blob: e7c2888cd0d1e6e51b03b761320962d5ecfe86e5 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Javed Absarf3d79042017-05-11 12:28:08 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
645an optional :ref:`global attributes <glattrs>` and
646an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000647
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000648Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000649:ref:`Thread Local Storage Model <tls_model>`.
650
Nico Rieck7157bb72014-01-14 15:22:47 +0000651Syntax::
652
Rafael Espindola32483a72016-05-10 18:22:45 +0000653 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000654 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
655 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000656 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000657 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000658 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000659
Sean Silvab084af42012-12-07 10:36:55 +0000660For example, the following defines a global in a numbered address space
661with an initializer, section, and alignment:
662
663.. code-block:: llvm
664
665 @G = addrspace(5) constant float 1.0, section "foo", align 4
666
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000667The following example just declares a global variable
668
669.. code-block:: llvm
670
671 @G = external global i32
672
Sean Silvab084af42012-12-07 10:36:55 +0000673The following example defines a thread-local global with the
674``initialexec`` TLS model:
675
676.. code-block:: llvm
677
678 @G = thread_local(initialexec) global i32 0, align 4
679
680.. _functionstructure:
681
682Functions
683---------
684
685LLVM function definitions consist of the "``define``" keyword, an
686optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000687style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
688an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000689an optional ``unnamed_addr`` attribute, a return type, an optional
690:ref:`parameter attribute <paramattrs>` for the return type, a function
691name, a (possibly empty) argument list (each with optional :ref:`parameter
692attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000693an optional section, an optional alignment,
694an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000695an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000696an optional :ref:`prologue <prologuedata>`,
697an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000698an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000699an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000700
701LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000702optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
703<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
704optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
705or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
706attribute <paramattrs>` for the return type, a function name, a possibly
707empty list of arguments, an optional alignment, an optional :ref:`garbage
708collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
709:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000710
Bill Wendling6822ecb2013-10-27 05:09:12 +0000711A function definition contains a list of basic blocks, forming the CFG (Control
712Flow Graph) for the function. Each basic block may optionally start with a label
713(giving the basic block a symbol table entry), contains a list of instructions,
714and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
715function return). If an explicit label is not provided, a block is assigned an
716implicit numbered label, using the next value from the same counter as used for
717unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
718entry block does not have an explicit label, it will be assigned label "%0",
719then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000720
721The first basic block in a function is special in two ways: it is
722immediately executed on entrance to the function, and it is not allowed
723to have predecessor basic blocks (i.e. there can not be any branches to
724the entry block of a function). Because the block can have no
725predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
726
727LLVM allows an explicit section to be specified for functions. If the
728target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000729Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000730
731An explicit alignment may be specified for a function. If not present,
732or if the alignment is set to zero, the alignment of the function is set
733by the target to whatever it feels convenient. If an explicit alignment
734is specified, the function is forced to have at least that much
735alignment. All alignments must be a power of 2.
736
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000737If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000738be significant and two identical functions can be merged.
739
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000740If the ``local_unnamed_addr`` attribute is given, the address is known to
741not be significant within the module.
742
Sean Silvab084af42012-12-07 10:36:55 +0000743Syntax::
744
Nico Rieck7157bb72014-01-14 15:22:47 +0000745 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000746 [cconv] [ret attrs]
747 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000748 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
749 [comdat [($name)]] [align N] [gc] [prefix Constant]
750 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000751
Sean Silva706fba52015-08-06 22:56:24 +0000752The argument list is a comma separated sequence of arguments where each
753argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000754
755Syntax::
756
757 <type> [parameter Attrs] [name]
758
759
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000760.. _langref_aliases:
761
Sean Silvab084af42012-12-07 10:36:55 +0000762Aliases
763-------
764
Rafael Espindola64c1e182014-06-03 02:41:57 +0000765Aliases, unlike function or variables, don't create any new data. They
766are just a new symbol and metadata for an existing position.
767
768Aliases have a name and an aliasee that is either a global value or a
769constant expression.
770
Nico Rieck7157bb72014-01-14 15:22:47 +0000771Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000772:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
773<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000774
775Syntax::
776
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000777 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000778
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000779The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000780``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000781might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000782
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000783Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000784the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
785to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000786
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000787If the ``local_unnamed_addr`` attribute is given, the address is known to
788not be significant within the module.
789
Rafael Espindola64c1e182014-06-03 02:41:57 +0000790Since aliases are only a second name, some restrictions apply, of which
791some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000792
Rafael Espindola64c1e182014-06-03 02:41:57 +0000793* The expression defining the aliasee must be computable at assembly
794 time. Since it is just a name, no relocations can be used.
795
796* No alias in the expression can be weak as the possibility of the
797 intermediate alias being overridden cannot be represented in an
798 object file.
799
800* No global value in the expression can be a declaration, since that
801 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000802
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000803.. _langref_ifunc:
804
805IFuncs
806-------
807
808IFuncs, like as aliases, don't create any new data or func. They are just a new
809symbol that dynamic linker resolves at runtime by calling a resolver function.
810
811IFuncs have a name and a resolver that is a function called by dynamic linker
812that returns address of another function associated with the name.
813
814IFunc may have an optional :ref:`linkage type <linkage>` and an optional
815:ref:`visibility style <visibility>`.
816
817Syntax::
818
819 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
820
821
David Majnemerdad0a642014-06-27 18:19:56 +0000822.. _langref_comdats:
823
824Comdats
825-------
826
827Comdat IR provides access to COFF and ELF object file COMDAT functionality.
828
Sean Silvaa1190322015-08-06 22:56:48 +0000829Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000830specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000831that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000832aliasee computes to, if any.
833
834Comdats have a selection kind to provide input on how the linker should
835choose between keys in two different object files.
836
837Syntax::
838
839 $<Name> = comdat SelectionKind
840
841The selection kind must be one of the following:
842
843``any``
844 The linker may choose any COMDAT key, the choice is arbitrary.
845``exactmatch``
846 The linker may choose any COMDAT key but the sections must contain the
847 same data.
848``largest``
849 The linker will choose the section containing the largest COMDAT key.
850``noduplicates``
851 The linker requires that only section with this COMDAT key exist.
852``samesize``
853 The linker may choose any COMDAT key but the sections must contain the
854 same amount of data.
855
856Note that the Mach-O platform doesn't support COMDATs and ELF only supports
857``any`` as a selection kind.
858
859Here is an example of a COMDAT group where a function will only be selected if
860the COMDAT key's section is the largest:
861
Renato Golin124f2592016-07-20 12:16:38 +0000862.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000863
864 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000865 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000866
Rafael Espindola83a362c2015-01-06 22:55:16 +0000867 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000868 ret void
869 }
870
Rafael Espindola83a362c2015-01-06 22:55:16 +0000871As a syntactic sugar the ``$name`` can be omitted if the name is the same as
872the global name:
873
Renato Golin124f2592016-07-20 12:16:38 +0000874.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000875
876 $foo = comdat any
877 @foo = global i32 2, comdat
878
879
David Majnemerdad0a642014-06-27 18:19:56 +0000880In a COFF object file, this will create a COMDAT section with selection kind
881``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
882and another COMDAT section with selection kind
883``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000884section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000885
886There are some restrictions on the properties of the global object.
887It, or an alias to it, must have the same name as the COMDAT group when
888targeting COFF.
889The contents and size of this object may be used during link-time to determine
890which COMDAT groups get selected depending on the selection kind.
891Because the name of the object must match the name of the COMDAT group, the
892linkage of the global object must not be local; local symbols can get renamed
893if a collision occurs in the symbol table.
894
895The combined use of COMDATS and section attributes may yield surprising results.
896For example:
897
Renato Golin124f2592016-07-20 12:16:38 +0000898.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000899
900 $foo = comdat any
901 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000902 @g1 = global i32 42, section "sec", comdat($foo)
903 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000904
905From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000906with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000907COMDAT groups and COMDATs, at the object file level, are represented by
908sections.
909
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000910Note that certain IR constructs like global variables and functions may
911create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000912COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000913in individual sections (e.g. when `-data-sections` or `-function-sections`
914is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000915
Sean Silvab084af42012-12-07 10:36:55 +0000916.. _namedmetadatastructure:
917
918Named Metadata
919--------------
920
921Named metadata is a collection of metadata. :ref:`Metadata
922nodes <metadata>` (but not metadata strings) are the only valid
923operands for a named metadata.
924
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000925#. Named metadata are represented as a string of characters with the
926 metadata prefix. The rules for metadata names are the same as for
927 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
928 are still valid, which allows any character to be part of a name.
929
Sean Silvab084af42012-12-07 10:36:55 +0000930Syntax::
931
932 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000933 !0 = !{!"zero"}
934 !1 = !{!"one"}
935 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000936 ; A named metadata.
937 !name = !{!0, !1, !2}
938
939.. _paramattrs:
940
941Parameter Attributes
942--------------------
943
944The return type and each parameter of a function type may have a set of
945*parameter attributes* associated with them. Parameter attributes are
946used to communicate additional information about the result or
947parameters of a function. Parameter attributes are considered to be part
948of the function, not of the function type, so functions with different
949parameter attributes can have the same function type.
950
951Parameter attributes are simple keywords that follow the type specified.
952If multiple parameter attributes are needed, they are space separated.
953For example:
954
955.. code-block:: llvm
956
957 declare i32 @printf(i8* noalias nocapture, ...)
958 declare i32 @atoi(i8 zeroext)
959 declare signext i8 @returns_signed_char()
960
961Note that any attributes for the function result (``nounwind``,
962``readonly``) come immediately after the argument list.
963
964Currently, only the following parameter attributes are defined:
965
966``zeroext``
967 This indicates to the code generator that the parameter or return
968 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000969 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000970``signext``
971 This indicates to the code generator that the parameter or return
972 value should be sign-extended to the extent required by the target's
973 ABI (which is usually 32-bits) by the caller (for a parameter) or
974 the callee (for a return value).
975``inreg``
976 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000977 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000978 a function call or return (usually, by putting it in a register as
979 opposed to memory, though some targets use it to distinguish between
980 two different kinds of registers). Use of this attribute is
981 target-specific.
982``byval``
983 This indicates that the pointer parameter should really be passed by
984 value to the function. The attribute implies that a hidden copy of
985 the pointee is made between the caller and the callee, so the callee
986 is unable to modify the value in the caller. This attribute is only
987 valid on LLVM pointer arguments. It is generally used to pass
988 structs and arrays by value, but is also valid on pointers to
989 scalars. The copy is considered to belong to the caller not the
990 callee (for example, ``readonly`` functions should not write to
991 ``byval`` parameters). This is not a valid attribute for return
992 values.
993
994 The byval attribute also supports specifying an alignment with the
995 align attribute. It indicates the alignment of the stack slot to
996 form and the known alignment of the pointer specified to the call
997 site. If the alignment is not specified, then the code generator
998 makes a target-specific assumption.
999
Reid Klecknera534a382013-12-19 02:14:12 +00001000.. _attr_inalloca:
1001
1002``inalloca``
1003
Reid Kleckner60d3a832014-01-16 22:59:24 +00001004 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001005 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001006 be a pointer to stack memory produced by an ``alloca`` instruction.
1007 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001008 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001009 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001010
Reid Kleckner436c42e2014-01-17 23:58:17 +00001011 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001012 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001013 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001014 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001015 ``inalloca`` attribute also disables LLVM's implicit lowering of
1016 large aggregate return values, which means that frontend authors
1017 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001018
Reid Kleckner60d3a832014-01-16 22:59:24 +00001019 When the call site is reached, the argument allocation must have
1020 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001021 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001022 space after an argument allocation and before its call site, but it
1023 must be cleared off with :ref:`llvm.stackrestore
1024 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001025
1026 See :doc:`InAlloca` for more information on how to use this
1027 attribute.
1028
Sean Silvab084af42012-12-07 10:36:55 +00001029``sret``
1030 This indicates that the pointer parameter specifies the address of a
1031 structure that is the return value of the function in the source
1032 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001033 loads and stores to the structure may be assumed by the callee not
1034 to trap and to be properly aligned. This is not a valid attribute
1035 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001036
Hal Finkelccc70902014-07-22 16:58:55 +00001037``align <n>``
1038 This indicates that the pointer value may be assumed by the optimizer to
1039 have the specified alignment.
1040
1041 Note that this attribute has additional semantics when combined with the
1042 ``byval`` attribute.
1043
Sean Silva1703e702014-04-08 21:06:22 +00001044.. _noalias:
1045
Sean Silvab084af42012-12-07 10:36:55 +00001046``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001047 This indicates that objects accessed via pointer values
1048 :ref:`based <pointeraliasing>` on the argument or return value are not also
1049 accessed, during the execution of the function, via pointer values not
1050 *based* on the argument or return value. The attribute on a return value
1051 also has additional semantics described below. The caller shares the
1052 responsibility with the callee for ensuring that these requirements are met.
1053 For further details, please see the discussion of the NoAlias response in
1054 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001055
1056 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001057 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001058
1059 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001060 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1061 attribute on return values are stronger than the semantics of the attribute
1062 when used on function arguments. On function return values, the ``noalias``
1063 attribute indicates that the function acts like a system memory allocation
1064 function, returning a pointer to allocated storage disjoint from the
1065 storage for any other object accessible to the caller.
1066
Sean Silvab084af42012-12-07 10:36:55 +00001067``nocapture``
1068 This indicates that the callee does not make any copies of the
1069 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001070 attribute for return values. Addresses used in volatile operations
1071 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001072
1073.. _nest:
1074
1075``nest``
1076 This indicates that the pointer parameter can be excised using the
1077 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001078 attribute for return values and can only be applied to one parameter.
1079
1080``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001081 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001082 value. This is a hint to the optimizer and code generator used when
1083 generating the caller, allowing value propagation, tail call optimization,
1084 and omission of register saves and restores in some cases; it is not
1085 checked or enforced when generating the callee. The parameter and the
1086 function return type must be valid operands for the
1087 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1088 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001089
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001090``nonnull``
1091 This indicates that the parameter or return pointer is not null. This
1092 attribute may only be applied to pointer typed parameters. This is not
1093 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001094 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001095 is non-null.
1096
Hal Finkelb0407ba2014-07-18 15:51:28 +00001097``dereferenceable(<n>)``
1098 This indicates that the parameter or return pointer is dereferenceable. This
1099 attribute may only be applied to pointer typed parameters. A pointer that
1100 is dereferenceable can be loaded from speculatively without a risk of
1101 trapping. The number of bytes known to be dereferenceable must be provided
1102 in parentheses. It is legal for the number of bytes to be less than the
1103 size of the pointee type. The ``nonnull`` attribute does not imply
1104 dereferenceability (consider a pointer to one element past the end of an
1105 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1106 ``addrspace(0)`` (which is the default address space).
1107
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001108``dereferenceable_or_null(<n>)``
1109 This indicates that the parameter or return value isn't both
1110 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001111 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001112 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1113 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1114 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1115 and in other address spaces ``dereferenceable_or_null(<n>)``
1116 implies that a pointer is at least one of ``dereferenceable(<n>)``
1117 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001118 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001119 pointer typed parameters.
1120
Manman Renf46262e2016-03-29 17:37:21 +00001121``swiftself``
1122 This indicates that the parameter is the self/context parameter. This is not
1123 a valid attribute for return values and can only be applied to one
1124 parameter.
1125
Manman Ren9bfd0d02016-04-01 21:41:15 +00001126``swifterror``
1127 This attribute is motivated to model and optimize Swift error handling. It
1128 can be applied to a parameter with pointer to pointer type or a
1129 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001130 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1131 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1132 the parameter or the alloca) can only be loaded and stored from, or used as
1133 a ``swifterror`` argument. This is not a valid attribute for return values
1134 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001135
1136 These constraints allow the calling convention to optimize access to
1137 ``swifterror`` variables by associating them with a specific register at
1138 call boundaries rather than placing them in memory. Since this does change
1139 the calling convention, a function which uses the ``swifterror`` attribute
1140 on a parameter is not ABI-compatible with one which does not.
1141
1142 These constraints also allow LLVM to assume that a ``swifterror`` argument
1143 does not alias any other memory visible within a function and that a
1144 ``swifterror`` alloca passed as an argument does not escape.
1145
Sean Silvab084af42012-12-07 10:36:55 +00001146.. _gc:
1147
Philip Reamesf80bbff2015-02-25 23:45:20 +00001148Garbage Collector Strategy Names
1149--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001150
Philip Reamesf80bbff2015-02-25 23:45:20 +00001151Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001152string:
1153
1154.. code-block:: llvm
1155
1156 define void @f() gc "name" { ... }
1157
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001158The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001159<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001160strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001161named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001162garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001163which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001164
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001165.. _prefixdata:
1166
1167Prefix Data
1168-----------
1169
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001170Prefix data is data associated with a function which the code
1171generator will emit immediately before the function's entrypoint.
1172The purpose of this feature is to allow frontends to associate
1173language-specific runtime metadata with specific functions and make it
1174available through the function pointer while still allowing the
1175function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001176
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001177To access the data for a given function, a program may bitcast the
1178function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001179index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001180the prefix data. For instance, take the example of a function annotated
1181with a single ``i32``,
1182
1183.. code-block:: llvm
1184
1185 define void @f() prefix i32 123 { ... }
1186
1187The prefix data can be referenced as,
1188
1189.. code-block:: llvm
1190
David Blaikie16a97eb2015-03-04 22:02:58 +00001191 %0 = bitcast void* () @f to i32*
1192 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001193 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001194
1195Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001196of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001197beginning of the prefix data is aligned. This means that if the size
1198of the prefix data is not a multiple of the alignment size, the
1199function's entrypoint will not be aligned. If alignment of the
1200function's entrypoint is desired, padding must be added to the prefix
1201data.
1202
Sean Silvaa1190322015-08-06 22:56:48 +00001203A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001204to the ``available_externally`` linkage in that the data may be used by the
1205optimizers but will not be emitted in the object file.
1206
1207.. _prologuedata:
1208
1209Prologue Data
1210-------------
1211
1212The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1213be inserted prior to the function body. This can be used for enabling
1214function hot-patching and instrumentation.
1215
1216To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001217have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001218bytes which decode to a sequence of machine instructions, valid for the
1219module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001220the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001221the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001222definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001223makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001224
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001225A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001226which encodes the ``nop`` instruction:
1227
Renato Golin124f2592016-07-20 12:16:38 +00001228.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001229
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001230 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001231
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001232Generally prologue data can be formed by encoding a relative branch instruction
1233which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001234x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1235
Renato Golin124f2592016-07-20 12:16:38 +00001236.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001237
1238 %0 = type <{ i8, i8, i8* }>
1239
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001240 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001241
Sean Silvaa1190322015-08-06 22:56:48 +00001242A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001243to the ``available_externally`` linkage in that the data may be used by the
1244optimizers but will not be emitted in the object file.
1245
David Majnemer7fddecc2015-06-17 20:52:32 +00001246.. _personalityfn:
1247
1248Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001249--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001250
1251The ``personality`` attribute permits functions to specify what function
1252to use for exception handling.
1253
Bill Wendling63b88192013-02-06 06:52:58 +00001254.. _attrgrp:
1255
1256Attribute Groups
1257----------------
1258
1259Attribute groups are groups of attributes that are referenced by objects within
1260the IR. They are important for keeping ``.ll`` files readable, because a lot of
1261functions will use the same set of attributes. In the degenerative case of a
1262``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1263group will capture the important command line flags used to build that file.
1264
1265An attribute group is a module-level object. To use an attribute group, an
1266object references the attribute group's ID (e.g. ``#37``). An object may refer
1267to more than one attribute group. In that situation, the attributes from the
1268different groups are merged.
1269
1270Here is an example of attribute groups for a function that should always be
1271inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1272
1273.. code-block:: llvm
1274
1275 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001276 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001277
1278 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001279 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001280
1281 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1282 define void @f() #0 #1 { ... }
1283
Sean Silvab084af42012-12-07 10:36:55 +00001284.. _fnattrs:
1285
1286Function Attributes
1287-------------------
1288
1289Function attributes are set to communicate additional information about
1290a function. Function attributes are considered to be part of the
1291function, not of the function type, so functions with different function
1292attributes can have the same function type.
1293
1294Function attributes are simple keywords that follow the type specified.
1295If multiple attributes are needed, they are space separated. For
1296example:
1297
1298.. code-block:: llvm
1299
1300 define void @f() noinline { ... }
1301 define void @f() alwaysinline { ... }
1302 define void @f() alwaysinline optsize { ... }
1303 define void @f() optsize { ... }
1304
Sean Silvab084af42012-12-07 10:36:55 +00001305``alignstack(<n>)``
1306 This attribute indicates that, when emitting the prologue and
1307 epilogue, the backend should forcibly align the stack pointer.
1308 Specify the desired alignment, which must be a power of two, in
1309 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001310``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1311 This attribute indicates that the annotated function will always return at
1312 least a given number of bytes (or null). Its arguments are zero-indexed
1313 parameter numbers; if one argument is provided, then it's assumed that at
1314 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1315 returned pointer. If two are provided, then it's assumed that
1316 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1317 available. The referenced parameters must be integer types. No assumptions
1318 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001319``alwaysinline``
1320 This attribute indicates that the inliner should attempt to inline
1321 this function into callers whenever possible, ignoring any active
1322 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001323``builtin``
1324 This indicates that the callee function at a call site should be
1325 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001326 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001327 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001328 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001329``cold``
1330 This attribute indicates that this function is rarely called. When
1331 computing edge weights, basic blocks post-dominated by a cold
1332 function call are also considered to be cold; and, thus, given low
1333 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001334``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001335 In some parallel execution models, there exist operations that cannot be
1336 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001337 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001338
Justin Lebar58535b12016-02-17 17:46:41 +00001339 The ``convergent`` attribute may appear on functions or call/invoke
1340 instructions. When it appears on a function, it indicates that calls to
1341 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001342 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001343 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001344 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001345
Justin Lebar58535b12016-02-17 17:46:41 +00001346 When it appears on a call/invoke, the ``convergent`` attribute indicates
1347 that we should treat the call as though we're calling a convergent
1348 function. This is particularly useful on indirect calls; without this we
1349 may treat such calls as though the target is non-convergent.
1350
1351 The optimizer may remove the ``convergent`` attribute on functions when it
1352 can prove that the function does not execute any convergent operations.
1353 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1354 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001355``inaccessiblememonly``
1356 This attribute indicates that the function may only access memory that
1357 is not accessible by the module being compiled. This is a weaker form
1358 of ``readnone``.
1359``inaccessiblemem_or_argmemonly``
1360 This attribute indicates that the function may only access memory that is
1361 either not accessible by the module being compiled, or is pointed to
1362 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001363``inlinehint``
1364 This attribute indicates that the source code contained a hint that
1365 inlining this function is desirable (such as the "inline" keyword in
1366 C/C++). It is just a hint; it imposes no requirements on the
1367 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001368``jumptable``
1369 This attribute indicates that the function should be added to a
1370 jump-instruction table at code-generation time, and that all address-taken
1371 references to this function should be replaced with a reference to the
1372 appropriate jump-instruction-table function pointer. Note that this creates
1373 a new pointer for the original function, which means that code that depends
1374 on function-pointer identity can break. So, any function annotated with
1375 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001376``minsize``
1377 This attribute suggests that optimization passes and code generator
1378 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001379 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001380 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001381``naked``
1382 This attribute disables prologue / epilogue emission for the
1383 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001384``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001385 This indicates that the callee function at a call site is not recognized as
1386 a built-in function. LLVM will retain the original call and not replace it
1387 with equivalent code based on the semantics of the built-in function, unless
1388 the call site uses the ``builtin`` attribute. This is valid at call sites
1389 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001390``noduplicate``
1391 This attribute indicates that calls to the function cannot be
1392 duplicated. A call to a ``noduplicate`` function may be moved
1393 within its parent function, but may not be duplicated within
1394 its parent function.
1395
1396 A function containing a ``noduplicate`` call may still
1397 be an inlining candidate, provided that the call is not
1398 duplicated by inlining. That implies that the function has
1399 internal linkage and only has one call site, so the original
1400 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001401``noimplicitfloat``
1402 This attributes disables implicit floating point instructions.
1403``noinline``
1404 This attribute indicates that the inliner should never inline this
1405 function in any situation. This attribute may not be used together
1406 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001407``nonlazybind``
1408 This attribute suppresses lazy symbol binding for the function. This
1409 may make calls to the function faster, at the cost of extra program
1410 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001411``noredzone``
1412 This attribute indicates that the code generator should not use a
1413 red zone, even if the target-specific ABI normally permits it.
1414``noreturn``
1415 This function attribute indicates that the function never returns
1416 normally. This produces undefined behavior at runtime if the
1417 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001418``norecurse``
1419 This function attribute indicates that the function does not call itself
1420 either directly or indirectly down any possible call path. This produces
1421 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001422``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001423 This function attribute indicates that the function never raises an
1424 exception. If the function does raise an exception, its runtime
1425 behavior is undefined. However, functions marked nounwind may still
1426 trap or generate asynchronous exceptions. Exception handling schemes
1427 that are recognized by LLVM to handle asynchronous exceptions, such
1428 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001429``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001430 This function attribute indicates that most optimization passes will skip
1431 this function, with the exception of interprocedural optimization passes.
1432 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001433 This attribute cannot be used together with the ``alwaysinline``
1434 attribute; this attribute is also incompatible
1435 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001436
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001437 This attribute requires the ``noinline`` attribute to be specified on
1438 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001439 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001440 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001441``optsize``
1442 This attribute suggests that optimization passes and code generator
1443 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001444 and otherwise do optimizations specifically to reduce code size as
1445 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001446``"patchable-function"``
1447 This attribute tells the code generator that the code
1448 generated for this function needs to follow certain conventions that
1449 make it possible for a runtime function to patch over it later.
1450 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001451 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001452
1453 * ``"prologue-short-redirect"`` - This style of patchable
1454 function is intended to support patching a function prologue to
1455 redirect control away from the function in a thread safe
1456 manner. It guarantees that the first instruction of the
1457 function will be large enough to accommodate a short jump
1458 instruction, and will be sufficiently aligned to allow being
1459 fully changed via an atomic compare-and-swap instruction.
1460 While the first requirement can be satisfied by inserting large
1461 enough NOP, LLVM can and will try to re-purpose an existing
1462 instruction (i.e. one that would have to be emitted anyway) as
1463 the patchable instruction larger than a short jump.
1464
1465 ``"prologue-short-redirect"`` is currently only supported on
1466 x86-64.
1467
1468 This attribute by itself does not imply restrictions on
1469 inter-procedural optimizations. All of the semantic effects the
1470 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001471``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001472 On a function, this attribute indicates that the function computes its
1473 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001474 without dereferencing any pointer arguments or otherwise accessing
1475 any mutable state (e.g. memory, control registers, etc) visible to
1476 caller functions. It does not write through any pointer arguments
1477 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001478 to callers. This means while it cannot unwind exceptions by calling
1479 the ``C++`` exception throwing methods (since they write to memory), there may
1480 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1481 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001482
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001483 On an argument, this attribute indicates that the function does not
1484 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001485 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001486``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001487 On a function, this attribute indicates that the function does not write
1488 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001489 modify any state (e.g. memory, control registers, etc) visible to
1490 caller functions. It may dereference pointer arguments and read
1491 state that may be set in the caller. A readonly function always
1492 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001493 called with the same set of arguments and global state. This means while it
1494 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1495 (since they write to memory), there may be non-``C++`` mechanisms that throw
1496 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001497
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001498 On an argument, this attribute indicates that the function does not write
1499 through this pointer argument, even though it may write to the memory that
1500 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001501``writeonly``
1502 On a function, this attribute indicates that the function may write to but
1503 does not read from memory.
1504
1505 On an argument, this attribute indicates that the function may write to but
1506 does not read through this pointer argument (even though it may read from
1507 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001508``argmemonly``
1509 This attribute indicates that the only memory accesses inside function are
1510 loads and stores from objects pointed to by its pointer-typed arguments,
1511 with arbitrary offsets. Or in other words, all memory operations in the
1512 function can refer to memory only using pointers based on its function
1513 arguments.
1514 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1515 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001516``returns_twice``
1517 This attribute indicates that this function can return twice. The C
1518 ``setjmp`` is an example of such a function. The compiler disables
1519 some optimizations (like tail calls) in the caller of these
1520 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001521``safestack``
1522 This attribute indicates that
1523 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1524 protection is enabled for this function.
1525
1526 If a function that has a ``safestack`` attribute is inlined into a
1527 function that doesn't have a ``safestack`` attribute or which has an
1528 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1529 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001530``sanitize_address``
1531 This attribute indicates that AddressSanitizer checks
1532 (dynamic address safety analysis) are enabled for this function.
1533``sanitize_memory``
1534 This attribute indicates that MemorySanitizer checks (dynamic detection
1535 of accesses to uninitialized memory) are enabled for this function.
1536``sanitize_thread``
1537 This attribute indicates that ThreadSanitizer checks
1538 (dynamic thread safety analysis) are enabled for this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001539``speculatable``
1540 This function attribute indicates that the function does not have any
1541 effects besides calculating its result and does not have undefined behavior.
1542 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001543 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001544 externally observable. This attribute is only valid on functions
1545 and declarations, not on individual call sites. If a function is
1546 incorrectly marked as speculatable and really does exhibit
1547 undefined behavior, the undefined behavior may be observed even
1548 if the call site is dead code.
1549
Sean Silvab084af42012-12-07 10:36:55 +00001550``ssp``
1551 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001552 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001553 placed on the stack before the local variables that's checked upon
1554 return from the function to see if it has been overwritten. A
1555 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001556 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001557
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001558 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1559 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1560 - Calls to alloca() with variable sizes or constant sizes greater than
1561 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001562
Josh Magee24c7f062014-02-01 01:36:16 +00001563 Variables that are identified as requiring a protector will be arranged
1564 on the stack such that they are adjacent to the stack protector guard.
1565
Sean Silvab084af42012-12-07 10:36:55 +00001566 If a function that has an ``ssp`` attribute is inlined into a
1567 function that doesn't have an ``ssp`` attribute, then the resulting
1568 function will have an ``ssp`` attribute.
1569``sspreq``
1570 This attribute indicates that the function should *always* emit a
1571 stack smashing protector. This overrides the ``ssp`` function
1572 attribute.
1573
Josh Magee24c7f062014-02-01 01:36:16 +00001574 Variables that are identified as requiring a protector will be arranged
1575 on the stack such that they are adjacent to the stack protector guard.
1576 The specific layout rules are:
1577
1578 #. Large arrays and structures containing large arrays
1579 (``>= ssp-buffer-size``) are closest to the stack protector.
1580 #. Small arrays and structures containing small arrays
1581 (``< ssp-buffer-size``) are 2nd closest to the protector.
1582 #. Variables that have had their address taken are 3rd closest to the
1583 protector.
1584
Sean Silvab084af42012-12-07 10:36:55 +00001585 If a function that has an ``sspreq`` attribute is inlined into a
1586 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001587 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1588 an ``sspreq`` attribute.
1589``sspstrong``
1590 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001591 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001592 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001593 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001594
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001595 - Arrays of any size and type
1596 - Aggregates containing an array of any size and type.
1597 - Calls to alloca().
1598 - Local variables that have had their address taken.
1599
Josh Magee24c7f062014-02-01 01:36:16 +00001600 Variables that are identified as requiring a protector will be arranged
1601 on the stack such that they are adjacent to the stack protector guard.
1602 The specific layout rules are:
1603
1604 #. Large arrays and structures containing large arrays
1605 (``>= ssp-buffer-size``) are closest to the stack protector.
1606 #. Small arrays and structures containing small arrays
1607 (``< ssp-buffer-size``) are 2nd closest to the protector.
1608 #. Variables that have had their address taken are 3rd closest to the
1609 protector.
1610
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001611 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001612
1613 If a function that has an ``sspstrong`` attribute is inlined into a
1614 function that doesn't have an ``sspstrong`` attribute, then the
1615 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001616``"thunk"``
1617 This attribute indicates that the function will delegate to some other
1618 function with a tail call. The prototype of a thunk should not be used for
1619 optimization purposes. The caller is expected to cast the thunk prototype to
1620 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001621``uwtable``
1622 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001623 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001624 show that no exceptions passes by it. This is normally the case for
1625 the ELF x86-64 abi, but it can be disabled for some compilation
1626 units.
Sean Silvab084af42012-12-07 10:36:55 +00001627
Javed Absarf3d79042017-05-11 12:28:08 +00001628.. _glattrs:
1629
1630Global Attributes
1631-----------------
1632
1633Attributes may be set to communicate additional information about a global variable.
1634Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1635are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001636
1637.. _opbundles:
1638
1639Operand Bundles
1640---------------
1641
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001642Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001643with certain LLVM instructions (currently only ``call`` s and
1644``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001645incorrect and will change program semantics.
1646
1647Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001648
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001649 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001650 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1651 bundle operand ::= SSA value
1652 tag ::= string constant
1653
1654Operand bundles are **not** part of a function's signature, and a
1655given function may be called from multiple places with different kinds
1656of operand bundles. This reflects the fact that the operand bundles
1657are conceptually a part of the ``call`` (or ``invoke``), not the
1658callee being dispatched to.
1659
1660Operand bundles are a generic mechanism intended to support
1661runtime-introspection-like functionality for managed languages. While
1662the exact semantics of an operand bundle depend on the bundle tag,
1663there are certain limitations to how much the presence of an operand
1664bundle can influence the semantics of a program. These restrictions
1665are described as the semantics of an "unknown" operand bundle. As
1666long as the behavior of an operand bundle is describable within these
1667restrictions, LLVM does not need to have special knowledge of the
1668operand bundle to not miscompile programs containing it.
1669
David Majnemer34cacb42015-10-22 01:46:38 +00001670- The bundle operands for an unknown operand bundle escape in unknown
1671 ways before control is transferred to the callee or invokee.
1672- Calls and invokes with operand bundles have unknown read / write
1673 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001674 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001675 callsite specific attributes.
1676- An operand bundle at a call site cannot change the implementation
1677 of the called function. Inter-procedural optimizations work as
1678 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001679
Sanjoy Dascdafd842015-11-11 21:38:02 +00001680More specific types of operand bundles are described below.
1681
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001682.. _deopt_opbundles:
1683
Sanjoy Dascdafd842015-11-11 21:38:02 +00001684Deoptimization Operand Bundles
1685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1686
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001687Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001688operand bundle tag. These operand bundles represent an alternate
1689"safe" continuation for the call site they're attached to, and can be
1690used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001691specified call site. There can be at most one ``"deopt"`` operand
1692bundle attached to a call site. Exact details of deoptimization is
1693out of scope for the language reference, but it usually involves
1694rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001695
1696From the compiler's perspective, deoptimization operand bundles make
1697the call sites they're attached to at least ``readonly``. They read
1698through all of their pointer typed operands (even if they're not
1699otherwise escaped) and the entire visible heap. Deoptimization
1700operand bundles do not capture their operands except during
1701deoptimization, in which case control will not be returned to the
1702compiled frame.
1703
Sanjoy Das2d161452015-11-18 06:23:38 +00001704The inliner knows how to inline through calls that have deoptimization
1705operand bundles. Just like inlining through a normal call site
1706involves composing the normal and exceptional continuations, inlining
1707through a call site with a deoptimization operand bundle needs to
1708appropriately compose the "safe" deoptimization continuation. The
1709inliner does this by prepending the parent's deoptimization
1710continuation to every deoptimization continuation in the inlined body.
1711E.g. inlining ``@f`` into ``@g`` in the following example
1712
1713.. code-block:: llvm
1714
1715 define void @f() {
1716 call void @x() ;; no deopt state
1717 call void @y() [ "deopt"(i32 10) ]
1718 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1719 ret void
1720 }
1721
1722 define void @g() {
1723 call void @f() [ "deopt"(i32 20) ]
1724 ret void
1725 }
1726
1727will result in
1728
1729.. code-block:: llvm
1730
1731 define void @g() {
1732 call void @x() ;; still no deopt state
1733 call void @y() [ "deopt"(i32 20, i32 10) ]
1734 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1735 ret void
1736 }
1737
1738It is the frontend's responsibility to structure or encode the
1739deoptimization state in a way that syntactically prepending the
1740caller's deoptimization state to the callee's deoptimization state is
1741semantically equivalent to composing the caller's deoptimization
1742continuation after the callee's deoptimization continuation.
1743
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001744.. _ob_funclet:
1745
David Majnemer3bb88c02015-12-15 21:27:27 +00001746Funclet Operand Bundles
1747^^^^^^^^^^^^^^^^^^^^^^^
1748
1749Funclet operand bundles are characterized by the ``"funclet"``
1750operand bundle tag. These operand bundles indicate that a call site
1751is within a particular funclet. There can be at most one
1752``"funclet"`` operand bundle attached to a call site and it must have
1753exactly one bundle operand.
1754
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001755If any funclet EH pads have been "entered" but not "exited" (per the
1756`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1757it is undefined behavior to execute a ``call`` or ``invoke`` which:
1758
1759* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1760 intrinsic, or
1761* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1762 not-yet-exited funclet EH pad.
1763
1764Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1765executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1766
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001767GC Transition Operand Bundles
1768^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1769
1770GC transition operand bundles are characterized by the
1771``"gc-transition"`` operand bundle tag. These operand bundles mark a
1772call as a transition between a function with one GC strategy to a
1773function with a different GC strategy. If coordinating the transition
1774between GC strategies requires additional code generation at the call
1775site, these bundles may contain any values that are needed by the
1776generated code. For more details, see :ref:`GC Transitions
1777<gc_transition_args>`.
1778
Sean Silvab084af42012-12-07 10:36:55 +00001779.. _moduleasm:
1780
1781Module-Level Inline Assembly
1782----------------------------
1783
1784Modules may contain "module-level inline asm" blocks, which corresponds
1785to the GCC "file scope inline asm" blocks. These blocks are internally
1786concatenated by LLVM and treated as a single unit, but may be separated
1787in the ``.ll`` file if desired. The syntax is very simple:
1788
1789.. code-block:: llvm
1790
1791 module asm "inline asm code goes here"
1792 module asm "more can go here"
1793
1794The strings can contain any character by escaping non-printable
1795characters. The escape sequence used is simply "\\xx" where "xx" is the
1796two digit hex code for the number.
1797
James Y Knightbc832ed2015-07-08 18:08:36 +00001798Note that the assembly string *must* be parseable by LLVM's integrated assembler
1799(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001800
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001801.. _langref_datalayout:
1802
Sean Silvab084af42012-12-07 10:36:55 +00001803Data Layout
1804-----------
1805
1806A module may specify a target specific data layout string that specifies
1807how data is to be laid out in memory. The syntax for the data layout is
1808simply:
1809
1810.. code-block:: llvm
1811
1812 target datalayout = "layout specification"
1813
1814The *layout specification* consists of a list of specifications
1815separated by the minus sign character ('-'). Each specification starts
1816with a letter and may include other information after the letter to
1817define some aspect of the data layout. The specifications accepted are
1818as follows:
1819
1820``E``
1821 Specifies that the target lays out data in big-endian form. That is,
1822 the bits with the most significance have the lowest address
1823 location.
1824``e``
1825 Specifies that the target lays out data in little-endian form. That
1826 is, the bits with the least significance have the lowest address
1827 location.
1828``S<size>``
1829 Specifies the natural alignment of the stack in bits. Alignment
1830 promotion of stack variables is limited to the natural stack
1831 alignment to avoid dynamic stack realignment. The stack alignment
1832 must be a multiple of 8-bits. If omitted, the natural stack
1833 alignment defaults to "unspecified", which does not prevent any
1834 alignment promotions.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001835``A<address space>``
1836 Specifies the address space of objects created by '``alloca``'.
1837 Defaults to the default address space of 0.
Sean Silvab084af42012-12-07 10:36:55 +00001838``p[n]:<size>:<abi>:<pref>``
1839 This specifies the *size* of a pointer and its ``<abi>`` and
1840 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001841 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001842 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001843 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001844``i<size>:<abi>:<pref>``
1845 This specifies the alignment for an integer type of a given bit
1846 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1847``v<size>:<abi>:<pref>``
1848 This specifies the alignment for a vector type of a given bit
1849 ``<size>``.
1850``f<size>:<abi>:<pref>``
1851 This specifies the alignment for a floating point type of a given bit
1852 ``<size>``. Only values of ``<size>`` that are supported by the target
1853 will work. 32 (float) and 64 (double) are supported on all targets; 80
1854 or 128 (different flavors of long double) are also supported on some
1855 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001856``a:<abi>:<pref>``
1857 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001858``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001859 If present, specifies that llvm names are mangled in the output. The
1860 options are
1861
1862 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1863 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1864 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1865 symbols get a ``_`` prefix.
1866 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1867 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001868 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1869 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001870``n<size1>:<size2>:<size3>...``
1871 This specifies a set of native integer widths for the target CPU in
1872 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1873 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1874 this set are considered to support most general arithmetic operations
1875 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001876``ni:<address space0>:<address space1>:<address space2>...``
1877 This specifies pointer types with the specified address spaces
1878 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1879 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001880
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001881On every specification that takes a ``<abi>:<pref>``, specifying the
1882``<pref>`` alignment is optional. If omitted, the preceding ``:``
1883should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1884
Sean Silvab084af42012-12-07 10:36:55 +00001885When constructing the data layout for a given target, LLVM starts with a
1886default set of specifications which are then (possibly) overridden by
1887the specifications in the ``datalayout`` keyword. The default
1888specifications are given in this list:
1889
1890- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001891- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1892- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1893 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001894- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001895- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1896- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1897- ``i16:16:16`` - i16 is 16-bit aligned
1898- ``i32:32:32`` - i32 is 32-bit aligned
1899- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1900 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001901- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001902- ``f32:32:32`` - float is 32-bit aligned
1903- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001904- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001905- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1906- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001907- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001908
1909When LLVM is determining the alignment for a given type, it uses the
1910following rules:
1911
1912#. If the type sought is an exact match for one of the specifications,
1913 that specification is used.
1914#. If no match is found, and the type sought is an integer type, then
1915 the smallest integer type that is larger than the bitwidth of the
1916 sought type is used. If none of the specifications are larger than
1917 the bitwidth then the largest integer type is used. For example,
1918 given the default specifications above, the i7 type will use the
1919 alignment of i8 (next largest) while both i65 and i256 will use the
1920 alignment of i64 (largest specified).
1921#. If no match is found, and the type sought is a vector type, then the
1922 largest vector type that is smaller than the sought vector type will
1923 be used as a fall back. This happens because <128 x double> can be
1924 implemented in terms of 64 <2 x double>, for example.
1925
1926The function of the data layout string may not be what you expect.
1927Notably, this is not a specification from the frontend of what alignment
1928the code generator should use.
1929
1930Instead, if specified, the target data layout is required to match what
1931the ultimate *code generator* expects. This string is used by the
1932mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001933what the ultimate code generator uses. There is no way to generate IR
1934that does not embed this target-specific detail into the IR. If you
1935don't specify the string, the default specifications will be used to
1936generate a Data Layout and the optimization phases will operate
1937accordingly and introduce target specificity into the IR with respect to
1938these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001939
Bill Wendling5cc90842013-10-18 23:41:25 +00001940.. _langref_triple:
1941
1942Target Triple
1943-------------
1944
1945A module may specify a target triple string that describes the target
1946host. The syntax for the target triple is simply:
1947
1948.. code-block:: llvm
1949
1950 target triple = "x86_64-apple-macosx10.7.0"
1951
1952The *target triple* string consists of a series of identifiers delimited
1953by the minus sign character ('-'). The canonical forms are:
1954
1955::
1956
1957 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1958 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1959
1960This information is passed along to the backend so that it generates
1961code for the proper architecture. It's possible to override this on the
1962command line with the ``-mtriple`` command line option.
1963
Sean Silvab084af42012-12-07 10:36:55 +00001964.. _pointeraliasing:
1965
1966Pointer Aliasing Rules
1967----------------------
1968
1969Any memory access must be done through a pointer value associated with
1970an address range of the memory access, otherwise the behavior is
1971undefined. Pointer values are associated with address ranges according
1972to the following rules:
1973
1974- A pointer value is associated with the addresses associated with any
1975 value it is *based* on.
1976- An address of a global variable is associated with the address range
1977 of the variable's storage.
1978- The result value of an allocation instruction is associated with the
1979 address range of the allocated storage.
1980- A null pointer in the default address-space is associated with no
1981 address.
1982- An integer constant other than zero or a pointer value returned from
1983 a function not defined within LLVM may be associated with address
1984 ranges allocated through mechanisms other than those provided by
1985 LLVM. Such ranges shall not overlap with any ranges of addresses
1986 allocated by mechanisms provided by LLVM.
1987
1988A pointer value is *based* on another pointer value according to the
1989following rules:
1990
1991- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001992 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001993- The result value of a ``bitcast`` is *based* on the operand of the
1994 ``bitcast``.
1995- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1996 values that contribute (directly or indirectly) to the computation of
1997 the pointer's value.
1998- The "*based* on" relationship is transitive.
1999
2000Note that this definition of *"based"* is intentionally similar to the
2001definition of *"based"* in C99, though it is slightly weaker.
2002
2003LLVM IR does not associate types with memory. The result type of a
2004``load`` merely indicates the size and alignment of the memory from
2005which to load, as well as the interpretation of the value. The first
2006operand type of a ``store`` similarly only indicates the size and
2007alignment of the store.
2008
2009Consequently, type-based alias analysis, aka TBAA, aka
2010``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2011:ref:`Metadata <metadata>` may be used to encode additional information
2012which specialized optimization passes may use to implement type-based
2013alias analysis.
2014
2015.. _volatile:
2016
2017Volatile Memory Accesses
2018------------------------
2019
2020Certain memory accesses, such as :ref:`load <i_load>`'s,
2021:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2022marked ``volatile``. The optimizers must not change the number of
2023volatile operations or change their order of execution relative to other
2024volatile operations. The optimizers *may* change the order of volatile
2025operations relative to non-volatile operations. This is not Java's
2026"volatile" and has no cross-thread synchronization behavior.
2027
Andrew Trick89fc5a62013-01-30 21:19:35 +00002028IR-level volatile loads and stores cannot safely be optimized into
2029llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2030flagged volatile. Likewise, the backend should never split or merge
2031target-legal volatile load/store instructions.
2032
Andrew Trick7e6f9282013-01-31 00:49:39 +00002033.. admonition:: Rationale
2034
2035 Platforms may rely on volatile loads and stores of natively supported
2036 data width to be executed as single instruction. For example, in C
2037 this holds for an l-value of volatile primitive type with native
2038 hardware support, but not necessarily for aggregate types. The
2039 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002040 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002041 do not violate the frontend's contract with the language.
2042
Sean Silvab084af42012-12-07 10:36:55 +00002043.. _memmodel:
2044
2045Memory Model for Concurrent Operations
2046--------------------------------------
2047
2048The LLVM IR does not define any way to start parallel threads of
2049execution or to register signal handlers. Nonetheless, there are
2050platform-specific ways to create them, and we define LLVM IR's behavior
2051in their presence. This model is inspired by the C++0x memory model.
2052
2053For a more informal introduction to this model, see the :doc:`Atomics`.
2054
2055We define a *happens-before* partial order as the least partial order
2056that
2057
2058- Is a superset of single-thread program order, and
2059- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2060 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2061 techniques, like pthread locks, thread creation, thread joining,
2062 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2063 Constraints <ordering>`).
2064
2065Note that program order does not introduce *happens-before* edges
2066between a thread and signals executing inside that thread.
2067
2068Every (defined) read operation (load instructions, memcpy, atomic
2069loads/read-modify-writes, etc.) R reads a series of bytes written by
2070(defined) write operations (store instructions, atomic
2071stores/read-modify-writes, memcpy, etc.). For the purposes of this
2072section, initialized globals are considered to have a write of the
2073initializer which is atomic and happens before any other read or write
2074of the memory in question. For each byte of a read R, R\ :sub:`byte`
2075may see any write to the same byte, except:
2076
2077- If write\ :sub:`1` happens before write\ :sub:`2`, and
2078 write\ :sub:`2` happens before R\ :sub:`byte`, then
2079 R\ :sub:`byte` does not see write\ :sub:`1`.
2080- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2081 R\ :sub:`byte` does not see write\ :sub:`3`.
2082
2083Given that definition, R\ :sub:`byte` is defined as follows:
2084
2085- If R is volatile, the result is target-dependent. (Volatile is
2086 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002087 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002088 like normal memory. It does not generally provide cross-thread
2089 synchronization.)
2090- Otherwise, if there is no write to the same byte that happens before
2091 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2092- Otherwise, if R\ :sub:`byte` may see exactly one write,
2093 R\ :sub:`byte` returns the value written by that write.
2094- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2095 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2096 Memory Ordering Constraints <ordering>` section for additional
2097 constraints on how the choice is made.
2098- Otherwise R\ :sub:`byte` returns ``undef``.
2099
2100R returns the value composed of the series of bytes it read. This
2101implies that some bytes within the value may be ``undef`` **without**
2102the entire value being ``undef``. Note that this only defines the
2103semantics of the operation; it doesn't mean that targets will emit more
2104than one instruction to read the series of bytes.
2105
2106Note that in cases where none of the atomic intrinsics are used, this
2107model places only one restriction on IR transformations on top of what
2108is required for single-threaded execution: introducing a store to a byte
2109which might not otherwise be stored is not allowed in general.
2110(Specifically, in the case where another thread might write to and read
2111from an address, introducing a store can change a load that may see
2112exactly one write into a load that may see multiple writes.)
2113
2114.. _ordering:
2115
2116Atomic Memory Ordering Constraints
2117----------------------------------
2118
2119Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2120:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2121:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002122ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002123the same address they *synchronize with*. These semantics are borrowed
2124from Java and C++0x, but are somewhat more colloquial. If these
2125descriptions aren't precise enough, check those specs (see spec
2126references in the :doc:`atomics guide <Atomics>`).
2127:ref:`fence <i_fence>` instructions treat these orderings somewhat
2128differently since they don't take an address. See that instruction's
2129documentation for details.
2130
2131For a simpler introduction to the ordering constraints, see the
2132:doc:`Atomics`.
2133
2134``unordered``
2135 The set of values that can be read is governed by the happens-before
2136 partial order. A value cannot be read unless some operation wrote
2137 it. This is intended to provide a guarantee strong enough to model
2138 Java's non-volatile shared variables. This ordering cannot be
2139 specified for read-modify-write operations; it is not strong enough
2140 to make them atomic in any interesting way.
2141``monotonic``
2142 In addition to the guarantees of ``unordered``, there is a single
2143 total order for modifications by ``monotonic`` operations on each
2144 address. All modification orders must be compatible with the
2145 happens-before order. There is no guarantee that the modification
2146 orders can be combined to a global total order for the whole program
2147 (and this often will not be possible). The read in an atomic
2148 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2149 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2150 order immediately before the value it writes. If one atomic read
2151 happens before another atomic read of the same address, the later
2152 read must see the same value or a later value in the address's
2153 modification order. This disallows reordering of ``monotonic`` (or
2154 stronger) operations on the same address. If an address is written
2155 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2156 read that address repeatedly, the other threads must eventually see
2157 the write. This corresponds to the C++0x/C1x
2158 ``memory_order_relaxed``.
2159``acquire``
2160 In addition to the guarantees of ``monotonic``, a
2161 *synchronizes-with* edge may be formed with a ``release`` operation.
2162 This is intended to model C++'s ``memory_order_acquire``.
2163``release``
2164 In addition to the guarantees of ``monotonic``, if this operation
2165 writes a value which is subsequently read by an ``acquire``
2166 operation, it *synchronizes-with* that operation. (This isn't a
2167 complete description; see the C++0x definition of a release
2168 sequence.) This corresponds to the C++0x/C1x
2169 ``memory_order_release``.
2170``acq_rel`` (acquire+release)
2171 Acts as both an ``acquire`` and ``release`` operation on its
2172 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2173``seq_cst`` (sequentially consistent)
2174 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002175 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002176 writes), there is a global total order on all
2177 sequentially-consistent operations on all addresses, which is
2178 consistent with the *happens-before* partial order and with the
2179 modification orders of all the affected addresses. Each
2180 sequentially-consistent read sees the last preceding write to the
2181 same address in this global order. This corresponds to the C++0x/C1x
2182 ``memory_order_seq_cst`` and Java volatile.
2183
2184.. _singlethread:
2185
2186If an atomic operation is marked ``singlethread``, it only *synchronizes
2187with* or participates in modification and seq\_cst total orderings with
2188other operations running in the same thread (for example, in signal
2189handlers).
2190
2191.. _fastmath:
2192
2193Fast-Math Flags
2194---------------
2195
2196LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2197:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002198:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
2199instructions have the following flags that can be set to enable
2200otherwise unsafe floating point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002201
2202``nnan``
2203 No NaNs - Allow optimizations to assume the arguments and result are not
2204 NaN. Such optimizations are required to retain defined behavior over
2205 NaNs, but the value of the result is undefined.
2206
2207``ninf``
2208 No Infs - Allow optimizations to assume the arguments and result are not
2209 +/-Inf. Such optimizations are required to retain defined behavior over
2210 +/-Inf, but the value of the result is undefined.
2211
2212``nsz``
2213 No Signed Zeros - Allow optimizations to treat the sign of a zero
2214 argument or result as insignificant.
2215
2216``arcp``
2217 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2218 argument rather than perform division.
2219
Adam Nemetcd847a82017-03-28 20:11:52 +00002220``contract``
2221 Allow floating-point contraction (e.g. fusing a multiply followed by an
2222 addition into a fused multiply-and-add).
2223
Sean Silvab084af42012-12-07 10:36:55 +00002224``fast``
2225 Fast - Allow algebraically equivalent transformations that may
2226 dramatically change results in floating point (e.g. reassociate). This
2227 flag implies all the others.
2228
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002229.. _uselistorder:
2230
2231Use-list Order Directives
2232-------------------------
2233
2234Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002235order to be recreated. ``<order-indexes>`` is a comma-separated list of
2236indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002237value's use-list is immediately sorted by these indexes.
2238
Sean Silvaa1190322015-08-06 22:56:48 +00002239Use-list directives may appear at function scope or global scope. They are not
2240instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002241function scope, they must appear after the terminator of the final basic block.
2242
2243If basic blocks have their address taken via ``blockaddress()`` expressions,
2244``uselistorder_bb`` can be used to reorder their use-lists from outside their
2245function's scope.
2246
2247:Syntax:
2248
2249::
2250
2251 uselistorder <ty> <value>, { <order-indexes> }
2252 uselistorder_bb @function, %block { <order-indexes> }
2253
2254:Examples:
2255
2256::
2257
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002258 define void @foo(i32 %arg1, i32 %arg2) {
2259 entry:
2260 ; ... instructions ...
2261 bb:
2262 ; ... instructions ...
2263
2264 ; At function scope.
2265 uselistorder i32 %arg1, { 1, 0, 2 }
2266 uselistorder label %bb, { 1, 0 }
2267 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002268
2269 ; At global scope.
2270 uselistorder i32* @global, { 1, 2, 0 }
2271 uselistorder i32 7, { 1, 0 }
2272 uselistorder i32 (i32) @bar, { 1, 0 }
2273 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2274
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002275.. _source_filename:
2276
2277Source Filename
2278---------------
2279
2280The *source filename* string is set to the original module identifier,
2281which will be the name of the compiled source file when compiling from
2282source through the clang front end, for example. It is then preserved through
2283the IR and bitcode.
2284
2285This is currently necessary to generate a consistent unique global
2286identifier for local functions used in profile data, which prepends the
2287source file name to the local function name.
2288
2289The syntax for the source file name is simply:
2290
Renato Golin124f2592016-07-20 12:16:38 +00002291.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002292
2293 source_filename = "/path/to/source.c"
2294
Sean Silvab084af42012-12-07 10:36:55 +00002295.. _typesystem:
2296
2297Type System
2298===========
2299
2300The LLVM type system is one of the most important features of the
2301intermediate representation. Being typed enables a number of
2302optimizations to be performed on the intermediate representation
2303directly, without having to do extra analyses on the side before the
2304transformation. A strong type system makes it easier to read the
2305generated code and enables novel analyses and transformations that are
2306not feasible to perform on normal three address code representations.
2307
Rafael Espindola08013342013-12-07 19:34:20 +00002308.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002309
Rafael Espindola08013342013-12-07 19:34:20 +00002310Void Type
2311---------
Sean Silvab084af42012-12-07 10:36:55 +00002312
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002313:Overview:
2314
Rafael Espindola08013342013-12-07 19:34:20 +00002315
2316The void type does not represent any value and has no size.
2317
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002318:Syntax:
2319
Rafael Espindola08013342013-12-07 19:34:20 +00002320
2321::
2322
2323 void
Sean Silvab084af42012-12-07 10:36:55 +00002324
2325
Rafael Espindola08013342013-12-07 19:34:20 +00002326.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002327
Rafael Espindola08013342013-12-07 19:34:20 +00002328Function Type
2329-------------
Sean Silvab084af42012-12-07 10:36:55 +00002330
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002331:Overview:
2332
Sean Silvab084af42012-12-07 10:36:55 +00002333
Rafael Espindola08013342013-12-07 19:34:20 +00002334The function type can be thought of as a function signature. It consists of a
2335return type and a list of formal parameter types. The return type of a function
2336type is a void type or first class type --- except for :ref:`label <t_label>`
2337and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002338
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002339:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002340
Rafael Espindola08013342013-12-07 19:34:20 +00002341::
Sean Silvab084af42012-12-07 10:36:55 +00002342
Rafael Espindola08013342013-12-07 19:34:20 +00002343 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002344
Rafael Espindola08013342013-12-07 19:34:20 +00002345...where '``<parameter list>``' is a comma-separated list of type
2346specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002347indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002348argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002349handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002350except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002351
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002352:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002353
Rafael Espindola08013342013-12-07 19:34:20 +00002354+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2355| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2356+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2357| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2358+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2359| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2360+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2361| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2362+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2363
2364.. _t_firstclass:
2365
2366First Class Types
2367-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002368
2369The :ref:`first class <t_firstclass>` types are perhaps the most important.
2370Values of these types are the only ones which can be produced by
2371instructions.
2372
Rafael Espindola08013342013-12-07 19:34:20 +00002373.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002374
Rafael Espindola08013342013-12-07 19:34:20 +00002375Single Value Types
2376^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002377
Rafael Espindola08013342013-12-07 19:34:20 +00002378These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002379
2380.. _t_integer:
2381
2382Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002383""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002384
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002385:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002386
2387The integer type is a very simple type that simply specifies an
2388arbitrary bit width for the integer type desired. Any bit width from 1
2389bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2390
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002391:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002392
2393::
2394
2395 iN
2396
2397The number of bits the integer will occupy is specified by the ``N``
2398value.
2399
2400Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002401*********
Sean Silvab084af42012-12-07 10:36:55 +00002402
2403+----------------+------------------------------------------------+
2404| ``i1`` | a single-bit integer. |
2405+----------------+------------------------------------------------+
2406| ``i32`` | a 32-bit integer. |
2407+----------------+------------------------------------------------+
2408| ``i1942652`` | a really big integer of over 1 million bits. |
2409+----------------+------------------------------------------------+
2410
2411.. _t_floating:
2412
2413Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002414""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002415
2416.. list-table::
2417 :header-rows: 1
2418
2419 * - Type
2420 - Description
2421
2422 * - ``half``
2423 - 16-bit floating point value
2424
2425 * - ``float``
2426 - 32-bit floating point value
2427
2428 * - ``double``
2429 - 64-bit floating point value
2430
2431 * - ``fp128``
2432 - 128-bit floating point value (112-bit mantissa)
2433
2434 * - ``x86_fp80``
2435 - 80-bit floating point value (X87)
2436
2437 * - ``ppc_fp128``
2438 - 128-bit floating point value (two 64-bits)
2439
Reid Kleckner9a16d082014-03-05 02:41:37 +00002440X86_mmx Type
2441""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002442
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002443:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002444
Reid Kleckner9a16d082014-03-05 02:41:37 +00002445The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002446machine. The operations allowed on it are quite limited: parameters and
2447return values, load and store, and bitcast. User-specified MMX
2448instructions are represented as intrinsic or asm calls with arguments
2449and/or results of this type. There are no arrays, vectors or constants
2450of this type.
2451
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002452:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002453
2454::
2455
Reid Kleckner9a16d082014-03-05 02:41:37 +00002456 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002457
Sean Silvab084af42012-12-07 10:36:55 +00002458
Rafael Espindola08013342013-12-07 19:34:20 +00002459.. _t_pointer:
2460
2461Pointer Type
2462""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002463
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002464:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002465
Rafael Espindola08013342013-12-07 19:34:20 +00002466The pointer type is used to specify memory locations. Pointers are
2467commonly used to reference objects in memory.
2468
2469Pointer types may have an optional address space attribute defining the
2470numbered address space where the pointed-to object resides. The default
2471address space is number zero. The semantics of non-zero address spaces
2472are target-specific.
2473
2474Note that LLVM does not permit pointers to void (``void*``) nor does it
2475permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002476
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002477:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002478
2479::
2480
Rafael Espindola08013342013-12-07 19:34:20 +00002481 <type> *
2482
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002483:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002484
2485+-------------------------+--------------------------------------------------------------------------------------------------------------+
2486| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2487+-------------------------+--------------------------------------------------------------------------------------------------------------+
2488| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2489+-------------------------+--------------------------------------------------------------------------------------------------------------+
2490| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2491+-------------------------+--------------------------------------------------------------------------------------------------------------+
2492
2493.. _t_vector:
2494
2495Vector Type
2496"""""""""""
2497
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002498:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002499
2500A vector type is a simple derived type that represents a vector of
2501elements. Vector types are used when multiple primitive data are
2502operated in parallel using a single instruction (SIMD). A vector type
2503requires a size (number of elements) and an underlying primitive data
2504type. Vector types are considered :ref:`first class <t_firstclass>`.
2505
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002506:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002507
2508::
2509
2510 < <# elements> x <elementtype> >
2511
2512The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002513elementtype may be any integer, floating point or pointer type. Vectors
2514of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002515
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002516:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002517
2518+-------------------+--------------------------------------------------+
2519| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2520+-------------------+--------------------------------------------------+
2521| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2522+-------------------+--------------------------------------------------+
2523| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2524+-------------------+--------------------------------------------------+
2525| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2526+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002527
2528.. _t_label:
2529
2530Label Type
2531^^^^^^^^^^
2532
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002533:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002534
2535The label type represents code labels.
2536
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002537:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002538
2539::
2540
2541 label
2542
David Majnemerb611e3f2015-08-14 05:09:07 +00002543.. _t_token:
2544
2545Token Type
2546^^^^^^^^^^
2547
2548:Overview:
2549
2550The token type is used when a value is associated with an instruction
2551but all uses of the value must not attempt to introspect or obscure it.
2552As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2553:ref:`select <i_select>` of type token.
2554
2555:Syntax:
2556
2557::
2558
2559 token
2560
2561
2562
Sean Silvab084af42012-12-07 10:36:55 +00002563.. _t_metadata:
2564
2565Metadata Type
2566^^^^^^^^^^^^^
2567
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002568:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002569
2570The metadata type represents embedded metadata. No derived types may be
2571created from metadata except for :ref:`function <t_function>` arguments.
2572
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002573:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002574
2575::
2576
2577 metadata
2578
Sean Silvab084af42012-12-07 10:36:55 +00002579.. _t_aggregate:
2580
2581Aggregate Types
2582^^^^^^^^^^^^^^^
2583
2584Aggregate Types are a subset of derived types that can contain multiple
2585member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2586aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2587aggregate types.
2588
2589.. _t_array:
2590
2591Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002592""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002593
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002594:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002595
2596The array type is a very simple derived type that arranges elements
2597sequentially in memory. The array type requires a size (number of
2598elements) and an underlying data type.
2599
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002600:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002601
2602::
2603
2604 [<# elements> x <elementtype>]
2605
2606The number of elements is a constant integer value; ``elementtype`` may
2607be any type with a size.
2608
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002609:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002610
2611+------------------+--------------------------------------+
2612| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2613+------------------+--------------------------------------+
2614| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2615+------------------+--------------------------------------+
2616| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2617+------------------+--------------------------------------+
2618
2619Here are some examples of multidimensional arrays:
2620
2621+-----------------------------+----------------------------------------------------------+
2622| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2623+-----------------------------+----------------------------------------------------------+
2624| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2625+-----------------------------+----------------------------------------------------------+
2626| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2627+-----------------------------+----------------------------------------------------------+
2628
2629There is no restriction on indexing beyond the end of the array implied
2630by a static type (though there are restrictions on indexing beyond the
2631bounds of an allocated object in some cases). This means that
2632single-dimension 'variable sized array' addressing can be implemented in
2633LLVM with a zero length array type. An implementation of 'pascal style
2634arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2635example.
2636
Sean Silvab084af42012-12-07 10:36:55 +00002637.. _t_struct:
2638
2639Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002640""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002641
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002642:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002643
2644The structure type is used to represent a collection of data members
2645together in memory. The elements of a structure may be any type that has
2646a size.
2647
2648Structures in memory are accessed using '``load``' and '``store``' by
2649getting a pointer to a field with the '``getelementptr``' instruction.
2650Structures in registers are accessed using the '``extractvalue``' and
2651'``insertvalue``' instructions.
2652
2653Structures may optionally be "packed" structures, which indicate that
2654the alignment of the struct is one byte, and that there is no padding
2655between the elements. In non-packed structs, padding between field types
2656is inserted as defined by the DataLayout string in the module, which is
2657required to match what the underlying code generator expects.
2658
2659Structures can either be "literal" or "identified". A literal structure
2660is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2661identified types are always defined at the top level with a name.
2662Literal types are uniqued by their contents and can never be recursive
2663or opaque since there is no way to write one. Identified types can be
2664recursive, can be opaqued, and are never uniqued.
2665
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002666:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002667
2668::
2669
2670 %T1 = type { <type list> } ; Identified normal struct type
2671 %T2 = type <{ <type list> }> ; Identified packed struct type
2672
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002673:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002674
2675+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2676| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2677+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002678| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002679+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2680| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2681+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2682
2683.. _t_opaque:
2684
2685Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002686""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002687
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002688:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002689
2690Opaque structure types are used to represent named structure types that
2691do not have a body specified. This corresponds (for example) to the C
2692notion of a forward declared structure.
2693
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002694:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002695
2696::
2697
2698 %X = type opaque
2699 %52 = type opaque
2700
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002701:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002702
2703+--------------+-------------------+
2704| ``opaque`` | An opaque type. |
2705+--------------+-------------------+
2706
Sean Silva1703e702014-04-08 21:06:22 +00002707.. _constants:
2708
Sean Silvab084af42012-12-07 10:36:55 +00002709Constants
2710=========
2711
2712LLVM has several different basic types of constants. This section
2713describes them all and their syntax.
2714
2715Simple Constants
2716----------------
2717
2718**Boolean constants**
2719 The two strings '``true``' and '``false``' are both valid constants
2720 of the ``i1`` type.
2721**Integer constants**
2722 Standard integers (such as '4') are constants of the
2723 :ref:`integer <t_integer>` type. Negative numbers may be used with
2724 integer types.
2725**Floating point constants**
2726 Floating point constants use standard decimal notation (e.g.
2727 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2728 hexadecimal notation (see below). The assembler requires the exact
2729 decimal value of a floating-point constant. For example, the
2730 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2731 decimal in binary. Floating point constants must have a :ref:`floating
2732 point <t_floating>` type.
2733**Null pointer constants**
2734 The identifier '``null``' is recognized as a null pointer constant
2735 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002736**Token constants**
2737 The identifier '``none``' is recognized as an empty token constant
2738 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002739
2740The one non-intuitive notation for constants is the hexadecimal form of
2741floating point constants. For example, the form
2742'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2743than) '``double 4.5e+15``'. The only time hexadecimal floating point
2744constants are required (and the only time that they are generated by the
2745disassembler) is when a floating point constant must be emitted but it
2746cannot be represented as a decimal floating point number in a reasonable
2747number of digits. For example, NaN's, infinities, and other special
2748values are represented in their IEEE hexadecimal format so that assembly
2749and disassembly do not cause any bits to change in the constants.
2750
2751When using the hexadecimal form, constants of types half, float, and
2752double are represented using the 16-digit form shown above (which
2753matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002754must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002755precision, respectively. Hexadecimal format is always used for long
2756double, and there are three forms of long double. The 80-bit format used
2757by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2758128-bit format used by PowerPC (two adjacent doubles) is represented by
2759``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002760represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2761will only work if they match the long double format on your target.
2762The IEEE 16-bit format (half precision) is represented by ``0xH``
2763followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2764(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002765
Reid Kleckner9a16d082014-03-05 02:41:37 +00002766There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002767
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002768.. _complexconstants:
2769
Sean Silvab084af42012-12-07 10:36:55 +00002770Complex Constants
2771-----------------
2772
2773Complex constants are a (potentially recursive) combination of simple
2774constants and smaller complex constants.
2775
2776**Structure constants**
2777 Structure constants are represented with notation similar to
2778 structure type definitions (a comma separated list of elements,
2779 surrounded by braces (``{}``)). For example:
2780 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2781 "``@G = external global i32``". Structure constants must have
2782 :ref:`structure type <t_struct>`, and the number and types of elements
2783 must match those specified by the type.
2784**Array constants**
2785 Array constants are represented with notation similar to array type
2786 definitions (a comma separated list of elements, surrounded by
2787 square brackets (``[]``)). For example:
2788 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2789 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002790 match those specified by the type. As a special case, character array
2791 constants may also be represented as a double-quoted string using the ``c``
2792 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002793**Vector constants**
2794 Vector constants are represented with notation similar to vector
2795 type definitions (a comma separated list of elements, surrounded by
2796 less-than/greater-than's (``<>``)). For example:
2797 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2798 must have :ref:`vector type <t_vector>`, and the number and types of
2799 elements must match those specified by the type.
2800**Zero initialization**
2801 The string '``zeroinitializer``' can be used to zero initialize a
2802 value to zero of *any* type, including scalar and
2803 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2804 having to print large zero initializers (e.g. for large arrays) and
2805 is always exactly equivalent to using explicit zero initializers.
2806**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002807 A metadata node is a constant tuple without types. For example:
2808 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002809 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2810 Unlike other typed constants that are meant to be interpreted as part of
2811 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002812 information such as debug info.
2813
2814Global Variable and Function Addresses
2815--------------------------------------
2816
2817The addresses of :ref:`global variables <globalvars>` and
2818:ref:`functions <functionstructure>` are always implicitly valid
2819(link-time) constants. These constants are explicitly referenced when
2820the :ref:`identifier for the global <identifiers>` is used and always have
2821:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2822file:
2823
2824.. code-block:: llvm
2825
2826 @X = global i32 17
2827 @Y = global i32 42
2828 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2829
2830.. _undefvalues:
2831
2832Undefined Values
2833----------------
2834
2835The string '``undef``' can be used anywhere a constant is expected, and
2836indicates that the user of the value may receive an unspecified
2837bit-pattern. Undefined values may be of any type (other than '``label``'
2838or '``void``') and be used anywhere a constant is permitted.
2839
2840Undefined values are useful because they indicate to the compiler that
2841the program is well defined no matter what value is used. This gives the
2842compiler more freedom to optimize. Here are some examples of
2843(potentially surprising) transformations that are valid (in pseudo IR):
2844
2845.. code-block:: llvm
2846
2847 %A = add %X, undef
2848 %B = sub %X, undef
2849 %C = xor %X, undef
2850 Safe:
2851 %A = undef
2852 %B = undef
2853 %C = undef
2854
2855This is safe because all of the output bits are affected by the undef
2856bits. Any output bit can have a zero or one depending on the input bits.
2857
2858.. code-block:: llvm
2859
2860 %A = or %X, undef
2861 %B = and %X, undef
2862 Safe:
2863 %A = -1
2864 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002865 Safe:
2866 %A = %X ;; By choosing undef as 0
2867 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002868 Unsafe:
2869 %A = undef
2870 %B = undef
2871
2872These logical operations have bits that are not always affected by the
2873input. For example, if ``%X`` has a zero bit, then the output of the
2874'``and``' operation will always be a zero for that bit, no matter what
2875the corresponding bit from the '``undef``' is. As such, it is unsafe to
2876optimize or assume that the result of the '``and``' is '``undef``'.
2877However, it is safe to assume that all bits of the '``undef``' could be
28780, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2879all the bits of the '``undef``' operand to the '``or``' could be set,
2880allowing the '``or``' to be folded to -1.
2881
2882.. code-block:: llvm
2883
2884 %A = select undef, %X, %Y
2885 %B = select undef, 42, %Y
2886 %C = select %X, %Y, undef
2887 Safe:
2888 %A = %X (or %Y)
2889 %B = 42 (or %Y)
2890 %C = %Y
2891 Unsafe:
2892 %A = undef
2893 %B = undef
2894 %C = undef
2895
2896This set of examples shows that undefined '``select``' (and conditional
2897branch) conditions can go *either way*, but they have to come from one
2898of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2899both known to have a clear low bit, then ``%A`` would have to have a
2900cleared low bit. However, in the ``%C`` example, the optimizer is
2901allowed to assume that the '``undef``' operand could be the same as
2902``%Y``, allowing the whole '``select``' to be eliminated.
2903
Renato Golin124f2592016-07-20 12:16:38 +00002904.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002905
2906 %A = xor undef, undef
2907
2908 %B = undef
2909 %C = xor %B, %B
2910
2911 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002912 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002913 %F = icmp gte %D, 4
2914
2915 Safe:
2916 %A = undef
2917 %B = undef
2918 %C = undef
2919 %D = undef
2920 %E = undef
2921 %F = undef
2922
2923This example points out that two '``undef``' operands are not
2924necessarily the same. This can be surprising to people (and also matches
2925C semantics) where they assume that "``X^X``" is always zero, even if
2926``X`` is undefined. This isn't true for a number of reasons, but the
2927short answer is that an '``undef``' "variable" can arbitrarily change
2928its value over its "live range". This is true because the variable
2929doesn't actually *have a live range*. Instead, the value is logically
2930read from arbitrary registers that happen to be around when needed, so
2931the value is not necessarily consistent over time. In fact, ``%A`` and
2932``%C`` need to have the same semantics or the core LLVM "replace all
2933uses with" concept would not hold.
2934
2935.. code-block:: llvm
2936
2937 %A = fdiv undef, %X
2938 %B = fdiv %X, undef
2939 Safe:
2940 %A = undef
2941 b: unreachable
2942
2943These examples show the crucial difference between an *undefined value*
2944and *undefined behavior*. An undefined value (like '``undef``') is
2945allowed to have an arbitrary bit-pattern. This means that the ``%A``
2946operation can be constant folded to '``undef``', because the '``undef``'
2947could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2948However, in the second example, we can make a more aggressive
2949assumption: because the ``undef`` is allowed to be an arbitrary value,
2950we are allowed to assume that it could be zero. Since a divide by zero
2951has *undefined behavior*, we are allowed to assume that the operation
2952does not execute at all. This allows us to delete the divide and all
2953code after it. Because the undefined operation "can't happen", the
2954optimizer can assume that it occurs in dead code.
2955
Renato Golin124f2592016-07-20 12:16:38 +00002956.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002957
2958 a: store undef -> %X
2959 b: store %X -> undef
2960 Safe:
2961 a: <deleted>
2962 b: unreachable
2963
2964These examples reiterate the ``fdiv`` example: a store *of* an undefined
2965value can be assumed to not have any effect; we can assume that the
2966value is overwritten with bits that happen to match what was already
2967there. However, a store *to* an undefined location could clobber
2968arbitrary memory, therefore, it has undefined behavior.
2969
2970.. _poisonvalues:
2971
2972Poison Values
2973-------------
2974
2975Poison values are similar to :ref:`undef values <undefvalues>`, however
2976they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002977that cannot evoke side effects has nevertheless detected a condition
2978that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002979
2980There is currently no way of representing a poison value in the IR; they
2981only exist when produced by operations such as :ref:`add <i_add>` with
2982the ``nsw`` flag.
2983
2984Poison value behavior is defined in terms of value *dependence*:
2985
2986- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2987- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2988 their dynamic predecessor basic block.
2989- Function arguments depend on the corresponding actual argument values
2990 in the dynamic callers of their functions.
2991- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2992 instructions that dynamically transfer control back to them.
2993- :ref:`Invoke <i_invoke>` instructions depend on the
2994 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2995 call instructions that dynamically transfer control back to them.
2996- Non-volatile loads and stores depend on the most recent stores to all
2997 of the referenced memory addresses, following the order in the IR
2998 (including loads and stores implied by intrinsics such as
2999 :ref:`@llvm.memcpy <int_memcpy>`.)
3000- An instruction with externally visible side effects depends on the
3001 most recent preceding instruction with externally visible side
3002 effects, following the order in the IR. (This includes :ref:`volatile
3003 operations <volatile>`.)
3004- An instruction *control-depends* on a :ref:`terminator
3005 instruction <terminators>` if the terminator instruction has
3006 multiple successors and the instruction is always executed when
3007 control transfers to one of the successors, and may not be executed
3008 when control is transferred to another.
3009- Additionally, an instruction also *control-depends* on a terminator
3010 instruction if the set of instructions it otherwise depends on would
3011 be different if the terminator had transferred control to a different
3012 successor.
3013- Dependence is transitive.
3014
Richard Smith32dbdf62014-07-31 04:25:36 +00003015Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3016with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003017on a poison value has undefined behavior.
3018
3019Here are some examples:
3020
3021.. code-block:: llvm
3022
3023 entry:
3024 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3025 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003026 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003027 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3028
3029 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003030 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003031
3032 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3033
3034 %narrowaddr = bitcast i32* @g to i16*
3035 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003036 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3037 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003038
3039 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3040 br i1 %cmp, label %true, label %end ; Branch to either destination.
3041
3042 true:
3043 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3044 ; it has undefined behavior.
3045 br label %end
3046
3047 end:
3048 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3049 ; Both edges into this PHI are
3050 ; control-dependent on %cmp, so this
3051 ; always results in a poison value.
3052
3053 store volatile i32 0, i32* @g ; This would depend on the store in %true
3054 ; if %cmp is true, or the store in %entry
3055 ; otherwise, so this is undefined behavior.
3056
3057 br i1 %cmp, label %second_true, label %second_end
3058 ; The same branch again, but this time the
3059 ; true block doesn't have side effects.
3060
3061 second_true:
3062 ; No side effects!
3063 ret void
3064
3065 second_end:
3066 store volatile i32 0, i32* @g ; This time, the instruction always depends
3067 ; on the store in %end. Also, it is
3068 ; control-equivalent to %end, so this is
3069 ; well-defined (ignoring earlier undefined
3070 ; behavior in this example).
3071
3072.. _blockaddress:
3073
3074Addresses of Basic Blocks
3075-------------------------
3076
3077``blockaddress(@function, %block)``
3078
3079The '``blockaddress``' constant computes the address of the specified
3080basic block in the specified function, and always has an ``i8*`` type.
3081Taking the address of the entry block is illegal.
3082
3083This value only has defined behavior when used as an operand to the
3084':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3085against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003086undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003087no label is equal to the null pointer. This may be passed around as an
3088opaque pointer sized value as long as the bits are not inspected. This
3089allows ``ptrtoint`` and arithmetic to be performed on these values so
3090long as the original value is reconstituted before the ``indirectbr``
3091instruction.
3092
3093Finally, some targets may provide defined semantics when using the value
3094as the operand to an inline assembly, but that is target specific.
3095
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003096.. _constantexprs:
3097
Sean Silvab084af42012-12-07 10:36:55 +00003098Constant Expressions
3099--------------------
3100
3101Constant expressions are used to allow expressions involving other
3102constants to be used as constants. Constant expressions may be of any
3103:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3104that does not have side effects (e.g. load and call are not supported).
3105The following is the syntax for constant expressions:
3106
3107``trunc (CST to TYPE)``
3108 Truncate a constant to another type. The bit size of CST must be
3109 larger than the bit size of TYPE. Both types must be integers.
3110``zext (CST to TYPE)``
3111 Zero extend a constant to another type. The bit size of CST must be
3112 smaller than the bit size of TYPE. Both types must be integers.
3113``sext (CST to TYPE)``
3114 Sign extend a constant to another type. The bit size of CST must be
3115 smaller than the bit size of TYPE. Both types must be integers.
3116``fptrunc (CST to TYPE)``
3117 Truncate a floating point constant to another floating point type.
3118 The size of CST must be larger than the size of TYPE. Both types
3119 must be floating point.
3120``fpext (CST to TYPE)``
3121 Floating point extend a constant to another type. The size of CST
3122 must be smaller or equal to the size of TYPE. Both types must be
3123 floating point.
3124``fptoui (CST to TYPE)``
3125 Convert a floating point constant to the corresponding unsigned
3126 integer constant. TYPE must be a scalar or vector integer type. CST
3127 must be of scalar or vector floating point type. Both CST and TYPE
3128 must be scalars, or vectors of the same number of elements. If the
3129 value won't fit in the integer type, the results are undefined.
3130``fptosi (CST to TYPE)``
3131 Convert a floating point constant to the corresponding signed
3132 integer constant. TYPE must be a scalar or vector integer type. CST
3133 must be of scalar or vector floating point type. Both CST and TYPE
3134 must be scalars, or vectors of the same number of elements. If the
3135 value won't fit in the integer type, the results are undefined.
3136``uitofp (CST to TYPE)``
3137 Convert an unsigned integer constant to the corresponding floating
3138 point constant. TYPE must be a scalar or vector floating point type.
3139 CST must be of scalar or vector integer type. Both CST and TYPE must
3140 be scalars, or vectors of the same number of elements. If the value
3141 won't fit in the floating point type, the results are undefined.
3142``sitofp (CST to TYPE)``
3143 Convert a signed integer constant to the corresponding floating
3144 point constant. TYPE must be a scalar or vector floating point type.
3145 CST must be of scalar or vector integer type. Both CST and TYPE must
3146 be scalars, or vectors of the same number of elements. If the value
3147 won't fit in the floating point type, the results are undefined.
3148``ptrtoint (CST to TYPE)``
3149 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003150 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003151 pointer type. The ``CST`` value is zero extended, truncated, or
3152 unchanged to make it fit in ``TYPE``.
3153``inttoptr (CST to TYPE)``
3154 Convert an integer constant to a pointer constant. TYPE must be a
3155 pointer type. CST must be of integer type. The CST value is zero
3156 extended, truncated, or unchanged to make it fit in a pointer size.
3157 This one is *really* dangerous!
3158``bitcast (CST to TYPE)``
3159 Convert a constant, CST, to another TYPE. The constraints of the
3160 operands are the same as those for the :ref:`bitcast
3161 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003162``addrspacecast (CST to TYPE)``
3163 Convert a constant pointer or constant vector of pointer, CST, to another
3164 TYPE in a different address space. The constraints of the operands are the
3165 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003166``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003167 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3168 constants. As with the :ref:`getelementptr <i_getelementptr>`
3169 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003170 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003171``select (COND, VAL1, VAL2)``
3172 Perform the :ref:`select operation <i_select>` on constants.
3173``icmp COND (VAL1, VAL2)``
3174 Performs the :ref:`icmp operation <i_icmp>` on constants.
3175``fcmp COND (VAL1, VAL2)``
3176 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3177``extractelement (VAL, IDX)``
3178 Perform the :ref:`extractelement operation <i_extractelement>` on
3179 constants.
3180``insertelement (VAL, ELT, IDX)``
3181 Perform the :ref:`insertelement operation <i_insertelement>` on
3182 constants.
3183``shufflevector (VEC1, VEC2, IDXMASK)``
3184 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3185 constants.
3186``extractvalue (VAL, IDX0, IDX1, ...)``
3187 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3188 constants. The index list is interpreted in a similar manner as
3189 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3190 least one index value must be specified.
3191``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3192 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3193 The index list is interpreted in a similar manner as indices in a
3194 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3195 value must be specified.
3196``OPCODE (LHS, RHS)``
3197 Perform the specified operation of the LHS and RHS constants. OPCODE
3198 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3199 binary <bitwiseops>` operations. The constraints on operands are
3200 the same as those for the corresponding instruction (e.g. no bitwise
3201 operations on floating point values are allowed).
3202
3203Other Values
3204============
3205
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003206.. _inlineasmexprs:
3207
Sean Silvab084af42012-12-07 10:36:55 +00003208Inline Assembler Expressions
3209----------------------------
3210
3211LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003212Inline Assembly <moduleasm>`) through the use of a special value. This value
3213represents the inline assembler as a template string (containing the
3214instructions to emit), a list of operand constraints (stored as a string), a
3215flag that indicates whether or not the inline asm expression has side effects,
3216and a flag indicating whether the function containing the asm needs to align its
3217stack conservatively.
3218
3219The template string supports argument substitution of the operands using "``$``"
3220followed by a number, to indicate substitution of the given register/memory
3221location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3222be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3223operand (See :ref:`inline-asm-modifiers`).
3224
3225A literal "``$``" may be included by using "``$$``" in the template. To include
3226other special characters into the output, the usual "``\XX``" escapes may be
3227used, just as in other strings. Note that after template substitution, the
3228resulting assembly string is parsed by LLVM's integrated assembler unless it is
3229disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3230syntax known to LLVM.
3231
Reid Kleckner71cb1642017-02-06 18:08:45 +00003232LLVM also supports a few more substitions useful for writing inline assembly:
3233
3234- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3235 This substitution is useful when declaring a local label. Many standard
3236 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3237 Adding a blob-unique identifier ensures that the two labels will not conflict
3238 during assembly. This is used to implement `GCC's %= special format
3239 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3240- ``${:comment}``: Expands to the comment character of the current target's
3241 assembly dialect. This is usually ``#``, but many targets use other strings,
3242 such as ``;``, ``//``, or ``!``.
3243- ``${:private}``: Expands to the assembler private label prefix. Labels with
3244 this prefix will not appear in the symbol table of the assembled object.
3245 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3246 relatively popular.
3247
James Y Knightbc832ed2015-07-08 18:08:36 +00003248LLVM's support for inline asm is modeled closely on the requirements of Clang's
3249GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3250modifier codes listed here are similar or identical to those in GCC's inline asm
3251support. However, to be clear, the syntax of the template and constraint strings
3252described here is *not* the same as the syntax accepted by GCC and Clang, and,
3253while most constraint letters are passed through as-is by Clang, some get
3254translated to other codes when converting from the C source to the LLVM
3255assembly.
3256
3257An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003258
3259.. code-block:: llvm
3260
3261 i32 (i32) asm "bswap $0", "=r,r"
3262
3263Inline assembler expressions may **only** be used as the callee operand
3264of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3265Thus, typically we have:
3266
3267.. code-block:: llvm
3268
3269 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3270
3271Inline asms with side effects not visible in the constraint list must be
3272marked as having side effects. This is done through the use of the
3273'``sideeffect``' keyword, like so:
3274
3275.. code-block:: llvm
3276
3277 call void asm sideeffect "eieio", ""()
3278
3279In some cases inline asms will contain code that will not work unless
3280the stack is aligned in some way, such as calls or SSE instructions on
3281x86, yet will not contain code that does that alignment within the asm.
3282The compiler should make conservative assumptions about what the asm
3283might contain and should generate its usual stack alignment code in the
3284prologue if the '``alignstack``' keyword is present:
3285
3286.. code-block:: llvm
3287
3288 call void asm alignstack "eieio", ""()
3289
3290Inline asms also support using non-standard assembly dialects. The
3291assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3292the inline asm is using the Intel dialect. Currently, ATT and Intel are
3293the only supported dialects. An example is:
3294
3295.. code-block:: llvm
3296
3297 call void asm inteldialect "eieio", ""()
3298
3299If multiple keywords appear the '``sideeffect``' keyword must come
3300first, the '``alignstack``' keyword second and the '``inteldialect``'
3301keyword last.
3302
James Y Knightbc832ed2015-07-08 18:08:36 +00003303Inline Asm Constraint String
3304^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3305
3306The constraint list is a comma-separated string, each element containing one or
3307more constraint codes.
3308
3309For each element in the constraint list an appropriate register or memory
3310operand will be chosen, and it will be made available to assembly template
3311string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3312second, etc.
3313
3314There are three different types of constraints, which are distinguished by a
3315prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3316constraints must always be given in that order: outputs first, then inputs, then
3317clobbers. They cannot be intermingled.
3318
3319There are also three different categories of constraint codes:
3320
3321- Register constraint. This is either a register class, or a fixed physical
3322 register. This kind of constraint will allocate a register, and if necessary,
3323 bitcast the argument or result to the appropriate type.
3324- Memory constraint. This kind of constraint is for use with an instruction
3325 taking a memory operand. Different constraints allow for different addressing
3326 modes used by the target.
3327- Immediate value constraint. This kind of constraint is for an integer or other
3328 immediate value which can be rendered directly into an instruction. The
3329 various target-specific constraints allow the selection of a value in the
3330 proper range for the instruction you wish to use it with.
3331
3332Output constraints
3333""""""""""""""""""
3334
3335Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3336indicates that the assembly will write to this operand, and the operand will
3337then be made available as a return value of the ``asm`` expression. Output
3338constraints do not consume an argument from the call instruction. (Except, see
3339below about indirect outputs).
3340
3341Normally, it is expected that no output locations are written to by the assembly
3342expression until *all* of the inputs have been read. As such, LLVM may assign
3343the same register to an output and an input. If this is not safe (e.g. if the
3344assembly contains two instructions, where the first writes to one output, and
3345the second reads an input and writes to a second output), then the "``&``"
3346modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003347"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003348will not use the same register for any inputs (other than an input tied to this
3349output).
3350
3351Input constraints
3352"""""""""""""""""
3353
3354Input constraints do not have a prefix -- just the constraint codes. Each input
3355constraint will consume one argument from the call instruction. It is not
3356permitted for the asm to write to any input register or memory location (unless
3357that input is tied to an output). Note also that multiple inputs may all be
3358assigned to the same register, if LLVM can determine that they necessarily all
3359contain the same value.
3360
3361Instead of providing a Constraint Code, input constraints may also "tie"
3362themselves to an output constraint, by providing an integer as the constraint
3363string. Tied inputs still consume an argument from the call instruction, and
3364take up a position in the asm template numbering as is usual -- they will simply
3365be constrained to always use the same register as the output they've been tied
3366to. For example, a constraint string of "``=r,0``" says to assign a register for
3367output, and use that register as an input as well (it being the 0'th
3368constraint).
3369
3370It is permitted to tie an input to an "early-clobber" output. In that case, no
3371*other* input may share the same register as the input tied to the early-clobber
3372(even when the other input has the same value).
3373
3374You may only tie an input to an output which has a register constraint, not a
3375memory constraint. Only a single input may be tied to an output.
3376
3377There is also an "interesting" feature which deserves a bit of explanation: if a
3378register class constraint allocates a register which is too small for the value
3379type operand provided as input, the input value will be split into multiple
3380registers, and all of them passed to the inline asm.
3381
3382However, this feature is often not as useful as you might think.
3383
3384Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3385architectures that have instructions which operate on multiple consecutive
3386instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3387SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3388hardware then loads into both the named register, and the next register. This
3389feature of inline asm would not be useful to support that.)
3390
3391A few of the targets provide a template string modifier allowing explicit access
3392to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3393``D``). On such an architecture, you can actually access the second allocated
3394register (yet, still, not any subsequent ones). But, in that case, you're still
3395probably better off simply splitting the value into two separate operands, for
3396clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3397despite existing only for use with this feature, is not really a good idea to
3398use)
3399
3400Indirect inputs and outputs
3401"""""""""""""""""""""""""""
3402
3403Indirect output or input constraints can be specified by the "``*``" modifier
3404(which goes after the "``=``" in case of an output). This indicates that the asm
3405will write to or read from the contents of an *address* provided as an input
3406argument. (Note that in this way, indirect outputs act more like an *input* than
3407an output: just like an input, they consume an argument of the call expression,
3408rather than producing a return value. An indirect output constraint is an
3409"output" only in that the asm is expected to write to the contents of the input
3410memory location, instead of just read from it).
3411
3412This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3413address of a variable as a value.
3414
3415It is also possible to use an indirect *register* constraint, but only on output
3416(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3417value normally, and then, separately emit a store to the address provided as
3418input, after the provided inline asm. (It's not clear what value this
3419functionality provides, compared to writing the store explicitly after the asm
3420statement, and it can only produce worse code, since it bypasses many
3421optimization passes. I would recommend not using it.)
3422
3423
3424Clobber constraints
3425"""""""""""""""""""
3426
3427A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3428consume an input operand, nor generate an output. Clobbers cannot use any of the
3429general constraint code letters -- they may use only explicit register
3430constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3431"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3432memory locations -- not only the memory pointed to by a declared indirect
3433output.
3434
Peter Zotov00257232016-08-30 10:48:31 +00003435Note that clobbering named registers that are also present in output
3436constraints is not legal.
3437
James Y Knightbc832ed2015-07-08 18:08:36 +00003438
3439Constraint Codes
3440""""""""""""""""
3441After a potential prefix comes constraint code, or codes.
3442
3443A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3444followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3445(e.g. "``{eax}``").
3446
3447The one and two letter constraint codes are typically chosen to be the same as
3448GCC's constraint codes.
3449
3450A single constraint may include one or more than constraint code in it, leaving
3451it up to LLVM to choose which one to use. This is included mainly for
3452compatibility with the translation of GCC inline asm coming from clang.
3453
3454There are two ways to specify alternatives, and either or both may be used in an
3455inline asm constraint list:
3456
34571) Append the codes to each other, making a constraint code set. E.g. "``im``"
3458 or "``{eax}m``". This means "choose any of the options in the set". The
3459 choice of constraint is made independently for each constraint in the
3460 constraint list.
3461
34622) Use "``|``" between constraint code sets, creating alternatives. Every
3463 constraint in the constraint list must have the same number of alternative
3464 sets. With this syntax, the same alternative in *all* of the items in the
3465 constraint list will be chosen together.
3466
3467Putting those together, you might have a two operand constraint string like
3468``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3469operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3470may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3471
3472However, the use of either of the alternatives features is *NOT* recommended, as
3473LLVM is not able to make an intelligent choice about which one to use. (At the
3474point it currently needs to choose, not enough information is available to do so
3475in a smart way.) Thus, it simply tries to make a choice that's most likely to
3476compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3477always choose to use memory, not registers). And, if given multiple registers,
3478or multiple register classes, it will simply choose the first one. (In fact, it
3479doesn't currently even ensure explicitly specified physical registers are
3480unique, so specifying multiple physical registers as alternatives, like
3481``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3482intended.)
3483
3484Supported Constraint Code List
3485""""""""""""""""""""""""""""""
3486
3487The constraint codes are, in general, expected to behave the same way they do in
3488GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3489inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3490and GCC likely indicates a bug in LLVM.
3491
3492Some constraint codes are typically supported by all targets:
3493
3494- ``r``: A register in the target's general purpose register class.
3495- ``m``: A memory address operand. It is target-specific what addressing modes
3496 are supported, typical examples are register, or register + register offset,
3497 or register + immediate offset (of some target-specific size).
3498- ``i``: An integer constant (of target-specific width). Allows either a simple
3499 immediate, or a relocatable value.
3500- ``n``: An integer constant -- *not* including relocatable values.
3501- ``s``: An integer constant, but allowing *only* relocatable values.
3502- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3503 useful to pass a label for an asm branch or call.
3504
3505 .. FIXME: but that surely isn't actually okay to jump out of an asm
3506 block without telling llvm about the control transfer???)
3507
3508- ``{register-name}``: Requires exactly the named physical register.
3509
3510Other constraints are target-specific:
3511
3512AArch64:
3513
3514- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3515- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3516 i.e. 0 to 4095 with optional shift by 12.
3517- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3518 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3519- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3520 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3521- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3522 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3523- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3524 32-bit register. This is a superset of ``K``: in addition to the bitmask
3525 immediate, also allows immediate integers which can be loaded with a single
3526 ``MOVZ`` or ``MOVL`` instruction.
3527- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3528 64-bit register. This is a superset of ``L``.
3529- ``Q``: Memory address operand must be in a single register (no
3530 offsets). (However, LLVM currently does this for the ``m`` constraint as
3531 well.)
3532- ``r``: A 32 or 64-bit integer register (W* or X*).
3533- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3534- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3535
3536AMDGPU:
3537
3538- ``r``: A 32 or 64-bit integer register.
3539- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3540- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3541
3542
3543All ARM modes:
3544
3545- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3546 operand. Treated the same as operand ``m``, at the moment.
3547
3548ARM and ARM's Thumb2 mode:
3549
3550- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3551- ``I``: An immediate integer valid for a data-processing instruction.
3552- ``J``: An immediate integer between -4095 and 4095.
3553- ``K``: An immediate integer whose bitwise inverse is valid for a
3554 data-processing instruction. (Can be used with template modifier "``B``" to
3555 print the inverted value).
3556- ``L``: An immediate integer whose negation is valid for a data-processing
3557 instruction. (Can be used with template modifier "``n``" to print the negated
3558 value).
3559- ``M``: A power of two or a integer between 0 and 32.
3560- ``N``: Invalid immediate constraint.
3561- ``O``: Invalid immediate constraint.
3562- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3563- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3564 as ``r``.
3565- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3566 invalid.
3567- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3568 ``d0-d31``, or ``q0-q15``.
3569- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3570 ``d0-d7``, or ``q0-q3``.
3571- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3572 ``s0-s31``.
3573
3574ARM's Thumb1 mode:
3575
3576- ``I``: An immediate integer between 0 and 255.
3577- ``J``: An immediate integer between -255 and -1.
3578- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3579 some amount.
3580- ``L``: An immediate integer between -7 and 7.
3581- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3582- ``N``: An immediate integer between 0 and 31.
3583- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3584- ``r``: A low 32-bit GPR register (``r0-r7``).
3585- ``l``: A low 32-bit GPR register (``r0-r7``).
3586- ``h``: A high GPR register (``r0-r7``).
3587- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3588 ``d0-d31``, or ``q0-q15``.
3589- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3590 ``d0-d7``, or ``q0-q3``.
3591- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3592 ``s0-s31``.
3593
3594
3595Hexagon:
3596
3597- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3598 at the moment.
3599- ``r``: A 32 or 64-bit register.
3600
3601MSP430:
3602
3603- ``r``: An 8 or 16-bit register.
3604
3605MIPS:
3606
3607- ``I``: An immediate signed 16-bit integer.
3608- ``J``: An immediate integer zero.
3609- ``K``: An immediate unsigned 16-bit integer.
3610- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3611- ``N``: An immediate integer between -65535 and -1.
3612- ``O``: An immediate signed 15-bit integer.
3613- ``P``: An immediate integer between 1 and 65535.
3614- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3615 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3616- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3617 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3618 ``m``.
3619- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3620 ``sc`` instruction on the given subtarget (details vary).
3621- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3622- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003623 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3624 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003625- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3626 ``25``).
3627- ``l``: The ``lo`` register, 32 or 64-bit.
3628- ``x``: Invalid.
3629
3630NVPTX:
3631
3632- ``b``: A 1-bit integer register.
3633- ``c`` or ``h``: A 16-bit integer register.
3634- ``r``: A 32-bit integer register.
3635- ``l`` or ``N``: A 64-bit integer register.
3636- ``f``: A 32-bit float register.
3637- ``d``: A 64-bit float register.
3638
3639
3640PowerPC:
3641
3642- ``I``: An immediate signed 16-bit integer.
3643- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3644- ``K``: An immediate unsigned 16-bit integer.
3645- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3646- ``M``: An immediate integer greater than 31.
3647- ``N``: An immediate integer that is an exact power of 2.
3648- ``O``: The immediate integer constant 0.
3649- ``P``: An immediate integer constant whose negation is a signed 16-bit
3650 constant.
3651- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3652 treated the same as ``m``.
3653- ``r``: A 32 or 64-bit integer register.
3654- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3655 ``R1-R31``).
3656- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3657 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3658- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3659 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3660 altivec vector register (``V0-V31``).
3661
3662 .. FIXME: is this a bug that v accepts QPX registers? I think this
3663 is supposed to only use the altivec vector registers?
3664
3665- ``y``: Condition register (``CR0-CR7``).
3666- ``wc``: An individual CR bit in a CR register.
3667- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3668 register set (overlapping both the floating-point and vector register files).
3669- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3670 set.
3671
3672Sparc:
3673
3674- ``I``: An immediate 13-bit signed integer.
3675- ``r``: A 32-bit integer register.
3676
3677SystemZ:
3678
3679- ``I``: An immediate unsigned 8-bit integer.
3680- ``J``: An immediate unsigned 12-bit integer.
3681- ``K``: An immediate signed 16-bit integer.
3682- ``L``: An immediate signed 20-bit integer.
3683- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003684- ``Q``: A memory address operand with a base address and a 12-bit immediate
3685 unsigned displacement.
3686- ``R``: A memory address operand with a base address, a 12-bit immediate
3687 unsigned displacement, and an index register.
3688- ``S``: A memory address operand with a base address and a 20-bit immediate
3689 signed displacement.
3690- ``T``: A memory address operand with a base address, a 20-bit immediate
3691 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003692- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3693- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3694 address context evaluates as zero).
3695- ``h``: A 32-bit value in the high part of a 64bit data register
3696 (LLVM-specific)
3697- ``f``: A 32, 64, or 128-bit floating point register.
3698
3699X86:
3700
3701- ``I``: An immediate integer between 0 and 31.
3702- ``J``: An immediate integer between 0 and 64.
3703- ``K``: An immediate signed 8-bit integer.
3704- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3705 0xffffffff.
3706- ``M``: An immediate integer between 0 and 3.
3707- ``N``: An immediate unsigned 8-bit integer.
3708- ``O``: An immediate integer between 0 and 127.
3709- ``e``: An immediate 32-bit signed integer.
3710- ``Z``: An immediate 32-bit unsigned integer.
3711- ``o``, ``v``: Treated the same as ``m``, at the moment.
3712- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3713 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3714 registers, and on X86-64, it is all of the integer registers.
3715- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3716 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3717- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3718- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3719 existed since i386, and can be accessed without the REX prefix.
3720- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3721- ``y``: A 64-bit MMX register, if MMX is enabled.
3722- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3723 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3724 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3725 512-bit vector operand in an AVX512 register, Otherwise, an error.
3726- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3727- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3728 32-bit mode, a 64-bit integer operand will get split into two registers). It
3729 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3730 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3731 you're better off splitting it yourself, before passing it to the asm
3732 statement.
3733
3734XCore:
3735
3736- ``r``: A 32-bit integer register.
3737
3738
3739.. _inline-asm-modifiers:
3740
3741Asm template argument modifiers
3742^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3743
3744In the asm template string, modifiers can be used on the operand reference, like
3745"``${0:n}``".
3746
3747The modifiers are, in general, expected to behave the same way they do in
3748GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3749inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3750and GCC likely indicates a bug in LLVM.
3751
3752Target-independent:
3753
Sean Silvaa1190322015-08-06 22:56:48 +00003754- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003755 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3756- ``n``: Negate and print immediate integer constant unadorned, without the
3757 target-specific immediate punctuation (e.g. no ``$`` prefix).
3758- ``l``: Print as an unadorned label, without the target-specific label
3759 punctuation (e.g. no ``$`` prefix).
3760
3761AArch64:
3762
3763- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3764 instead of ``x30``, print ``w30``.
3765- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3766- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3767 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3768 ``v*``.
3769
3770AMDGPU:
3771
3772- ``r``: No effect.
3773
3774ARM:
3775
3776- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3777 register).
3778- ``P``: No effect.
3779- ``q``: No effect.
3780- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3781 as ``d4[1]`` instead of ``s9``)
3782- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3783 prefix.
3784- ``L``: Print the low 16-bits of an immediate integer constant.
3785- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3786 register operands subsequent to the specified one (!), so use carefully.
3787- ``Q``: Print the low-order register of a register-pair, or the low-order
3788 register of a two-register operand.
3789- ``R``: Print the high-order register of a register-pair, or the high-order
3790 register of a two-register operand.
3791- ``H``: Print the second register of a register-pair. (On a big-endian system,
3792 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3793 to ``R``.)
3794
3795 .. FIXME: H doesn't currently support printing the second register
3796 of a two-register operand.
3797
3798- ``e``: Print the low doubleword register of a NEON quad register.
3799- ``f``: Print the high doubleword register of a NEON quad register.
3800- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3801 adornment.
3802
3803Hexagon:
3804
3805- ``L``: Print the second register of a two-register operand. Requires that it
3806 has been allocated consecutively to the first.
3807
3808 .. FIXME: why is it restricted to consecutive ones? And there's
3809 nothing that ensures that happens, is there?
3810
3811- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3812 nothing. Used to print 'addi' vs 'add' instructions.
3813
3814MSP430:
3815
3816No additional modifiers.
3817
3818MIPS:
3819
3820- ``X``: Print an immediate integer as hexadecimal
3821- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3822- ``d``: Print an immediate integer as decimal.
3823- ``m``: Subtract one and print an immediate integer as decimal.
3824- ``z``: Print $0 if an immediate zero, otherwise print normally.
3825- ``L``: Print the low-order register of a two-register operand, or prints the
3826 address of the low-order word of a double-word memory operand.
3827
3828 .. FIXME: L seems to be missing memory operand support.
3829
3830- ``M``: Print the high-order register of a two-register operand, or prints the
3831 address of the high-order word of a double-word memory operand.
3832
3833 .. FIXME: M seems to be missing memory operand support.
3834
3835- ``D``: Print the second register of a two-register operand, or prints the
3836 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3837 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3838 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003839- ``w``: No effect. Provided for compatibility with GCC which requires this
3840 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3841 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003842
3843NVPTX:
3844
3845- ``r``: No effect.
3846
3847PowerPC:
3848
3849- ``L``: Print the second register of a two-register operand. Requires that it
3850 has been allocated consecutively to the first.
3851
3852 .. FIXME: why is it restricted to consecutive ones? And there's
3853 nothing that ensures that happens, is there?
3854
3855- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3856 nothing. Used to print 'addi' vs 'add' instructions.
3857- ``y``: For a memory operand, prints formatter for a two-register X-form
3858 instruction. (Currently always prints ``r0,OPERAND``).
3859- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3860 otherwise. (NOTE: LLVM does not support update form, so this will currently
3861 always print nothing)
3862- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3863 not support indexed form, so this will currently always print nothing)
3864
3865Sparc:
3866
3867- ``r``: No effect.
3868
3869SystemZ:
3870
3871SystemZ implements only ``n``, and does *not* support any of the other
3872target-independent modifiers.
3873
3874X86:
3875
3876- ``c``: Print an unadorned integer or symbol name. (The latter is
3877 target-specific behavior for this typically target-independent modifier).
3878- ``A``: Print a register name with a '``*``' before it.
3879- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3880 operand.
3881- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3882 memory operand.
3883- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3884 operand.
3885- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3886 operand.
3887- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3888 available, otherwise the 32-bit register name; do nothing on a memory operand.
3889- ``n``: Negate and print an unadorned integer, or, for operands other than an
3890 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3891 the operand. (The behavior for relocatable symbol expressions is a
3892 target-specific behavior for this typically target-independent modifier)
3893- ``H``: Print a memory reference with additional offset +8.
3894- ``P``: Print a memory reference or operand for use as the argument of a call
3895 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3896
3897XCore:
3898
3899No additional modifiers.
3900
3901
Sean Silvab084af42012-12-07 10:36:55 +00003902Inline Asm Metadata
3903^^^^^^^^^^^^^^^^^^^
3904
3905The call instructions that wrap inline asm nodes may have a
3906"``!srcloc``" MDNode attached to it that contains a list of constant
3907integers. If present, the code generator will use the integer as the
3908location cookie value when report errors through the ``LLVMContext``
3909error reporting mechanisms. This allows a front-end to correlate backend
3910errors that occur with inline asm back to the source code that produced
3911it. For example:
3912
3913.. code-block:: llvm
3914
3915 call void asm sideeffect "something bad", ""(), !srcloc !42
3916 ...
3917 !42 = !{ i32 1234567 }
3918
3919It is up to the front-end to make sense of the magic numbers it places
3920in the IR. If the MDNode contains multiple constants, the code generator
3921will use the one that corresponds to the line of the asm that the error
3922occurs on.
3923
3924.. _metadata:
3925
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003926Metadata
3927========
Sean Silvab084af42012-12-07 10:36:55 +00003928
3929LLVM IR allows metadata to be attached to instructions in the program
3930that can convey extra information about the code to the optimizers and
3931code generator. One example application of metadata is source-level
3932debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003933
Sean Silvaa1190322015-08-06 22:56:48 +00003934Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003935``call`` instruction, it uses the ``metadata`` type.
3936
3937All metadata are identified in syntax by a exclamation point ('``!``').
3938
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003939.. _metadata-string:
3940
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003941Metadata Nodes and Metadata Strings
3942-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003943
3944A metadata string is a string surrounded by double quotes. It can
3945contain any character by escaping non-printable characters with
3946"``\xx``" where "``xx``" is the two digit hex code. For example:
3947"``!"test\00"``".
3948
3949Metadata nodes are represented with notation similar to structure
3950constants (a comma separated list of elements, surrounded by braces and
3951preceded by an exclamation point). Metadata nodes can have any values as
3952their operand. For example:
3953
3954.. code-block:: llvm
3955
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003956 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003957
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003958Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3959
Renato Golin124f2592016-07-20 12:16:38 +00003960.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003961
3962 !0 = distinct !{!"test\00", i32 10}
3963
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003964``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003965content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003966when metadata operands change.
3967
Sean Silvab084af42012-12-07 10:36:55 +00003968A :ref:`named metadata <namedmetadatastructure>` is a collection of
3969metadata nodes, which can be looked up in the module symbol table. For
3970example:
3971
3972.. code-block:: llvm
3973
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003974 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003975
3976Metadata can be used as function arguments. Here ``llvm.dbg.value``
3977function is using two metadata arguments:
3978
3979.. code-block:: llvm
3980
3981 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3982
Peter Collingbourne50108682015-11-06 02:41:02 +00003983Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3984to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003985
3986.. code-block:: llvm
3987
3988 %indvar.next = add i64 %indvar, 1, !dbg !21
3989
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003990Metadata can also be attached to a function or a global variable. Here metadata
3991``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
3992and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00003993
3994.. code-block:: llvm
3995
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003996 declare !dbg !22 void @f1()
3997 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00003998 ret void
3999 }
4000
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004001 @g1 = global i32 0, !dbg !22
4002 @g2 = external global i32, !dbg !22
4003
4004A transformation is required to drop any metadata attachment that it does not
4005know or know it can't preserve. Currently there is an exception for metadata
4006attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4007unconditionally dropped unless the global is itself deleted.
4008
4009Metadata attached to a module using named metadata may not be dropped, with
4010the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4011
Sean Silvab084af42012-12-07 10:36:55 +00004012More information about specific metadata nodes recognized by the
4013optimizers and code generator is found below.
4014
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004015.. _specialized-metadata:
4016
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004017Specialized Metadata Nodes
4018^^^^^^^^^^^^^^^^^^^^^^^^^^
4019
4020Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004021to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004022order.
4023
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004024These aren't inherently debug info centric, but currently all the specialized
4025metadata nodes are related to debug info.
4026
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004027.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004028
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004029DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004030"""""""""""""
4031
Sean Silvaa1190322015-08-06 22:56:48 +00004032``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004033``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
4034fields are tuples containing the debug info to be emitted along with the compile
4035unit, regardless of code optimizations (some nodes are only emitted if there are
Dehao Chenfb02f712017-02-10 21:09:07 +00004036references to them from instructions). The ``debugInfoForProfiling:`` field is a
4037boolean indicating whether or not line-table discriminators are updated to
4038provide more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004039
Renato Golin124f2592016-07-20 12:16:38 +00004040.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004041
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004042 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004043 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004044 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004045 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004046 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004047
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004048Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00004049specific compilation unit. File descriptors are defined using this scope.
4050These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004051keep track of subprograms, global variables, type information, and imported
4052entities (declarations and namespaces).
4053
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004054.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004055
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004056DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004057""""""
4058
Sean Silvaa1190322015-08-06 22:56:48 +00004059``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004060
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004061.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004062
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004063 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4064 checksumkind: CSK_MD5,
4065 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004066
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004067Files are sometimes used in ``scope:`` fields, and are the only valid target
4068for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004069Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004070
Michael Kuperstein605308a2015-05-14 10:58:59 +00004071.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004072
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004073DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004074"""""""""""
4075
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004076``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004077``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004078
Renato Golin124f2592016-07-20 12:16:38 +00004079.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004080
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004081 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004082 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004083 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004084
Sean Silvaa1190322015-08-06 22:56:48 +00004085The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004086following:
4087
Renato Golin124f2592016-07-20 12:16:38 +00004088.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004089
4090 DW_ATE_address = 1
4091 DW_ATE_boolean = 2
4092 DW_ATE_float = 4
4093 DW_ATE_signed = 5
4094 DW_ATE_signed_char = 6
4095 DW_ATE_unsigned = 7
4096 DW_ATE_unsigned_char = 8
4097
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004098.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004099
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004100DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004101""""""""""""""""
4102
Sean Silvaa1190322015-08-06 22:56:48 +00004103``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004104refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004105types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004106represents a function with no return value (such as ``void foo() {}`` in C++).
4107
Renato Golin124f2592016-07-20 12:16:38 +00004108.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004109
4110 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4111 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004112 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004113
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004114.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004115
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004116DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004117"""""""""""""
4118
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004119``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004120qualified types.
4121
Renato Golin124f2592016-07-20 12:16:38 +00004122.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004123
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004124 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004125 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004126 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004127 align: 32)
4128
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004129The following ``tag:`` values are valid:
4130
Renato Golin124f2592016-07-20 12:16:38 +00004131.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004132
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004133 DW_TAG_member = 13
4134 DW_TAG_pointer_type = 15
4135 DW_TAG_reference_type = 16
4136 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004137 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004138 DW_TAG_ptr_to_member_type = 31
4139 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004140 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004141 DW_TAG_volatile_type = 53
4142 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004143 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004144
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004145.. _DIDerivedTypeMember:
4146
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004147``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004148<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004149``offset:`` is the member's bit offset. If the composite type has an ODR
4150``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4151uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004152
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004153``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4154field of :ref:`composite types <DICompositeType>` to describe parents and
4155friends.
4156
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004157``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4158
4159``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004160``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4161are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004162
4163Note that the ``void *`` type is expressed as a type derived from NULL.
4164
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004165.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004166
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004167DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004168"""""""""""""""
4169
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004170``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004171structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004172
4173If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004174identifier used for type merging between modules. When specified,
4175:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4176derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4177``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004178
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004179For a given ``identifier:``, there should only be a single composite type that
4180does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4181together will unique such definitions at parse time via the ``identifier:``
4182field, even if the nodes are ``distinct``.
4183
Renato Golin124f2592016-07-20 12:16:38 +00004184.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004185
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004186 !0 = !DIEnumerator(name: "SixKind", value: 7)
4187 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4188 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4189 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004190 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4191 elements: !{!0, !1, !2})
4192
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004193The following ``tag:`` values are valid:
4194
Renato Golin124f2592016-07-20 12:16:38 +00004195.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004196
4197 DW_TAG_array_type = 1
4198 DW_TAG_class_type = 2
4199 DW_TAG_enumeration_type = 4
4200 DW_TAG_structure_type = 19
4201 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004202
4203For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004204descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004205level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004206array type is a native packed vector.
4207
4208For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004209descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004210value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004211``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004212
4213For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4214``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004215<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4216``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4217``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004218
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004219.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004220
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004221DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004222""""""""""
4223
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004224``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004225:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004226
4227.. code-block:: llvm
4228
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004229 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4230 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4231 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004232
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004233.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004234
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004235DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004236""""""""""""
4237
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004238``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4239variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004240
4241.. code-block:: llvm
4242
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004243 !0 = !DIEnumerator(name: "SixKind", value: 7)
4244 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4245 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004246
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004247DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004248"""""""""""""""""""""""
4249
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004250``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004251language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004252:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004253
4254.. code-block:: llvm
4255
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004256 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004257
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004258DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004259""""""""""""""""""""""""
4260
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004261``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004262language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004263but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004264``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004265:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004266
4267.. code-block:: llvm
4268
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004269 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004270
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004271DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004272"""""""""""
4273
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004274``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004275
4276.. code-block:: llvm
4277
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004278 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004279
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004280DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004281""""""""""""""""
4282
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004283``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004284
4285.. code-block:: llvm
4286
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004287 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004288 file: !2, line: 7, type: !3, isLocal: true,
4289 isDefinition: false, variable: i32* @foo,
4290 declaration: !4)
4291
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004292All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004293:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004294
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004295.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004296
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004297DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004298""""""""""""
4299
Peter Collingbourne50108682015-11-06 02:41:02 +00004300``DISubprogram`` nodes represent functions from the source language. A
4301``DISubprogram`` may be attached to a function definition using ``!dbg``
4302metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4303that must be retained, even if their IR counterparts are optimized out of
4304the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004305
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004306.. _DISubprogramDeclaration:
4307
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004308When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004309tree as opposed to a definition of a function. If the scope is a composite
4310type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4311then the subprogram declaration is uniqued based only on its ``linkageName:``
4312and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004313
Renato Golin124f2592016-07-20 12:16:38 +00004314.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004315
Peter Collingbourne50108682015-11-06 02:41:02 +00004316 define void @_Z3foov() !dbg !0 {
4317 ...
4318 }
4319
4320 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4321 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004322 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004323 containingType: !4,
4324 virtuality: DW_VIRTUALITY_pure_virtual,
4325 virtualIndex: 10, flags: DIFlagPrototyped,
4326 isOptimized: true, templateParams: !5,
4327 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004328
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004329.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004330
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004331DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004332""""""""""""""
4333
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004334``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004335<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004336two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004337fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004338
Renato Golin124f2592016-07-20 12:16:38 +00004339.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004340
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004341 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004342
4343Usually lexical blocks are ``distinct`` to prevent node merging based on
4344operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004345
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004346.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004347
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004348DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004349""""""""""""""""""
4350
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004351``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004352:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004353indicate textual inclusion, or the ``discriminator:`` field can be used to
4354discriminate between control flow within a single block in the source language.
4355
4356.. code-block:: llvm
4357
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004358 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4359 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4360 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004361
Michael Kuperstein605308a2015-05-14 10:58:59 +00004362.. _DILocation:
4363
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004364DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004365""""""""""
4366
Sean Silvaa1190322015-08-06 22:56:48 +00004367``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004368mandatory, and points at an :ref:`DILexicalBlockFile`, an
4369:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004370
4371.. code-block:: llvm
4372
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004373 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004374
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004375.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004376
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004377DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004378"""""""""""""""
4379
Sean Silvaa1190322015-08-06 22:56:48 +00004380``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004381the ``arg:`` field is set to non-zero, then this variable is a subprogram
4382parameter, and it will be included in the ``variables:`` field of its
4383:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004384
Renato Golin124f2592016-07-20 12:16:38 +00004385.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004386
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004387 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4388 type: !3, flags: DIFlagArtificial)
4389 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4390 type: !3)
4391 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004392
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004393DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004394""""""""""""
4395
Adrian Prantlb44c7762017-03-22 18:01:01 +00004396``DIExpression`` nodes represent expressions that are inspired by the DWARF
4397expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4398(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4399referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004400
4401The current supported vocabulary is limited:
4402
Adrian Prantl6825fb62017-04-18 01:21:53 +00004403- ``DW_OP_deref`` dereferences the top of the expression stack.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004404- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004405- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4406 here, respectively) of the variable fragment from the working expression. Note
4407 that contrary to DW_OP_bit_piece, the offset is describing the the location
4408 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004409- ``DW_OP_swap`` swaps top two stack entries.
4410- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4411 of the stack is treated as an address. The second stack entry is treated as an
4412 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004413- ``DW_OP_stack_value`` marks a constant value.
4414
4415DIExpression nodes that contain a ``DW_OP_stack_value`` operator are standalone
4416location descriptions that describe constant values. This form is used to
4417describe global constants that have been optimized away. All other expressions
4418are modifiers to another location: A debug intrinsic ties a location and a
Adrian Prantl6825fb62017-04-18 01:21:53 +00004419DIExpression together.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004420
Adrian Prantl6825fb62017-04-18 01:21:53 +00004421DWARF specifies three kinds of simple location descriptions: Register, memory,
4422and implicit location descriptions. Register and memory location descriptions
4423describe the *location* of a source variable (in the sense that a debugger might
4424modify its value), whereas implicit locations describe merely the *value* of a
4425source variable. DIExpressions also follow this model: A DIExpression that
4426doesn't have a trailing ``DW_OP_stack_value`` will describe an *address* when
4427combined with a concrete location.
4428
4429.. code-block:: llvm
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004430
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004431 !0 = !DIExpression(DW_OP_deref)
4432 !1 = !DIExpression(DW_OP_plus, 3)
4433 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004434 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004435 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004436 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004437
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004438DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004439""""""""""""""
4440
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004441``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004442
4443.. code-block:: llvm
4444
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004445 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004446 getter: "getFoo", attributes: 7, type: !2)
4447
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004448DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004449""""""""""""""""
4450
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004451``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004452compile unit.
4453
Renato Golin124f2592016-07-20 12:16:38 +00004454.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004455
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004456 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004457 entity: !1, line: 7)
4458
Amjad Abouda9bcf162015-12-10 12:56:35 +00004459DIMacro
4460"""""""
4461
4462``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4463The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004464defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004465used to expand the macro identifier.
4466
Renato Golin124f2592016-07-20 12:16:38 +00004467.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004468
4469 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4470 value: "((x) + 1)")
4471 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4472
4473DIMacroFile
4474"""""""""""
4475
4476``DIMacroFile`` nodes represent inclusion of source files.
4477The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4478appear in the included source file.
4479
Renato Golin124f2592016-07-20 12:16:38 +00004480.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004481
4482 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4483 nodes: !3)
4484
Sean Silvab084af42012-12-07 10:36:55 +00004485'``tbaa``' Metadata
4486^^^^^^^^^^^^^^^^^^^
4487
4488In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004489suitable for doing type based alias analysis (TBAA). Instead, metadata is
4490added to the IR to describe a type system of a higher level language. This
4491can be used to implement C/C++ strict type aliasing rules, but it can also
4492be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004493
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004494This description of LLVM's TBAA system is broken into two parts:
4495:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4496:ref:`Representation<tbaa_node_representation>` talks about the metadata
4497encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004498
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004499It is always possible to trace any TBAA node to a "root" TBAA node (details
4500in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4501nodes with different roots have an unknown aliasing relationship, and LLVM
4502conservatively infers ``MayAlias`` between them. The rules mentioned in
4503this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004504
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004505.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004506
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004507Semantics
4508"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004509
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004510The TBAA metadata system, referred to as "struct path TBAA" (not to be
4511confused with ``tbaa.struct``), consists of the following high level
4512concepts: *Type Descriptors*, further subdivided into scalar type
4513descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004514
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004515**Type descriptors** describe the type system of the higher level language
4516being compiled. **Scalar type descriptors** describe types that do not
4517contain other types. Each scalar type has a parent type, which must also
4518be a scalar type or the TBAA root. Via this parent relation, scalar types
4519within a TBAA root form a tree. **Struct type descriptors** denote types
4520that contain a sequence of other type descriptors, at known offsets. These
4521contained type descriptors can either be struct type descriptors themselves
4522or scalar type descriptors.
4523
4524**Access tags** are metadata nodes attached to load and store instructions.
4525Access tags use type descriptors to describe the *location* being accessed
4526in terms of the type system of the higher level language. Access tags are
4527tuples consisting of a base type, an access type and an offset. The base
4528type is a scalar type descriptor or a struct type descriptor, the access
4529type is a scalar type descriptor, and the offset is a constant integer.
4530
4531The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4532things:
4533
4534 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4535 or store) of a value of type ``AccessTy`` contained in the struct type
4536 ``BaseTy`` at offset ``Offset``.
4537
4538 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4539 ``AccessTy`` must be the same; and the access tag describes a scalar
4540 access with scalar type ``AccessTy``.
4541
4542We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4543tuples this way:
4544
4545 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4546 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4547 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4548 undefined if ``Offset`` is non-zero.
4549
4550 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4551 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4552 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4553 to be relative within that inner type.
4554
4555A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4556aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4557Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4558Offset2)`` via the ``Parent`` relation or vice versa.
4559
4560As a concrete example, the type descriptor graph for the following program
4561
4562.. code-block:: c
4563
4564 struct Inner {
4565 int i; // offset 0
4566 float f; // offset 4
4567 };
4568
4569 struct Outer {
4570 float f; // offset 0
4571 double d; // offset 4
4572 struct Inner inner_a; // offset 12
4573 };
4574
4575 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4576 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4577 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4578 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4579 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4580 }
4581
4582is (note that in C and C++, ``char`` can be used to access any arbitrary
4583type):
4584
4585.. code-block:: text
4586
4587 Root = "TBAA Root"
4588 CharScalarTy = ("char", Root, 0)
4589 FloatScalarTy = ("float", CharScalarTy, 0)
4590 DoubleScalarTy = ("double", CharScalarTy, 0)
4591 IntScalarTy = ("int", CharScalarTy, 0)
4592 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4593 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4594 (InnerStructTy, 12)}
4595
4596
4597with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
45980)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4599``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4600
4601.. _tbaa_node_representation:
4602
4603Representation
4604""""""""""""""
4605
4606The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4607with exactly one ``MDString`` operand.
4608
4609Scalar type descriptors are represented as an ``MDNode`` s with two
4610operands. The first operand is an ``MDString`` denoting the name of the
4611struct type. LLVM does not assign meaning to the value of this operand, it
4612only cares about it being an ``MDString``. The second operand is an
4613``MDNode`` which points to the parent for said scalar type descriptor,
4614which is either another scalar type descriptor or the TBAA root. Scalar
4615type descriptors can have an optional third argument, but that must be the
4616constant integer zero.
4617
4618Struct type descriptors are represented as ``MDNode`` s with an odd number
4619of operands greater than 1. The first operand is an ``MDString`` denoting
4620the name of the struct type. Like in scalar type descriptors the actual
4621value of this name operand is irrelevant to LLVM. After the name operand,
4622the struct type descriptors have a sequence of alternating ``MDNode`` and
4623``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4624an ``MDNode``, denotes a contained field, and the 2N th operand, a
4625``ConstantInt``, is the offset of the said contained field. The offsets
4626must be in non-decreasing order.
4627
4628Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4629The first operand is an ``MDNode`` pointing to the node representing the
4630base type. The second operand is an ``MDNode`` pointing to the node
4631representing the access type. The third operand is a ``ConstantInt`` that
4632states the offset of the access. If a fourth field is present, it must be
4633a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4634that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004635``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004636AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4637the access type and the base type of an access tag must be the same, and
4638that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004639
4640'``tbaa.struct``' Metadata
4641^^^^^^^^^^^^^^^^^^^^^^^^^^
4642
4643The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4644aggregate assignment operations in C and similar languages, however it
4645is defined to copy a contiguous region of memory, which is more than
4646strictly necessary for aggregate types which contain holes due to
4647padding. Also, it doesn't contain any TBAA information about the fields
4648of the aggregate.
4649
4650``!tbaa.struct`` metadata can describe which memory subregions in a
4651memcpy are padding and what the TBAA tags of the struct are.
4652
4653The current metadata format is very simple. ``!tbaa.struct`` metadata
4654nodes are a list of operands which are in conceptual groups of three.
4655For each group of three, the first operand gives the byte offset of a
4656field in bytes, the second gives its size in bytes, and the third gives
4657its tbaa tag. e.g.:
4658
4659.. code-block:: llvm
4660
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004661 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004662
4663This describes a struct with two fields. The first is at offset 0 bytes
4664with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4665and has size 4 bytes and has tbaa tag !2.
4666
4667Note that the fields need not be contiguous. In this example, there is a
46684 byte gap between the two fields. This gap represents padding which
4669does not carry useful data and need not be preserved.
4670
Hal Finkel94146652014-07-24 14:25:39 +00004671'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004672^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004673
4674``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4675noalias memory-access sets. This means that some collection of memory access
4676instructions (loads, stores, memory-accessing calls, etc.) that carry
4677``noalias`` metadata can specifically be specified not to alias with some other
4678collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004679Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004680a domain.
4681
4682When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004683of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004684subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004685instruction's ``noalias`` list, then the two memory accesses are assumed not to
4686alias.
Hal Finkel94146652014-07-24 14:25:39 +00004687
Adam Nemet569a5b32016-04-27 00:52:48 +00004688Because scopes in one domain don't affect scopes in other domains, separate
4689domains can be used to compose multiple independent noalias sets. This is
4690used for example during inlining. As the noalias function parameters are
4691turned into noalias scope metadata, a new domain is used every time the
4692function is inlined.
4693
Hal Finkel029cde62014-07-25 15:50:02 +00004694The metadata identifying each domain is itself a list containing one or two
4695entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004696string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004697self-reference can be used to create globally unique domain names. A
4698descriptive string may optionally be provided as a second list entry.
4699
4700The metadata identifying each scope is also itself a list containing two or
4701three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004702is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004703self-reference can be used to create globally unique scope names. A metadata
4704reference to the scope's domain is the second entry. A descriptive string may
4705optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004706
4707For example,
4708
4709.. code-block:: llvm
4710
Hal Finkel029cde62014-07-25 15:50:02 +00004711 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004712 !0 = !{!0}
4713 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004714
Hal Finkel029cde62014-07-25 15:50:02 +00004715 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004716 !2 = !{!2, !0}
4717 !3 = !{!3, !0}
4718 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004719
Hal Finkel029cde62014-07-25 15:50:02 +00004720 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004721 !5 = !{!4} ; A list containing only scope !4
4722 !6 = !{!4, !3, !2}
4723 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004724
4725 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004726 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004727 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004728
Hal Finkel029cde62014-07-25 15:50:02 +00004729 ; These two instructions also don't alias (for domain !1, the set of scopes
4730 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004731 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004732 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004733
Adam Nemet0a8416f2015-05-11 08:30:28 +00004734 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004735 ; the !noalias list is not a superset of, or equal to, the scopes in the
4736 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004737 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004738 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004739
Sean Silvab084af42012-12-07 10:36:55 +00004740'``fpmath``' Metadata
4741^^^^^^^^^^^^^^^^^^^^^
4742
4743``fpmath`` metadata may be attached to any instruction of floating point
4744type. It can be used to express the maximum acceptable error in the
4745result of that instruction, in ULPs, thus potentially allowing the
4746compiler to use a more efficient but less accurate method of computing
4747it. ULP is defined as follows:
4748
4749 If ``x`` is a real number that lies between two finite consecutive
4750 floating-point numbers ``a`` and ``b``, without being equal to one
4751 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4752 distance between the two non-equal finite floating-point numbers
4753 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4754
Matt Arsenault82f41512016-06-27 19:43:15 +00004755The metadata node shall consist of a single positive float type number
4756representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004757
4758.. code-block:: llvm
4759
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004760 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004761
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004762.. _range-metadata:
4763
Sean Silvab084af42012-12-07 10:36:55 +00004764'``range``' Metadata
4765^^^^^^^^^^^^^^^^^^^^
4766
Jingyue Wu37fcb592014-06-19 16:50:16 +00004767``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4768integer types. It expresses the possible ranges the loaded value or the value
4769returned by the called function at this call site is in. The ranges are
4770represented with a flattened list of integers. The loaded value or the value
4771returned is known to be in the union of the ranges defined by each consecutive
4772pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004773
4774- The type must match the type loaded by the instruction.
4775- The pair ``a,b`` represents the range ``[a,b)``.
4776- Both ``a`` and ``b`` are constants.
4777- The range is allowed to wrap.
4778- The range should not represent the full or empty set. That is,
4779 ``a!=b``.
4780
4781In addition, the pairs must be in signed order of the lower bound and
4782they must be non-contiguous.
4783
4784Examples:
4785
4786.. code-block:: llvm
4787
David Blaikiec7aabbb2015-03-04 22:06:14 +00004788 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4789 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004790 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4791 %d = invoke i8 @bar() to label %cont
4792 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004793 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004794 !0 = !{ i8 0, i8 2 }
4795 !1 = !{ i8 255, i8 2 }
4796 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4797 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004798
Peter Collingbourne235c2752016-12-08 19:01:00 +00004799'``absolute_symbol``' Metadata
4800^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4801
4802``absolute_symbol`` metadata may be attached to a global variable
4803declaration. It marks the declaration as a reference to an absolute symbol,
4804which causes the backend to use absolute relocations for the symbol even
4805in position independent code, and expresses the possible ranges that the
4806global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004807``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4808may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004809
Peter Collingbourned88f9282017-01-20 21:56:37 +00004810Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004811
4812.. code-block:: llvm
4813
4814 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004815 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004816
4817 ...
4818 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004819 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004820
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004821'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004822^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004823
4824``unpredictable`` metadata may be attached to any branch or switch
4825instruction. It can be used to express the unpredictability of control
4826flow. Similar to the llvm.expect intrinsic, it may be used to alter
4827optimizations related to compare and branch instructions. The metadata
4828is treated as a boolean value; if it exists, it signals that the branch
4829or switch that it is attached to is completely unpredictable.
4830
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004831'``llvm.loop``'
4832^^^^^^^^^^^^^^^
4833
4834It is sometimes useful to attach information to loop constructs. Currently,
4835loop metadata is implemented as metadata attached to the branch instruction
4836in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004837guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004838specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004839
4840The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004841itself to avoid merging it with any other identifier metadata, e.g.,
4842during module linkage or function inlining. That is, each loop should refer
4843to their own identification metadata even if they reside in separate functions.
4844The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004845constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004846
4847.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004848
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004849 !0 = !{!0}
4850 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004851
Mark Heffernan893752a2014-07-18 19:24:51 +00004852The loop identifier metadata can be used to specify additional
4853per-loop metadata. Any operands after the first operand can be treated
4854as user-defined metadata. For example the ``llvm.loop.unroll.count``
4855suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004856
Paul Redmond5fdf8362013-05-28 20:00:34 +00004857.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004858
Paul Redmond5fdf8362013-05-28 20:00:34 +00004859 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4860 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004861 !0 = !{!0, !1}
4862 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004863
Mark Heffernan9d20e422014-07-21 23:11:03 +00004864'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004866
Mark Heffernan9d20e422014-07-21 23:11:03 +00004867Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4868used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004869vectorization width and interleave count. These metadata should be used in
4870conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004871``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4872optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004873it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004874which contains information about loop-carried memory dependencies can be helpful
4875in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004876
Mark Heffernan9d20e422014-07-21 23:11:03 +00004877'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004878^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4879
Mark Heffernan9d20e422014-07-21 23:11:03 +00004880This metadata suggests an interleave count to the loop interleaver.
4881The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004882second operand is an integer specifying the interleave count. For
4883example:
4884
4885.. code-block:: llvm
4886
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004887 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004888
Mark Heffernan9d20e422014-07-21 23:11:03 +00004889Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004890multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004891then the interleave count will be determined automatically.
4892
4893'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004894^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004895
4896This metadata selectively enables or disables vectorization for the loop. The
4897first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004898is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000048990 disables vectorization:
4900
4901.. code-block:: llvm
4902
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004903 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4904 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004905
4906'``llvm.loop.vectorize.width``' Metadata
4907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4908
4909This metadata sets the target width of the vectorizer. The first
4910operand is the string ``llvm.loop.vectorize.width`` and the second
4911operand is an integer specifying the width. For example:
4912
4913.. code-block:: llvm
4914
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004915 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004916
4917Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004918vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000049190 or if the loop does not have this metadata the width will be
4920determined automatically.
4921
4922'``llvm.loop.unroll``'
4923^^^^^^^^^^^^^^^^^^^^^^
4924
4925Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4926optimization hints such as the unroll factor. ``llvm.loop.unroll``
4927metadata should be used in conjunction with ``llvm.loop`` loop
4928identification metadata. The ``llvm.loop.unroll`` metadata are only
4929optimization hints and the unrolling will only be performed if the
4930optimizer believes it is safe to do so.
4931
Mark Heffernan893752a2014-07-18 19:24:51 +00004932'``llvm.loop.unroll.count``' Metadata
4933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4934
4935This metadata suggests an unroll factor to the loop unroller. The
4936first operand is the string ``llvm.loop.unroll.count`` and the second
4937operand is a positive integer specifying the unroll factor. For
4938example:
4939
4940.. code-block:: llvm
4941
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004942 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004943
4944If the trip count of the loop is less than the unroll count the loop
4945will be partially unrolled.
4946
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004947'``llvm.loop.unroll.disable``' Metadata
4948^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4949
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004950This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004951which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004952
4953.. code-block:: llvm
4954
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004955 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004956
Kevin Qin715b01e2015-03-09 06:14:18 +00004957'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004958^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004959
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004960This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004961operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004962
4963.. code-block:: llvm
4964
4965 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4966
Mark Heffernan89391542015-08-10 17:28:08 +00004967'``llvm.loop.unroll.enable``' Metadata
4968^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4969
4970This metadata suggests that the loop should be fully unrolled if the trip count
4971is known at compile time and partially unrolled if the trip count is not known
4972at compile time. The metadata has a single operand which is the string
4973``llvm.loop.unroll.enable``. For example:
4974
4975.. code-block:: llvm
4976
4977 !0 = !{!"llvm.loop.unroll.enable"}
4978
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004979'``llvm.loop.unroll.full``' Metadata
4980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4981
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004982This metadata suggests that the loop should be unrolled fully. The
4983metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004984For example:
4985
4986.. code-block:: llvm
4987
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004988 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004989
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004990'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004992
4993This metadata indicates that the loop should not be versioned for the purpose
4994of enabling loop-invariant code motion (LICM). The metadata has a single operand
4995which is the string ``llvm.loop.licm_versioning.disable``. For example:
4996
4997.. code-block:: llvm
4998
4999 !0 = !{!"llvm.loop.licm_versioning.disable"}
5000
Adam Nemetd2fa4142016-04-27 05:28:18 +00005001'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005002^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005003
5004Loop distribution allows splitting a loop into multiple loops. Currently,
5005this is only performed if the entire loop cannot be vectorized due to unsafe
5006memory dependencies. The transformation will atempt to isolate the unsafe
5007dependencies into their own loop.
5008
5009This metadata can be used to selectively enable or disable distribution of the
5010loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5011second operand is a bit. If the bit operand value is 1 distribution is
5012enabled. A value of 0 disables distribution:
5013
5014.. code-block:: llvm
5015
5016 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5017 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5018
5019This metadata should be used in conjunction with ``llvm.loop`` loop
5020identification metadata.
5021
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005022'``llvm.mem``'
5023^^^^^^^^^^^^^^^
5024
5025Metadata types used to annotate memory accesses with information helpful
5026for optimizations are prefixed with ``llvm.mem``.
5027
5028'``llvm.mem.parallel_loop_access``' Metadata
5029^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5030
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005031The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5032or metadata containing a list of loop identifiers for nested loops.
5033The metadata is attached to memory accessing instructions and denotes that
5034no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005035with the same loop identifier. The metadata on memory reads also implies that
5036if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005037
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005038Precisely, given two instructions ``m1`` and ``m2`` that both have the
5039``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5040set of loops associated with that metadata, respectively, then there is no loop
5041carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005042``L2``.
5043
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005044As a special case, if all memory accessing instructions in a loop have
5045``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5046loop has no loop carried memory dependences and is considered to be a parallel
5047loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005048
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005049Note that if not all memory access instructions have such metadata referring to
5050the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005051memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005052safe mechanism, this causes loops that were originally parallel to be considered
5053sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005054insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005055
5056Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005057both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005058metadata types that refer to the same loop identifier metadata.
5059
5060.. code-block:: llvm
5061
5062 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005063 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005064 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005065 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005066 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005067 ...
5068 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005069
5070 for.end:
5071 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005072 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005073
5074It is also possible to have nested parallel loops. In that case the
5075memory accesses refer to a list of loop identifier metadata nodes instead of
5076the loop identifier metadata node directly:
5077
5078.. code-block:: llvm
5079
5080 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005081 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005082 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005083 ...
5084 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005085
5086 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005087 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005088 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005089 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005090 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005091 ...
5092 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005093
5094 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005095 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005096 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005097 ...
5098 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005099
5100 outer.for.end: ; preds = %for.body
5101 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005102 !0 = !{!1, !2} ; a list of loop identifiers
5103 !1 = !{!1} ; an identifier for the inner loop
5104 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005105
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005106'``invariant.group``' Metadata
5107^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5108
5109The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
5110The existence of the ``invariant.group`` metadata on the instruction tells
5111the optimizer that every ``load`` and ``store`` to the same pointer operand
5112within the same invariant group can be assumed to load or store the same
5113value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005114when two pointers are considered the same). Pointers returned by bitcast or
5115getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005116
5117Examples:
5118
5119.. code-block:: llvm
5120
5121 @unknownPtr = external global i8
5122 ...
5123 %ptr = alloca i8
5124 store i8 42, i8* %ptr, !invariant.group !0
5125 call void @foo(i8* %ptr)
5126
5127 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5128 call void @foo(i8* %ptr)
5129 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
5130
5131 %newPtr = call i8* @getPointer(i8* %ptr)
5132 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
5133
5134 %unknownValue = load i8, i8* @unknownPtr
5135 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
5136
5137 call void @foo(i8* %ptr)
5138 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5139 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
5140
5141 ...
5142 declare void @foo(i8*)
5143 declare i8* @getPointer(i8*)
5144 declare i8* @llvm.invariant.group.barrier(i8*)
5145
5146 !0 = !{!"magic ptr"}
5147 !1 = !{!"other ptr"}
5148
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005149The invariant.group metadata must be dropped when replacing one pointer by
5150another based on aliasing information. This is because invariant.group is tied
5151to the SSA value of the pointer operand.
5152
5153.. code-block:: llvm
Piotr Padlewskiaa1b2412017-04-12 11:18:19 +00005154
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005155 %v = load i8, i8* %x, !invariant.group !0
5156 ; if %x mustalias %y then we can replace the above instruction with
5157 %v = load i8, i8* %y
5158
5159
Peter Collingbournea333db82016-07-26 22:31:30 +00005160'``type``' Metadata
5161^^^^^^^^^^^^^^^^^^^
5162
5163See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005164
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005165'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005166^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005167
5168The ``associated`` metadata may be attached to a global object
5169declaration with a single argument that references another global object.
5170
5171This metadata prevents discarding of the global object in linker GC
5172unless the referenced object is also discarded. The linker support for
5173this feature is spotty. For best compatibility, globals carrying this
5174metadata may also:
5175
5176- Be in a comdat with the referenced global.
5177- Be in @llvm.compiler.used.
5178- Have an explicit section with a name which is a valid C identifier.
5179
5180It does not have any effect on non-ELF targets.
5181
5182Example:
5183
5184.. code-block:: llvm
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005185
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005186 $a = comdat any
5187 @a = global i32 1, comdat $a
5188 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5189 !0 = !{i32* @a}
5190
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005191
Sean Silvab084af42012-12-07 10:36:55 +00005192Module Flags Metadata
5193=====================
5194
5195Information about the module as a whole is difficult to convey to LLVM's
5196subsystems. The LLVM IR isn't sufficient to transmit this information.
5197The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005198this. These flags are in the form of key / value pairs --- much like a
5199dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005200look it up.
5201
5202The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5203Each triplet has the following form:
5204
5205- The first element is a *behavior* flag, which specifies the behavior
5206 when two (or more) modules are merged together, and it encounters two
5207 (or more) metadata with the same ID. The supported behaviors are
5208 described below.
5209- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005210 metadata. Each module may only have one flag entry for each unique ID (not
5211 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005212- The third element is the value of the flag.
5213
5214When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005215``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5216each unique metadata ID string, there will be exactly one entry in the merged
5217modules ``llvm.module.flags`` metadata table, and the value for that entry will
5218be determined by the merge behavior flag, as described below. The only exception
5219is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005220
5221The following behaviors are supported:
5222
5223.. list-table::
5224 :header-rows: 1
5225 :widths: 10 90
5226
5227 * - Value
5228 - Behavior
5229
5230 * - 1
5231 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005232 Emits an error if two values disagree, otherwise the resulting value
5233 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005234
5235 * - 2
5236 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005237 Emits a warning if two values disagree. The result value will be the
5238 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005239
5240 * - 3
5241 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005242 Adds a requirement that another module flag be present and have a
5243 specified value after linking is performed. The value must be a
5244 metadata pair, where the first element of the pair is the ID of the
5245 module flag to be restricted, and the second element of the pair is
5246 the value the module flag should be restricted to. This behavior can
5247 be used to restrict the allowable results (via triggering of an
5248 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005249
5250 * - 4
5251 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005252 Uses the specified value, regardless of the behavior or value of the
5253 other module. If both modules specify **Override**, but the values
5254 differ, an error will be emitted.
5255
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005256 * - 5
5257 - **Append**
5258 Appends the two values, which are required to be metadata nodes.
5259
5260 * - 6
5261 - **AppendUnique**
5262 Appends the two values, which are required to be metadata
5263 nodes. However, duplicate entries in the second list are dropped
5264 during the append operation.
5265
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005266It is an error for a particular unique flag ID to have multiple behaviors,
5267except in the case of **Require** (which adds restrictions on another metadata
5268value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005269
5270An example of module flags:
5271
5272.. code-block:: llvm
5273
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005274 !0 = !{ i32 1, !"foo", i32 1 }
5275 !1 = !{ i32 4, !"bar", i32 37 }
5276 !2 = !{ i32 2, !"qux", i32 42 }
5277 !3 = !{ i32 3, !"qux",
5278 !{
5279 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005280 }
5281 }
5282 !llvm.module.flags = !{ !0, !1, !2, !3 }
5283
5284- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5285 if two or more ``!"foo"`` flags are seen is to emit an error if their
5286 values are not equal.
5287
5288- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5289 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005290 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005291
5292- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5293 behavior if two or more ``!"qux"`` flags are seen is to emit a
5294 warning if their values are not equal.
5295
5296- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5297
5298 ::
5299
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005300 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005301
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005302 The behavior is to emit an error if the ``llvm.module.flags`` does not
5303 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5304 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005305
5306Objective-C Garbage Collection Module Flags Metadata
5307----------------------------------------------------
5308
5309On the Mach-O platform, Objective-C stores metadata about garbage
5310collection in a special section called "image info". The metadata
5311consists of a version number and a bitmask specifying what types of
5312garbage collection are supported (if any) by the file. If two or more
5313modules are linked together their garbage collection metadata needs to
5314be merged rather than appended together.
5315
5316The Objective-C garbage collection module flags metadata consists of the
5317following key-value pairs:
5318
5319.. list-table::
5320 :header-rows: 1
5321 :widths: 30 70
5322
5323 * - Key
5324 - Value
5325
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005326 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005327 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005328
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005329 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005330 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005331 always 0.
5332
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005333 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005334 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005335 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5336 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5337 Objective-C ABI version 2.
5338
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005339 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005340 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005341 not. Valid values are 0, for no garbage collection, and 2, for garbage
5342 collection supported.
5343
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005344 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005345 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005346 If present, its value must be 6. This flag requires that the
5347 ``Objective-C Garbage Collection`` flag have the value 2.
5348
5349Some important flag interactions:
5350
5351- If a module with ``Objective-C Garbage Collection`` set to 0 is
5352 merged with a module with ``Objective-C Garbage Collection`` set to
5353 2, then the resulting module has the
5354 ``Objective-C Garbage Collection`` flag set to 0.
5355- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5356 merged with a module with ``Objective-C GC Only`` set to 6.
5357
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005358Automatic Linker Flags Module Flags Metadata
5359--------------------------------------------
5360
5361Some targets support embedding flags to the linker inside individual object
5362files. Typically this is used in conjunction with language extensions which
5363allow source files to explicitly declare the libraries they depend on, and have
5364these automatically be transmitted to the linker via object files.
5365
5366These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005367using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005368to be ``AppendUnique``, and the value for the key is expected to be a metadata
5369node which should be a list of other metadata nodes, each of which should be a
5370list of metadata strings defining linker options.
5371
5372For example, the following metadata section specifies two separate sets of
5373linker options, presumably to link against ``libz`` and the ``Cocoa``
5374framework::
5375
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005376 !0 = !{ i32 6, !"Linker Options",
5377 !{
5378 !{ !"-lz" },
5379 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005380 !llvm.module.flags = !{ !0 }
5381
5382The metadata encoding as lists of lists of options, as opposed to a collapsed
5383list of options, is chosen so that the IR encoding can use multiple option
5384strings to specify e.g., a single library, while still having that specifier be
5385preserved as an atomic element that can be recognized by a target specific
5386assembly writer or object file emitter.
5387
5388Each individual option is required to be either a valid option for the target's
5389linker, or an option that is reserved by the target specific assembly writer or
5390object file emitter. No other aspect of these options is defined by the IR.
5391
Oliver Stannard5dc29342014-06-20 10:08:11 +00005392C type width Module Flags Metadata
5393----------------------------------
5394
5395The ARM backend emits a section into each generated object file describing the
5396options that it was compiled with (in a compiler-independent way) to prevent
5397linking incompatible objects, and to allow automatic library selection. Some
5398of these options are not visible at the IR level, namely wchar_t width and enum
5399width.
5400
5401To pass this information to the backend, these options are encoded in module
5402flags metadata, using the following key-value pairs:
5403
5404.. list-table::
5405 :header-rows: 1
5406 :widths: 30 70
5407
5408 * - Key
5409 - Value
5410
5411 * - short_wchar
5412 - * 0 --- sizeof(wchar_t) == 4
5413 * 1 --- sizeof(wchar_t) == 2
5414
5415 * - short_enum
5416 - * 0 --- Enums are at least as large as an ``int``.
5417 * 1 --- Enums are stored in the smallest integer type which can
5418 represent all of its values.
5419
5420For example, the following metadata section specifies that the module was
5421compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5422enum is the smallest type which can represent all of its values::
5423
5424 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005425 !0 = !{i32 1, !"short_wchar", i32 1}
5426 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005427
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005428.. _intrinsicglobalvariables:
5429
Sean Silvab084af42012-12-07 10:36:55 +00005430Intrinsic Global Variables
5431==========================
5432
5433LLVM has a number of "magic" global variables that contain data that
5434affect code generation or other IR semantics. These are documented here.
5435All globals of this sort should have a section specified as
5436"``llvm.metadata``". This section and all globals that start with
5437"``llvm.``" are reserved for use by LLVM.
5438
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005439.. _gv_llvmused:
5440
Sean Silvab084af42012-12-07 10:36:55 +00005441The '``llvm.used``' Global Variable
5442-----------------------------------
5443
Rafael Espindola74f2e462013-04-22 14:58:02 +00005444The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005445:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005446pointers to named global variables, functions and aliases which may optionally
5447have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005448use of it is:
5449
5450.. code-block:: llvm
5451
5452 @X = global i8 4
5453 @Y = global i32 123
5454
5455 @llvm.used = appending global [2 x i8*] [
5456 i8* @X,
5457 i8* bitcast (i32* @Y to i8*)
5458 ], section "llvm.metadata"
5459
Rafael Espindola74f2e462013-04-22 14:58:02 +00005460If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5461and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005462symbol that it cannot see (which is why they have to be named). For example, if
5463a variable has internal linkage and no references other than that from the
5464``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5465references from inline asms and other things the compiler cannot "see", and
5466corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005467
5468On some targets, the code generator must emit a directive to the
5469assembler or object file to prevent the assembler and linker from
5470molesting the symbol.
5471
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005472.. _gv_llvmcompilerused:
5473
Sean Silvab084af42012-12-07 10:36:55 +00005474The '``llvm.compiler.used``' Global Variable
5475--------------------------------------------
5476
5477The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5478directive, except that it only prevents the compiler from touching the
5479symbol. On targets that support it, this allows an intelligent linker to
5480optimize references to the symbol without being impeded as it would be
5481by ``@llvm.used``.
5482
5483This is a rare construct that should only be used in rare circumstances,
5484and should not be exposed to source languages.
5485
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005486.. _gv_llvmglobalctors:
5487
Sean Silvab084af42012-12-07 10:36:55 +00005488The '``llvm.global_ctors``' Global Variable
5489-------------------------------------------
5490
5491.. code-block:: llvm
5492
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005493 %0 = type { i32, void ()*, i8* }
5494 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005495
5496The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005497functions, priorities, and an optional associated global or function.
5498The functions referenced by this array will be called in ascending order
5499of priority (i.e. lowest first) when the module is loaded. The order of
5500functions with the same priority is not defined.
5501
5502If the third field is present, non-null, and points to a global variable
5503or function, the initializer function will only run if the associated
5504data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005505
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005506.. _llvmglobaldtors:
5507
Sean Silvab084af42012-12-07 10:36:55 +00005508The '``llvm.global_dtors``' Global Variable
5509-------------------------------------------
5510
5511.. code-block:: llvm
5512
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005513 %0 = type { i32, void ()*, i8* }
5514 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005515
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005516The ``@llvm.global_dtors`` array contains a list of destructor
5517functions, priorities, and an optional associated global or function.
5518The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005519order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005520order of functions with the same priority is not defined.
5521
5522If the third field is present, non-null, and points to a global variable
5523or function, the destructor function will only run if the associated
5524data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005525
5526Instruction Reference
5527=====================
5528
5529The LLVM instruction set consists of several different classifications
5530of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5531instructions <binaryops>`, :ref:`bitwise binary
5532instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5533:ref:`other instructions <otherops>`.
5534
5535.. _terminators:
5536
5537Terminator Instructions
5538-----------------------
5539
5540As mentioned :ref:`previously <functionstructure>`, every basic block in a
5541program ends with a "Terminator" instruction, which indicates which
5542block should be executed after the current block is finished. These
5543terminator instructions typically yield a '``void``' value: they produce
5544control flow, not values (the one exception being the
5545':ref:`invoke <i_invoke>`' instruction).
5546
5547The terminator instructions are: ':ref:`ret <i_ret>`',
5548':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5549':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005550':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005551':ref:`catchret <i_catchret>`',
5552':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005553and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005554
5555.. _i_ret:
5556
5557'``ret``' Instruction
5558^^^^^^^^^^^^^^^^^^^^^
5559
5560Syntax:
5561"""""""
5562
5563::
5564
5565 ret <type> <value> ; Return a value from a non-void function
5566 ret void ; Return from void function
5567
5568Overview:
5569"""""""""
5570
5571The '``ret``' instruction is used to return control flow (and optionally
5572a value) from a function back to the caller.
5573
5574There are two forms of the '``ret``' instruction: one that returns a
5575value and then causes control flow, and one that just causes control
5576flow to occur.
5577
5578Arguments:
5579""""""""""
5580
5581The '``ret``' instruction optionally accepts a single argument, the
5582return value. The type of the return value must be a ':ref:`first
5583class <t_firstclass>`' type.
5584
5585A function is not :ref:`well formed <wellformed>` if it it has a non-void
5586return type and contains a '``ret``' instruction with no return value or
5587a return value with a type that does not match its type, or if it has a
5588void return type and contains a '``ret``' instruction with a return
5589value.
5590
5591Semantics:
5592""""""""""
5593
5594When the '``ret``' instruction is executed, control flow returns back to
5595the calling function's context. If the caller is a
5596":ref:`call <i_call>`" instruction, execution continues at the
5597instruction after the call. If the caller was an
5598":ref:`invoke <i_invoke>`" instruction, execution continues at the
5599beginning of the "normal" destination block. If the instruction returns
5600a value, that value shall set the call or invoke instruction's return
5601value.
5602
5603Example:
5604""""""""
5605
5606.. code-block:: llvm
5607
5608 ret i32 5 ; Return an integer value of 5
5609 ret void ; Return from a void function
5610 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5611
5612.. _i_br:
5613
5614'``br``' Instruction
5615^^^^^^^^^^^^^^^^^^^^
5616
5617Syntax:
5618"""""""
5619
5620::
5621
5622 br i1 <cond>, label <iftrue>, label <iffalse>
5623 br label <dest> ; Unconditional branch
5624
5625Overview:
5626"""""""""
5627
5628The '``br``' instruction is used to cause control flow to transfer to a
5629different basic block in the current function. There are two forms of
5630this instruction, corresponding to a conditional branch and an
5631unconditional branch.
5632
5633Arguments:
5634""""""""""
5635
5636The conditional branch form of the '``br``' instruction takes a single
5637'``i1``' value and two '``label``' values. The unconditional form of the
5638'``br``' instruction takes a single '``label``' value as a target.
5639
5640Semantics:
5641""""""""""
5642
5643Upon execution of a conditional '``br``' instruction, the '``i1``'
5644argument is evaluated. If the value is ``true``, control flows to the
5645'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5646to the '``iffalse``' ``label`` argument.
5647
5648Example:
5649""""""""
5650
5651.. code-block:: llvm
5652
5653 Test:
5654 %cond = icmp eq i32 %a, %b
5655 br i1 %cond, label %IfEqual, label %IfUnequal
5656 IfEqual:
5657 ret i32 1
5658 IfUnequal:
5659 ret i32 0
5660
5661.. _i_switch:
5662
5663'``switch``' Instruction
5664^^^^^^^^^^^^^^^^^^^^^^^^
5665
5666Syntax:
5667"""""""
5668
5669::
5670
5671 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5672
5673Overview:
5674"""""""""
5675
5676The '``switch``' instruction is used to transfer control flow to one of
5677several different places. It is a generalization of the '``br``'
5678instruction, allowing a branch to occur to one of many possible
5679destinations.
5680
5681Arguments:
5682""""""""""
5683
5684The '``switch``' instruction uses three parameters: an integer
5685comparison value '``value``', a default '``label``' destination, and an
5686array of pairs of comparison value constants and '``label``'s. The table
5687is not allowed to contain duplicate constant entries.
5688
5689Semantics:
5690""""""""""
5691
5692The ``switch`` instruction specifies a table of values and destinations.
5693When the '``switch``' instruction is executed, this table is searched
5694for the given value. If the value is found, control flow is transferred
5695to the corresponding destination; otherwise, control flow is transferred
5696to the default destination.
5697
5698Implementation:
5699"""""""""""""""
5700
5701Depending on properties of the target machine and the particular
5702``switch`` instruction, this instruction may be code generated in
5703different ways. For example, it could be generated as a series of
5704chained conditional branches or with a lookup table.
5705
5706Example:
5707""""""""
5708
5709.. code-block:: llvm
5710
5711 ; Emulate a conditional br instruction
5712 %Val = zext i1 %value to i32
5713 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5714
5715 ; Emulate an unconditional br instruction
5716 switch i32 0, label %dest [ ]
5717
5718 ; Implement a jump table:
5719 switch i32 %val, label %otherwise [ i32 0, label %onzero
5720 i32 1, label %onone
5721 i32 2, label %ontwo ]
5722
5723.. _i_indirectbr:
5724
5725'``indirectbr``' Instruction
5726^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5727
5728Syntax:
5729"""""""
5730
5731::
5732
5733 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5734
5735Overview:
5736"""""""""
5737
5738The '``indirectbr``' instruction implements an indirect branch to a
5739label within the current function, whose address is specified by
5740"``address``". Address must be derived from a
5741:ref:`blockaddress <blockaddress>` constant.
5742
5743Arguments:
5744""""""""""
5745
5746The '``address``' argument is the address of the label to jump to. The
5747rest of the arguments indicate the full set of possible destinations
5748that the address may point to. Blocks are allowed to occur multiple
5749times in the destination list, though this isn't particularly useful.
5750
5751This destination list is required so that dataflow analysis has an
5752accurate understanding of the CFG.
5753
5754Semantics:
5755""""""""""
5756
5757Control transfers to the block specified in the address argument. All
5758possible destination blocks must be listed in the label list, otherwise
5759this instruction has undefined behavior. This implies that jumps to
5760labels defined in other functions have undefined behavior as well.
5761
5762Implementation:
5763"""""""""""""""
5764
5765This is typically implemented with a jump through a register.
5766
5767Example:
5768""""""""
5769
5770.. code-block:: llvm
5771
5772 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5773
5774.. _i_invoke:
5775
5776'``invoke``' Instruction
5777^^^^^^^^^^^^^^^^^^^^^^^^
5778
5779Syntax:
5780"""""""
5781
5782::
5783
David Blaikieb83cf102016-07-13 17:21:34 +00005784 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005785 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005786
5787Overview:
5788"""""""""
5789
5790The '``invoke``' instruction causes control to transfer to a specified
5791function, with the possibility of control flow transfer to either the
5792'``normal``' label or the '``exception``' label. If the callee function
5793returns with the "``ret``" instruction, control flow will return to the
5794"normal" label. If the callee (or any indirect callees) returns via the
5795":ref:`resume <i_resume>`" instruction or other exception handling
5796mechanism, control is interrupted and continued at the dynamically
5797nearest "exception" label.
5798
5799The '``exception``' label is a `landing
5800pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5801'``exception``' label is required to have the
5802":ref:`landingpad <i_landingpad>`" instruction, which contains the
5803information about the behavior of the program after unwinding happens,
5804as its first non-PHI instruction. The restrictions on the
5805"``landingpad``" instruction's tightly couples it to the "``invoke``"
5806instruction, so that the important information contained within the
5807"``landingpad``" instruction can't be lost through normal code motion.
5808
5809Arguments:
5810""""""""""
5811
5812This instruction requires several arguments:
5813
5814#. The optional "cconv" marker indicates which :ref:`calling
5815 convention <callingconv>` the call should use. If none is
5816 specified, the call defaults to using C calling conventions.
5817#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5818 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5819 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005820#. '``ty``': the type of the call instruction itself which is also the
5821 type of the return value. Functions that return no value are marked
5822 ``void``.
5823#. '``fnty``': shall be the signature of the function being invoked. The
5824 argument types must match the types implied by this signature. This
5825 type can be omitted if the function is not varargs.
5826#. '``fnptrval``': An LLVM value containing a pointer to a function to
5827 be invoked. In most cases, this is a direct function invocation, but
5828 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5829 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005830#. '``function args``': argument list whose types match the function
5831 signature argument types and parameter attributes. All arguments must
5832 be of :ref:`first class <t_firstclass>` type. If the function signature
5833 indicates the function accepts a variable number of arguments, the
5834 extra arguments can be specified.
5835#. '``normal label``': the label reached when the called function
5836 executes a '``ret``' instruction.
5837#. '``exception label``': the label reached when a callee returns via
5838 the :ref:`resume <i_resume>` instruction or other exception handling
5839 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00005840#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005841#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005842
5843Semantics:
5844""""""""""
5845
5846This instruction is designed to operate as a standard '``call``'
5847instruction in most regards. The primary difference is that it
5848establishes an association with a label, which is used by the runtime
5849library to unwind the stack.
5850
5851This instruction is used in languages with destructors to ensure that
5852proper cleanup is performed in the case of either a ``longjmp`` or a
5853thrown exception. Additionally, this is important for implementation of
5854'``catch``' clauses in high-level languages that support them.
5855
5856For the purposes of the SSA form, the definition of the value returned
5857by the '``invoke``' instruction is deemed to occur on the edge from the
5858current block to the "normal" label. If the callee unwinds then no
5859return value is available.
5860
5861Example:
5862""""""""
5863
5864.. code-block:: llvm
5865
5866 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005867 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005868 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005869 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005870
5871.. _i_resume:
5872
5873'``resume``' Instruction
5874^^^^^^^^^^^^^^^^^^^^^^^^
5875
5876Syntax:
5877"""""""
5878
5879::
5880
5881 resume <type> <value>
5882
5883Overview:
5884"""""""""
5885
5886The '``resume``' instruction is a terminator instruction that has no
5887successors.
5888
5889Arguments:
5890""""""""""
5891
5892The '``resume``' instruction requires one argument, which must have the
5893same type as the result of any '``landingpad``' instruction in the same
5894function.
5895
5896Semantics:
5897""""""""""
5898
5899The '``resume``' instruction resumes propagation of an existing
5900(in-flight) exception whose unwinding was interrupted with a
5901:ref:`landingpad <i_landingpad>` instruction.
5902
5903Example:
5904""""""""
5905
5906.. code-block:: llvm
5907
5908 resume { i8*, i32 } %exn
5909
David Majnemer8a1c45d2015-12-12 05:38:55 +00005910.. _i_catchswitch:
5911
5912'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005913^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005914
5915Syntax:
5916"""""""
5917
5918::
5919
5920 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5921 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5922
5923Overview:
5924"""""""""
5925
5926The '``catchswitch``' instruction is used by `LLVM's exception handling system
5927<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5928that may be executed by the :ref:`EH personality routine <personalityfn>`.
5929
5930Arguments:
5931""""""""""
5932
5933The ``parent`` argument is the token of the funclet that contains the
5934``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5935this operand may be the token ``none``.
5936
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005937The ``default`` argument is the label of another basic block beginning with
5938either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5939must be a legal target with respect to the ``parent`` links, as described in
5940the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005941
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005942The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005943:ref:`catchpad <i_catchpad>` instruction.
5944
5945Semantics:
5946""""""""""
5947
5948Executing this instruction transfers control to one of the successors in
5949``handlers``, if appropriate, or continues to unwind via the unwind label if
5950present.
5951
5952The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5953it must be both the first non-phi instruction and last instruction in the basic
5954block. Therefore, it must be the only non-phi instruction in the block.
5955
5956Example:
5957""""""""
5958
Renato Golin124f2592016-07-20 12:16:38 +00005959.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005960
5961 dispatch1:
5962 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5963 dispatch2:
5964 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5965
David Majnemer654e1302015-07-31 17:58:14 +00005966.. _i_catchret:
5967
5968'``catchret``' Instruction
5969^^^^^^^^^^^^^^^^^^^^^^^^^^
5970
5971Syntax:
5972"""""""
5973
5974::
5975
David Majnemer8a1c45d2015-12-12 05:38:55 +00005976 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005977
5978Overview:
5979"""""""""
5980
5981The '``catchret``' instruction is a terminator instruction that has a
5982single successor.
5983
5984
5985Arguments:
5986""""""""""
5987
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005988The first argument to a '``catchret``' indicates which ``catchpad`` it
5989exits. It must be a :ref:`catchpad <i_catchpad>`.
5990The second argument to a '``catchret``' specifies where control will
5991transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005992
5993Semantics:
5994""""""""""
5995
David Majnemer8a1c45d2015-12-12 05:38:55 +00005996The '``catchret``' instruction ends an existing (in-flight) exception whose
5997unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5998:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5999code to, for example, destroy the active exception. Control then transfers to
6000``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006001
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006002The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6003If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6004funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6005the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006006
6007Example:
6008""""""""
6009
Renato Golin124f2592016-07-20 12:16:38 +00006010.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006011
David Majnemer8a1c45d2015-12-12 05:38:55 +00006012 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006013
David Majnemer654e1302015-07-31 17:58:14 +00006014.. _i_cleanupret:
6015
6016'``cleanupret``' Instruction
6017^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6018
6019Syntax:
6020"""""""
6021
6022::
6023
David Majnemer8a1c45d2015-12-12 05:38:55 +00006024 cleanupret from <value> unwind label <continue>
6025 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006026
6027Overview:
6028"""""""""
6029
6030The '``cleanupret``' instruction is a terminator instruction that has
6031an optional successor.
6032
6033
6034Arguments:
6035""""""""""
6036
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006037The '``cleanupret``' instruction requires one argument, which indicates
6038which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006039If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6040funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6041the ``cleanupret``'s behavior is undefined.
6042
6043The '``cleanupret``' instruction also has an optional successor, ``continue``,
6044which must be the label of another basic block beginning with either a
6045``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6046be a legal target with respect to the ``parent`` links, as described in the
6047`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006048
6049Semantics:
6050""""""""""
6051
6052The '``cleanupret``' instruction indicates to the
6053:ref:`personality function <personalityfn>` that one
6054:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6055It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006056
David Majnemer654e1302015-07-31 17:58:14 +00006057Example:
6058""""""""
6059
Renato Golin124f2592016-07-20 12:16:38 +00006060.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006061
David Majnemer8a1c45d2015-12-12 05:38:55 +00006062 cleanupret from %cleanup unwind to caller
6063 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006064
Sean Silvab084af42012-12-07 10:36:55 +00006065.. _i_unreachable:
6066
6067'``unreachable``' Instruction
6068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6069
6070Syntax:
6071"""""""
6072
6073::
6074
6075 unreachable
6076
6077Overview:
6078"""""""""
6079
6080The '``unreachable``' instruction has no defined semantics. This
6081instruction is used to inform the optimizer that a particular portion of
6082the code is not reachable. This can be used to indicate that the code
6083after a no-return function cannot be reached, and other facts.
6084
6085Semantics:
6086""""""""""
6087
6088The '``unreachable``' instruction has no defined semantics.
6089
6090.. _binaryops:
6091
6092Binary Operations
6093-----------------
6094
6095Binary operators are used to do most of the computation in a program.
6096They require two operands of the same type, execute an operation on
6097them, and produce a single value. The operands might represent multiple
6098data, as is the case with the :ref:`vector <t_vector>` data type. The
6099result value has the same type as its operands.
6100
6101There are several different binary operators:
6102
6103.. _i_add:
6104
6105'``add``' Instruction
6106^^^^^^^^^^^^^^^^^^^^^
6107
6108Syntax:
6109"""""""
6110
6111::
6112
Tim Northover675a0962014-06-13 14:24:23 +00006113 <result> = add <ty> <op1>, <op2> ; yields ty:result
6114 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6115 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6116 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006117
6118Overview:
6119"""""""""
6120
6121The '``add``' instruction returns the sum of its two operands.
6122
6123Arguments:
6124""""""""""
6125
6126The two arguments to the '``add``' instruction must be
6127:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6128arguments must have identical types.
6129
6130Semantics:
6131""""""""""
6132
6133The value produced is the integer sum of the two operands.
6134
6135If the sum has unsigned overflow, the result returned is the
6136mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6137the result.
6138
6139Because LLVM integers use a two's complement representation, this
6140instruction is appropriate for both signed and unsigned integers.
6141
6142``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6143respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6144result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6145unsigned and/or signed overflow, respectively, occurs.
6146
6147Example:
6148""""""""
6149
Renato Golin124f2592016-07-20 12:16:38 +00006150.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006151
Tim Northover675a0962014-06-13 14:24:23 +00006152 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006153
6154.. _i_fadd:
6155
6156'``fadd``' Instruction
6157^^^^^^^^^^^^^^^^^^^^^^
6158
6159Syntax:
6160"""""""
6161
6162::
6163
Tim Northover675a0962014-06-13 14:24:23 +00006164 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006165
6166Overview:
6167"""""""""
6168
6169The '``fadd``' instruction returns the sum of its two operands.
6170
6171Arguments:
6172""""""""""
6173
6174The two arguments to the '``fadd``' instruction must be :ref:`floating
6175point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6176Both arguments must have identical types.
6177
6178Semantics:
6179""""""""""
6180
6181The value produced is the floating point sum of the two operands. This
6182instruction can also take any number of :ref:`fast-math flags <fastmath>`,
6183which are optimization hints to enable otherwise unsafe floating point
6184optimizations:
6185
6186Example:
6187""""""""
6188
Renato Golin124f2592016-07-20 12:16:38 +00006189.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006190
Tim Northover675a0962014-06-13 14:24:23 +00006191 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006192
6193'``sub``' Instruction
6194^^^^^^^^^^^^^^^^^^^^^
6195
6196Syntax:
6197"""""""
6198
6199::
6200
Tim Northover675a0962014-06-13 14:24:23 +00006201 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6202 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6203 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6204 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006205
6206Overview:
6207"""""""""
6208
6209The '``sub``' instruction returns the difference of its two operands.
6210
6211Note that the '``sub``' instruction is used to represent the '``neg``'
6212instruction present in most other intermediate representations.
6213
6214Arguments:
6215""""""""""
6216
6217The two arguments to the '``sub``' instruction must be
6218:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6219arguments must have identical types.
6220
6221Semantics:
6222""""""""""
6223
6224The value produced is the integer difference of the two operands.
6225
6226If the difference has unsigned overflow, the result returned is the
6227mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6228the result.
6229
6230Because LLVM integers use a two's complement representation, this
6231instruction is appropriate for both signed and unsigned integers.
6232
6233``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6234respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6235result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6236unsigned and/or signed overflow, respectively, occurs.
6237
6238Example:
6239""""""""
6240
Renato Golin124f2592016-07-20 12:16:38 +00006241.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006242
Tim Northover675a0962014-06-13 14:24:23 +00006243 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6244 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006245
6246.. _i_fsub:
6247
6248'``fsub``' Instruction
6249^^^^^^^^^^^^^^^^^^^^^^
6250
6251Syntax:
6252"""""""
6253
6254::
6255
Tim Northover675a0962014-06-13 14:24:23 +00006256 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006257
6258Overview:
6259"""""""""
6260
6261The '``fsub``' instruction returns the difference of its two operands.
6262
6263Note that the '``fsub``' instruction is used to represent the '``fneg``'
6264instruction present in most other intermediate representations.
6265
6266Arguments:
6267""""""""""
6268
6269The two arguments to the '``fsub``' instruction must be :ref:`floating
6270point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6271Both arguments must have identical types.
6272
6273Semantics:
6274""""""""""
6275
6276The value produced is the floating point difference of the two operands.
6277This instruction can also take any number of :ref:`fast-math
6278flags <fastmath>`, which are optimization hints to enable otherwise
6279unsafe floating point optimizations:
6280
6281Example:
6282""""""""
6283
Renato Golin124f2592016-07-20 12:16:38 +00006284.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006285
Tim Northover675a0962014-06-13 14:24:23 +00006286 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6287 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006288
6289'``mul``' Instruction
6290^^^^^^^^^^^^^^^^^^^^^
6291
6292Syntax:
6293"""""""
6294
6295::
6296
Tim Northover675a0962014-06-13 14:24:23 +00006297 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6298 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6299 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6300 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006301
6302Overview:
6303"""""""""
6304
6305The '``mul``' instruction returns the product of its two operands.
6306
6307Arguments:
6308""""""""""
6309
6310The two arguments to the '``mul``' instruction must be
6311:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6312arguments must have identical types.
6313
6314Semantics:
6315""""""""""
6316
6317The value produced is the integer product of the two operands.
6318
6319If the result of the multiplication has unsigned overflow, the result
6320returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6321bit width of the result.
6322
6323Because LLVM integers use a two's complement representation, and the
6324result is the same width as the operands, this instruction returns the
6325correct result for both signed and unsigned integers. If a full product
6326(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6327sign-extended or zero-extended as appropriate to the width of the full
6328product.
6329
6330``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6331respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6332result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6333unsigned and/or signed overflow, respectively, occurs.
6334
6335Example:
6336""""""""
6337
Renato Golin124f2592016-07-20 12:16:38 +00006338.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006339
Tim Northover675a0962014-06-13 14:24:23 +00006340 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006341
6342.. _i_fmul:
6343
6344'``fmul``' Instruction
6345^^^^^^^^^^^^^^^^^^^^^^
6346
6347Syntax:
6348"""""""
6349
6350::
6351
Tim Northover675a0962014-06-13 14:24:23 +00006352 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006353
6354Overview:
6355"""""""""
6356
6357The '``fmul``' instruction returns the product of its two operands.
6358
6359Arguments:
6360""""""""""
6361
6362The two arguments to the '``fmul``' instruction must be :ref:`floating
6363point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6364Both arguments must have identical types.
6365
6366Semantics:
6367""""""""""
6368
6369The value produced is the floating point product of the two operands.
6370This instruction can also take any number of :ref:`fast-math
6371flags <fastmath>`, which are optimization hints to enable otherwise
6372unsafe floating point optimizations:
6373
6374Example:
6375""""""""
6376
Renato Golin124f2592016-07-20 12:16:38 +00006377.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006378
Tim Northover675a0962014-06-13 14:24:23 +00006379 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006380
6381'``udiv``' Instruction
6382^^^^^^^^^^^^^^^^^^^^^^
6383
6384Syntax:
6385"""""""
6386
6387::
6388
Tim Northover675a0962014-06-13 14:24:23 +00006389 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6390 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006391
6392Overview:
6393"""""""""
6394
6395The '``udiv``' instruction returns the quotient of its two operands.
6396
6397Arguments:
6398""""""""""
6399
6400The two arguments to the '``udiv``' instruction must be
6401:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6402arguments must have identical types.
6403
6404Semantics:
6405""""""""""
6406
6407The value produced is the unsigned integer quotient of the two operands.
6408
6409Note that unsigned integer division and signed integer division are
6410distinct operations; for signed integer division, use '``sdiv``'.
6411
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006412Division by zero is undefined behavior. For vectors, if any element
6413of the divisor is zero, the operation has undefined behavior.
6414
Sean Silvab084af42012-12-07 10:36:55 +00006415
6416If the ``exact`` keyword is present, the result value of the ``udiv`` is
6417a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6418such, "((a udiv exact b) mul b) == a").
6419
6420Example:
6421""""""""
6422
Renato Golin124f2592016-07-20 12:16:38 +00006423.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006424
Tim Northover675a0962014-06-13 14:24:23 +00006425 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006426
6427'``sdiv``' Instruction
6428^^^^^^^^^^^^^^^^^^^^^^
6429
6430Syntax:
6431"""""""
6432
6433::
6434
Tim Northover675a0962014-06-13 14:24:23 +00006435 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6436 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006437
6438Overview:
6439"""""""""
6440
6441The '``sdiv``' instruction returns the quotient of its two operands.
6442
6443Arguments:
6444""""""""""
6445
6446The two arguments to the '``sdiv``' instruction must be
6447:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6448arguments must have identical types.
6449
6450Semantics:
6451""""""""""
6452
6453The value produced is the signed integer quotient of the two operands
6454rounded towards zero.
6455
6456Note that signed integer division and unsigned integer division are
6457distinct operations; for unsigned integer division, use '``udiv``'.
6458
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006459Division by zero is undefined behavior. For vectors, if any element
6460of the divisor is zero, the operation has undefined behavior.
6461Overflow also leads to undefined behavior; this is a rare case, but can
6462occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00006463
6464If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6465a :ref:`poison value <poisonvalues>` if the result would be rounded.
6466
6467Example:
6468""""""""
6469
Renato Golin124f2592016-07-20 12:16:38 +00006470.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006471
Tim Northover675a0962014-06-13 14:24:23 +00006472 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006473
6474.. _i_fdiv:
6475
6476'``fdiv``' Instruction
6477^^^^^^^^^^^^^^^^^^^^^^
6478
6479Syntax:
6480"""""""
6481
6482::
6483
Tim Northover675a0962014-06-13 14:24:23 +00006484 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006485
6486Overview:
6487"""""""""
6488
6489The '``fdiv``' instruction returns the quotient of its two operands.
6490
6491Arguments:
6492""""""""""
6493
6494The two arguments to the '``fdiv``' instruction must be :ref:`floating
6495point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6496Both arguments must have identical types.
6497
6498Semantics:
6499""""""""""
6500
6501The value produced is the floating point quotient of the two operands.
6502This instruction can also take any number of :ref:`fast-math
6503flags <fastmath>`, which are optimization hints to enable otherwise
6504unsafe floating point optimizations:
6505
6506Example:
6507""""""""
6508
Renato Golin124f2592016-07-20 12:16:38 +00006509.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006510
Tim Northover675a0962014-06-13 14:24:23 +00006511 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006512
6513'``urem``' Instruction
6514^^^^^^^^^^^^^^^^^^^^^^
6515
6516Syntax:
6517"""""""
6518
6519::
6520
Tim Northover675a0962014-06-13 14:24:23 +00006521 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006522
6523Overview:
6524"""""""""
6525
6526The '``urem``' instruction returns the remainder from the unsigned
6527division of its two arguments.
6528
6529Arguments:
6530""""""""""
6531
6532The two arguments to the '``urem``' instruction must be
6533:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6534arguments must have identical types.
6535
6536Semantics:
6537""""""""""
6538
6539This instruction returns the unsigned integer *remainder* of a division.
6540This instruction always performs an unsigned division to get the
6541remainder.
6542
6543Note that unsigned integer remainder and signed integer remainder are
6544distinct operations; for signed integer remainder, use '``srem``'.
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006545
6546Taking the remainder of a division by zero is undefined behavior.
6547For vectors, if any element of the divisor is zero, the operation has
6548undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006549
6550Example:
6551""""""""
6552
Renato Golin124f2592016-07-20 12:16:38 +00006553.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006554
Tim Northover675a0962014-06-13 14:24:23 +00006555 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006556
6557'``srem``' Instruction
6558^^^^^^^^^^^^^^^^^^^^^^
6559
6560Syntax:
6561"""""""
6562
6563::
6564
Tim Northover675a0962014-06-13 14:24:23 +00006565 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006566
6567Overview:
6568"""""""""
6569
6570The '``srem``' instruction returns the remainder from the signed
6571division of its two operands. This instruction can also take
6572:ref:`vector <t_vector>` versions of the values in which case the elements
6573must be integers.
6574
6575Arguments:
6576""""""""""
6577
6578The two arguments to the '``srem``' instruction must be
6579:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6580arguments must have identical types.
6581
6582Semantics:
6583""""""""""
6584
6585This instruction returns the *remainder* of a division (where the result
6586is either zero or has the same sign as the dividend, ``op1``), not the
6587*modulo* operator (where the result is either zero or has the same sign
6588as the divisor, ``op2``) of a value. For more information about the
6589difference, see `The Math
6590Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6591table of how this is implemented in various languages, please see
6592`Wikipedia: modulo
6593operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6594
6595Note that signed integer remainder and unsigned integer remainder are
6596distinct operations; for unsigned integer remainder, use '``urem``'.
6597
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006598Taking the remainder of a division by zero is undefined behavior.
6599For vectors, if any element of the divisor is zero, the operation has
6600undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006601Overflow also leads to undefined behavior; this is a rare case, but can
6602occur, for example, by taking the remainder of a 32-bit division of
6603-2147483648 by -1. (The remainder doesn't actually overflow, but this
6604rule lets srem be implemented using instructions that return both the
6605result of the division and the remainder.)
6606
6607Example:
6608""""""""
6609
Renato Golin124f2592016-07-20 12:16:38 +00006610.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006611
Tim Northover675a0962014-06-13 14:24:23 +00006612 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006613
6614.. _i_frem:
6615
6616'``frem``' Instruction
6617^^^^^^^^^^^^^^^^^^^^^^
6618
6619Syntax:
6620"""""""
6621
6622::
6623
Tim Northover675a0962014-06-13 14:24:23 +00006624 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006625
6626Overview:
6627"""""""""
6628
6629The '``frem``' instruction returns the remainder from the division of
6630its two operands.
6631
6632Arguments:
6633""""""""""
6634
6635The two arguments to the '``frem``' instruction must be :ref:`floating
6636point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6637Both arguments must have identical types.
6638
6639Semantics:
6640""""""""""
6641
6642This instruction returns the *remainder* of a division. The remainder
6643has the same sign as the dividend. This instruction can also take any
6644number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6645to enable otherwise unsafe floating point optimizations:
6646
6647Example:
6648""""""""
6649
Renato Golin124f2592016-07-20 12:16:38 +00006650.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006651
Tim Northover675a0962014-06-13 14:24:23 +00006652 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006653
6654.. _bitwiseops:
6655
6656Bitwise Binary Operations
6657-------------------------
6658
6659Bitwise binary operators are used to do various forms of bit-twiddling
6660in a program. They are generally very efficient instructions and can
6661commonly be strength reduced from other instructions. They require two
6662operands of the same type, execute an operation on them, and produce a
6663single value. The resulting value is the same type as its operands.
6664
6665'``shl``' Instruction
6666^^^^^^^^^^^^^^^^^^^^^
6667
6668Syntax:
6669"""""""
6670
6671::
6672
Tim Northover675a0962014-06-13 14:24:23 +00006673 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6674 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6675 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6676 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006677
6678Overview:
6679"""""""""
6680
6681The '``shl``' instruction returns the first operand shifted to the left
6682a specified number of bits.
6683
6684Arguments:
6685""""""""""
6686
6687Both arguments to the '``shl``' instruction must be the same
6688:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6689'``op2``' is treated as an unsigned value.
6690
6691Semantics:
6692""""""""""
6693
6694The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6695where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006696dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006697``op1``, the result is undefined. If the arguments are vectors, each
6698vector element of ``op1`` is shifted by the corresponding shift amount
6699in ``op2``.
6700
6701If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6702value <poisonvalues>` if it shifts out any non-zero bits. If the
6703``nsw`` keyword is present, then the shift produces a :ref:`poison
6704value <poisonvalues>` if it shifts out any bits that disagree with the
Sanjoy Dasdbc58d02016-11-13 23:40:40 +00006705resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006706
6707Example:
6708""""""""
6709
Renato Golin124f2592016-07-20 12:16:38 +00006710.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006711
Tim Northover675a0962014-06-13 14:24:23 +00006712 <result> = shl i32 4, %var ; yields i32: 4 << %var
6713 <result> = shl i32 4, 2 ; yields i32: 16
6714 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006715 <result> = shl i32 1, 32 ; undefined
6716 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6717
6718'``lshr``' Instruction
6719^^^^^^^^^^^^^^^^^^^^^^
6720
6721Syntax:
6722"""""""
6723
6724::
6725
Tim Northover675a0962014-06-13 14:24:23 +00006726 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6727 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006728
6729Overview:
6730"""""""""
6731
6732The '``lshr``' instruction (logical shift right) returns the first
6733operand shifted to the right a specified number of bits with zero fill.
6734
6735Arguments:
6736""""""""""
6737
6738Both arguments to the '``lshr``' instruction must be the same
6739:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6740'``op2``' is treated as an unsigned value.
6741
6742Semantics:
6743""""""""""
6744
6745This instruction always performs a logical shift right operation. The
6746most significant bits of the result will be filled with zero bits after
6747the shift. If ``op2`` is (statically or dynamically) equal to or larger
6748than the number of bits in ``op1``, the result is undefined. If the
6749arguments are vectors, each vector element of ``op1`` is shifted by the
6750corresponding shift amount in ``op2``.
6751
6752If the ``exact`` keyword is present, the result value of the ``lshr`` is
6753a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6754non-zero.
6755
6756Example:
6757""""""""
6758
Renato Golin124f2592016-07-20 12:16:38 +00006759.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006760
Tim Northover675a0962014-06-13 14:24:23 +00006761 <result> = lshr i32 4, 1 ; yields i32:result = 2
6762 <result> = lshr i32 4, 2 ; yields i32:result = 1
6763 <result> = lshr i8 4, 3 ; yields i8:result = 0
6764 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006765 <result> = lshr i32 1, 32 ; undefined
6766 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6767
6768'``ashr``' Instruction
6769^^^^^^^^^^^^^^^^^^^^^^
6770
6771Syntax:
6772"""""""
6773
6774::
6775
Tim Northover675a0962014-06-13 14:24:23 +00006776 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6777 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006778
6779Overview:
6780"""""""""
6781
6782The '``ashr``' instruction (arithmetic shift right) returns the first
6783operand shifted to the right a specified number of bits with sign
6784extension.
6785
6786Arguments:
6787""""""""""
6788
6789Both arguments to the '``ashr``' instruction must be the same
6790:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6791'``op2``' is treated as an unsigned value.
6792
6793Semantics:
6794""""""""""
6795
6796This instruction always performs an arithmetic shift right operation,
6797The most significant bits of the result will be filled with the sign bit
6798of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6799than the number of bits in ``op1``, the result is undefined. If the
6800arguments are vectors, each vector element of ``op1`` is shifted by the
6801corresponding shift amount in ``op2``.
6802
6803If the ``exact`` keyword is present, the result value of the ``ashr`` is
6804a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6805non-zero.
6806
6807Example:
6808""""""""
6809
Renato Golin124f2592016-07-20 12:16:38 +00006810.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006811
Tim Northover675a0962014-06-13 14:24:23 +00006812 <result> = ashr i32 4, 1 ; yields i32:result = 2
6813 <result> = ashr i32 4, 2 ; yields i32:result = 1
6814 <result> = ashr i8 4, 3 ; yields i8:result = 0
6815 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006816 <result> = ashr i32 1, 32 ; undefined
6817 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6818
6819'``and``' Instruction
6820^^^^^^^^^^^^^^^^^^^^^
6821
6822Syntax:
6823"""""""
6824
6825::
6826
Tim Northover675a0962014-06-13 14:24:23 +00006827 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006828
6829Overview:
6830"""""""""
6831
6832The '``and``' instruction returns the bitwise logical and of its two
6833operands.
6834
6835Arguments:
6836""""""""""
6837
6838The two arguments to the '``and``' instruction must be
6839:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6840arguments must have identical types.
6841
6842Semantics:
6843""""""""""
6844
6845The truth table used for the '``and``' instruction is:
6846
6847+-----+-----+-----+
6848| In0 | In1 | Out |
6849+-----+-----+-----+
6850| 0 | 0 | 0 |
6851+-----+-----+-----+
6852| 0 | 1 | 0 |
6853+-----+-----+-----+
6854| 1 | 0 | 0 |
6855+-----+-----+-----+
6856| 1 | 1 | 1 |
6857+-----+-----+-----+
6858
6859Example:
6860""""""""
6861
Renato Golin124f2592016-07-20 12:16:38 +00006862.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006863
Tim Northover675a0962014-06-13 14:24:23 +00006864 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6865 <result> = and i32 15, 40 ; yields i32:result = 8
6866 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006867
6868'``or``' Instruction
6869^^^^^^^^^^^^^^^^^^^^
6870
6871Syntax:
6872"""""""
6873
6874::
6875
Tim Northover675a0962014-06-13 14:24:23 +00006876 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006877
6878Overview:
6879"""""""""
6880
6881The '``or``' instruction returns the bitwise logical inclusive or of its
6882two operands.
6883
6884Arguments:
6885""""""""""
6886
6887The two arguments to the '``or``' instruction must be
6888:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6889arguments must have identical types.
6890
6891Semantics:
6892""""""""""
6893
6894The truth table used for the '``or``' instruction is:
6895
6896+-----+-----+-----+
6897| In0 | In1 | Out |
6898+-----+-----+-----+
6899| 0 | 0 | 0 |
6900+-----+-----+-----+
6901| 0 | 1 | 1 |
6902+-----+-----+-----+
6903| 1 | 0 | 1 |
6904+-----+-----+-----+
6905| 1 | 1 | 1 |
6906+-----+-----+-----+
6907
6908Example:
6909""""""""
6910
6911::
6912
Tim Northover675a0962014-06-13 14:24:23 +00006913 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6914 <result> = or i32 15, 40 ; yields i32:result = 47
6915 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006916
6917'``xor``' Instruction
6918^^^^^^^^^^^^^^^^^^^^^
6919
6920Syntax:
6921"""""""
6922
6923::
6924
Tim Northover675a0962014-06-13 14:24:23 +00006925 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006926
6927Overview:
6928"""""""""
6929
6930The '``xor``' instruction returns the bitwise logical exclusive or of
6931its two operands. The ``xor`` is used to implement the "one's
6932complement" operation, which is the "~" operator in C.
6933
6934Arguments:
6935""""""""""
6936
6937The two arguments to the '``xor``' instruction must be
6938:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6939arguments must have identical types.
6940
6941Semantics:
6942""""""""""
6943
6944The truth table used for the '``xor``' instruction is:
6945
6946+-----+-----+-----+
6947| In0 | In1 | Out |
6948+-----+-----+-----+
6949| 0 | 0 | 0 |
6950+-----+-----+-----+
6951| 0 | 1 | 1 |
6952+-----+-----+-----+
6953| 1 | 0 | 1 |
6954+-----+-----+-----+
6955| 1 | 1 | 0 |
6956+-----+-----+-----+
6957
6958Example:
6959""""""""
6960
Renato Golin124f2592016-07-20 12:16:38 +00006961.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006962
Tim Northover675a0962014-06-13 14:24:23 +00006963 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6964 <result> = xor i32 15, 40 ; yields i32:result = 39
6965 <result> = xor i32 4, 8 ; yields i32:result = 12
6966 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006967
6968Vector Operations
6969-----------------
6970
6971LLVM supports several instructions to represent vector operations in a
6972target-independent manner. These instructions cover the element-access
6973and vector-specific operations needed to process vectors effectively.
6974While LLVM does directly support these vector operations, many
6975sophisticated algorithms will want to use target-specific intrinsics to
6976take full advantage of a specific target.
6977
6978.. _i_extractelement:
6979
6980'``extractelement``' Instruction
6981^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6982
6983Syntax:
6984"""""""
6985
6986::
6987
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006988 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006989
6990Overview:
6991"""""""""
6992
6993The '``extractelement``' instruction extracts a single scalar element
6994from a vector at a specified index.
6995
6996Arguments:
6997""""""""""
6998
6999The first operand of an '``extractelement``' instruction is a value of
7000:ref:`vector <t_vector>` type. The second operand is an index indicating
7001the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007002variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007003
7004Semantics:
7005""""""""""
7006
7007The result is a scalar of the same type as the element type of ``val``.
7008Its value is the value at position ``idx`` of ``val``. If ``idx``
7009exceeds the length of ``val``, the results are undefined.
7010
7011Example:
7012""""""""
7013
Renato Golin124f2592016-07-20 12:16:38 +00007014.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007015
7016 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7017
7018.. _i_insertelement:
7019
7020'``insertelement``' Instruction
7021^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7022
7023Syntax:
7024"""""""
7025
7026::
7027
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007028 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007029
7030Overview:
7031"""""""""
7032
7033The '``insertelement``' instruction inserts a scalar element into a
7034vector at a specified index.
7035
7036Arguments:
7037""""""""""
7038
7039The first operand of an '``insertelement``' instruction is a value of
7040:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7041type must equal the element type of the first operand. The third operand
7042is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007043index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007044
7045Semantics:
7046""""""""""
7047
7048The result is a vector of the same type as ``val``. Its element values
7049are those of ``val`` except at position ``idx``, where it gets the value
7050``elt``. If ``idx`` exceeds the length of ``val``, the results are
7051undefined.
7052
7053Example:
7054""""""""
7055
Renato Golin124f2592016-07-20 12:16:38 +00007056.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007057
7058 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7059
7060.. _i_shufflevector:
7061
7062'``shufflevector``' Instruction
7063^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7064
7065Syntax:
7066"""""""
7067
7068::
7069
7070 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7071
7072Overview:
7073"""""""""
7074
7075The '``shufflevector``' instruction constructs a permutation of elements
7076from two input vectors, returning a vector with the same element type as
7077the input and length that is the same as the shuffle mask.
7078
7079Arguments:
7080""""""""""
7081
7082The first two operands of a '``shufflevector``' instruction are vectors
7083with the same type. The third argument is a shuffle mask whose element
7084type is always 'i32'. The result of the instruction is a vector whose
7085length is the same as the shuffle mask and whose element type is the
7086same as the element type of the first two operands.
7087
7088The shuffle mask operand is required to be a constant vector with either
7089constant integer or undef values.
7090
7091Semantics:
7092""""""""""
7093
7094The elements of the two input vectors are numbered from left to right
7095across both of the vectors. The shuffle mask operand specifies, for each
7096element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007097result element gets. If the shuffle mask is undef, the result vector is
7098undef. If any element of the mask operand is undef, that element of the
7099result is undef. If the shuffle mask selects an undef element from one
7100of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007101
7102Example:
7103""""""""
7104
Renato Golin124f2592016-07-20 12:16:38 +00007105.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007106
7107 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7108 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7109 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7110 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7111 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7112 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7113 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7114 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7115
7116Aggregate Operations
7117--------------------
7118
7119LLVM supports several instructions for working with
7120:ref:`aggregate <t_aggregate>` values.
7121
7122.. _i_extractvalue:
7123
7124'``extractvalue``' Instruction
7125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7126
7127Syntax:
7128"""""""
7129
7130::
7131
7132 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7133
7134Overview:
7135"""""""""
7136
7137The '``extractvalue``' instruction extracts the value of a member field
7138from an :ref:`aggregate <t_aggregate>` value.
7139
7140Arguments:
7141""""""""""
7142
7143The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007144:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007145constant indices to specify which value to extract in a similar manner
7146as indices in a '``getelementptr``' instruction.
7147
7148The major differences to ``getelementptr`` indexing are:
7149
7150- Since the value being indexed is not a pointer, the first index is
7151 omitted and assumed to be zero.
7152- At least one index must be specified.
7153- Not only struct indices but also array indices must be in bounds.
7154
7155Semantics:
7156""""""""""
7157
7158The result is the value at the position in the aggregate specified by
7159the index operands.
7160
7161Example:
7162""""""""
7163
Renato Golin124f2592016-07-20 12:16:38 +00007164.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007165
7166 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7167
7168.. _i_insertvalue:
7169
7170'``insertvalue``' Instruction
7171^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7172
7173Syntax:
7174"""""""
7175
7176::
7177
7178 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7179
7180Overview:
7181"""""""""
7182
7183The '``insertvalue``' instruction inserts a value into a member field in
7184an :ref:`aggregate <t_aggregate>` value.
7185
7186Arguments:
7187""""""""""
7188
7189The first operand of an '``insertvalue``' instruction is a value of
7190:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7191a first-class value to insert. The following operands are constant
7192indices indicating the position at which to insert the value in a
7193similar manner as indices in a '``extractvalue``' instruction. The value
7194to insert must have the same type as the value identified by the
7195indices.
7196
7197Semantics:
7198""""""""""
7199
7200The result is an aggregate of the same type as ``val``. Its value is
7201that of ``val`` except that the value at the position specified by the
7202indices is that of ``elt``.
7203
7204Example:
7205""""""""
7206
7207.. code-block:: llvm
7208
7209 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7210 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007211 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007212
7213.. _memoryops:
7214
7215Memory Access and Addressing Operations
7216---------------------------------------
7217
7218A key design point of an SSA-based representation is how it represents
7219memory. In LLVM, no memory locations are in SSA form, which makes things
7220very simple. This section describes how to read, write, and allocate
7221memory in LLVM.
7222
7223.. _i_alloca:
7224
7225'``alloca``' Instruction
7226^^^^^^^^^^^^^^^^^^^^^^^^
7227
7228Syntax:
7229"""""""
7230
7231::
7232
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007233 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007234
7235Overview:
7236"""""""""
7237
7238The '``alloca``' instruction allocates memory on the stack frame of the
7239currently executing function, to be automatically released when this
7240function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007241address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007242
7243Arguments:
7244""""""""""
7245
7246The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7247bytes of memory on the runtime stack, returning a pointer of the
7248appropriate type to the program. If "NumElements" is specified, it is
7249the number of elements allocated, otherwise "NumElements" is defaulted
7250to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007251allocation is guaranteed to be aligned to at least that boundary. The
7252alignment may not be greater than ``1 << 29``. If not specified, or if
7253zero, the target can choose to align the allocation on any convenient
7254boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007255
7256'``type``' may be any sized type.
7257
7258Semantics:
7259""""""""""
7260
7261Memory is allocated; a pointer is returned. The operation is undefined
7262if there is insufficient stack space for the allocation. '``alloca``'d
7263memory is automatically released when the function returns. The
7264'``alloca``' instruction is commonly used to represent automatic
7265variables that must have an address available. When the function returns
7266(either with the ``ret`` or ``resume`` instructions), the memory is
7267reclaimed. Allocating zero bytes is legal, but the result is undefined.
7268The order in which memory is allocated (ie., which way the stack grows)
7269is not specified.
7270
7271Example:
7272""""""""
7273
7274.. code-block:: llvm
7275
Tim Northover675a0962014-06-13 14:24:23 +00007276 %ptr = alloca i32 ; yields i32*:ptr
7277 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7278 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7279 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007280
7281.. _i_load:
7282
7283'``load``' Instruction
7284^^^^^^^^^^^^^^^^^^^^^^
7285
7286Syntax:
7287"""""""
7288
7289::
7290
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007291 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007292 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007293 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007294 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007295 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007296
7297Overview:
7298"""""""""
7299
7300The '``load``' instruction is used to read from memory.
7301
7302Arguments:
7303""""""""""
7304
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007305The argument to the ``load`` instruction specifies the memory address from which
7306to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7307known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7308the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7309modify the number or order of execution of this ``load`` with other
7310:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007311
JF Bastiend1fb5852015-12-17 22:09:19 +00007312If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7313<ordering>` and optional ``singlethread`` argument. The ``release`` and
7314``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7315produce :ref:`defined <memmodel>` results when they may see multiple atomic
7316stores. The type of the pointee must be an integer, pointer, or floating-point
7317type whose bit width is a power of two greater than or equal to eight and less
7318than or equal to a target-specific size limit. ``align`` must be explicitly
7319specified on atomic loads, and the load has undefined behavior if the alignment
7320is not set to a value which is at least the size in bytes of the
7321pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007322
7323The optional constant ``align`` argument specifies the alignment of the
7324operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007325or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007326alignment for the target. It is the responsibility of the code emitter
7327to ensure that the alignment information is correct. Overestimating the
7328alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007329may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007330maximum possible alignment is ``1 << 29``. An alignment value higher
7331than the size of the loaded type implies memory up to the alignment
7332value bytes can be safely loaded without trapping in the default
7333address space. Access of the high bytes can interfere with debugging
7334tools, so should not be accessed if the function has the
7335``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007336
7337The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007338metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007339``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007340metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007341that this load is not expected to be reused in the cache. The code
7342generator may select special instructions to save cache bandwidth, such
7343as the ``MOVNT`` instruction on x86.
7344
7345The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007346metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007347entries. If a load instruction tagged with the ``!invariant.load``
7348metadata is executed, the optimizer may assume the memory location
7349referenced by the load contains the same value at all points in the
7350program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007351
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007352The optional ``!invariant.group`` metadata must reference a single metadata name
7353 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7354
Philip Reamescdb72f32014-10-20 22:40:55 +00007355The optional ``!nonnull`` metadata must reference a single
7356metadata name ``<index>`` corresponding to a metadata node with no
7357entries. The existence of the ``!nonnull`` metadata on the
7358instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007359never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007360on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007361to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007362
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007363The optional ``!dereferenceable`` metadata must reference a single metadata
7364name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007365entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007366tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007367The number of bytes known to be dereferenceable is specified by the integer
7368value in the metadata node. This is analogous to the ''dereferenceable''
7369attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007370to loads of a pointer type.
7371
7372The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007373metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7374``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007375instruction tells the optimizer that the value loaded is known to be either
7376dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007377The number of bytes known to be dereferenceable is specified by the integer
7378value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7379attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007380to loads of a pointer type.
7381
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007382The optional ``!align`` metadata must reference a single metadata name
7383``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7384The existence of the ``!align`` metadata on the instruction tells the
7385optimizer that the value loaded is known to be aligned to a boundary specified
7386by the integer value in the metadata node. The alignment must be a power of 2.
7387This is analogous to the ''align'' attribute on parameters and return values.
7388This metadata can only be applied to loads of a pointer type.
7389
Sean Silvab084af42012-12-07 10:36:55 +00007390Semantics:
7391""""""""""
7392
7393The location of memory pointed to is loaded. If the value being loaded
7394is of scalar type then the number of bytes read does not exceed the
7395minimum number of bytes needed to hold all bits of the type. For
7396example, loading an ``i24`` reads at most three bytes. When loading a
7397value of a type like ``i20`` with a size that is not an integral number
7398of bytes, the result is undefined if the value was not originally
7399written using a store of the same type.
7400
7401Examples:
7402"""""""""
7403
7404.. code-block:: llvm
7405
Tim Northover675a0962014-06-13 14:24:23 +00007406 %ptr = alloca i32 ; yields i32*:ptr
7407 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007408 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007409
7410.. _i_store:
7411
7412'``store``' Instruction
7413^^^^^^^^^^^^^^^^^^^^^^^
7414
7415Syntax:
7416"""""""
7417
7418::
7419
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007420 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7421 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007422
7423Overview:
7424"""""""""
7425
7426The '``store``' instruction is used to write to memory.
7427
7428Arguments:
7429""""""""""
7430
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007431There are two arguments to the ``store`` instruction: a value to store and an
7432address at which to store it. The type of the ``<pointer>`` operand must be a
7433pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7434operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7435allowed to modify the number or order of execution of this ``store`` with other
7436:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7437<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7438structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007439
JF Bastiend1fb5852015-12-17 22:09:19 +00007440If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7441<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7442``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7443produce :ref:`defined <memmodel>` results when they may see multiple atomic
7444stores. The type of the pointee must be an integer, pointer, or floating-point
7445type whose bit width is a power of two greater than or equal to eight and less
7446than or equal to a target-specific size limit. ``align`` must be explicitly
7447specified on atomic stores, and the store has undefined behavior if the
7448alignment is not set to a value which is at least the size in bytes of the
7449pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007450
Eli Benderskyca380842013-04-17 17:17:20 +00007451The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007452operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007453or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007454alignment for the target. It is the responsibility of the code emitter
7455to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007456alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007457alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007458safe. The maximum possible alignment is ``1 << 29``. An alignment
7459value higher than the size of the stored type implies memory up to the
7460alignment value bytes can be stored to without trapping in the default
7461address space. Storing to the higher bytes however may result in data
7462races if another thread can access the same address. Introducing a
7463data race is not allowed. Storing to the extra bytes is not allowed
7464even in situations where a data race is known to not exist if the
7465function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007466
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007467The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007468name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007469value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007470tells the optimizer and code generator that this load is not expected to
7471be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007472instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007473x86.
7474
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007475The optional ``!invariant.group`` metadata must reference a
7476single metadata name ``<index>``. See ``invariant.group`` metadata.
7477
Sean Silvab084af42012-12-07 10:36:55 +00007478Semantics:
7479""""""""""
7480
Eli Benderskyca380842013-04-17 17:17:20 +00007481The contents of memory are updated to contain ``<value>`` at the
7482location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007483of scalar type then the number of bytes written does not exceed the
7484minimum number of bytes needed to hold all bits of the type. For
7485example, storing an ``i24`` writes at most three bytes. When writing a
7486value of a type like ``i20`` with a size that is not an integral number
7487of bytes, it is unspecified what happens to the extra bits that do not
7488belong to the type, but they will typically be overwritten.
7489
7490Example:
7491""""""""
7492
7493.. code-block:: llvm
7494
Tim Northover675a0962014-06-13 14:24:23 +00007495 %ptr = alloca i32 ; yields i32*:ptr
7496 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007497 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007498
7499.. _i_fence:
7500
7501'``fence``' Instruction
7502^^^^^^^^^^^^^^^^^^^^^^^
7503
7504Syntax:
7505"""""""
7506
7507::
7508
Tim Northover675a0962014-06-13 14:24:23 +00007509 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007510
7511Overview:
7512"""""""""
7513
7514The '``fence``' instruction is used to introduce happens-before edges
7515between operations.
7516
7517Arguments:
7518""""""""""
7519
7520'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7521defines what *synchronizes-with* edges they add. They can only be given
7522``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7523
7524Semantics:
7525""""""""""
7526
7527A fence A which has (at least) ``release`` ordering semantics
7528*synchronizes with* a fence B with (at least) ``acquire`` ordering
7529semantics if and only if there exist atomic operations X and Y, both
7530operating on some atomic object M, such that A is sequenced before X, X
7531modifies M (either directly or through some side effect of a sequence
7532headed by X), Y is sequenced before B, and Y observes M. This provides a
7533*happens-before* dependency between A and B. Rather than an explicit
7534``fence``, one (but not both) of the atomic operations X or Y might
7535provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7536still *synchronize-with* the explicit ``fence`` and establish the
7537*happens-before* edge.
7538
7539A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7540``acquire`` and ``release`` semantics specified above, participates in
7541the global program order of other ``seq_cst`` operations and/or fences.
7542
7543The optional ":ref:`singlethread <singlethread>`" argument specifies
7544that the fence only synchronizes with other fences in the same thread.
7545(This is useful for interacting with signal handlers.)
7546
7547Example:
7548""""""""
7549
7550.. code-block:: llvm
7551
Tim Northover675a0962014-06-13 14:24:23 +00007552 fence acquire ; yields void
7553 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007554
7555.. _i_cmpxchg:
7556
7557'``cmpxchg``' Instruction
7558^^^^^^^^^^^^^^^^^^^^^^^^^
7559
7560Syntax:
7561"""""""
7562
7563::
7564
Tim Northover675a0962014-06-13 14:24:23 +00007565 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007566
7567Overview:
7568"""""""""
7569
7570The '``cmpxchg``' instruction is used to atomically modify memory. It
7571loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007572equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007573
7574Arguments:
7575""""""""""
7576
7577There are three arguments to the '``cmpxchg``' instruction: an address
7578to operate on, a value to compare to the value currently be at that
7579address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007580are equal. The type of '<cmp>' must be an integer or pointer type whose
7581bit width is a power of two greater than or equal to eight and less
7582than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7583have the same type, and the type of '<pointer>' must be a pointer to
7584that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7585optimizer is not allowed to modify the number or order of execution of
7586this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007587
Tim Northovere94a5182014-03-11 10:48:52 +00007588The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007589``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7590must be at least ``monotonic``, the ordering constraint on failure must be no
7591stronger than that on success, and the failure ordering cannot be either
7592``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007593
7594The optional "``singlethread``" argument declares that the ``cmpxchg``
7595is only atomic with respect to code (usually signal handlers) running in
7596the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7597respect to all other code in the system.
7598
7599The pointer passed into cmpxchg must have alignment greater than or
7600equal to the size in memory of the operand.
7601
7602Semantics:
7603""""""""""
7604
Tim Northover420a2162014-06-13 14:24:07 +00007605The contents of memory at the location specified by the '``<pointer>``' operand
7606is read and compared to '``<cmp>``'; if the read value is the equal, the
7607'``<new>``' is written. The original value at the location is returned, together
7608with a flag indicating success (true) or failure (false).
7609
7610If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7611permitted: the operation may not write ``<new>`` even if the comparison
7612matched.
7613
7614If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7615if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007616
Tim Northovere94a5182014-03-11 10:48:52 +00007617A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7618identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7619load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007620
7621Example:
7622""""""""
7623
7624.. code-block:: llvm
7625
7626 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007627 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007628 br label %loop
7629
7630 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007631 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007632 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007633 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007634 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7635 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007636 br i1 %success, label %done, label %loop
7637
7638 done:
7639 ...
7640
7641.. _i_atomicrmw:
7642
7643'``atomicrmw``' Instruction
7644^^^^^^^^^^^^^^^^^^^^^^^^^^^
7645
7646Syntax:
7647"""""""
7648
7649::
7650
Tim Northover675a0962014-06-13 14:24:23 +00007651 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007652
7653Overview:
7654"""""""""
7655
7656The '``atomicrmw``' instruction is used to atomically modify memory.
7657
7658Arguments:
7659""""""""""
7660
7661There are three arguments to the '``atomicrmw``' instruction: an
7662operation to apply, an address whose value to modify, an argument to the
7663operation. The operation must be one of the following keywords:
7664
7665- xchg
7666- add
7667- sub
7668- and
7669- nand
7670- or
7671- xor
7672- max
7673- min
7674- umax
7675- umin
7676
7677The type of '<value>' must be an integer type whose bit width is a power
7678of two greater than or equal to eight and less than or equal to a
7679target-specific size limit. The type of the '``<pointer>``' operand must
7680be a pointer to that type. If the ``atomicrmw`` is marked as
7681``volatile``, then the optimizer is not allowed to modify the number or
7682order of execution of this ``atomicrmw`` with other :ref:`volatile
7683operations <volatile>`.
7684
7685Semantics:
7686""""""""""
7687
7688The contents of memory at the location specified by the '``<pointer>``'
7689operand are atomically read, modified, and written back. The original
7690value at the location is returned. The modification is specified by the
7691operation argument:
7692
7693- xchg: ``*ptr = val``
7694- add: ``*ptr = *ptr + val``
7695- sub: ``*ptr = *ptr - val``
7696- and: ``*ptr = *ptr & val``
7697- nand: ``*ptr = ~(*ptr & val)``
7698- or: ``*ptr = *ptr | val``
7699- xor: ``*ptr = *ptr ^ val``
7700- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7701- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7702- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7703 comparison)
7704- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7705 comparison)
7706
7707Example:
7708""""""""
7709
7710.. code-block:: llvm
7711
Tim Northover675a0962014-06-13 14:24:23 +00007712 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007713
7714.. _i_getelementptr:
7715
7716'``getelementptr``' Instruction
7717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7718
7719Syntax:
7720"""""""
7721
7722::
7723
Peter Collingbourned93620b2016-11-10 22:34:55 +00007724 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7725 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7726 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007727
7728Overview:
7729"""""""""
7730
7731The '``getelementptr``' instruction is used to get the address of a
7732subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007733address calculation only and does not access memory. The instruction can also
7734be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007735
7736Arguments:
7737""""""""""
7738
David Blaikie16a97eb2015-03-04 22:02:58 +00007739The first argument is always a type used as the basis for the calculations.
7740The second argument is always a pointer or a vector of pointers, and is the
7741base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007742that indicate which of the elements of the aggregate object are indexed.
7743The interpretation of each index is dependent on the type being indexed
7744into. The first index always indexes the pointer value given as the
7745first argument, the second index indexes a value of the type pointed to
7746(not necessarily the value directly pointed to, since the first index
7747can be non-zero), etc. The first type indexed into must be a pointer
7748value, subsequent types can be arrays, vectors, and structs. Note that
7749subsequent types being indexed into can never be pointers, since that
7750would require loading the pointer before continuing calculation.
7751
7752The type of each index argument depends on the type it is indexing into.
7753When indexing into a (optionally packed) structure, only ``i32`` integer
7754**constants** are allowed (when using a vector of indices they must all
7755be the **same** ``i32`` integer constant). When indexing into an array,
7756pointer or vector, integers of any width are allowed, and they are not
7757required to be constant. These integers are treated as signed values
7758where relevant.
7759
7760For example, let's consider a C code fragment and how it gets compiled
7761to LLVM:
7762
7763.. code-block:: c
7764
7765 struct RT {
7766 char A;
7767 int B[10][20];
7768 char C;
7769 };
7770 struct ST {
7771 int X;
7772 double Y;
7773 struct RT Z;
7774 };
7775
7776 int *foo(struct ST *s) {
7777 return &s[1].Z.B[5][13];
7778 }
7779
7780The LLVM code generated by Clang is:
7781
7782.. code-block:: llvm
7783
7784 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7785 %struct.ST = type { i32, double, %struct.RT }
7786
7787 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7788 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007789 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007790 ret i32* %arrayidx
7791 }
7792
7793Semantics:
7794""""""""""
7795
7796In the example above, the first index is indexing into the
7797'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7798= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7799indexes into the third element of the structure, yielding a
7800'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7801structure. The third index indexes into the second element of the
7802structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7803dimensions of the array are subscripted into, yielding an '``i32``'
7804type. The '``getelementptr``' instruction returns a pointer to this
7805element, thus computing a value of '``i32*``' type.
7806
7807Note that it is perfectly legal to index partially through a structure,
7808returning a pointer to an inner element. Because of this, the LLVM code
7809for the given testcase is equivalent to:
7810
7811.. code-block:: llvm
7812
7813 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007814 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7815 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7816 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7817 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7818 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007819 ret i32* %t5
7820 }
7821
7822If the ``inbounds`` keyword is present, the result value of the
7823``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7824pointer is not an *in bounds* address of an allocated object, or if any
7825of the addresses that would be formed by successive addition of the
7826offsets implied by the indices to the base address with infinitely
7827precise signed arithmetic are not an *in bounds* address of that
7828allocated object. The *in bounds* addresses for an allocated object are
7829all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00007830past the end. The only *in bounds* address for a null pointer in the
7831default address-space is the null pointer itself. In cases where the
7832base is a vector of pointers the ``inbounds`` keyword applies to each
7833of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00007834
7835If the ``inbounds`` keyword is not present, the offsets are added to the
7836base address with silently-wrapping two's complement arithmetic. If the
7837offsets have a different width from the pointer, they are sign-extended
7838or truncated to the width of the pointer. The result value of the
7839``getelementptr`` may be outside the object pointed to by the base
7840pointer. The result value may not necessarily be used to access memory
7841though, even if it happens to point into allocated storage. See the
7842:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7843information.
7844
Peter Collingbourned93620b2016-11-10 22:34:55 +00007845If the ``inrange`` keyword is present before any index, loading from or
7846storing to any pointer derived from the ``getelementptr`` has undefined
7847behavior if the load or store would access memory outside of the bounds of
7848the element selected by the index marked as ``inrange``. The result of a
7849pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7850involving memory) involving a pointer derived from a ``getelementptr`` with
7851the ``inrange`` keyword is undefined, with the exception of comparisons
7852in the case where both operands are in the range of the element selected
7853by the ``inrange`` keyword, inclusive of the address one past the end of
7854that element. Note that the ``inrange`` keyword is currently only allowed
7855in constant ``getelementptr`` expressions.
7856
Sean Silvab084af42012-12-07 10:36:55 +00007857The getelementptr instruction is often confusing. For some more insight
7858into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7859
7860Example:
7861""""""""
7862
7863.. code-block:: llvm
7864
7865 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007866 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007867 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007868 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007869 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007870 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007871 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007872 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007873
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007874Vector of pointers:
7875"""""""""""""""""""
7876
7877The ``getelementptr`` returns a vector of pointers, instead of a single address,
7878when one or more of its arguments is a vector. In such cases, all vector
7879arguments should have the same number of elements, and every scalar argument
7880will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007881
7882.. code-block:: llvm
7883
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007884 ; All arguments are vectors:
7885 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7886 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007887
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007888 ; Add the same scalar offset to each pointer of a vector:
7889 ; A[i] = ptrs[i] + offset*sizeof(i8)
7890 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007891
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007892 ; Add distinct offsets to the same pointer:
7893 ; A[i] = ptr + offsets[i]*sizeof(i8)
7894 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007895
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007896 ; In all cases described above the type of the result is <4 x i8*>
7897
7898The two following instructions are equivalent:
7899
7900.. code-block:: llvm
7901
7902 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7903 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7904 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7905 <4 x i32> %ind4,
7906 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007907
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007908 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7909 i32 2, i32 1, <4 x i32> %ind4, i64 13
7910
7911Let's look at the C code, where the vector version of ``getelementptr``
7912makes sense:
7913
7914.. code-block:: c
7915
7916 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00007917 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007918 for (int i = 0; i < size; ++i) {
7919 A[i] = B[C[i]];
7920 }
7921
7922.. code-block:: llvm
7923
7924 ; get pointers for 8 elements from array B
7925 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7926 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00007927 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007928 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007929
7930Conversion Operations
7931---------------------
7932
7933The instructions in this category are the conversion instructions
7934(casting) which all take a single operand and a type. They perform
7935various bit conversions on the operand.
7936
7937'``trunc .. to``' Instruction
7938^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7939
7940Syntax:
7941"""""""
7942
7943::
7944
7945 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7946
7947Overview:
7948"""""""""
7949
7950The '``trunc``' instruction truncates its operand to the type ``ty2``.
7951
7952Arguments:
7953""""""""""
7954
7955The '``trunc``' instruction takes a value to trunc, and a type to trunc
7956it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7957of the same number of integers. The bit size of the ``value`` must be
7958larger than the bit size of the destination type, ``ty2``. Equal sized
7959types are not allowed.
7960
7961Semantics:
7962""""""""""
7963
7964The '``trunc``' instruction truncates the high order bits in ``value``
7965and converts the remaining bits to ``ty2``. Since the source size must
7966be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7967It will always truncate bits.
7968
7969Example:
7970""""""""
7971
7972.. code-block:: llvm
7973
7974 %X = trunc i32 257 to i8 ; yields i8:1
7975 %Y = trunc i32 123 to i1 ; yields i1:true
7976 %Z = trunc i32 122 to i1 ; yields i1:false
7977 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7978
7979'``zext .. to``' Instruction
7980^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7981
7982Syntax:
7983"""""""
7984
7985::
7986
7987 <result> = zext <ty> <value> to <ty2> ; yields ty2
7988
7989Overview:
7990"""""""""
7991
7992The '``zext``' instruction zero extends its operand to type ``ty2``.
7993
7994Arguments:
7995""""""""""
7996
7997The '``zext``' instruction takes a value to cast, and a type to cast it
7998to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7999the same number of integers. The bit size of the ``value`` must be
8000smaller than the bit size of the destination type, ``ty2``.
8001
8002Semantics:
8003""""""""""
8004
8005The ``zext`` fills the high order bits of the ``value`` with zero bits
8006until it reaches the size of the destination type, ``ty2``.
8007
8008When zero extending from i1, the result will always be either 0 or 1.
8009
8010Example:
8011""""""""
8012
8013.. code-block:: llvm
8014
8015 %X = zext i32 257 to i64 ; yields i64:257
8016 %Y = zext i1 true to i32 ; yields i32:1
8017 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8018
8019'``sext .. to``' Instruction
8020^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8021
8022Syntax:
8023"""""""
8024
8025::
8026
8027 <result> = sext <ty> <value> to <ty2> ; yields ty2
8028
8029Overview:
8030"""""""""
8031
8032The '``sext``' sign extends ``value`` to the type ``ty2``.
8033
8034Arguments:
8035""""""""""
8036
8037The '``sext``' instruction takes a value to cast, and a type to cast it
8038to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8039the same number of integers. The bit size of the ``value`` must be
8040smaller than the bit size of the destination type, ``ty2``.
8041
8042Semantics:
8043""""""""""
8044
8045The '``sext``' instruction performs a sign extension by copying the sign
8046bit (highest order bit) of the ``value`` until it reaches the bit size
8047of the type ``ty2``.
8048
8049When sign extending from i1, the extension always results in -1 or 0.
8050
8051Example:
8052""""""""
8053
8054.. code-block:: llvm
8055
8056 %X = sext i8 -1 to i16 ; yields i16 :65535
8057 %Y = sext i1 true to i32 ; yields i32:-1
8058 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8059
8060'``fptrunc .. to``' Instruction
8061^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8062
8063Syntax:
8064"""""""
8065
8066::
8067
8068 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8069
8070Overview:
8071"""""""""
8072
8073The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8074
8075Arguments:
8076""""""""""
8077
8078The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
8079value to cast and a :ref:`floating point <t_floating>` type to cast it to.
8080The size of ``value`` must be larger than the size of ``ty2``. This
8081implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8082
8083Semantics:
8084""""""""""
8085
Dan Liew50456fb2015-09-03 18:43:56 +00008086The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00008087:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00008088point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
8089destination type, ``ty2``, then the results are undefined. If the cast produces
8090an inexact result, how rounding is performed (e.g. truncation, also known as
8091round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008092
8093Example:
8094""""""""
8095
8096.. code-block:: llvm
8097
8098 %X = fptrunc double 123.0 to float ; yields float:123.0
8099 %Y = fptrunc double 1.0E+300 to float ; yields undefined
8100
8101'``fpext .. to``' Instruction
8102^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8103
8104Syntax:
8105"""""""
8106
8107::
8108
8109 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8110
8111Overview:
8112"""""""""
8113
8114The '``fpext``' extends a floating point ``value`` to a larger floating
8115point value.
8116
8117Arguments:
8118""""""""""
8119
8120The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
8121``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
8122to. The source type must be smaller than the destination type.
8123
8124Semantics:
8125""""""""""
8126
8127The '``fpext``' instruction extends the ``value`` from a smaller
8128:ref:`floating point <t_floating>` type to a larger :ref:`floating
8129point <t_floating>` type. The ``fpext`` cannot be used to make a
8130*no-op cast* because it always changes bits. Use ``bitcast`` to make a
8131*no-op cast* for a floating point cast.
8132
8133Example:
8134""""""""
8135
8136.. code-block:: llvm
8137
8138 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8139 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8140
8141'``fptoui .. to``' Instruction
8142^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8143
8144Syntax:
8145"""""""
8146
8147::
8148
8149 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8150
8151Overview:
8152"""""""""
8153
8154The '``fptoui``' converts a floating point ``value`` to its unsigned
8155integer equivalent of type ``ty2``.
8156
8157Arguments:
8158""""""""""
8159
8160The '``fptoui``' instruction takes a value to cast, which must be a
8161scalar or vector :ref:`floating point <t_floating>` value, and a type to
8162cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8163``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8164type with the same number of elements as ``ty``
8165
8166Semantics:
8167""""""""""
8168
8169The '``fptoui``' instruction converts its :ref:`floating
8170point <t_floating>` operand into the nearest (rounding towards zero)
8171unsigned integer value. If the value cannot fit in ``ty2``, the results
8172are undefined.
8173
8174Example:
8175""""""""
8176
8177.. code-block:: llvm
8178
8179 %X = fptoui double 123.0 to i32 ; yields i32:123
8180 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8181 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8182
8183'``fptosi .. to``' Instruction
8184^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8185
8186Syntax:
8187"""""""
8188
8189::
8190
8191 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8192
8193Overview:
8194"""""""""
8195
8196The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
8197``value`` to type ``ty2``.
8198
8199Arguments:
8200""""""""""
8201
8202The '``fptosi``' instruction takes a value to cast, which must be a
8203scalar or vector :ref:`floating point <t_floating>` value, and a type to
8204cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8205``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8206type with the same number of elements as ``ty``
8207
8208Semantics:
8209""""""""""
8210
8211The '``fptosi``' instruction converts its :ref:`floating
8212point <t_floating>` operand into the nearest (rounding towards zero)
8213signed integer value. If the value cannot fit in ``ty2``, the results
8214are undefined.
8215
8216Example:
8217""""""""
8218
8219.. code-block:: llvm
8220
8221 %X = fptosi double -123.0 to i32 ; yields i32:-123
8222 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8223 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8224
8225'``uitofp .. to``' Instruction
8226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8227
8228Syntax:
8229"""""""
8230
8231::
8232
8233 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8234
8235Overview:
8236"""""""""
8237
8238The '``uitofp``' instruction regards ``value`` as an unsigned integer
8239and converts that value to the ``ty2`` type.
8240
8241Arguments:
8242""""""""""
8243
8244The '``uitofp``' instruction takes a value to cast, which must be a
8245scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8246``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8247``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8248type with the same number of elements as ``ty``
8249
8250Semantics:
8251""""""""""
8252
8253The '``uitofp``' instruction interprets its operand as an unsigned
8254integer quantity and converts it to the corresponding floating point
8255value. If the value cannot fit in the floating point value, the results
8256are undefined.
8257
8258Example:
8259""""""""
8260
8261.. code-block:: llvm
8262
8263 %X = uitofp i32 257 to float ; yields float:257.0
8264 %Y = uitofp i8 -1 to double ; yields double:255.0
8265
8266'``sitofp .. to``' Instruction
8267^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8268
8269Syntax:
8270"""""""
8271
8272::
8273
8274 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8275
8276Overview:
8277"""""""""
8278
8279The '``sitofp``' instruction regards ``value`` as a signed integer and
8280converts that value to the ``ty2`` type.
8281
8282Arguments:
8283""""""""""
8284
8285The '``sitofp``' instruction takes a value to cast, which must be a
8286scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8287``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8288``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8289type with the same number of elements as ``ty``
8290
8291Semantics:
8292""""""""""
8293
8294The '``sitofp``' instruction interprets its operand as a signed integer
8295quantity and converts it to the corresponding floating point value. If
8296the value cannot fit in the floating point value, the results are
8297undefined.
8298
8299Example:
8300""""""""
8301
8302.. code-block:: llvm
8303
8304 %X = sitofp i32 257 to float ; yields float:257.0
8305 %Y = sitofp i8 -1 to double ; yields double:-1.0
8306
8307.. _i_ptrtoint:
8308
8309'``ptrtoint .. to``' Instruction
8310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8311
8312Syntax:
8313"""""""
8314
8315::
8316
8317 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8318
8319Overview:
8320"""""""""
8321
8322The '``ptrtoint``' instruction converts the pointer or a vector of
8323pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8324
8325Arguments:
8326""""""""""
8327
8328The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008329a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008330type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8331a vector of integers type.
8332
8333Semantics:
8334""""""""""
8335
8336The '``ptrtoint``' instruction converts ``value`` to integer type
8337``ty2`` by interpreting the pointer value as an integer and either
8338truncating or zero extending that value to the size of the integer type.
8339If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8340``value`` is larger than ``ty2`` then a truncation is done. If they are
8341the same size, then nothing is done (*no-op cast*) other than a type
8342change.
8343
8344Example:
8345""""""""
8346
8347.. code-block:: llvm
8348
8349 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8350 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8351 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8352
8353.. _i_inttoptr:
8354
8355'``inttoptr .. to``' Instruction
8356^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8357
8358Syntax:
8359"""""""
8360
8361::
8362
8363 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8364
8365Overview:
8366"""""""""
8367
8368The '``inttoptr``' instruction converts an integer ``value`` to a
8369pointer type, ``ty2``.
8370
8371Arguments:
8372""""""""""
8373
8374The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8375cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8376type.
8377
8378Semantics:
8379""""""""""
8380
8381The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8382applying either a zero extension or a truncation depending on the size
8383of the integer ``value``. If ``value`` is larger than the size of a
8384pointer then a truncation is done. If ``value`` is smaller than the size
8385of a pointer then a zero extension is done. If they are the same size,
8386nothing is done (*no-op cast*).
8387
8388Example:
8389""""""""
8390
8391.. code-block:: llvm
8392
8393 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8394 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8395 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8396 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8397
8398.. _i_bitcast:
8399
8400'``bitcast .. to``' Instruction
8401^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8402
8403Syntax:
8404"""""""
8405
8406::
8407
8408 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8409
8410Overview:
8411"""""""""
8412
8413The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8414changing any bits.
8415
8416Arguments:
8417""""""""""
8418
8419The '``bitcast``' instruction takes a value to cast, which must be a
8420non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008421also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8422bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008423identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008424also be a pointer of the same size. This instruction supports bitwise
8425conversion of vectors to integers and to vectors of other types (as
8426long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008427
8428Semantics:
8429""""""""""
8430
Matt Arsenault24b49c42013-07-31 17:49:08 +00008431The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8432is always a *no-op cast* because no bits change with this
8433conversion. The conversion is done as if the ``value`` had been stored
8434to memory and read back as type ``ty2``. Pointer (or vector of
8435pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008436pointers) types with the same address space through this instruction.
8437To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8438or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008439
8440Example:
8441""""""""
8442
Renato Golin124f2592016-07-20 12:16:38 +00008443.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008444
8445 %X = bitcast i8 255 to i8 ; yields i8 :-1
8446 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8447 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8448 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8449
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008450.. _i_addrspacecast:
8451
8452'``addrspacecast .. to``' Instruction
8453^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8454
8455Syntax:
8456"""""""
8457
8458::
8459
8460 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8461
8462Overview:
8463"""""""""
8464
8465The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8466address space ``n`` to type ``pty2`` in address space ``m``.
8467
8468Arguments:
8469""""""""""
8470
8471The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8472to cast and a pointer type to cast it to, which must have a different
8473address space.
8474
8475Semantics:
8476""""""""""
8477
8478The '``addrspacecast``' instruction converts the pointer value
8479``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008480value modification, depending on the target and the address space
8481pair. Pointer conversions within the same address space must be
8482performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008483conversion is legal then both result and operand refer to the same memory
8484location.
8485
8486Example:
8487""""""""
8488
8489.. code-block:: llvm
8490
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008491 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8492 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8493 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008494
Sean Silvab084af42012-12-07 10:36:55 +00008495.. _otherops:
8496
8497Other Operations
8498----------------
8499
8500The instructions in this category are the "miscellaneous" instructions,
8501which defy better classification.
8502
8503.. _i_icmp:
8504
8505'``icmp``' Instruction
8506^^^^^^^^^^^^^^^^^^^^^^
8507
8508Syntax:
8509"""""""
8510
8511::
8512
Tim Northover675a0962014-06-13 14:24:23 +00008513 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008514
8515Overview:
8516"""""""""
8517
8518The '``icmp``' instruction returns a boolean value or a vector of
8519boolean values based on comparison of its two integer, integer vector,
8520pointer, or pointer vector operands.
8521
8522Arguments:
8523""""""""""
8524
8525The '``icmp``' instruction takes three operands. The first operand is
8526the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008527not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008528
8529#. ``eq``: equal
8530#. ``ne``: not equal
8531#. ``ugt``: unsigned greater than
8532#. ``uge``: unsigned greater or equal
8533#. ``ult``: unsigned less than
8534#. ``ule``: unsigned less or equal
8535#. ``sgt``: signed greater than
8536#. ``sge``: signed greater or equal
8537#. ``slt``: signed less than
8538#. ``sle``: signed less or equal
8539
8540The remaining two arguments must be :ref:`integer <t_integer>` or
8541:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8542must also be identical types.
8543
8544Semantics:
8545""""""""""
8546
8547The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8548code given as ``cond``. The comparison performed always yields either an
8549:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8550
8551#. ``eq``: yields ``true`` if the operands are equal, ``false``
8552 otherwise. No sign interpretation is necessary or performed.
8553#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8554 otherwise. No sign interpretation is necessary or performed.
8555#. ``ugt``: interprets the operands as unsigned values and yields
8556 ``true`` if ``op1`` is greater than ``op2``.
8557#. ``uge``: interprets the operands as unsigned values and yields
8558 ``true`` if ``op1`` is greater than or equal to ``op2``.
8559#. ``ult``: interprets the operands as unsigned values and yields
8560 ``true`` if ``op1`` is less than ``op2``.
8561#. ``ule``: interprets the operands as unsigned values and yields
8562 ``true`` if ``op1`` is less than or equal to ``op2``.
8563#. ``sgt``: interprets the operands as signed values and yields ``true``
8564 if ``op1`` is greater than ``op2``.
8565#. ``sge``: interprets the operands as signed values and yields ``true``
8566 if ``op1`` is greater than or equal to ``op2``.
8567#. ``slt``: interprets the operands as signed values and yields ``true``
8568 if ``op1`` is less than ``op2``.
8569#. ``sle``: interprets the operands as signed values and yields ``true``
8570 if ``op1`` is less than or equal to ``op2``.
8571
8572If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8573are compared as if they were integers.
8574
8575If the operands are integer vectors, then they are compared element by
8576element. The result is an ``i1`` vector with the same number of elements
8577as the values being compared. Otherwise, the result is an ``i1``.
8578
8579Example:
8580""""""""
8581
Renato Golin124f2592016-07-20 12:16:38 +00008582.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008583
8584 <result> = icmp eq i32 4, 5 ; yields: result=false
8585 <result> = icmp ne float* %X, %X ; yields: result=false
8586 <result> = icmp ult i16 4, 5 ; yields: result=true
8587 <result> = icmp sgt i16 4, 5 ; yields: result=false
8588 <result> = icmp ule i16 -4, 5 ; yields: result=false
8589 <result> = icmp sge i16 4, 5 ; yields: result=false
8590
Sean Silvab084af42012-12-07 10:36:55 +00008591.. _i_fcmp:
8592
8593'``fcmp``' Instruction
8594^^^^^^^^^^^^^^^^^^^^^^
8595
8596Syntax:
8597"""""""
8598
8599::
8600
James Molloy88eb5352015-07-10 12:52:00 +00008601 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008602
8603Overview:
8604"""""""""
8605
8606The '``fcmp``' instruction returns a boolean value or vector of boolean
8607values based on comparison of its operands.
8608
8609If the operands are floating point scalars, then the result type is a
8610boolean (:ref:`i1 <t_integer>`).
8611
8612If the operands are floating point vectors, then the result type is a
8613vector of boolean with the same number of elements as the operands being
8614compared.
8615
8616Arguments:
8617""""""""""
8618
8619The '``fcmp``' instruction takes three operands. The first operand is
8620the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008621not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008622
8623#. ``false``: no comparison, always returns false
8624#. ``oeq``: ordered and equal
8625#. ``ogt``: ordered and greater than
8626#. ``oge``: ordered and greater than or equal
8627#. ``olt``: ordered and less than
8628#. ``ole``: ordered and less than or equal
8629#. ``one``: ordered and not equal
8630#. ``ord``: ordered (no nans)
8631#. ``ueq``: unordered or equal
8632#. ``ugt``: unordered or greater than
8633#. ``uge``: unordered or greater than or equal
8634#. ``ult``: unordered or less than
8635#. ``ule``: unordered or less than or equal
8636#. ``une``: unordered or not equal
8637#. ``uno``: unordered (either nans)
8638#. ``true``: no comparison, always returns true
8639
8640*Ordered* means that neither operand is a QNAN while *unordered* means
8641that either operand may be a QNAN.
8642
8643Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8644point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8645type. They must have identical types.
8646
8647Semantics:
8648""""""""""
8649
8650The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8651condition code given as ``cond``. If the operands are vectors, then the
8652vectors are compared element by element. Each comparison performed
8653always yields an :ref:`i1 <t_integer>` result, as follows:
8654
8655#. ``false``: always yields ``false``, regardless of operands.
8656#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8657 is equal to ``op2``.
8658#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8659 is greater than ``op2``.
8660#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8661 is greater than or equal to ``op2``.
8662#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8663 is less than ``op2``.
8664#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8665 is less than or equal to ``op2``.
8666#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8667 is not equal to ``op2``.
8668#. ``ord``: yields ``true`` if both operands are not a QNAN.
8669#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8670 equal to ``op2``.
8671#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8672 greater than ``op2``.
8673#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8674 greater than or equal to ``op2``.
8675#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8676 less than ``op2``.
8677#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8678 less than or equal to ``op2``.
8679#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8680 not equal to ``op2``.
8681#. ``uno``: yields ``true`` if either operand is a QNAN.
8682#. ``true``: always yields ``true``, regardless of operands.
8683
James Molloy88eb5352015-07-10 12:52:00 +00008684The ``fcmp`` instruction can also optionally take any number of
8685:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8686otherwise unsafe floating point optimizations.
8687
8688Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8689only flags that have any effect on its semantics are those that allow
8690assumptions to be made about the values of input arguments; namely
8691``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8692
Sean Silvab084af42012-12-07 10:36:55 +00008693Example:
8694""""""""
8695
Renato Golin124f2592016-07-20 12:16:38 +00008696.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008697
8698 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8699 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8700 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8701 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8702
Sean Silvab084af42012-12-07 10:36:55 +00008703.. _i_phi:
8704
8705'``phi``' Instruction
8706^^^^^^^^^^^^^^^^^^^^^
8707
8708Syntax:
8709"""""""
8710
8711::
8712
8713 <result> = phi <ty> [ <val0>, <label0>], ...
8714
8715Overview:
8716"""""""""
8717
8718The '``phi``' instruction is used to implement the φ node in the SSA
8719graph representing the function.
8720
8721Arguments:
8722""""""""""
8723
8724The type of the incoming values is specified with the first type field.
8725After this, the '``phi``' instruction takes a list of pairs as
8726arguments, with one pair for each predecessor basic block of the current
8727block. Only values of :ref:`first class <t_firstclass>` type may be used as
8728the value arguments to the PHI node. Only labels may be used as the
8729label arguments.
8730
8731There must be no non-phi instructions between the start of a basic block
8732and the PHI instructions: i.e. PHI instructions must be first in a basic
8733block.
8734
8735For the purposes of the SSA form, the use of each incoming value is
8736deemed to occur on the edge from the corresponding predecessor block to
8737the current block (but after any definition of an '``invoke``'
8738instruction's return value on the same edge).
8739
8740Semantics:
8741""""""""""
8742
8743At runtime, the '``phi``' instruction logically takes on the value
8744specified by the pair corresponding to the predecessor basic block that
8745executed just prior to the current block.
8746
8747Example:
8748""""""""
8749
8750.. code-block:: llvm
8751
8752 Loop: ; Infinite loop that counts from 0 on up...
8753 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8754 %nextindvar = add i32 %indvar, 1
8755 br label %Loop
8756
8757.. _i_select:
8758
8759'``select``' Instruction
8760^^^^^^^^^^^^^^^^^^^^^^^^
8761
8762Syntax:
8763"""""""
8764
8765::
8766
8767 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8768
8769 selty is either i1 or {<N x i1>}
8770
8771Overview:
8772"""""""""
8773
8774The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008775condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008776
8777Arguments:
8778""""""""""
8779
8780The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8781values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008782class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008783
8784Semantics:
8785""""""""""
8786
8787If the condition is an i1 and it evaluates to 1, the instruction returns
8788the first value argument; otherwise, it returns the second value
8789argument.
8790
8791If the condition is a vector of i1, then the value arguments must be
8792vectors of the same size, and the selection is done element by element.
8793
David Majnemer40a0b592015-03-03 22:45:47 +00008794If the condition is an i1 and the value arguments are vectors of the
8795same size, then an entire vector is selected.
8796
Sean Silvab084af42012-12-07 10:36:55 +00008797Example:
8798""""""""
8799
8800.. code-block:: llvm
8801
8802 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8803
8804.. _i_call:
8805
8806'``call``' Instruction
8807^^^^^^^^^^^^^^^^^^^^^^
8808
8809Syntax:
8810"""""""
8811
8812::
8813
David Blaikieb83cf102016-07-13 17:21:34 +00008814 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008815 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008816
8817Overview:
8818"""""""""
8819
8820The '``call``' instruction represents a simple function call.
8821
8822Arguments:
8823""""""""""
8824
8825This instruction requires several arguments:
8826
Reid Kleckner5772b772014-04-24 20:14:34 +00008827#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008828 should perform tail call optimization. The ``tail`` marker is a hint that
8829 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008830 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008831 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008832
8833 #. The call will not cause unbounded stack growth if it is part of a
8834 recursive cycle in the call graph.
8835 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8836 forwarded in place.
8837
8838 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008839 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008840 rules:
8841
8842 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8843 or a pointer bitcast followed by a ret instruction.
8844 - The ret instruction must return the (possibly bitcasted) value
8845 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008846 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008847 parameters or return types may differ in pointee type, but not
8848 in address space.
8849 - The calling conventions of the caller and callee must match.
8850 - All ABI-impacting function attributes, such as sret, byval, inreg,
8851 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008852 - The callee must be varargs iff the caller is varargs. Bitcasting a
8853 non-varargs function to the appropriate varargs type is legal so
8854 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008855
8856 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8857 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008858
8859 - Caller and callee both have the calling convention ``fastcc``.
8860 - The call is in tail position (ret immediately follows call and ret
8861 uses value of call or is void).
8862 - Option ``-tailcallopt`` is enabled, or
8863 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008864 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008865 met. <CodeGenerator.html#tailcallopt>`_
8866
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008867#. The optional ``notail`` marker indicates that the optimizers should not add
8868 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8869 call optimization from being performed on the call.
8870
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008871#. The optional ``fast-math flags`` marker indicates that the call has one or more
8872 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8873 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8874 for calls that return a floating-point scalar or vector type.
8875
Sean Silvab084af42012-12-07 10:36:55 +00008876#. The optional "cconv" marker indicates which :ref:`calling
8877 convention <callingconv>` the call should use. If none is
8878 specified, the call defaults to using C calling conventions. The
8879 calling convention of the call must match the calling convention of
8880 the target function, or else the behavior is undefined.
8881#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8882 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8883 are valid here.
8884#. '``ty``': the type of the call instruction itself which is also the
8885 type of the return value. Functions that return no value are marked
8886 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008887#. '``fnty``': shall be the signature of the function being called. The
8888 argument types must match the types implied by this signature. This
8889 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008890#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008891 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008892 indirect ``call``'s are just as possible, calling an arbitrary pointer
8893 to function value.
8894#. '``function args``': argument list whose types match the function
8895 signature argument types and parameter attributes. All arguments must
8896 be of :ref:`first class <t_firstclass>` type. If the function signature
8897 indicates the function accepts a variable number of arguments, the
8898 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00008899#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008900#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008901
8902Semantics:
8903""""""""""
8904
8905The '``call``' instruction is used to cause control flow to transfer to
8906a specified function, with its incoming arguments bound to the specified
8907values. Upon a '``ret``' instruction in the called function, control
8908flow continues with the instruction after the function call, and the
8909return value of the function is bound to the result argument.
8910
8911Example:
8912""""""""
8913
8914.. code-block:: llvm
8915
8916 %retval = call i32 @test(i32 %argc)
8917 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8918 %X = tail call i32 @foo() ; yields i32
8919 %Y = tail call fastcc i32 @foo() ; yields i32
8920 call void %foo(i8 97 signext)
8921
8922 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008923 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008924 %gr = extractvalue %struct.A %r, 0 ; yields i32
8925 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8926 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8927 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8928
8929llvm treats calls to some functions with names and arguments that match
8930the standard C99 library as being the C99 library functions, and may
8931perform optimizations or generate code for them under that assumption.
8932This is something we'd like to change in the future to provide better
8933support for freestanding environments and non-C-based languages.
8934
8935.. _i_va_arg:
8936
8937'``va_arg``' Instruction
8938^^^^^^^^^^^^^^^^^^^^^^^^
8939
8940Syntax:
8941"""""""
8942
8943::
8944
8945 <resultval> = va_arg <va_list*> <arglist>, <argty>
8946
8947Overview:
8948"""""""""
8949
8950The '``va_arg``' instruction is used to access arguments passed through
8951the "variable argument" area of a function call. It is used to implement
8952the ``va_arg`` macro in C.
8953
8954Arguments:
8955""""""""""
8956
8957This instruction takes a ``va_list*`` value and the type of the
8958argument. It returns a value of the specified argument type and
8959increments the ``va_list`` to point to the next argument. The actual
8960type of ``va_list`` is target specific.
8961
8962Semantics:
8963""""""""""
8964
8965The '``va_arg``' instruction loads an argument of the specified type
8966from the specified ``va_list`` and causes the ``va_list`` to point to
8967the next argument. For more information, see the variable argument
8968handling :ref:`Intrinsic Functions <int_varargs>`.
8969
8970It is legal for this instruction to be called in a function which does
8971not take a variable number of arguments, for example, the ``vfprintf``
8972function.
8973
8974``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8975function <intrinsics>` because it takes a type as an argument.
8976
8977Example:
8978""""""""
8979
8980See the :ref:`variable argument processing <int_varargs>` section.
8981
8982Note that the code generator does not yet fully support va\_arg on many
8983targets. Also, it does not currently support va\_arg with aggregate
8984types on any target.
8985
8986.. _i_landingpad:
8987
8988'``landingpad``' Instruction
8989^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8990
8991Syntax:
8992"""""""
8993
8994::
8995
David Majnemer7fddecc2015-06-17 20:52:32 +00008996 <resultval> = landingpad <resultty> <clause>+
8997 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008998
8999 <clause> := catch <type> <value>
9000 <clause> := filter <array constant type> <array constant>
9001
9002Overview:
9003"""""""""
9004
9005The '``landingpad``' instruction is used by `LLVM's exception handling
9006system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009007is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009008code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009009defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009010re-entry to the function. The ``resultval`` has the type ``resultty``.
9011
9012Arguments:
9013""""""""""
9014
David Majnemer7fddecc2015-06-17 20:52:32 +00009015The optional
Sean Silvab084af42012-12-07 10:36:55 +00009016``cleanup`` flag indicates that the landing pad block is a cleanup.
9017
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009018A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009019contains the global variable representing the "type" that may be caught
9020or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9021clause takes an array constant as its argument. Use
9022"``[0 x i8**] undef``" for a filter which cannot throw. The
9023'``landingpad``' instruction must contain *at least* one ``clause`` or
9024the ``cleanup`` flag.
9025
9026Semantics:
9027""""""""""
9028
9029The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009030:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009031therefore the "result type" of the ``landingpad`` instruction. As with
9032calling conventions, how the personality function results are
9033represented in LLVM IR is target specific.
9034
9035The clauses are applied in order from top to bottom. If two
9036``landingpad`` instructions are merged together through inlining, the
9037clauses from the calling function are appended to the list of clauses.
9038When the call stack is being unwound due to an exception being thrown,
9039the exception is compared against each ``clause`` in turn. If it doesn't
9040match any of the clauses, and the ``cleanup`` flag is not set, then
9041unwinding continues further up the call stack.
9042
9043The ``landingpad`` instruction has several restrictions:
9044
9045- A landing pad block is a basic block which is the unwind destination
9046 of an '``invoke``' instruction.
9047- A landing pad block must have a '``landingpad``' instruction as its
9048 first non-PHI instruction.
9049- There can be only one '``landingpad``' instruction within the landing
9050 pad block.
9051- A basic block that is not a landing pad block may not include a
9052 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009053
9054Example:
9055""""""""
9056
9057.. code-block:: llvm
9058
9059 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009060 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009061 catch i8** @_ZTIi
9062 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009063 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009064 cleanup
9065 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009066 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009067 catch i8** @_ZTIi
9068 filter [1 x i8**] [@_ZTId]
9069
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009070.. _i_catchpad:
9071
9072'``catchpad``' Instruction
9073^^^^^^^^^^^^^^^^^^^^^^^^^^
9074
9075Syntax:
9076"""""""
9077
9078::
9079
9080 <resultval> = catchpad within <catchswitch> [<args>*]
9081
9082Overview:
9083"""""""""
9084
9085The '``catchpad``' instruction is used by `LLVM's exception handling
9086system <ExceptionHandling.html#overview>`_ to specify that a basic block
9087begins a catch handler --- one where a personality routine attempts to transfer
9088control to catch an exception.
9089
9090Arguments:
9091""""""""""
9092
9093The ``catchswitch`` operand must always be a token produced by a
9094:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9095ensures that each ``catchpad`` has exactly one predecessor block, and it always
9096terminates in a ``catchswitch``.
9097
9098The ``args`` correspond to whatever information the personality routine
9099requires to know if this is an appropriate handler for the exception. Control
9100will transfer to the ``catchpad`` if this is the first appropriate handler for
9101the exception.
9102
9103The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9104``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9105pads.
9106
9107Semantics:
9108""""""""""
9109
9110When the call stack is being unwound due to an exception being thrown, the
9111exception is compared against the ``args``. If it doesn't match, control will
9112not reach the ``catchpad`` instruction. The representation of ``args`` is
9113entirely target and personality function-specific.
9114
9115Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9116instruction must be the first non-phi of its parent basic block.
9117
9118The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9119instructions is described in the
9120`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9121
9122When a ``catchpad`` has been "entered" but not yet "exited" (as
9123described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9124it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9125that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9126
9127Example:
9128""""""""
9129
Renato Golin124f2592016-07-20 12:16:38 +00009130.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009131
9132 dispatch:
9133 %cs = catchswitch within none [label %handler0] unwind to caller
9134 ;; A catch block which can catch an integer.
9135 handler0:
9136 %tok = catchpad within %cs [i8** @_ZTIi]
9137
David Majnemer654e1302015-07-31 17:58:14 +00009138.. _i_cleanuppad:
9139
9140'``cleanuppad``' Instruction
9141^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9142
9143Syntax:
9144"""""""
9145
9146::
9147
David Majnemer8a1c45d2015-12-12 05:38:55 +00009148 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009149
9150Overview:
9151"""""""""
9152
9153The '``cleanuppad``' instruction is used by `LLVM's exception handling
9154system <ExceptionHandling.html#overview>`_ to specify that a basic block
9155is a cleanup block --- one where a personality routine attempts to
9156transfer control to run cleanup actions.
9157The ``args`` correspond to whatever additional
9158information the :ref:`personality function <personalityfn>` requires to
9159execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009160The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009161match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9162The ``parent`` argument is the token of the funclet that contains the
9163``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9164this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009165
9166Arguments:
9167""""""""""
9168
9169The instruction takes a list of arbitrary values which are interpreted
9170by the :ref:`personality function <personalityfn>`.
9171
9172Semantics:
9173""""""""""
9174
David Majnemer654e1302015-07-31 17:58:14 +00009175When the call stack is being unwound due to an exception being thrown,
9176the :ref:`personality function <personalityfn>` transfers control to the
9177``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009178As with calling conventions, how the personality function results are
9179represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009180
9181The ``cleanuppad`` instruction has several restrictions:
9182
9183- A cleanup block is a basic block which is the unwind destination of
9184 an exceptional instruction.
9185- A cleanup block must have a '``cleanuppad``' instruction as its
9186 first non-PHI instruction.
9187- There can be only one '``cleanuppad``' instruction within the
9188 cleanup block.
9189- A basic block that is not a cleanup block may not include a
9190 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009191
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009192When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9193described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9194it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9195that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009196
David Majnemer654e1302015-07-31 17:58:14 +00009197Example:
9198""""""""
9199
Renato Golin124f2592016-07-20 12:16:38 +00009200.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009201
David Majnemer8a1c45d2015-12-12 05:38:55 +00009202 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009203
Sean Silvab084af42012-12-07 10:36:55 +00009204.. _intrinsics:
9205
9206Intrinsic Functions
9207===================
9208
9209LLVM supports the notion of an "intrinsic function". These functions
9210have well known names and semantics and are required to follow certain
9211restrictions. Overall, these intrinsics represent an extension mechanism
9212for the LLVM language that does not require changing all of the
9213transformations in LLVM when adding to the language (or the bitcode
9214reader/writer, the parser, etc...).
9215
9216Intrinsic function names must all start with an "``llvm.``" prefix. This
9217prefix is reserved in LLVM for intrinsic names; thus, function names may
9218not begin with this prefix. Intrinsic functions must always be external
9219functions: you cannot define the body of intrinsic functions. Intrinsic
9220functions may only be used in call or invoke instructions: it is illegal
9221to take the address of an intrinsic function. Additionally, because
9222intrinsic functions are part of the LLVM language, it is required if any
9223are added that they be documented here.
9224
9225Some intrinsic functions can be overloaded, i.e., the intrinsic
9226represents a family of functions that perform the same operation but on
9227different data types. Because LLVM can represent over 8 million
9228different integer types, overloading is used commonly to allow an
9229intrinsic function to operate on any integer type. One or more of the
9230argument types or the result type can be overloaded to accept any
9231integer type. Argument types may also be defined as exactly matching a
9232previous argument's type or the result type. This allows an intrinsic
9233function which accepts multiple arguments, but needs all of them to be
9234of the same type, to only be overloaded with respect to a single
9235argument or the result.
9236
9237Overloaded intrinsics will have the names of its overloaded argument
9238types encoded into its function name, each preceded by a period. Only
9239those types which are overloaded result in a name suffix. Arguments
9240whose type is matched against another type do not. For example, the
9241``llvm.ctpop`` function can take an integer of any width and returns an
9242integer of exactly the same integer width. This leads to a family of
9243functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9244``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9245overloaded, and only one type suffix is required. Because the argument's
9246type is matched against the return type, it does not require its own
9247name suffix.
9248
9249To learn how to add an intrinsic function, please see the `Extending
9250LLVM Guide <ExtendingLLVM.html>`_.
9251
9252.. _int_varargs:
9253
9254Variable Argument Handling Intrinsics
9255-------------------------------------
9256
9257Variable argument support is defined in LLVM with the
9258:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9259functions. These functions are related to the similarly named macros
9260defined in the ``<stdarg.h>`` header file.
9261
9262All of these functions operate on arguments that use a target-specific
9263value type "``va_list``". The LLVM assembly language reference manual
9264does not define what this type is, so all transformations should be
9265prepared to handle these functions regardless of the type used.
9266
9267This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9268variable argument handling intrinsic functions are used.
9269
9270.. code-block:: llvm
9271
Tim Northoverab60bb92014-11-02 01:21:51 +00009272 ; This struct is different for every platform. For most platforms,
9273 ; it is merely an i8*.
9274 %struct.va_list = type { i8* }
9275
9276 ; For Unix x86_64 platforms, va_list is the following struct:
9277 ; %struct.va_list = type { i32, i32, i8*, i8* }
9278
Sean Silvab084af42012-12-07 10:36:55 +00009279 define i32 @test(i32 %X, ...) {
9280 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009281 %ap = alloca %struct.va_list
9282 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009283 call void @llvm.va_start(i8* %ap2)
9284
9285 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009286 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009287
9288 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9289 %aq = alloca i8*
9290 %aq2 = bitcast i8** %aq to i8*
9291 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9292 call void @llvm.va_end(i8* %aq2)
9293
9294 ; Stop processing of arguments.
9295 call void @llvm.va_end(i8* %ap2)
9296 ret i32 %tmp
9297 }
9298
9299 declare void @llvm.va_start(i8*)
9300 declare void @llvm.va_copy(i8*, i8*)
9301 declare void @llvm.va_end(i8*)
9302
9303.. _int_va_start:
9304
9305'``llvm.va_start``' Intrinsic
9306^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9307
9308Syntax:
9309"""""""
9310
9311::
9312
Nick Lewycky04f6de02013-09-11 22:04:52 +00009313 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009314
9315Overview:
9316"""""""""
9317
9318The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9319subsequent use by ``va_arg``.
9320
9321Arguments:
9322""""""""""
9323
9324The argument is a pointer to a ``va_list`` element to initialize.
9325
9326Semantics:
9327""""""""""
9328
9329The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9330available in C. In a target-dependent way, it initializes the
9331``va_list`` element to which the argument points, so that the next call
9332to ``va_arg`` will produce the first variable argument passed to the
9333function. Unlike the C ``va_start`` macro, this intrinsic does not need
9334to know the last argument of the function as the compiler can figure
9335that out.
9336
9337'``llvm.va_end``' Intrinsic
9338^^^^^^^^^^^^^^^^^^^^^^^^^^^
9339
9340Syntax:
9341"""""""
9342
9343::
9344
9345 declare void @llvm.va_end(i8* <arglist>)
9346
9347Overview:
9348"""""""""
9349
9350The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9351initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9352
9353Arguments:
9354""""""""""
9355
9356The argument is a pointer to a ``va_list`` to destroy.
9357
9358Semantics:
9359""""""""""
9360
9361The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9362available in C. In a target-dependent way, it destroys the ``va_list``
9363element to which the argument points. Calls to
9364:ref:`llvm.va_start <int_va_start>` and
9365:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9366``llvm.va_end``.
9367
9368.. _int_va_copy:
9369
9370'``llvm.va_copy``' Intrinsic
9371^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9372
9373Syntax:
9374"""""""
9375
9376::
9377
9378 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9379
9380Overview:
9381"""""""""
9382
9383The '``llvm.va_copy``' intrinsic copies the current argument position
9384from the source argument list to the destination argument list.
9385
9386Arguments:
9387""""""""""
9388
9389The first argument is a pointer to a ``va_list`` element to initialize.
9390The second argument is a pointer to a ``va_list`` element to copy from.
9391
9392Semantics:
9393""""""""""
9394
9395The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9396available in C. In a target-dependent way, it copies the source
9397``va_list`` element into the destination ``va_list`` element. This
9398intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9399arbitrarily complex and require, for example, memory allocation.
9400
9401Accurate Garbage Collection Intrinsics
9402--------------------------------------
9403
Philip Reamesc5b0f562015-02-25 23:52:06 +00009404LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009405(GC) requires the frontend to generate code containing appropriate intrinsic
9406calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009407intrinsics in a manner which is appropriate for the target collector.
9408
Sean Silvab084af42012-12-07 10:36:55 +00009409These intrinsics allow identification of :ref:`GC roots on the
9410stack <int_gcroot>`, as well as garbage collector implementations that
9411require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009412Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009413these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009414details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009415
Philip Reamesf80bbff2015-02-25 23:45:20 +00009416Experimental Statepoint Intrinsics
9417^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9418
9419LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009420collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009421to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009422:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009423differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009424<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009425described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009426
9427.. _int_gcroot:
9428
9429'``llvm.gcroot``' Intrinsic
9430^^^^^^^^^^^^^^^^^^^^^^^^^^^
9431
9432Syntax:
9433"""""""
9434
9435::
9436
9437 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9438
9439Overview:
9440"""""""""
9441
9442The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9443the code generator, and allows some metadata to be associated with it.
9444
9445Arguments:
9446""""""""""
9447
9448The first argument specifies the address of a stack object that contains
9449the root pointer. The second pointer (which must be either a constant or
9450a global value address) contains the meta-data to be associated with the
9451root.
9452
9453Semantics:
9454""""""""""
9455
9456At runtime, a call to this intrinsic stores a null pointer into the
9457"ptrloc" location. At compile-time, the code generator generates
9458information to allow the runtime to find the pointer at GC safe points.
9459The '``llvm.gcroot``' intrinsic may only be used in a function which
9460:ref:`specifies a GC algorithm <gc>`.
9461
9462.. _int_gcread:
9463
9464'``llvm.gcread``' Intrinsic
9465^^^^^^^^^^^^^^^^^^^^^^^^^^^
9466
9467Syntax:
9468"""""""
9469
9470::
9471
9472 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9473
9474Overview:
9475"""""""""
9476
9477The '``llvm.gcread``' intrinsic identifies reads of references from heap
9478locations, allowing garbage collector implementations that require read
9479barriers.
9480
9481Arguments:
9482""""""""""
9483
9484The second argument is the address to read from, which should be an
9485address allocated from the garbage collector. The first object is a
9486pointer to the start of the referenced object, if needed by the language
9487runtime (otherwise null).
9488
9489Semantics:
9490""""""""""
9491
9492The '``llvm.gcread``' intrinsic has the same semantics as a load
9493instruction, but may be replaced with substantially more complex code by
9494the garbage collector runtime, as needed. The '``llvm.gcread``'
9495intrinsic may only be used in a function which :ref:`specifies a GC
9496algorithm <gc>`.
9497
9498.. _int_gcwrite:
9499
9500'``llvm.gcwrite``' Intrinsic
9501^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9502
9503Syntax:
9504"""""""
9505
9506::
9507
9508 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9509
9510Overview:
9511"""""""""
9512
9513The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9514locations, allowing garbage collector implementations that require write
9515barriers (such as generational or reference counting collectors).
9516
9517Arguments:
9518""""""""""
9519
9520The first argument is the reference to store, the second is the start of
9521the object to store it to, and the third is the address of the field of
9522Obj to store to. If the runtime does not require a pointer to the
9523object, Obj may be null.
9524
9525Semantics:
9526""""""""""
9527
9528The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9529instruction, but may be replaced with substantially more complex code by
9530the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9531intrinsic may only be used in a function which :ref:`specifies a GC
9532algorithm <gc>`.
9533
9534Code Generator Intrinsics
9535-------------------------
9536
9537These intrinsics are provided by LLVM to expose special features that
9538may only be implemented with code generator support.
9539
9540'``llvm.returnaddress``' Intrinsic
9541^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9542
9543Syntax:
9544"""""""
9545
9546::
9547
9548 declare i8 *@llvm.returnaddress(i32 <level>)
9549
9550Overview:
9551"""""""""
9552
9553The '``llvm.returnaddress``' intrinsic attempts to compute a
9554target-specific value indicating the return address of the current
9555function or one of its callers.
9556
9557Arguments:
9558""""""""""
9559
9560The argument to this intrinsic indicates which function to return the
9561address for. Zero indicates the calling function, one indicates its
9562caller, etc. The argument is **required** to be a constant integer
9563value.
9564
9565Semantics:
9566""""""""""
9567
9568The '``llvm.returnaddress``' intrinsic either returns a pointer
9569indicating the return address of the specified call frame, or zero if it
9570cannot be identified. The value returned by this intrinsic is likely to
9571be incorrect or 0 for arguments other than zero, so it should only be
9572used for debugging purposes.
9573
9574Note that calling this intrinsic does not prevent function inlining or
9575other aggressive transformations, so the value returned may not be that
9576of the obvious source-language caller.
9577
Albert Gutowski795d7d62016-10-12 22:13:19 +00009578'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009580
9581Syntax:
9582"""""""
9583
9584::
9585
9586 declare i8 *@llvm.addressofreturnaddress()
9587
9588Overview:
9589"""""""""
9590
9591The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9592pointer to the place in the stack frame where the return address of the
9593current function is stored.
9594
9595Semantics:
9596""""""""""
9597
9598Note that calling this intrinsic does not prevent function inlining or
9599other aggressive transformations, so the value returned may not be that
9600of the obvious source-language caller.
9601
9602This intrinsic is only implemented for x86.
9603
Sean Silvab084af42012-12-07 10:36:55 +00009604'``llvm.frameaddress``' Intrinsic
9605^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9606
9607Syntax:
9608"""""""
9609
9610::
9611
9612 declare i8* @llvm.frameaddress(i32 <level>)
9613
9614Overview:
9615"""""""""
9616
9617The '``llvm.frameaddress``' intrinsic attempts to return the
9618target-specific frame pointer value for the specified stack frame.
9619
9620Arguments:
9621""""""""""
9622
9623The argument to this intrinsic indicates which function to return the
9624frame pointer for. Zero indicates the calling function, one indicates
9625its caller, etc. The argument is **required** to be a constant integer
9626value.
9627
9628Semantics:
9629""""""""""
9630
9631The '``llvm.frameaddress``' intrinsic either returns a pointer
9632indicating the frame address of the specified call frame, or zero if it
9633cannot be identified. The value returned by this intrinsic is likely to
9634be incorrect or 0 for arguments other than zero, so it should only be
9635used for debugging purposes.
9636
9637Note that calling this intrinsic does not prevent function inlining or
9638other aggressive transformations, so the value returned may not be that
9639of the obvious source-language caller.
9640
Reid Kleckner60381792015-07-07 22:25:32 +00009641'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9643
9644Syntax:
9645"""""""
9646
9647::
9648
Reid Kleckner60381792015-07-07 22:25:32 +00009649 declare void @llvm.localescape(...)
9650 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009651
9652Overview:
9653"""""""""
9654
Reid Kleckner60381792015-07-07 22:25:32 +00009655The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9656allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009657live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009658computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009659
9660Arguments:
9661""""""""""
9662
Reid Kleckner60381792015-07-07 22:25:32 +00009663All arguments to '``llvm.localescape``' must be pointers to static allocas or
9664casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009665once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009666
Reid Kleckner60381792015-07-07 22:25:32 +00009667The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009668bitcasted pointer to a function defined in the current module. The code
9669generator cannot determine the frame allocation offset of functions defined in
9670other modules.
9671
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009672The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9673call frame that is currently live. The return value of '``llvm.localaddress``'
9674is one way to produce such a value, but various runtimes also expose a suitable
9675pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009676
Reid Kleckner60381792015-07-07 22:25:32 +00009677The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9678'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009679
Reid Klecknere9b89312015-01-13 00:48:10 +00009680Semantics:
9681""""""""""
9682
Reid Kleckner60381792015-07-07 22:25:32 +00009683These intrinsics allow a group of functions to share access to a set of local
9684stack allocations of a one parent function. The parent function may call the
9685'``llvm.localescape``' intrinsic once from the function entry block, and the
9686child functions can use '``llvm.localrecover``' to access the escaped allocas.
9687The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9688the escaped allocas are allocated, which would break attempts to use
9689'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009690
Renato Golinc7aea402014-05-06 16:51:25 +00009691.. _int_read_register:
9692.. _int_write_register:
9693
9694'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9696
9697Syntax:
9698"""""""
9699
9700::
9701
9702 declare i32 @llvm.read_register.i32(metadata)
9703 declare i64 @llvm.read_register.i64(metadata)
9704 declare void @llvm.write_register.i32(metadata, i32 @value)
9705 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009706 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009707
9708Overview:
9709"""""""""
9710
9711The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9712provides access to the named register. The register must be valid on
9713the architecture being compiled to. The type needs to be compatible
9714with the register being read.
9715
9716Semantics:
9717""""""""""
9718
9719The '``llvm.read_register``' intrinsic returns the current value of the
9720register, where possible. The '``llvm.write_register``' intrinsic sets
9721the current value of the register, where possible.
9722
9723This is useful to implement named register global variables that need
9724to always be mapped to a specific register, as is common practice on
9725bare-metal programs including OS kernels.
9726
9727The compiler doesn't check for register availability or use of the used
9728register in surrounding code, including inline assembly. Because of that,
9729allocatable registers are not supported.
9730
9731Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009732architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009733work is needed to support other registers and even more so, allocatable
9734registers.
9735
Sean Silvab084af42012-12-07 10:36:55 +00009736.. _int_stacksave:
9737
9738'``llvm.stacksave``' Intrinsic
9739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9740
9741Syntax:
9742"""""""
9743
9744::
9745
9746 declare i8* @llvm.stacksave()
9747
9748Overview:
9749"""""""""
9750
9751The '``llvm.stacksave``' intrinsic is used to remember the current state
9752of the function stack, for use with
9753:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9754implementing language features like scoped automatic variable sized
9755arrays in C99.
9756
9757Semantics:
9758""""""""""
9759
9760This intrinsic returns a opaque pointer value that can be passed to
9761:ref:`llvm.stackrestore <int_stackrestore>`. When an
9762``llvm.stackrestore`` intrinsic is executed with a value saved from
9763``llvm.stacksave``, it effectively restores the state of the stack to
9764the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9765practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9766were allocated after the ``llvm.stacksave`` was executed.
9767
9768.. _int_stackrestore:
9769
9770'``llvm.stackrestore``' Intrinsic
9771^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9772
9773Syntax:
9774"""""""
9775
9776::
9777
9778 declare void @llvm.stackrestore(i8* %ptr)
9779
9780Overview:
9781"""""""""
9782
9783The '``llvm.stackrestore``' intrinsic is used to restore the state of
9784the function stack to the state it was in when the corresponding
9785:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9786useful for implementing language features like scoped automatic variable
9787sized arrays in C99.
9788
9789Semantics:
9790""""""""""
9791
9792See the description for :ref:`llvm.stacksave <int_stacksave>`.
9793
Yury Gribovd7dbb662015-12-01 11:40:55 +00009794.. _int_get_dynamic_area_offset:
9795
9796'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009798
9799Syntax:
9800"""""""
9801
9802::
9803
9804 declare i32 @llvm.get.dynamic.area.offset.i32()
9805 declare i64 @llvm.get.dynamic.area.offset.i64()
9806
Lang Hames10239932016-10-08 00:20:42 +00009807Overview:
9808"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009809
9810 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9811 get the offset from native stack pointer to the address of the most
9812 recent dynamic alloca on the caller's stack. These intrinsics are
9813 intendend for use in combination with
9814 :ref:`llvm.stacksave <int_stacksave>` to get a
9815 pointer to the most recent dynamic alloca. This is useful, for example,
9816 for AddressSanitizer's stack unpoisoning routines.
9817
9818Semantics:
9819""""""""""
9820
9821 These intrinsics return a non-negative integer value that can be used to
9822 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9823 on the caller's stack. In particular, for targets where stack grows downwards,
9824 adding this offset to the native stack pointer would get the address of the most
9825 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009826 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009827 one past the end of the most recent dynamic alloca.
9828
9829 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9830 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9831 compile-time-known constant value.
9832
9833 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +00009834 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +00009835
Sean Silvab084af42012-12-07 10:36:55 +00009836'``llvm.prefetch``' Intrinsic
9837^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9838
9839Syntax:
9840"""""""
9841
9842::
9843
9844 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9845
9846Overview:
9847"""""""""
9848
9849The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9850insert a prefetch instruction if supported; otherwise, it is a noop.
9851Prefetches have no effect on the behavior of the program but can change
9852its performance characteristics.
9853
9854Arguments:
9855""""""""""
9856
9857``address`` is the address to be prefetched, ``rw`` is the specifier
9858determining if the fetch should be for a read (0) or write (1), and
9859``locality`` is a temporal locality specifier ranging from (0) - no
9860locality, to (3) - extremely local keep in cache. The ``cache type``
9861specifies whether the prefetch is performed on the data (1) or
9862instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9863arguments must be constant integers.
9864
9865Semantics:
9866""""""""""
9867
9868This intrinsic does not modify the behavior of the program. In
9869particular, prefetches cannot trap and do not produce a value. On
9870targets that support this intrinsic, the prefetch can provide hints to
9871the processor cache for better performance.
9872
9873'``llvm.pcmarker``' Intrinsic
9874^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9875
9876Syntax:
9877"""""""
9878
9879::
9880
9881 declare void @llvm.pcmarker(i32 <id>)
9882
9883Overview:
9884"""""""""
9885
9886The '``llvm.pcmarker``' intrinsic is a method to export a Program
9887Counter (PC) in a region of code to simulators and other tools. The
9888method is target specific, but it is expected that the marker will use
9889exported symbols to transmit the PC of the marker. The marker makes no
9890guarantees that it will remain with any specific instruction after
9891optimizations. It is possible that the presence of a marker will inhibit
9892optimizations. The intended use is to be inserted after optimizations to
9893allow correlations of simulation runs.
9894
9895Arguments:
9896""""""""""
9897
9898``id`` is a numerical id identifying the marker.
9899
9900Semantics:
9901""""""""""
9902
9903This intrinsic does not modify the behavior of the program. Backends
9904that do not support this intrinsic may ignore it.
9905
9906'``llvm.readcyclecounter``' Intrinsic
9907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9908
9909Syntax:
9910"""""""
9911
9912::
9913
9914 declare i64 @llvm.readcyclecounter()
9915
9916Overview:
9917"""""""""
9918
9919The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9920counter register (or similar low latency, high accuracy clocks) on those
9921targets that support it. On X86, it should map to RDTSC. On Alpha, it
9922should map to RPCC. As the backing counters overflow quickly (on the
9923order of 9 seconds on alpha), this should only be used for small
9924timings.
9925
9926Semantics:
9927""""""""""
9928
9929When directly supported, reading the cycle counter should not modify any
9930memory. Implementations are allowed to either return a application
9931specific value or a system wide value. On backends without support, this
9932is lowered to a constant 0.
9933
Tim Northoverbc933082013-05-23 19:11:20 +00009934Note that runtime support may be conditional on the privilege-level code is
9935running at and the host platform.
9936
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009937'``llvm.clear_cache``' Intrinsic
9938^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9939
9940Syntax:
9941"""""""
9942
9943::
9944
9945 declare void @llvm.clear_cache(i8*, i8*)
9946
9947Overview:
9948"""""""""
9949
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009950The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9951in the specified range to the execution unit of the processor. On
9952targets with non-unified instruction and data cache, the implementation
9953flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009954
9955Semantics:
9956""""""""""
9957
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009958On platforms with coherent instruction and data caches (e.g. x86), this
9959intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009960cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009961instructions or a system call, if cache flushing requires special
9962privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009963
Sean Silvad02bf3e2014-04-07 22:29:53 +00009964The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009965time library.
Renato Golin93010e62014-03-26 14:01:32 +00009966
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009967This instrinsic does *not* empty the instruction pipeline. Modifications
9968of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009969
Justin Bogner61ba2e32014-12-08 18:02:35 +00009970'``llvm.instrprof_increment``' Intrinsic
9971^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9972
9973Syntax:
9974"""""""
9975
9976::
9977
9978 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9979 i32 <num-counters>, i32 <index>)
9980
9981Overview:
9982"""""""""
9983
9984The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9985frontend for use with instrumentation based profiling. These will be
9986lowered by the ``-instrprof`` pass to generate execution counts of a
9987program at runtime.
9988
9989Arguments:
9990""""""""""
9991
9992The first argument is a pointer to a global variable containing the
9993name of the entity being instrumented. This should generally be the
9994(mangled) function name for a set of counters.
9995
9996The second argument is a hash value that can be used by the consumer
9997of the profile data to detect changes to the instrumented source, and
9998the third is the number of counters associated with ``name``. It is an
9999error if ``hash`` or ``num-counters`` differ between two instances of
10000``instrprof_increment`` that refer to the same name.
10001
10002The last argument refers to which of the counters for ``name`` should
10003be incremented. It should be a value between 0 and ``num-counters``.
10004
10005Semantics:
10006""""""""""
10007
10008This intrinsic represents an increment of a profiling counter. It will
10009cause the ``-instrprof`` pass to generate the appropriate data
10010structures and the code to increment the appropriate value, in a
10011format that can be written out by a compiler runtime and consumed via
10012the ``llvm-profdata`` tool.
10013
Xinliang David Li4ca17332016-09-18 18:34:07 +000010014'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010015^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010016
10017Syntax:
10018"""""""
10019
10020::
10021
10022 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
10023 i32 <num-counters>,
10024 i32 <index>, i64 <step>)
10025
10026Overview:
10027"""""""""
10028
10029The '``llvm.instrprof_increment_step``' intrinsic is an extension to
10030the '``llvm.instrprof_increment``' intrinsic with an additional fifth
10031argument to specify the step of the increment.
10032
10033Arguments:
10034""""""""""
10035The first four arguments are the same as '``llvm.instrprof_increment``'
10036instrinsic.
10037
10038The last argument specifies the value of the increment of the counter variable.
10039
10040Semantics:
10041""""""""""
10042See description of '``llvm.instrprof_increment``' instrinsic.
10043
10044
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010045'``llvm.instrprof_value_profile``' Intrinsic
10046^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10047
10048Syntax:
10049"""""""
10050
10051::
10052
10053 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
10054 i64 <value>, i32 <value_kind>,
10055 i32 <index>)
10056
10057Overview:
10058"""""""""
10059
10060The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
10061frontend for use with instrumentation based profiling. This will be
10062lowered by the ``-instrprof`` pass to find out the target values,
10063instrumented expressions take in a program at runtime.
10064
10065Arguments:
10066""""""""""
10067
10068The first argument is a pointer to a global variable containing the
10069name of the entity being instrumented. ``name`` should generally be the
10070(mangled) function name for a set of counters.
10071
10072The second argument is a hash value that can be used by the consumer
10073of the profile data to detect changes to the instrumented source. It
10074is an error if ``hash`` differs between two instances of
10075``llvm.instrprof_*`` that refer to the same name.
10076
10077The third argument is the value of the expression being profiled. The profiled
10078expression's value should be representable as an unsigned 64-bit value. The
10079fourth argument represents the kind of value profiling that is being done. The
10080supported value profiling kinds are enumerated through the
10081``InstrProfValueKind`` type declared in the
10082``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10083index of the instrumented expression within ``name``. It should be >= 0.
10084
10085Semantics:
10086""""""""""
10087
10088This intrinsic represents the point where a call to a runtime routine
10089should be inserted for value profiling of target expressions. ``-instrprof``
10090pass will generate the appropriate data structures and replace the
10091``llvm.instrprof_value_profile`` intrinsic with the call to the profile
10092runtime library with proper arguments.
10093
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010094'``llvm.thread.pointer``' Intrinsic
10095^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10096
10097Syntax:
10098"""""""
10099
10100::
10101
10102 declare i8* @llvm.thread.pointer()
10103
10104Overview:
10105"""""""""
10106
10107The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10108pointer.
10109
10110Semantics:
10111""""""""""
10112
10113The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10114for the current thread. The exact semantics of this value are target
10115specific: it may point to the start of TLS area, to the end, or somewhere
10116in the middle. Depending on the target, this intrinsic may read a register,
10117call a helper function, read from an alternate memory space, or perform
10118other operations necessary to locate the TLS area. Not all targets support
10119this intrinsic.
10120
Sean Silvab084af42012-12-07 10:36:55 +000010121Standard C Library Intrinsics
10122-----------------------------
10123
10124LLVM provides intrinsics for a few important standard C library
10125functions. These intrinsics allow source-language front-ends to pass
10126information about the alignment of the pointer arguments to the code
10127generator, providing opportunity for more efficient code generation.
10128
10129.. _int_memcpy:
10130
10131'``llvm.memcpy``' Intrinsic
10132^^^^^^^^^^^^^^^^^^^^^^^^^^^
10133
10134Syntax:
10135"""""""
10136
10137This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10138integer bit width and for different address spaces. Not all targets
10139support all bit widths however.
10140
10141::
10142
10143 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10144 i32 <len>, i32 <align>, i1 <isvolatile>)
10145 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10146 i64 <len>, i32 <align>, i1 <isvolatile>)
10147
10148Overview:
10149"""""""""
10150
10151The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10152source location to the destination location.
10153
10154Note that, unlike the standard libc function, the ``llvm.memcpy.*``
10155intrinsics do not return a value, takes extra alignment/isvolatile
10156arguments and the pointers can be in specified address spaces.
10157
10158Arguments:
10159""""""""""
10160
10161The first argument is a pointer to the destination, the second is a
10162pointer to the source. The third argument is an integer argument
10163specifying the number of bytes to copy, the fourth argument is the
10164alignment of the source and destination locations, and the fifth is a
10165boolean indicating a volatile access.
10166
10167If the call to this intrinsic has an alignment value that is not 0 or 1,
10168then the caller guarantees that both the source and destination pointers
10169are aligned to that boundary.
10170
10171If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10172a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10173very cleanly specified and it is unwise to depend on it.
10174
10175Semantics:
10176""""""""""
10177
10178The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10179source location to the destination location, which are not allowed to
10180overlap. It copies "len" bytes of memory over. If the argument is known
10181to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010182argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010183
10184'``llvm.memmove``' Intrinsic
10185^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10186
10187Syntax:
10188"""""""
10189
10190This is an overloaded intrinsic. You can use llvm.memmove on any integer
10191bit width and for different address space. Not all targets support all
10192bit widths however.
10193
10194::
10195
10196 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10197 i32 <len>, i32 <align>, i1 <isvolatile>)
10198 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10199 i64 <len>, i32 <align>, i1 <isvolatile>)
10200
10201Overview:
10202"""""""""
10203
10204The '``llvm.memmove.*``' intrinsics move a block of memory from the
10205source location to the destination location. It is similar to the
10206'``llvm.memcpy``' intrinsic but allows the two memory locations to
10207overlap.
10208
10209Note that, unlike the standard libc function, the ``llvm.memmove.*``
10210intrinsics do not return a value, takes extra alignment/isvolatile
10211arguments and the pointers can be in specified address spaces.
10212
10213Arguments:
10214""""""""""
10215
10216The first argument is a pointer to the destination, the second is a
10217pointer to the source. The third argument is an integer argument
10218specifying the number of bytes to copy, the fourth argument is the
10219alignment of the source and destination locations, and the fifth is a
10220boolean indicating a volatile access.
10221
10222If the call to this intrinsic has an alignment value that is not 0 or 1,
10223then the caller guarantees that the source and destination pointers are
10224aligned to that boundary.
10225
10226If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10227is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10228not very cleanly specified and it is unwise to depend on it.
10229
10230Semantics:
10231""""""""""
10232
10233The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10234source location to the destination location, which may overlap. It
10235copies "len" bytes of memory over. If the argument is known to be
10236aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010237otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010238
10239'``llvm.memset.*``' Intrinsics
10240^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10241
10242Syntax:
10243"""""""
10244
10245This is an overloaded intrinsic. You can use llvm.memset on any integer
10246bit width and for different address spaces. However, not all targets
10247support all bit widths.
10248
10249::
10250
10251 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10252 i32 <len>, i32 <align>, i1 <isvolatile>)
10253 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10254 i64 <len>, i32 <align>, i1 <isvolatile>)
10255
10256Overview:
10257"""""""""
10258
10259The '``llvm.memset.*``' intrinsics fill a block of memory with a
10260particular byte value.
10261
10262Note that, unlike the standard libc function, the ``llvm.memset``
10263intrinsic does not return a value and takes extra alignment/volatile
10264arguments. Also, the destination can be in an arbitrary address space.
10265
10266Arguments:
10267""""""""""
10268
10269The first argument is a pointer to the destination to fill, the second
10270is the byte value with which to fill it, the third argument is an
10271integer argument specifying the number of bytes to fill, and the fourth
10272argument is the known alignment of the destination location.
10273
10274If the call to this intrinsic has an alignment value that is not 0 or 1,
10275then the caller guarantees that the destination pointer is aligned to
10276that boundary.
10277
10278If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10279a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10280very cleanly specified and it is unwise to depend on it.
10281
10282Semantics:
10283""""""""""
10284
10285The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10286at the destination location. If the argument is known to be aligned to
10287some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010288it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010289
10290'``llvm.sqrt.*``' Intrinsic
10291^^^^^^^^^^^^^^^^^^^^^^^^^^^
10292
10293Syntax:
10294"""""""
10295
10296This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10297floating point or vector of floating point type. Not all targets support
10298all types however.
10299
10300::
10301
10302 declare float @llvm.sqrt.f32(float %Val)
10303 declare double @llvm.sqrt.f64(double %Val)
10304 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10305 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10306 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10307
10308Overview:
10309"""""""""
10310
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010311The '``llvm.sqrt``' intrinsics return the square root of the specified value,
Justin Lebarcb9b41d2017-01-27 00:58:03 +000010312returning the same value as the libm '``sqrt``' functions would, but without
10313trapping or setting ``errno``.
Sean Silvab084af42012-12-07 10:36:55 +000010314
10315Arguments:
10316""""""""""
10317
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010318The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010319
10320Semantics:
10321""""""""""
10322
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010323This function returns the square root of the operand if it is a nonnegative
10324floating point number.
Sean Silvab084af42012-12-07 10:36:55 +000010325
10326'``llvm.powi.*``' Intrinsic
10327^^^^^^^^^^^^^^^^^^^^^^^^^^^
10328
10329Syntax:
10330"""""""
10331
10332This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10333floating point or vector of floating point type. Not all targets support
10334all types however.
10335
10336::
10337
10338 declare float @llvm.powi.f32(float %Val, i32 %power)
10339 declare double @llvm.powi.f64(double %Val, i32 %power)
10340 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10341 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10342 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10343
10344Overview:
10345"""""""""
10346
10347The '``llvm.powi.*``' intrinsics return the first operand raised to the
10348specified (positive or negative) power. The order of evaluation of
10349multiplications is not defined. When a vector of floating point type is
10350used, the second argument remains a scalar integer value.
10351
10352Arguments:
10353""""""""""
10354
10355The second argument is an integer power, and the first is a value to
10356raise to that power.
10357
10358Semantics:
10359""""""""""
10360
10361This function returns the first value raised to the second power with an
10362unspecified sequence of rounding operations.
10363
10364'``llvm.sin.*``' Intrinsic
10365^^^^^^^^^^^^^^^^^^^^^^^^^^
10366
10367Syntax:
10368"""""""
10369
10370This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10371floating point or vector of floating point type. Not all targets support
10372all types however.
10373
10374::
10375
10376 declare float @llvm.sin.f32(float %Val)
10377 declare double @llvm.sin.f64(double %Val)
10378 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10379 declare fp128 @llvm.sin.f128(fp128 %Val)
10380 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10381
10382Overview:
10383"""""""""
10384
10385The '``llvm.sin.*``' intrinsics return the sine of the operand.
10386
10387Arguments:
10388""""""""""
10389
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010390The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010391
10392Semantics:
10393""""""""""
10394
10395This function returns the sine of the specified operand, returning the
10396same values as the libm ``sin`` functions would, and handles error
10397conditions in the same way.
10398
10399'``llvm.cos.*``' Intrinsic
10400^^^^^^^^^^^^^^^^^^^^^^^^^^
10401
10402Syntax:
10403"""""""
10404
10405This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10406floating point or vector of floating point type. Not all targets support
10407all types however.
10408
10409::
10410
10411 declare float @llvm.cos.f32(float %Val)
10412 declare double @llvm.cos.f64(double %Val)
10413 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10414 declare fp128 @llvm.cos.f128(fp128 %Val)
10415 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10416
10417Overview:
10418"""""""""
10419
10420The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10421
10422Arguments:
10423""""""""""
10424
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010425The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010426
10427Semantics:
10428""""""""""
10429
10430This function returns the cosine of the specified operand, returning the
10431same values as the libm ``cos`` functions would, and handles error
10432conditions in the same way.
10433
10434'``llvm.pow.*``' Intrinsic
10435^^^^^^^^^^^^^^^^^^^^^^^^^^
10436
10437Syntax:
10438"""""""
10439
10440This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10441floating point or vector of floating point type. Not all targets support
10442all types however.
10443
10444::
10445
10446 declare float @llvm.pow.f32(float %Val, float %Power)
10447 declare double @llvm.pow.f64(double %Val, double %Power)
10448 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10449 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10450 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10451
10452Overview:
10453"""""""""
10454
10455The '``llvm.pow.*``' intrinsics return the first operand raised to the
10456specified (positive or negative) power.
10457
10458Arguments:
10459""""""""""
10460
10461The second argument is a floating point power, and the first is a value
10462to raise to that power.
10463
10464Semantics:
10465""""""""""
10466
10467This function returns the first value raised to the second power,
10468returning the same values as the libm ``pow`` functions would, and
10469handles error conditions in the same way.
10470
10471'``llvm.exp.*``' Intrinsic
10472^^^^^^^^^^^^^^^^^^^^^^^^^^
10473
10474Syntax:
10475"""""""
10476
10477This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10478floating point or vector of floating point type. Not all targets support
10479all types however.
10480
10481::
10482
10483 declare float @llvm.exp.f32(float %Val)
10484 declare double @llvm.exp.f64(double %Val)
10485 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10486 declare fp128 @llvm.exp.f128(fp128 %Val)
10487 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10488
10489Overview:
10490"""""""""
10491
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010492The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
10493value.
Sean Silvab084af42012-12-07 10:36:55 +000010494
10495Arguments:
10496""""""""""
10497
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010498The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010499
10500Semantics:
10501""""""""""
10502
10503This function returns the same values as the libm ``exp`` functions
10504would, and handles error conditions in the same way.
10505
10506'``llvm.exp2.*``' Intrinsic
10507^^^^^^^^^^^^^^^^^^^^^^^^^^^
10508
10509Syntax:
10510"""""""
10511
10512This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10513floating point or vector of floating point type. Not all targets support
10514all types however.
10515
10516::
10517
10518 declare float @llvm.exp2.f32(float %Val)
10519 declare double @llvm.exp2.f64(double %Val)
10520 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10521 declare fp128 @llvm.exp2.f128(fp128 %Val)
10522 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10523
10524Overview:
10525"""""""""
10526
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010527The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
10528specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010529
10530Arguments:
10531""""""""""
10532
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010533The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010534
10535Semantics:
10536""""""""""
10537
10538This function returns the same values as the libm ``exp2`` functions
10539would, and handles error conditions in the same way.
10540
10541'``llvm.log.*``' Intrinsic
10542^^^^^^^^^^^^^^^^^^^^^^^^^^
10543
10544Syntax:
10545"""""""
10546
10547This is an overloaded intrinsic. You can use ``llvm.log`` on any
10548floating point or vector of floating point type. Not all targets support
10549all types however.
10550
10551::
10552
10553 declare float @llvm.log.f32(float %Val)
10554 declare double @llvm.log.f64(double %Val)
10555 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10556 declare fp128 @llvm.log.f128(fp128 %Val)
10557 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10558
10559Overview:
10560"""""""""
10561
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010562The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
10563value.
Sean Silvab084af42012-12-07 10:36:55 +000010564
10565Arguments:
10566""""""""""
10567
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010568The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010569
10570Semantics:
10571""""""""""
10572
10573This function returns the same values as the libm ``log`` functions
10574would, and handles error conditions in the same way.
10575
10576'``llvm.log10.*``' Intrinsic
10577^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10578
10579Syntax:
10580"""""""
10581
10582This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10583floating point or vector of floating point type. Not all targets support
10584all types however.
10585
10586::
10587
10588 declare float @llvm.log10.f32(float %Val)
10589 declare double @llvm.log10.f64(double %Val)
10590 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10591 declare fp128 @llvm.log10.f128(fp128 %Val)
10592 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10593
10594Overview:
10595"""""""""
10596
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010597The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
10598specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010599
10600Arguments:
10601""""""""""
10602
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010603The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010604
10605Semantics:
10606""""""""""
10607
10608This function returns the same values as the libm ``log10`` functions
10609would, and handles error conditions in the same way.
10610
10611'``llvm.log2.*``' Intrinsic
10612^^^^^^^^^^^^^^^^^^^^^^^^^^^
10613
10614Syntax:
10615"""""""
10616
10617This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10618floating point or vector of floating point type. Not all targets support
10619all types however.
10620
10621::
10622
10623 declare float @llvm.log2.f32(float %Val)
10624 declare double @llvm.log2.f64(double %Val)
10625 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10626 declare fp128 @llvm.log2.f128(fp128 %Val)
10627 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10628
10629Overview:
10630"""""""""
10631
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010632The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
10633value.
Sean Silvab084af42012-12-07 10:36:55 +000010634
10635Arguments:
10636""""""""""
10637
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010638The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010639
10640Semantics:
10641""""""""""
10642
10643This function returns the same values as the libm ``log2`` functions
10644would, and handles error conditions in the same way.
10645
10646'``llvm.fma.*``' Intrinsic
10647^^^^^^^^^^^^^^^^^^^^^^^^^^
10648
10649Syntax:
10650"""""""
10651
10652This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10653floating point or vector of floating point type. Not all targets support
10654all types however.
10655
10656::
10657
10658 declare float @llvm.fma.f32(float %a, float %b, float %c)
10659 declare double @llvm.fma.f64(double %a, double %b, double %c)
10660 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10661 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10662 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10663
10664Overview:
10665"""""""""
10666
10667The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10668operation.
10669
10670Arguments:
10671""""""""""
10672
10673The argument and return value are floating point numbers of the same
10674type.
10675
10676Semantics:
10677""""""""""
10678
10679This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010680would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010681
10682'``llvm.fabs.*``' Intrinsic
10683^^^^^^^^^^^^^^^^^^^^^^^^^^^
10684
10685Syntax:
10686"""""""
10687
10688This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10689floating point or vector of floating point type. Not all targets support
10690all types however.
10691
10692::
10693
10694 declare float @llvm.fabs.f32(float %Val)
10695 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010696 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010697 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010698 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010699
10700Overview:
10701"""""""""
10702
10703The '``llvm.fabs.*``' intrinsics return the absolute value of the
10704operand.
10705
10706Arguments:
10707""""""""""
10708
10709The argument and return value are floating point numbers of the same
10710type.
10711
10712Semantics:
10713""""""""""
10714
10715This function returns the same values as the libm ``fabs`` functions
10716would, and handles error conditions in the same way.
10717
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010718'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010719^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010720
10721Syntax:
10722"""""""
10723
10724This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10725floating point or vector of floating point type. Not all targets support
10726all types however.
10727
10728::
10729
Matt Arsenault64313c92014-10-22 18:25:02 +000010730 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10731 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10732 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10733 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10734 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010735
10736Overview:
10737"""""""""
10738
10739The '``llvm.minnum.*``' intrinsics return the minimum of the two
10740arguments.
10741
10742
10743Arguments:
10744""""""""""
10745
10746The arguments and return value are floating point numbers of the same
10747type.
10748
10749Semantics:
10750""""""""""
10751
10752Follows the IEEE-754 semantics for minNum, which also match for libm's
10753fmin.
10754
10755If either operand is a NaN, returns the other non-NaN operand. Returns
10756NaN only if both operands are NaN. If the operands compare equal,
10757returns a value that compares equal to both operands. This means that
10758fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10759
10760'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010762
10763Syntax:
10764"""""""
10765
10766This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10767floating point or vector of floating point type. Not all targets support
10768all types however.
10769
10770::
10771
Matt Arsenault64313c92014-10-22 18:25:02 +000010772 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10773 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10774 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10775 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10776 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010777
10778Overview:
10779"""""""""
10780
10781The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10782arguments.
10783
10784
10785Arguments:
10786""""""""""
10787
10788The arguments and return value are floating point numbers of the same
10789type.
10790
10791Semantics:
10792""""""""""
10793Follows the IEEE-754 semantics for maxNum, which also match for libm's
10794fmax.
10795
10796If either operand is a NaN, returns the other non-NaN operand. Returns
10797NaN only if both operands are NaN. If the operands compare equal,
10798returns a value that compares equal to both operands. This means that
10799fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10800
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010801'``llvm.copysign.*``' Intrinsic
10802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10803
10804Syntax:
10805"""""""
10806
10807This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10808floating point or vector of floating point type. Not all targets support
10809all types however.
10810
10811::
10812
10813 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10814 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10815 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10816 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10817 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10818
10819Overview:
10820"""""""""
10821
10822The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10823first operand and the sign of the second operand.
10824
10825Arguments:
10826""""""""""
10827
10828The arguments and return value are floating point numbers of the same
10829type.
10830
10831Semantics:
10832""""""""""
10833
10834This function returns the same values as the libm ``copysign``
10835functions would, and handles error conditions in the same way.
10836
Sean Silvab084af42012-12-07 10:36:55 +000010837'``llvm.floor.*``' Intrinsic
10838^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10839
10840Syntax:
10841"""""""
10842
10843This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10844floating point or vector of floating point type. Not all targets support
10845all types however.
10846
10847::
10848
10849 declare float @llvm.floor.f32(float %Val)
10850 declare double @llvm.floor.f64(double %Val)
10851 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10852 declare fp128 @llvm.floor.f128(fp128 %Val)
10853 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10854
10855Overview:
10856"""""""""
10857
10858The '``llvm.floor.*``' intrinsics return the floor of the operand.
10859
10860Arguments:
10861""""""""""
10862
10863The argument and return value are floating point numbers of the same
10864type.
10865
10866Semantics:
10867""""""""""
10868
10869This function returns the same values as the libm ``floor`` functions
10870would, and handles error conditions in the same way.
10871
10872'``llvm.ceil.*``' Intrinsic
10873^^^^^^^^^^^^^^^^^^^^^^^^^^^
10874
10875Syntax:
10876"""""""
10877
10878This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10879floating point or vector of floating point type. Not all targets support
10880all types however.
10881
10882::
10883
10884 declare float @llvm.ceil.f32(float %Val)
10885 declare double @llvm.ceil.f64(double %Val)
10886 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10887 declare fp128 @llvm.ceil.f128(fp128 %Val)
10888 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10889
10890Overview:
10891"""""""""
10892
10893The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10894
10895Arguments:
10896""""""""""
10897
10898The argument and return value are floating point numbers of the same
10899type.
10900
10901Semantics:
10902""""""""""
10903
10904This function returns the same values as the libm ``ceil`` functions
10905would, and handles error conditions in the same way.
10906
10907'``llvm.trunc.*``' Intrinsic
10908^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10909
10910Syntax:
10911"""""""
10912
10913This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10914floating point or vector of floating point type. Not all targets support
10915all types however.
10916
10917::
10918
10919 declare float @llvm.trunc.f32(float %Val)
10920 declare double @llvm.trunc.f64(double %Val)
10921 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10922 declare fp128 @llvm.trunc.f128(fp128 %Val)
10923 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10924
10925Overview:
10926"""""""""
10927
10928The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10929nearest integer not larger in magnitude than the operand.
10930
10931Arguments:
10932""""""""""
10933
10934The argument and return value are floating point numbers of the same
10935type.
10936
10937Semantics:
10938""""""""""
10939
10940This function returns the same values as the libm ``trunc`` functions
10941would, and handles error conditions in the same way.
10942
10943'``llvm.rint.*``' Intrinsic
10944^^^^^^^^^^^^^^^^^^^^^^^^^^^
10945
10946Syntax:
10947"""""""
10948
10949This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10950floating point or vector of floating point type. Not all targets support
10951all types however.
10952
10953::
10954
10955 declare float @llvm.rint.f32(float %Val)
10956 declare double @llvm.rint.f64(double %Val)
10957 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10958 declare fp128 @llvm.rint.f128(fp128 %Val)
10959 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10960
10961Overview:
10962"""""""""
10963
10964The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10965nearest integer. It may raise an inexact floating-point exception if the
10966operand isn't an integer.
10967
10968Arguments:
10969""""""""""
10970
10971The argument and return value are floating point numbers of the same
10972type.
10973
10974Semantics:
10975""""""""""
10976
10977This function returns the same values as the libm ``rint`` functions
10978would, and handles error conditions in the same way.
10979
10980'``llvm.nearbyint.*``' Intrinsic
10981^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10982
10983Syntax:
10984"""""""
10985
10986This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10987floating point or vector of floating point type. Not all targets support
10988all types however.
10989
10990::
10991
10992 declare float @llvm.nearbyint.f32(float %Val)
10993 declare double @llvm.nearbyint.f64(double %Val)
10994 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10995 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10996 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10997
10998Overview:
10999"""""""""
11000
11001The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11002nearest integer.
11003
11004Arguments:
11005""""""""""
11006
11007The argument and return value are floating point numbers of the same
11008type.
11009
11010Semantics:
11011""""""""""
11012
11013This function returns the same values as the libm ``nearbyint``
11014functions would, and handles error conditions in the same way.
11015
Hal Finkel171817e2013-08-07 22:49:12 +000011016'``llvm.round.*``' Intrinsic
11017^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11018
11019Syntax:
11020"""""""
11021
11022This is an overloaded intrinsic. You can use ``llvm.round`` on any
11023floating point or vector of floating point type. Not all targets support
11024all types however.
11025
11026::
11027
11028 declare float @llvm.round.f32(float %Val)
11029 declare double @llvm.round.f64(double %Val)
11030 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11031 declare fp128 @llvm.round.f128(fp128 %Val)
11032 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11033
11034Overview:
11035"""""""""
11036
11037The '``llvm.round.*``' intrinsics returns the operand rounded to the
11038nearest integer.
11039
11040Arguments:
11041""""""""""
11042
11043The argument and return value are floating point numbers of the same
11044type.
11045
11046Semantics:
11047""""""""""
11048
11049This function returns the same values as the libm ``round``
11050functions would, and handles error conditions in the same way.
11051
Sean Silvab084af42012-12-07 10:36:55 +000011052Bit Manipulation Intrinsics
11053---------------------------
11054
11055LLVM provides intrinsics for a few important bit manipulation
11056operations. These allow efficient code generation for some algorithms.
11057
James Molloy90111f72015-11-12 12:29:09 +000011058'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011059^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011060
11061Syntax:
11062"""""""
11063
11064This is an overloaded intrinsic function. You can use bitreverse on any
11065integer type.
11066
11067::
11068
11069 declare i16 @llvm.bitreverse.i16(i16 <id>)
11070 declare i32 @llvm.bitreverse.i32(i32 <id>)
11071 declare i64 @llvm.bitreverse.i64(i64 <id>)
11072
11073Overview:
11074"""""""""
11075
11076The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011077bitpattern of an integer value; for example ``0b10110110`` becomes
11078``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011079
11080Semantics:
11081""""""""""
11082
Yichao Yu5abf14b2016-11-23 16:25:31 +000011083The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011084``M`` in the input moved to bit ``N-M`` in the output.
11085
Sean Silvab084af42012-12-07 10:36:55 +000011086'``llvm.bswap.*``' Intrinsics
11087^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11088
11089Syntax:
11090"""""""
11091
11092This is an overloaded intrinsic function. You can use bswap on any
11093integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11094
11095::
11096
11097 declare i16 @llvm.bswap.i16(i16 <id>)
11098 declare i32 @llvm.bswap.i32(i32 <id>)
11099 declare i64 @llvm.bswap.i64(i64 <id>)
11100
11101Overview:
11102"""""""""
11103
11104The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11105values with an even number of bytes (positive multiple of 16 bits).
11106These are useful for performing operations on data that is not in the
11107target's native byte order.
11108
11109Semantics:
11110""""""""""
11111
11112The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11113and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11114intrinsic returns an i32 value that has the four bytes of the input i32
11115swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11116returned i32 will have its bytes in 3, 2, 1, 0 order. The
11117``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11118concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11119respectively).
11120
11121'``llvm.ctpop.*``' Intrinsic
11122^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11123
11124Syntax:
11125"""""""
11126
11127This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11128bit width, or on any vector with integer elements. Not all targets
11129support all bit widths or vector types, however.
11130
11131::
11132
11133 declare i8 @llvm.ctpop.i8(i8 <src>)
11134 declare i16 @llvm.ctpop.i16(i16 <src>)
11135 declare i32 @llvm.ctpop.i32(i32 <src>)
11136 declare i64 @llvm.ctpop.i64(i64 <src>)
11137 declare i256 @llvm.ctpop.i256(i256 <src>)
11138 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11139
11140Overview:
11141"""""""""
11142
11143The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11144in a value.
11145
11146Arguments:
11147""""""""""
11148
11149The only argument is the value to be counted. The argument may be of any
11150integer type, or a vector with integer elements. The return type must
11151match the argument type.
11152
11153Semantics:
11154""""""""""
11155
11156The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11157each element of a vector.
11158
11159'``llvm.ctlz.*``' Intrinsic
11160^^^^^^^^^^^^^^^^^^^^^^^^^^^
11161
11162Syntax:
11163"""""""
11164
11165This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11166integer bit width, or any vector whose elements are integers. Not all
11167targets support all bit widths or vector types, however.
11168
11169::
11170
11171 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11172 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11173 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11174 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11175 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011176 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011177
11178Overview:
11179"""""""""
11180
11181The '``llvm.ctlz``' family of intrinsic functions counts the number of
11182leading zeros in a variable.
11183
11184Arguments:
11185""""""""""
11186
11187The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011188any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011189type must match the first argument type.
11190
11191The second argument must be a constant and is a flag to indicate whether
11192the intrinsic should ensure that a zero as the first argument produces a
11193defined result. Historically some architectures did not provide a
11194defined result for zero values as efficiently, and many algorithms are
11195now predicated on avoiding zero-value inputs.
11196
11197Semantics:
11198""""""""""
11199
11200The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11201zeros in a variable, or within each element of the vector. If
11202``src == 0`` then the result is the size in bits of the type of ``src``
11203if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11204``llvm.ctlz(i32 2) = 30``.
11205
11206'``llvm.cttz.*``' Intrinsic
11207^^^^^^^^^^^^^^^^^^^^^^^^^^^
11208
11209Syntax:
11210"""""""
11211
11212This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11213integer bit width, or any vector of integer elements. Not all targets
11214support all bit widths or vector types, however.
11215
11216::
11217
11218 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11219 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11220 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11221 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11222 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011223 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011224
11225Overview:
11226"""""""""
11227
11228The '``llvm.cttz``' family of intrinsic functions counts the number of
11229trailing zeros.
11230
11231Arguments:
11232""""""""""
11233
11234The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011235any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011236type must match the first argument type.
11237
11238The second argument must be a constant and is a flag to indicate whether
11239the intrinsic should ensure that a zero as the first argument produces a
11240defined result. Historically some architectures did not provide a
11241defined result for zero values as efficiently, and many algorithms are
11242now predicated on avoiding zero-value inputs.
11243
11244Semantics:
11245""""""""""
11246
11247The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11248zeros in a variable, or within each element of a vector. If ``src == 0``
11249then the result is the size in bits of the type of ``src`` if
11250``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11251``llvm.cttz(2) = 1``.
11252
Philip Reames34843ae2015-03-05 05:55:55 +000011253.. _int_overflow:
11254
Sean Silvab084af42012-12-07 10:36:55 +000011255Arithmetic with Overflow Intrinsics
11256-----------------------------------
11257
John Regehr6a493f22016-05-12 20:55:09 +000011258LLVM provides intrinsics for fast arithmetic overflow checking.
11259
11260Each of these intrinsics returns a two-element struct. The first
11261element of this struct contains the result of the corresponding
11262arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11263the result. Therefore, for example, the first element of the struct
11264returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11265result of a 32-bit ``add`` instruction with the same operands, where
11266the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11267
11268The second element of the result is an ``i1`` that is 1 if the
11269arithmetic operation overflowed and 0 otherwise. An operation
11270overflows if, for any values of its operands ``A`` and ``B`` and for
11271any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11272not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11273``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11274``op`` is the underlying arithmetic operation.
11275
11276The behavior of these intrinsics is well-defined for all argument
11277values.
Sean Silvab084af42012-12-07 10:36:55 +000011278
11279'``llvm.sadd.with.overflow.*``' Intrinsics
11280^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11281
11282Syntax:
11283"""""""
11284
11285This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11286on any integer bit width.
11287
11288::
11289
11290 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11291 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11292 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11293
11294Overview:
11295"""""""""
11296
11297The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11298a signed addition of the two arguments, and indicate whether an overflow
11299occurred during the signed summation.
11300
11301Arguments:
11302""""""""""
11303
11304The arguments (%a and %b) and the first element of the result structure
11305may be of integer types of any bit width, but they must have the same
11306bit width. The second element of the result structure must be of type
11307``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11308addition.
11309
11310Semantics:
11311""""""""""
11312
11313The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011314a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011315first element of which is the signed summation, and the second element
11316of which is a bit specifying if the signed summation resulted in an
11317overflow.
11318
11319Examples:
11320"""""""""
11321
11322.. code-block:: llvm
11323
11324 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11325 %sum = extractvalue {i32, i1} %res, 0
11326 %obit = extractvalue {i32, i1} %res, 1
11327 br i1 %obit, label %overflow, label %normal
11328
11329'``llvm.uadd.with.overflow.*``' Intrinsics
11330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11331
11332Syntax:
11333"""""""
11334
11335This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11336on any integer bit width.
11337
11338::
11339
11340 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11341 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11342 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11343
11344Overview:
11345"""""""""
11346
11347The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11348an unsigned addition of the two arguments, and indicate whether a carry
11349occurred during the unsigned summation.
11350
11351Arguments:
11352""""""""""
11353
11354The arguments (%a and %b) and the first element of the result structure
11355may be of integer types of any bit width, but they must have the same
11356bit width. The second element of the result structure must be of type
11357``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11358addition.
11359
11360Semantics:
11361""""""""""
11362
11363The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011364an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011365first element of which is the sum, and the second element of which is a
11366bit specifying if the unsigned summation resulted in a carry.
11367
11368Examples:
11369"""""""""
11370
11371.. code-block:: llvm
11372
11373 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11374 %sum = extractvalue {i32, i1} %res, 0
11375 %obit = extractvalue {i32, i1} %res, 1
11376 br i1 %obit, label %carry, label %normal
11377
11378'``llvm.ssub.with.overflow.*``' Intrinsics
11379^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11380
11381Syntax:
11382"""""""
11383
11384This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11385on any integer bit width.
11386
11387::
11388
11389 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11390 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11391 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11392
11393Overview:
11394"""""""""
11395
11396The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11397a signed subtraction of the two arguments, and indicate whether an
11398overflow occurred during the signed subtraction.
11399
11400Arguments:
11401""""""""""
11402
11403The arguments (%a and %b) and the first element of the result structure
11404may be of integer types of any bit width, but they must have the same
11405bit width. The second element of the result structure must be of type
11406``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11407subtraction.
11408
11409Semantics:
11410""""""""""
11411
11412The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011413a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011414first element of which is the subtraction, and the second element of
11415which is a bit specifying if the signed subtraction resulted in an
11416overflow.
11417
11418Examples:
11419"""""""""
11420
11421.. code-block:: llvm
11422
11423 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11424 %sum = extractvalue {i32, i1} %res, 0
11425 %obit = extractvalue {i32, i1} %res, 1
11426 br i1 %obit, label %overflow, label %normal
11427
11428'``llvm.usub.with.overflow.*``' Intrinsics
11429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11430
11431Syntax:
11432"""""""
11433
11434This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11435on any integer bit width.
11436
11437::
11438
11439 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11440 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11441 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11442
11443Overview:
11444"""""""""
11445
11446The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11447an unsigned subtraction of the two arguments, and indicate whether an
11448overflow occurred during the unsigned subtraction.
11449
11450Arguments:
11451""""""""""
11452
11453The arguments (%a and %b) and the first element of the result structure
11454may be of integer types of any bit width, but they must have the same
11455bit width. The second element of the result structure must be of type
11456``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11457subtraction.
11458
11459Semantics:
11460""""""""""
11461
11462The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011463an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011464the first element of which is the subtraction, and the second element of
11465which is a bit specifying if the unsigned subtraction resulted in an
11466overflow.
11467
11468Examples:
11469"""""""""
11470
11471.. code-block:: llvm
11472
11473 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11474 %sum = extractvalue {i32, i1} %res, 0
11475 %obit = extractvalue {i32, i1} %res, 1
11476 br i1 %obit, label %overflow, label %normal
11477
11478'``llvm.smul.with.overflow.*``' Intrinsics
11479^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11480
11481Syntax:
11482"""""""
11483
11484This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11485on any integer bit width.
11486
11487::
11488
11489 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11490 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11491 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11492
11493Overview:
11494"""""""""
11495
11496The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11497a signed multiplication of the two arguments, and indicate whether an
11498overflow occurred during the signed multiplication.
11499
11500Arguments:
11501""""""""""
11502
11503The arguments (%a and %b) and the first element of the result structure
11504may be of integer types of any bit width, but they must have the same
11505bit width. The second element of the result structure must be of type
11506``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11507multiplication.
11508
11509Semantics:
11510""""""""""
11511
11512The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011513a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011514the first element of which is the multiplication, and the second element
11515of which is a bit specifying if the signed multiplication resulted in an
11516overflow.
11517
11518Examples:
11519"""""""""
11520
11521.. code-block:: llvm
11522
11523 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11524 %sum = extractvalue {i32, i1} %res, 0
11525 %obit = extractvalue {i32, i1} %res, 1
11526 br i1 %obit, label %overflow, label %normal
11527
11528'``llvm.umul.with.overflow.*``' Intrinsics
11529^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11530
11531Syntax:
11532"""""""
11533
11534This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11535on any integer bit width.
11536
11537::
11538
11539 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11540 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11541 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11542
11543Overview:
11544"""""""""
11545
11546The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11547a unsigned multiplication of the two arguments, and indicate whether an
11548overflow occurred during the unsigned multiplication.
11549
11550Arguments:
11551""""""""""
11552
11553The arguments (%a and %b) and the first element of the result structure
11554may be of integer types of any bit width, but they must have the same
11555bit width. The second element of the result structure must be of type
11556``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11557multiplication.
11558
11559Semantics:
11560""""""""""
11561
11562The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011563an unsigned multiplication of the two arguments. They return a structure ---
11564the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011565element of which is a bit specifying if the unsigned multiplication
11566resulted in an overflow.
11567
11568Examples:
11569"""""""""
11570
11571.. code-block:: llvm
11572
11573 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11574 %sum = extractvalue {i32, i1} %res, 0
11575 %obit = extractvalue {i32, i1} %res, 1
11576 br i1 %obit, label %overflow, label %normal
11577
11578Specialised Arithmetic Intrinsics
11579---------------------------------
11580
Owen Anderson1056a922015-07-11 07:01:27 +000011581'``llvm.canonicalize.*``' Intrinsic
11582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11583
11584Syntax:
11585"""""""
11586
11587::
11588
11589 declare float @llvm.canonicalize.f32(float %a)
11590 declare double @llvm.canonicalize.f64(double %b)
11591
11592Overview:
11593"""""""""
11594
11595The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011596encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011597implementing certain numeric primitives such as frexp. The canonical encoding is
11598defined by IEEE-754-2008 to be:
11599
11600::
11601
11602 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011603 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011604 numbers, infinities, and NaNs, especially in decimal formats.
11605
11606This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011607conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011608according to section 6.2.
11609
11610Examples of non-canonical encodings:
11611
Sean Silvaa1190322015-08-06 22:56:48 +000011612- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011613 converted to a canonical representation per hardware-specific protocol.
11614- Many normal decimal floating point numbers have non-canonical alternative
11615 encodings.
11616- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011617 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011618 a zero of the same sign by this operation.
11619
11620Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11621default exception handling must signal an invalid exception, and produce a
11622quiet NaN result.
11623
11624This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011625that the compiler does not constant fold the operation. Likewise, division by
116261.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011627-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11628
Sean Silvaa1190322015-08-06 22:56:48 +000011629``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011630
11631- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11632- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11633 to ``(x == y)``
11634
11635Additionally, the sign of zero must be conserved:
11636``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11637
11638The payload bits of a NaN must be conserved, with two exceptions.
11639First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011640must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011641usual methods.
11642
11643The canonicalization operation may be optimized away if:
11644
Sean Silvaa1190322015-08-06 22:56:48 +000011645- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011646 floating-point operation that is required by the standard to be canonical.
11647- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011648 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011649
Sean Silvab084af42012-12-07 10:36:55 +000011650'``llvm.fmuladd.*``' Intrinsic
11651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11652
11653Syntax:
11654"""""""
11655
11656::
11657
11658 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11659 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11660
11661Overview:
11662"""""""""
11663
11664The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011665expressions that can be fused if the code generator determines that (a) the
11666target instruction set has support for a fused operation, and (b) that the
11667fused operation is more efficient than the equivalent, separate pair of mul
11668and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011669
11670Arguments:
11671""""""""""
11672
11673The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11674multiplicands, a and b, and an addend c.
11675
11676Semantics:
11677""""""""""
11678
11679The expression:
11680
11681::
11682
11683 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11684
11685is equivalent to the expression a \* b + c, except that rounding will
11686not be performed between the multiplication and addition steps if the
11687code generator fuses the operations. Fusion is not guaranteed, even if
11688the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011689corresponding llvm.fma.\* intrinsic function should be used
11690instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011691
11692Examples:
11693"""""""""
11694
11695.. code-block:: llvm
11696
Tim Northover675a0962014-06-13 14:24:23 +000011697 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011698
Amara Emersoncf9daa32017-05-09 10:43:25 +000011699
11700Experimental Vector Reduction Intrinsics
11701----------------------------------------
11702
11703Horizontal reductions of vectors can be expressed using the following
11704intrinsics. Each one takes a vector operand as an input and applies its
11705respective operation across all elements of the vector, returning a single
11706scalar result of the same element type.
11707
11708
11709'``llvm.experimental.vector.reduce.add.*``' Intrinsic
11710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11711
11712Syntax:
11713"""""""
11714
11715::
11716
11717 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
11718 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
11719
11720Overview:
11721"""""""""
11722
11723The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
11724reduction of a vector, returning the result as a scalar. The return type matches
11725the element-type of the vector input.
11726
11727Arguments:
11728""""""""""
11729The argument to this intrinsic must be a vector of integer values.
11730
11731'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
11732^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11733
11734Syntax:
11735"""""""
11736
11737::
11738
11739 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
11740 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
11741
11742Overview:
11743"""""""""
11744
11745The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating point
11746``ADD`` reduction of a vector, returning the result as a scalar. The return type
11747matches the element-type of the vector input.
11748
11749If the intrinsic call has fast-math flags, then the reduction will not preserve
11750the associativity of an equivalent scalarized counterpart. If it does not have
11751fast-math flags, then the reduction will be *ordered*, implying that the
11752operation respects the associativity of a scalarized reduction.
11753
11754
11755Arguments:
11756""""""""""
11757The first argument to this intrinsic is a scalar accumulator value, which is
11758only used when there are no fast-math flags attached. This argument may be undef
11759when fast-math flags are used.
11760
11761The second argument must be a vector of floating point values.
11762
11763Examples:
11764"""""""""
11765
11766.. code-block:: llvm
11767
11768 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
11769 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
11770
11771
11772'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
11773^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11774
11775Syntax:
11776"""""""
11777
11778::
11779
11780 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
11781 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
11782
11783Overview:
11784"""""""""
11785
11786The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
11787reduction of a vector, returning the result as a scalar. The return type matches
11788the element-type of the vector input.
11789
11790Arguments:
11791""""""""""
11792The argument to this intrinsic must be a vector of integer values.
11793
11794'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
11795^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11796
11797Syntax:
11798"""""""
11799
11800::
11801
11802 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
11803 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
11804
11805Overview:
11806"""""""""
11807
11808The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating point
11809``MUL`` reduction of a vector, returning the result as a scalar. The return type
11810matches the element-type of the vector input.
11811
11812If the intrinsic call has fast-math flags, then the reduction will not preserve
11813the associativity of an equivalent scalarized counterpart. If it does not have
11814fast-math flags, then the reduction will be *ordered*, implying that the
11815operation respects the associativity of a scalarized reduction.
11816
11817
11818Arguments:
11819""""""""""
11820The first argument to this intrinsic is a scalar accumulator value, which is
11821only used when there are no fast-math flags attached. This argument may be undef
11822when fast-math flags are used.
11823
11824The second argument must be a vector of floating point values.
11825
11826Examples:
11827"""""""""
11828
11829.. code-block:: llvm
11830
11831 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
11832 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
11833
11834'``llvm.experimental.vector.reduce.and.*``' Intrinsic
11835^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11836
11837Syntax:
11838"""""""
11839
11840::
11841
11842 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
11843
11844Overview:
11845"""""""""
11846
11847The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
11848reduction of a vector, returning the result as a scalar. The return type matches
11849the element-type of the vector input.
11850
11851Arguments:
11852""""""""""
11853The argument to this intrinsic must be a vector of integer values.
11854
11855'``llvm.experimental.vector.reduce.or.*``' Intrinsic
11856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11857
11858Syntax:
11859"""""""
11860
11861::
11862
11863 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
11864
11865Overview:
11866"""""""""
11867
11868The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
11869of a vector, returning the result as a scalar. The return type matches the
11870element-type of the vector input.
11871
11872Arguments:
11873""""""""""
11874The argument to this intrinsic must be a vector of integer values.
11875
11876'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
11877^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11878
11879Syntax:
11880"""""""
11881
11882::
11883
11884 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
11885
11886Overview:
11887"""""""""
11888
11889The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
11890reduction of a vector, returning the result as a scalar. The return type matches
11891the element-type of the vector input.
11892
11893Arguments:
11894""""""""""
11895The argument to this intrinsic must be a vector of integer values.
11896
11897'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
11898^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11899
11900Syntax:
11901"""""""
11902
11903::
11904
11905 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
11906
11907Overview:
11908"""""""""
11909
11910The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
11911``MAX`` reduction of a vector, returning the result as a scalar. The return type
11912matches the element-type of the vector input.
11913
11914Arguments:
11915""""""""""
11916The argument to this intrinsic must be a vector of integer values.
11917
11918'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
11919^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11920
11921Syntax:
11922"""""""
11923
11924::
11925
11926 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
11927
11928Overview:
11929"""""""""
11930
11931The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
11932``MIN`` reduction of a vector, returning the result as a scalar. The return type
11933matches the element-type of the vector input.
11934
11935Arguments:
11936""""""""""
11937The argument to this intrinsic must be a vector of integer values.
11938
11939'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
11940^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11941
11942Syntax:
11943"""""""
11944
11945::
11946
11947 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
11948
11949Overview:
11950"""""""""
11951
11952The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
11953integer ``MAX`` reduction of a vector, returning the result as a scalar. The
11954return type matches the element-type of the vector input.
11955
11956Arguments:
11957""""""""""
11958The argument to this intrinsic must be a vector of integer values.
11959
11960'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
11961^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11962
11963Syntax:
11964"""""""
11965
11966::
11967
11968 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
11969
11970Overview:
11971"""""""""
11972
11973The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
11974integer ``MIN`` reduction of a vector, returning the result as a scalar. The
11975return type matches the element-type of the vector input.
11976
11977Arguments:
11978""""""""""
11979The argument to this intrinsic must be a vector of integer values.
11980
11981'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
11982^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11983
11984Syntax:
11985"""""""
11986
11987::
11988
11989 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
11990 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
11991
11992Overview:
11993"""""""""
11994
11995The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating point
11996``MAX`` reduction of a vector, returning the result as a scalar. The return type
11997matches the element-type of the vector input.
11998
11999If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12000assume that NaNs are not present in the input vector.
12001
12002Arguments:
12003""""""""""
12004The argument to this intrinsic must be a vector of floating point values.
12005
12006'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12007^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12008
12009Syntax:
12010"""""""
12011
12012::
12013
12014 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12015 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12016
12017Overview:
12018"""""""""
12019
12020The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating point
12021``MIN`` reduction of a vector, returning the result as a scalar. The return type
12022matches the element-type of the vector input.
12023
12024If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12025assume that NaNs are not present in the input vector.
12026
12027Arguments:
12028""""""""""
12029The argument to this intrinsic must be a vector of floating point values.
12030
Sean Silvab084af42012-12-07 10:36:55 +000012031Half Precision Floating Point Intrinsics
12032----------------------------------------
12033
12034For most target platforms, half precision floating point is a
12035storage-only format. This means that it is a dense encoding (in memory)
12036but does not support computation in the format.
12037
12038This means that code must first load the half-precision floating point
12039value as an i16, then convert it to float with
12040:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12041then be performed on the float value (including extending to double
12042etc). To store the value back to memory, it is first converted to float
12043if needed, then converted to i16 with
12044:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12045i16 value.
12046
12047.. _int_convert_to_fp16:
12048
12049'``llvm.convert.to.fp16``' Intrinsic
12050^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12051
12052Syntax:
12053"""""""
12054
12055::
12056
Tim Northoverfd7e4242014-07-17 10:51:23 +000012057 declare i16 @llvm.convert.to.fp16.f32(float %a)
12058 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012059
12060Overview:
12061"""""""""
12062
Tim Northoverfd7e4242014-07-17 10:51:23 +000012063The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12064conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000012065
12066Arguments:
12067""""""""""
12068
12069The intrinsic function contains single argument - the value to be
12070converted.
12071
12072Semantics:
12073""""""""""
12074
Tim Northoverfd7e4242014-07-17 10:51:23 +000012075The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12076conventional floating point format to half precision floating point format. The
12077return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012078
12079Examples:
12080"""""""""
12081
12082.. code-block:: llvm
12083
Tim Northoverfd7e4242014-07-17 10:51:23 +000012084 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012085 store i16 %res, i16* @x, align 2
12086
12087.. _int_convert_from_fp16:
12088
12089'``llvm.convert.from.fp16``' Intrinsic
12090^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12091
12092Syntax:
12093"""""""
12094
12095::
12096
Tim Northoverfd7e4242014-07-17 10:51:23 +000012097 declare float @llvm.convert.from.fp16.f32(i16 %a)
12098 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012099
12100Overview:
12101"""""""""
12102
12103The '``llvm.convert.from.fp16``' intrinsic function performs a
12104conversion from half precision floating point format to single precision
12105floating point format.
12106
12107Arguments:
12108""""""""""
12109
12110The intrinsic function contains single argument - the value to be
12111converted.
12112
12113Semantics:
12114""""""""""
12115
12116The '``llvm.convert.from.fp16``' intrinsic function performs a
12117conversion from half single precision floating point format to single
12118precision floating point format. The input half-float value is
12119represented by an ``i16`` value.
12120
12121Examples:
12122"""""""""
12123
12124.. code-block:: llvm
12125
David Blaikiec7aabbb2015-03-04 22:06:14 +000012126 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012127 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012128
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012129.. _dbg_intrinsics:
12130
Sean Silvab084af42012-12-07 10:36:55 +000012131Debugger Intrinsics
12132-------------------
12133
12134The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12135prefix), are described in the `LLVM Source Level
12136Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
12137document.
12138
12139Exception Handling Intrinsics
12140-----------------------------
12141
12142The LLVM exception handling intrinsics (which all start with
12143``llvm.eh.`` prefix), are described in the `LLVM Exception
12144Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
12145
12146.. _int_trampoline:
12147
12148Trampoline Intrinsics
12149---------------------
12150
12151These intrinsics make it possible to excise one parameter, marked with
12152the :ref:`nest <nest>` attribute, from a function. The result is a
12153callable function pointer lacking the nest parameter - the caller does
12154not need to provide a value for it. Instead, the value to use is stored
12155in advance in a "trampoline", a block of memory usually allocated on the
12156stack, which also contains code to splice the nest value into the
12157argument list. This is used to implement the GCC nested function address
12158extension.
12159
12160For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12161then the resulting function pointer has signature ``i32 (i32, i32)*``.
12162It can be created as follows:
12163
12164.. code-block:: llvm
12165
12166 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012167 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012168 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12169 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12170 %fp = bitcast i8* %p to i32 (i32, i32)*
12171
12172The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12173``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12174
12175.. _int_it:
12176
12177'``llvm.init.trampoline``' Intrinsic
12178^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12179
12180Syntax:
12181"""""""
12182
12183::
12184
12185 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
12186
12187Overview:
12188"""""""""
12189
12190This fills the memory pointed to by ``tramp`` with executable code,
12191turning it into a trampoline.
12192
12193Arguments:
12194""""""""""
12195
12196The ``llvm.init.trampoline`` intrinsic takes three arguments, all
12197pointers. The ``tramp`` argument must point to a sufficiently large and
12198sufficiently aligned block of memory; this memory is written to by the
12199intrinsic. Note that the size and the alignment are target-specific -
12200LLVM currently provides no portable way of determining them, so a
12201front-end that generates this intrinsic needs to have some
12202target-specific knowledge. The ``func`` argument must hold a function
12203bitcast to an ``i8*``.
12204
12205Semantics:
12206""""""""""
12207
12208The block of memory pointed to by ``tramp`` is filled with target
12209dependent code, turning it into a function. Then ``tramp`` needs to be
12210passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
12211be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
12212function's signature is the same as that of ``func`` with any arguments
12213marked with the ``nest`` attribute removed. At most one such ``nest``
12214argument is allowed, and it must be of pointer type. Calling the new
12215function is equivalent to calling ``func`` with the same argument list,
12216but with ``nval`` used for the missing ``nest`` argument. If, after
12217calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
12218modified, then the effect of any later call to the returned function
12219pointer is undefined.
12220
12221.. _int_at:
12222
12223'``llvm.adjust.trampoline``' Intrinsic
12224^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12225
12226Syntax:
12227"""""""
12228
12229::
12230
12231 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
12232
12233Overview:
12234"""""""""
12235
12236This performs any required machine-specific adjustment to the address of
12237a trampoline (passed as ``tramp``).
12238
12239Arguments:
12240""""""""""
12241
12242``tramp`` must point to a block of memory which already has trampoline
12243code filled in by a previous call to
12244:ref:`llvm.init.trampoline <int_it>`.
12245
12246Semantics:
12247""""""""""
12248
12249On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012250different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000012251intrinsic returns the executable address corresponding to ``tramp``
12252after performing the required machine specific adjustments. The pointer
12253returned can then be :ref:`bitcast and executed <int_trampoline>`.
12254
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012255.. _int_mload_mstore:
12256
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012257Masked Vector Load and Store Intrinsics
12258---------------------------------------
12259
12260LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
12261
12262.. _int_mload:
12263
12264'``llvm.masked.load.*``' Intrinsics
12265^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12266
12267Syntax:
12268"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012269This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012270
12271::
12272
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012273 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12274 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012275 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012276 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012277 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012278 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012279
12280Overview:
12281"""""""""
12282
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012283Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012284
12285
12286Arguments:
12287""""""""""
12288
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012289The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012290
12291
12292Semantics:
12293""""""""""
12294
12295The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
12296The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
12297
12298
12299::
12300
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012301 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012302
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012303 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000012304 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012305 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012306
12307.. _int_mstore:
12308
12309'``llvm.masked.store.*``' Intrinsics
12310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12311
12312Syntax:
12313"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012314This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012315
12316::
12317
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012318 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
12319 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012320 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012321 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012322 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012323 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012324
12325Overview:
12326"""""""""
12327
12328Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12329
12330Arguments:
12331""""""""""
12332
12333The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12334
12335
12336Semantics:
12337""""""""""
12338
12339The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
12340The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
12341
12342::
12343
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012344 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012345
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012346 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000012347 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012348 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
12349 store <16 x float> %res, <16 x float>* %ptr, align 4
12350
12351
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012352Masked Vector Gather and Scatter Intrinsics
12353-------------------------------------------
12354
12355LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
12356
12357.. _int_mgather:
12358
12359'``llvm.masked.gather.*``' Intrinsics
12360^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12361
12362Syntax:
12363"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012364This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012365
12366::
12367
Elad Cohenef5798a2017-05-03 12:28:54 +000012368 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12369 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
12370 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012371
12372Overview:
12373"""""""""
12374
12375Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
12376
12377
12378Arguments:
12379""""""""""
12380
12381The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
12382
12383
12384Semantics:
12385""""""""""
12386
12387The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
12388The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
12389
12390
12391::
12392
Elad Cohenef5798a2017-05-03 12:28:54 +000012393 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012394
12395 ;; The gather with all-true mask is equivalent to the following instruction sequence
12396 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
12397 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
12398 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
12399 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
12400
12401 %val0 = load double, double* %ptr0, align 8
12402 %val1 = load double, double* %ptr1, align 8
12403 %val2 = load double, double* %ptr2, align 8
12404 %val3 = load double, double* %ptr3, align 8
12405
12406 %vec0 = insertelement <4 x double>undef, %val0, 0
12407 %vec01 = insertelement <4 x double>%vec0, %val1, 1
12408 %vec012 = insertelement <4 x double>%vec01, %val2, 2
12409 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
12410
12411.. _int_mscatter:
12412
12413'``llvm.masked.scatter.*``' Intrinsics
12414^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12415
12416Syntax:
12417"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012418This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012419
12420::
12421
Elad Cohenef5798a2017-05-03 12:28:54 +000012422 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
12423 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
12424 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012425
12426Overview:
12427"""""""""
12428
12429Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12430
12431Arguments:
12432""""""""""
12433
12434The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12435
12436
12437Semantics:
12438""""""""""
12439
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012440The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012441
12442::
12443
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012444 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000012445 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012446
12447 ;; It is equivalent to a list of scalar stores
12448 %val0 = extractelement <8 x i32> %value, i32 0
12449 %val1 = extractelement <8 x i32> %value, i32 1
12450 ..
12451 %val7 = extractelement <8 x i32> %value, i32 7
12452 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12453 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12454 ..
12455 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12456 ;; Note: the order of the following stores is important when they overlap:
12457 store i32 %val0, i32* %ptr0, align 4
12458 store i32 %val1, i32* %ptr1, align 4
12459 ..
12460 store i32 %val7, i32* %ptr7, align 4
12461
12462
Sean Silvab084af42012-12-07 10:36:55 +000012463Memory Use Markers
12464------------------
12465
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012466This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012467memory objects and ranges where variables are immutable.
12468
Reid Klecknera534a382013-12-19 02:14:12 +000012469.. _int_lifestart:
12470
Sean Silvab084af42012-12-07 10:36:55 +000012471'``llvm.lifetime.start``' Intrinsic
12472^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12473
12474Syntax:
12475"""""""
12476
12477::
12478
12479 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12480
12481Overview:
12482"""""""""
12483
12484The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12485object's lifetime.
12486
12487Arguments:
12488""""""""""
12489
12490The first argument is a constant integer representing the size of the
12491object, or -1 if it is variable sized. The second argument is a pointer
12492to the object.
12493
12494Semantics:
12495""""""""""
12496
12497This intrinsic indicates that before this point in the code, the value
12498of the memory pointed to by ``ptr`` is dead. This means that it is known
12499to never be used and has an undefined value. A load from the pointer
12500that precedes this intrinsic can be replaced with ``'undef'``.
12501
Reid Klecknera534a382013-12-19 02:14:12 +000012502.. _int_lifeend:
12503
Sean Silvab084af42012-12-07 10:36:55 +000012504'``llvm.lifetime.end``' Intrinsic
12505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12506
12507Syntax:
12508"""""""
12509
12510::
12511
12512 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12513
12514Overview:
12515"""""""""
12516
12517The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12518object's lifetime.
12519
12520Arguments:
12521""""""""""
12522
12523The first argument is a constant integer representing the size of the
12524object, or -1 if it is variable sized. The second argument is a pointer
12525to the object.
12526
12527Semantics:
12528""""""""""
12529
12530This intrinsic indicates that after this point in the code, the value of
12531the memory pointed to by ``ptr`` is dead. This means that it is known to
12532never be used and has an undefined value. Any stores into the memory
12533object following this intrinsic may be removed as dead.
12534
12535'``llvm.invariant.start``' Intrinsic
12536^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12537
12538Syntax:
12539"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012540This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012541
12542::
12543
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012544 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012545
12546Overview:
12547"""""""""
12548
12549The '``llvm.invariant.start``' intrinsic specifies that the contents of
12550a memory object will not change.
12551
12552Arguments:
12553""""""""""
12554
12555The first argument is a constant integer representing the size of the
12556object, or -1 if it is variable sized. The second argument is a pointer
12557to the object.
12558
12559Semantics:
12560""""""""""
12561
12562This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12563the return value, the referenced memory location is constant and
12564unchanging.
12565
12566'``llvm.invariant.end``' Intrinsic
12567^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12568
12569Syntax:
12570"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012571This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012572
12573::
12574
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012575 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012576
12577Overview:
12578"""""""""
12579
12580The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12581memory object are mutable.
12582
12583Arguments:
12584""""""""""
12585
12586The first argument is the matching ``llvm.invariant.start`` intrinsic.
12587The second argument is a constant integer representing the size of the
12588object, or -1 if it is variable sized and the third argument is a
12589pointer to the object.
12590
12591Semantics:
12592""""""""""
12593
12594This intrinsic indicates that the memory is mutable again.
12595
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012596'``llvm.invariant.group.barrier``' Intrinsic
12597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12598
12599Syntax:
12600"""""""
12601
12602::
12603
12604 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12605
12606Overview:
12607"""""""""
12608
12609The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12610established by invariant.group metadata no longer holds, to obtain a new pointer
12611value that does not carry the invariant information.
12612
12613
12614Arguments:
12615""""""""""
12616
12617The ``llvm.invariant.group.barrier`` takes only one argument, which is
12618the pointer to the memory for which the ``invariant.group`` no longer holds.
12619
12620Semantics:
12621""""""""""
12622
12623Returns another pointer that aliases its argument but which is considered different
12624for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12625
Andrew Kaylora0a11642017-01-26 23:27:59 +000012626Constrained Floating Point Intrinsics
12627-------------------------------------
12628
12629These intrinsics are used to provide special handling of floating point
12630operations when specific rounding mode or floating point exception behavior is
12631required. By default, LLVM optimization passes assume that the rounding mode is
12632round-to-nearest and that floating point exceptions will not be monitored.
12633Constrained FP intrinsics are used to support non-default rounding modes and
12634accurately preserve exception behavior without compromising LLVM's ability to
12635optimize FP code when the default behavior is used.
12636
12637Each of these intrinsics corresponds to a normal floating point operation. The
12638first two arguments and the return value are the same as the corresponding FP
12639operation.
12640
12641The third argument is a metadata argument specifying the rounding mode to be
12642assumed. This argument must be one of the following strings:
12643
12644::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012645
Andrew Kaylora0a11642017-01-26 23:27:59 +000012646 "round.dynamic"
12647 "round.tonearest"
12648 "round.downward"
12649 "round.upward"
12650 "round.towardzero"
12651
12652If this argument is "round.dynamic" optimization passes must assume that the
12653rounding mode is unknown and may change at runtime. No transformations that
12654depend on rounding mode may be performed in this case.
12655
12656The other possible values for the rounding mode argument correspond to the
12657similarly named IEEE rounding modes. If the argument is any of these values
12658optimization passes may perform transformations as long as they are consistent
12659with the specified rounding mode.
12660
12661For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12662"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12663'x-0' should evaluate to '-0' when rounding downward. However, this
12664transformation is legal for all other rounding modes.
12665
12666For values other than "round.dynamic" optimization passes may assume that the
12667actual runtime rounding mode (as defined in a target-specific manner) matches
12668the specified rounding mode, but this is not guaranteed. Using a specific
12669non-dynamic rounding mode which does not match the actual rounding mode at
12670runtime results in undefined behavior.
12671
12672The fourth argument to the constrained floating point intrinsics specifies the
12673required exception behavior. This argument must be one of the following
12674strings:
12675
12676::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012677
Andrew Kaylora0a11642017-01-26 23:27:59 +000012678 "fpexcept.ignore"
12679 "fpexcept.maytrap"
12680 "fpexcept.strict"
12681
12682If this argument is "fpexcept.ignore" optimization passes may assume that the
12683exception status flags will not be read and that floating point exceptions will
12684be masked. This allows transformations to be performed that may change the
12685exception semantics of the original code. For example, FP operations may be
12686speculatively executed in this case whereas they must not be for either of the
12687other possible values of this argument.
12688
12689If the exception behavior argument is "fpexcept.maytrap" optimization passes
12690must avoid transformations that may raise exceptions that would not have been
12691raised by the original code (such as speculatively executing FP operations), but
12692passes are not required to preserve all exceptions that are implied by the
12693original code. For example, exceptions may be potentially hidden by constant
12694folding.
12695
12696If the exception behavior argument is "fpexcept.strict" all transformations must
12697strictly preserve the floating point exception semantics of the original code.
12698Any FP exception that would have been raised by the original code must be raised
12699by the transformed code, and the transformed code must not raise any FP
12700exceptions that would not have been raised by the original code. This is the
12701exception behavior argument that will be used if the code being compiled reads
12702the FP exception status flags, but this mode can also be used with code that
12703unmasks FP exceptions.
12704
12705The number and order of floating point exceptions is NOT guaranteed. For
12706example, a series of FP operations that each may raise exceptions may be
12707vectorized into a single instruction that raises each unique exception a single
12708time.
12709
12710
12711'``llvm.experimental.constrained.fadd``' Intrinsic
12712^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12713
12714Syntax:
12715"""""""
12716
12717::
12718
12719 declare <type>
12720 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12721 metadata <rounding mode>,
12722 metadata <exception behavior>)
12723
12724Overview:
12725"""""""""
12726
12727The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
12728two operands.
12729
12730
12731Arguments:
12732""""""""""
12733
12734The first two arguments to the '``llvm.experimental.constrained.fadd``'
12735intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12736of floating point values. Both arguments must have identical types.
12737
12738The third and fourth arguments specify the rounding mode and exception
12739behavior as described above.
12740
12741Semantics:
12742""""""""""
12743
12744The value produced is the floating point sum of the two value operands and has
12745the same type as the operands.
12746
12747
12748'``llvm.experimental.constrained.fsub``' Intrinsic
12749^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12750
12751Syntax:
12752"""""""
12753
12754::
12755
12756 declare <type>
12757 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
12758 metadata <rounding mode>,
12759 metadata <exception behavior>)
12760
12761Overview:
12762"""""""""
12763
12764The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
12765of its two operands.
12766
12767
12768Arguments:
12769""""""""""
12770
12771The first two arguments to the '``llvm.experimental.constrained.fsub``'
12772intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12773of floating point values. Both arguments must have identical types.
12774
12775The third and fourth arguments specify the rounding mode and exception
12776behavior as described above.
12777
12778Semantics:
12779""""""""""
12780
12781The value produced is the floating point difference of the two value operands
12782and has the same type as the operands.
12783
12784
12785'``llvm.experimental.constrained.fmul``' Intrinsic
12786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12787
12788Syntax:
12789"""""""
12790
12791::
12792
12793 declare <type>
12794 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
12795 metadata <rounding mode>,
12796 metadata <exception behavior>)
12797
12798Overview:
12799"""""""""
12800
12801The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
12802its two operands.
12803
12804
12805Arguments:
12806""""""""""
12807
12808The first two arguments to the '``llvm.experimental.constrained.fmul``'
12809intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12810of floating point values. Both arguments must have identical types.
12811
12812The third and fourth arguments specify the rounding mode and exception
12813behavior as described above.
12814
12815Semantics:
12816""""""""""
12817
12818The value produced is the floating point product of the two value operands and
12819has the same type as the operands.
12820
12821
12822'``llvm.experimental.constrained.fdiv``' Intrinsic
12823^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12824
12825Syntax:
12826"""""""
12827
12828::
12829
12830 declare <type>
12831 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
12832 metadata <rounding mode>,
12833 metadata <exception behavior>)
12834
12835Overview:
12836"""""""""
12837
12838The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
12839its two operands.
12840
12841
12842Arguments:
12843""""""""""
12844
12845The first two arguments to the '``llvm.experimental.constrained.fdiv``'
12846intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12847of floating point values. Both arguments must have identical types.
12848
12849The third and fourth arguments specify the rounding mode and exception
12850behavior as described above.
12851
12852Semantics:
12853""""""""""
12854
12855The value produced is the floating point quotient of the two value operands and
12856has the same type as the operands.
12857
12858
12859'``llvm.experimental.constrained.frem``' Intrinsic
12860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12861
12862Syntax:
12863"""""""
12864
12865::
12866
12867 declare <type>
12868 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
12869 metadata <rounding mode>,
12870 metadata <exception behavior>)
12871
12872Overview:
12873"""""""""
12874
12875The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
12876from the division of its two operands.
12877
12878
12879Arguments:
12880""""""""""
12881
12882The first two arguments to the '``llvm.experimental.constrained.frem``'
12883intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12884of floating point values. Both arguments must have identical types.
12885
12886The third and fourth arguments specify the rounding mode and exception
12887behavior as described above. The rounding mode argument has no effect, since
12888the result of frem is never rounded, but the argument is included for
12889consistency with the other constrained floating point intrinsics.
12890
12891Semantics:
12892""""""""""
12893
12894The value produced is the floating point remainder from the division of the two
12895value operands and has the same type as the operands. The remainder has the
12896same sign as the dividend.
12897
12898
Sean Silvab084af42012-12-07 10:36:55 +000012899General Intrinsics
12900------------------
12901
12902This class of intrinsics is designed to be generic and has no specific
12903purpose.
12904
12905'``llvm.var.annotation``' Intrinsic
12906^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12907
12908Syntax:
12909"""""""
12910
12911::
12912
12913 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12914
12915Overview:
12916"""""""""
12917
12918The '``llvm.var.annotation``' intrinsic.
12919
12920Arguments:
12921""""""""""
12922
12923The first argument is a pointer to a value, the second is a pointer to a
12924global string, the third is a pointer to a global string which is the
12925source file name, and the last argument is the line number.
12926
12927Semantics:
12928""""""""""
12929
12930This intrinsic allows annotation of local variables with arbitrary
12931strings. This can be useful for special purpose optimizations that want
12932to look for these annotations. These have no other defined use; they are
12933ignored by code generation and optimization.
12934
Michael Gottesman88d18832013-03-26 00:34:27 +000012935'``llvm.ptr.annotation.*``' Intrinsic
12936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12937
12938Syntax:
12939"""""""
12940
12941This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12942pointer to an integer of any width. *NOTE* you must specify an address space for
12943the pointer. The identifier for the default address space is the integer
12944'``0``'.
12945
12946::
12947
12948 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12949 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12950 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12951 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12952 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12953
12954Overview:
12955"""""""""
12956
12957The '``llvm.ptr.annotation``' intrinsic.
12958
12959Arguments:
12960""""""""""
12961
12962The first argument is a pointer to an integer value of arbitrary bitwidth
12963(result of some expression), the second is a pointer to a global string, the
12964third is a pointer to a global string which is the source file name, and the
12965last argument is the line number. It returns the value of the first argument.
12966
12967Semantics:
12968""""""""""
12969
12970This intrinsic allows annotation of a pointer to an integer with arbitrary
12971strings. This can be useful for special purpose optimizations that want to look
12972for these annotations. These have no other defined use; they are ignored by code
12973generation and optimization.
12974
Sean Silvab084af42012-12-07 10:36:55 +000012975'``llvm.annotation.*``' Intrinsic
12976^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12977
12978Syntax:
12979"""""""
12980
12981This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12982any integer bit width.
12983
12984::
12985
12986 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12987 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12988 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12989 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12990 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12991
12992Overview:
12993"""""""""
12994
12995The '``llvm.annotation``' intrinsic.
12996
12997Arguments:
12998""""""""""
12999
13000The first argument is an integer value (result of some expression), the
13001second is a pointer to a global string, the third is a pointer to a
13002global string which is the source file name, and the last argument is
13003the line number. It returns the value of the first argument.
13004
13005Semantics:
13006""""""""""
13007
13008This intrinsic allows annotations to be put on arbitrary expressions
13009with arbitrary strings. This can be useful for special purpose
13010optimizations that want to look for these annotations. These have no
13011other defined use; they are ignored by code generation and optimization.
13012
13013'``llvm.trap``' Intrinsic
13014^^^^^^^^^^^^^^^^^^^^^^^^^
13015
13016Syntax:
13017"""""""
13018
13019::
13020
13021 declare void @llvm.trap() noreturn nounwind
13022
13023Overview:
13024"""""""""
13025
13026The '``llvm.trap``' intrinsic.
13027
13028Arguments:
13029""""""""""
13030
13031None.
13032
13033Semantics:
13034""""""""""
13035
13036This intrinsic is lowered to the target dependent trap instruction. If
13037the target does not have a trap instruction, this intrinsic will be
13038lowered to a call of the ``abort()`` function.
13039
13040'``llvm.debugtrap``' Intrinsic
13041^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13042
13043Syntax:
13044"""""""
13045
13046::
13047
13048 declare void @llvm.debugtrap() nounwind
13049
13050Overview:
13051"""""""""
13052
13053The '``llvm.debugtrap``' intrinsic.
13054
13055Arguments:
13056""""""""""
13057
13058None.
13059
13060Semantics:
13061""""""""""
13062
13063This intrinsic is lowered to code which is intended to cause an
13064execution trap with the intention of requesting the attention of a
13065debugger.
13066
13067'``llvm.stackprotector``' Intrinsic
13068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13069
13070Syntax:
13071"""""""
13072
13073::
13074
13075 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
13076
13077Overview:
13078"""""""""
13079
13080The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
13081onto the stack at ``slot``. The stack slot is adjusted to ensure that it
13082is placed on the stack before local variables.
13083
13084Arguments:
13085""""""""""
13086
13087The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
13088The first argument is the value loaded from the stack guard
13089``@__stack_chk_guard``. The second variable is an ``alloca`` that has
13090enough space to hold the value of the guard.
13091
13092Semantics:
13093""""""""""
13094
Michael Gottesmandafc7d92013-08-12 18:35:32 +000013095This intrinsic causes the prologue/epilogue inserter to force the position of
13096the ``AllocaInst`` stack slot to be before local variables on the stack. This is
13097to ensure that if a local variable on the stack is overwritten, it will destroy
13098the value of the guard. When the function exits, the guard on the stack is
13099checked against the original guard by ``llvm.stackprotectorcheck``. If they are
13100different, then ``llvm.stackprotectorcheck`` causes the program to abort by
13101calling the ``__stack_chk_fail()`` function.
13102
Tim Shene885d5e2016-04-19 19:40:37 +000013103'``llvm.stackguard``' Intrinsic
13104^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13105
13106Syntax:
13107"""""""
13108
13109::
13110
13111 declare i8* @llvm.stackguard()
13112
13113Overview:
13114"""""""""
13115
13116The ``llvm.stackguard`` intrinsic returns the system stack guard value.
13117
13118It should not be generated by frontends, since it is only for internal usage.
13119The reason why we create this intrinsic is that we still support IR form Stack
13120Protector in FastISel.
13121
13122Arguments:
13123""""""""""
13124
13125None.
13126
13127Semantics:
13128""""""""""
13129
13130On some platforms, the value returned by this intrinsic remains unchanged
13131between loads in the same thread. On other platforms, it returns the same
13132global variable value, if any, e.g. ``@__stack_chk_guard``.
13133
13134Currently some platforms have IR-level customized stack guard loading (e.g.
13135X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
13136in the future.
13137
Sean Silvab084af42012-12-07 10:36:55 +000013138'``llvm.objectsize``' Intrinsic
13139^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13140
13141Syntax:
13142"""""""
13143
13144::
13145
George Burgess IV56c7e882017-03-21 20:08:59 +000013146 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
13147 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000013148
13149Overview:
13150"""""""""
13151
13152The ``llvm.objectsize`` intrinsic is designed to provide information to
13153the optimizers to determine at compile time whether a) an operation
13154(like memcpy) will overflow a buffer that corresponds to an object, or
13155b) that a runtime check for overflow isn't necessary. An object in this
13156context means an allocation of a specific class, structure, array, or
13157other object.
13158
13159Arguments:
13160""""""""""
13161
George Burgess IV56c7e882017-03-21 20:08:59 +000013162The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
13163a pointer to or into the ``object``. The second argument determines whether
13164``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
13165is unknown. The third argument controls how ``llvm.objectsize`` acts when
13166``null`` is used as its pointer argument. If it's true and the pointer is in
13167address space 0, ``null`` is treated as an opaque value with an unknown number
13168of bytes. Otherwise, ``llvm.objectsize`` reports 0 bytes available when given
13169``null``.
13170
13171The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000013172
13173Semantics:
13174""""""""""
13175
13176The ``llvm.objectsize`` intrinsic is lowered to a constant representing
13177the size of the object concerned. If the size cannot be determined at
13178compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
13179on the ``min`` argument).
13180
13181'``llvm.expect``' Intrinsic
13182^^^^^^^^^^^^^^^^^^^^^^^^^^^
13183
13184Syntax:
13185"""""""
13186
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013187This is an overloaded intrinsic. You can use ``llvm.expect`` on any
13188integer bit width.
13189
Sean Silvab084af42012-12-07 10:36:55 +000013190::
13191
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013192 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000013193 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
13194 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
13195
13196Overview:
13197"""""""""
13198
13199The ``llvm.expect`` intrinsic provides information about expected (the
13200most probable) value of ``val``, which can be used by optimizers.
13201
13202Arguments:
13203""""""""""
13204
13205The ``llvm.expect`` intrinsic takes two arguments. The first argument is
13206a value. The second argument is an expected value, this needs to be a
13207constant value, variables are not allowed.
13208
13209Semantics:
13210""""""""""
13211
13212This intrinsic is lowered to the ``val``.
13213
Philip Reamese0e90832015-04-26 22:23:12 +000013214.. _int_assume:
13215
Hal Finkel93046912014-07-25 21:13:35 +000013216'``llvm.assume``' Intrinsic
13217^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13218
13219Syntax:
13220"""""""
13221
13222::
13223
13224 declare void @llvm.assume(i1 %cond)
13225
13226Overview:
13227"""""""""
13228
13229The ``llvm.assume`` allows the optimizer to assume that the provided
13230condition is true. This information can then be used in simplifying other parts
13231of the code.
13232
13233Arguments:
13234""""""""""
13235
13236The condition which the optimizer may assume is always true.
13237
13238Semantics:
13239""""""""""
13240
13241The intrinsic allows the optimizer to assume that the provided condition is
13242always true whenever the control flow reaches the intrinsic call. No code is
13243generated for this intrinsic, and instructions that contribute only to the
13244provided condition are not used for code generation. If the condition is
13245violated during execution, the behavior is undefined.
13246
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013247Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000013248used by the ``llvm.assume`` intrinsic in order to preserve the instructions
13249only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013250if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000013251sufficient overall improvement in code quality. For this reason,
13252``llvm.assume`` should not be used to document basic mathematical invariants
13253that the optimizer can otherwise deduce or facts that are of little use to the
13254optimizer.
13255
Daniel Berlin2c438a32017-02-07 19:29:25 +000013256.. _int_ssa_copy:
13257
13258'``llvm.ssa_copy``' Intrinsic
13259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13260
13261Syntax:
13262"""""""
13263
13264::
13265
13266 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
13267
13268Arguments:
13269""""""""""
13270
13271The first argument is an operand which is used as the returned value.
13272
13273Overview:
13274""""""""""
13275
13276The ``llvm.ssa_copy`` intrinsic can be used to attach information to
13277operations by copying them and giving them new names. For example,
13278the PredicateInfo utility uses it to build Extended SSA form, and
13279attach various forms of information to operands that dominate specific
13280uses. It is not meant for general use, only for building temporary
13281renaming forms that require value splits at certain points.
13282
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013283.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000013284
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013285'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000013286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13287
13288Syntax:
13289"""""""
13290
13291::
13292
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013293 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000013294
13295
13296Arguments:
13297""""""""""
13298
13299The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013300metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000013301
13302Overview:
13303"""""""""
13304
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013305The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
13306with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000013307
Peter Collingbourne0312f612016-06-25 00:23:04 +000013308'``llvm.type.checked.load``' Intrinsic
13309^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13310
13311Syntax:
13312"""""""
13313
13314::
13315
13316 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
13317
13318
13319Arguments:
13320""""""""""
13321
13322The first argument is a pointer from which to load a function pointer. The
13323second argument is the byte offset from which to load the function pointer. The
13324third argument is a metadata object representing a :doc:`type identifier
13325<TypeMetadata>`.
13326
13327Overview:
13328"""""""""
13329
13330The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
13331virtual table pointer using type metadata. This intrinsic is used to implement
13332control flow integrity in conjunction with virtual call optimization. The
13333virtual call optimization pass will optimize away ``llvm.type.checked.load``
13334intrinsics associated with devirtualized calls, thereby removing the type
13335check in cases where it is not needed to enforce the control flow integrity
13336constraint.
13337
13338If the given pointer is associated with a type metadata identifier, this
13339function returns true as the second element of its return value. (Note that
13340the function may also return true if the given pointer is not associated
13341with a type metadata identifier.) If the function's return value's second
13342element is true, the following rules apply to the first element:
13343
13344- If the given pointer is associated with the given type metadata identifier,
13345 it is the function pointer loaded from the given byte offset from the given
13346 pointer.
13347
13348- If the given pointer is not associated with the given type metadata
13349 identifier, it is one of the following (the choice of which is unspecified):
13350
13351 1. The function pointer that would have been loaded from an arbitrarily chosen
13352 (through an unspecified mechanism) pointer associated with the type
13353 metadata.
13354
13355 2. If the function has a non-void return type, a pointer to a function that
13356 returns an unspecified value without causing side effects.
13357
13358If the function's return value's second element is false, the value of the
13359first element is undefined.
13360
13361
Sean Silvab084af42012-12-07 10:36:55 +000013362'``llvm.donothing``' Intrinsic
13363^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13364
13365Syntax:
13366"""""""
13367
13368::
13369
13370 declare void @llvm.donothing() nounwind readnone
13371
13372Overview:
13373"""""""""
13374
Juergen Ributzkac9161192014-10-23 22:36:13 +000013375The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000013376three intrinsics (besides ``llvm.experimental.patchpoint`` and
13377``llvm.experimental.gc.statepoint``) that can be called with an invoke
13378instruction.
Sean Silvab084af42012-12-07 10:36:55 +000013379
13380Arguments:
13381""""""""""
13382
13383None.
13384
13385Semantics:
13386""""""""""
13387
13388This intrinsic does nothing, and it's removed by optimizers and ignored
13389by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000013390
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013391'``llvm.experimental.deoptimize``' Intrinsic
13392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13393
13394Syntax:
13395"""""""
13396
13397::
13398
13399 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
13400
13401Overview:
13402"""""""""
13403
13404This intrinsic, together with :ref:`deoptimization operand bundles
13405<deopt_opbundles>`, allow frontends to express transfer of control and
13406frame-local state from the currently executing (typically more specialized,
13407hence faster) version of a function into another (typically more generic, hence
13408slower) version.
13409
13410In languages with a fully integrated managed runtime like Java and JavaScript
13411this intrinsic can be used to implement "uncommon trap" or "side exit" like
13412functionality. In unmanaged languages like C and C++, this intrinsic can be
13413used to represent the slow paths of specialized functions.
13414
13415
13416Arguments:
13417""""""""""
13418
13419The intrinsic takes an arbitrary number of arguments, whose meaning is
13420decided by the :ref:`lowering strategy<deoptimize_lowering>`.
13421
13422Semantics:
13423""""""""""
13424
13425The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
13426deoptimization continuation (denoted using a :ref:`deoptimization
13427operand bundle <deopt_opbundles>`) and returns the value returned by
13428the deoptimization continuation. Defining the semantic properties of
13429the continuation itself is out of scope of the language reference --
13430as far as LLVM is concerned, the deoptimization continuation can
13431invoke arbitrary side effects, including reading from and writing to
13432the entire heap.
13433
13434Deoptimization continuations expressed using ``"deopt"`` operand bundles always
13435continue execution to the end of the physical frame containing them, so all
13436calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
13437
13438 - ``@llvm.experimental.deoptimize`` cannot be invoked.
13439 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
13440 - The ``ret`` instruction must return the value produced by the
13441 ``@llvm.experimental.deoptimize`` call if there is one, or void.
13442
13443Note that the above restrictions imply that the return type for a call to
13444``@llvm.experimental.deoptimize`` will match the return type of its immediate
13445caller.
13446
13447The inliner composes the ``"deopt"`` continuations of the caller into the
13448``"deopt"`` continuations present in the inlinee, and also updates calls to this
13449intrinsic to return directly from the frame of the function it inlined into.
13450
Sanjoy Dase0aa4142016-05-12 01:17:38 +000013451All declarations of ``@llvm.experimental.deoptimize`` must share the
13452same calling convention.
13453
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013454.. _deoptimize_lowering:
13455
13456Lowering:
13457"""""""""
13458
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000013459Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
13460symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
13461ensure that this symbol is defined). The call arguments to
13462``@llvm.experimental.deoptimize`` are lowered as if they were formal
13463arguments of the specified types, and not as varargs.
13464
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013465
Sanjoy Das021de052016-03-31 00:18:46 +000013466'``llvm.experimental.guard``' Intrinsic
13467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13468
13469Syntax:
13470"""""""
13471
13472::
13473
13474 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
13475
13476Overview:
13477"""""""""
13478
13479This intrinsic, together with :ref:`deoptimization operand bundles
13480<deopt_opbundles>`, allows frontends to express guards or checks on
13481optimistic assumptions made during compilation. The semantics of
13482``@llvm.experimental.guard`` is defined in terms of
13483``@llvm.experimental.deoptimize`` -- its body is defined to be
13484equivalent to:
13485
Renato Golin124f2592016-07-20 12:16:38 +000013486.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000013487
Renato Golin124f2592016-07-20 12:16:38 +000013488 define void @llvm.experimental.guard(i1 %pred, <args...>) {
13489 %realPred = and i1 %pred, undef
13490 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000013491
Renato Golin124f2592016-07-20 12:16:38 +000013492 leave:
13493 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
13494 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000013495
Renato Golin124f2592016-07-20 12:16:38 +000013496 continue:
13497 ret void
13498 }
Sanjoy Das021de052016-03-31 00:18:46 +000013499
Sanjoy Das47cf2af2016-04-30 00:55:59 +000013500
13501with the optional ``[, !make.implicit !{}]`` present if and only if it
13502is present on the call site. For more details on ``!make.implicit``,
13503see :doc:`FaultMaps`.
13504
Sanjoy Das021de052016-03-31 00:18:46 +000013505In words, ``@llvm.experimental.guard`` executes the attached
13506``"deopt"`` continuation if (but **not** only if) its first argument
13507is ``false``. Since the optimizer is allowed to replace the ``undef``
13508with an arbitrary value, it can optimize guard to fail "spuriously",
13509i.e. without the original condition being false (hence the "not only
13510if"); and this allows for "check widening" type optimizations.
13511
13512``@llvm.experimental.guard`` cannot be invoked.
13513
13514
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000013515'``llvm.load.relative``' Intrinsic
13516^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13517
13518Syntax:
13519"""""""
13520
13521::
13522
13523 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
13524
13525Overview:
13526"""""""""
13527
13528This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
13529adds ``%ptr`` to that value and returns it. The constant folder specifically
13530recognizes the form of this intrinsic and the constant initializers it may
13531load from; if a loaded constant initializer is known to have the form
13532``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
13533
13534LLVM provides that the calculation of such a constant initializer will
13535not overflow at link time under the medium code model if ``x`` is an
13536``unnamed_addr`` function. However, it does not provide this guarantee for
13537a constant initializer folded into a function body. This intrinsic can be
13538used to avoid the possibility of overflows when loading from such a constant.
13539
Andrew Trick5e029ce2013-12-24 02:57:25 +000013540Stack Map Intrinsics
13541--------------------
13542
13543LLVM provides experimental intrinsics to support runtime patching
13544mechanisms commonly desired in dynamic language JITs. These intrinsics
13545are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000013546
13547Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000013548-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000013549
13550These intrinsics are similar to the standard library memory intrinsics except
13551that they perform memory transfer as a sequence of atomic memory accesses.
13552
13553.. _int_memcpy_element_atomic:
13554
13555'``llvm.memcpy.element.atomic``' Intrinsic
Igor Laevskyfedab152016-12-29 15:08:57 +000013556^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000013557
13558Syntax:
13559"""""""
13560
13561This is an overloaded intrinsic. You can use ``llvm.memcpy.element.atomic`` on
13562any integer bit width and for different address spaces. Not all targets
13563support all bit widths however.
13564
13565::
13566
13567 declare void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* <dest>, i8* <src>,
13568 i64 <num_elements>, i32 <element_size>)
13569
13570Overview:
13571"""""""""
13572
13573The '``llvm.memcpy.element.atomic.*``' intrinsic performs copy of a block of
13574memory from the source location to the destination location as a sequence of
13575unordered atomic memory accesses where each access is a multiple of
13576``element_size`` bytes wide and aligned at an element size boundary. For example
13577each element is accessed atomically in source and destination buffers.
13578
13579Arguments:
13580""""""""""
13581
13582The first argument is a pointer to the destination, the second is a
13583pointer to the source. The third argument is an integer argument
13584specifying the number of elements to copy, the fourth argument is size of
13585the single element in bytes.
13586
13587``element_size`` should be a power of two, greater than zero and less than
13588a target-specific atomic access size limit.
13589
13590For each of the input pointers ``align`` parameter attribute must be specified.
13591It must be a power of two and greater than or equal to the ``element_size``.
13592Caller guarantees that both the source and destination pointers are aligned to
13593that boundary.
13594
13595Semantics:
13596""""""""""
13597
13598The '``llvm.memcpy.element.atomic.*``' intrinsic copies
13599'``num_elements`` * ``element_size``' bytes of memory from the source location to
13600the destination location. These locations are not allowed to overlap. Memory copy
13601is performed as a sequence of unordered atomic memory accesses where each access
13602is guaranteed to be a multiple of ``element_size`` bytes wide and aligned at an
13603element size boundary.
13604
13605The order of the copy is unspecified. The same value may be read from the source
13606buffer many times, but only one write is issued to the destination buffer per
13607element. It is well defined to have concurrent reads and writes to both source
13608and destination provided those reads and writes are at least unordered atomic.
13609
13610This intrinsic does not provide any additional ordering guarantees over those
13611provided by a set of unordered loads from the source location and stores to the
13612destination.
13613
13614Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000013615"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000013616
13617In the most general case call to the '``llvm.memcpy.element.atomic.*``' is lowered
13618to a call to the symbol ``__llvm_memcpy_element_atomic_*``. Where '*' is replaced
13619with an actual element size.
13620
13621Optimizer is allowed to inline memory copy when it's profitable to do so.