 <isvolatile>)
10244 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10245 i64 <len>, i32 <align>, i1 <isvolatile>)
10246
10247Overview:
10248"""""""""
10249
10250The '``llvm.memset.*``' intrinsics fill a block of memory with a
10251particular byte value.
10252
10253Note that, unlike the standard libc function, the ``llvm.memset``
10254intrinsic does not return a value and takes extra alignment/volatile
10255arguments. Also, the destination can be in an arbitrary address space.
10256
10257Arguments:
10258""""""""""
10259
10260The first argument is a pointer to the destination to fill, the second
10261is the byte value with which to fill it, the third argument is an
10262integer argument specifying the number of bytes to fill, and the fourth
10263argument is the known alignment of the destination location.
10264
10265If the call to this intrinsic has an alignment value that is not 0 or 1,
10266then the caller guarantees that the destination pointer is aligned to
10267that boundary.
10268
10269If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10270a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10271very cleanly specified and it is unwise to depend on it.
10272
10273Semantics:
10274""""""""""
10275
10276The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10277at the destination location. If the argument is known to be aligned to
10278some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010279it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010280
10281'``llvm.sqrt.*``' Intrinsic
10282^^^^^^^^^^^^^^^^^^^^^^^^^^^
10283
10284Syntax:
10285"""""""
10286
10287This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10288floating point or vector of floating point type. Not all targets support
10289all types however.
10290
10291::
10292
10293 declare float @llvm.sqrt.f32(float %Val)
10294 declare double @llvm.sqrt.f64(double %Val)
10295 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10296 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10297 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10298
10299Overview:
10300"""""""""
10301
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010302The '``llvm.sqrt``' intrinsics return the square root of the specified value,
Justin Lebarcb9b41d2017-01-27 00:58:03 +000010303returning the same value as the libm '``sqrt``' functions would, but without
10304trapping or setting ``errno``.
Sean Silvab084af42012-12-07 10:36:55 +000010305
10306Arguments:
10307""""""""""
10308
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010309The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010310
10311Semantics:
10312""""""""""
10313
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010314This function returns the square root of the operand if it is a nonnegative
10315floating point number.
Sean Silvab084af42012-12-07 10:36:55 +000010316
10317'``llvm.powi.*``' Intrinsic
10318^^^^^^^^^^^^^^^^^^^^^^^^^^^
10319
10320Syntax:
10321"""""""
10322
10323This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10324floating point or vector of floating point type. Not all targets support
10325all types however.
10326
10327::
10328
10329 declare float @llvm.powi.f32(float %Val, i32 %power)
10330 declare double @llvm.powi.f64(double %Val, i32 %power)
10331 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10332 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10333 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10334
10335Overview:
10336"""""""""
10337
10338The '``llvm.powi.*``' intrinsics return the first operand raised to the
10339specified (positive or negative) power. The order of evaluation of
10340multiplications is not defined. When a vector of floating point type is
10341used, the second argument remains a scalar integer value.
10342
10343Arguments:
10344""""""""""
10345
10346The second argument is an integer power, and the first is a value to
10347raise to that power.
10348
10349Semantics:
10350""""""""""
10351
10352This function returns the first value raised to the second power with an
10353unspecified sequence of rounding operations.
10354
10355'``llvm.sin.*``' Intrinsic
10356^^^^^^^^^^^^^^^^^^^^^^^^^^
10357
10358Syntax:
10359"""""""
10360
10361This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10362floating point or vector of floating point type. Not all targets support
10363all types however.
10364
10365::
10366
10367 declare float @llvm.sin.f32(float %Val)
10368 declare double @llvm.sin.f64(double %Val)
10369 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10370 declare fp128 @llvm.sin.f128(fp128 %Val)
10371 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10372
10373Overview:
10374"""""""""
10375
10376The '``llvm.sin.*``' intrinsics return the sine of the operand.
10377
10378Arguments:
10379""""""""""
10380
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010381The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010382
10383Semantics:
10384""""""""""
10385
10386This function returns the sine of the specified operand, returning the
10387same values as the libm ``sin`` functions would, and handles error
10388conditions in the same way.
10389
10390'``llvm.cos.*``' Intrinsic
10391^^^^^^^^^^^^^^^^^^^^^^^^^^
10392
10393Syntax:
10394"""""""
10395
10396This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10397floating point or vector of floating point type. Not all targets support
10398all types however.
10399
10400::
10401
10402 declare float @llvm.cos.f32(float %Val)
10403 declare double @llvm.cos.f64(double %Val)
10404 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10405 declare fp128 @llvm.cos.f128(fp128 %Val)
10406 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10407
10408Overview:
10409"""""""""
10410
10411The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10412
10413Arguments:
10414""""""""""
10415
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010416The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010417
10418Semantics:
10419""""""""""
10420
10421This function returns the cosine of the specified operand, returning the
10422same values as the libm ``cos`` functions would, and handles error
10423conditions in the same way.
10424
10425'``llvm.pow.*``' Intrinsic
10426^^^^^^^^^^^^^^^^^^^^^^^^^^
10427
10428Syntax:
10429"""""""
10430
10431This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10432floating point or vector of floating point type. Not all targets support
10433all types however.
10434
10435::
10436
10437 declare float @llvm.pow.f32(float %Val, float %Power)
10438 declare double @llvm.pow.f64(double %Val, double %Power)
10439 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10440 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10441 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10442
10443Overview:
10444"""""""""
10445
10446The '``llvm.pow.*``' intrinsics return the first operand raised to the
10447specified (positive or negative) power.
10448
10449Arguments:
10450""""""""""
10451
10452The second argument is a floating point power, and the first is a value
10453to raise to that power.
10454
10455Semantics:
10456""""""""""
10457
10458This function returns the first value raised to the second power,
10459returning the same values as the libm ``pow`` functions would, and
10460handles error conditions in the same way.
10461
10462'``llvm.exp.*``' Intrinsic
10463^^^^^^^^^^^^^^^^^^^^^^^^^^
10464
10465Syntax:
10466"""""""
10467
10468This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10469floating point or vector of floating point type. Not all targets support
10470all types however.
10471
10472::
10473
10474 declare float @llvm.exp.f32(float %Val)
10475 declare double @llvm.exp.f64(double %Val)
10476 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10477 declare fp128 @llvm.exp.f128(fp128 %Val)
10478 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10479
10480Overview:
10481"""""""""
10482
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010483The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
10484value.
Sean Silvab084af42012-12-07 10:36:55 +000010485
10486Arguments:
10487""""""""""
10488
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010489The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010490
10491Semantics:
10492""""""""""
10493
10494This function returns the same values as the libm ``exp`` functions
10495would, and handles error conditions in the same way.
10496
10497'``llvm.exp2.*``' Intrinsic
10498^^^^^^^^^^^^^^^^^^^^^^^^^^^
10499
10500Syntax:
10501"""""""
10502
10503This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10504floating point or vector of floating point type. Not all targets support
10505all types however.
10506
10507::
10508
10509 declare float @llvm.exp2.f32(float %Val)
10510 declare double @llvm.exp2.f64(double %Val)
10511 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10512 declare fp128 @llvm.exp2.f128(fp128 %Val)
10513 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10514
10515Overview:
10516"""""""""
10517
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010518The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
10519specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010520
10521Arguments:
10522""""""""""
10523
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010524The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010525
10526Semantics:
10527""""""""""
10528
10529This function returns the same values as the libm ``exp2`` functions
10530would, and handles error conditions in the same way.
10531
10532'``llvm.log.*``' Intrinsic
10533^^^^^^^^^^^^^^^^^^^^^^^^^^
10534
10535Syntax:
10536"""""""
10537
10538This is an overloaded intrinsic. You can use ``llvm.log`` on any
10539floating point or vector of floating point type. Not all targets support
10540all types however.
10541
10542::
10543
10544 declare float @llvm.log.f32(float %Val)
10545 declare double @llvm.log.f64(double %Val)
10546 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10547 declare fp128 @llvm.log.f128(fp128 %Val)
10548 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10549
10550Overview:
10551"""""""""
10552
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010553The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
10554value.
Sean Silvab084af42012-12-07 10:36:55 +000010555
10556Arguments:
10557""""""""""
10558
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010559The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010560
10561Semantics:
10562""""""""""
10563
10564This function returns the same values as the libm ``log`` functions
10565would, and handles error conditions in the same way.
10566
10567'``llvm.log10.*``' Intrinsic
10568^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10569
10570Syntax:
10571"""""""
10572
10573This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10574floating point or vector of floating point type. Not all targets support
10575all types however.
10576
10577::
10578
10579 declare float @llvm.log10.f32(float %Val)
10580 declare double @llvm.log10.f64(double %Val)
10581 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10582 declare fp128 @llvm.log10.f128(fp128 %Val)
10583 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10584
10585Overview:
10586"""""""""
10587
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010588The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
10589specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010590
10591Arguments:
10592""""""""""
10593
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010594The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010595
10596Semantics:
10597""""""""""
10598
10599This function returns the same values as the libm ``log10`` functions
10600would, and handles error conditions in the same way.
10601
10602'``llvm.log2.*``' Intrinsic
10603^^^^^^^^^^^^^^^^^^^^^^^^^^^
10604
10605Syntax:
10606"""""""
10607
10608This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10609floating point or vector of floating point type. Not all targets support
10610all types however.
10611
10612::
10613
10614 declare float @llvm.log2.f32(float %Val)
10615 declare double @llvm.log2.f64(double %Val)
10616 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10617 declare fp128 @llvm.log2.f128(fp128 %Val)
10618 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10619
10620Overview:
10621"""""""""
10622
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010623The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
10624value.
Sean Silvab084af42012-12-07 10:36:55 +000010625
10626Arguments:
10627""""""""""
10628
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010629The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010630
10631Semantics:
10632""""""""""
10633
10634This function returns the same values as the libm ``log2`` functions
10635would, and handles error conditions in the same way.
10636
10637'``llvm.fma.*``' Intrinsic
10638^^^^^^^^^^^^^^^^^^^^^^^^^^
10639
10640Syntax:
10641"""""""
10642
10643This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10644floating point or vector of floating point type. Not all targets support
10645all types however.
10646
10647::
10648
10649 declare float @llvm.fma.f32(float %a, float %b, float %c)
10650 declare double @llvm.fma.f64(double %a, double %b, double %c)
10651 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10652 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10653 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10654
10655Overview:
10656"""""""""
10657
10658The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10659operation.
10660
10661Arguments:
10662""""""""""
10663
10664The argument and return value are floating point numbers of the same
10665type.
10666
10667Semantics:
10668""""""""""
10669
10670This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010671would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010672
10673'``llvm.fabs.*``' Intrinsic
10674^^^^^^^^^^^^^^^^^^^^^^^^^^^
10675
10676Syntax:
10677"""""""
10678
10679This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10680floating point or vector of floating point type. Not all targets support
10681all types however.
10682
10683::
10684
10685 declare float @llvm.fabs.f32(float %Val)
10686 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010687 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010688 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010689 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010690
10691Overview:
10692"""""""""
10693
10694The '``llvm.fabs.*``' intrinsics return the absolute value of the
10695operand.
10696
10697Arguments:
10698""""""""""
10699
10700The argument and return value are floating point numbers of the same
10701type.
10702
10703Semantics:
10704""""""""""
10705
10706This function returns the same values as the libm ``fabs`` functions
10707would, and handles error conditions in the same way.
10708
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010709'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010711
10712Syntax:
10713"""""""
10714
10715This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10716floating point or vector of floating point type. Not all targets support
10717all types however.
10718
10719::
10720
Matt Arsenault64313c92014-10-22 18:25:02 +000010721 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10722 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10723 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10724 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10725 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010726
10727Overview:
10728"""""""""
10729
10730The '``llvm.minnum.*``' intrinsics return the minimum of the two
10731arguments.
10732
10733
10734Arguments:
10735""""""""""
10736
10737The arguments and return value are floating point numbers of the same
10738type.
10739
10740Semantics:
10741""""""""""
10742
10743Follows the IEEE-754 semantics for minNum, which also match for libm's
10744fmin.
10745
10746If either operand is a NaN, returns the other non-NaN operand. Returns
10747NaN only if both operands are NaN. If the operands compare equal,
10748returns a value that compares equal to both operands. This means that
10749fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10750
10751'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010752^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010753
10754Syntax:
10755"""""""
10756
10757This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10758floating point or vector of floating point type. Not all targets support
10759all types however.
10760
10761::
10762
Matt Arsenault64313c92014-10-22 18:25:02 +000010763 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10764 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10765 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10766 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10767 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010768
10769Overview:
10770"""""""""
10771
10772The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10773arguments.
10774
10775
10776Arguments:
10777""""""""""
10778
10779The arguments and return value are floating point numbers of the same
10780type.
10781
10782Semantics:
10783""""""""""
10784Follows the IEEE-754 semantics for maxNum, which also match for libm's
10785fmax.
10786
10787If either operand is a NaN, returns the other non-NaN operand. Returns
10788NaN only if both operands are NaN. If the operands compare equal,
10789returns a value that compares equal to both operands. This means that
10790fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10791
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010792'``llvm.copysign.*``' Intrinsic
10793^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10794
10795Syntax:
10796"""""""
10797
10798This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10799floating point or vector of floating point type. Not all targets support
10800all types however.
10801
10802::
10803
10804 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10805 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10806 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10807 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10808 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10809
10810Overview:
10811"""""""""
10812
10813The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10814first operand and the sign of the second operand.
10815
10816Arguments:
10817""""""""""
10818
10819The arguments and return value are floating point numbers of the same
10820type.
10821
10822Semantics:
10823""""""""""
10824
10825This function returns the same values as the libm ``copysign``
10826functions would, and handles error conditions in the same way.
10827
Sean Silvab084af42012-12-07 10:36:55 +000010828'``llvm.floor.*``' Intrinsic
10829^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10830
10831Syntax:
10832"""""""
10833
10834This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10835floating point or vector of floating point type. Not all targets support
10836all types however.
10837
10838::
10839
10840 declare float @llvm.floor.f32(float %Val)
10841 declare double @llvm.floor.f64(double %Val)
10842 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10843 declare fp128 @llvm.floor.f128(fp128 %Val)
10844 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10845
10846Overview:
10847"""""""""
10848
10849The '``llvm.floor.*``' intrinsics return the floor of the operand.
10850
10851Arguments:
10852""""""""""
10853
10854The argument and return value are floating point numbers of the same
10855type.
10856
10857Semantics:
10858""""""""""
10859
10860This function returns the same values as the libm ``floor`` functions
10861would, and handles error conditions in the same way.
10862
10863'``llvm.ceil.*``' Intrinsic
10864^^^^^^^^^^^^^^^^^^^^^^^^^^^
10865
10866Syntax:
10867"""""""
10868
10869This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10870floating point or vector of floating point type. Not all targets support
10871all types however.
10872
10873::
10874
10875 declare float @llvm.ceil.f32(float %Val)
10876 declare double @llvm.ceil.f64(double %Val)
10877 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10878 declare fp128 @llvm.ceil.f128(fp128 %Val)
10879 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10880
10881Overview:
10882"""""""""
10883
10884The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10885
10886Arguments:
10887""""""""""
10888
10889The argument and return value are floating point numbers of the same
10890type.
10891
10892Semantics:
10893""""""""""
10894
10895This function returns the same values as the libm ``ceil`` functions
10896would, and handles error conditions in the same way.
10897
10898'``llvm.trunc.*``' Intrinsic
10899^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10900
10901Syntax:
10902"""""""
10903
10904This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10905floating point or vector of floating point type. Not all targets support
10906all types however.
10907
10908::
10909
10910 declare float @llvm.trunc.f32(float %Val)
10911 declare double @llvm.trunc.f64(double %Val)
10912 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10913 declare fp128 @llvm.trunc.f128(fp128 %Val)
10914 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10915
10916Overview:
10917"""""""""
10918
10919The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10920nearest integer not larger in magnitude than the operand.
10921
10922Arguments:
10923""""""""""
10924
10925The argument and return value are floating point numbers of the same
10926type.
10927
10928Semantics:
10929""""""""""
10930
10931This function returns the same values as the libm ``trunc`` functions
10932would, and handles error conditions in the same way.
10933
10934'``llvm.rint.*``' Intrinsic
10935^^^^^^^^^^^^^^^^^^^^^^^^^^^
10936
10937Syntax:
10938"""""""
10939
10940This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10941floating point or vector of floating point type. Not all targets support
10942all types however.
10943
10944::
10945
10946 declare float @llvm.rint.f32(float %Val)
10947 declare double @llvm.rint.f64(double %Val)
10948 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10949 declare fp128 @llvm.rint.f128(fp128 %Val)
10950 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10951
10952Overview:
10953"""""""""
10954
10955The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10956nearest integer. It may raise an inexact floating-point exception if the
10957operand isn't an integer.
10958
10959Arguments:
10960""""""""""
10961
10962The argument and return value are floating point numbers of the same
10963type.
10964
10965Semantics:
10966""""""""""
10967
10968This function returns the same values as the libm ``rint`` functions
10969would, and handles error conditions in the same way.
10970
10971'``llvm.nearbyint.*``' Intrinsic
10972^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10973
10974Syntax:
10975"""""""
10976
10977This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10978floating point or vector of floating point type. Not all targets support
10979all types however.
10980
10981::
10982
10983 declare float @llvm.nearbyint.f32(float %Val)
10984 declare double @llvm.nearbyint.f64(double %Val)
10985 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10986 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10987 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10988
10989Overview:
10990"""""""""
10991
10992The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10993nearest integer.
10994
10995Arguments:
10996""""""""""
10997
10998The argument and return value are floating point numbers of the same
10999type.
11000
11001Semantics:
11002""""""""""
11003
11004This function returns the same values as the libm ``nearbyint``
11005functions would, and handles error conditions in the same way.
11006
Hal Finkel171817e2013-08-07 22:49:12 +000011007'``llvm.round.*``' Intrinsic
11008^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11009
11010Syntax:
11011"""""""
11012
11013This is an overloaded intrinsic. You can use ``llvm.round`` on any
11014floating point or vector of floating point type. Not all targets support
11015all types however.
11016
11017::
11018
11019 declare float @llvm.round.f32(float %Val)
11020 declare double @llvm.round.f64(double %Val)
11021 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11022 declare fp128 @llvm.round.f128(fp128 %Val)
11023 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11024
11025Overview:
11026"""""""""
11027
11028The '``llvm.round.*``' intrinsics returns the operand rounded to the
11029nearest integer.
11030
11031Arguments:
11032""""""""""
11033
11034The argument and return value are floating point numbers of the same
11035type.
11036
11037Semantics:
11038""""""""""
11039
11040This function returns the same values as the libm ``round``
11041functions would, and handles error conditions in the same way.
11042
Sean Silvab084af42012-12-07 10:36:55 +000011043Bit Manipulation Intrinsics
11044---------------------------
11045
11046LLVM provides intrinsics for a few important bit manipulation
11047operations. These allow efficient code generation for some algorithms.
11048
James Molloy90111f72015-11-12 12:29:09 +000011049'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011050^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011051
11052Syntax:
11053"""""""
11054
11055This is an overloaded intrinsic function. You can use bitreverse on any
11056integer type.
11057
11058::
11059
11060 declare i16 @llvm.bitreverse.i16(i16 <id>)
11061 declare i32 @llvm.bitreverse.i32(i32 <id>)
11062 declare i64 @llvm.bitreverse.i64(i64 <id>)
11063
11064Overview:
11065"""""""""
11066
11067The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011068bitpattern of an integer value; for example ``0b10110110`` becomes
11069``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011070
11071Semantics:
11072""""""""""
11073
Yichao Yu5abf14b2016-11-23 16:25:31 +000011074The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011075``M`` in the input moved to bit ``N-M`` in the output.
11076
Sean Silvab084af42012-12-07 10:36:55 +000011077'``llvm.bswap.*``' Intrinsics
11078^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11079
11080Syntax:
11081"""""""
11082
11083This is an overloaded intrinsic function. You can use bswap on any
11084integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11085
11086::
11087
11088 declare i16 @llvm.bswap.i16(i16 <id>)
11089 declare i32 @llvm.bswap.i32(i32 <id>)
11090 declare i64 @llvm.bswap.i64(i64 <id>)
11091
11092Overview:
11093"""""""""
11094
11095The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11096values with an even number of bytes (positive multiple of 16 bits).
11097These are useful for performing operations on data that is not in the
11098target's native byte order.
11099
11100Semantics:
11101""""""""""
11102
11103The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11104and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11105intrinsic returns an i32 value that has the four bytes of the input i32
11106swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11107returned i32 will have its bytes in 3, 2, 1, 0 order. The
11108``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11109concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11110respectively).
11111
11112'``llvm.ctpop.*``' Intrinsic
11113^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11114
11115Syntax:
11116"""""""
11117
11118This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11119bit width, or on any vector with integer elements. Not all targets
11120support all bit widths or vector types, however.
11121
11122::
11123
11124 declare i8 @llvm.ctpop.i8(i8 <src>)
11125 declare i16 @llvm.ctpop.i16(i16 <src>)
11126 declare i32 @llvm.ctpop.i32(i32 <src>)
11127 declare i64 @llvm.ctpop.i64(i64 <src>)
11128 declare i256 @llvm.ctpop.i256(i256 <src>)
11129 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11130
11131Overview:
11132"""""""""
11133
11134The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11135in a value.
11136
11137Arguments:
11138""""""""""
11139
11140The only argument is the value to be counted. The argument may be of any
11141integer type, or a vector with integer elements. The return type must
11142match the argument type.
11143
11144Semantics:
11145""""""""""
11146
11147The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11148each element of a vector.
11149
11150'``llvm.ctlz.*``' Intrinsic
11151^^^^^^^^^^^^^^^^^^^^^^^^^^^
11152
11153Syntax:
11154"""""""
11155
11156This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11157integer bit width, or any vector whose elements are integers. Not all
11158targets support all bit widths or vector types, however.
11159
11160::
11161
11162 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11163 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11164 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11165 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11166 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011167 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011168
11169Overview:
11170"""""""""
11171
11172The '``llvm.ctlz``' family of intrinsic functions counts the number of
11173leading zeros in a variable.
11174
11175Arguments:
11176""""""""""
11177
11178The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011179any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011180type must match the first argument type.
11181
11182The second argument must be a constant and is a flag to indicate whether
11183the intrinsic should ensure that a zero as the first argument produces a
11184defined result. Historically some architectures did not provide a
11185defined result for zero values as efficiently, and many algorithms are
11186now predicated on avoiding zero-value inputs.
11187
11188Semantics:
11189""""""""""
11190
11191The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11192zeros in a variable, or within each element of the vector. If
11193``src == 0`` then the result is the size in bits of the type of ``src``
11194if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11195``llvm.ctlz(i32 2) = 30``.
11196
11197'``llvm.cttz.*``' Intrinsic
11198^^^^^^^^^^^^^^^^^^^^^^^^^^^
11199
11200Syntax:
11201"""""""
11202
11203This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11204integer bit width, or any vector of integer elements. Not all targets
11205support all bit widths or vector types, however.
11206
11207::
11208
11209 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11210 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11211 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11212 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11213 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011214 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011215
11216Overview:
11217"""""""""
11218
11219The '``llvm.cttz``' family of intrinsic functions counts the number of
11220trailing zeros.
11221
11222Arguments:
11223""""""""""
11224
11225The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011226any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011227type must match the first argument type.
11228
11229The second argument must be a constant and is a flag to indicate whether
11230the intrinsic should ensure that a zero as the first argument produces a
11231defined result. Historically some architectures did not provide a
11232defined result for zero values as efficiently, and many algorithms are
11233now predicated on avoiding zero-value inputs.
11234
11235Semantics:
11236""""""""""
11237
11238The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11239zeros in a variable, or within each element of a vector. If ``src == 0``
11240then the result is the size in bits of the type of ``src`` if
11241``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11242``llvm.cttz(2) = 1``.
11243
Philip Reames34843ae2015-03-05 05:55:55 +000011244.. _int_overflow:
11245
Sean Silvab084af42012-12-07 10:36:55 +000011246Arithmetic with Overflow Intrinsics
11247-----------------------------------
11248
John Regehr6a493f22016-05-12 20:55:09 +000011249LLVM provides intrinsics for fast arithmetic overflow checking.
11250
11251Each of these intrinsics returns a two-element struct. The first
11252element of this struct contains the result of the corresponding
11253arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11254the result. Therefore, for example, the first element of the struct
11255returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11256result of a 32-bit ``add`` instruction with the same operands, where
11257the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11258
11259The second element of the result is an ``i1`` that is 1 if the
11260arithmetic operation overflowed and 0 otherwise. An operation
11261overflows if, for any values of its operands ``A`` and ``B`` and for
11262any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11263not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11264``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11265``op`` is the underlying arithmetic operation.
11266
11267The behavior of these intrinsics is well-defined for all argument
11268values.
Sean Silvab084af42012-12-07 10:36:55 +000011269
11270'``llvm.sadd.with.overflow.*``' Intrinsics
11271^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11272
11273Syntax:
11274"""""""
11275
11276This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11277on any integer bit width.
11278
11279::
11280
11281 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11282 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11283 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11284
11285Overview:
11286"""""""""
11287
11288The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11289a signed addition of the two arguments, and indicate whether an overflow
11290occurred during the signed summation.
11291
11292Arguments:
11293""""""""""
11294
11295The arguments (%a and %b) and the first element of the result structure
11296may be of integer types of any bit width, but they must have the same
11297bit width. The second element of the result structure must be of type
11298``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11299addition.
11300
11301Semantics:
11302""""""""""
11303
11304The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011305a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011306first element of which is the signed summation, and the second element
11307of which is a bit specifying if the signed summation resulted in an
11308overflow.
11309
11310Examples:
11311"""""""""
11312
11313.. code-block:: llvm
11314
11315 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11316 %sum = extractvalue {i32, i1} %res, 0
11317 %obit = extractvalue {i32, i1} %res, 1
11318 br i1 %obit, label %overflow, label %normal
11319
11320'``llvm.uadd.with.overflow.*``' Intrinsics
11321^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11322
11323Syntax:
11324"""""""
11325
11326This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11327on any integer bit width.
11328
11329::
11330
11331 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11332 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11333 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11334
11335Overview:
11336"""""""""
11337
11338The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11339an unsigned addition of the two arguments, and indicate whether a carry
11340occurred during the unsigned summation.
11341
11342Arguments:
11343""""""""""
11344
11345The arguments (%a and %b) and the first element of the result structure
11346may be of integer types of any bit width, but they must have the same
11347bit width. The second element of the result structure must be of type
11348``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11349addition.
11350
11351Semantics:
11352""""""""""
11353
11354The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011355an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011356first element of which is the sum, and the second element of which is a
11357bit specifying if the unsigned summation resulted in a carry.
11358
11359Examples:
11360"""""""""
11361
11362.. code-block:: llvm
11363
11364 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11365 %sum = extractvalue {i32, i1} %res, 0
11366 %obit = extractvalue {i32, i1} %res, 1
11367 br i1 %obit, label %carry, label %normal
11368
11369'``llvm.ssub.with.overflow.*``' Intrinsics
11370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11371
11372Syntax:
11373"""""""
11374
11375This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11376on any integer bit width.
11377
11378::
11379
11380 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11381 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11382 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11383
11384Overview:
11385"""""""""
11386
11387The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11388a signed subtraction of the two arguments, and indicate whether an
11389overflow occurred during the signed subtraction.
11390
11391Arguments:
11392""""""""""
11393
11394The arguments (%a and %b) and the first element of the result structure
11395may be of integer types of any bit width, but they must have the same
11396bit width. The second element of the result structure must be of type
11397``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11398subtraction.
11399
11400Semantics:
11401""""""""""
11402
11403The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011404a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011405first element of which is the subtraction, and the second element of
11406which is a bit specifying if the signed subtraction resulted in an
11407overflow.
11408
11409Examples:
11410"""""""""
11411
11412.. code-block:: llvm
11413
11414 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11415 %sum = extractvalue {i32, i1} %res, 0
11416 %obit = extractvalue {i32, i1} %res, 1
11417 br i1 %obit, label %overflow, label %normal
11418
11419'``llvm.usub.with.overflow.*``' Intrinsics
11420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11421
11422Syntax:
11423"""""""
11424
11425This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11426on any integer bit width.
11427
11428::
11429
11430 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11431 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11432 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11433
11434Overview:
11435"""""""""
11436
11437The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11438an unsigned subtraction of the two arguments, and indicate whether an
11439overflow occurred during the unsigned subtraction.
11440
11441Arguments:
11442""""""""""
11443
11444The arguments (%a and %b) and the first element of the result structure
11445may be of integer types of any bit width, but they must have the same
11446bit width. The second element of the result structure must be of type
11447``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11448subtraction.
11449
11450Semantics:
11451""""""""""
11452
11453The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011454an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011455the first element of which is the subtraction, and the second element of
11456which is a bit specifying if the unsigned subtraction resulted in an
11457overflow.
11458
11459Examples:
11460"""""""""
11461
11462.. code-block:: llvm
11463
11464 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11465 %sum = extractvalue {i32, i1} %res, 0
11466 %obit = extractvalue {i32, i1} %res, 1
11467 br i1 %obit, label %overflow, label %normal
11468
11469'``llvm.smul.with.overflow.*``' Intrinsics
11470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11471
11472Syntax:
11473"""""""
11474
11475This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11476on any integer bit width.
11477
11478::
11479
11480 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11481 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11482 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11483
11484Overview:
11485"""""""""
11486
11487The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11488a signed multiplication of the two arguments, and indicate whether an
11489overflow occurred during the signed multiplication.
11490
11491Arguments:
11492""""""""""
11493
11494The arguments (%a and %b) and the first element of the result structure
11495may be of integer types of any bit width, but they must have the same
11496bit width. The second element of the result structure must be of type
11497``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11498multiplication.
11499
11500Semantics:
11501""""""""""
11502
11503The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011504a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011505the first element of which is the multiplication, and the second element
11506of which is a bit specifying if the signed multiplication resulted in an
11507overflow.
11508
11509Examples:
11510"""""""""
11511
11512.. code-block:: llvm
11513
11514 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11515 %sum = extractvalue {i32, i1} %res, 0
11516 %obit = extractvalue {i32, i1} %res, 1
11517 br i1 %obit, label %overflow, label %normal
11518
11519'``llvm.umul.with.overflow.*``' Intrinsics
11520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11521
11522Syntax:
11523"""""""
11524
11525This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11526on any integer bit width.
11527
11528::
11529
11530 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11531 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11532 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11533
11534Overview:
11535"""""""""
11536
11537The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11538a unsigned multiplication of the two arguments, and indicate whether an
11539overflow occurred during the unsigned multiplication.
11540
11541Arguments:
11542""""""""""
11543
11544The arguments (%a and %b) and the first element of the result structure
11545may be of integer types of any bit width, but they must have the same
11546bit width. The second element of the result structure must be of type
11547``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11548multiplication.
11549
11550Semantics:
11551""""""""""
11552
11553The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011554an unsigned multiplication of the two arguments. They return a structure ---
11555the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011556element of which is a bit specifying if the unsigned multiplication
11557resulted in an overflow.
11558
11559Examples:
11560"""""""""
11561
11562.. code-block:: llvm
11563
11564 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11565 %sum = extractvalue {i32, i1} %res, 0
11566 %obit = extractvalue {i32, i1} %res, 1
11567 br i1 %obit, label %overflow, label %normal
11568
11569Specialised Arithmetic Intrinsics
11570---------------------------------
11571
Owen Anderson1056a922015-07-11 07:01:27 +000011572'``llvm.canonicalize.*``' Intrinsic
11573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11574
11575Syntax:
11576"""""""
11577
11578::
11579
11580 declare float @llvm.canonicalize.f32(float %a)
11581 declare double @llvm.canonicalize.f64(double %b)
11582
11583Overview:
11584"""""""""
11585
11586The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011587encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011588implementing certain numeric primitives such as frexp. The canonical encoding is
11589defined by IEEE-754-2008 to be:
11590
11591::
11592
11593 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011594 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011595 numbers, infinities, and NaNs, especially in decimal formats.
11596
11597This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011598conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011599according to section 6.2.
11600
11601Examples of non-canonical encodings:
11602
Sean Silvaa1190322015-08-06 22:56:48 +000011603- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011604 converted to a canonical representation per hardware-specific protocol.
11605- Many normal decimal floating point numbers have non-canonical alternative
11606 encodings.
11607- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011608 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011609 a zero of the same sign by this operation.
11610
11611Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11612default exception handling must signal an invalid exception, and produce a
11613quiet NaN result.
11614
11615This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011616that the compiler does not constant fold the operation. Likewise, division by
116171.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011618-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11619
Sean Silvaa1190322015-08-06 22:56:48 +000011620``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011621
11622- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11623- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11624 to ``(x == y)``
11625
11626Additionally, the sign of zero must be conserved:
11627``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11628
11629The payload bits of a NaN must be conserved, with two exceptions.
11630First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011631must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011632usual methods.
11633
11634The canonicalization operation may be optimized away if:
11635
Sean Silvaa1190322015-08-06 22:56:48 +000011636- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011637 floating-point operation that is required by the standard to be canonical.
11638- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011639 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011640
Sean Silvab084af42012-12-07 10:36:55 +000011641'``llvm.fmuladd.*``' Intrinsic
11642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11643
11644Syntax:
11645"""""""
11646
11647::
11648
11649 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11650 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11651
11652Overview:
11653"""""""""
11654
11655The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011656expressions that can be fused if the code generator determines that (a) the
11657target instruction set has support for a fused operation, and (b) that the
11658fused operation is more efficient than the equivalent, separate pair of mul
11659and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011660
11661Arguments:
11662""""""""""
11663
11664The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11665multiplicands, a and b, and an addend c.
11666
11667Semantics:
11668""""""""""
11669
11670The expression:
11671
11672::
11673
11674 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11675
11676is equivalent to the expression a \* b + c, except that rounding will
11677not be performed between the multiplication and addition steps if the
11678code generator fuses the operations. Fusion is not guaranteed, even if
11679the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011680corresponding llvm.fma.\* intrinsic function should be used
11681instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011682
11683Examples:
11684"""""""""
11685
11686.. code-block:: llvm
11687
Tim Northover675a0962014-06-13 14:24:23 +000011688 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011689
11690Half Precision Floating Point Intrinsics
11691----------------------------------------
11692
11693For most target platforms, half precision floating point is a
11694storage-only format. This means that it is a dense encoding (in memory)
11695but does not support computation in the format.
11696
11697This means that code must first load the half-precision floating point
11698value as an i16, then convert it to float with
11699:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11700then be performed on the float value (including extending to double
11701etc). To store the value back to memory, it is first converted to float
11702if needed, then converted to i16 with
11703:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11704i16 value.
11705
11706.. _int_convert_to_fp16:
11707
11708'``llvm.convert.to.fp16``' Intrinsic
11709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11710
11711Syntax:
11712"""""""
11713
11714::
11715
Tim Northoverfd7e4242014-07-17 10:51:23 +000011716 declare i16 @llvm.convert.to.fp16.f32(float %a)
11717 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011718
11719Overview:
11720"""""""""
11721
Tim Northoverfd7e4242014-07-17 10:51:23 +000011722The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11723conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011724
11725Arguments:
11726""""""""""
11727
11728The intrinsic function contains single argument - the value to be
11729converted.
11730
11731Semantics:
11732""""""""""
11733
Tim Northoverfd7e4242014-07-17 10:51:23 +000011734The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11735conventional floating point format to half precision floating point format. The
11736return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011737
11738Examples:
11739"""""""""
11740
11741.. code-block:: llvm
11742
Tim Northoverfd7e4242014-07-17 10:51:23 +000011743 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011744 store i16 %res, i16* @x, align 2
11745
11746.. _int_convert_from_fp16:
11747
11748'``llvm.convert.from.fp16``' Intrinsic
11749^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11750
11751Syntax:
11752"""""""
11753
11754::
11755
Tim Northoverfd7e4242014-07-17 10:51:23 +000011756 declare float @llvm.convert.from.fp16.f32(i16 %a)
11757 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011758
11759Overview:
11760"""""""""
11761
11762The '``llvm.convert.from.fp16``' intrinsic function performs a
11763conversion from half precision floating point format to single precision
11764floating point format.
11765
11766Arguments:
11767""""""""""
11768
11769The intrinsic function contains single argument - the value to be
11770converted.
11771
11772Semantics:
11773""""""""""
11774
11775The '``llvm.convert.from.fp16``' intrinsic function performs a
11776conversion from half single precision floating point format to single
11777precision floating point format. The input half-float value is
11778represented by an ``i16`` value.
11779
11780Examples:
11781"""""""""
11782
11783.. code-block:: llvm
11784
David Blaikiec7aabbb2015-03-04 22:06:14 +000011785 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011786 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011787
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011788.. _dbg_intrinsics:
11789
Sean Silvab084af42012-12-07 10:36:55 +000011790Debugger Intrinsics
11791-------------------
11792
11793The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11794prefix), are described in the `LLVM Source Level
11795Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11796document.
11797
11798Exception Handling Intrinsics
11799-----------------------------
11800
11801The LLVM exception handling intrinsics (which all start with
11802``llvm.eh.`` prefix), are described in the `LLVM Exception
11803Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11804
11805.. _int_trampoline:
11806
11807Trampoline Intrinsics
11808---------------------
11809
11810These intrinsics make it possible to excise one parameter, marked with
11811the :ref:`nest <nest>` attribute, from a function. The result is a
11812callable function pointer lacking the nest parameter - the caller does
11813not need to provide a value for it. Instead, the value to use is stored
11814in advance in a "trampoline", a block of memory usually allocated on the
11815stack, which also contains code to splice the nest value into the
11816argument list. This is used to implement the GCC nested function address
11817extension.
11818
11819For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11820then the resulting function pointer has signature ``i32 (i32, i32)*``.
11821It can be created as follows:
11822
11823.. code-block:: llvm
11824
11825 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011826 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011827 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11828 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11829 %fp = bitcast i8* %p to i32 (i32, i32)*
11830
11831The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11832``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11833
11834.. _int_it:
11835
11836'``llvm.init.trampoline``' Intrinsic
11837^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11838
11839Syntax:
11840"""""""
11841
11842::
11843
11844 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11845
11846Overview:
11847"""""""""
11848
11849This fills the memory pointed to by ``tramp`` with executable code,
11850turning it into a trampoline.
11851
11852Arguments:
11853""""""""""
11854
11855The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11856pointers. The ``tramp`` argument must point to a sufficiently large and
11857sufficiently aligned block of memory; this memory is written to by the
11858intrinsic. Note that the size and the alignment are target-specific -
11859LLVM currently provides no portable way of determining them, so a
11860front-end that generates this intrinsic needs to have some
11861target-specific knowledge. The ``func`` argument must hold a function
11862bitcast to an ``i8*``.
11863
11864Semantics:
11865""""""""""
11866
11867The block of memory pointed to by ``tramp`` is filled with target
11868dependent code, turning it into a function. Then ``tramp`` needs to be
11869passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11870be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11871function's signature is the same as that of ``func`` with any arguments
11872marked with the ``nest`` attribute removed. At most one such ``nest``
11873argument is allowed, and it must be of pointer type. Calling the new
11874function is equivalent to calling ``func`` with the same argument list,
11875but with ``nval`` used for the missing ``nest`` argument. If, after
11876calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11877modified, then the effect of any later call to the returned function
11878pointer is undefined.
11879
11880.. _int_at:
11881
11882'``llvm.adjust.trampoline``' Intrinsic
11883^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11884
11885Syntax:
11886"""""""
11887
11888::
11889
11890 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11891
11892Overview:
11893"""""""""
11894
11895This performs any required machine-specific adjustment to the address of
11896a trampoline (passed as ``tramp``).
11897
11898Arguments:
11899""""""""""
11900
11901``tramp`` must point to a block of memory which already has trampoline
11902code filled in by a previous call to
11903:ref:`llvm.init.trampoline <int_it>`.
11904
11905Semantics:
11906""""""""""
11907
11908On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011909different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011910intrinsic returns the executable address corresponding to ``tramp``
11911after performing the required machine specific adjustments. The pointer
11912returned can then be :ref:`bitcast and executed <int_trampoline>`.
11913
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011914.. _int_mload_mstore:
11915
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011916Masked Vector Load and Store Intrinsics
11917---------------------------------------
11918
11919LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11920
11921.. _int_mload:
11922
11923'``llvm.masked.load.*``' Intrinsics
11924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11925
11926Syntax:
11927"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011928This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011929
11930::
11931
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011932 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11933 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011934 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011935 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011936 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011937 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011938
11939Overview:
11940"""""""""
11941
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011942Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011943
11944
11945Arguments:
11946""""""""""
11947
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011948The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011949
11950
11951Semantics:
11952""""""""""
11953
11954The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11955The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11956
11957
11958::
11959
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011960 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011961
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011962 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011963 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011964 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011965
11966.. _int_mstore:
11967
11968'``llvm.masked.store.*``' Intrinsics
11969^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11970
11971Syntax:
11972"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011973This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011974
11975::
11976
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011977 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11978 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011979 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011980 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011981 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011982 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011983
11984Overview:
11985"""""""""
11986
11987Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11988
11989Arguments:
11990""""""""""
11991
11992The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11993
11994
11995Semantics:
11996""""""""""
11997
11998The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11999The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
12000
12001::
12002
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012003 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012004
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012005 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000012006 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012007 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
12008 store <16 x float> %res, <16 x float>* %ptr, align 4
12009
12010
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012011Masked Vector Gather and Scatter Intrinsics
12012-------------------------------------------
12013
12014LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
12015
12016.. _int_mgather:
12017
12018'``llvm.masked.gather.*``' Intrinsics
12019^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12020
12021Syntax:
12022"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012023This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012024
12025::
12026
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012027 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12028 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
12029 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012030
12031Overview:
12032"""""""""
12033
12034Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
12035
12036
12037Arguments:
12038""""""""""
12039
12040The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
12041
12042
12043Semantics:
12044""""""""""
12045
12046The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
12047The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
12048
12049
12050::
12051
Zvi Rackoverb26530c2017-01-26 20:29:15 +000012052 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012053
12054 ;; The gather with all-true mask is equivalent to the following instruction sequence
12055 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
12056 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
12057 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
12058 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
12059
12060 %val0 = load double, double* %ptr0, align 8
12061 %val1 = load double, double* %ptr1, align 8
12062 %val2 = load double, double* %ptr2, align 8
12063 %val3 = load double, double* %ptr3, align 8
12064
12065 %vec0 = insertelement <4 x double>undef, %val0, 0
12066 %vec01 = insertelement <4 x double>%vec0, %val1, 1
12067 %vec012 = insertelement <4 x double>%vec01, %val2, 2
12068 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
12069
12070.. _int_mscatter:
12071
12072'``llvm.masked.scatter.*``' Intrinsics
12073^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12074
12075Syntax:
12076"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012077This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012078
12079::
12080
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012081 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
12082 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
12083 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012084
12085Overview:
12086"""""""""
12087
12088Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12089
12090Arguments:
12091""""""""""
12092
12093The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12094
12095
12096Semantics:
12097""""""""""
12098
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012099The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012100
12101::
12102
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012103 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012104 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
12105
12106 ;; It is equivalent to a list of scalar stores
12107 %val0 = extractelement <8 x i32> %value, i32 0
12108 %val1 = extractelement <8 x i32> %value, i32 1
12109 ..
12110 %val7 = extractelement <8 x i32> %value, i32 7
12111 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12112 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12113 ..
12114 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12115 ;; Note: the order of the following stores is important when they overlap:
12116 store i32 %val0, i32* %ptr0, align 4
12117 store i32 %val1, i32* %ptr1, align 4
12118 ..
12119 store i32 %val7, i32* %ptr7, align 4
12120
12121
Sean Silvab084af42012-12-07 10:36:55 +000012122Memory Use Markers
12123------------------
12124
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012125This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012126memory objects and ranges where variables are immutable.
12127
Reid Klecknera534a382013-12-19 02:14:12 +000012128.. _int_lifestart:
12129
Sean Silvab084af42012-12-07 10:36:55 +000012130'``llvm.lifetime.start``' Intrinsic
12131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12132
12133Syntax:
12134"""""""
12135
12136::
12137
12138 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12139
12140Overview:
12141"""""""""
12142
12143The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12144object's lifetime.
12145
12146Arguments:
12147""""""""""
12148
12149The first argument is a constant integer representing the size of the
12150object, or -1 if it is variable sized. The second argument is a pointer
12151to the object.
12152
12153Semantics:
12154""""""""""
12155
12156This intrinsic indicates that before this point in the code, the value
12157of the memory pointed to by ``ptr`` is dead. This means that it is known
12158to never be used and has an undefined value. A load from the pointer
12159that precedes this intrinsic can be replaced with ``'undef'``.
12160
Reid Klecknera534a382013-12-19 02:14:12 +000012161.. _int_lifeend:
12162
Sean Silvab084af42012-12-07 10:36:55 +000012163'``llvm.lifetime.end``' Intrinsic
12164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12165
12166Syntax:
12167"""""""
12168
12169::
12170
12171 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12172
12173Overview:
12174"""""""""
12175
12176The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12177object's lifetime.
12178
12179Arguments:
12180""""""""""
12181
12182The first argument is a constant integer representing the size of the
12183object, or -1 if it is variable sized. The second argument is a pointer
12184to the object.
12185
12186Semantics:
12187""""""""""
12188
12189This intrinsic indicates that after this point in the code, the value of
12190the memory pointed to by ``ptr`` is dead. This means that it is known to
12191never be used and has an undefined value. Any stores into the memory
12192object following this intrinsic may be removed as dead.
12193
12194'``llvm.invariant.start``' Intrinsic
12195^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12196
12197Syntax:
12198"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012199This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012200
12201::
12202
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012203 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012204
12205Overview:
12206"""""""""
12207
12208The '``llvm.invariant.start``' intrinsic specifies that the contents of
12209a memory object will not change.
12210
12211Arguments:
12212""""""""""
12213
12214The first argument is a constant integer representing the size of the
12215object, or -1 if it is variable sized. The second argument is a pointer
12216to the object.
12217
12218Semantics:
12219""""""""""
12220
12221This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12222the return value, the referenced memory location is constant and
12223unchanging.
12224
12225'``llvm.invariant.end``' Intrinsic
12226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12227
12228Syntax:
12229"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012230This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012231
12232::
12233
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012234 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012235
12236Overview:
12237"""""""""
12238
12239The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12240memory object are mutable.
12241
12242Arguments:
12243""""""""""
12244
12245The first argument is the matching ``llvm.invariant.start`` intrinsic.
12246The second argument is a constant integer representing the size of the
12247object, or -1 if it is variable sized and the third argument is a
12248pointer to the object.
12249
12250Semantics:
12251""""""""""
12252
12253This intrinsic indicates that the memory is mutable again.
12254
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012255'``llvm.invariant.group.barrier``' Intrinsic
12256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12257
12258Syntax:
12259"""""""
12260
12261::
12262
12263 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12264
12265Overview:
12266"""""""""
12267
12268The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12269established by invariant.group metadata no longer holds, to obtain a new pointer
12270value that does not carry the invariant information.
12271
12272
12273Arguments:
12274""""""""""
12275
12276The ``llvm.invariant.group.barrier`` takes only one argument, which is
12277the pointer to the memory for which the ``invariant.group`` no longer holds.
12278
12279Semantics:
12280""""""""""
12281
12282Returns another pointer that aliases its argument but which is considered different
12283for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12284
Andrew Kaylora0a11642017-01-26 23:27:59 +000012285Constrained Floating Point Intrinsics
12286-------------------------------------
12287
12288These intrinsics are used to provide special handling of floating point
12289operations when specific rounding mode or floating point exception behavior is
12290required. By default, LLVM optimization passes assume that the rounding mode is
12291round-to-nearest and that floating point exceptions will not be monitored.
12292Constrained FP intrinsics are used to support non-default rounding modes and
12293accurately preserve exception behavior without compromising LLVM's ability to
12294optimize FP code when the default behavior is used.
12295
12296Each of these intrinsics corresponds to a normal floating point operation. The
12297first two arguments and the return value are the same as the corresponding FP
12298operation.
12299
12300The third argument is a metadata argument specifying the rounding mode to be
12301assumed. This argument must be one of the following strings:
12302
12303::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012304
Andrew Kaylora0a11642017-01-26 23:27:59 +000012305 "round.dynamic"
12306 "round.tonearest"
12307 "round.downward"
12308 "round.upward"
12309 "round.towardzero"
12310
12311If this argument is "round.dynamic" optimization passes must assume that the
12312rounding mode is unknown and may change at runtime. No transformations that
12313depend on rounding mode may be performed in this case.
12314
12315The other possible values for the rounding mode argument correspond to the
12316similarly named IEEE rounding modes. If the argument is any of these values
12317optimization passes may perform transformations as long as they are consistent
12318with the specified rounding mode.
12319
12320For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12321"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12322'x-0' should evaluate to '-0' when rounding downward. However, this
12323transformation is legal for all other rounding modes.
12324
12325For values other than "round.dynamic" optimization passes may assume that the
12326actual runtime rounding mode (as defined in a target-specific manner) matches
12327the specified rounding mode, but this is not guaranteed. Using a specific
12328non-dynamic rounding mode which does not match the actual rounding mode at
12329runtime results in undefined behavior.
12330
12331The fourth argument to the constrained floating point intrinsics specifies the
12332required exception behavior. This argument must be one of the following
12333strings:
12334
12335::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012336
Andrew Kaylora0a11642017-01-26 23:27:59 +000012337 "fpexcept.ignore"
12338 "fpexcept.maytrap"
12339 "fpexcept.strict"
12340
12341If this argument is "fpexcept.ignore" optimization passes may assume that the
12342exception status flags will not be read and that floating point exceptions will
12343be masked. This allows transformations to be performed that may change the
12344exception semantics of the original code. For example, FP operations may be
12345speculatively executed in this case whereas they must not be for either of the
12346other possible values of this argument.
12347
12348If the exception behavior argument is "fpexcept.maytrap" optimization passes
12349must avoid transformations that may raise exceptions that would not have been
12350raised by the original code (such as speculatively executing FP operations), but
12351passes are not required to preserve all exceptions that are implied by the
12352original code. For example, exceptions may be potentially hidden by constant
12353folding.
12354
12355If the exception behavior argument is "fpexcept.strict" all transformations must
12356strictly preserve the floating point exception semantics of the original code.
12357Any FP exception that would have been raised by the original code must be raised
12358by the transformed code, and the transformed code must not raise any FP
12359exceptions that would not have been raised by the original code. This is the
12360exception behavior argument that will be used if the code being compiled reads
12361the FP exception status flags, but this mode can also be used with code that
12362unmasks FP exceptions.
12363
12364The number and order of floating point exceptions is NOT guaranteed. For
12365example, a series of FP operations that each may raise exceptions may be
12366vectorized into a single instruction that raises each unique exception a single
12367time.
12368
12369
12370'``llvm.experimental.constrained.fadd``' Intrinsic
12371^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12372
12373Syntax:
12374"""""""
12375
12376::
12377
12378 declare <type>
12379 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12380 metadata <rounding mode>,
12381 metadata <exception behavior>)
12382
12383Overview:
12384"""""""""
12385
12386The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
12387two operands.
12388
12389
12390Arguments:
12391""""""""""
12392
12393The first two arguments to the '``llvm.experimental.constrained.fadd``'
12394intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12395of floating point values. Both arguments must have identical types.
12396
12397The third and fourth arguments specify the rounding mode and exception
12398behavior as described above.
12399
12400Semantics:
12401""""""""""
12402
12403The value produced is the floating point sum of the two value operands and has
12404the same type as the operands.
12405
12406
12407'``llvm.experimental.constrained.fsub``' Intrinsic
12408^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12409
12410Syntax:
12411"""""""
12412
12413::
12414
12415 declare <type>
12416 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
12417 metadata <rounding mode>,
12418 metadata <exception behavior>)
12419
12420Overview:
12421"""""""""
12422
12423The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
12424of its two operands.
12425
12426
12427Arguments:
12428""""""""""
12429
12430The first two arguments to the '``llvm.experimental.constrained.fsub``'
12431intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12432of floating point values. Both arguments must have identical types.
12433
12434The third and fourth arguments specify the rounding mode and exception
12435behavior as described above.
12436
12437Semantics:
12438""""""""""
12439
12440The value produced is the floating point difference of the two value operands
12441and has the same type as the operands.
12442
12443
12444'``llvm.experimental.constrained.fmul``' Intrinsic
12445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12446
12447Syntax:
12448"""""""
12449
12450::
12451
12452 declare <type>
12453 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
12454 metadata <rounding mode>,
12455 metadata <exception behavior>)
12456
12457Overview:
12458"""""""""
12459
12460The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
12461its two operands.
12462
12463
12464Arguments:
12465""""""""""
12466
12467The first two arguments to the '``llvm.experimental.constrained.fmul``'
12468intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12469of floating point values. Both arguments must have identical types.
12470
12471The third and fourth arguments specify the rounding mode and exception
12472behavior as described above.
12473
12474Semantics:
12475""""""""""
12476
12477The value produced is the floating point product of the two value operands and
12478has the same type as the operands.
12479
12480
12481'``llvm.experimental.constrained.fdiv``' Intrinsic
12482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12483
12484Syntax:
12485"""""""
12486
12487::
12488
12489 declare <type>
12490 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
12491 metadata <rounding mode>,
12492 metadata <exception behavior>)
12493
12494Overview:
12495"""""""""
12496
12497The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
12498its two operands.
12499
12500
12501Arguments:
12502""""""""""
12503
12504The first two arguments to the '``llvm.experimental.constrained.fdiv``'
12505intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12506of floating point values. Both arguments must have identical types.
12507
12508The third and fourth arguments specify the rounding mode and exception
12509behavior as described above.
12510
12511Semantics:
12512""""""""""
12513
12514The value produced is the floating point quotient of the two value operands and
12515has the same type as the operands.
12516
12517
12518'``llvm.experimental.constrained.frem``' Intrinsic
12519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12520
12521Syntax:
12522"""""""
12523
12524::
12525
12526 declare <type>
12527 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
12528 metadata <rounding mode>,
12529 metadata <exception behavior>)
12530
12531Overview:
12532"""""""""
12533
12534The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
12535from the division of its two operands.
12536
12537
12538Arguments:
12539""""""""""
12540
12541The first two arguments to the '``llvm.experimental.constrained.frem``'
12542intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12543of floating point values. Both arguments must have identical types.
12544
12545The third and fourth arguments specify the rounding mode and exception
12546behavior as described above. The rounding mode argument has no effect, since
12547the result of frem is never rounded, but the argument is included for
12548consistency with the other constrained floating point intrinsics.
12549
12550Semantics:
12551""""""""""
12552
12553The value produced is the floating point remainder from the division of the two
12554value operands and has the same type as the operands. The remainder has the
12555same sign as the dividend.
12556
12557
Sean Silvab084af42012-12-07 10:36:55 +000012558General Intrinsics
12559------------------
12560
12561This class of intrinsics is designed to be generic and has no specific
12562purpose.
12563
12564'``llvm.var.annotation``' Intrinsic
12565^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12566
12567Syntax:
12568"""""""
12569
12570::
12571
12572 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12573
12574Overview:
12575"""""""""
12576
12577The '``llvm.var.annotation``' intrinsic.
12578
12579Arguments:
12580""""""""""
12581
12582The first argument is a pointer to a value, the second is a pointer to a
12583global string, the third is a pointer to a global string which is the
12584source file name, and the last argument is the line number.
12585
12586Semantics:
12587""""""""""
12588
12589This intrinsic allows annotation of local variables with arbitrary
12590strings. This can be useful for special purpose optimizations that want
12591to look for these annotations. These have no other defined use; they are
12592ignored by code generation and optimization.
12593
Michael Gottesman88d18832013-03-26 00:34:27 +000012594'``llvm.ptr.annotation.*``' Intrinsic
12595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12596
12597Syntax:
12598"""""""
12599
12600This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12601pointer to an integer of any width. *NOTE* you must specify an address space for
12602the pointer. The identifier for the default address space is the integer
12603'``0``'.
12604
12605::
12606
12607 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12608 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12609 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12610 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12611 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12612
12613Overview:
12614"""""""""
12615
12616The '``llvm.ptr.annotation``' intrinsic.
12617
12618Arguments:
12619""""""""""
12620
12621The first argument is a pointer to an integer value of arbitrary bitwidth
12622(result of some expression), the second is a pointer to a global string, the
12623third is a pointer to a global string which is the source file name, and the
12624last argument is the line number. It returns the value of the first argument.
12625
12626Semantics:
12627""""""""""
12628
12629This intrinsic allows annotation of a pointer to an integer with arbitrary
12630strings. This can be useful for special purpose optimizations that want to look
12631for these annotations. These have no other defined use; they are ignored by code
12632generation and optimization.
12633
Sean Silvab084af42012-12-07 10:36:55 +000012634'``llvm.annotation.*``' Intrinsic
12635^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12636
12637Syntax:
12638"""""""
12639
12640This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12641any integer bit width.
12642
12643::
12644
12645 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12646 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12647 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12648 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12649 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12650
12651Overview:
12652"""""""""
12653
12654The '``llvm.annotation``' intrinsic.
12655
12656Arguments:
12657""""""""""
12658
12659The first argument is an integer value (result of some expression), the
12660second is a pointer to a global string, the third is a pointer to a
12661global string which is the source file name, and the last argument is
12662the line number. It returns the value of the first argument.
12663
12664Semantics:
12665""""""""""
12666
12667This intrinsic allows annotations to be put on arbitrary expressions
12668with arbitrary strings. This can be useful for special purpose
12669optimizations that want to look for these annotations. These have no
12670other defined use; they are ignored by code generation and optimization.
12671
12672'``llvm.trap``' Intrinsic
12673^^^^^^^^^^^^^^^^^^^^^^^^^
12674
12675Syntax:
12676"""""""
12677
12678::
12679
12680 declare void @llvm.trap() noreturn nounwind
12681
12682Overview:
12683"""""""""
12684
12685The '``llvm.trap``' intrinsic.
12686
12687Arguments:
12688""""""""""
12689
12690None.
12691
12692Semantics:
12693""""""""""
12694
12695This intrinsic is lowered to the target dependent trap instruction. If
12696the target does not have a trap instruction, this intrinsic will be
12697lowered to a call of the ``abort()`` function.
12698
12699'``llvm.debugtrap``' Intrinsic
12700^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12701
12702Syntax:
12703"""""""
12704
12705::
12706
12707 declare void @llvm.debugtrap() nounwind
12708
12709Overview:
12710"""""""""
12711
12712The '``llvm.debugtrap``' intrinsic.
12713
12714Arguments:
12715""""""""""
12716
12717None.
12718
12719Semantics:
12720""""""""""
12721
12722This intrinsic is lowered to code which is intended to cause an
12723execution trap with the intention of requesting the attention of a
12724debugger.
12725
12726'``llvm.stackprotector``' Intrinsic
12727^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12728
12729Syntax:
12730"""""""
12731
12732::
12733
12734 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12735
12736Overview:
12737"""""""""
12738
12739The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12740onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12741is placed on the stack before local variables.
12742
12743Arguments:
12744""""""""""
12745
12746The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12747The first argument is the value loaded from the stack guard
12748``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12749enough space to hold the value of the guard.
12750
12751Semantics:
12752""""""""""
12753
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012754This intrinsic causes the prologue/epilogue inserter to force the position of
12755the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12756to ensure that if a local variable on the stack is overwritten, it will destroy
12757the value of the guard. When the function exits, the guard on the stack is
12758checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12759different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12760calling the ``__stack_chk_fail()`` function.
12761
Tim Shene885d5e2016-04-19 19:40:37 +000012762'``llvm.stackguard``' Intrinsic
12763^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12764
12765Syntax:
12766"""""""
12767
12768::
12769
12770 declare i8* @llvm.stackguard()
12771
12772Overview:
12773"""""""""
12774
12775The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12776
12777It should not be generated by frontends, since it is only for internal usage.
12778The reason why we create this intrinsic is that we still support IR form Stack
12779Protector in FastISel.
12780
12781Arguments:
12782""""""""""
12783
12784None.
12785
12786Semantics:
12787""""""""""
12788
12789On some platforms, the value returned by this intrinsic remains unchanged
12790between loads in the same thread. On other platforms, it returns the same
12791global variable value, if any, e.g. ``@__stack_chk_guard``.
12792
12793Currently some platforms have IR-level customized stack guard loading (e.g.
12794X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12795in the future.
12796
Sean Silvab084af42012-12-07 10:36:55 +000012797'``llvm.objectsize``' Intrinsic
12798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12799
12800Syntax:
12801"""""""
12802
12803::
12804
George Burgess IV56c7e882017-03-21 20:08:59 +000012805 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
12806 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000012807
12808Overview:
12809"""""""""
12810
12811The ``llvm.objectsize`` intrinsic is designed to provide information to
12812the optimizers to determine at compile time whether a) an operation
12813(like memcpy) will overflow a buffer that corresponds to an object, or
12814b) that a runtime check for overflow isn't necessary. An object in this
12815context means an allocation of a specific class, structure, array, or
12816other object.
12817
12818Arguments:
12819""""""""""
12820
George Burgess IV56c7e882017-03-21 20:08:59 +000012821The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
12822a pointer to or into the ``object``. The second argument determines whether
12823``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
12824is unknown. The third argument controls how ``llvm.objectsize`` acts when
12825``null`` is used as its pointer argument. If it's true and the pointer is in
12826address space 0, ``null`` is treated as an opaque value with an unknown number
12827of bytes. Otherwise, ``llvm.objectsize`` reports 0 bytes available when given
12828``null``.
12829
12830The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000012831
12832Semantics:
12833""""""""""
12834
12835The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12836the size of the object concerned. If the size cannot be determined at
12837compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12838on the ``min`` argument).
12839
12840'``llvm.expect``' Intrinsic
12841^^^^^^^^^^^^^^^^^^^^^^^^^^^
12842
12843Syntax:
12844"""""""
12845
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012846This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12847integer bit width.
12848
Sean Silvab084af42012-12-07 10:36:55 +000012849::
12850
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012851 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012852 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12853 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12854
12855Overview:
12856"""""""""
12857
12858The ``llvm.expect`` intrinsic provides information about expected (the
12859most probable) value of ``val``, which can be used by optimizers.
12860
12861Arguments:
12862""""""""""
12863
12864The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12865a value. The second argument is an expected value, this needs to be a
12866constant value, variables are not allowed.
12867
12868Semantics:
12869""""""""""
12870
12871This intrinsic is lowered to the ``val``.
12872
Philip Reamese0e90832015-04-26 22:23:12 +000012873.. _int_assume:
12874
Hal Finkel93046912014-07-25 21:13:35 +000012875'``llvm.assume``' Intrinsic
12876^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12877
12878Syntax:
12879"""""""
12880
12881::
12882
12883 declare void @llvm.assume(i1 %cond)
12884
12885Overview:
12886"""""""""
12887
12888The ``llvm.assume`` allows the optimizer to assume that the provided
12889condition is true. This information can then be used in simplifying other parts
12890of the code.
12891
12892Arguments:
12893""""""""""
12894
12895The condition which the optimizer may assume is always true.
12896
12897Semantics:
12898""""""""""
12899
12900The intrinsic allows the optimizer to assume that the provided condition is
12901always true whenever the control flow reaches the intrinsic call. No code is
12902generated for this intrinsic, and instructions that contribute only to the
12903provided condition are not used for code generation. If the condition is
12904violated during execution, the behavior is undefined.
12905
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012906Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012907used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12908only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012909if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012910sufficient overall improvement in code quality. For this reason,
12911``llvm.assume`` should not be used to document basic mathematical invariants
12912that the optimizer can otherwise deduce or facts that are of little use to the
12913optimizer.
12914
Daniel Berlin2c438a32017-02-07 19:29:25 +000012915.. _int_ssa_copy:
12916
12917'``llvm.ssa_copy``' Intrinsic
12918^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12919
12920Syntax:
12921"""""""
12922
12923::
12924
12925 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
12926
12927Arguments:
12928""""""""""
12929
12930The first argument is an operand which is used as the returned value.
12931
12932Overview:
12933""""""""""
12934
12935The ``llvm.ssa_copy`` intrinsic can be used to attach information to
12936operations by copying them and giving them new names. For example,
12937the PredicateInfo utility uses it to build Extended SSA form, and
12938attach various forms of information to operands that dominate specific
12939uses. It is not meant for general use, only for building temporary
12940renaming forms that require value splits at certain points.
12941
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012942.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012943
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012944'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12946
12947Syntax:
12948"""""""
12949
12950::
12951
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012952 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012953
12954
12955Arguments:
12956""""""""""
12957
12958The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012959metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012960
12961Overview:
12962"""""""""
12963
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012964The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12965with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012966
Peter Collingbourne0312f612016-06-25 00:23:04 +000012967'``llvm.type.checked.load``' Intrinsic
12968^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12969
12970Syntax:
12971"""""""
12972
12973::
12974
12975 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12976
12977
12978Arguments:
12979""""""""""
12980
12981The first argument is a pointer from which to load a function pointer. The
12982second argument is the byte offset from which to load the function pointer. The
12983third argument is a metadata object representing a :doc:`type identifier
12984<TypeMetadata>`.
12985
12986Overview:
12987"""""""""
12988
12989The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12990virtual table pointer using type metadata. This intrinsic is used to implement
12991control flow integrity in conjunction with virtual call optimization. The
12992virtual call optimization pass will optimize away ``llvm.type.checked.load``
12993intrinsics associated with devirtualized calls, thereby removing the type
12994check in cases where it is not needed to enforce the control flow integrity
12995constraint.
12996
12997If the given pointer is associated with a type metadata identifier, this
12998function returns true as the second element of its return value. (Note that
12999the function may also return true if the given pointer is not associated
13000with a type metadata identifier.) If the function's return value's second
13001element is true, the following rules apply to the first element:
13002
13003- If the given pointer is associated with the given type metadata identifier,
13004 it is the function pointer loaded from the given byte offset from the given
13005 pointer.
13006
13007- If the given pointer is not associated with the given type metadata
13008 identifier, it is one of the following (the choice of which is unspecified):
13009
13010 1. The function pointer that would have been loaded from an arbitrarily chosen
13011 (through an unspecified mechanism) pointer associated with the type
13012 metadata.
13013
13014 2. If the function has a non-void return type, a pointer to a function that
13015 returns an unspecified value without causing side effects.
13016
13017If the function's return value's second element is false, the value of the
13018first element is undefined.
13019
13020
Sean Silvab084af42012-12-07 10:36:55 +000013021'``llvm.donothing``' Intrinsic
13022^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13023
13024Syntax:
13025"""""""
13026
13027::
13028
13029 declare void @llvm.donothing() nounwind readnone
13030
13031Overview:
13032"""""""""
13033
Juergen Ributzkac9161192014-10-23 22:36:13 +000013034The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000013035three intrinsics (besides ``llvm.experimental.patchpoint`` and
13036``llvm.experimental.gc.statepoint``) that can be called with an invoke
13037instruction.
Sean Silvab084af42012-12-07 10:36:55 +000013038
13039Arguments:
13040""""""""""
13041
13042None.
13043
13044Semantics:
13045""""""""""
13046
13047This intrinsic does nothing, and it's removed by optimizers and ignored
13048by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000013049
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013050'``llvm.experimental.deoptimize``' Intrinsic
13051^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13052
13053Syntax:
13054"""""""
13055
13056::
13057
13058 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
13059
13060Overview:
13061"""""""""
13062
13063This intrinsic, together with :ref:`deoptimization operand bundles
13064<deopt_opbundles>`, allow frontends to express transfer of control and
13065frame-local state from the currently executing (typically more specialized,
13066hence faster) version of a function into another (typically more generic, hence
13067slower) version.
13068
13069In languages with a fully integrated managed runtime like Java and JavaScript
13070this intrinsic can be used to implement "uncommon trap" or "side exit" like
13071functionality. In unmanaged languages like C and C++, this intrinsic can be
13072used to represent the slow paths of specialized functions.
13073
13074
13075Arguments:
13076""""""""""
13077
13078The intrinsic takes an arbitrary number of arguments, whose meaning is
13079decided by the :ref:`lowering strategy<deoptimize_lowering>`.
13080
13081Semantics:
13082""""""""""
13083
13084The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
13085deoptimization continuation (denoted using a :ref:`deoptimization
13086operand bundle <deopt_opbundles>`) and returns the value returned by
13087the deoptimization continuation. Defining the semantic properties of
13088the continuation itself is out of scope of the language reference --
13089as far as LLVM is concerned, the deoptimization continuation can
13090invoke arbitrary side effects, including reading from and writing to
13091the entire heap.
13092
13093Deoptimization continuations expressed using ``"deopt"`` operand bundles always
13094continue execution to the end of the physical frame containing them, so all
13095calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
13096
13097 - ``@llvm.experimental.deoptimize`` cannot be invoked.
13098 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
13099 - The ``ret`` instruction must return the value produced by the
13100 ``@llvm.experimental.deoptimize`` call if there is one, or void.
13101
13102Note that the above restrictions imply that the return type for a call to
13103``@llvm.experimental.deoptimize`` will match the return type of its immediate
13104caller.
13105
13106The inliner composes the ``"deopt"`` continuations of the caller into the
13107``"deopt"`` continuations present in the inlinee, and also updates calls to this
13108intrinsic to return directly from the frame of the function it inlined into.
13109
Sanjoy Dase0aa4142016-05-12 01:17:38 +000013110All declarations of ``@llvm.experimental.deoptimize`` must share the
13111same calling convention.
13112
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013113.. _deoptimize_lowering:
13114
13115Lowering:
13116"""""""""
13117
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000013118Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
13119symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
13120ensure that this symbol is defined). The call arguments to
13121``@llvm.experimental.deoptimize`` are lowered as if they were formal
13122arguments of the specified types, and not as varargs.
13123
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013124
Sanjoy Das021de052016-03-31 00:18:46 +000013125'``llvm.experimental.guard``' Intrinsic
13126^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13127
13128Syntax:
13129"""""""
13130
13131::
13132
13133 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
13134
13135Overview:
13136"""""""""
13137
13138This intrinsic, together with :ref:`deoptimization operand bundles
13139<deopt_opbundles>`, allows frontends to express guards or checks on
13140optimistic assumptions made during compilation. The semantics of
13141``@llvm.experimental.guard`` is defined in terms of
13142``@llvm.experimental.deoptimize`` -- its body is defined to be
13143equivalent to:
13144
Renato Golin124f2592016-07-20 12:16:38 +000013145.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000013146
Renato Golin124f2592016-07-20 12:16:38 +000013147 define void @llvm.experimental.guard(i1 %pred, <args...>) {
13148 %realPred = and i1 %pred, undef
13149 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000013150
Renato Golin124f2592016-07-20 12:16:38 +000013151 leave:
13152 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
13153 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000013154
Renato Golin124f2592016-07-20 12:16:38 +000013155 continue:
13156 ret void
13157 }
Sanjoy Das021de052016-03-31 00:18:46 +000013158
Sanjoy Das47cf2af2016-04-30 00:55:59 +000013159
13160with the optional ``[, !make.implicit !{}]`` present if and only if it
13161is present on the call site. For more details on ``!make.implicit``,
13162see :doc:`FaultMaps`.
13163
Sanjoy Das021de052016-03-31 00:18:46 +000013164In words, ``@llvm.experimental.guard`` executes the attached
13165``"deopt"`` continuation if (but **not** only if) its first argument
13166is ``false``. Since the optimizer is allowed to replace the ``undef``
13167with an arbitrary value, it can optimize guard to fail "spuriously",
13168i.e. without the original condition being false (hence the "not only
13169if"); and this allows for "check widening" type optimizations.
13170
13171``@llvm.experimental.guard`` cannot be invoked.
13172
13173
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000013174'``llvm.load.relative``' Intrinsic
13175^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13176
13177Syntax:
13178"""""""
13179
13180::
13181
13182 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
13183
13184Overview:
13185"""""""""
13186
13187This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
13188adds ``%ptr`` to that value and returns it. The constant folder specifically
13189recognizes the form of this intrinsic and the constant initializers it may
13190load from; if a loaded constant initializer is known to have the form
13191``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
13192
13193LLVM provides that the calculation of such a constant initializer will
13194not overflow at link time under the medium code model if ``x`` is an
13195``unnamed_addr`` function. However, it does not provide this guarantee for
13196a constant initializer folded into a function body. This intrinsic can be
13197used to avoid the possibility of overflows when loading from such a constant.
13198
Andrew Trick5e029ce2013-12-24 02:57:25 +000013199Stack Map Intrinsics
13200--------------------
13201
13202LLVM provides experimental intrinsics to support runtime patching
13203mechanisms commonly desired in dynamic language JITs. These intrinsics
13204are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000013205
13206Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000013207-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000013208
13209These intrinsics are similar to the standard library memory intrinsics except
13210that they perform memory transfer as a sequence of atomic memory accesses.
13211
13212.. _int_memcpy_element_atomic:
13213
13214'``llvm.memcpy.element.atomic``' Intrinsic
Igor Laevskyfedab152016-12-29 15:08:57 +000013215^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000013216
13217Syntax:
13218"""""""
13219
13220This is an overloaded intrinsic. You can use ``llvm.memcpy.element.atomic`` on
13221any integer bit width and for different address spaces. Not all targets
13222support all bit widths however.
13223
13224::
13225
13226 declare void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* <dest>, i8* <src>,
13227 i64 <num_elements>, i32 <element_size>)
13228
13229Overview:
13230"""""""""
13231
13232The '``llvm.memcpy.element.atomic.*``' intrinsic performs copy of a block of
13233memory from the source location to the destination location as a sequence of
13234unordered atomic memory accesses where each access is a multiple of
13235``element_size`` bytes wide and aligned at an element size boundary. For example
13236each element is accessed atomically in source and destination buffers.
13237
13238Arguments:
13239""""""""""
13240
13241The first argument is a pointer to the destination, the second is a
13242pointer to the source. The third argument is an integer argument
13243specifying the number of elements to copy, the fourth argument is size of
13244the single element in bytes.
13245
13246``element_size`` should be a power of two, greater than zero and less than
13247a target-specific atomic access size limit.
13248
13249For each of the input pointers ``align`` parameter attribute must be specified.
13250It must be a power of two and greater than or equal to the ``element_size``.
13251Caller guarantees that both the source and destination pointers are aligned to
13252that boundary.
13253
13254Semantics:
13255""""""""""
13256
13257The '``llvm.memcpy.element.atomic.*``' intrinsic copies
13258'``num_elements`` * ``element_size``' bytes of memory from the source location to
13259the destination location. These locations are not allowed to overlap. Memory copy
13260is performed as a sequence of unordered atomic memory accesses where each access
13261is guaranteed to be a multiple of ``element_size`` bytes wide and aligned at an
13262element size boundary.
13263
13264The order of the copy is unspecified. The same value may be read from the source
13265buffer many times, but only one write is issued to the destination buffer per
13266element. It is well defined to have concurrent reads and writes to both source
13267and destination provided those reads and writes are at least unordered atomic.
13268
13269This intrinsic does not provide any additional ordering guarantees over those
13270provided by a set of unordered loads from the source location and stores to the
13271destination.
13272
13273Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000013274"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000013275
13276In the most general case call to the '``llvm.memcpy.element.atomic.*``' is lowered
13277to a call to the symbol ``__llvm_memcpy_element_atomic_*``. Where '*' is replaced
13278with an actual element size.
13279
13280Optimizer is allowed to inline memory copy when it's profitable to do so.