blob: ec445489d8b9cb1efeff9efa68e6a21061bf4188 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Javed Absarf3d79042017-05-11 12:28:08 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
645an optional :ref:`global attributes <glattrs>` and
646an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000647
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000648Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000649:ref:`Thread Local Storage Model <tls_model>`.
650
Nico Rieck7157bb72014-01-14 15:22:47 +0000651Syntax::
652
Rafael Espindola32483a72016-05-10 18:22:45 +0000653 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000654 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
655 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000656 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000657 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000658 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000659
Sean Silvab084af42012-12-07 10:36:55 +0000660For example, the following defines a global in a numbered address space
661with an initializer, section, and alignment:
662
663.. code-block:: llvm
664
665 @G = addrspace(5) constant float 1.0, section "foo", align 4
666
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000667The following example just declares a global variable
668
669.. code-block:: llvm
670
671 @G = external global i32
672
Sean Silvab084af42012-12-07 10:36:55 +0000673The following example defines a thread-local global with the
674``initialexec`` TLS model:
675
676.. code-block:: llvm
677
678 @G = thread_local(initialexec) global i32 0, align 4
679
680.. _functionstructure:
681
682Functions
683---------
684
685LLVM function definitions consist of the "``define``" keyword, an
686optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000687style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
688an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000689an optional ``unnamed_addr`` attribute, a return type, an optional
690:ref:`parameter attribute <paramattrs>` for the return type, a function
691name, a (possibly empty) argument list (each with optional :ref:`parameter
692attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000693an optional section, an optional alignment,
694an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000695an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000696an optional :ref:`prologue <prologuedata>`,
697an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000698an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000699an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000700
701LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000702optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
703<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
704optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
705or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
706attribute <paramattrs>` for the return type, a function name, a possibly
707empty list of arguments, an optional alignment, an optional :ref:`garbage
708collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
709:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000710
Bill Wendling6822ecb2013-10-27 05:09:12 +0000711A function definition contains a list of basic blocks, forming the CFG (Control
712Flow Graph) for the function. Each basic block may optionally start with a label
713(giving the basic block a symbol table entry), contains a list of instructions,
714and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
715function return). If an explicit label is not provided, a block is assigned an
716implicit numbered label, using the next value from the same counter as used for
717unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
718entry block does not have an explicit label, it will be assigned label "%0",
719then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000720
721The first basic block in a function is special in two ways: it is
722immediately executed on entrance to the function, and it is not allowed
723to have predecessor basic blocks (i.e. there can not be any branches to
724the entry block of a function). Because the block can have no
725predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
726
727LLVM allows an explicit section to be specified for functions. If the
728target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000729Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000730
731An explicit alignment may be specified for a function. If not present,
732or if the alignment is set to zero, the alignment of the function is set
733by the target to whatever it feels convenient. If an explicit alignment
734is specified, the function is forced to have at least that much
735alignment. All alignments must be a power of 2.
736
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000737If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000738be significant and two identical functions can be merged.
739
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000740If the ``local_unnamed_addr`` attribute is given, the address is known to
741not be significant within the module.
742
Sean Silvab084af42012-12-07 10:36:55 +0000743Syntax::
744
Nico Rieck7157bb72014-01-14 15:22:47 +0000745 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000746 [cconv] [ret attrs]
747 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000748 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
749 [comdat [($name)]] [align N] [gc] [prefix Constant]
750 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000751
Sean Silva706fba52015-08-06 22:56:24 +0000752The argument list is a comma separated sequence of arguments where each
753argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000754
755Syntax::
756
757 <type> [parameter Attrs] [name]
758
759
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000760.. _langref_aliases:
761
Sean Silvab084af42012-12-07 10:36:55 +0000762Aliases
763-------
764
Rafael Espindola64c1e182014-06-03 02:41:57 +0000765Aliases, unlike function or variables, don't create any new data. They
766are just a new symbol and metadata for an existing position.
767
768Aliases have a name and an aliasee that is either a global value or a
769constant expression.
770
Nico Rieck7157bb72014-01-14 15:22:47 +0000771Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000772:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
773<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000774
775Syntax::
776
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000777 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000778
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000779The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000780``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000781might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000782
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000783Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000784the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
785to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000786
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000787If the ``local_unnamed_addr`` attribute is given, the address is known to
788not be significant within the module.
789
Rafael Espindola64c1e182014-06-03 02:41:57 +0000790Since aliases are only a second name, some restrictions apply, of which
791some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000792
Rafael Espindola64c1e182014-06-03 02:41:57 +0000793* The expression defining the aliasee must be computable at assembly
794 time. Since it is just a name, no relocations can be used.
795
796* No alias in the expression can be weak as the possibility of the
797 intermediate alias being overridden cannot be represented in an
798 object file.
799
800* No global value in the expression can be a declaration, since that
801 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000802
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000803.. _langref_ifunc:
804
805IFuncs
806-------
807
808IFuncs, like as aliases, don't create any new data or func. They are just a new
809symbol that dynamic linker resolves at runtime by calling a resolver function.
810
811IFuncs have a name and a resolver that is a function called by dynamic linker
812that returns address of another function associated with the name.
813
814IFunc may have an optional :ref:`linkage type <linkage>` and an optional
815:ref:`visibility style <visibility>`.
816
817Syntax::
818
819 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
820
821
David Majnemerdad0a642014-06-27 18:19:56 +0000822.. _langref_comdats:
823
824Comdats
825-------
826
827Comdat IR provides access to COFF and ELF object file COMDAT functionality.
828
Sean Silvaa1190322015-08-06 22:56:48 +0000829Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000830specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000831that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000832aliasee computes to, if any.
833
834Comdats have a selection kind to provide input on how the linker should
835choose between keys in two different object files.
836
837Syntax::
838
839 $<Name> = comdat SelectionKind
840
841The selection kind must be one of the following:
842
843``any``
844 The linker may choose any COMDAT key, the choice is arbitrary.
845``exactmatch``
846 The linker may choose any COMDAT key but the sections must contain the
847 same data.
848``largest``
849 The linker will choose the section containing the largest COMDAT key.
850``noduplicates``
851 The linker requires that only section with this COMDAT key exist.
852``samesize``
853 The linker may choose any COMDAT key but the sections must contain the
854 same amount of data.
855
856Note that the Mach-O platform doesn't support COMDATs and ELF only supports
857``any`` as a selection kind.
858
859Here is an example of a COMDAT group where a function will only be selected if
860the COMDAT key's section is the largest:
861
Renato Golin124f2592016-07-20 12:16:38 +0000862.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000863
864 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000865 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000866
Rafael Espindola83a362c2015-01-06 22:55:16 +0000867 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000868 ret void
869 }
870
Rafael Espindola83a362c2015-01-06 22:55:16 +0000871As a syntactic sugar the ``$name`` can be omitted if the name is the same as
872the global name:
873
Renato Golin124f2592016-07-20 12:16:38 +0000874.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000875
876 $foo = comdat any
877 @foo = global i32 2, comdat
878
879
David Majnemerdad0a642014-06-27 18:19:56 +0000880In a COFF object file, this will create a COMDAT section with selection kind
881``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
882and another COMDAT section with selection kind
883``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000884section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000885
886There are some restrictions on the properties of the global object.
887It, or an alias to it, must have the same name as the COMDAT group when
888targeting COFF.
889The contents and size of this object may be used during link-time to determine
890which COMDAT groups get selected depending on the selection kind.
891Because the name of the object must match the name of the COMDAT group, the
892linkage of the global object must not be local; local symbols can get renamed
893if a collision occurs in the symbol table.
894
895The combined use of COMDATS and section attributes may yield surprising results.
896For example:
897
Renato Golin124f2592016-07-20 12:16:38 +0000898.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000899
900 $foo = comdat any
901 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000902 @g1 = global i32 42, section "sec", comdat($foo)
903 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000904
905From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000906with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000907COMDAT groups and COMDATs, at the object file level, are represented by
908sections.
909
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000910Note that certain IR constructs like global variables and functions may
911create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000912COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000913in individual sections (e.g. when `-data-sections` or `-function-sections`
914is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000915
Sean Silvab084af42012-12-07 10:36:55 +0000916.. _namedmetadatastructure:
917
918Named Metadata
919--------------
920
921Named metadata is a collection of metadata. :ref:`Metadata
922nodes <metadata>` (but not metadata strings) are the only valid
923operands for a named metadata.
924
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000925#. Named metadata are represented as a string of characters with the
926 metadata prefix. The rules for metadata names are the same as for
927 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
928 are still valid, which allows any character to be part of a name.
929
Sean Silvab084af42012-12-07 10:36:55 +0000930Syntax::
931
932 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000933 !0 = !{!"zero"}
934 !1 = !{!"one"}
935 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000936 ; A named metadata.
937 !name = !{!0, !1, !2}
938
939.. _paramattrs:
940
941Parameter Attributes
942--------------------
943
944The return type and each parameter of a function type may have a set of
945*parameter attributes* associated with them. Parameter attributes are
946used to communicate additional information about the result or
947parameters of a function. Parameter attributes are considered to be part
948of the function, not of the function type, so functions with different
949parameter attributes can have the same function type.
950
951Parameter attributes are simple keywords that follow the type specified.
952If multiple parameter attributes are needed, they are space separated.
953For example:
954
955.. code-block:: llvm
956
957 declare i32 @printf(i8* noalias nocapture, ...)
958 declare i32 @atoi(i8 zeroext)
959 declare signext i8 @returns_signed_char()
960
961Note that any attributes for the function result (``nounwind``,
962``readonly``) come immediately after the argument list.
963
964Currently, only the following parameter attributes are defined:
965
966``zeroext``
967 This indicates to the code generator that the parameter or return
968 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000969 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000970``signext``
971 This indicates to the code generator that the parameter or return
972 value should be sign-extended to the extent required by the target's
973 ABI (which is usually 32-bits) by the caller (for a parameter) or
974 the callee (for a return value).
975``inreg``
976 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000977 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000978 a function call or return (usually, by putting it in a register as
979 opposed to memory, though some targets use it to distinguish between
980 two different kinds of registers). Use of this attribute is
981 target-specific.
982``byval``
983 This indicates that the pointer parameter should really be passed by
984 value to the function. The attribute implies that a hidden copy of
985 the pointee is made between the caller and the callee, so the callee
986 is unable to modify the value in the caller. This attribute is only
987 valid on LLVM pointer arguments. It is generally used to pass
988 structs and arrays by value, but is also valid on pointers to
989 scalars. The copy is considered to belong to the caller not the
990 callee (for example, ``readonly`` functions should not write to
991 ``byval`` parameters). This is not a valid attribute for return
992 values.
993
994 The byval attribute also supports specifying an alignment with the
995 align attribute. It indicates the alignment of the stack slot to
996 form and the known alignment of the pointer specified to the call
997 site. If the alignment is not specified, then the code generator
998 makes a target-specific assumption.
999
Reid Klecknera534a382013-12-19 02:14:12 +00001000.. _attr_inalloca:
1001
1002``inalloca``
1003
Reid Kleckner60d3a832014-01-16 22:59:24 +00001004 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001005 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001006 be a pointer to stack memory produced by an ``alloca`` instruction.
1007 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001008 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001009 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001010
Reid Kleckner436c42e2014-01-17 23:58:17 +00001011 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001012 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001013 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001014 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001015 ``inalloca`` attribute also disables LLVM's implicit lowering of
1016 large aggregate return values, which means that frontend authors
1017 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001018
Reid Kleckner60d3a832014-01-16 22:59:24 +00001019 When the call site is reached, the argument allocation must have
1020 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001021 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001022 space after an argument allocation and before its call site, but it
1023 must be cleared off with :ref:`llvm.stackrestore
1024 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001025
1026 See :doc:`InAlloca` for more information on how to use this
1027 attribute.
1028
Sean Silvab084af42012-12-07 10:36:55 +00001029``sret``
1030 This indicates that the pointer parameter specifies the address of a
1031 structure that is the return value of the function in the source
1032 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001033 loads and stores to the structure may be assumed by the callee not
1034 to trap and to be properly aligned. This is not a valid attribute
1035 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001036
Hal Finkelccc70902014-07-22 16:58:55 +00001037``align <n>``
1038 This indicates that the pointer value may be assumed by the optimizer to
1039 have the specified alignment.
1040
1041 Note that this attribute has additional semantics when combined with the
1042 ``byval`` attribute.
1043
Sean Silva1703e702014-04-08 21:06:22 +00001044.. _noalias:
1045
Sean Silvab084af42012-12-07 10:36:55 +00001046``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001047 This indicates that objects accessed via pointer values
1048 :ref:`based <pointeraliasing>` on the argument or return value are not also
1049 accessed, during the execution of the function, via pointer values not
1050 *based* on the argument or return value. The attribute on a return value
1051 also has additional semantics described below. The caller shares the
1052 responsibility with the callee for ensuring that these requirements are met.
1053 For further details, please see the discussion of the NoAlias response in
1054 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001055
1056 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001057 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001058
1059 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001060 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1061 attribute on return values are stronger than the semantics of the attribute
1062 when used on function arguments. On function return values, the ``noalias``
1063 attribute indicates that the function acts like a system memory allocation
1064 function, returning a pointer to allocated storage disjoint from the
1065 storage for any other object accessible to the caller.
1066
Sean Silvab084af42012-12-07 10:36:55 +00001067``nocapture``
1068 This indicates that the callee does not make any copies of the
1069 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001070 attribute for return values. Addresses used in volatile operations
1071 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001072
1073.. _nest:
1074
1075``nest``
1076 This indicates that the pointer parameter can be excised using the
1077 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001078 attribute for return values and can only be applied to one parameter.
1079
1080``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001081 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001082 value. This is a hint to the optimizer and code generator used when
1083 generating the caller, allowing value propagation, tail call optimization,
1084 and omission of register saves and restores in some cases; it is not
1085 checked or enforced when generating the callee. The parameter and the
1086 function return type must be valid operands for the
1087 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1088 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001089
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001090``nonnull``
1091 This indicates that the parameter or return pointer is not null. This
1092 attribute may only be applied to pointer typed parameters. This is not
1093 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001094 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001095 is non-null.
1096
Hal Finkelb0407ba2014-07-18 15:51:28 +00001097``dereferenceable(<n>)``
1098 This indicates that the parameter or return pointer is dereferenceable. This
1099 attribute may only be applied to pointer typed parameters. A pointer that
1100 is dereferenceable can be loaded from speculatively without a risk of
1101 trapping. The number of bytes known to be dereferenceable must be provided
1102 in parentheses. It is legal for the number of bytes to be less than the
1103 size of the pointee type. The ``nonnull`` attribute does not imply
1104 dereferenceability (consider a pointer to one element past the end of an
1105 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1106 ``addrspace(0)`` (which is the default address space).
1107
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001108``dereferenceable_or_null(<n>)``
1109 This indicates that the parameter or return value isn't both
1110 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001111 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001112 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1113 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1114 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1115 and in other address spaces ``dereferenceable_or_null(<n>)``
1116 implies that a pointer is at least one of ``dereferenceable(<n>)``
1117 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001118 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001119 pointer typed parameters.
1120
Manman Renf46262e2016-03-29 17:37:21 +00001121``swiftself``
1122 This indicates that the parameter is the self/context parameter. This is not
1123 a valid attribute for return values and can only be applied to one
1124 parameter.
1125
Manman Ren9bfd0d02016-04-01 21:41:15 +00001126``swifterror``
1127 This attribute is motivated to model and optimize Swift error handling. It
1128 can be applied to a parameter with pointer to pointer type or a
1129 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001130 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1131 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1132 the parameter or the alloca) can only be loaded and stored from, or used as
1133 a ``swifterror`` argument. This is not a valid attribute for return values
1134 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001135
1136 These constraints allow the calling convention to optimize access to
1137 ``swifterror`` variables by associating them with a specific register at
1138 call boundaries rather than placing them in memory. Since this does change
1139 the calling convention, a function which uses the ``swifterror`` attribute
1140 on a parameter is not ABI-compatible with one which does not.
1141
1142 These constraints also allow LLVM to assume that a ``swifterror`` argument
1143 does not alias any other memory visible within a function and that a
1144 ``swifterror`` alloca passed as an argument does not escape.
1145
Sean Silvab084af42012-12-07 10:36:55 +00001146.. _gc:
1147
Philip Reamesf80bbff2015-02-25 23:45:20 +00001148Garbage Collector Strategy Names
1149--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001150
Philip Reamesf80bbff2015-02-25 23:45:20 +00001151Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001152string:
1153
1154.. code-block:: llvm
1155
1156 define void @f() gc "name" { ... }
1157
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001158The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001159<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001160strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001161named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001162garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001163which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001164
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001165.. _prefixdata:
1166
1167Prefix Data
1168-----------
1169
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001170Prefix data is data associated with a function which the code
1171generator will emit immediately before the function's entrypoint.
1172The purpose of this feature is to allow frontends to associate
1173language-specific runtime metadata with specific functions and make it
1174available through the function pointer while still allowing the
1175function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001176
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001177To access the data for a given function, a program may bitcast the
1178function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001179index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001180the prefix data. For instance, take the example of a function annotated
1181with a single ``i32``,
1182
1183.. code-block:: llvm
1184
1185 define void @f() prefix i32 123 { ... }
1186
1187The prefix data can be referenced as,
1188
1189.. code-block:: llvm
1190
David Blaikie16a97eb2015-03-04 22:02:58 +00001191 %0 = bitcast void* () @f to i32*
1192 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001193 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001194
1195Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001196of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001197beginning of the prefix data is aligned. This means that if the size
1198of the prefix data is not a multiple of the alignment size, the
1199function's entrypoint will not be aligned. If alignment of the
1200function's entrypoint is desired, padding must be added to the prefix
1201data.
1202
Sean Silvaa1190322015-08-06 22:56:48 +00001203A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001204to the ``available_externally`` linkage in that the data may be used by the
1205optimizers but will not be emitted in the object file.
1206
1207.. _prologuedata:
1208
1209Prologue Data
1210-------------
1211
1212The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1213be inserted prior to the function body. This can be used for enabling
1214function hot-patching and instrumentation.
1215
1216To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001217have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001218bytes which decode to a sequence of machine instructions, valid for the
1219module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001220the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001221the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001222definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001223makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001224
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001225A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001226which encodes the ``nop`` instruction:
1227
Renato Golin124f2592016-07-20 12:16:38 +00001228.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001229
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001230 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001231
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001232Generally prologue data can be formed by encoding a relative branch instruction
1233which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001234x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1235
Renato Golin124f2592016-07-20 12:16:38 +00001236.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001237
1238 %0 = type <{ i8, i8, i8* }>
1239
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001240 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001241
Sean Silvaa1190322015-08-06 22:56:48 +00001242A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001243to the ``available_externally`` linkage in that the data may be used by the
1244optimizers but will not be emitted in the object file.
1245
David Majnemer7fddecc2015-06-17 20:52:32 +00001246.. _personalityfn:
1247
1248Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001249--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001250
1251The ``personality`` attribute permits functions to specify what function
1252to use for exception handling.
1253
Bill Wendling63b88192013-02-06 06:52:58 +00001254.. _attrgrp:
1255
1256Attribute Groups
1257----------------
1258
1259Attribute groups are groups of attributes that are referenced by objects within
1260the IR. They are important for keeping ``.ll`` files readable, because a lot of
1261functions will use the same set of attributes. In the degenerative case of a
1262``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1263group will capture the important command line flags used to build that file.
1264
1265An attribute group is a module-level object. To use an attribute group, an
1266object references the attribute group's ID (e.g. ``#37``). An object may refer
1267to more than one attribute group. In that situation, the attributes from the
1268different groups are merged.
1269
1270Here is an example of attribute groups for a function that should always be
1271inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1272
1273.. code-block:: llvm
1274
1275 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001276 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001277
1278 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001279 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001280
1281 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1282 define void @f() #0 #1 { ... }
1283
Sean Silvab084af42012-12-07 10:36:55 +00001284.. _fnattrs:
1285
1286Function Attributes
1287-------------------
1288
1289Function attributes are set to communicate additional information about
1290a function. Function attributes are considered to be part of the
1291function, not of the function type, so functions with different function
1292attributes can have the same function type.
1293
1294Function attributes are simple keywords that follow the type specified.
1295If multiple attributes are needed, they are space separated. For
1296example:
1297
1298.. code-block:: llvm
1299
1300 define void @f() noinline { ... }
1301 define void @f() alwaysinline { ... }
1302 define void @f() alwaysinline optsize { ... }
1303 define void @f() optsize { ... }
1304
Sean Silvab084af42012-12-07 10:36:55 +00001305``alignstack(<n>)``
1306 This attribute indicates that, when emitting the prologue and
1307 epilogue, the backend should forcibly align the stack pointer.
1308 Specify the desired alignment, which must be a power of two, in
1309 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001310``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1311 This attribute indicates that the annotated function will always return at
1312 least a given number of bytes (or null). Its arguments are zero-indexed
1313 parameter numbers; if one argument is provided, then it's assumed that at
1314 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1315 returned pointer. If two are provided, then it's assumed that
1316 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1317 available. The referenced parameters must be integer types. No assumptions
1318 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001319``alwaysinline``
1320 This attribute indicates that the inliner should attempt to inline
1321 this function into callers whenever possible, ignoring any active
1322 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001323``builtin``
1324 This indicates that the callee function at a call site should be
1325 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001326 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001327 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001328 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001329``cold``
1330 This attribute indicates that this function is rarely called. When
1331 computing edge weights, basic blocks post-dominated by a cold
1332 function call are also considered to be cold; and, thus, given low
1333 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001334``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001335 In some parallel execution models, there exist operations that cannot be
1336 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001337 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001338
Justin Lebar58535b12016-02-17 17:46:41 +00001339 The ``convergent`` attribute may appear on functions or call/invoke
1340 instructions. When it appears on a function, it indicates that calls to
1341 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001342 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001343 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001344 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001345
Justin Lebar58535b12016-02-17 17:46:41 +00001346 When it appears on a call/invoke, the ``convergent`` attribute indicates
1347 that we should treat the call as though we're calling a convergent
1348 function. This is particularly useful on indirect calls; without this we
1349 may treat such calls as though the target is non-convergent.
1350
1351 The optimizer may remove the ``convergent`` attribute on functions when it
1352 can prove that the function does not execute any convergent operations.
1353 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1354 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001355``inaccessiblememonly``
1356 This attribute indicates that the function may only access memory that
1357 is not accessible by the module being compiled. This is a weaker form
1358 of ``readnone``.
1359``inaccessiblemem_or_argmemonly``
1360 This attribute indicates that the function may only access memory that is
1361 either not accessible by the module being compiled, or is pointed to
1362 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001363``inlinehint``
1364 This attribute indicates that the source code contained a hint that
1365 inlining this function is desirable (such as the "inline" keyword in
1366 C/C++). It is just a hint; it imposes no requirements on the
1367 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001368``jumptable``
1369 This attribute indicates that the function should be added to a
1370 jump-instruction table at code-generation time, and that all address-taken
1371 references to this function should be replaced with a reference to the
1372 appropriate jump-instruction-table function pointer. Note that this creates
1373 a new pointer for the original function, which means that code that depends
1374 on function-pointer identity can break. So, any function annotated with
1375 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001376``minsize``
1377 This attribute suggests that optimization passes and code generator
1378 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001379 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001380 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001381``naked``
1382 This attribute disables prologue / epilogue emission for the
1383 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001384``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001385 This indicates that the callee function at a call site is not recognized as
1386 a built-in function. LLVM will retain the original call and not replace it
1387 with equivalent code based on the semantics of the built-in function, unless
1388 the call site uses the ``builtin`` attribute. This is valid at call sites
1389 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001390``noduplicate``
1391 This attribute indicates that calls to the function cannot be
1392 duplicated. A call to a ``noduplicate`` function may be moved
1393 within its parent function, but may not be duplicated within
1394 its parent function.
1395
1396 A function containing a ``noduplicate`` call may still
1397 be an inlining candidate, provided that the call is not
1398 duplicated by inlining. That implies that the function has
1399 internal linkage and only has one call site, so the original
1400 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001401``noimplicitfloat``
1402 This attributes disables implicit floating point instructions.
1403``noinline``
1404 This attribute indicates that the inliner should never inline this
1405 function in any situation. This attribute may not be used together
1406 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001407``nonlazybind``
1408 This attribute suppresses lazy symbol binding for the function. This
1409 may make calls to the function faster, at the cost of extra program
1410 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001411``noredzone``
1412 This attribute indicates that the code generator should not use a
1413 red zone, even if the target-specific ABI normally permits it.
1414``noreturn``
1415 This function attribute indicates that the function never returns
1416 normally. This produces undefined behavior at runtime if the
1417 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001418``norecurse``
1419 This function attribute indicates that the function does not call itself
1420 either directly or indirectly down any possible call path. This produces
1421 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001422``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001423 This function attribute indicates that the function never raises an
1424 exception. If the function does raise an exception, its runtime
1425 behavior is undefined. However, functions marked nounwind may still
1426 trap or generate asynchronous exceptions. Exception handling schemes
1427 that are recognized by LLVM to handle asynchronous exceptions, such
1428 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001429``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001430 This function attribute indicates that most optimization passes will skip
1431 this function, with the exception of interprocedural optimization passes.
1432 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001433 This attribute cannot be used together with the ``alwaysinline``
1434 attribute; this attribute is also incompatible
1435 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001436
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001437 This attribute requires the ``noinline`` attribute to be specified on
1438 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001439 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001440 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001441``optsize``
1442 This attribute suggests that optimization passes and code generator
1443 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001444 and otherwise do optimizations specifically to reduce code size as
1445 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001446``"patchable-function"``
1447 This attribute tells the code generator that the code
1448 generated for this function needs to follow certain conventions that
1449 make it possible for a runtime function to patch over it later.
1450 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001451 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001452
1453 * ``"prologue-short-redirect"`` - This style of patchable
1454 function is intended to support patching a function prologue to
1455 redirect control away from the function in a thread safe
1456 manner. It guarantees that the first instruction of the
1457 function will be large enough to accommodate a short jump
1458 instruction, and will be sufficiently aligned to allow being
1459 fully changed via an atomic compare-and-swap instruction.
1460 While the first requirement can be satisfied by inserting large
1461 enough NOP, LLVM can and will try to re-purpose an existing
1462 instruction (i.e. one that would have to be emitted anyway) as
1463 the patchable instruction larger than a short jump.
1464
1465 ``"prologue-short-redirect"`` is currently only supported on
1466 x86-64.
1467
1468 This attribute by itself does not imply restrictions on
1469 inter-procedural optimizations. All of the semantic effects the
1470 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001471``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001472 On a function, this attribute indicates that the function computes its
1473 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001474 without dereferencing any pointer arguments or otherwise accessing
1475 any mutable state (e.g. memory, control registers, etc) visible to
1476 caller functions. It does not write through any pointer arguments
1477 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001478 to callers. This means while it cannot unwind exceptions by calling
1479 the ``C++`` exception throwing methods (since they write to memory), there may
1480 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1481 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001482
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001483 On an argument, this attribute indicates that the function does not
1484 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001485 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001486``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001487 On a function, this attribute indicates that the function does not write
1488 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001489 modify any state (e.g. memory, control registers, etc) visible to
1490 caller functions. It may dereference pointer arguments and read
1491 state that may be set in the caller. A readonly function always
1492 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001493 called with the same set of arguments and global state. This means while it
1494 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1495 (since they write to memory), there may be non-``C++`` mechanisms that throw
1496 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001497
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001498 On an argument, this attribute indicates that the function does not write
1499 through this pointer argument, even though it may write to the memory that
1500 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001501``writeonly``
1502 On a function, this attribute indicates that the function may write to but
1503 does not read from memory.
1504
1505 On an argument, this attribute indicates that the function may write to but
1506 does not read through this pointer argument (even though it may read from
1507 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001508``argmemonly``
1509 This attribute indicates that the only memory accesses inside function are
1510 loads and stores from objects pointed to by its pointer-typed arguments,
1511 with arbitrary offsets. Or in other words, all memory operations in the
1512 function can refer to memory only using pointers based on its function
1513 arguments.
1514 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1515 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001516``returns_twice``
1517 This attribute indicates that this function can return twice. The C
1518 ``setjmp`` is an example of such a function. The compiler disables
1519 some optimizations (like tail calls) in the caller of these
1520 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001521``safestack``
1522 This attribute indicates that
1523 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1524 protection is enabled for this function.
1525
1526 If a function that has a ``safestack`` attribute is inlined into a
1527 function that doesn't have a ``safestack`` attribute or which has an
1528 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1529 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001530``sanitize_address``
1531 This attribute indicates that AddressSanitizer checks
1532 (dynamic address safety analysis) are enabled for this function.
1533``sanitize_memory``
1534 This attribute indicates that MemorySanitizer checks (dynamic detection
1535 of accesses to uninitialized memory) are enabled for this function.
1536``sanitize_thread``
1537 This attribute indicates that ThreadSanitizer checks
1538 (dynamic thread safety analysis) are enabled for this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001539``speculatable``
1540 This function attribute indicates that the function does not have any
1541 effects besides calculating its result and does not have undefined behavior.
1542 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001543 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001544 externally observable. This attribute is only valid on functions
1545 and declarations, not on individual call sites. If a function is
1546 incorrectly marked as speculatable and really does exhibit
1547 undefined behavior, the undefined behavior may be observed even
1548 if the call site is dead code.
1549
Sean Silvab084af42012-12-07 10:36:55 +00001550``ssp``
1551 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001552 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001553 placed on the stack before the local variables that's checked upon
1554 return from the function to see if it has been overwritten. A
1555 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001556 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001557
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001558 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1559 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1560 - Calls to alloca() with variable sizes or constant sizes greater than
1561 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001562
Josh Magee24c7f062014-02-01 01:36:16 +00001563 Variables that are identified as requiring a protector will be arranged
1564 on the stack such that they are adjacent to the stack protector guard.
1565
Sean Silvab084af42012-12-07 10:36:55 +00001566 If a function that has an ``ssp`` attribute is inlined into a
1567 function that doesn't have an ``ssp`` attribute, then the resulting
1568 function will have an ``ssp`` attribute.
1569``sspreq``
1570 This attribute indicates that the function should *always* emit a
1571 stack smashing protector. This overrides the ``ssp`` function
1572 attribute.
1573
Josh Magee24c7f062014-02-01 01:36:16 +00001574 Variables that are identified as requiring a protector will be arranged
1575 on the stack such that they are adjacent to the stack protector guard.
1576 The specific layout rules are:
1577
1578 #. Large arrays and structures containing large arrays
1579 (``>= ssp-buffer-size``) are closest to the stack protector.
1580 #. Small arrays and structures containing small arrays
1581 (``< ssp-buffer-size``) are 2nd closest to the protector.
1582 #. Variables that have had their address taken are 3rd closest to the
1583 protector.
1584
Sean Silvab084af42012-12-07 10:36:55 +00001585 If a function that has an ``sspreq`` attribute is inlined into a
1586 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001587 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1588 an ``sspreq`` attribute.
1589``sspstrong``
1590 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001591 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001592 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001593 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001594
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001595 - Arrays of any size and type
1596 - Aggregates containing an array of any size and type.
1597 - Calls to alloca().
1598 - Local variables that have had their address taken.
1599
Josh Magee24c7f062014-02-01 01:36:16 +00001600 Variables that are identified as requiring a protector will be arranged
1601 on the stack such that they are adjacent to the stack protector guard.
1602 The specific layout rules are:
1603
1604 #. Large arrays and structures containing large arrays
1605 (``>= ssp-buffer-size``) are closest to the stack protector.
1606 #. Small arrays and structures containing small arrays
1607 (``< ssp-buffer-size``) are 2nd closest to the protector.
1608 #. Variables that have had their address taken are 3rd closest to the
1609 protector.
1610
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001611 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001612
1613 If a function that has an ``sspstrong`` attribute is inlined into a
1614 function that doesn't have an ``sspstrong`` attribute, then the
1615 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001616``"thunk"``
1617 This attribute indicates that the function will delegate to some other
1618 function with a tail call. The prototype of a thunk should not be used for
1619 optimization purposes. The caller is expected to cast the thunk prototype to
1620 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001621``uwtable``
1622 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001623 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001624 show that no exceptions passes by it. This is normally the case for
1625 the ELF x86-64 abi, but it can be disabled for some compilation
1626 units.
Sean Silvab084af42012-12-07 10:36:55 +00001627
Javed Absarf3d79042017-05-11 12:28:08 +00001628.. _glattrs:
1629
1630Global Attributes
1631-----------------
1632
1633Attributes may be set to communicate additional information about a global variable.
1634Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1635are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001636
1637.. _opbundles:
1638
1639Operand Bundles
1640---------------
1641
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001642Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001643with certain LLVM instructions (currently only ``call`` s and
1644``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001645incorrect and will change program semantics.
1646
1647Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001648
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001649 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001650 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1651 bundle operand ::= SSA value
1652 tag ::= string constant
1653
1654Operand bundles are **not** part of a function's signature, and a
1655given function may be called from multiple places with different kinds
1656of operand bundles. This reflects the fact that the operand bundles
1657are conceptually a part of the ``call`` (or ``invoke``), not the
1658callee being dispatched to.
1659
1660Operand bundles are a generic mechanism intended to support
1661runtime-introspection-like functionality for managed languages. While
1662the exact semantics of an operand bundle depend on the bundle tag,
1663there are certain limitations to how much the presence of an operand
1664bundle can influence the semantics of a program. These restrictions
1665are described as the semantics of an "unknown" operand bundle. As
1666long as the behavior of an operand bundle is describable within these
1667restrictions, LLVM does not need to have special knowledge of the
1668operand bundle to not miscompile programs containing it.
1669
David Majnemer34cacb42015-10-22 01:46:38 +00001670- The bundle operands for an unknown operand bundle escape in unknown
1671 ways before control is transferred to the callee or invokee.
1672- Calls and invokes with operand bundles have unknown read / write
1673 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001674 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001675 callsite specific attributes.
1676- An operand bundle at a call site cannot change the implementation
1677 of the called function. Inter-procedural optimizations work as
1678 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001679
Sanjoy Dascdafd842015-11-11 21:38:02 +00001680More specific types of operand bundles are described below.
1681
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001682.. _deopt_opbundles:
1683
Sanjoy Dascdafd842015-11-11 21:38:02 +00001684Deoptimization Operand Bundles
1685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1686
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001687Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001688operand bundle tag. These operand bundles represent an alternate
1689"safe" continuation for the call site they're attached to, and can be
1690used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001691specified call site. There can be at most one ``"deopt"`` operand
1692bundle attached to a call site. Exact details of deoptimization is
1693out of scope for the language reference, but it usually involves
1694rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001695
1696From the compiler's perspective, deoptimization operand bundles make
1697the call sites they're attached to at least ``readonly``. They read
1698through all of their pointer typed operands (even if they're not
1699otherwise escaped) and the entire visible heap. Deoptimization
1700operand bundles do not capture their operands except during
1701deoptimization, in which case control will not be returned to the
1702compiled frame.
1703
Sanjoy Das2d161452015-11-18 06:23:38 +00001704The inliner knows how to inline through calls that have deoptimization
1705operand bundles. Just like inlining through a normal call site
1706involves composing the normal and exceptional continuations, inlining
1707through a call site with a deoptimization operand bundle needs to
1708appropriately compose the "safe" deoptimization continuation. The
1709inliner does this by prepending the parent's deoptimization
1710continuation to every deoptimization continuation in the inlined body.
1711E.g. inlining ``@f`` into ``@g`` in the following example
1712
1713.. code-block:: llvm
1714
1715 define void @f() {
1716 call void @x() ;; no deopt state
1717 call void @y() [ "deopt"(i32 10) ]
1718 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1719 ret void
1720 }
1721
1722 define void @g() {
1723 call void @f() [ "deopt"(i32 20) ]
1724 ret void
1725 }
1726
1727will result in
1728
1729.. code-block:: llvm
1730
1731 define void @g() {
1732 call void @x() ;; still no deopt state
1733 call void @y() [ "deopt"(i32 20, i32 10) ]
1734 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1735 ret void
1736 }
1737
1738It is the frontend's responsibility to structure or encode the
1739deoptimization state in a way that syntactically prepending the
1740caller's deoptimization state to the callee's deoptimization state is
1741semantically equivalent to composing the caller's deoptimization
1742continuation after the callee's deoptimization continuation.
1743
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001744.. _ob_funclet:
1745
David Majnemer3bb88c02015-12-15 21:27:27 +00001746Funclet Operand Bundles
1747^^^^^^^^^^^^^^^^^^^^^^^
1748
1749Funclet operand bundles are characterized by the ``"funclet"``
1750operand bundle tag. These operand bundles indicate that a call site
1751is within a particular funclet. There can be at most one
1752``"funclet"`` operand bundle attached to a call site and it must have
1753exactly one bundle operand.
1754
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001755If any funclet EH pads have been "entered" but not "exited" (per the
1756`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1757it is undefined behavior to execute a ``call`` or ``invoke`` which:
1758
1759* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1760 intrinsic, or
1761* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1762 not-yet-exited funclet EH pad.
1763
1764Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1765executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1766
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001767GC Transition Operand Bundles
1768^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1769
1770GC transition operand bundles are characterized by the
1771``"gc-transition"`` operand bundle tag. These operand bundles mark a
1772call as a transition between a function with one GC strategy to a
1773function with a different GC strategy. If coordinating the transition
1774between GC strategies requires additional code generation at the call
1775site, these bundles may contain any values that are needed by the
1776generated code. For more details, see :ref:`GC Transitions
1777<gc_transition_args>`.
1778
Sean Silvab084af42012-12-07 10:36:55 +00001779.. _moduleasm:
1780
1781Module-Level Inline Assembly
1782----------------------------
1783
1784Modules may contain "module-level inline asm" blocks, which corresponds
1785to the GCC "file scope inline asm" blocks. These blocks are internally
1786concatenated by LLVM and treated as a single unit, but may be separated
1787in the ``.ll`` file if desired. The syntax is very simple:
1788
1789.. code-block:: llvm
1790
1791 module asm "inline asm code goes here"
1792 module asm "more can go here"
1793
1794The strings can contain any character by escaping non-printable
1795characters. The escape sequence used is simply "\\xx" where "xx" is the
1796two digit hex code for the number.
1797
James Y Knightbc832ed2015-07-08 18:08:36 +00001798Note that the assembly string *must* be parseable by LLVM's integrated assembler
1799(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001800
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001801.. _langref_datalayout:
1802
Sean Silvab084af42012-12-07 10:36:55 +00001803Data Layout
1804-----------
1805
1806A module may specify a target specific data layout string that specifies
1807how data is to be laid out in memory. The syntax for the data layout is
1808simply:
1809
1810.. code-block:: llvm
1811
1812 target datalayout = "layout specification"
1813
1814The *layout specification* consists of a list of specifications
1815separated by the minus sign character ('-'). Each specification starts
1816with a letter and may include other information after the letter to
1817define some aspect of the data layout. The specifications accepted are
1818as follows:
1819
1820``E``
1821 Specifies that the target lays out data in big-endian form. That is,
1822 the bits with the most significance have the lowest address
1823 location.
1824``e``
1825 Specifies that the target lays out data in little-endian form. That
1826 is, the bits with the least significance have the lowest address
1827 location.
1828``S<size>``
1829 Specifies the natural alignment of the stack in bits. Alignment
1830 promotion of stack variables is limited to the natural stack
1831 alignment to avoid dynamic stack realignment. The stack alignment
1832 must be a multiple of 8-bits. If omitted, the natural stack
1833 alignment defaults to "unspecified", which does not prevent any
1834 alignment promotions.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001835``A<address space>``
1836 Specifies the address space of objects created by '``alloca``'.
1837 Defaults to the default address space of 0.
Sean Silvab084af42012-12-07 10:36:55 +00001838``p[n]:<size>:<abi>:<pref>``
1839 This specifies the *size* of a pointer and its ``<abi>`` and
1840 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001841 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001842 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001843 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001844``i<size>:<abi>:<pref>``
1845 This specifies the alignment for an integer type of a given bit
1846 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1847``v<size>:<abi>:<pref>``
1848 This specifies the alignment for a vector type of a given bit
1849 ``<size>``.
1850``f<size>:<abi>:<pref>``
1851 This specifies the alignment for a floating point type of a given bit
1852 ``<size>``. Only values of ``<size>`` that are supported by the target
1853 will work. 32 (float) and 64 (double) are supported on all targets; 80
1854 or 128 (different flavors of long double) are also supported on some
1855 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001856``a:<abi>:<pref>``
1857 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001858``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001859 If present, specifies that llvm names are mangled in the output. The
1860 options are
1861
1862 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1863 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1864 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1865 symbols get a ``_`` prefix.
1866 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1867 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001868 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1869 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001870``n<size1>:<size2>:<size3>...``
1871 This specifies a set of native integer widths for the target CPU in
1872 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1873 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1874 this set are considered to support most general arithmetic operations
1875 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001876``ni:<address space0>:<address space1>:<address space2>...``
1877 This specifies pointer types with the specified address spaces
1878 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1879 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001880
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001881On every specification that takes a ``<abi>:<pref>``, specifying the
1882``<pref>`` alignment is optional. If omitted, the preceding ``:``
1883should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1884
Sean Silvab084af42012-12-07 10:36:55 +00001885When constructing the data layout for a given target, LLVM starts with a
1886default set of specifications which are then (possibly) overridden by
1887the specifications in the ``datalayout`` keyword. The default
1888specifications are given in this list:
1889
1890- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001891- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1892- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1893 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001894- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001895- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1896- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1897- ``i16:16:16`` - i16 is 16-bit aligned
1898- ``i32:32:32`` - i32 is 32-bit aligned
1899- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1900 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001901- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001902- ``f32:32:32`` - float is 32-bit aligned
1903- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001904- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001905- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1906- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001907- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001908
1909When LLVM is determining the alignment for a given type, it uses the
1910following rules:
1911
1912#. If the type sought is an exact match for one of the specifications,
1913 that specification is used.
1914#. If no match is found, and the type sought is an integer type, then
1915 the smallest integer type that is larger than the bitwidth of the
1916 sought type is used. If none of the specifications are larger than
1917 the bitwidth then the largest integer type is used. For example,
1918 given the default specifications above, the i7 type will use the
1919 alignment of i8 (next largest) while both i65 and i256 will use the
1920 alignment of i64 (largest specified).
1921#. If no match is found, and the type sought is a vector type, then the
1922 largest vector type that is smaller than the sought vector type will
1923 be used as a fall back. This happens because <128 x double> can be
1924 implemented in terms of 64 <2 x double>, for example.
1925
1926The function of the data layout string may not be what you expect.
1927Notably, this is not a specification from the frontend of what alignment
1928the code generator should use.
1929
1930Instead, if specified, the target data layout is required to match what
1931the ultimate *code generator* expects. This string is used by the
1932mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001933what the ultimate code generator uses. There is no way to generate IR
1934that does not embed this target-specific detail into the IR. If you
1935don't specify the string, the default specifications will be used to
1936generate a Data Layout and the optimization phases will operate
1937accordingly and introduce target specificity into the IR with respect to
1938these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001939
Bill Wendling5cc90842013-10-18 23:41:25 +00001940.. _langref_triple:
1941
1942Target Triple
1943-------------
1944
1945A module may specify a target triple string that describes the target
1946host. The syntax for the target triple is simply:
1947
1948.. code-block:: llvm
1949
1950 target triple = "x86_64-apple-macosx10.7.0"
1951
1952The *target triple* string consists of a series of identifiers delimited
1953by the minus sign character ('-'). The canonical forms are:
1954
1955::
1956
1957 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1958 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1959
1960This information is passed along to the backend so that it generates
1961code for the proper architecture. It's possible to override this on the
1962command line with the ``-mtriple`` command line option.
1963
Sean Silvab084af42012-12-07 10:36:55 +00001964.. _pointeraliasing:
1965
1966Pointer Aliasing Rules
1967----------------------
1968
1969Any memory access must be done through a pointer value associated with
1970an address range of the memory access, otherwise the behavior is
1971undefined. Pointer values are associated with address ranges according
1972to the following rules:
1973
1974- A pointer value is associated with the addresses associated with any
1975 value it is *based* on.
1976- An address of a global variable is associated with the address range
1977 of the variable's storage.
1978- The result value of an allocation instruction is associated with the
1979 address range of the allocated storage.
1980- A null pointer in the default address-space is associated with no
1981 address.
1982- An integer constant other than zero or a pointer value returned from
1983 a function not defined within LLVM may be associated with address
1984 ranges allocated through mechanisms other than those provided by
1985 LLVM. Such ranges shall not overlap with any ranges of addresses
1986 allocated by mechanisms provided by LLVM.
1987
1988A pointer value is *based* on another pointer value according to the
1989following rules:
1990
1991- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001992 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001993- The result value of a ``bitcast`` is *based* on the operand of the
1994 ``bitcast``.
1995- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1996 values that contribute (directly or indirectly) to the computation of
1997 the pointer's value.
1998- The "*based* on" relationship is transitive.
1999
2000Note that this definition of *"based"* is intentionally similar to the
2001definition of *"based"* in C99, though it is slightly weaker.
2002
2003LLVM IR does not associate types with memory. The result type of a
2004``load`` merely indicates the size and alignment of the memory from
2005which to load, as well as the interpretation of the value. The first
2006operand type of a ``store`` similarly only indicates the size and
2007alignment of the store.
2008
2009Consequently, type-based alias analysis, aka TBAA, aka
2010``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2011:ref:`Metadata <metadata>` may be used to encode additional information
2012which specialized optimization passes may use to implement type-based
2013alias analysis.
2014
2015.. _volatile:
2016
2017Volatile Memory Accesses
2018------------------------
2019
2020Certain memory accesses, such as :ref:`load <i_load>`'s,
2021:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2022marked ``volatile``. The optimizers must not change the number of
2023volatile operations or change their order of execution relative to other
2024volatile operations. The optimizers *may* change the order of volatile
2025operations relative to non-volatile operations. This is not Java's
2026"volatile" and has no cross-thread synchronization behavior.
2027
Andrew Trick89fc5a62013-01-30 21:19:35 +00002028IR-level volatile loads and stores cannot safely be optimized into
2029llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2030flagged volatile. Likewise, the backend should never split or merge
2031target-legal volatile load/store instructions.
2032
Andrew Trick7e6f9282013-01-31 00:49:39 +00002033.. admonition:: Rationale
2034
2035 Platforms may rely on volatile loads and stores of natively supported
2036 data width to be executed as single instruction. For example, in C
2037 this holds for an l-value of volatile primitive type with native
2038 hardware support, but not necessarily for aggregate types. The
2039 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002040 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002041 do not violate the frontend's contract with the language.
2042
Sean Silvab084af42012-12-07 10:36:55 +00002043.. _memmodel:
2044
2045Memory Model for Concurrent Operations
2046--------------------------------------
2047
2048The LLVM IR does not define any way to start parallel threads of
2049execution or to register signal handlers. Nonetheless, there are
2050platform-specific ways to create them, and we define LLVM IR's behavior
2051in their presence. This model is inspired by the C++0x memory model.
2052
2053For a more informal introduction to this model, see the :doc:`Atomics`.
2054
2055We define a *happens-before* partial order as the least partial order
2056that
2057
2058- Is a superset of single-thread program order, and
2059- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2060 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2061 techniques, like pthread locks, thread creation, thread joining,
2062 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2063 Constraints <ordering>`).
2064
2065Note that program order does not introduce *happens-before* edges
2066between a thread and signals executing inside that thread.
2067
2068Every (defined) read operation (load instructions, memcpy, atomic
2069loads/read-modify-writes, etc.) R reads a series of bytes written by
2070(defined) write operations (store instructions, atomic
2071stores/read-modify-writes, memcpy, etc.). For the purposes of this
2072section, initialized globals are considered to have a write of the
2073initializer which is atomic and happens before any other read or write
2074of the memory in question. For each byte of a read R, R\ :sub:`byte`
2075may see any write to the same byte, except:
2076
2077- If write\ :sub:`1` happens before write\ :sub:`2`, and
2078 write\ :sub:`2` happens before R\ :sub:`byte`, then
2079 R\ :sub:`byte` does not see write\ :sub:`1`.
2080- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2081 R\ :sub:`byte` does not see write\ :sub:`3`.
2082
2083Given that definition, R\ :sub:`byte` is defined as follows:
2084
2085- If R is volatile, the result is target-dependent. (Volatile is
2086 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002087 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002088 like normal memory. It does not generally provide cross-thread
2089 synchronization.)
2090- Otherwise, if there is no write to the same byte that happens before
2091 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2092- Otherwise, if R\ :sub:`byte` may see exactly one write,
2093 R\ :sub:`byte` returns the value written by that write.
2094- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2095 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2096 Memory Ordering Constraints <ordering>` section for additional
2097 constraints on how the choice is made.
2098- Otherwise R\ :sub:`byte` returns ``undef``.
2099
2100R returns the value composed of the series of bytes it read. This
2101implies that some bytes within the value may be ``undef`` **without**
2102the entire value being ``undef``. Note that this only defines the
2103semantics of the operation; it doesn't mean that targets will emit more
2104than one instruction to read the series of bytes.
2105
2106Note that in cases where none of the atomic intrinsics are used, this
2107model places only one restriction on IR transformations on top of what
2108is required for single-threaded execution: introducing a store to a byte
2109which might not otherwise be stored is not allowed in general.
2110(Specifically, in the case where another thread might write to and read
2111from an address, introducing a store can change a load that may see
2112exactly one write into a load that may see multiple writes.)
2113
2114.. _ordering:
2115
2116Atomic Memory Ordering Constraints
2117----------------------------------
2118
2119Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2120:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2121:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002122ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002123the same address they *synchronize with*. These semantics are borrowed
2124from Java and C++0x, but are somewhat more colloquial. If these
2125descriptions aren't precise enough, check those specs (see spec
2126references in the :doc:`atomics guide <Atomics>`).
2127:ref:`fence <i_fence>` instructions treat these orderings somewhat
2128differently since they don't take an address. See that instruction's
2129documentation for details.
2130
2131For a simpler introduction to the ordering constraints, see the
2132:doc:`Atomics`.
2133
2134``unordered``
2135 The set of values that can be read is governed by the happens-before
2136 partial order. A value cannot be read unless some operation wrote
2137 it. This is intended to provide a guarantee strong enough to model
2138 Java's non-volatile shared variables. This ordering cannot be
2139 specified for read-modify-write operations; it is not strong enough
2140 to make them atomic in any interesting way.
2141``monotonic``
2142 In addition to the guarantees of ``unordered``, there is a single
2143 total order for modifications by ``monotonic`` operations on each
2144 address. All modification orders must be compatible with the
2145 happens-before order. There is no guarantee that the modification
2146 orders can be combined to a global total order for the whole program
2147 (and this often will not be possible). The read in an atomic
2148 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2149 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2150 order immediately before the value it writes. If one atomic read
2151 happens before another atomic read of the same address, the later
2152 read must see the same value or a later value in the address's
2153 modification order. This disallows reordering of ``monotonic`` (or
2154 stronger) operations on the same address. If an address is written
2155 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2156 read that address repeatedly, the other threads must eventually see
2157 the write. This corresponds to the C++0x/C1x
2158 ``memory_order_relaxed``.
2159``acquire``
2160 In addition to the guarantees of ``monotonic``, a
2161 *synchronizes-with* edge may be formed with a ``release`` operation.
2162 This is intended to model C++'s ``memory_order_acquire``.
2163``release``
2164 In addition to the guarantees of ``monotonic``, if this operation
2165 writes a value which is subsequently read by an ``acquire``
2166 operation, it *synchronizes-with* that operation. (This isn't a
2167 complete description; see the C++0x definition of a release
2168 sequence.) This corresponds to the C++0x/C1x
2169 ``memory_order_release``.
2170``acq_rel`` (acquire+release)
2171 Acts as both an ``acquire`` and ``release`` operation on its
2172 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2173``seq_cst`` (sequentially consistent)
2174 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002175 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002176 writes), there is a global total order on all
2177 sequentially-consistent operations on all addresses, which is
2178 consistent with the *happens-before* partial order and with the
2179 modification orders of all the affected addresses. Each
2180 sequentially-consistent read sees the last preceding write to the
2181 same address in this global order. This corresponds to the C++0x/C1x
2182 ``memory_order_seq_cst`` and Java volatile.
2183
2184.. _singlethread:
2185
2186If an atomic operation is marked ``singlethread``, it only *synchronizes
2187with* or participates in modification and seq\_cst total orderings with
2188other operations running in the same thread (for example, in signal
2189handlers).
2190
2191.. _fastmath:
2192
2193Fast-Math Flags
2194---------------
2195
2196LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2197:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002198:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
2199instructions have the following flags that can be set to enable
2200otherwise unsafe floating point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002201
2202``nnan``
2203 No NaNs - Allow optimizations to assume the arguments and result are not
2204 NaN. Such optimizations are required to retain defined behavior over
2205 NaNs, but the value of the result is undefined.
2206
2207``ninf``
2208 No Infs - Allow optimizations to assume the arguments and result are not
2209 +/-Inf. Such optimizations are required to retain defined behavior over
2210 +/-Inf, but the value of the result is undefined.
2211
2212``nsz``
2213 No Signed Zeros - Allow optimizations to treat the sign of a zero
2214 argument or result as insignificant.
2215
2216``arcp``
2217 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2218 argument rather than perform division.
2219
Adam Nemetcd847a82017-03-28 20:11:52 +00002220``contract``
2221 Allow floating-point contraction (e.g. fusing a multiply followed by an
2222 addition into a fused multiply-and-add).
2223
Sean Silvab084af42012-12-07 10:36:55 +00002224``fast``
2225 Fast - Allow algebraically equivalent transformations that may
2226 dramatically change results in floating point (e.g. reassociate). This
2227 flag implies all the others.
2228
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002229.. _uselistorder:
2230
2231Use-list Order Directives
2232-------------------------
2233
2234Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002235order to be recreated. ``<order-indexes>`` is a comma-separated list of
2236indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002237value's use-list is immediately sorted by these indexes.
2238
Sean Silvaa1190322015-08-06 22:56:48 +00002239Use-list directives may appear at function scope or global scope. They are not
2240instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002241function scope, they must appear after the terminator of the final basic block.
2242
2243If basic blocks have their address taken via ``blockaddress()`` expressions,
2244``uselistorder_bb`` can be used to reorder their use-lists from outside their
2245function's scope.
2246
2247:Syntax:
2248
2249::
2250
2251 uselistorder <ty> <value>, { <order-indexes> }
2252 uselistorder_bb @function, %block { <order-indexes> }
2253
2254:Examples:
2255
2256::
2257
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002258 define void @foo(i32 %arg1, i32 %arg2) {
2259 entry:
2260 ; ... instructions ...
2261 bb:
2262 ; ... instructions ...
2263
2264 ; At function scope.
2265 uselistorder i32 %arg1, { 1, 0, 2 }
2266 uselistorder label %bb, { 1, 0 }
2267 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002268
2269 ; At global scope.
2270 uselistorder i32* @global, { 1, 2, 0 }
2271 uselistorder i32 7, { 1, 0 }
2272 uselistorder i32 (i32) @bar, { 1, 0 }
2273 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2274
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002275.. _source_filename:
2276
2277Source Filename
2278---------------
2279
2280The *source filename* string is set to the original module identifier,
2281which will be the name of the compiled source file when compiling from
2282source through the clang front end, for example. It is then preserved through
2283the IR and bitcode.
2284
2285This is currently necessary to generate a consistent unique global
2286identifier for local functions used in profile data, which prepends the
2287source file name to the local function name.
2288
2289The syntax for the source file name is simply:
2290
Renato Golin124f2592016-07-20 12:16:38 +00002291.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002292
2293 source_filename = "/path/to/source.c"
2294
Sean Silvab084af42012-12-07 10:36:55 +00002295.. _typesystem:
2296
2297Type System
2298===========
2299
2300The LLVM type system is one of the most important features of the
2301intermediate representation. Being typed enables a number of
2302optimizations to be performed on the intermediate representation
2303directly, without having to do extra analyses on the side before the
2304transformation. A strong type system makes it easier to read the
2305generated code and enables novel analyses and transformations that are
2306not feasible to perform on normal three address code representations.
2307
Rafael Espindola08013342013-12-07 19:34:20 +00002308.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002309
Rafael Espindola08013342013-12-07 19:34:20 +00002310Void Type
2311---------
Sean Silvab084af42012-12-07 10:36:55 +00002312
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002313:Overview:
2314
Rafael Espindola08013342013-12-07 19:34:20 +00002315
2316The void type does not represent any value and has no size.
2317
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002318:Syntax:
2319
Rafael Espindola08013342013-12-07 19:34:20 +00002320
2321::
2322
2323 void
Sean Silvab084af42012-12-07 10:36:55 +00002324
2325
Rafael Espindola08013342013-12-07 19:34:20 +00002326.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002327
Rafael Espindola08013342013-12-07 19:34:20 +00002328Function Type
2329-------------
Sean Silvab084af42012-12-07 10:36:55 +00002330
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002331:Overview:
2332
Sean Silvab084af42012-12-07 10:36:55 +00002333
Rafael Espindola08013342013-12-07 19:34:20 +00002334The function type can be thought of as a function signature. It consists of a
2335return type and a list of formal parameter types. The return type of a function
2336type is a void type or first class type --- except for :ref:`label <t_label>`
2337and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002338
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002339:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002340
Rafael Espindola08013342013-12-07 19:34:20 +00002341::
Sean Silvab084af42012-12-07 10:36:55 +00002342
Rafael Espindola08013342013-12-07 19:34:20 +00002343 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002344
Rafael Espindola08013342013-12-07 19:34:20 +00002345...where '``<parameter list>``' is a comma-separated list of type
2346specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002347indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002348argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002349handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002350except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002351
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002352:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002353
Rafael Espindola08013342013-12-07 19:34:20 +00002354+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2355| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2356+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2357| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2358+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2359| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2360+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2361| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2362+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2363
2364.. _t_firstclass:
2365
2366First Class Types
2367-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002368
2369The :ref:`first class <t_firstclass>` types are perhaps the most important.
2370Values of these types are the only ones which can be produced by
2371instructions.
2372
Rafael Espindola08013342013-12-07 19:34:20 +00002373.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002374
Rafael Espindola08013342013-12-07 19:34:20 +00002375Single Value Types
2376^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002377
Rafael Espindola08013342013-12-07 19:34:20 +00002378These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002379
2380.. _t_integer:
2381
2382Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002383""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002384
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002385:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002386
2387The integer type is a very simple type that simply specifies an
2388arbitrary bit width for the integer type desired. Any bit width from 1
2389bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2390
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002391:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002392
2393::
2394
2395 iN
2396
2397The number of bits the integer will occupy is specified by the ``N``
2398value.
2399
2400Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002401*********
Sean Silvab084af42012-12-07 10:36:55 +00002402
2403+----------------+------------------------------------------------+
2404| ``i1`` | a single-bit integer. |
2405+----------------+------------------------------------------------+
2406| ``i32`` | a 32-bit integer. |
2407+----------------+------------------------------------------------+
2408| ``i1942652`` | a really big integer of over 1 million bits. |
2409+----------------+------------------------------------------------+
2410
2411.. _t_floating:
2412
2413Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002414""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002415
2416.. list-table::
2417 :header-rows: 1
2418
2419 * - Type
2420 - Description
2421
2422 * - ``half``
2423 - 16-bit floating point value
2424
2425 * - ``float``
2426 - 32-bit floating point value
2427
2428 * - ``double``
2429 - 64-bit floating point value
2430
2431 * - ``fp128``
2432 - 128-bit floating point value (112-bit mantissa)
2433
2434 * - ``x86_fp80``
2435 - 80-bit floating point value (X87)
2436
2437 * - ``ppc_fp128``
2438 - 128-bit floating point value (two 64-bits)
2439
Reid Kleckner9a16d082014-03-05 02:41:37 +00002440X86_mmx Type
2441""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002442
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002443:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002444
Reid Kleckner9a16d082014-03-05 02:41:37 +00002445The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002446machine. The operations allowed on it are quite limited: parameters and
2447return values, load and store, and bitcast. User-specified MMX
2448instructions are represented as intrinsic or asm calls with arguments
2449and/or results of this type. There are no arrays, vectors or constants
2450of this type.
2451
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002452:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002453
2454::
2455
Reid Kleckner9a16d082014-03-05 02:41:37 +00002456 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002457
Sean Silvab084af42012-12-07 10:36:55 +00002458
Rafael Espindola08013342013-12-07 19:34:20 +00002459.. _t_pointer:
2460
2461Pointer Type
2462""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002463
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002464:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002465
Rafael Espindola08013342013-12-07 19:34:20 +00002466The pointer type is used to specify memory locations. Pointers are
2467commonly used to reference objects in memory.
2468
2469Pointer types may have an optional address space attribute defining the
2470numbered address space where the pointed-to object resides. The default
2471address space is number zero. The semantics of non-zero address spaces
2472are target-specific.
2473
2474Note that LLVM does not permit pointers to void (``void*``) nor does it
2475permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002476
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002477:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002478
2479::
2480
Rafael Espindola08013342013-12-07 19:34:20 +00002481 <type> *
2482
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002483:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002484
2485+-------------------------+--------------------------------------------------------------------------------------------------------------+
2486| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2487+-------------------------+--------------------------------------------------------------------------------------------------------------+
2488| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2489+-------------------------+--------------------------------------------------------------------------------------------------------------+
2490| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2491+-------------------------+--------------------------------------------------------------------------------------------------------------+
2492
2493.. _t_vector:
2494
2495Vector Type
2496"""""""""""
2497
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002498:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002499
2500A vector type is a simple derived type that represents a vector of
2501elements. Vector types are used when multiple primitive data are
2502operated in parallel using a single instruction (SIMD). A vector type
2503requires a size (number of elements) and an underlying primitive data
2504type. Vector types are considered :ref:`first class <t_firstclass>`.
2505
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002506:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002507
2508::
2509
2510 < <# elements> x <elementtype> >
2511
2512The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002513elementtype may be any integer, floating point or pointer type. Vectors
2514of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002515
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002516:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002517
2518+-------------------+--------------------------------------------------+
2519| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2520+-------------------+--------------------------------------------------+
2521| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2522+-------------------+--------------------------------------------------+
2523| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2524+-------------------+--------------------------------------------------+
2525| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2526+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002527
2528.. _t_label:
2529
2530Label Type
2531^^^^^^^^^^
2532
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002533:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002534
2535The label type represents code labels.
2536
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002537:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002538
2539::
2540
2541 label
2542
David Majnemerb611e3f2015-08-14 05:09:07 +00002543.. _t_token:
2544
2545Token Type
2546^^^^^^^^^^
2547
2548:Overview:
2549
2550The token type is used when a value is associated with an instruction
2551but all uses of the value must not attempt to introspect or obscure it.
2552As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2553:ref:`select <i_select>` of type token.
2554
2555:Syntax:
2556
2557::
2558
2559 token
2560
2561
2562
Sean Silvab084af42012-12-07 10:36:55 +00002563.. _t_metadata:
2564
2565Metadata Type
2566^^^^^^^^^^^^^
2567
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002568:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002569
2570The metadata type represents embedded metadata. No derived types may be
2571created from metadata except for :ref:`function <t_function>` arguments.
2572
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002573:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002574
2575::
2576
2577 metadata
2578
Sean Silvab084af42012-12-07 10:36:55 +00002579.. _t_aggregate:
2580
2581Aggregate Types
2582^^^^^^^^^^^^^^^
2583
2584Aggregate Types are a subset of derived types that can contain multiple
2585member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2586aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2587aggregate types.
2588
2589.. _t_array:
2590
2591Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002592""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002593
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002594:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002595
2596The array type is a very simple derived type that arranges elements
2597sequentially in memory. The array type requires a size (number of
2598elements) and an underlying data type.
2599
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002600:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002601
2602::
2603
2604 [<# elements> x <elementtype>]
2605
2606The number of elements is a constant integer value; ``elementtype`` may
2607be any type with a size.
2608
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002609:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002610
2611+------------------+--------------------------------------+
2612| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2613+------------------+--------------------------------------+
2614| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2615+------------------+--------------------------------------+
2616| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2617+------------------+--------------------------------------+
2618
2619Here are some examples of multidimensional arrays:
2620
2621+-----------------------------+----------------------------------------------------------+
2622| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2623+-----------------------------+----------------------------------------------------------+
2624| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2625+-----------------------------+----------------------------------------------------------+
2626| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2627+-----------------------------+----------------------------------------------------------+
2628
2629There is no restriction on indexing beyond the end of the array implied
2630by a static type (though there are restrictions on indexing beyond the
2631bounds of an allocated object in some cases). This means that
2632single-dimension 'variable sized array' addressing can be implemented in
2633LLVM with a zero length array type. An implementation of 'pascal style
2634arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2635example.
2636
Sean Silvab084af42012-12-07 10:36:55 +00002637.. _t_struct:
2638
2639Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002640""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002641
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002642:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002643
2644The structure type is used to represent a collection of data members
2645together in memory. The elements of a structure may be any type that has
2646a size.
2647
2648Structures in memory are accessed using '``load``' and '``store``' by
2649getting a pointer to a field with the '``getelementptr``' instruction.
2650Structures in registers are accessed using the '``extractvalue``' and
2651'``insertvalue``' instructions.
2652
2653Structures may optionally be "packed" structures, which indicate that
2654the alignment of the struct is one byte, and that there is no padding
2655between the elements. In non-packed structs, padding between field types
2656is inserted as defined by the DataLayout string in the module, which is
2657required to match what the underlying code generator expects.
2658
2659Structures can either be "literal" or "identified". A literal structure
2660is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2661identified types are always defined at the top level with a name.
2662Literal types are uniqued by their contents and can never be recursive
2663or opaque since there is no way to write one. Identified types can be
2664recursive, can be opaqued, and are never uniqued.
2665
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002666:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002667
2668::
2669
2670 %T1 = type { <type list> } ; Identified normal struct type
2671 %T2 = type <{ <type list> }> ; Identified packed struct type
2672
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002673:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002674
2675+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2676| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2677+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002678| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002679+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2680| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2681+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2682
2683.. _t_opaque:
2684
2685Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002686""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002687
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002688:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002689
2690Opaque structure types are used to represent named structure types that
2691do not have a body specified. This corresponds (for example) to the C
2692notion of a forward declared structure.
2693
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002694:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002695
2696::
2697
2698 %X = type opaque
2699 %52 = type opaque
2700
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002701:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002702
2703+--------------+-------------------+
2704| ``opaque`` | An opaque type. |
2705+--------------+-------------------+
2706
Sean Silva1703e702014-04-08 21:06:22 +00002707.. _constants:
2708
Sean Silvab084af42012-12-07 10:36:55 +00002709Constants
2710=========
2711
2712LLVM has several different basic types of constants. This section
2713describes them all and their syntax.
2714
2715Simple Constants
2716----------------
2717
2718**Boolean constants**
2719 The two strings '``true``' and '``false``' are both valid constants
2720 of the ``i1`` type.
2721**Integer constants**
2722 Standard integers (such as '4') are constants of the
2723 :ref:`integer <t_integer>` type. Negative numbers may be used with
2724 integer types.
2725**Floating point constants**
2726 Floating point constants use standard decimal notation (e.g.
2727 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2728 hexadecimal notation (see below). The assembler requires the exact
2729 decimal value of a floating-point constant. For example, the
2730 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2731 decimal in binary. Floating point constants must have a :ref:`floating
2732 point <t_floating>` type.
2733**Null pointer constants**
2734 The identifier '``null``' is recognized as a null pointer constant
2735 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002736**Token constants**
2737 The identifier '``none``' is recognized as an empty token constant
2738 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002739
2740The one non-intuitive notation for constants is the hexadecimal form of
2741floating point constants. For example, the form
2742'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2743than) '``double 4.5e+15``'. The only time hexadecimal floating point
2744constants are required (and the only time that they are generated by the
2745disassembler) is when a floating point constant must be emitted but it
2746cannot be represented as a decimal floating point number in a reasonable
2747number of digits. For example, NaN's, infinities, and other special
2748values are represented in their IEEE hexadecimal format so that assembly
2749and disassembly do not cause any bits to change in the constants.
2750
2751When using the hexadecimal form, constants of types half, float, and
2752double are represented using the 16-digit form shown above (which
2753matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002754must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002755precision, respectively. Hexadecimal format is always used for long
2756double, and there are three forms of long double. The 80-bit format used
2757by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2758128-bit format used by PowerPC (two adjacent doubles) is represented by
2759``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002760represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2761will only work if they match the long double format on your target.
2762The IEEE 16-bit format (half precision) is represented by ``0xH``
2763followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2764(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002765
Reid Kleckner9a16d082014-03-05 02:41:37 +00002766There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002767
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002768.. _complexconstants:
2769
Sean Silvab084af42012-12-07 10:36:55 +00002770Complex Constants
2771-----------------
2772
2773Complex constants are a (potentially recursive) combination of simple
2774constants and smaller complex constants.
2775
2776**Structure constants**
2777 Structure constants are represented with notation similar to
2778 structure type definitions (a comma separated list of elements,
2779 surrounded by braces (``{}``)). For example:
2780 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2781 "``@G = external global i32``". Structure constants must have
2782 :ref:`structure type <t_struct>`, and the number and types of elements
2783 must match those specified by the type.
2784**Array constants**
2785 Array constants are represented with notation similar to array type
2786 definitions (a comma separated list of elements, surrounded by
2787 square brackets (``[]``)). For example:
2788 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2789 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002790 match those specified by the type. As a special case, character array
2791 constants may also be represented as a double-quoted string using the ``c``
2792 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002793**Vector constants**
2794 Vector constants are represented with notation similar to vector
2795 type definitions (a comma separated list of elements, surrounded by
2796 less-than/greater-than's (``<>``)). For example:
2797 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2798 must have :ref:`vector type <t_vector>`, and the number and types of
2799 elements must match those specified by the type.
2800**Zero initialization**
2801 The string '``zeroinitializer``' can be used to zero initialize a
2802 value to zero of *any* type, including scalar and
2803 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2804 having to print large zero initializers (e.g. for large arrays) and
2805 is always exactly equivalent to using explicit zero initializers.
2806**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002807 A metadata node is a constant tuple without types. For example:
2808 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002809 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2810 Unlike other typed constants that are meant to be interpreted as part of
2811 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002812 information such as debug info.
2813
2814Global Variable and Function Addresses
2815--------------------------------------
2816
2817The addresses of :ref:`global variables <globalvars>` and
2818:ref:`functions <functionstructure>` are always implicitly valid
2819(link-time) constants. These constants are explicitly referenced when
2820the :ref:`identifier for the global <identifiers>` is used and always have
2821:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2822file:
2823
2824.. code-block:: llvm
2825
2826 @X = global i32 17
2827 @Y = global i32 42
2828 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2829
2830.. _undefvalues:
2831
2832Undefined Values
2833----------------
2834
2835The string '``undef``' can be used anywhere a constant is expected, and
2836indicates that the user of the value may receive an unspecified
2837bit-pattern. Undefined values may be of any type (other than '``label``'
2838or '``void``') and be used anywhere a constant is permitted.
2839
2840Undefined values are useful because they indicate to the compiler that
2841the program is well defined no matter what value is used. This gives the
2842compiler more freedom to optimize. Here are some examples of
2843(potentially surprising) transformations that are valid (in pseudo IR):
2844
2845.. code-block:: llvm
2846
2847 %A = add %X, undef
2848 %B = sub %X, undef
2849 %C = xor %X, undef
2850 Safe:
2851 %A = undef
2852 %B = undef
2853 %C = undef
2854
2855This is safe because all of the output bits are affected by the undef
2856bits. Any output bit can have a zero or one depending on the input bits.
2857
2858.. code-block:: llvm
2859
2860 %A = or %X, undef
2861 %B = and %X, undef
2862 Safe:
2863 %A = -1
2864 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002865 Safe:
2866 %A = %X ;; By choosing undef as 0
2867 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002868 Unsafe:
2869 %A = undef
2870 %B = undef
2871
2872These logical operations have bits that are not always affected by the
2873input. For example, if ``%X`` has a zero bit, then the output of the
2874'``and``' operation will always be a zero for that bit, no matter what
2875the corresponding bit from the '``undef``' is. As such, it is unsafe to
2876optimize or assume that the result of the '``and``' is '``undef``'.
2877However, it is safe to assume that all bits of the '``undef``' could be
28780, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2879all the bits of the '``undef``' operand to the '``or``' could be set,
2880allowing the '``or``' to be folded to -1.
2881
2882.. code-block:: llvm
2883
2884 %A = select undef, %X, %Y
2885 %B = select undef, 42, %Y
2886 %C = select %X, %Y, undef
2887 Safe:
2888 %A = %X (or %Y)
2889 %B = 42 (or %Y)
2890 %C = %Y
2891 Unsafe:
2892 %A = undef
2893 %B = undef
2894 %C = undef
2895
2896This set of examples shows that undefined '``select``' (and conditional
2897branch) conditions can go *either way*, but they have to come from one
2898of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2899both known to have a clear low bit, then ``%A`` would have to have a
2900cleared low bit. However, in the ``%C`` example, the optimizer is
2901allowed to assume that the '``undef``' operand could be the same as
2902``%Y``, allowing the whole '``select``' to be eliminated.
2903
Renato Golin124f2592016-07-20 12:16:38 +00002904.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002905
2906 %A = xor undef, undef
2907
2908 %B = undef
2909 %C = xor %B, %B
2910
2911 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002912 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002913 %F = icmp gte %D, 4
2914
2915 Safe:
2916 %A = undef
2917 %B = undef
2918 %C = undef
2919 %D = undef
2920 %E = undef
2921 %F = undef
2922
2923This example points out that two '``undef``' operands are not
2924necessarily the same. This can be surprising to people (and also matches
2925C semantics) where they assume that "``X^X``" is always zero, even if
2926``X`` is undefined. This isn't true for a number of reasons, but the
2927short answer is that an '``undef``' "variable" can arbitrarily change
2928its value over its "live range". This is true because the variable
2929doesn't actually *have a live range*. Instead, the value is logically
2930read from arbitrary registers that happen to be around when needed, so
2931the value is not necessarily consistent over time. In fact, ``%A`` and
2932``%C`` need to have the same semantics or the core LLVM "replace all
2933uses with" concept would not hold.
2934
2935.. code-block:: llvm
2936
2937 %A = fdiv undef, %X
2938 %B = fdiv %X, undef
2939 Safe:
2940 %A = undef
2941 b: unreachable
2942
2943These examples show the crucial difference between an *undefined value*
2944and *undefined behavior*. An undefined value (like '``undef``') is
2945allowed to have an arbitrary bit-pattern. This means that the ``%A``
2946operation can be constant folded to '``undef``', because the '``undef``'
2947could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2948However, in the second example, we can make a more aggressive
2949assumption: because the ``undef`` is allowed to be an arbitrary value,
2950we are allowed to assume that it could be zero. Since a divide by zero
2951has *undefined behavior*, we are allowed to assume that the operation
2952does not execute at all. This allows us to delete the divide and all
2953code after it. Because the undefined operation "can't happen", the
2954optimizer can assume that it occurs in dead code.
2955
Renato Golin124f2592016-07-20 12:16:38 +00002956.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002957
2958 a: store undef -> %X
2959 b: store %X -> undef
2960 Safe:
2961 a: <deleted>
2962 b: unreachable
2963
2964These examples reiterate the ``fdiv`` example: a store *of* an undefined
2965value can be assumed to not have any effect; we can assume that the
2966value is overwritten with bits that happen to match what was already
2967there. However, a store *to* an undefined location could clobber
2968arbitrary memory, therefore, it has undefined behavior.
2969
2970.. _poisonvalues:
2971
2972Poison Values
2973-------------
2974
2975Poison values are similar to :ref:`undef values <undefvalues>`, however
2976they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002977that cannot evoke side effects has nevertheless detected a condition
2978that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002979
2980There is currently no way of representing a poison value in the IR; they
2981only exist when produced by operations such as :ref:`add <i_add>` with
2982the ``nsw`` flag.
2983
2984Poison value behavior is defined in terms of value *dependence*:
2985
2986- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2987- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2988 their dynamic predecessor basic block.
2989- Function arguments depend on the corresponding actual argument values
2990 in the dynamic callers of their functions.
2991- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2992 instructions that dynamically transfer control back to them.
2993- :ref:`Invoke <i_invoke>` instructions depend on the
2994 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2995 call instructions that dynamically transfer control back to them.
2996- Non-volatile loads and stores depend on the most recent stores to all
2997 of the referenced memory addresses, following the order in the IR
2998 (including loads and stores implied by intrinsics such as
2999 :ref:`@llvm.memcpy <int_memcpy>`.)
3000- An instruction with externally visible side effects depends on the
3001 most recent preceding instruction with externally visible side
3002 effects, following the order in the IR. (This includes :ref:`volatile
3003 operations <volatile>`.)
3004- An instruction *control-depends* on a :ref:`terminator
3005 instruction <terminators>` if the terminator instruction has
3006 multiple successors and the instruction is always executed when
3007 control transfers to one of the successors, and may not be executed
3008 when control is transferred to another.
3009- Additionally, an instruction also *control-depends* on a terminator
3010 instruction if the set of instructions it otherwise depends on would
3011 be different if the terminator had transferred control to a different
3012 successor.
3013- Dependence is transitive.
3014
Richard Smith32dbdf62014-07-31 04:25:36 +00003015Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3016with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003017on a poison value has undefined behavior.
3018
3019Here are some examples:
3020
3021.. code-block:: llvm
3022
3023 entry:
3024 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3025 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003026 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003027 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3028
3029 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003030 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003031
3032 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3033
3034 %narrowaddr = bitcast i32* @g to i16*
3035 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003036 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3037 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003038
3039 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3040 br i1 %cmp, label %true, label %end ; Branch to either destination.
3041
3042 true:
3043 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3044 ; it has undefined behavior.
3045 br label %end
3046
3047 end:
3048 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3049 ; Both edges into this PHI are
3050 ; control-dependent on %cmp, so this
3051 ; always results in a poison value.
3052
3053 store volatile i32 0, i32* @g ; This would depend on the store in %true
3054 ; if %cmp is true, or the store in %entry
3055 ; otherwise, so this is undefined behavior.
3056
3057 br i1 %cmp, label %second_true, label %second_end
3058 ; The same branch again, but this time the
3059 ; true block doesn't have side effects.
3060
3061 second_true:
3062 ; No side effects!
3063 ret void
3064
3065 second_end:
3066 store volatile i32 0, i32* @g ; This time, the instruction always depends
3067 ; on the store in %end. Also, it is
3068 ; control-equivalent to %end, so this is
3069 ; well-defined (ignoring earlier undefined
3070 ; behavior in this example).
3071
3072.. _blockaddress:
3073
3074Addresses of Basic Blocks
3075-------------------------
3076
3077``blockaddress(@function, %block)``
3078
3079The '``blockaddress``' constant computes the address of the specified
3080basic block in the specified function, and always has an ``i8*`` type.
3081Taking the address of the entry block is illegal.
3082
3083This value only has defined behavior when used as an operand to the
3084':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3085against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003086undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003087no label is equal to the null pointer. This may be passed around as an
3088opaque pointer sized value as long as the bits are not inspected. This
3089allows ``ptrtoint`` and arithmetic to be performed on these values so
3090long as the original value is reconstituted before the ``indirectbr``
3091instruction.
3092
3093Finally, some targets may provide defined semantics when using the value
3094as the operand to an inline assembly, but that is target specific.
3095
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003096.. _constantexprs:
3097
Sean Silvab084af42012-12-07 10:36:55 +00003098Constant Expressions
3099--------------------
3100
3101Constant expressions are used to allow expressions involving other
3102constants to be used as constants. Constant expressions may be of any
3103:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3104that does not have side effects (e.g. load and call are not supported).
3105The following is the syntax for constant expressions:
3106
3107``trunc (CST to TYPE)``
3108 Truncate a constant to another type. The bit size of CST must be
3109 larger than the bit size of TYPE. Both types must be integers.
3110``zext (CST to TYPE)``
3111 Zero extend a constant to another type. The bit size of CST must be
3112 smaller than the bit size of TYPE. Both types must be integers.
3113``sext (CST to TYPE)``
3114 Sign extend a constant to another type. The bit size of CST must be
3115 smaller than the bit size of TYPE. Both types must be integers.
3116``fptrunc (CST to TYPE)``
3117 Truncate a floating point constant to another floating point type.
3118 The size of CST must be larger than the size of TYPE. Both types
3119 must be floating point.
3120``fpext (CST to TYPE)``
3121 Floating point extend a constant to another type. The size of CST
3122 must be smaller or equal to the size of TYPE. Both types must be
3123 floating point.
3124``fptoui (CST to TYPE)``
3125 Convert a floating point constant to the corresponding unsigned
3126 integer constant. TYPE must be a scalar or vector integer type. CST
3127 must be of scalar or vector floating point type. Both CST and TYPE
3128 must be scalars, or vectors of the same number of elements. If the
3129 value won't fit in the integer type, the results are undefined.
3130``fptosi (CST to TYPE)``
3131 Convert a floating point constant to the corresponding signed
3132 integer constant. TYPE must be a scalar or vector integer type. CST
3133 must be of scalar or vector floating point type. Both CST and TYPE
3134 must be scalars, or vectors of the same number of elements. If the
3135 value won't fit in the integer type, the results are undefined.
3136``uitofp (CST to TYPE)``
3137 Convert an unsigned integer constant to the corresponding floating
3138 point constant. TYPE must be a scalar or vector floating point type.
3139 CST must be of scalar or vector integer type. Both CST and TYPE must
3140 be scalars, or vectors of the same number of elements. If the value
3141 won't fit in the floating point type, the results are undefined.
3142``sitofp (CST to TYPE)``
3143 Convert a signed integer constant to the corresponding floating
3144 point constant. TYPE must be a scalar or vector floating point type.
3145 CST must be of scalar or vector integer type. Both CST and TYPE must
3146 be scalars, or vectors of the same number of elements. If the value
3147 won't fit in the floating point type, the results are undefined.
3148``ptrtoint (CST to TYPE)``
3149 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003150 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003151 pointer type. The ``CST`` value is zero extended, truncated, or
3152 unchanged to make it fit in ``TYPE``.
3153``inttoptr (CST to TYPE)``
3154 Convert an integer constant to a pointer constant. TYPE must be a
3155 pointer type. CST must be of integer type. The CST value is zero
3156 extended, truncated, or unchanged to make it fit in a pointer size.
3157 This one is *really* dangerous!
3158``bitcast (CST to TYPE)``
3159 Convert a constant, CST, to another TYPE. The constraints of the
3160 operands are the same as those for the :ref:`bitcast
3161 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003162``addrspacecast (CST to TYPE)``
3163 Convert a constant pointer or constant vector of pointer, CST, to another
3164 TYPE in a different address space. The constraints of the operands are the
3165 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003166``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003167 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3168 constants. As with the :ref:`getelementptr <i_getelementptr>`
3169 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003170 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003171``select (COND, VAL1, VAL2)``
3172 Perform the :ref:`select operation <i_select>` on constants.
3173``icmp COND (VAL1, VAL2)``
3174 Performs the :ref:`icmp operation <i_icmp>` on constants.
3175``fcmp COND (VAL1, VAL2)``
3176 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3177``extractelement (VAL, IDX)``
3178 Perform the :ref:`extractelement operation <i_extractelement>` on
3179 constants.
3180``insertelement (VAL, ELT, IDX)``
3181 Perform the :ref:`insertelement operation <i_insertelement>` on
3182 constants.
3183``shufflevector (VEC1, VEC2, IDXMASK)``
3184 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3185 constants.
3186``extractvalue (VAL, IDX0, IDX1, ...)``
3187 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3188 constants. The index list is interpreted in a similar manner as
3189 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3190 least one index value must be specified.
3191``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3192 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3193 The index list is interpreted in a similar manner as indices in a
3194 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3195 value must be specified.
3196``OPCODE (LHS, RHS)``
3197 Perform the specified operation of the LHS and RHS constants. OPCODE
3198 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3199 binary <bitwiseops>` operations. The constraints on operands are
3200 the same as those for the corresponding instruction (e.g. no bitwise
3201 operations on floating point values are allowed).
3202
3203Other Values
3204============
3205
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003206.. _inlineasmexprs:
3207
Sean Silvab084af42012-12-07 10:36:55 +00003208Inline Assembler Expressions
3209----------------------------
3210
3211LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003212Inline Assembly <moduleasm>`) through the use of a special value. This value
3213represents the inline assembler as a template string (containing the
3214instructions to emit), a list of operand constraints (stored as a string), a
3215flag that indicates whether or not the inline asm expression has side effects,
3216and a flag indicating whether the function containing the asm needs to align its
3217stack conservatively.
3218
3219The template string supports argument substitution of the operands using "``$``"
3220followed by a number, to indicate substitution of the given register/memory
3221location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3222be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3223operand (See :ref:`inline-asm-modifiers`).
3224
3225A literal "``$``" may be included by using "``$$``" in the template. To include
3226other special characters into the output, the usual "``\XX``" escapes may be
3227used, just as in other strings. Note that after template substitution, the
3228resulting assembly string is parsed by LLVM's integrated assembler unless it is
3229disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3230syntax known to LLVM.
3231
Reid Kleckner71cb1642017-02-06 18:08:45 +00003232LLVM also supports a few more substitions useful for writing inline assembly:
3233
3234- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3235 This substitution is useful when declaring a local label. Many standard
3236 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3237 Adding a blob-unique identifier ensures that the two labels will not conflict
3238 during assembly. This is used to implement `GCC's %= special format
3239 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3240- ``${:comment}``: Expands to the comment character of the current target's
3241 assembly dialect. This is usually ``#``, but many targets use other strings,
3242 such as ``;``, ``//``, or ``!``.
3243- ``${:private}``: Expands to the assembler private label prefix. Labels with
3244 this prefix will not appear in the symbol table of the assembled object.
3245 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3246 relatively popular.
3247
James Y Knightbc832ed2015-07-08 18:08:36 +00003248LLVM's support for inline asm is modeled closely on the requirements of Clang's
3249GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3250modifier codes listed here are similar or identical to those in GCC's inline asm
3251support. However, to be clear, the syntax of the template and constraint strings
3252described here is *not* the same as the syntax accepted by GCC and Clang, and,
3253while most constraint letters are passed through as-is by Clang, some get
3254translated to other codes when converting from the C source to the LLVM
3255assembly.
3256
3257An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003258
3259.. code-block:: llvm
3260
3261 i32 (i32) asm "bswap $0", "=r,r"
3262
3263Inline assembler expressions may **only** be used as the callee operand
3264of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3265Thus, typically we have:
3266
3267.. code-block:: llvm
3268
3269 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3270
3271Inline asms with side effects not visible in the constraint list must be
3272marked as having side effects. This is done through the use of the
3273'``sideeffect``' keyword, like so:
3274
3275.. code-block:: llvm
3276
3277 call void asm sideeffect "eieio", ""()
3278
3279In some cases inline asms will contain code that will not work unless
3280the stack is aligned in some way, such as calls or SSE instructions on
3281x86, yet will not contain code that does that alignment within the asm.
3282The compiler should make conservative assumptions about what the asm
3283might contain and should generate its usual stack alignment code in the
3284prologue if the '``alignstack``' keyword is present:
3285
3286.. code-block:: llvm
3287
3288 call void asm alignstack "eieio", ""()
3289
3290Inline asms also support using non-standard assembly dialects. The
3291assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3292the inline asm is using the Intel dialect. Currently, ATT and Intel are
3293the only supported dialects. An example is:
3294
3295.. code-block:: llvm
3296
3297 call void asm inteldialect "eieio", ""()
3298
3299If multiple keywords appear the '``sideeffect``' keyword must come
3300first, the '``alignstack``' keyword second and the '``inteldialect``'
3301keyword last.
3302
James Y Knightbc832ed2015-07-08 18:08:36 +00003303Inline Asm Constraint String
3304^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3305
3306The constraint list is a comma-separated string, each element containing one or
3307more constraint codes.
3308
3309For each element in the constraint list an appropriate register or memory
3310operand will be chosen, and it will be made available to assembly template
3311string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3312second, etc.
3313
3314There are three different types of constraints, which are distinguished by a
3315prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3316constraints must always be given in that order: outputs first, then inputs, then
3317clobbers. They cannot be intermingled.
3318
3319There are also three different categories of constraint codes:
3320
3321- Register constraint. This is either a register class, or a fixed physical
3322 register. This kind of constraint will allocate a register, and if necessary,
3323 bitcast the argument or result to the appropriate type.
3324- Memory constraint. This kind of constraint is for use with an instruction
3325 taking a memory operand. Different constraints allow for different addressing
3326 modes used by the target.
3327- Immediate value constraint. This kind of constraint is for an integer or other
3328 immediate value which can be rendered directly into an instruction. The
3329 various target-specific constraints allow the selection of a value in the
3330 proper range for the instruction you wish to use it with.
3331
3332Output constraints
3333""""""""""""""""""
3334
3335Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3336indicates that the assembly will write to this operand, and the operand will
3337then be made available as a return value of the ``asm`` expression. Output
3338constraints do not consume an argument from the call instruction. (Except, see
3339below about indirect outputs).
3340
3341Normally, it is expected that no output locations are written to by the assembly
3342expression until *all* of the inputs have been read. As such, LLVM may assign
3343the same register to an output and an input. If this is not safe (e.g. if the
3344assembly contains two instructions, where the first writes to one output, and
3345the second reads an input and writes to a second output), then the "``&``"
3346modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003347"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003348will not use the same register for any inputs (other than an input tied to this
3349output).
3350
3351Input constraints
3352"""""""""""""""""
3353
3354Input constraints do not have a prefix -- just the constraint codes. Each input
3355constraint will consume one argument from the call instruction. It is not
3356permitted for the asm to write to any input register or memory location (unless
3357that input is tied to an output). Note also that multiple inputs may all be
3358assigned to the same register, if LLVM can determine that they necessarily all
3359contain the same value.
3360
3361Instead of providing a Constraint Code, input constraints may also "tie"
3362themselves to an output constraint, by providing an integer as the constraint
3363string. Tied inputs still consume an argument from the call instruction, and
3364take up a position in the asm template numbering as is usual -- they will simply
3365be constrained to always use the same register as the output they've been tied
3366to. For example, a constraint string of "``=r,0``" says to assign a register for
3367output, and use that register as an input as well (it being the 0'th
3368constraint).
3369
3370It is permitted to tie an input to an "early-clobber" output. In that case, no
3371*other* input may share the same register as the input tied to the early-clobber
3372(even when the other input has the same value).
3373
3374You may only tie an input to an output which has a register constraint, not a
3375memory constraint. Only a single input may be tied to an output.
3376
3377There is also an "interesting" feature which deserves a bit of explanation: if a
3378register class constraint allocates a register which is too small for the value
3379type operand provided as input, the input value will be split into multiple
3380registers, and all of them passed to the inline asm.
3381
3382However, this feature is often not as useful as you might think.
3383
3384Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3385architectures that have instructions which operate on multiple consecutive
3386instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3387SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3388hardware then loads into both the named register, and the next register. This
3389feature of inline asm would not be useful to support that.)
3390
3391A few of the targets provide a template string modifier allowing explicit access
3392to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3393``D``). On such an architecture, you can actually access the second allocated
3394register (yet, still, not any subsequent ones). But, in that case, you're still
3395probably better off simply splitting the value into two separate operands, for
3396clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3397despite existing only for use with this feature, is not really a good idea to
3398use)
3399
3400Indirect inputs and outputs
3401"""""""""""""""""""""""""""
3402
3403Indirect output or input constraints can be specified by the "``*``" modifier
3404(which goes after the "``=``" in case of an output). This indicates that the asm
3405will write to or read from the contents of an *address* provided as an input
3406argument. (Note that in this way, indirect outputs act more like an *input* than
3407an output: just like an input, they consume an argument of the call expression,
3408rather than producing a return value. An indirect output constraint is an
3409"output" only in that the asm is expected to write to the contents of the input
3410memory location, instead of just read from it).
3411
3412This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3413address of a variable as a value.
3414
3415It is also possible to use an indirect *register* constraint, but only on output
3416(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3417value normally, and then, separately emit a store to the address provided as
3418input, after the provided inline asm. (It's not clear what value this
3419functionality provides, compared to writing the store explicitly after the asm
3420statement, and it can only produce worse code, since it bypasses many
3421optimization passes. I would recommend not using it.)
3422
3423
3424Clobber constraints
3425"""""""""""""""""""
3426
3427A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3428consume an input operand, nor generate an output. Clobbers cannot use any of the
3429general constraint code letters -- they may use only explicit register
3430constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3431"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3432memory locations -- not only the memory pointed to by a declared indirect
3433output.
3434
Peter Zotov00257232016-08-30 10:48:31 +00003435Note that clobbering named registers that are also present in output
3436constraints is not legal.
3437
James Y Knightbc832ed2015-07-08 18:08:36 +00003438
3439Constraint Codes
3440""""""""""""""""
3441After a potential prefix comes constraint code, or codes.
3442
3443A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3444followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3445(e.g. "``{eax}``").
3446
3447The one and two letter constraint codes are typically chosen to be the same as
3448GCC's constraint codes.
3449
3450A single constraint may include one or more than constraint code in it, leaving
3451it up to LLVM to choose which one to use. This is included mainly for
3452compatibility with the translation of GCC inline asm coming from clang.
3453
3454There are two ways to specify alternatives, and either or both may be used in an
3455inline asm constraint list:
3456
34571) Append the codes to each other, making a constraint code set. E.g. "``im``"
3458 or "``{eax}m``". This means "choose any of the options in the set". The
3459 choice of constraint is made independently for each constraint in the
3460 constraint list.
3461
34622) Use "``|``" between constraint code sets, creating alternatives. Every
3463 constraint in the constraint list must have the same number of alternative
3464 sets. With this syntax, the same alternative in *all* of the items in the
3465 constraint list will be chosen together.
3466
3467Putting those together, you might have a two operand constraint string like
3468``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3469operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3470may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3471
3472However, the use of either of the alternatives features is *NOT* recommended, as
3473LLVM is not able to make an intelligent choice about which one to use. (At the
3474point it currently needs to choose, not enough information is available to do so
3475in a smart way.) Thus, it simply tries to make a choice that's most likely to
3476compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3477always choose to use memory, not registers). And, if given multiple registers,
3478or multiple register classes, it will simply choose the first one. (In fact, it
3479doesn't currently even ensure explicitly specified physical registers are
3480unique, so specifying multiple physical registers as alternatives, like
3481``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3482intended.)
3483
3484Supported Constraint Code List
3485""""""""""""""""""""""""""""""
3486
3487The constraint codes are, in general, expected to behave the same way they do in
3488GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3489inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3490and GCC likely indicates a bug in LLVM.
3491
3492Some constraint codes are typically supported by all targets:
3493
3494- ``r``: A register in the target's general purpose register class.
3495- ``m``: A memory address operand. It is target-specific what addressing modes
3496 are supported, typical examples are register, or register + register offset,
3497 or register + immediate offset (of some target-specific size).
3498- ``i``: An integer constant (of target-specific width). Allows either a simple
3499 immediate, or a relocatable value.
3500- ``n``: An integer constant -- *not* including relocatable values.
3501- ``s``: An integer constant, but allowing *only* relocatable values.
3502- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3503 useful to pass a label for an asm branch or call.
3504
3505 .. FIXME: but that surely isn't actually okay to jump out of an asm
3506 block without telling llvm about the control transfer???)
3507
3508- ``{register-name}``: Requires exactly the named physical register.
3509
3510Other constraints are target-specific:
3511
3512AArch64:
3513
3514- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3515- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3516 i.e. 0 to 4095 with optional shift by 12.
3517- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3518 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3519- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3520 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3521- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3522 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3523- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3524 32-bit register. This is a superset of ``K``: in addition to the bitmask
3525 immediate, also allows immediate integers which can be loaded with a single
3526 ``MOVZ`` or ``MOVL`` instruction.
3527- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3528 64-bit register. This is a superset of ``L``.
3529- ``Q``: Memory address operand must be in a single register (no
3530 offsets). (However, LLVM currently does this for the ``m`` constraint as
3531 well.)
3532- ``r``: A 32 or 64-bit integer register (W* or X*).
3533- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3534- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3535
3536AMDGPU:
3537
3538- ``r``: A 32 or 64-bit integer register.
3539- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3540- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3541
3542
3543All ARM modes:
3544
3545- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3546 operand. Treated the same as operand ``m``, at the moment.
3547
3548ARM and ARM's Thumb2 mode:
3549
3550- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3551- ``I``: An immediate integer valid for a data-processing instruction.
3552- ``J``: An immediate integer between -4095 and 4095.
3553- ``K``: An immediate integer whose bitwise inverse is valid for a
3554 data-processing instruction. (Can be used with template modifier "``B``" to
3555 print the inverted value).
3556- ``L``: An immediate integer whose negation is valid for a data-processing
3557 instruction. (Can be used with template modifier "``n``" to print the negated
3558 value).
3559- ``M``: A power of two or a integer between 0 and 32.
3560- ``N``: Invalid immediate constraint.
3561- ``O``: Invalid immediate constraint.
3562- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3563- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3564 as ``r``.
3565- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3566 invalid.
3567- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3568 ``d0-d31``, or ``q0-q15``.
3569- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3570 ``d0-d7``, or ``q0-q3``.
3571- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3572 ``s0-s31``.
3573
3574ARM's Thumb1 mode:
3575
3576- ``I``: An immediate integer between 0 and 255.
3577- ``J``: An immediate integer between -255 and -1.
3578- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3579 some amount.
3580- ``L``: An immediate integer between -7 and 7.
3581- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3582- ``N``: An immediate integer between 0 and 31.
3583- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3584- ``r``: A low 32-bit GPR register (``r0-r7``).
3585- ``l``: A low 32-bit GPR register (``r0-r7``).
3586- ``h``: A high GPR register (``r0-r7``).
3587- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3588 ``d0-d31``, or ``q0-q15``.
3589- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3590 ``d0-d7``, or ``q0-q3``.
3591- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3592 ``s0-s31``.
3593
3594
3595Hexagon:
3596
3597- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3598 at the moment.
3599- ``r``: A 32 or 64-bit register.
3600
3601MSP430:
3602
3603- ``r``: An 8 or 16-bit register.
3604
3605MIPS:
3606
3607- ``I``: An immediate signed 16-bit integer.
3608- ``J``: An immediate integer zero.
3609- ``K``: An immediate unsigned 16-bit integer.
3610- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3611- ``N``: An immediate integer between -65535 and -1.
3612- ``O``: An immediate signed 15-bit integer.
3613- ``P``: An immediate integer between 1 and 65535.
3614- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3615 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3616- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3617 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3618 ``m``.
3619- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3620 ``sc`` instruction on the given subtarget (details vary).
3621- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3622- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003623 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3624 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003625- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3626 ``25``).
3627- ``l``: The ``lo`` register, 32 or 64-bit.
3628- ``x``: Invalid.
3629
3630NVPTX:
3631
3632- ``b``: A 1-bit integer register.
3633- ``c`` or ``h``: A 16-bit integer register.
3634- ``r``: A 32-bit integer register.
3635- ``l`` or ``N``: A 64-bit integer register.
3636- ``f``: A 32-bit float register.
3637- ``d``: A 64-bit float register.
3638
3639
3640PowerPC:
3641
3642- ``I``: An immediate signed 16-bit integer.
3643- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3644- ``K``: An immediate unsigned 16-bit integer.
3645- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3646- ``M``: An immediate integer greater than 31.
3647- ``N``: An immediate integer that is an exact power of 2.
3648- ``O``: The immediate integer constant 0.
3649- ``P``: An immediate integer constant whose negation is a signed 16-bit
3650 constant.
3651- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3652 treated the same as ``m``.
3653- ``r``: A 32 or 64-bit integer register.
3654- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3655 ``R1-R31``).
3656- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3657 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3658- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3659 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3660 altivec vector register (``V0-V31``).
3661
3662 .. FIXME: is this a bug that v accepts QPX registers? I think this
3663 is supposed to only use the altivec vector registers?
3664
3665- ``y``: Condition register (``CR0-CR7``).
3666- ``wc``: An individual CR bit in a CR register.
3667- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3668 register set (overlapping both the floating-point and vector register files).
3669- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3670 set.
3671
3672Sparc:
3673
3674- ``I``: An immediate 13-bit signed integer.
3675- ``r``: A 32-bit integer register.
James Y Knightd4e1b002017-05-12 15:59:10 +00003676- ``f``: Any floating-point register on SparcV8, or a floating point
3677 register in the "low" half of the registers on SparcV9.
3678- ``e``: Any floating point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003679
3680SystemZ:
3681
3682- ``I``: An immediate unsigned 8-bit integer.
3683- ``J``: An immediate unsigned 12-bit integer.
3684- ``K``: An immediate signed 16-bit integer.
3685- ``L``: An immediate signed 20-bit integer.
3686- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003687- ``Q``: A memory address operand with a base address and a 12-bit immediate
3688 unsigned displacement.
3689- ``R``: A memory address operand with a base address, a 12-bit immediate
3690 unsigned displacement, and an index register.
3691- ``S``: A memory address operand with a base address and a 20-bit immediate
3692 signed displacement.
3693- ``T``: A memory address operand with a base address, a 20-bit immediate
3694 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003695- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3696- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3697 address context evaluates as zero).
3698- ``h``: A 32-bit value in the high part of a 64bit data register
3699 (LLVM-specific)
3700- ``f``: A 32, 64, or 128-bit floating point register.
3701
3702X86:
3703
3704- ``I``: An immediate integer between 0 and 31.
3705- ``J``: An immediate integer between 0 and 64.
3706- ``K``: An immediate signed 8-bit integer.
3707- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3708 0xffffffff.
3709- ``M``: An immediate integer between 0 and 3.
3710- ``N``: An immediate unsigned 8-bit integer.
3711- ``O``: An immediate integer between 0 and 127.
3712- ``e``: An immediate 32-bit signed integer.
3713- ``Z``: An immediate 32-bit unsigned integer.
3714- ``o``, ``v``: Treated the same as ``m``, at the moment.
3715- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3716 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3717 registers, and on X86-64, it is all of the integer registers.
3718- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3719 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3720- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3721- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3722 existed since i386, and can be accessed without the REX prefix.
3723- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3724- ``y``: A 64-bit MMX register, if MMX is enabled.
3725- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3726 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3727 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3728 512-bit vector operand in an AVX512 register, Otherwise, an error.
3729- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3730- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3731 32-bit mode, a 64-bit integer operand will get split into two registers). It
3732 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3733 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3734 you're better off splitting it yourself, before passing it to the asm
3735 statement.
3736
3737XCore:
3738
3739- ``r``: A 32-bit integer register.
3740
3741
3742.. _inline-asm-modifiers:
3743
3744Asm template argument modifiers
3745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3746
3747In the asm template string, modifiers can be used on the operand reference, like
3748"``${0:n}``".
3749
3750The modifiers are, in general, expected to behave the same way they do in
3751GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3752inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3753and GCC likely indicates a bug in LLVM.
3754
3755Target-independent:
3756
Sean Silvaa1190322015-08-06 22:56:48 +00003757- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003758 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3759- ``n``: Negate and print immediate integer constant unadorned, without the
3760 target-specific immediate punctuation (e.g. no ``$`` prefix).
3761- ``l``: Print as an unadorned label, without the target-specific label
3762 punctuation (e.g. no ``$`` prefix).
3763
3764AArch64:
3765
3766- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3767 instead of ``x30``, print ``w30``.
3768- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3769- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3770 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3771 ``v*``.
3772
3773AMDGPU:
3774
3775- ``r``: No effect.
3776
3777ARM:
3778
3779- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3780 register).
3781- ``P``: No effect.
3782- ``q``: No effect.
3783- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3784 as ``d4[1]`` instead of ``s9``)
3785- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3786 prefix.
3787- ``L``: Print the low 16-bits of an immediate integer constant.
3788- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3789 register operands subsequent to the specified one (!), so use carefully.
3790- ``Q``: Print the low-order register of a register-pair, or the low-order
3791 register of a two-register operand.
3792- ``R``: Print the high-order register of a register-pair, or the high-order
3793 register of a two-register operand.
3794- ``H``: Print the second register of a register-pair. (On a big-endian system,
3795 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3796 to ``R``.)
3797
3798 .. FIXME: H doesn't currently support printing the second register
3799 of a two-register operand.
3800
3801- ``e``: Print the low doubleword register of a NEON quad register.
3802- ``f``: Print the high doubleword register of a NEON quad register.
3803- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3804 adornment.
3805
3806Hexagon:
3807
3808- ``L``: Print the second register of a two-register operand. Requires that it
3809 has been allocated consecutively to the first.
3810
3811 .. FIXME: why is it restricted to consecutive ones? And there's
3812 nothing that ensures that happens, is there?
3813
3814- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3815 nothing. Used to print 'addi' vs 'add' instructions.
3816
3817MSP430:
3818
3819No additional modifiers.
3820
3821MIPS:
3822
3823- ``X``: Print an immediate integer as hexadecimal
3824- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3825- ``d``: Print an immediate integer as decimal.
3826- ``m``: Subtract one and print an immediate integer as decimal.
3827- ``z``: Print $0 if an immediate zero, otherwise print normally.
3828- ``L``: Print the low-order register of a two-register operand, or prints the
3829 address of the low-order word of a double-word memory operand.
3830
3831 .. FIXME: L seems to be missing memory operand support.
3832
3833- ``M``: Print the high-order register of a two-register operand, or prints the
3834 address of the high-order word of a double-word memory operand.
3835
3836 .. FIXME: M seems to be missing memory operand support.
3837
3838- ``D``: Print the second register of a two-register operand, or prints the
3839 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3840 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3841 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003842- ``w``: No effect. Provided for compatibility with GCC which requires this
3843 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3844 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003845
3846NVPTX:
3847
3848- ``r``: No effect.
3849
3850PowerPC:
3851
3852- ``L``: Print the second register of a two-register operand. Requires that it
3853 has been allocated consecutively to the first.
3854
3855 .. FIXME: why is it restricted to consecutive ones? And there's
3856 nothing that ensures that happens, is there?
3857
3858- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3859 nothing. Used to print 'addi' vs 'add' instructions.
3860- ``y``: For a memory operand, prints formatter for a two-register X-form
3861 instruction. (Currently always prints ``r0,OPERAND``).
3862- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3863 otherwise. (NOTE: LLVM does not support update form, so this will currently
3864 always print nothing)
3865- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3866 not support indexed form, so this will currently always print nothing)
3867
3868Sparc:
3869
3870- ``r``: No effect.
3871
3872SystemZ:
3873
3874SystemZ implements only ``n``, and does *not* support any of the other
3875target-independent modifiers.
3876
3877X86:
3878
3879- ``c``: Print an unadorned integer or symbol name. (The latter is
3880 target-specific behavior for this typically target-independent modifier).
3881- ``A``: Print a register name with a '``*``' before it.
3882- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3883 operand.
3884- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3885 memory operand.
3886- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3887 operand.
3888- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3889 operand.
3890- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3891 available, otherwise the 32-bit register name; do nothing on a memory operand.
3892- ``n``: Negate and print an unadorned integer, or, for operands other than an
3893 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3894 the operand. (The behavior for relocatable symbol expressions is a
3895 target-specific behavior for this typically target-independent modifier)
3896- ``H``: Print a memory reference with additional offset +8.
3897- ``P``: Print a memory reference or operand for use as the argument of a call
3898 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3899
3900XCore:
3901
3902No additional modifiers.
3903
3904
Sean Silvab084af42012-12-07 10:36:55 +00003905Inline Asm Metadata
3906^^^^^^^^^^^^^^^^^^^
3907
3908The call instructions that wrap inline asm nodes may have a
3909"``!srcloc``" MDNode attached to it that contains a list of constant
3910integers. If present, the code generator will use the integer as the
3911location cookie value when report errors through the ``LLVMContext``
3912error reporting mechanisms. This allows a front-end to correlate backend
3913errors that occur with inline asm back to the source code that produced
3914it. For example:
3915
3916.. code-block:: llvm
3917
3918 call void asm sideeffect "something bad", ""(), !srcloc !42
3919 ...
3920 !42 = !{ i32 1234567 }
3921
3922It is up to the front-end to make sense of the magic numbers it places
3923in the IR. If the MDNode contains multiple constants, the code generator
3924will use the one that corresponds to the line of the asm that the error
3925occurs on.
3926
3927.. _metadata:
3928
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003929Metadata
3930========
Sean Silvab084af42012-12-07 10:36:55 +00003931
3932LLVM IR allows metadata to be attached to instructions in the program
3933that can convey extra information about the code to the optimizers and
3934code generator. One example application of metadata is source-level
3935debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003936
Sean Silvaa1190322015-08-06 22:56:48 +00003937Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003938``call`` instruction, it uses the ``metadata`` type.
3939
3940All metadata are identified in syntax by a exclamation point ('``!``').
3941
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003942.. _metadata-string:
3943
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003944Metadata Nodes and Metadata Strings
3945-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003946
3947A metadata string is a string surrounded by double quotes. It can
3948contain any character by escaping non-printable characters with
3949"``\xx``" where "``xx``" is the two digit hex code. For example:
3950"``!"test\00"``".
3951
3952Metadata nodes are represented with notation similar to structure
3953constants (a comma separated list of elements, surrounded by braces and
3954preceded by an exclamation point). Metadata nodes can have any values as
3955their operand. For example:
3956
3957.. code-block:: llvm
3958
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003959 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003960
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003961Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3962
Renato Golin124f2592016-07-20 12:16:38 +00003963.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003964
3965 !0 = distinct !{!"test\00", i32 10}
3966
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003967``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003968content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003969when metadata operands change.
3970
Sean Silvab084af42012-12-07 10:36:55 +00003971A :ref:`named metadata <namedmetadatastructure>` is a collection of
3972metadata nodes, which can be looked up in the module symbol table. For
3973example:
3974
3975.. code-block:: llvm
3976
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003977 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003978
3979Metadata can be used as function arguments. Here ``llvm.dbg.value``
3980function is using two metadata arguments:
3981
3982.. code-block:: llvm
3983
3984 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3985
Peter Collingbourne50108682015-11-06 02:41:02 +00003986Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3987to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003988
3989.. code-block:: llvm
3990
3991 %indvar.next = add i64 %indvar, 1, !dbg !21
3992
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003993Metadata can also be attached to a function or a global variable. Here metadata
3994``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
3995and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00003996
3997.. code-block:: llvm
3998
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003999 declare !dbg !22 void @f1()
4000 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004001 ret void
4002 }
4003
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004004 @g1 = global i32 0, !dbg !22
4005 @g2 = external global i32, !dbg !22
4006
4007A transformation is required to drop any metadata attachment that it does not
4008know or know it can't preserve. Currently there is an exception for metadata
4009attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4010unconditionally dropped unless the global is itself deleted.
4011
4012Metadata attached to a module using named metadata may not be dropped, with
4013the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4014
Sean Silvab084af42012-12-07 10:36:55 +00004015More information about specific metadata nodes recognized by the
4016optimizers and code generator is found below.
4017
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004018.. _specialized-metadata:
4019
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004020Specialized Metadata Nodes
4021^^^^^^^^^^^^^^^^^^^^^^^^^^
4022
4023Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004024to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004025order.
4026
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004027These aren't inherently debug info centric, but currently all the specialized
4028metadata nodes are related to debug info.
4029
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004030.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004031
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004032DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004033"""""""""""""
4034
Sean Silvaa1190322015-08-06 22:56:48 +00004035``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004036``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4037containing the debug info to be emitted along with the compile unit, regardless
4038of code optimizations (some nodes are only emitted if there are references to
4039them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4040indicating whether or not line-table discriminators are updated to provide
4041more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004042
Renato Golin124f2592016-07-20 12:16:38 +00004043.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004044
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004045 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004046 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004047 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004048 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4049 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004050
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004051Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004052specific compilation unit. File descriptors are defined using this scope. These
4053descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4054track of global variables, type information, and imported entities (declarations
4055and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004056
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004057.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004058
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004059DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004060""""""
4061
Sean Silvaa1190322015-08-06 22:56:48 +00004062``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004063
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004064.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004065
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004066 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4067 checksumkind: CSK_MD5,
4068 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004069
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004070Files are sometimes used in ``scope:`` fields, and are the only valid target
4071for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004072Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004073
Michael Kuperstein605308a2015-05-14 10:58:59 +00004074.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004075
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004076DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004077"""""""""""
4078
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004079``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004080``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004081
Renato Golin124f2592016-07-20 12:16:38 +00004082.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004083
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004084 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004085 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004086 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004087
Sean Silvaa1190322015-08-06 22:56:48 +00004088The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004089following:
4090
Renato Golin124f2592016-07-20 12:16:38 +00004091.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004092
4093 DW_ATE_address = 1
4094 DW_ATE_boolean = 2
4095 DW_ATE_float = 4
4096 DW_ATE_signed = 5
4097 DW_ATE_signed_char = 6
4098 DW_ATE_unsigned = 7
4099 DW_ATE_unsigned_char = 8
4100
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004101.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004102
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004103DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004104""""""""""""""""
4105
Sean Silvaa1190322015-08-06 22:56:48 +00004106``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004107refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004108types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004109represents a function with no return value (such as ``void foo() {}`` in C++).
4110
Renato Golin124f2592016-07-20 12:16:38 +00004111.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004112
4113 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4114 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004115 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004116
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004117.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004118
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004119DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004120"""""""""""""
4121
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004122``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004123qualified types.
4124
Renato Golin124f2592016-07-20 12:16:38 +00004125.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004126
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004127 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004128 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004129 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004130 align: 32)
4131
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004132The following ``tag:`` values are valid:
4133
Renato Golin124f2592016-07-20 12:16:38 +00004134.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004135
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004136 DW_TAG_member = 13
4137 DW_TAG_pointer_type = 15
4138 DW_TAG_reference_type = 16
4139 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004140 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004141 DW_TAG_ptr_to_member_type = 31
4142 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004143 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004144 DW_TAG_volatile_type = 53
4145 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004146 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004147
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004148.. _DIDerivedTypeMember:
4149
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004150``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004151<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004152``offset:`` is the member's bit offset. If the composite type has an ODR
4153``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4154uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004155
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004156``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4157field of :ref:`composite types <DICompositeType>` to describe parents and
4158friends.
4159
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004160``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4161
4162``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004163``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4164are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004165
4166Note that the ``void *`` type is expressed as a type derived from NULL.
4167
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004168.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004169
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004170DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004171"""""""""""""""
4172
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004173``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004174structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004175
4176If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004177identifier used for type merging between modules. When specified,
4178:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4179derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4180``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004181
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004182For a given ``identifier:``, there should only be a single composite type that
4183does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4184together will unique such definitions at parse time via the ``identifier:``
4185field, even if the nodes are ``distinct``.
4186
Renato Golin124f2592016-07-20 12:16:38 +00004187.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004188
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004189 !0 = !DIEnumerator(name: "SixKind", value: 7)
4190 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4191 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4192 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004193 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4194 elements: !{!0, !1, !2})
4195
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004196The following ``tag:`` values are valid:
4197
Renato Golin124f2592016-07-20 12:16:38 +00004198.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004199
4200 DW_TAG_array_type = 1
4201 DW_TAG_class_type = 2
4202 DW_TAG_enumeration_type = 4
4203 DW_TAG_structure_type = 19
4204 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004205
4206For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004207descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004208level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004209array type is a native packed vector.
4210
4211For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004212descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004213value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004214``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004215
4216For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4217``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004218<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4219``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4220``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004221
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004222.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004223
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004224DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004225""""""""""
4226
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004227``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004228:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004229
4230.. code-block:: llvm
4231
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004232 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4233 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4234 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004235
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004236.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004237
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004238DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004239""""""""""""
4240
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004241``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4242variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004243
4244.. code-block:: llvm
4245
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004246 !0 = !DIEnumerator(name: "SixKind", value: 7)
4247 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4248 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004249
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004250DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004251"""""""""""""""""""""""
4252
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004253``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004254language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004255:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004256
4257.. code-block:: llvm
4258
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004259 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004260
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004261DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004262""""""""""""""""""""""""
4263
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004264``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004265language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004266but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004267``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004268:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269
4270.. code-block:: llvm
4271
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004272 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004273
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004274DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004275"""""""""""
4276
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004277``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004278
4279.. code-block:: llvm
4280
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004281 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004282
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004283DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004284""""""""""""""""
4285
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004286``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004287
4288.. code-block:: llvm
4289
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004290 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004291 file: !2, line: 7, type: !3, isLocal: true,
4292 isDefinition: false, variable: i32* @foo,
4293 declaration: !4)
4294
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004295All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004296:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004297
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004298.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004299
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004300DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004301""""""""""""
4302
Peter Collingbourne50108682015-11-06 02:41:02 +00004303``DISubprogram`` nodes represent functions from the source language. A
4304``DISubprogram`` may be attached to a function definition using ``!dbg``
4305metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4306that must be retained, even if their IR counterparts are optimized out of
4307the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004308
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004309.. _DISubprogramDeclaration:
4310
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004311When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004312tree as opposed to a definition of a function. If the scope is a composite
4313type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4314then the subprogram declaration is uniqued based only on its ``linkageName:``
4315and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004316
Renato Golin124f2592016-07-20 12:16:38 +00004317.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004318
Peter Collingbourne50108682015-11-06 02:41:02 +00004319 define void @_Z3foov() !dbg !0 {
4320 ...
4321 }
4322
4323 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4324 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004325 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004326 containingType: !4,
4327 virtuality: DW_VIRTUALITY_pure_virtual,
4328 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004329 isOptimized: true, unit: !5, templateParams: !6,
4330 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004331
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004332.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004333
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004334DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004335""""""""""""""
4336
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004337``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004338<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004339two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004340fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004341
Renato Golin124f2592016-07-20 12:16:38 +00004342.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004343
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004344 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004345
4346Usually lexical blocks are ``distinct`` to prevent node merging based on
4347operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004348
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004349.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004350
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004351DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004352""""""""""""""""""
4353
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004354``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004355:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004356indicate textual inclusion, or the ``discriminator:`` field can be used to
4357discriminate between control flow within a single block in the source language.
4358
4359.. code-block:: llvm
4360
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004361 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4362 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4363 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004364
Michael Kuperstein605308a2015-05-14 10:58:59 +00004365.. _DILocation:
4366
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004367DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004368""""""""""
4369
Sean Silvaa1190322015-08-06 22:56:48 +00004370``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004371mandatory, and points at an :ref:`DILexicalBlockFile`, an
4372:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004373
4374.. code-block:: llvm
4375
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004376 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004377
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004378.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004379
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004380DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004381"""""""""""""""
4382
Sean Silvaa1190322015-08-06 22:56:48 +00004383``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004384the ``arg:`` field is set to non-zero, then this variable is a subprogram
4385parameter, and it will be included in the ``variables:`` field of its
4386:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004387
Renato Golin124f2592016-07-20 12:16:38 +00004388.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004389
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004390 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4391 type: !3, flags: DIFlagArtificial)
4392 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4393 type: !3)
4394 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004395
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004396DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004397""""""""""""
4398
Adrian Prantlb44c7762017-03-22 18:01:01 +00004399``DIExpression`` nodes represent expressions that are inspired by the DWARF
4400expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4401(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4402referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004403
4404The current supported vocabulary is limited:
4405
Adrian Prantl6825fb62017-04-18 01:21:53 +00004406- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004407- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4408 them together and appends the result to the expression stack.
4409- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4410 the last entry from the second last entry and appends the result to the
4411 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004412- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004413- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4414 here, respectively) of the variable fragment from the working expression. Note
4415 that contrary to DW_OP_bit_piece, the offset is describing the the location
4416 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004417- ``DW_OP_swap`` swaps top two stack entries.
4418- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4419 of the stack is treated as an address. The second stack entry is treated as an
4420 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004421- ``DW_OP_stack_value`` marks a constant value.
4422
Adrian Prantl6825fb62017-04-18 01:21:53 +00004423DWARF specifies three kinds of simple location descriptions: Register, memory,
4424and implicit location descriptions. Register and memory location descriptions
4425describe the *location* of a source variable (in the sense that a debugger might
4426modify its value), whereas implicit locations describe merely the *value* of a
4427source variable. DIExpressions also follow this model: A DIExpression that
4428doesn't have a trailing ``DW_OP_stack_value`` will describe an *address* when
4429combined with a concrete location.
4430
4431.. code-block:: llvm
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004432
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004433 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004434 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004435 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004436 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004437 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004438 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004439 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004440
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004441DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004442""""""""""""""
4443
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004444``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004445
4446.. code-block:: llvm
4447
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004448 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004449 getter: "getFoo", attributes: 7, type: !2)
4450
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004451DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004452""""""""""""""""
4453
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004454``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004455compile unit.
4456
Renato Golin124f2592016-07-20 12:16:38 +00004457.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004458
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004459 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004460 entity: !1, line: 7)
4461
Amjad Abouda9bcf162015-12-10 12:56:35 +00004462DIMacro
4463"""""""
4464
4465``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4466The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004467defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004468used to expand the macro identifier.
4469
Renato Golin124f2592016-07-20 12:16:38 +00004470.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004471
4472 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4473 value: "((x) + 1)")
4474 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4475
4476DIMacroFile
4477"""""""""""
4478
4479``DIMacroFile`` nodes represent inclusion of source files.
4480The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4481appear in the included source file.
4482
Renato Golin124f2592016-07-20 12:16:38 +00004483.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004484
4485 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4486 nodes: !3)
4487
Sean Silvab084af42012-12-07 10:36:55 +00004488'``tbaa``' Metadata
4489^^^^^^^^^^^^^^^^^^^
4490
4491In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004492suitable for doing type based alias analysis (TBAA). Instead, metadata is
4493added to the IR to describe a type system of a higher level language. This
4494can be used to implement C/C++ strict type aliasing rules, but it can also
4495be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004496
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004497This description of LLVM's TBAA system is broken into two parts:
4498:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4499:ref:`Representation<tbaa_node_representation>` talks about the metadata
4500encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004501
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004502It is always possible to trace any TBAA node to a "root" TBAA node (details
4503in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4504nodes with different roots have an unknown aliasing relationship, and LLVM
4505conservatively infers ``MayAlias`` between them. The rules mentioned in
4506this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004507
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004508.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004509
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004510Semantics
4511"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004512
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004513The TBAA metadata system, referred to as "struct path TBAA" (not to be
4514confused with ``tbaa.struct``), consists of the following high level
4515concepts: *Type Descriptors*, further subdivided into scalar type
4516descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004517
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004518**Type descriptors** describe the type system of the higher level language
4519being compiled. **Scalar type descriptors** describe types that do not
4520contain other types. Each scalar type has a parent type, which must also
4521be a scalar type or the TBAA root. Via this parent relation, scalar types
4522within a TBAA root form a tree. **Struct type descriptors** denote types
4523that contain a sequence of other type descriptors, at known offsets. These
4524contained type descriptors can either be struct type descriptors themselves
4525or scalar type descriptors.
4526
4527**Access tags** are metadata nodes attached to load and store instructions.
4528Access tags use type descriptors to describe the *location* being accessed
4529in terms of the type system of the higher level language. Access tags are
4530tuples consisting of a base type, an access type and an offset. The base
4531type is a scalar type descriptor or a struct type descriptor, the access
4532type is a scalar type descriptor, and the offset is a constant integer.
4533
4534The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4535things:
4536
4537 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4538 or store) of a value of type ``AccessTy`` contained in the struct type
4539 ``BaseTy`` at offset ``Offset``.
4540
4541 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4542 ``AccessTy`` must be the same; and the access tag describes a scalar
4543 access with scalar type ``AccessTy``.
4544
4545We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4546tuples this way:
4547
4548 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4549 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4550 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4551 undefined if ``Offset`` is non-zero.
4552
4553 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4554 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4555 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4556 to be relative within that inner type.
4557
4558A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4559aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4560Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4561Offset2)`` via the ``Parent`` relation or vice versa.
4562
4563As a concrete example, the type descriptor graph for the following program
4564
4565.. code-block:: c
4566
4567 struct Inner {
4568 int i; // offset 0
4569 float f; // offset 4
4570 };
4571
4572 struct Outer {
4573 float f; // offset 0
4574 double d; // offset 4
4575 struct Inner inner_a; // offset 12
4576 };
4577
4578 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4579 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4580 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4581 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4582 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4583 }
4584
4585is (note that in C and C++, ``char`` can be used to access any arbitrary
4586type):
4587
4588.. code-block:: text
4589
4590 Root = "TBAA Root"
4591 CharScalarTy = ("char", Root, 0)
4592 FloatScalarTy = ("float", CharScalarTy, 0)
4593 DoubleScalarTy = ("double", CharScalarTy, 0)
4594 IntScalarTy = ("int", CharScalarTy, 0)
4595 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4596 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4597 (InnerStructTy, 12)}
4598
4599
4600with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
46010)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4602``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4603
4604.. _tbaa_node_representation:
4605
4606Representation
4607""""""""""""""
4608
4609The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4610with exactly one ``MDString`` operand.
4611
4612Scalar type descriptors are represented as an ``MDNode`` s with two
4613operands. The first operand is an ``MDString`` denoting the name of the
4614struct type. LLVM does not assign meaning to the value of this operand, it
4615only cares about it being an ``MDString``. The second operand is an
4616``MDNode`` which points to the parent for said scalar type descriptor,
4617which is either another scalar type descriptor or the TBAA root. Scalar
4618type descriptors can have an optional third argument, but that must be the
4619constant integer zero.
4620
4621Struct type descriptors are represented as ``MDNode`` s with an odd number
4622of operands greater than 1. The first operand is an ``MDString`` denoting
4623the name of the struct type. Like in scalar type descriptors the actual
4624value of this name operand is irrelevant to LLVM. After the name operand,
4625the struct type descriptors have a sequence of alternating ``MDNode`` and
4626``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4627an ``MDNode``, denotes a contained field, and the 2N th operand, a
4628``ConstantInt``, is the offset of the said contained field. The offsets
4629must be in non-decreasing order.
4630
4631Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4632The first operand is an ``MDNode`` pointing to the node representing the
4633base type. The second operand is an ``MDNode`` pointing to the node
4634representing the access type. The third operand is a ``ConstantInt`` that
4635states the offset of the access. If a fourth field is present, it must be
4636a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4637that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004638``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004639AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4640the access type and the base type of an access tag must be the same, and
4641that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004642
4643'``tbaa.struct``' Metadata
4644^^^^^^^^^^^^^^^^^^^^^^^^^^
4645
4646The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4647aggregate assignment operations in C and similar languages, however it
4648is defined to copy a contiguous region of memory, which is more than
4649strictly necessary for aggregate types which contain holes due to
4650padding. Also, it doesn't contain any TBAA information about the fields
4651of the aggregate.
4652
4653``!tbaa.struct`` metadata can describe which memory subregions in a
4654memcpy are padding and what the TBAA tags of the struct are.
4655
4656The current metadata format is very simple. ``!tbaa.struct`` metadata
4657nodes are a list of operands which are in conceptual groups of three.
4658For each group of three, the first operand gives the byte offset of a
4659field in bytes, the second gives its size in bytes, and the third gives
4660its tbaa tag. e.g.:
4661
4662.. code-block:: llvm
4663
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004664 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004665
4666This describes a struct with two fields. The first is at offset 0 bytes
4667with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4668and has size 4 bytes and has tbaa tag !2.
4669
4670Note that the fields need not be contiguous. In this example, there is a
46714 byte gap between the two fields. This gap represents padding which
4672does not carry useful data and need not be preserved.
4673
Hal Finkel94146652014-07-24 14:25:39 +00004674'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004676
4677``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4678noalias memory-access sets. This means that some collection of memory access
4679instructions (loads, stores, memory-accessing calls, etc.) that carry
4680``noalias`` metadata can specifically be specified not to alias with some other
4681collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004682Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004683a domain.
4684
4685When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004686of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004687subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004688instruction's ``noalias`` list, then the two memory accesses are assumed not to
4689alias.
Hal Finkel94146652014-07-24 14:25:39 +00004690
Adam Nemet569a5b32016-04-27 00:52:48 +00004691Because scopes in one domain don't affect scopes in other domains, separate
4692domains can be used to compose multiple independent noalias sets. This is
4693used for example during inlining. As the noalias function parameters are
4694turned into noalias scope metadata, a new domain is used every time the
4695function is inlined.
4696
Hal Finkel029cde62014-07-25 15:50:02 +00004697The metadata identifying each domain is itself a list containing one or two
4698entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004699string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004700self-reference can be used to create globally unique domain names. A
4701descriptive string may optionally be provided as a second list entry.
4702
4703The metadata identifying each scope is also itself a list containing two or
4704three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004705is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004706self-reference can be used to create globally unique scope names. A metadata
4707reference to the scope's domain is the second entry. A descriptive string may
4708optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004709
4710For example,
4711
4712.. code-block:: llvm
4713
Hal Finkel029cde62014-07-25 15:50:02 +00004714 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004715 !0 = !{!0}
4716 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004717
Hal Finkel029cde62014-07-25 15:50:02 +00004718 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004719 !2 = !{!2, !0}
4720 !3 = !{!3, !0}
4721 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004722
Hal Finkel029cde62014-07-25 15:50:02 +00004723 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004724 !5 = !{!4} ; A list containing only scope !4
4725 !6 = !{!4, !3, !2}
4726 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004727
4728 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004729 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004730 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004731
Hal Finkel029cde62014-07-25 15:50:02 +00004732 ; These two instructions also don't alias (for domain !1, the set of scopes
4733 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004734 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004735 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004736
Adam Nemet0a8416f2015-05-11 08:30:28 +00004737 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004738 ; the !noalias list is not a superset of, or equal to, the scopes in the
4739 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004740 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004741 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004742
Sean Silvab084af42012-12-07 10:36:55 +00004743'``fpmath``' Metadata
4744^^^^^^^^^^^^^^^^^^^^^
4745
4746``fpmath`` metadata may be attached to any instruction of floating point
4747type. It can be used to express the maximum acceptable error in the
4748result of that instruction, in ULPs, thus potentially allowing the
4749compiler to use a more efficient but less accurate method of computing
4750it. ULP is defined as follows:
4751
4752 If ``x`` is a real number that lies between two finite consecutive
4753 floating-point numbers ``a`` and ``b``, without being equal to one
4754 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4755 distance between the two non-equal finite floating-point numbers
4756 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4757
Matt Arsenault82f41512016-06-27 19:43:15 +00004758The metadata node shall consist of a single positive float type number
4759representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004760
4761.. code-block:: llvm
4762
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004763 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004764
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004765.. _range-metadata:
4766
Sean Silvab084af42012-12-07 10:36:55 +00004767'``range``' Metadata
4768^^^^^^^^^^^^^^^^^^^^
4769
Jingyue Wu37fcb592014-06-19 16:50:16 +00004770``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4771integer types. It expresses the possible ranges the loaded value or the value
4772returned by the called function at this call site is in. The ranges are
4773represented with a flattened list of integers. The loaded value or the value
4774returned is known to be in the union of the ranges defined by each consecutive
4775pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004776
4777- The type must match the type loaded by the instruction.
4778- The pair ``a,b`` represents the range ``[a,b)``.
4779- Both ``a`` and ``b`` are constants.
4780- The range is allowed to wrap.
4781- The range should not represent the full or empty set. That is,
4782 ``a!=b``.
4783
4784In addition, the pairs must be in signed order of the lower bound and
4785they must be non-contiguous.
4786
4787Examples:
4788
4789.. code-block:: llvm
4790
David Blaikiec7aabbb2015-03-04 22:06:14 +00004791 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4792 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004793 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4794 %d = invoke i8 @bar() to label %cont
4795 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004796 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004797 !0 = !{ i8 0, i8 2 }
4798 !1 = !{ i8 255, i8 2 }
4799 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4800 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004801
Peter Collingbourne235c2752016-12-08 19:01:00 +00004802'``absolute_symbol``' Metadata
4803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4804
4805``absolute_symbol`` metadata may be attached to a global variable
4806declaration. It marks the declaration as a reference to an absolute symbol,
4807which causes the backend to use absolute relocations for the symbol even
4808in position independent code, and expresses the possible ranges that the
4809global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004810``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4811may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004812
Peter Collingbourned88f9282017-01-20 21:56:37 +00004813Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004814
4815.. code-block:: llvm
4816
4817 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004818 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004819
4820 ...
4821 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004822 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004823
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004824'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004825^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004826
4827``unpredictable`` metadata may be attached to any branch or switch
4828instruction. It can be used to express the unpredictability of control
4829flow. Similar to the llvm.expect intrinsic, it may be used to alter
4830optimizations related to compare and branch instructions. The metadata
4831is treated as a boolean value; if it exists, it signals that the branch
4832or switch that it is attached to is completely unpredictable.
4833
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004834'``llvm.loop``'
4835^^^^^^^^^^^^^^^
4836
4837It is sometimes useful to attach information to loop constructs. Currently,
4838loop metadata is implemented as metadata attached to the branch instruction
4839in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004840guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004841specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004842
4843The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004844itself to avoid merging it with any other identifier metadata, e.g.,
4845during module linkage or function inlining. That is, each loop should refer
4846to their own identification metadata even if they reside in separate functions.
4847The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004848constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004849
4850.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004851
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004852 !0 = !{!0}
4853 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004854
Mark Heffernan893752a2014-07-18 19:24:51 +00004855The loop identifier metadata can be used to specify additional
4856per-loop metadata. Any operands after the first operand can be treated
4857as user-defined metadata. For example the ``llvm.loop.unroll.count``
4858suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004859
Paul Redmond5fdf8362013-05-28 20:00:34 +00004860.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004861
Paul Redmond5fdf8362013-05-28 20:00:34 +00004862 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4863 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004864 !0 = !{!0, !1}
4865 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004866
Mark Heffernan9d20e422014-07-21 23:11:03 +00004867'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004869
Mark Heffernan9d20e422014-07-21 23:11:03 +00004870Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4871used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004872vectorization width and interleave count. These metadata should be used in
4873conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004874``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4875optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004876it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004877which contains information about loop-carried memory dependencies can be helpful
4878in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004879
Mark Heffernan9d20e422014-07-21 23:11:03 +00004880'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004881^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4882
Mark Heffernan9d20e422014-07-21 23:11:03 +00004883This metadata suggests an interleave count to the loop interleaver.
4884The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004885second operand is an integer specifying the interleave count. For
4886example:
4887
4888.. code-block:: llvm
4889
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004890 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004891
Mark Heffernan9d20e422014-07-21 23:11:03 +00004892Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004893multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004894then the interleave count will be determined automatically.
4895
4896'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004898
4899This metadata selectively enables or disables vectorization for the loop. The
4900first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004901is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000049020 disables vectorization:
4903
4904.. code-block:: llvm
4905
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004906 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4907 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004908
4909'``llvm.loop.vectorize.width``' Metadata
4910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4911
4912This metadata sets the target width of the vectorizer. The first
4913operand is the string ``llvm.loop.vectorize.width`` and the second
4914operand is an integer specifying the width. For example:
4915
4916.. code-block:: llvm
4917
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004918 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004919
4920Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004921vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000049220 or if the loop does not have this metadata the width will be
4923determined automatically.
4924
4925'``llvm.loop.unroll``'
4926^^^^^^^^^^^^^^^^^^^^^^
4927
4928Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4929optimization hints such as the unroll factor. ``llvm.loop.unroll``
4930metadata should be used in conjunction with ``llvm.loop`` loop
4931identification metadata. The ``llvm.loop.unroll`` metadata are only
4932optimization hints and the unrolling will only be performed if the
4933optimizer believes it is safe to do so.
4934
Mark Heffernan893752a2014-07-18 19:24:51 +00004935'``llvm.loop.unroll.count``' Metadata
4936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4937
4938This metadata suggests an unroll factor to the loop unroller. The
4939first operand is the string ``llvm.loop.unroll.count`` and the second
4940operand is a positive integer specifying the unroll factor. For
4941example:
4942
4943.. code-block:: llvm
4944
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004945 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004946
4947If the trip count of the loop is less than the unroll count the loop
4948will be partially unrolled.
4949
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004950'``llvm.loop.unroll.disable``' Metadata
4951^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4952
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004953This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004954which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004955
4956.. code-block:: llvm
4957
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004958 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004959
Kevin Qin715b01e2015-03-09 06:14:18 +00004960'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004961^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004962
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004963This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004964operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004965
4966.. code-block:: llvm
4967
4968 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4969
Mark Heffernan89391542015-08-10 17:28:08 +00004970'``llvm.loop.unroll.enable``' Metadata
4971^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4972
4973This metadata suggests that the loop should be fully unrolled if the trip count
4974is known at compile time and partially unrolled if the trip count is not known
4975at compile time. The metadata has a single operand which is the string
4976``llvm.loop.unroll.enable``. For example:
4977
4978.. code-block:: llvm
4979
4980 !0 = !{!"llvm.loop.unroll.enable"}
4981
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004982'``llvm.loop.unroll.full``' Metadata
4983^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4984
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004985This metadata suggests that the loop should be unrolled fully. The
4986metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004987For example:
4988
4989.. code-block:: llvm
4990
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004991 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004992
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004993'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004995
4996This metadata indicates that the loop should not be versioned for the purpose
4997of enabling loop-invariant code motion (LICM). The metadata has a single operand
4998which is the string ``llvm.loop.licm_versioning.disable``. For example:
4999
5000.. code-block:: llvm
5001
5002 !0 = !{!"llvm.loop.licm_versioning.disable"}
5003
Adam Nemetd2fa4142016-04-27 05:28:18 +00005004'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005006
5007Loop distribution allows splitting a loop into multiple loops. Currently,
5008this is only performed if the entire loop cannot be vectorized due to unsafe
5009memory dependencies. The transformation will atempt to isolate the unsafe
5010dependencies into their own loop.
5011
5012This metadata can be used to selectively enable or disable distribution of the
5013loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5014second operand is a bit. If the bit operand value is 1 distribution is
5015enabled. A value of 0 disables distribution:
5016
5017.. code-block:: llvm
5018
5019 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5020 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5021
5022This metadata should be used in conjunction with ``llvm.loop`` loop
5023identification metadata.
5024
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005025'``llvm.mem``'
5026^^^^^^^^^^^^^^^
5027
5028Metadata types used to annotate memory accesses with information helpful
5029for optimizations are prefixed with ``llvm.mem``.
5030
5031'``llvm.mem.parallel_loop_access``' Metadata
5032^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5033
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005034The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5035or metadata containing a list of loop identifiers for nested loops.
5036The metadata is attached to memory accessing instructions and denotes that
5037no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005038with the same loop identifier. The metadata on memory reads also implies that
5039if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005040
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005041Precisely, given two instructions ``m1`` and ``m2`` that both have the
5042``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5043set of loops associated with that metadata, respectively, then there is no loop
5044carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005045``L2``.
5046
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005047As a special case, if all memory accessing instructions in a loop have
5048``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5049loop has no loop carried memory dependences and is considered to be a parallel
5050loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005051
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005052Note that if not all memory access instructions have such metadata referring to
5053the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005054memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005055safe mechanism, this causes loops that were originally parallel to be considered
5056sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005057insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005058
5059Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005060both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005061metadata types that refer to the same loop identifier metadata.
5062
5063.. code-block:: llvm
5064
5065 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005066 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005067 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005068 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005069 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005070 ...
5071 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005072
5073 for.end:
5074 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005075 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005076
5077It is also possible to have nested parallel loops. In that case the
5078memory accesses refer to a list of loop identifier metadata nodes instead of
5079the loop identifier metadata node directly:
5080
5081.. code-block:: llvm
5082
5083 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005084 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005085 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005086 ...
5087 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005088
5089 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005090 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005091 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005092 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005093 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005094 ...
5095 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005096
5097 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005098 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005099 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005100 ...
5101 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005102
5103 outer.for.end: ; preds = %for.body
5104 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005105 !0 = !{!1, !2} ; a list of loop identifiers
5106 !1 = !{!1} ; an identifier for the inner loop
5107 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005108
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005109'``invariant.group``' Metadata
5110^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5111
5112The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
5113The existence of the ``invariant.group`` metadata on the instruction tells
5114the optimizer that every ``load`` and ``store`` to the same pointer operand
5115within the same invariant group can be assumed to load or store the same
5116value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005117when two pointers are considered the same). Pointers returned by bitcast or
5118getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005119
5120Examples:
5121
5122.. code-block:: llvm
5123
5124 @unknownPtr = external global i8
5125 ...
5126 %ptr = alloca i8
5127 store i8 42, i8* %ptr, !invariant.group !0
5128 call void @foo(i8* %ptr)
5129
5130 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5131 call void @foo(i8* %ptr)
5132 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
5133
5134 %newPtr = call i8* @getPointer(i8* %ptr)
5135 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
5136
5137 %unknownValue = load i8, i8* @unknownPtr
5138 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
5139
5140 call void @foo(i8* %ptr)
5141 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5142 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
5143
5144 ...
5145 declare void @foo(i8*)
5146 declare i8* @getPointer(i8*)
5147 declare i8* @llvm.invariant.group.barrier(i8*)
5148
5149 !0 = !{!"magic ptr"}
5150 !1 = !{!"other ptr"}
5151
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005152The invariant.group metadata must be dropped when replacing one pointer by
5153another based on aliasing information. This is because invariant.group is tied
5154to the SSA value of the pointer operand.
5155
5156.. code-block:: llvm
Piotr Padlewskiaa1b2412017-04-12 11:18:19 +00005157
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005158 %v = load i8, i8* %x, !invariant.group !0
5159 ; if %x mustalias %y then we can replace the above instruction with
5160 %v = load i8, i8* %y
5161
5162
Peter Collingbournea333db82016-07-26 22:31:30 +00005163'``type``' Metadata
5164^^^^^^^^^^^^^^^^^^^
5165
5166See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005167
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005168'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005169^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005170
5171The ``associated`` metadata may be attached to a global object
5172declaration with a single argument that references another global object.
5173
5174This metadata prevents discarding of the global object in linker GC
5175unless the referenced object is also discarded. The linker support for
5176this feature is spotty. For best compatibility, globals carrying this
5177metadata may also:
5178
5179- Be in a comdat with the referenced global.
5180- Be in @llvm.compiler.used.
5181- Have an explicit section with a name which is a valid C identifier.
5182
5183It does not have any effect on non-ELF targets.
5184
5185Example:
5186
5187.. code-block:: llvm
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005188
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005189 $a = comdat any
5190 @a = global i32 1, comdat $a
5191 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5192 !0 = !{i32* @a}
5193
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005194
Sean Silvab084af42012-12-07 10:36:55 +00005195Module Flags Metadata
5196=====================
5197
5198Information about the module as a whole is difficult to convey to LLVM's
5199subsystems. The LLVM IR isn't sufficient to transmit this information.
5200The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005201this. These flags are in the form of key / value pairs --- much like a
5202dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005203look it up.
5204
5205The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5206Each triplet has the following form:
5207
5208- The first element is a *behavior* flag, which specifies the behavior
5209 when two (or more) modules are merged together, and it encounters two
5210 (or more) metadata with the same ID. The supported behaviors are
5211 described below.
5212- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005213 metadata. Each module may only have one flag entry for each unique ID (not
5214 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005215- The third element is the value of the flag.
5216
5217When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005218``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5219each unique metadata ID string, there will be exactly one entry in the merged
5220modules ``llvm.module.flags`` metadata table, and the value for that entry will
5221be determined by the merge behavior flag, as described below. The only exception
5222is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005223
5224The following behaviors are supported:
5225
5226.. list-table::
5227 :header-rows: 1
5228 :widths: 10 90
5229
5230 * - Value
5231 - Behavior
5232
5233 * - 1
5234 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005235 Emits an error if two values disagree, otherwise the resulting value
5236 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005237
5238 * - 2
5239 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005240 Emits a warning if two values disagree. The result value will be the
5241 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005242
5243 * - 3
5244 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005245 Adds a requirement that another module flag be present and have a
5246 specified value after linking is performed. The value must be a
5247 metadata pair, where the first element of the pair is the ID of the
5248 module flag to be restricted, and the second element of the pair is
5249 the value the module flag should be restricted to. This behavior can
5250 be used to restrict the allowable results (via triggering of an
5251 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005252
5253 * - 4
5254 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005255 Uses the specified value, regardless of the behavior or value of the
5256 other module. If both modules specify **Override**, but the values
5257 differ, an error will be emitted.
5258
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005259 * - 5
5260 - **Append**
5261 Appends the two values, which are required to be metadata nodes.
5262
5263 * - 6
5264 - **AppendUnique**
5265 Appends the two values, which are required to be metadata
5266 nodes. However, duplicate entries in the second list are dropped
5267 during the append operation.
5268
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005269It is an error for a particular unique flag ID to have multiple behaviors,
5270except in the case of **Require** (which adds restrictions on another metadata
5271value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005272
5273An example of module flags:
5274
5275.. code-block:: llvm
5276
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005277 !0 = !{ i32 1, !"foo", i32 1 }
5278 !1 = !{ i32 4, !"bar", i32 37 }
5279 !2 = !{ i32 2, !"qux", i32 42 }
5280 !3 = !{ i32 3, !"qux",
5281 !{
5282 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005283 }
5284 }
5285 !llvm.module.flags = !{ !0, !1, !2, !3 }
5286
5287- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5288 if two or more ``!"foo"`` flags are seen is to emit an error if their
5289 values are not equal.
5290
5291- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5292 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005293 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005294
5295- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5296 behavior if two or more ``!"qux"`` flags are seen is to emit a
5297 warning if their values are not equal.
5298
5299- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5300
5301 ::
5302
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005303 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005304
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005305 The behavior is to emit an error if the ``llvm.module.flags`` does not
5306 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5307 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005308
5309Objective-C Garbage Collection Module Flags Metadata
5310----------------------------------------------------
5311
5312On the Mach-O platform, Objective-C stores metadata about garbage
5313collection in a special section called "image info". The metadata
5314consists of a version number and a bitmask specifying what types of
5315garbage collection are supported (if any) by the file. If two or more
5316modules are linked together their garbage collection metadata needs to
5317be merged rather than appended together.
5318
5319The Objective-C garbage collection module flags metadata consists of the
5320following key-value pairs:
5321
5322.. list-table::
5323 :header-rows: 1
5324 :widths: 30 70
5325
5326 * - Key
5327 - Value
5328
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005329 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005330 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005331
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005332 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005333 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005334 always 0.
5335
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005336 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005337 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005338 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5339 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5340 Objective-C ABI version 2.
5341
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005342 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005343 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005344 not. Valid values are 0, for no garbage collection, and 2, for garbage
5345 collection supported.
5346
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005347 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005348 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005349 If present, its value must be 6. This flag requires that the
5350 ``Objective-C Garbage Collection`` flag have the value 2.
5351
5352Some important flag interactions:
5353
5354- If a module with ``Objective-C Garbage Collection`` set to 0 is
5355 merged with a module with ``Objective-C Garbage Collection`` set to
5356 2, then the resulting module has the
5357 ``Objective-C Garbage Collection`` flag set to 0.
5358- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5359 merged with a module with ``Objective-C GC Only`` set to 6.
5360
Oliver Stannard5dc29342014-06-20 10:08:11 +00005361C type width Module Flags Metadata
5362----------------------------------
5363
5364The ARM backend emits a section into each generated object file describing the
5365options that it was compiled with (in a compiler-independent way) to prevent
5366linking incompatible objects, and to allow automatic library selection. Some
5367of these options are not visible at the IR level, namely wchar_t width and enum
5368width.
5369
5370To pass this information to the backend, these options are encoded in module
5371flags metadata, using the following key-value pairs:
5372
5373.. list-table::
5374 :header-rows: 1
5375 :widths: 30 70
5376
5377 * - Key
5378 - Value
5379
5380 * - short_wchar
5381 - * 0 --- sizeof(wchar_t) == 4
5382 * 1 --- sizeof(wchar_t) == 2
5383
5384 * - short_enum
5385 - * 0 --- Enums are at least as large as an ``int``.
5386 * 1 --- Enums are stored in the smallest integer type which can
5387 represent all of its values.
5388
5389For example, the following metadata section specifies that the module was
5390compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5391enum is the smallest type which can represent all of its values::
5392
5393 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005394 !0 = !{i32 1, !"short_wchar", i32 1}
5395 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005396
Peter Collingbourne89061b22017-06-12 20:10:48 +00005397Automatic Linker Flags Named Metadata
5398=====================================
5399
5400Some targets support embedding flags to the linker inside individual object
5401files. Typically this is used in conjunction with language extensions which
5402allow source files to explicitly declare the libraries they depend on, and have
5403these automatically be transmitted to the linker via object files.
5404
5405These flags are encoded in the IR using named metadata with the name
5406``!llvm.linker.options``. Each operand is expected to be a metadata node
5407which should be a list of other metadata nodes, each of which should be a
5408list of metadata strings defining linker options.
5409
5410For example, the following metadata section specifies two separate sets of
5411linker options, presumably to link against ``libz`` and the ``Cocoa``
5412framework::
5413
5414 !0 = !{ !"-lz" },
5415 !1 = !{ !"-framework", !"Cocoa" } } }
5416 !llvm.linker.options = !{ !0, !1 }
5417
5418The metadata encoding as lists of lists of options, as opposed to a collapsed
5419list of options, is chosen so that the IR encoding can use multiple option
5420strings to specify e.g., a single library, while still having that specifier be
5421preserved as an atomic element that can be recognized by a target specific
5422assembly writer or object file emitter.
5423
5424Each individual option is required to be either a valid option for the target's
5425linker, or an option that is reserved by the target specific assembly writer or
5426object file emitter. No other aspect of these options is defined by the IR.
5427
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005428.. _intrinsicglobalvariables:
5429
Sean Silvab084af42012-12-07 10:36:55 +00005430Intrinsic Global Variables
5431==========================
5432
5433LLVM has a number of "magic" global variables that contain data that
5434affect code generation or other IR semantics. These are documented here.
5435All globals of this sort should have a section specified as
5436"``llvm.metadata``". This section and all globals that start with
5437"``llvm.``" are reserved for use by LLVM.
5438
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005439.. _gv_llvmused:
5440
Sean Silvab084af42012-12-07 10:36:55 +00005441The '``llvm.used``' Global Variable
5442-----------------------------------
5443
Rafael Espindola74f2e462013-04-22 14:58:02 +00005444The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005445:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005446pointers to named global variables, functions and aliases which may optionally
5447have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005448use of it is:
5449
5450.. code-block:: llvm
5451
5452 @X = global i8 4
5453 @Y = global i32 123
5454
5455 @llvm.used = appending global [2 x i8*] [
5456 i8* @X,
5457 i8* bitcast (i32* @Y to i8*)
5458 ], section "llvm.metadata"
5459
Rafael Espindola74f2e462013-04-22 14:58:02 +00005460If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5461and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005462symbol that it cannot see (which is why they have to be named). For example, if
5463a variable has internal linkage and no references other than that from the
5464``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5465references from inline asms and other things the compiler cannot "see", and
5466corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005467
5468On some targets, the code generator must emit a directive to the
5469assembler or object file to prevent the assembler and linker from
5470molesting the symbol.
5471
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005472.. _gv_llvmcompilerused:
5473
Sean Silvab084af42012-12-07 10:36:55 +00005474The '``llvm.compiler.used``' Global Variable
5475--------------------------------------------
5476
5477The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5478directive, except that it only prevents the compiler from touching the
5479symbol. On targets that support it, this allows an intelligent linker to
5480optimize references to the symbol without being impeded as it would be
5481by ``@llvm.used``.
5482
5483This is a rare construct that should only be used in rare circumstances,
5484and should not be exposed to source languages.
5485
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005486.. _gv_llvmglobalctors:
5487
Sean Silvab084af42012-12-07 10:36:55 +00005488The '``llvm.global_ctors``' Global Variable
5489-------------------------------------------
5490
5491.. code-block:: llvm
5492
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005493 %0 = type { i32, void ()*, i8* }
5494 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005495
5496The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005497functions, priorities, and an optional associated global or function.
5498The functions referenced by this array will be called in ascending order
5499of priority (i.e. lowest first) when the module is loaded. The order of
5500functions with the same priority is not defined.
5501
5502If the third field is present, non-null, and points to a global variable
5503or function, the initializer function will only run if the associated
5504data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005505
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005506.. _llvmglobaldtors:
5507
Sean Silvab084af42012-12-07 10:36:55 +00005508The '``llvm.global_dtors``' Global Variable
5509-------------------------------------------
5510
5511.. code-block:: llvm
5512
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005513 %0 = type { i32, void ()*, i8* }
5514 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005515
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005516The ``@llvm.global_dtors`` array contains a list of destructor
5517functions, priorities, and an optional associated global or function.
5518The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005519order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005520order of functions with the same priority is not defined.
5521
5522If the third field is present, non-null, and points to a global variable
5523or function, the destructor function will only run if the associated
5524data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005525
5526Instruction Reference
5527=====================
5528
5529The LLVM instruction set consists of several different classifications
5530of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5531instructions <binaryops>`, :ref:`bitwise binary
5532instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5533:ref:`other instructions <otherops>`.
5534
5535.. _terminators:
5536
5537Terminator Instructions
5538-----------------------
5539
5540As mentioned :ref:`previously <functionstructure>`, every basic block in a
5541program ends with a "Terminator" instruction, which indicates which
5542block should be executed after the current block is finished. These
5543terminator instructions typically yield a '``void``' value: they produce
5544control flow, not values (the one exception being the
5545':ref:`invoke <i_invoke>`' instruction).
5546
5547The terminator instructions are: ':ref:`ret <i_ret>`',
5548':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5549':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005550':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005551':ref:`catchret <i_catchret>`',
5552':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005553and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005554
5555.. _i_ret:
5556
5557'``ret``' Instruction
5558^^^^^^^^^^^^^^^^^^^^^
5559
5560Syntax:
5561"""""""
5562
5563::
5564
5565 ret <type> <value> ; Return a value from a non-void function
5566 ret void ; Return from void function
5567
5568Overview:
5569"""""""""
5570
5571The '``ret``' instruction is used to return control flow (and optionally
5572a value) from a function back to the caller.
5573
5574There are two forms of the '``ret``' instruction: one that returns a
5575value and then causes control flow, and one that just causes control
5576flow to occur.
5577
5578Arguments:
5579""""""""""
5580
5581The '``ret``' instruction optionally accepts a single argument, the
5582return value. The type of the return value must be a ':ref:`first
5583class <t_firstclass>`' type.
5584
5585A function is not :ref:`well formed <wellformed>` if it it has a non-void
5586return type and contains a '``ret``' instruction with no return value or
5587a return value with a type that does not match its type, or if it has a
5588void return type and contains a '``ret``' instruction with a return
5589value.
5590
5591Semantics:
5592""""""""""
5593
5594When the '``ret``' instruction is executed, control flow returns back to
5595the calling function's context. If the caller is a
5596":ref:`call <i_call>`" instruction, execution continues at the
5597instruction after the call. If the caller was an
5598":ref:`invoke <i_invoke>`" instruction, execution continues at the
5599beginning of the "normal" destination block. If the instruction returns
5600a value, that value shall set the call or invoke instruction's return
5601value.
5602
5603Example:
5604""""""""
5605
5606.. code-block:: llvm
5607
5608 ret i32 5 ; Return an integer value of 5
5609 ret void ; Return from a void function
5610 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5611
5612.. _i_br:
5613
5614'``br``' Instruction
5615^^^^^^^^^^^^^^^^^^^^
5616
5617Syntax:
5618"""""""
5619
5620::
5621
5622 br i1 <cond>, label <iftrue>, label <iffalse>
5623 br label <dest> ; Unconditional branch
5624
5625Overview:
5626"""""""""
5627
5628The '``br``' instruction is used to cause control flow to transfer to a
5629different basic block in the current function. There are two forms of
5630this instruction, corresponding to a conditional branch and an
5631unconditional branch.
5632
5633Arguments:
5634""""""""""
5635
5636The conditional branch form of the '``br``' instruction takes a single
5637'``i1``' value and two '``label``' values. The unconditional form of the
5638'``br``' instruction takes a single '``label``' value as a target.
5639
5640Semantics:
5641""""""""""
5642
5643Upon execution of a conditional '``br``' instruction, the '``i1``'
5644argument is evaluated. If the value is ``true``, control flows to the
5645'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5646to the '``iffalse``' ``label`` argument.
5647
5648Example:
5649""""""""
5650
5651.. code-block:: llvm
5652
5653 Test:
5654 %cond = icmp eq i32 %a, %b
5655 br i1 %cond, label %IfEqual, label %IfUnequal
5656 IfEqual:
5657 ret i32 1
5658 IfUnequal:
5659 ret i32 0
5660
5661.. _i_switch:
5662
5663'``switch``' Instruction
5664^^^^^^^^^^^^^^^^^^^^^^^^
5665
5666Syntax:
5667"""""""
5668
5669::
5670
5671 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5672
5673Overview:
5674"""""""""
5675
5676The '``switch``' instruction is used to transfer control flow to one of
5677several different places. It is a generalization of the '``br``'
5678instruction, allowing a branch to occur to one of many possible
5679destinations.
5680
5681Arguments:
5682""""""""""
5683
5684The '``switch``' instruction uses three parameters: an integer
5685comparison value '``value``', a default '``label``' destination, and an
5686array of pairs of comparison value constants and '``label``'s. The table
5687is not allowed to contain duplicate constant entries.
5688
5689Semantics:
5690""""""""""
5691
5692The ``switch`` instruction specifies a table of values and destinations.
5693When the '``switch``' instruction is executed, this table is searched
5694for the given value. If the value is found, control flow is transferred
5695to the corresponding destination; otherwise, control flow is transferred
5696to the default destination.
5697
5698Implementation:
5699"""""""""""""""
5700
5701Depending on properties of the target machine and the particular
5702``switch`` instruction, this instruction may be code generated in
5703different ways. For example, it could be generated as a series of
5704chained conditional branches or with a lookup table.
5705
5706Example:
5707""""""""
5708
5709.. code-block:: llvm
5710
5711 ; Emulate a conditional br instruction
5712 %Val = zext i1 %value to i32
5713 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5714
5715 ; Emulate an unconditional br instruction
5716 switch i32 0, label %dest [ ]
5717
5718 ; Implement a jump table:
5719 switch i32 %val, label %otherwise [ i32 0, label %onzero
5720 i32 1, label %onone
5721 i32 2, label %ontwo ]
5722
5723.. _i_indirectbr:
5724
5725'``indirectbr``' Instruction
5726^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5727
5728Syntax:
5729"""""""
5730
5731::
5732
5733 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5734
5735Overview:
5736"""""""""
5737
5738The '``indirectbr``' instruction implements an indirect branch to a
5739label within the current function, whose address is specified by
5740"``address``". Address must be derived from a
5741:ref:`blockaddress <blockaddress>` constant.
5742
5743Arguments:
5744""""""""""
5745
5746The '``address``' argument is the address of the label to jump to. The
5747rest of the arguments indicate the full set of possible destinations
5748that the address may point to. Blocks are allowed to occur multiple
5749times in the destination list, though this isn't particularly useful.
5750
5751This destination list is required so that dataflow analysis has an
5752accurate understanding of the CFG.
5753
5754Semantics:
5755""""""""""
5756
5757Control transfers to the block specified in the address argument. All
5758possible destination blocks must be listed in the label list, otherwise
5759this instruction has undefined behavior. This implies that jumps to
5760labels defined in other functions have undefined behavior as well.
5761
5762Implementation:
5763"""""""""""""""
5764
5765This is typically implemented with a jump through a register.
5766
5767Example:
5768""""""""
5769
5770.. code-block:: llvm
5771
5772 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5773
5774.. _i_invoke:
5775
5776'``invoke``' Instruction
5777^^^^^^^^^^^^^^^^^^^^^^^^
5778
5779Syntax:
5780"""""""
5781
5782::
5783
David Blaikieb83cf102016-07-13 17:21:34 +00005784 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005785 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005786
5787Overview:
5788"""""""""
5789
5790The '``invoke``' instruction causes control to transfer to a specified
5791function, with the possibility of control flow transfer to either the
5792'``normal``' label or the '``exception``' label. If the callee function
5793returns with the "``ret``" instruction, control flow will return to the
5794"normal" label. If the callee (or any indirect callees) returns via the
5795":ref:`resume <i_resume>`" instruction or other exception handling
5796mechanism, control is interrupted and continued at the dynamically
5797nearest "exception" label.
5798
5799The '``exception``' label is a `landing
5800pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5801'``exception``' label is required to have the
5802":ref:`landingpad <i_landingpad>`" instruction, which contains the
5803information about the behavior of the program after unwinding happens,
5804as its first non-PHI instruction. The restrictions on the
5805"``landingpad``" instruction's tightly couples it to the "``invoke``"
5806instruction, so that the important information contained within the
5807"``landingpad``" instruction can't be lost through normal code motion.
5808
5809Arguments:
5810""""""""""
5811
5812This instruction requires several arguments:
5813
5814#. The optional "cconv" marker indicates which :ref:`calling
5815 convention <callingconv>` the call should use. If none is
5816 specified, the call defaults to using C calling conventions.
5817#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5818 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5819 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005820#. '``ty``': the type of the call instruction itself which is also the
5821 type of the return value. Functions that return no value are marked
5822 ``void``.
5823#. '``fnty``': shall be the signature of the function being invoked. The
5824 argument types must match the types implied by this signature. This
5825 type can be omitted if the function is not varargs.
5826#. '``fnptrval``': An LLVM value containing a pointer to a function to
5827 be invoked. In most cases, this is a direct function invocation, but
5828 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5829 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005830#. '``function args``': argument list whose types match the function
5831 signature argument types and parameter attributes. All arguments must
5832 be of :ref:`first class <t_firstclass>` type. If the function signature
5833 indicates the function accepts a variable number of arguments, the
5834 extra arguments can be specified.
5835#. '``normal label``': the label reached when the called function
5836 executes a '``ret``' instruction.
5837#. '``exception label``': the label reached when a callee returns via
5838 the :ref:`resume <i_resume>` instruction or other exception handling
5839 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00005840#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005841#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005842
5843Semantics:
5844""""""""""
5845
5846This instruction is designed to operate as a standard '``call``'
5847instruction in most regards. The primary difference is that it
5848establishes an association with a label, which is used by the runtime
5849library to unwind the stack.
5850
5851This instruction is used in languages with destructors to ensure that
5852proper cleanup is performed in the case of either a ``longjmp`` or a
5853thrown exception. Additionally, this is important for implementation of
5854'``catch``' clauses in high-level languages that support them.
5855
5856For the purposes of the SSA form, the definition of the value returned
5857by the '``invoke``' instruction is deemed to occur on the edge from the
5858current block to the "normal" label. If the callee unwinds then no
5859return value is available.
5860
5861Example:
5862""""""""
5863
5864.. code-block:: llvm
5865
5866 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005867 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005868 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005869 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005870
5871.. _i_resume:
5872
5873'``resume``' Instruction
5874^^^^^^^^^^^^^^^^^^^^^^^^
5875
5876Syntax:
5877"""""""
5878
5879::
5880
5881 resume <type> <value>
5882
5883Overview:
5884"""""""""
5885
5886The '``resume``' instruction is a terminator instruction that has no
5887successors.
5888
5889Arguments:
5890""""""""""
5891
5892The '``resume``' instruction requires one argument, which must have the
5893same type as the result of any '``landingpad``' instruction in the same
5894function.
5895
5896Semantics:
5897""""""""""
5898
5899The '``resume``' instruction resumes propagation of an existing
5900(in-flight) exception whose unwinding was interrupted with a
5901:ref:`landingpad <i_landingpad>` instruction.
5902
5903Example:
5904""""""""
5905
5906.. code-block:: llvm
5907
5908 resume { i8*, i32 } %exn
5909
David Majnemer8a1c45d2015-12-12 05:38:55 +00005910.. _i_catchswitch:
5911
5912'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005913^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005914
5915Syntax:
5916"""""""
5917
5918::
5919
5920 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5921 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5922
5923Overview:
5924"""""""""
5925
5926The '``catchswitch``' instruction is used by `LLVM's exception handling system
5927<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5928that may be executed by the :ref:`EH personality routine <personalityfn>`.
5929
5930Arguments:
5931""""""""""
5932
5933The ``parent`` argument is the token of the funclet that contains the
5934``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5935this operand may be the token ``none``.
5936
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005937The ``default`` argument is the label of another basic block beginning with
5938either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5939must be a legal target with respect to the ``parent`` links, as described in
5940the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005941
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005942The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005943:ref:`catchpad <i_catchpad>` instruction.
5944
5945Semantics:
5946""""""""""
5947
5948Executing this instruction transfers control to one of the successors in
5949``handlers``, if appropriate, or continues to unwind via the unwind label if
5950present.
5951
5952The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5953it must be both the first non-phi instruction and last instruction in the basic
5954block. Therefore, it must be the only non-phi instruction in the block.
5955
5956Example:
5957""""""""
5958
Renato Golin124f2592016-07-20 12:16:38 +00005959.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005960
5961 dispatch1:
5962 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5963 dispatch2:
5964 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5965
David Majnemer654e1302015-07-31 17:58:14 +00005966.. _i_catchret:
5967
5968'``catchret``' Instruction
5969^^^^^^^^^^^^^^^^^^^^^^^^^^
5970
5971Syntax:
5972"""""""
5973
5974::
5975
David Majnemer8a1c45d2015-12-12 05:38:55 +00005976 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005977
5978Overview:
5979"""""""""
5980
5981The '``catchret``' instruction is a terminator instruction that has a
5982single successor.
5983
5984
5985Arguments:
5986""""""""""
5987
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005988The first argument to a '``catchret``' indicates which ``catchpad`` it
5989exits. It must be a :ref:`catchpad <i_catchpad>`.
5990The second argument to a '``catchret``' specifies where control will
5991transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005992
5993Semantics:
5994""""""""""
5995
David Majnemer8a1c45d2015-12-12 05:38:55 +00005996The '``catchret``' instruction ends an existing (in-flight) exception whose
5997unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5998:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5999code to, for example, destroy the active exception. Control then transfers to
6000``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006001
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006002The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6003If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6004funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6005the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006006
6007Example:
6008""""""""
6009
Renato Golin124f2592016-07-20 12:16:38 +00006010.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006011
David Majnemer8a1c45d2015-12-12 05:38:55 +00006012 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006013
David Majnemer654e1302015-07-31 17:58:14 +00006014.. _i_cleanupret:
6015
6016'``cleanupret``' Instruction
6017^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6018
6019Syntax:
6020"""""""
6021
6022::
6023
David Majnemer8a1c45d2015-12-12 05:38:55 +00006024 cleanupret from <value> unwind label <continue>
6025 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006026
6027Overview:
6028"""""""""
6029
6030The '``cleanupret``' instruction is a terminator instruction that has
6031an optional successor.
6032
6033
6034Arguments:
6035""""""""""
6036
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006037The '``cleanupret``' instruction requires one argument, which indicates
6038which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006039If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6040funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6041the ``cleanupret``'s behavior is undefined.
6042
6043The '``cleanupret``' instruction also has an optional successor, ``continue``,
6044which must be the label of another basic block beginning with either a
6045``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6046be a legal target with respect to the ``parent`` links, as described in the
6047`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006048
6049Semantics:
6050""""""""""
6051
6052The '``cleanupret``' instruction indicates to the
6053:ref:`personality function <personalityfn>` that one
6054:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6055It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006056
David Majnemer654e1302015-07-31 17:58:14 +00006057Example:
6058""""""""
6059
Renato Golin124f2592016-07-20 12:16:38 +00006060.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006061
David Majnemer8a1c45d2015-12-12 05:38:55 +00006062 cleanupret from %cleanup unwind to caller
6063 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006064
Sean Silvab084af42012-12-07 10:36:55 +00006065.. _i_unreachable:
6066
6067'``unreachable``' Instruction
6068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6069
6070Syntax:
6071"""""""
6072
6073::
6074
6075 unreachable
6076
6077Overview:
6078"""""""""
6079
6080The '``unreachable``' instruction has no defined semantics. This
6081instruction is used to inform the optimizer that a particular portion of
6082the code is not reachable. This can be used to indicate that the code
6083after a no-return function cannot be reached, and other facts.
6084
6085Semantics:
6086""""""""""
6087
6088The '``unreachable``' instruction has no defined semantics.
6089
6090.. _binaryops:
6091
6092Binary Operations
6093-----------------
6094
6095Binary operators are used to do most of the computation in a program.
6096They require two operands of the same type, execute an operation on
6097them, and produce a single value. The operands might represent multiple
6098data, as is the case with the :ref:`vector <t_vector>` data type. The
6099result value has the same type as its operands.
6100
6101There are several different binary operators:
6102
6103.. _i_add:
6104
6105'``add``' Instruction
6106^^^^^^^^^^^^^^^^^^^^^
6107
6108Syntax:
6109"""""""
6110
6111::
6112
Tim Northover675a0962014-06-13 14:24:23 +00006113 <result> = add <ty> <op1>, <op2> ; yields ty:result
6114 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6115 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6116 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006117
6118Overview:
6119"""""""""
6120
6121The '``add``' instruction returns the sum of its two operands.
6122
6123Arguments:
6124""""""""""
6125
6126The two arguments to the '``add``' instruction must be
6127:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6128arguments must have identical types.
6129
6130Semantics:
6131""""""""""
6132
6133The value produced is the integer sum of the two operands.
6134
6135If the sum has unsigned overflow, the result returned is the
6136mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6137the result.
6138
6139Because LLVM integers use a two's complement representation, this
6140instruction is appropriate for both signed and unsigned integers.
6141
6142``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6143respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6144result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6145unsigned and/or signed overflow, respectively, occurs.
6146
6147Example:
6148""""""""
6149
Renato Golin124f2592016-07-20 12:16:38 +00006150.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006151
Tim Northover675a0962014-06-13 14:24:23 +00006152 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006153
6154.. _i_fadd:
6155
6156'``fadd``' Instruction
6157^^^^^^^^^^^^^^^^^^^^^^
6158
6159Syntax:
6160"""""""
6161
6162::
6163
Tim Northover675a0962014-06-13 14:24:23 +00006164 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006165
6166Overview:
6167"""""""""
6168
6169The '``fadd``' instruction returns the sum of its two operands.
6170
6171Arguments:
6172""""""""""
6173
6174The two arguments to the '``fadd``' instruction must be :ref:`floating
6175point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6176Both arguments must have identical types.
6177
6178Semantics:
6179""""""""""
6180
6181The value produced is the floating point sum of the two operands. This
6182instruction can also take any number of :ref:`fast-math flags <fastmath>`,
6183which are optimization hints to enable otherwise unsafe floating point
6184optimizations:
6185
6186Example:
6187""""""""
6188
Renato Golin124f2592016-07-20 12:16:38 +00006189.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006190
Tim Northover675a0962014-06-13 14:24:23 +00006191 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006192
6193'``sub``' Instruction
6194^^^^^^^^^^^^^^^^^^^^^
6195
6196Syntax:
6197"""""""
6198
6199::
6200
Tim Northover675a0962014-06-13 14:24:23 +00006201 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6202 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6203 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6204 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006205
6206Overview:
6207"""""""""
6208
6209The '``sub``' instruction returns the difference of its two operands.
6210
6211Note that the '``sub``' instruction is used to represent the '``neg``'
6212instruction present in most other intermediate representations.
6213
6214Arguments:
6215""""""""""
6216
6217The two arguments to the '``sub``' instruction must be
6218:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6219arguments must have identical types.
6220
6221Semantics:
6222""""""""""
6223
6224The value produced is the integer difference of the two operands.
6225
6226If the difference has unsigned overflow, the result returned is the
6227mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6228the result.
6229
6230Because LLVM integers use a two's complement representation, this
6231instruction is appropriate for both signed and unsigned integers.
6232
6233``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6234respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6235result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6236unsigned and/or signed overflow, respectively, occurs.
6237
6238Example:
6239""""""""
6240
Renato Golin124f2592016-07-20 12:16:38 +00006241.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006242
Tim Northover675a0962014-06-13 14:24:23 +00006243 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6244 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006245
6246.. _i_fsub:
6247
6248'``fsub``' Instruction
6249^^^^^^^^^^^^^^^^^^^^^^
6250
6251Syntax:
6252"""""""
6253
6254::
6255
Tim Northover675a0962014-06-13 14:24:23 +00006256 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006257
6258Overview:
6259"""""""""
6260
6261The '``fsub``' instruction returns the difference of its two operands.
6262
6263Note that the '``fsub``' instruction is used to represent the '``fneg``'
6264instruction present in most other intermediate representations.
6265
6266Arguments:
6267""""""""""
6268
6269The two arguments to the '``fsub``' instruction must be :ref:`floating
6270point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6271Both arguments must have identical types.
6272
6273Semantics:
6274""""""""""
6275
6276The value produced is the floating point difference of the two operands.
6277This instruction can also take any number of :ref:`fast-math
6278flags <fastmath>`, which are optimization hints to enable otherwise
6279unsafe floating point optimizations:
6280
6281Example:
6282""""""""
6283
Renato Golin124f2592016-07-20 12:16:38 +00006284.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006285
Tim Northover675a0962014-06-13 14:24:23 +00006286 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6287 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006288
6289'``mul``' Instruction
6290^^^^^^^^^^^^^^^^^^^^^
6291
6292Syntax:
6293"""""""
6294
6295::
6296
Tim Northover675a0962014-06-13 14:24:23 +00006297 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6298 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6299 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6300 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006301
6302Overview:
6303"""""""""
6304
6305The '``mul``' instruction returns the product of its two operands.
6306
6307Arguments:
6308""""""""""
6309
6310The two arguments to the '``mul``' instruction must be
6311:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6312arguments must have identical types.
6313
6314Semantics:
6315""""""""""
6316
6317The value produced is the integer product of the two operands.
6318
6319If the result of the multiplication has unsigned overflow, the result
6320returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6321bit width of the result.
6322
6323Because LLVM integers use a two's complement representation, and the
6324result is the same width as the operands, this instruction returns the
6325correct result for both signed and unsigned integers. If a full product
6326(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6327sign-extended or zero-extended as appropriate to the width of the full
6328product.
6329
6330``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6331respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6332result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6333unsigned and/or signed overflow, respectively, occurs.
6334
6335Example:
6336""""""""
6337
Renato Golin124f2592016-07-20 12:16:38 +00006338.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006339
Tim Northover675a0962014-06-13 14:24:23 +00006340 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006341
6342.. _i_fmul:
6343
6344'``fmul``' Instruction
6345^^^^^^^^^^^^^^^^^^^^^^
6346
6347Syntax:
6348"""""""
6349
6350::
6351
Tim Northover675a0962014-06-13 14:24:23 +00006352 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006353
6354Overview:
6355"""""""""
6356
6357The '``fmul``' instruction returns the product of its two operands.
6358
6359Arguments:
6360""""""""""
6361
6362The two arguments to the '``fmul``' instruction must be :ref:`floating
6363point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6364Both arguments must have identical types.
6365
6366Semantics:
6367""""""""""
6368
6369The value produced is the floating point product of the two operands.
6370This instruction can also take any number of :ref:`fast-math
6371flags <fastmath>`, which are optimization hints to enable otherwise
6372unsafe floating point optimizations:
6373
6374Example:
6375""""""""
6376
Renato Golin124f2592016-07-20 12:16:38 +00006377.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006378
Tim Northover675a0962014-06-13 14:24:23 +00006379 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006380
6381'``udiv``' Instruction
6382^^^^^^^^^^^^^^^^^^^^^^
6383
6384Syntax:
6385"""""""
6386
6387::
6388
Tim Northover675a0962014-06-13 14:24:23 +00006389 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6390 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006391
6392Overview:
6393"""""""""
6394
6395The '``udiv``' instruction returns the quotient of its two operands.
6396
6397Arguments:
6398""""""""""
6399
6400The two arguments to the '``udiv``' instruction must be
6401:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6402arguments must have identical types.
6403
6404Semantics:
6405""""""""""
6406
6407The value produced is the unsigned integer quotient of the two operands.
6408
6409Note that unsigned integer division and signed integer division are
6410distinct operations; for signed integer division, use '``sdiv``'.
6411
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006412Division by zero is undefined behavior. For vectors, if any element
6413of the divisor is zero, the operation has undefined behavior.
6414
Sean Silvab084af42012-12-07 10:36:55 +00006415
6416If the ``exact`` keyword is present, the result value of the ``udiv`` is
6417a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6418such, "((a udiv exact b) mul b) == a").
6419
6420Example:
6421""""""""
6422
Renato Golin124f2592016-07-20 12:16:38 +00006423.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006424
Tim Northover675a0962014-06-13 14:24:23 +00006425 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006426
6427'``sdiv``' Instruction
6428^^^^^^^^^^^^^^^^^^^^^^
6429
6430Syntax:
6431"""""""
6432
6433::
6434
Tim Northover675a0962014-06-13 14:24:23 +00006435 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6436 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006437
6438Overview:
6439"""""""""
6440
6441The '``sdiv``' instruction returns the quotient of its two operands.
6442
6443Arguments:
6444""""""""""
6445
6446The two arguments to the '``sdiv``' instruction must be
6447:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6448arguments must have identical types.
6449
6450Semantics:
6451""""""""""
6452
6453The value produced is the signed integer quotient of the two operands
6454rounded towards zero.
6455
6456Note that signed integer division and unsigned integer division are
6457distinct operations; for unsigned integer division, use '``udiv``'.
6458
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006459Division by zero is undefined behavior. For vectors, if any element
6460of the divisor is zero, the operation has undefined behavior.
6461Overflow also leads to undefined behavior; this is a rare case, but can
6462occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00006463
6464If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6465a :ref:`poison value <poisonvalues>` if the result would be rounded.
6466
6467Example:
6468""""""""
6469
Renato Golin124f2592016-07-20 12:16:38 +00006470.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006471
Tim Northover675a0962014-06-13 14:24:23 +00006472 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006473
6474.. _i_fdiv:
6475
6476'``fdiv``' Instruction
6477^^^^^^^^^^^^^^^^^^^^^^
6478
6479Syntax:
6480"""""""
6481
6482::
6483
Tim Northover675a0962014-06-13 14:24:23 +00006484 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006485
6486Overview:
6487"""""""""
6488
6489The '``fdiv``' instruction returns the quotient of its two operands.
6490
6491Arguments:
6492""""""""""
6493
6494The two arguments to the '``fdiv``' instruction must be :ref:`floating
6495point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6496Both arguments must have identical types.
6497
6498Semantics:
6499""""""""""
6500
6501The value produced is the floating point quotient of the two operands.
6502This instruction can also take any number of :ref:`fast-math
6503flags <fastmath>`, which are optimization hints to enable otherwise
6504unsafe floating point optimizations:
6505
6506Example:
6507""""""""
6508
Renato Golin124f2592016-07-20 12:16:38 +00006509.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006510
Tim Northover675a0962014-06-13 14:24:23 +00006511 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006512
6513'``urem``' Instruction
6514^^^^^^^^^^^^^^^^^^^^^^
6515
6516Syntax:
6517"""""""
6518
6519::
6520
Tim Northover675a0962014-06-13 14:24:23 +00006521 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006522
6523Overview:
6524"""""""""
6525
6526The '``urem``' instruction returns the remainder from the unsigned
6527division of its two arguments.
6528
6529Arguments:
6530""""""""""
6531
6532The two arguments to the '``urem``' instruction must be
6533:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6534arguments must have identical types.
6535
6536Semantics:
6537""""""""""
6538
6539This instruction returns the unsigned integer *remainder* of a division.
6540This instruction always performs an unsigned division to get the
6541remainder.
6542
6543Note that unsigned integer remainder and signed integer remainder are
6544distinct operations; for signed integer remainder, use '``srem``'.
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006545
6546Taking the remainder of a division by zero is undefined behavior.
6547For vectors, if any element of the divisor is zero, the operation has
6548undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006549
6550Example:
6551""""""""
6552
Renato Golin124f2592016-07-20 12:16:38 +00006553.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006554
Tim Northover675a0962014-06-13 14:24:23 +00006555 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006556
6557'``srem``' Instruction
6558^^^^^^^^^^^^^^^^^^^^^^
6559
6560Syntax:
6561"""""""
6562
6563::
6564
Tim Northover675a0962014-06-13 14:24:23 +00006565 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006566
6567Overview:
6568"""""""""
6569
6570The '``srem``' instruction returns the remainder from the signed
6571division of its two operands. This instruction can also take
6572:ref:`vector <t_vector>` versions of the values in which case the elements
6573must be integers.
6574
6575Arguments:
6576""""""""""
6577
6578The two arguments to the '``srem``' instruction must be
6579:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6580arguments must have identical types.
6581
6582Semantics:
6583""""""""""
6584
6585This instruction returns the *remainder* of a division (where the result
6586is either zero or has the same sign as the dividend, ``op1``), not the
6587*modulo* operator (where the result is either zero or has the same sign
6588as the divisor, ``op2``) of a value. For more information about the
6589difference, see `The Math
6590Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6591table of how this is implemented in various languages, please see
6592`Wikipedia: modulo
6593operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6594
6595Note that signed integer remainder and unsigned integer remainder are
6596distinct operations; for unsigned integer remainder, use '``urem``'.
6597
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006598Taking the remainder of a division by zero is undefined behavior.
6599For vectors, if any element of the divisor is zero, the operation has
6600undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006601Overflow also leads to undefined behavior; this is a rare case, but can
6602occur, for example, by taking the remainder of a 32-bit division of
6603-2147483648 by -1. (The remainder doesn't actually overflow, but this
6604rule lets srem be implemented using instructions that return both the
6605result of the division and the remainder.)
6606
6607Example:
6608""""""""
6609
Renato Golin124f2592016-07-20 12:16:38 +00006610.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006611
Tim Northover675a0962014-06-13 14:24:23 +00006612 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006613
6614.. _i_frem:
6615
6616'``frem``' Instruction
6617^^^^^^^^^^^^^^^^^^^^^^
6618
6619Syntax:
6620"""""""
6621
6622::
6623
Tim Northover675a0962014-06-13 14:24:23 +00006624 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006625
6626Overview:
6627"""""""""
6628
6629The '``frem``' instruction returns the remainder from the division of
6630its two operands.
6631
6632Arguments:
6633""""""""""
6634
6635The two arguments to the '``frem``' instruction must be :ref:`floating
6636point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6637Both arguments must have identical types.
6638
6639Semantics:
6640""""""""""
6641
6642This instruction returns the *remainder* of a division. The remainder
6643has the same sign as the dividend. This instruction can also take any
6644number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6645to enable otherwise unsafe floating point optimizations:
6646
6647Example:
6648""""""""
6649
Renato Golin124f2592016-07-20 12:16:38 +00006650.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006651
Tim Northover675a0962014-06-13 14:24:23 +00006652 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006653
6654.. _bitwiseops:
6655
6656Bitwise Binary Operations
6657-------------------------
6658
6659Bitwise binary operators are used to do various forms of bit-twiddling
6660in a program. They are generally very efficient instructions and can
6661commonly be strength reduced from other instructions. They require two
6662operands of the same type, execute an operation on them, and produce a
6663single value. The resulting value is the same type as its operands.
6664
6665'``shl``' Instruction
6666^^^^^^^^^^^^^^^^^^^^^
6667
6668Syntax:
6669"""""""
6670
6671::
6672
Tim Northover675a0962014-06-13 14:24:23 +00006673 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6674 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6675 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6676 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006677
6678Overview:
6679"""""""""
6680
6681The '``shl``' instruction returns the first operand shifted to the left
6682a specified number of bits.
6683
6684Arguments:
6685""""""""""
6686
6687Both arguments to the '``shl``' instruction must be the same
6688:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6689'``op2``' is treated as an unsigned value.
6690
6691Semantics:
6692""""""""""
6693
6694The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6695where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006696dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006697``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
6698If the arguments are vectors, each vector element of ``op1`` is shifted
6699by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006700
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006701If the ``nuw`` keyword is present, then the shift produces a poison
6702value if it shifts out any non-zero bits.
6703If the ``nsw`` keyword is present, then the shift produces a poison
6704value it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006705
6706Example:
6707""""""""
6708
Renato Golin124f2592016-07-20 12:16:38 +00006709.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006710
Tim Northover675a0962014-06-13 14:24:23 +00006711 <result> = shl i32 4, %var ; yields i32: 4 << %var
6712 <result> = shl i32 4, 2 ; yields i32: 16
6713 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006714 <result> = shl i32 1, 32 ; undefined
6715 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6716
6717'``lshr``' Instruction
6718^^^^^^^^^^^^^^^^^^^^^^
6719
6720Syntax:
6721"""""""
6722
6723::
6724
Tim Northover675a0962014-06-13 14:24:23 +00006725 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6726 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006727
6728Overview:
6729"""""""""
6730
6731The '``lshr``' instruction (logical shift right) returns the first
6732operand shifted to the right a specified number of bits with zero fill.
6733
6734Arguments:
6735""""""""""
6736
6737Both arguments to the '``lshr``' instruction must be the same
6738:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6739'``op2``' is treated as an unsigned value.
6740
6741Semantics:
6742""""""""""
6743
6744This instruction always performs a logical shift right operation. The
6745most significant bits of the result will be filled with zero bits after
6746the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006747than the number of bits in ``op1``, this instruction returns a :ref:`poison
6748value <poisonvalues>`. If the arguments are vectors, each vector element
6749of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006750
6751If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006752a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00006753
6754Example:
6755""""""""
6756
Renato Golin124f2592016-07-20 12:16:38 +00006757.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006758
Tim Northover675a0962014-06-13 14:24:23 +00006759 <result> = lshr i32 4, 1 ; yields i32:result = 2
6760 <result> = lshr i32 4, 2 ; yields i32:result = 1
6761 <result> = lshr i8 4, 3 ; yields i8:result = 0
6762 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006763 <result> = lshr i32 1, 32 ; undefined
6764 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6765
6766'``ashr``' Instruction
6767^^^^^^^^^^^^^^^^^^^^^^
6768
6769Syntax:
6770"""""""
6771
6772::
6773
Tim Northover675a0962014-06-13 14:24:23 +00006774 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6775 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006776
6777Overview:
6778"""""""""
6779
6780The '``ashr``' instruction (arithmetic shift right) returns the first
6781operand shifted to the right a specified number of bits with sign
6782extension.
6783
6784Arguments:
6785""""""""""
6786
6787Both arguments to the '``ashr``' instruction must be the same
6788:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6789'``op2``' is treated as an unsigned value.
6790
6791Semantics:
6792""""""""""
6793
6794This instruction always performs an arithmetic shift right operation,
6795The most significant bits of the result will be filled with the sign bit
6796of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006797than the number of bits in ``op1``, this instruction returns a :ref:`poison
6798value <poisonvalues>`. If the arguments are vectors, each vector element
6799of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006800
6801If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006802a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00006803
6804Example:
6805""""""""
6806
Renato Golin124f2592016-07-20 12:16:38 +00006807.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006808
Tim Northover675a0962014-06-13 14:24:23 +00006809 <result> = ashr i32 4, 1 ; yields i32:result = 2
6810 <result> = ashr i32 4, 2 ; yields i32:result = 1
6811 <result> = ashr i8 4, 3 ; yields i8:result = 0
6812 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006813 <result> = ashr i32 1, 32 ; undefined
6814 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6815
6816'``and``' Instruction
6817^^^^^^^^^^^^^^^^^^^^^
6818
6819Syntax:
6820"""""""
6821
6822::
6823
Tim Northover675a0962014-06-13 14:24:23 +00006824 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006825
6826Overview:
6827"""""""""
6828
6829The '``and``' instruction returns the bitwise logical and of its two
6830operands.
6831
6832Arguments:
6833""""""""""
6834
6835The two arguments to the '``and``' instruction must be
6836:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6837arguments must have identical types.
6838
6839Semantics:
6840""""""""""
6841
6842The truth table used for the '``and``' instruction is:
6843
6844+-----+-----+-----+
6845| In0 | In1 | Out |
6846+-----+-----+-----+
6847| 0 | 0 | 0 |
6848+-----+-----+-----+
6849| 0 | 1 | 0 |
6850+-----+-----+-----+
6851| 1 | 0 | 0 |
6852+-----+-----+-----+
6853| 1 | 1 | 1 |
6854+-----+-----+-----+
6855
6856Example:
6857""""""""
6858
Renato Golin124f2592016-07-20 12:16:38 +00006859.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006860
Tim Northover675a0962014-06-13 14:24:23 +00006861 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6862 <result> = and i32 15, 40 ; yields i32:result = 8
6863 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006864
6865'``or``' Instruction
6866^^^^^^^^^^^^^^^^^^^^
6867
6868Syntax:
6869"""""""
6870
6871::
6872
Tim Northover675a0962014-06-13 14:24:23 +00006873 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006874
6875Overview:
6876"""""""""
6877
6878The '``or``' instruction returns the bitwise logical inclusive or of its
6879two operands.
6880
6881Arguments:
6882""""""""""
6883
6884The two arguments to the '``or``' instruction must be
6885:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6886arguments must have identical types.
6887
6888Semantics:
6889""""""""""
6890
6891The truth table used for the '``or``' instruction is:
6892
6893+-----+-----+-----+
6894| In0 | In1 | Out |
6895+-----+-----+-----+
6896| 0 | 0 | 0 |
6897+-----+-----+-----+
6898| 0 | 1 | 1 |
6899+-----+-----+-----+
6900| 1 | 0 | 1 |
6901+-----+-----+-----+
6902| 1 | 1 | 1 |
6903+-----+-----+-----+
6904
6905Example:
6906""""""""
6907
6908::
6909
Tim Northover675a0962014-06-13 14:24:23 +00006910 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6911 <result> = or i32 15, 40 ; yields i32:result = 47
6912 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006913
6914'``xor``' Instruction
6915^^^^^^^^^^^^^^^^^^^^^
6916
6917Syntax:
6918"""""""
6919
6920::
6921
Tim Northover675a0962014-06-13 14:24:23 +00006922 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006923
6924Overview:
6925"""""""""
6926
6927The '``xor``' instruction returns the bitwise logical exclusive or of
6928its two operands. The ``xor`` is used to implement the "one's
6929complement" operation, which is the "~" operator in C.
6930
6931Arguments:
6932""""""""""
6933
6934The two arguments to the '``xor``' instruction must be
6935:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6936arguments must have identical types.
6937
6938Semantics:
6939""""""""""
6940
6941The truth table used for the '``xor``' instruction is:
6942
6943+-----+-----+-----+
6944| In0 | In1 | Out |
6945+-----+-----+-----+
6946| 0 | 0 | 0 |
6947+-----+-----+-----+
6948| 0 | 1 | 1 |
6949+-----+-----+-----+
6950| 1 | 0 | 1 |
6951+-----+-----+-----+
6952| 1 | 1 | 0 |
6953+-----+-----+-----+
6954
6955Example:
6956""""""""
6957
Renato Golin124f2592016-07-20 12:16:38 +00006958.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006959
Tim Northover675a0962014-06-13 14:24:23 +00006960 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6961 <result> = xor i32 15, 40 ; yields i32:result = 39
6962 <result> = xor i32 4, 8 ; yields i32:result = 12
6963 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006964
6965Vector Operations
6966-----------------
6967
6968LLVM supports several instructions to represent vector operations in a
6969target-independent manner. These instructions cover the element-access
6970and vector-specific operations needed to process vectors effectively.
6971While LLVM does directly support these vector operations, many
6972sophisticated algorithms will want to use target-specific intrinsics to
6973take full advantage of a specific target.
6974
6975.. _i_extractelement:
6976
6977'``extractelement``' Instruction
6978^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6979
6980Syntax:
6981"""""""
6982
6983::
6984
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006985 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006986
6987Overview:
6988"""""""""
6989
6990The '``extractelement``' instruction extracts a single scalar element
6991from a vector at a specified index.
6992
6993Arguments:
6994""""""""""
6995
6996The first operand of an '``extractelement``' instruction is a value of
6997:ref:`vector <t_vector>` type. The second operand is an index indicating
6998the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006999variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007000
7001Semantics:
7002""""""""""
7003
7004The result is a scalar of the same type as the element type of ``val``.
7005Its value is the value at position ``idx`` of ``val``. If ``idx``
7006exceeds the length of ``val``, the results are undefined.
7007
7008Example:
7009""""""""
7010
Renato Golin124f2592016-07-20 12:16:38 +00007011.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007012
7013 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7014
7015.. _i_insertelement:
7016
7017'``insertelement``' Instruction
7018^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7019
7020Syntax:
7021"""""""
7022
7023::
7024
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007025 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007026
7027Overview:
7028"""""""""
7029
7030The '``insertelement``' instruction inserts a scalar element into a
7031vector at a specified index.
7032
7033Arguments:
7034""""""""""
7035
7036The first operand of an '``insertelement``' instruction is a value of
7037:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7038type must equal the element type of the first operand. The third operand
7039is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007040index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007041
7042Semantics:
7043""""""""""
7044
7045The result is a vector of the same type as ``val``. Its element values
7046are those of ``val`` except at position ``idx``, where it gets the value
7047``elt``. If ``idx`` exceeds the length of ``val``, the results are
7048undefined.
7049
7050Example:
7051""""""""
7052
Renato Golin124f2592016-07-20 12:16:38 +00007053.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007054
7055 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7056
7057.. _i_shufflevector:
7058
7059'``shufflevector``' Instruction
7060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7061
7062Syntax:
7063"""""""
7064
7065::
7066
7067 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7068
7069Overview:
7070"""""""""
7071
7072The '``shufflevector``' instruction constructs a permutation of elements
7073from two input vectors, returning a vector with the same element type as
7074the input and length that is the same as the shuffle mask.
7075
7076Arguments:
7077""""""""""
7078
7079The first two operands of a '``shufflevector``' instruction are vectors
7080with the same type. The third argument is a shuffle mask whose element
7081type is always 'i32'. The result of the instruction is a vector whose
7082length is the same as the shuffle mask and whose element type is the
7083same as the element type of the first two operands.
7084
7085The shuffle mask operand is required to be a constant vector with either
7086constant integer or undef values.
7087
7088Semantics:
7089""""""""""
7090
7091The elements of the two input vectors are numbered from left to right
7092across both of the vectors. The shuffle mask operand specifies, for each
7093element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007094result element gets. If the shuffle mask is undef, the result vector is
7095undef. If any element of the mask operand is undef, that element of the
7096result is undef. If the shuffle mask selects an undef element from one
7097of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007098
7099Example:
7100""""""""
7101
Renato Golin124f2592016-07-20 12:16:38 +00007102.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007103
7104 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7105 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7106 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7107 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7108 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7109 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7110 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7111 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7112
7113Aggregate Operations
7114--------------------
7115
7116LLVM supports several instructions for working with
7117:ref:`aggregate <t_aggregate>` values.
7118
7119.. _i_extractvalue:
7120
7121'``extractvalue``' Instruction
7122^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7123
7124Syntax:
7125"""""""
7126
7127::
7128
7129 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7130
7131Overview:
7132"""""""""
7133
7134The '``extractvalue``' instruction extracts the value of a member field
7135from an :ref:`aggregate <t_aggregate>` value.
7136
7137Arguments:
7138""""""""""
7139
7140The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007141:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007142constant indices to specify which value to extract in a similar manner
7143as indices in a '``getelementptr``' instruction.
7144
7145The major differences to ``getelementptr`` indexing are:
7146
7147- Since the value being indexed is not a pointer, the first index is
7148 omitted and assumed to be zero.
7149- At least one index must be specified.
7150- Not only struct indices but also array indices must be in bounds.
7151
7152Semantics:
7153""""""""""
7154
7155The result is the value at the position in the aggregate specified by
7156the index operands.
7157
7158Example:
7159""""""""
7160
Renato Golin124f2592016-07-20 12:16:38 +00007161.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007162
7163 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7164
7165.. _i_insertvalue:
7166
7167'``insertvalue``' Instruction
7168^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7169
7170Syntax:
7171"""""""
7172
7173::
7174
7175 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7176
7177Overview:
7178"""""""""
7179
7180The '``insertvalue``' instruction inserts a value into a member field in
7181an :ref:`aggregate <t_aggregate>` value.
7182
7183Arguments:
7184""""""""""
7185
7186The first operand of an '``insertvalue``' instruction is a value of
7187:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7188a first-class value to insert. The following operands are constant
7189indices indicating the position at which to insert the value in a
7190similar manner as indices in a '``extractvalue``' instruction. The value
7191to insert must have the same type as the value identified by the
7192indices.
7193
7194Semantics:
7195""""""""""
7196
7197The result is an aggregate of the same type as ``val``. Its value is
7198that of ``val`` except that the value at the position specified by the
7199indices is that of ``elt``.
7200
7201Example:
7202""""""""
7203
7204.. code-block:: llvm
7205
7206 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7207 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007208 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007209
7210.. _memoryops:
7211
7212Memory Access and Addressing Operations
7213---------------------------------------
7214
7215A key design point of an SSA-based representation is how it represents
7216memory. In LLVM, no memory locations are in SSA form, which makes things
7217very simple. This section describes how to read, write, and allocate
7218memory in LLVM.
7219
7220.. _i_alloca:
7221
7222'``alloca``' Instruction
7223^^^^^^^^^^^^^^^^^^^^^^^^
7224
7225Syntax:
7226"""""""
7227
7228::
7229
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007230 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007231
7232Overview:
7233"""""""""
7234
7235The '``alloca``' instruction allocates memory on the stack frame of the
7236currently executing function, to be automatically released when this
7237function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007238address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007239
7240Arguments:
7241""""""""""
7242
7243The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7244bytes of memory on the runtime stack, returning a pointer of the
7245appropriate type to the program. If "NumElements" is specified, it is
7246the number of elements allocated, otherwise "NumElements" is defaulted
7247to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007248allocation is guaranteed to be aligned to at least that boundary. The
7249alignment may not be greater than ``1 << 29``. If not specified, or if
7250zero, the target can choose to align the allocation on any convenient
7251boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007252
7253'``type``' may be any sized type.
7254
7255Semantics:
7256""""""""""
7257
7258Memory is allocated; a pointer is returned. The operation is undefined
7259if there is insufficient stack space for the allocation. '``alloca``'d
7260memory is automatically released when the function returns. The
7261'``alloca``' instruction is commonly used to represent automatic
7262variables that must have an address available. When the function returns
7263(either with the ``ret`` or ``resume`` instructions), the memory is
7264reclaimed. Allocating zero bytes is legal, but the result is undefined.
7265The order in which memory is allocated (ie., which way the stack grows)
7266is not specified.
7267
7268Example:
7269""""""""
7270
7271.. code-block:: llvm
7272
Tim Northover675a0962014-06-13 14:24:23 +00007273 %ptr = alloca i32 ; yields i32*:ptr
7274 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7275 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7276 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007277
7278.. _i_load:
7279
7280'``load``' Instruction
7281^^^^^^^^^^^^^^^^^^^^^^
7282
7283Syntax:
7284"""""""
7285
7286::
7287
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007288 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007289 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007290 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007291 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007292 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007293
7294Overview:
7295"""""""""
7296
7297The '``load``' instruction is used to read from memory.
7298
7299Arguments:
7300""""""""""
7301
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007302The argument to the ``load`` instruction specifies the memory address from which
7303to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7304known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7305the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7306modify the number or order of execution of this ``load`` with other
7307:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007308
JF Bastiend1fb5852015-12-17 22:09:19 +00007309If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7310<ordering>` and optional ``singlethread`` argument. The ``release`` and
7311``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7312produce :ref:`defined <memmodel>` results when they may see multiple atomic
7313stores. The type of the pointee must be an integer, pointer, or floating-point
7314type whose bit width is a power of two greater than or equal to eight and less
7315than or equal to a target-specific size limit. ``align`` must be explicitly
7316specified on atomic loads, and the load has undefined behavior if the alignment
7317is not set to a value which is at least the size in bytes of the
7318pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007319
7320The optional constant ``align`` argument specifies the alignment of the
7321operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007322or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007323alignment for the target. It is the responsibility of the code emitter
7324to ensure that the alignment information is correct. Overestimating the
7325alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007326may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007327maximum possible alignment is ``1 << 29``. An alignment value higher
7328than the size of the loaded type implies memory up to the alignment
7329value bytes can be safely loaded without trapping in the default
7330address space. Access of the high bytes can interfere with debugging
7331tools, so should not be accessed if the function has the
7332``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007333
7334The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007335metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007336``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007337metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007338that this load is not expected to be reused in the cache. The code
7339generator may select special instructions to save cache bandwidth, such
7340as the ``MOVNT`` instruction on x86.
7341
7342The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007343metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007344entries. If a load instruction tagged with the ``!invariant.load``
7345metadata is executed, the optimizer may assume the memory location
7346referenced by the load contains the same value at all points in the
7347program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007348
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007349The optional ``!invariant.group`` metadata must reference a single metadata name
7350 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7351
Philip Reamescdb72f32014-10-20 22:40:55 +00007352The optional ``!nonnull`` metadata must reference a single
7353metadata name ``<index>`` corresponding to a metadata node with no
7354entries. The existence of the ``!nonnull`` metadata on the
7355instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007356never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007357on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007358to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007359
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007360The optional ``!dereferenceable`` metadata must reference a single metadata
7361name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007362entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007363tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007364The number of bytes known to be dereferenceable is specified by the integer
7365value in the metadata node. This is analogous to the ''dereferenceable''
7366attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007367to loads of a pointer type.
7368
7369The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007370metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7371``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007372instruction tells the optimizer that the value loaded is known to be either
7373dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007374The number of bytes known to be dereferenceable is specified by the integer
7375value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7376attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007377to loads of a pointer type.
7378
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007379The optional ``!align`` metadata must reference a single metadata name
7380``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7381The existence of the ``!align`` metadata on the instruction tells the
7382optimizer that the value loaded is known to be aligned to a boundary specified
7383by the integer value in the metadata node. The alignment must be a power of 2.
7384This is analogous to the ''align'' attribute on parameters and return values.
7385This metadata can only be applied to loads of a pointer type.
7386
Sean Silvab084af42012-12-07 10:36:55 +00007387Semantics:
7388""""""""""
7389
7390The location of memory pointed to is loaded. If the value being loaded
7391is of scalar type then the number of bytes read does not exceed the
7392minimum number of bytes needed to hold all bits of the type. For
7393example, loading an ``i24`` reads at most three bytes. When loading a
7394value of a type like ``i20`` with a size that is not an integral number
7395of bytes, the result is undefined if the value was not originally
7396written using a store of the same type.
7397
7398Examples:
7399"""""""""
7400
7401.. code-block:: llvm
7402
Tim Northover675a0962014-06-13 14:24:23 +00007403 %ptr = alloca i32 ; yields i32*:ptr
7404 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007405 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007406
7407.. _i_store:
7408
7409'``store``' Instruction
7410^^^^^^^^^^^^^^^^^^^^^^^
7411
7412Syntax:
7413"""""""
7414
7415::
7416
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007417 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7418 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007419
7420Overview:
7421"""""""""
7422
7423The '``store``' instruction is used to write to memory.
7424
7425Arguments:
7426""""""""""
7427
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007428There are two arguments to the ``store`` instruction: a value to store and an
7429address at which to store it. The type of the ``<pointer>`` operand must be a
7430pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7431operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7432allowed to modify the number or order of execution of this ``store`` with other
7433:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7434<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7435structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007436
JF Bastiend1fb5852015-12-17 22:09:19 +00007437If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7438<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7439``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7440produce :ref:`defined <memmodel>` results when they may see multiple atomic
7441stores. The type of the pointee must be an integer, pointer, or floating-point
7442type whose bit width is a power of two greater than or equal to eight and less
7443than or equal to a target-specific size limit. ``align`` must be explicitly
7444specified on atomic stores, and the store has undefined behavior if the
7445alignment is not set to a value which is at least the size in bytes of the
7446pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007447
Eli Benderskyca380842013-04-17 17:17:20 +00007448The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007449operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007450or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007451alignment for the target. It is the responsibility of the code emitter
7452to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007453alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007454alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007455safe. The maximum possible alignment is ``1 << 29``. An alignment
7456value higher than the size of the stored type implies memory up to the
7457alignment value bytes can be stored to without trapping in the default
7458address space. Storing to the higher bytes however may result in data
7459races if another thread can access the same address. Introducing a
7460data race is not allowed. Storing to the extra bytes is not allowed
7461even in situations where a data race is known to not exist if the
7462function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007463
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007464The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007465name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007466value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007467tells the optimizer and code generator that this load is not expected to
7468be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007469instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007470x86.
7471
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007472The optional ``!invariant.group`` metadata must reference a
7473single metadata name ``<index>``. See ``invariant.group`` metadata.
7474
Sean Silvab084af42012-12-07 10:36:55 +00007475Semantics:
7476""""""""""
7477
Eli Benderskyca380842013-04-17 17:17:20 +00007478The contents of memory are updated to contain ``<value>`` at the
7479location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007480of scalar type then the number of bytes written does not exceed the
7481minimum number of bytes needed to hold all bits of the type. For
7482example, storing an ``i24`` writes at most three bytes. When writing a
7483value of a type like ``i20`` with a size that is not an integral number
7484of bytes, it is unspecified what happens to the extra bits that do not
7485belong to the type, but they will typically be overwritten.
7486
7487Example:
7488""""""""
7489
7490.. code-block:: llvm
7491
Tim Northover675a0962014-06-13 14:24:23 +00007492 %ptr = alloca i32 ; yields i32*:ptr
7493 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007494 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007495
7496.. _i_fence:
7497
7498'``fence``' Instruction
7499^^^^^^^^^^^^^^^^^^^^^^^
7500
7501Syntax:
7502"""""""
7503
7504::
7505
Tim Northover675a0962014-06-13 14:24:23 +00007506 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007507
7508Overview:
7509"""""""""
7510
7511The '``fence``' instruction is used to introduce happens-before edges
7512between operations.
7513
7514Arguments:
7515""""""""""
7516
7517'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7518defines what *synchronizes-with* edges they add. They can only be given
7519``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7520
7521Semantics:
7522""""""""""
7523
7524A fence A which has (at least) ``release`` ordering semantics
7525*synchronizes with* a fence B with (at least) ``acquire`` ordering
7526semantics if and only if there exist atomic operations X and Y, both
7527operating on some atomic object M, such that A is sequenced before X, X
7528modifies M (either directly or through some side effect of a sequence
7529headed by X), Y is sequenced before B, and Y observes M. This provides a
7530*happens-before* dependency between A and B. Rather than an explicit
7531``fence``, one (but not both) of the atomic operations X or Y might
7532provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7533still *synchronize-with* the explicit ``fence`` and establish the
7534*happens-before* edge.
7535
7536A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7537``acquire`` and ``release`` semantics specified above, participates in
7538the global program order of other ``seq_cst`` operations and/or fences.
7539
7540The optional ":ref:`singlethread <singlethread>`" argument specifies
7541that the fence only synchronizes with other fences in the same thread.
7542(This is useful for interacting with signal handlers.)
7543
7544Example:
7545""""""""
7546
7547.. code-block:: llvm
7548
Tim Northover675a0962014-06-13 14:24:23 +00007549 fence acquire ; yields void
7550 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007551
7552.. _i_cmpxchg:
7553
7554'``cmpxchg``' Instruction
7555^^^^^^^^^^^^^^^^^^^^^^^^^
7556
7557Syntax:
7558"""""""
7559
7560::
7561
Tim Northover675a0962014-06-13 14:24:23 +00007562 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007563
7564Overview:
7565"""""""""
7566
7567The '``cmpxchg``' instruction is used to atomically modify memory. It
7568loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007569equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007570
7571Arguments:
7572""""""""""
7573
7574There are three arguments to the '``cmpxchg``' instruction: an address
7575to operate on, a value to compare to the value currently be at that
7576address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007577are equal. The type of '<cmp>' must be an integer or pointer type whose
7578bit width is a power of two greater than or equal to eight and less
7579than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7580have the same type, and the type of '<pointer>' must be a pointer to
7581that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7582optimizer is not allowed to modify the number or order of execution of
7583this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007584
Tim Northovere94a5182014-03-11 10:48:52 +00007585The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007586``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7587must be at least ``monotonic``, the ordering constraint on failure must be no
7588stronger than that on success, and the failure ordering cannot be either
7589``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007590
7591The optional "``singlethread``" argument declares that the ``cmpxchg``
7592is only atomic with respect to code (usually signal handlers) running in
7593the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7594respect to all other code in the system.
7595
7596The pointer passed into cmpxchg must have alignment greater than or
7597equal to the size in memory of the operand.
7598
7599Semantics:
7600""""""""""
7601
Tim Northover420a2162014-06-13 14:24:07 +00007602The contents of memory at the location specified by the '``<pointer>``' operand
7603is read and compared to '``<cmp>``'; if the read value is the equal, the
7604'``<new>``' is written. The original value at the location is returned, together
7605with a flag indicating success (true) or failure (false).
7606
7607If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7608permitted: the operation may not write ``<new>`` even if the comparison
7609matched.
7610
7611If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7612if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007613
Tim Northovere94a5182014-03-11 10:48:52 +00007614A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7615identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7616load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007617
7618Example:
7619""""""""
7620
7621.. code-block:: llvm
7622
7623 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007624 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007625 br label %loop
7626
7627 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007628 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007629 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007630 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007631 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7632 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007633 br i1 %success, label %done, label %loop
7634
7635 done:
7636 ...
7637
7638.. _i_atomicrmw:
7639
7640'``atomicrmw``' Instruction
7641^^^^^^^^^^^^^^^^^^^^^^^^^^^
7642
7643Syntax:
7644"""""""
7645
7646::
7647
Tim Northover675a0962014-06-13 14:24:23 +00007648 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007649
7650Overview:
7651"""""""""
7652
7653The '``atomicrmw``' instruction is used to atomically modify memory.
7654
7655Arguments:
7656""""""""""
7657
7658There are three arguments to the '``atomicrmw``' instruction: an
7659operation to apply, an address whose value to modify, an argument to the
7660operation. The operation must be one of the following keywords:
7661
7662- xchg
7663- add
7664- sub
7665- and
7666- nand
7667- or
7668- xor
7669- max
7670- min
7671- umax
7672- umin
7673
7674The type of '<value>' must be an integer type whose bit width is a power
7675of two greater than or equal to eight and less than or equal to a
7676target-specific size limit. The type of the '``<pointer>``' operand must
7677be a pointer to that type. If the ``atomicrmw`` is marked as
7678``volatile``, then the optimizer is not allowed to modify the number or
7679order of execution of this ``atomicrmw`` with other :ref:`volatile
7680operations <volatile>`.
7681
7682Semantics:
7683""""""""""
7684
7685The contents of memory at the location specified by the '``<pointer>``'
7686operand are atomically read, modified, and written back. The original
7687value at the location is returned. The modification is specified by the
7688operation argument:
7689
7690- xchg: ``*ptr = val``
7691- add: ``*ptr = *ptr + val``
7692- sub: ``*ptr = *ptr - val``
7693- and: ``*ptr = *ptr & val``
7694- nand: ``*ptr = ~(*ptr & val)``
7695- or: ``*ptr = *ptr | val``
7696- xor: ``*ptr = *ptr ^ val``
7697- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7698- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7699- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7700 comparison)
7701- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7702 comparison)
7703
7704Example:
7705""""""""
7706
7707.. code-block:: llvm
7708
Tim Northover675a0962014-06-13 14:24:23 +00007709 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007710
7711.. _i_getelementptr:
7712
7713'``getelementptr``' Instruction
7714^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7715
7716Syntax:
7717"""""""
7718
7719::
7720
Peter Collingbourned93620b2016-11-10 22:34:55 +00007721 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7722 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7723 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007724
7725Overview:
7726"""""""""
7727
7728The '``getelementptr``' instruction is used to get the address of a
7729subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007730address calculation only and does not access memory. The instruction can also
7731be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007732
7733Arguments:
7734""""""""""
7735
David Blaikie16a97eb2015-03-04 22:02:58 +00007736The first argument is always a type used as the basis for the calculations.
7737The second argument is always a pointer or a vector of pointers, and is the
7738base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007739that indicate which of the elements of the aggregate object are indexed.
7740The interpretation of each index is dependent on the type being indexed
7741into. The first index always indexes the pointer value given as the
7742first argument, the second index indexes a value of the type pointed to
7743(not necessarily the value directly pointed to, since the first index
7744can be non-zero), etc. The first type indexed into must be a pointer
7745value, subsequent types can be arrays, vectors, and structs. Note that
7746subsequent types being indexed into can never be pointers, since that
7747would require loading the pointer before continuing calculation.
7748
7749The type of each index argument depends on the type it is indexing into.
7750When indexing into a (optionally packed) structure, only ``i32`` integer
7751**constants** are allowed (when using a vector of indices they must all
7752be the **same** ``i32`` integer constant). When indexing into an array,
7753pointer or vector, integers of any width are allowed, and they are not
7754required to be constant. These integers are treated as signed values
7755where relevant.
7756
7757For example, let's consider a C code fragment and how it gets compiled
7758to LLVM:
7759
7760.. code-block:: c
7761
7762 struct RT {
7763 char A;
7764 int B[10][20];
7765 char C;
7766 };
7767 struct ST {
7768 int X;
7769 double Y;
7770 struct RT Z;
7771 };
7772
7773 int *foo(struct ST *s) {
7774 return &s[1].Z.B[5][13];
7775 }
7776
7777The LLVM code generated by Clang is:
7778
7779.. code-block:: llvm
7780
7781 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7782 %struct.ST = type { i32, double, %struct.RT }
7783
7784 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7785 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007786 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007787 ret i32* %arrayidx
7788 }
7789
7790Semantics:
7791""""""""""
7792
7793In the example above, the first index is indexing into the
7794'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7795= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7796indexes into the third element of the structure, yielding a
7797'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7798structure. The third index indexes into the second element of the
7799structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7800dimensions of the array are subscripted into, yielding an '``i32``'
7801type. The '``getelementptr``' instruction returns a pointer to this
7802element, thus computing a value of '``i32*``' type.
7803
7804Note that it is perfectly legal to index partially through a structure,
7805returning a pointer to an inner element. Because of this, the LLVM code
7806for the given testcase is equivalent to:
7807
7808.. code-block:: llvm
7809
7810 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007811 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7812 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7813 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7814 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7815 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007816 ret i32* %t5
7817 }
7818
7819If the ``inbounds`` keyword is present, the result value of the
7820``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7821pointer is not an *in bounds* address of an allocated object, or if any
7822of the addresses that would be formed by successive addition of the
7823offsets implied by the indices to the base address with infinitely
7824precise signed arithmetic are not an *in bounds* address of that
7825allocated object. The *in bounds* addresses for an allocated object are
7826all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00007827past the end. The only *in bounds* address for a null pointer in the
7828default address-space is the null pointer itself. In cases where the
7829base is a vector of pointers the ``inbounds`` keyword applies to each
7830of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00007831
7832If the ``inbounds`` keyword is not present, the offsets are added to the
7833base address with silently-wrapping two's complement arithmetic. If the
7834offsets have a different width from the pointer, they are sign-extended
7835or truncated to the width of the pointer. The result value of the
7836``getelementptr`` may be outside the object pointed to by the base
7837pointer. The result value may not necessarily be used to access memory
7838though, even if it happens to point into allocated storage. See the
7839:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7840information.
7841
Peter Collingbourned93620b2016-11-10 22:34:55 +00007842If the ``inrange`` keyword is present before any index, loading from or
7843storing to any pointer derived from the ``getelementptr`` has undefined
7844behavior if the load or store would access memory outside of the bounds of
7845the element selected by the index marked as ``inrange``. The result of a
7846pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7847involving memory) involving a pointer derived from a ``getelementptr`` with
7848the ``inrange`` keyword is undefined, with the exception of comparisons
7849in the case where both operands are in the range of the element selected
7850by the ``inrange`` keyword, inclusive of the address one past the end of
7851that element. Note that the ``inrange`` keyword is currently only allowed
7852in constant ``getelementptr`` expressions.
7853
Sean Silvab084af42012-12-07 10:36:55 +00007854The getelementptr instruction is often confusing. For some more insight
7855into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7856
7857Example:
7858""""""""
7859
7860.. code-block:: llvm
7861
7862 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007863 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007864 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007865 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007866 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007867 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007868 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007869 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007870
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007871Vector of pointers:
7872"""""""""""""""""""
7873
7874The ``getelementptr`` returns a vector of pointers, instead of a single address,
7875when one or more of its arguments is a vector. In such cases, all vector
7876arguments should have the same number of elements, and every scalar argument
7877will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007878
7879.. code-block:: llvm
7880
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007881 ; All arguments are vectors:
7882 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7883 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007884
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007885 ; Add the same scalar offset to each pointer of a vector:
7886 ; A[i] = ptrs[i] + offset*sizeof(i8)
7887 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007888
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007889 ; Add distinct offsets to the same pointer:
7890 ; A[i] = ptr + offsets[i]*sizeof(i8)
7891 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007892
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007893 ; In all cases described above the type of the result is <4 x i8*>
7894
7895The two following instructions are equivalent:
7896
7897.. code-block:: llvm
7898
7899 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7900 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7901 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7902 <4 x i32> %ind4,
7903 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007904
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007905 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7906 i32 2, i32 1, <4 x i32> %ind4, i64 13
7907
7908Let's look at the C code, where the vector version of ``getelementptr``
7909makes sense:
7910
7911.. code-block:: c
7912
7913 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00007914 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007915 for (int i = 0; i < size; ++i) {
7916 A[i] = B[C[i]];
7917 }
7918
7919.. code-block:: llvm
7920
7921 ; get pointers for 8 elements from array B
7922 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7923 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00007924 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007925 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007926
7927Conversion Operations
7928---------------------
7929
7930The instructions in this category are the conversion instructions
7931(casting) which all take a single operand and a type. They perform
7932various bit conversions on the operand.
7933
7934'``trunc .. to``' Instruction
7935^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7936
7937Syntax:
7938"""""""
7939
7940::
7941
7942 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7943
7944Overview:
7945"""""""""
7946
7947The '``trunc``' instruction truncates its operand to the type ``ty2``.
7948
7949Arguments:
7950""""""""""
7951
7952The '``trunc``' instruction takes a value to trunc, and a type to trunc
7953it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7954of the same number of integers. The bit size of the ``value`` must be
7955larger than the bit size of the destination type, ``ty2``. Equal sized
7956types are not allowed.
7957
7958Semantics:
7959""""""""""
7960
7961The '``trunc``' instruction truncates the high order bits in ``value``
7962and converts the remaining bits to ``ty2``. Since the source size must
7963be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7964It will always truncate bits.
7965
7966Example:
7967""""""""
7968
7969.. code-block:: llvm
7970
7971 %X = trunc i32 257 to i8 ; yields i8:1
7972 %Y = trunc i32 123 to i1 ; yields i1:true
7973 %Z = trunc i32 122 to i1 ; yields i1:false
7974 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7975
7976'``zext .. to``' Instruction
7977^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7978
7979Syntax:
7980"""""""
7981
7982::
7983
7984 <result> = zext <ty> <value> to <ty2> ; yields ty2
7985
7986Overview:
7987"""""""""
7988
7989The '``zext``' instruction zero extends its operand to type ``ty2``.
7990
7991Arguments:
7992""""""""""
7993
7994The '``zext``' instruction takes a value to cast, and a type to cast it
7995to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7996the same number of integers. The bit size of the ``value`` must be
7997smaller than the bit size of the destination type, ``ty2``.
7998
7999Semantics:
8000""""""""""
8001
8002The ``zext`` fills the high order bits of the ``value`` with zero bits
8003until it reaches the size of the destination type, ``ty2``.
8004
8005When zero extending from i1, the result will always be either 0 or 1.
8006
8007Example:
8008""""""""
8009
8010.. code-block:: llvm
8011
8012 %X = zext i32 257 to i64 ; yields i64:257
8013 %Y = zext i1 true to i32 ; yields i32:1
8014 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8015
8016'``sext .. to``' Instruction
8017^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8018
8019Syntax:
8020"""""""
8021
8022::
8023
8024 <result> = sext <ty> <value> to <ty2> ; yields ty2
8025
8026Overview:
8027"""""""""
8028
8029The '``sext``' sign extends ``value`` to the type ``ty2``.
8030
8031Arguments:
8032""""""""""
8033
8034The '``sext``' instruction takes a value to cast, and a type to cast it
8035to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8036the same number of integers. The bit size of the ``value`` must be
8037smaller than the bit size of the destination type, ``ty2``.
8038
8039Semantics:
8040""""""""""
8041
8042The '``sext``' instruction performs a sign extension by copying the sign
8043bit (highest order bit) of the ``value`` until it reaches the bit size
8044of the type ``ty2``.
8045
8046When sign extending from i1, the extension always results in -1 or 0.
8047
8048Example:
8049""""""""
8050
8051.. code-block:: llvm
8052
8053 %X = sext i8 -1 to i16 ; yields i16 :65535
8054 %Y = sext i1 true to i32 ; yields i32:-1
8055 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8056
8057'``fptrunc .. to``' Instruction
8058^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8059
8060Syntax:
8061"""""""
8062
8063::
8064
8065 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8066
8067Overview:
8068"""""""""
8069
8070The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8071
8072Arguments:
8073""""""""""
8074
8075The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
8076value to cast and a :ref:`floating point <t_floating>` type to cast it to.
8077The size of ``value`` must be larger than the size of ``ty2``. This
8078implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8079
8080Semantics:
8081""""""""""
8082
Dan Liew50456fb2015-09-03 18:43:56 +00008083The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00008084:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00008085point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
8086destination type, ``ty2``, then the results are undefined. If the cast produces
8087an inexact result, how rounding is performed (e.g. truncation, also known as
8088round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008089
8090Example:
8091""""""""
8092
8093.. code-block:: llvm
8094
8095 %X = fptrunc double 123.0 to float ; yields float:123.0
8096 %Y = fptrunc double 1.0E+300 to float ; yields undefined
8097
8098'``fpext .. to``' Instruction
8099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8100
8101Syntax:
8102"""""""
8103
8104::
8105
8106 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8107
8108Overview:
8109"""""""""
8110
8111The '``fpext``' extends a floating point ``value`` to a larger floating
8112point value.
8113
8114Arguments:
8115""""""""""
8116
8117The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
8118``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
8119to. The source type must be smaller than the destination type.
8120
8121Semantics:
8122""""""""""
8123
8124The '``fpext``' instruction extends the ``value`` from a smaller
8125:ref:`floating point <t_floating>` type to a larger :ref:`floating
8126point <t_floating>` type. The ``fpext`` cannot be used to make a
8127*no-op cast* because it always changes bits. Use ``bitcast`` to make a
8128*no-op cast* for a floating point cast.
8129
8130Example:
8131""""""""
8132
8133.. code-block:: llvm
8134
8135 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8136 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8137
8138'``fptoui .. to``' Instruction
8139^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8140
8141Syntax:
8142"""""""
8143
8144::
8145
8146 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8147
8148Overview:
8149"""""""""
8150
8151The '``fptoui``' converts a floating point ``value`` to its unsigned
8152integer equivalent of type ``ty2``.
8153
8154Arguments:
8155""""""""""
8156
8157The '``fptoui``' instruction takes a value to cast, which must be a
8158scalar or vector :ref:`floating point <t_floating>` value, and a type to
8159cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8160``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8161type with the same number of elements as ``ty``
8162
8163Semantics:
8164""""""""""
8165
8166The '``fptoui``' instruction converts its :ref:`floating
8167point <t_floating>` operand into the nearest (rounding towards zero)
8168unsigned integer value. If the value cannot fit in ``ty2``, the results
8169are undefined.
8170
8171Example:
8172""""""""
8173
8174.. code-block:: llvm
8175
8176 %X = fptoui double 123.0 to i32 ; yields i32:123
8177 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8178 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8179
8180'``fptosi .. to``' Instruction
8181^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8182
8183Syntax:
8184"""""""
8185
8186::
8187
8188 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8189
8190Overview:
8191"""""""""
8192
8193The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
8194``value`` to type ``ty2``.
8195
8196Arguments:
8197""""""""""
8198
8199The '``fptosi``' instruction takes a value to cast, which must be a
8200scalar or vector :ref:`floating point <t_floating>` value, and a type to
8201cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8202``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8203type with the same number of elements as ``ty``
8204
8205Semantics:
8206""""""""""
8207
8208The '``fptosi``' instruction converts its :ref:`floating
8209point <t_floating>` operand into the nearest (rounding towards zero)
8210signed integer value. If the value cannot fit in ``ty2``, the results
8211are undefined.
8212
8213Example:
8214""""""""
8215
8216.. code-block:: llvm
8217
8218 %X = fptosi double -123.0 to i32 ; yields i32:-123
8219 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8220 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8221
8222'``uitofp .. to``' Instruction
8223^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8224
8225Syntax:
8226"""""""
8227
8228::
8229
8230 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8231
8232Overview:
8233"""""""""
8234
8235The '``uitofp``' instruction regards ``value`` as an unsigned integer
8236and converts that value to the ``ty2`` type.
8237
8238Arguments:
8239""""""""""
8240
8241The '``uitofp``' instruction takes a value to cast, which must be a
8242scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8243``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8244``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8245type with the same number of elements as ``ty``
8246
8247Semantics:
8248""""""""""
8249
8250The '``uitofp``' instruction interprets its operand as an unsigned
8251integer quantity and converts it to the corresponding floating point
8252value. If the value cannot fit in the floating point value, the results
8253are undefined.
8254
8255Example:
8256""""""""
8257
8258.. code-block:: llvm
8259
8260 %X = uitofp i32 257 to float ; yields float:257.0
8261 %Y = uitofp i8 -1 to double ; yields double:255.0
8262
8263'``sitofp .. to``' Instruction
8264^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8265
8266Syntax:
8267"""""""
8268
8269::
8270
8271 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8272
8273Overview:
8274"""""""""
8275
8276The '``sitofp``' instruction regards ``value`` as a signed integer and
8277converts that value to the ``ty2`` type.
8278
8279Arguments:
8280""""""""""
8281
8282The '``sitofp``' instruction takes a value to cast, which must be a
8283scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8284``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8285``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8286type with the same number of elements as ``ty``
8287
8288Semantics:
8289""""""""""
8290
8291The '``sitofp``' instruction interprets its operand as a signed integer
8292quantity and converts it to the corresponding floating point value. If
8293the value cannot fit in the floating point value, the results are
8294undefined.
8295
8296Example:
8297""""""""
8298
8299.. code-block:: llvm
8300
8301 %X = sitofp i32 257 to float ; yields float:257.0
8302 %Y = sitofp i8 -1 to double ; yields double:-1.0
8303
8304.. _i_ptrtoint:
8305
8306'``ptrtoint .. to``' Instruction
8307^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8308
8309Syntax:
8310"""""""
8311
8312::
8313
8314 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8315
8316Overview:
8317"""""""""
8318
8319The '``ptrtoint``' instruction converts the pointer or a vector of
8320pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8321
8322Arguments:
8323""""""""""
8324
8325The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008326a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008327type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8328a vector of integers type.
8329
8330Semantics:
8331""""""""""
8332
8333The '``ptrtoint``' instruction converts ``value`` to integer type
8334``ty2`` by interpreting the pointer value as an integer and either
8335truncating or zero extending that value to the size of the integer type.
8336If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8337``value`` is larger than ``ty2`` then a truncation is done. If they are
8338the same size, then nothing is done (*no-op cast*) other than a type
8339change.
8340
8341Example:
8342""""""""
8343
8344.. code-block:: llvm
8345
8346 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8347 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8348 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8349
8350.. _i_inttoptr:
8351
8352'``inttoptr .. to``' Instruction
8353^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8354
8355Syntax:
8356"""""""
8357
8358::
8359
8360 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8361
8362Overview:
8363"""""""""
8364
8365The '``inttoptr``' instruction converts an integer ``value`` to a
8366pointer type, ``ty2``.
8367
8368Arguments:
8369""""""""""
8370
8371The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8372cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8373type.
8374
8375Semantics:
8376""""""""""
8377
8378The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8379applying either a zero extension or a truncation depending on the size
8380of the integer ``value``. If ``value`` is larger than the size of a
8381pointer then a truncation is done. If ``value`` is smaller than the size
8382of a pointer then a zero extension is done. If they are the same size,
8383nothing is done (*no-op cast*).
8384
8385Example:
8386""""""""
8387
8388.. code-block:: llvm
8389
8390 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8391 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8392 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8393 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8394
8395.. _i_bitcast:
8396
8397'``bitcast .. to``' Instruction
8398^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8399
8400Syntax:
8401"""""""
8402
8403::
8404
8405 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8406
8407Overview:
8408"""""""""
8409
8410The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8411changing any bits.
8412
8413Arguments:
8414""""""""""
8415
8416The '``bitcast``' instruction takes a value to cast, which must be a
8417non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008418also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8419bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008420identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008421also be a pointer of the same size. This instruction supports bitwise
8422conversion of vectors to integers and to vectors of other types (as
8423long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008424
8425Semantics:
8426""""""""""
8427
Matt Arsenault24b49c42013-07-31 17:49:08 +00008428The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8429is always a *no-op cast* because no bits change with this
8430conversion. The conversion is done as if the ``value`` had been stored
8431to memory and read back as type ``ty2``. Pointer (or vector of
8432pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008433pointers) types with the same address space through this instruction.
8434To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8435or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008436
8437Example:
8438""""""""
8439
Renato Golin124f2592016-07-20 12:16:38 +00008440.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008441
8442 %X = bitcast i8 255 to i8 ; yields i8 :-1
8443 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8444 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8445 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8446
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008447.. _i_addrspacecast:
8448
8449'``addrspacecast .. to``' Instruction
8450^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8451
8452Syntax:
8453"""""""
8454
8455::
8456
8457 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8458
8459Overview:
8460"""""""""
8461
8462The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8463address space ``n`` to type ``pty2`` in address space ``m``.
8464
8465Arguments:
8466""""""""""
8467
8468The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8469to cast and a pointer type to cast it to, which must have a different
8470address space.
8471
8472Semantics:
8473""""""""""
8474
8475The '``addrspacecast``' instruction converts the pointer value
8476``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008477value modification, depending on the target and the address space
8478pair. Pointer conversions within the same address space must be
8479performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008480conversion is legal then both result and operand refer to the same memory
8481location.
8482
8483Example:
8484""""""""
8485
8486.. code-block:: llvm
8487
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008488 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8489 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8490 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008491
Sean Silvab084af42012-12-07 10:36:55 +00008492.. _otherops:
8493
8494Other Operations
8495----------------
8496
8497The instructions in this category are the "miscellaneous" instructions,
8498which defy better classification.
8499
8500.. _i_icmp:
8501
8502'``icmp``' Instruction
8503^^^^^^^^^^^^^^^^^^^^^^
8504
8505Syntax:
8506"""""""
8507
8508::
8509
Tim Northover675a0962014-06-13 14:24:23 +00008510 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008511
8512Overview:
8513"""""""""
8514
8515The '``icmp``' instruction returns a boolean value or a vector of
8516boolean values based on comparison of its two integer, integer vector,
8517pointer, or pointer vector operands.
8518
8519Arguments:
8520""""""""""
8521
8522The '``icmp``' instruction takes three operands. The first operand is
8523the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008524not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008525
8526#. ``eq``: equal
8527#. ``ne``: not equal
8528#. ``ugt``: unsigned greater than
8529#. ``uge``: unsigned greater or equal
8530#. ``ult``: unsigned less than
8531#. ``ule``: unsigned less or equal
8532#. ``sgt``: signed greater than
8533#. ``sge``: signed greater or equal
8534#. ``slt``: signed less than
8535#. ``sle``: signed less or equal
8536
8537The remaining two arguments must be :ref:`integer <t_integer>` or
8538:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8539must also be identical types.
8540
8541Semantics:
8542""""""""""
8543
8544The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8545code given as ``cond``. The comparison performed always yields either an
8546:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8547
8548#. ``eq``: yields ``true`` if the operands are equal, ``false``
8549 otherwise. No sign interpretation is necessary or performed.
8550#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8551 otherwise. No sign interpretation is necessary or performed.
8552#. ``ugt``: interprets the operands as unsigned values and yields
8553 ``true`` if ``op1`` is greater than ``op2``.
8554#. ``uge``: interprets the operands as unsigned values and yields
8555 ``true`` if ``op1`` is greater than or equal to ``op2``.
8556#. ``ult``: interprets the operands as unsigned values and yields
8557 ``true`` if ``op1`` is less than ``op2``.
8558#. ``ule``: interprets the operands as unsigned values and yields
8559 ``true`` if ``op1`` is less than or equal to ``op2``.
8560#. ``sgt``: interprets the operands as signed values and yields ``true``
8561 if ``op1`` is greater than ``op2``.
8562#. ``sge``: interprets the operands as signed values and yields ``true``
8563 if ``op1`` is greater than or equal to ``op2``.
8564#. ``slt``: interprets the operands as signed values and yields ``true``
8565 if ``op1`` is less than ``op2``.
8566#. ``sle``: interprets the operands as signed values and yields ``true``
8567 if ``op1`` is less than or equal to ``op2``.
8568
8569If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8570are compared as if they were integers.
8571
8572If the operands are integer vectors, then they are compared element by
8573element. The result is an ``i1`` vector with the same number of elements
8574as the values being compared. Otherwise, the result is an ``i1``.
8575
8576Example:
8577""""""""
8578
Renato Golin124f2592016-07-20 12:16:38 +00008579.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008580
8581 <result> = icmp eq i32 4, 5 ; yields: result=false
8582 <result> = icmp ne float* %X, %X ; yields: result=false
8583 <result> = icmp ult i16 4, 5 ; yields: result=true
8584 <result> = icmp sgt i16 4, 5 ; yields: result=false
8585 <result> = icmp ule i16 -4, 5 ; yields: result=false
8586 <result> = icmp sge i16 4, 5 ; yields: result=false
8587
Sean Silvab084af42012-12-07 10:36:55 +00008588.. _i_fcmp:
8589
8590'``fcmp``' Instruction
8591^^^^^^^^^^^^^^^^^^^^^^
8592
8593Syntax:
8594"""""""
8595
8596::
8597
James Molloy88eb5352015-07-10 12:52:00 +00008598 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008599
8600Overview:
8601"""""""""
8602
8603The '``fcmp``' instruction returns a boolean value or vector of boolean
8604values based on comparison of its operands.
8605
8606If the operands are floating point scalars, then the result type is a
8607boolean (:ref:`i1 <t_integer>`).
8608
8609If the operands are floating point vectors, then the result type is a
8610vector of boolean with the same number of elements as the operands being
8611compared.
8612
8613Arguments:
8614""""""""""
8615
8616The '``fcmp``' instruction takes three operands. The first operand is
8617the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008618not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008619
8620#. ``false``: no comparison, always returns false
8621#. ``oeq``: ordered and equal
8622#. ``ogt``: ordered and greater than
8623#. ``oge``: ordered and greater than or equal
8624#. ``olt``: ordered and less than
8625#. ``ole``: ordered and less than or equal
8626#. ``one``: ordered and not equal
8627#. ``ord``: ordered (no nans)
8628#. ``ueq``: unordered or equal
8629#. ``ugt``: unordered or greater than
8630#. ``uge``: unordered or greater than or equal
8631#. ``ult``: unordered or less than
8632#. ``ule``: unordered or less than or equal
8633#. ``une``: unordered or not equal
8634#. ``uno``: unordered (either nans)
8635#. ``true``: no comparison, always returns true
8636
8637*Ordered* means that neither operand is a QNAN while *unordered* means
8638that either operand may be a QNAN.
8639
8640Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8641point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8642type. They must have identical types.
8643
8644Semantics:
8645""""""""""
8646
8647The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8648condition code given as ``cond``. If the operands are vectors, then the
8649vectors are compared element by element. Each comparison performed
8650always yields an :ref:`i1 <t_integer>` result, as follows:
8651
8652#. ``false``: always yields ``false``, regardless of operands.
8653#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8654 is equal to ``op2``.
8655#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8656 is greater than ``op2``.
8657#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8658 is greater than or equal to ``op2``.
8659#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8660 is less than ``op2``.
8661#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8662 is less than or equal to ``op2``.
8663#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8664 is not equal to ``op2``.
8665#. ``ord``: yields ``true`` if both operands are not a QNAN.
8666#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8667 equal to ``op2``.
8668#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8669 greater than ``op2``.
8670#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8671 greater than or equal to ``op2``.
8672#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8673 less than ``op2``.
8674#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8675 less than or equal to ``op2``.
8676#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8677 not equal to ``op2``.
8678#. ``uno``: yields ``true`` if either operand is a QNAN.
8679#. ``true``: always yields ``true``, regardless of operands.
8680
James Molloy88eb5352015-07-10 12:52:00 +00008681The ``fcmp`` instruction can also optionally take any number of
8682:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8683otherwise unsafe floating point optimizations.
8684
8685Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8686only flags that have any effect on its semantics are those that allow
8687assumptions to be made about the values of input arguments; namely
8688``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8689
Sean Silvab084af42012-12-07 10:36:55 +00008690Example:
8691""""""""
8692
Renato Golin124f2592016-07-20 12:16:38 +00008693.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008694
8695 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8696 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8697 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8698 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8699
Sean Silvab084af42012-12-07 10:36:55 +00008700.. _i_phi:
8701
8702'``phi``' Instruction
8703^^^^^^^^^^^^^^^^^^^^^
8704
8705Syntax:
8706"""""""
8707
8708::
8709
8710 <result> = phi <ty> [ <val0>, <label0>], ...
8711
8712Overview:
8713"""""""""
8714
8715The '``phi``' instruction is used to implement the φ node in the SSA
8716graph representing the function.
8717
8718Arguments:
8719""""""""""
8720
8721The type of the incoming values is specified with the first type field.
8722After this, the '``phi``' instruction takes a list of pairs as
8723arguments, with one pair for each predecessor basic block of the current
8724block. Only values of :ref:`first class <t_firstclass>` type may be used as
8725the value arguments to the PHI node. Only labels may be used as the
8726label arguments.
8727
8728There must be no non-phi instructions between the start of a basic block
8729and the PHI instructions: i.e. PHI instructions must be first in a basic
8730block.
8731
8732For the purposes of the SSA form, the use of each incoming value is
8733deemed to occur on the edge from the corresponding predecessor block to
8734the current block (but after any definition of an '``invoke``'
8735instruction's return value on the same edge).
8736
8737Semantics:
8738""""""""""
8739
8740At runtime, the '``phi``' instruction logically takes on the value
8741specified by the pair corresponding to the predecessor basic block that
8742executed just prior to the current block.
8743
8744Example:
8745""""""""
8746
8747.. code-block:: llvm
8748
8749 Loop: ; Infinite loop that counts from 0 on up...
8750 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8751 %nextindvar = add i32 %indvar, 1
8752 br label %Loop
8753
8754.. _i_select:
8755
8756'``select``' Instruction
8757^^^^^^^^^^^^^^^^^^^^^^^^
8758
8759Syntax:
8760"""""""
8761
8762::
8763
8764 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8765
8766 selty is either i1 or {<N x i1>}
8767
8768Overview:
8769"""""""""
8770
8771The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008772condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008773
8774Arguments:
8775""""""""""
8776
8777The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8778values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008779class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008780
8781Semantics:
8782""""""""""
8783
8784If the condition is an i1 and it evaluates to 1, the instruction returns
8785the first value argument; otherwise, it returns the second value
8786argument.
8787
8788If the condition is a vector of i1, then the value arguments must be
8789vectors of the same size, and the selection is done element by element.
8790
David Majnemer40a0b592015-03-03 22:45:47 +00008791If the condition is an i1 and the value arguments are vectors of the
8792same size, then an entire vector is selected.
8793
Sean Silvab084af42012-12-07 10:36:55 +00008794Example:
8795""""""""
8796
8797.. code-block:: llvm
8798
8799 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8800
8801.. _i_call:
8802
8803'``call``' Instruction
8804^^^^^^^^^^^^^^^^^^^^^^
8805
8806Syntax:
8807"""""""
8808
8809::
8810
David Blaikieb83cf102016-07-13 17:21:34 +00008811 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008812 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008813
8814Overview:
8815"""""""""
8816
8817The '``call``' instruction represents a simple function call.
8818
8819Arguments:
8820""""""""""
8821
8822This instruction requires several arguments:
8823
Reid Kleckner5772b772014-04-24 20:14:34 +00008824#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008825 should perform tail call optimization. The ``tail`` marker is a hint that
8826 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008827 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008828 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008829
8830 #. The call will not cause unbounded stack growth if it is part of a
8831 recursive cycle in the call graph.
8832 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8833 forwarded in place.
8834
8835 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008836 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008837 rules:
8838
8839 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8840 or a pointer bitcast followed by a ret instruction.
8841 - The ret instruction must return the (possibly bitcasted) value
8842 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008843 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008844 parameters or return types may differ in pointee type, but not
8845 in address space.
8846 - The calling conventions of the caller and callee must match.
8847 - All ABI-impacting function attributes, such as sret, byval, inreg,
8848 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008849 - The callee must be varargs iff the caller is varargs. Bitcasting a
8850 non-varargs function to the appropriate varargs type is legal so
8851 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008852
8853 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8854 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008855
8856 - Caller and callee both have the calling convention ``fastcc``.
8857 - The call is in tail position (ret immediately follows call and ret
8858 uses value of call or is void).
8859 - Option ``-tailcallopt`` is enabled, or
8860 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008861 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008862 met. <CodeGenerator.html#tailcallopt>`_
8863
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008864#. The optional ``notail`` marker indicates that the optimizers should not add
8865 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8866 call optimization from being performed on the call.
8867
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008868#. The optional ``fast-math flags`` marker indicates that the call has one or more
8869 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8870 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8871 for calls that return a floating-point scalar or vector type.
8872
Sean Silvab084af42012-12-07 10:36:55 +00008873#. The optional "cconv" marker indicates which :ref:`calling
8874 convention <callingconv>` the call should use. If none is
8875 specified, the call defaults to using C calling conventions. The
8876 calling convention of the call must match the calling convention of
8877 the target function, or else the behavior is undefined.
8878#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8879 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8880 are valid here.
8881#. '``ty``': the type of the call instruction itself which is also the
8882 type of the return value. Functions that return no value are marked
8883 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008884#. '``fnty``': shall be the signature of the function being called. The
8885 argument types must match the types implied by this signature. This
8886 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008887#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008888 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008889 indirect ``call``'s are just as possible, calling an arbitrary pointer
8890 to function value.
8891#. '``function args``': argument list whose types match the function
8892 signature argument types and parameter attributes. All arguments must
8893 be of :ref:`first class <t_firstclass>` type. If the function signature
8894 indicates the function accepts a variable number of arguments, the
8895 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00008896#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008897#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008898
8899Semantics:
8900""""""""""
8901
8902The '``call``' instruction is used to cause control flow to transfer to
8903a specified function, with its incoming arguments bound to the specified
8904values. Upon a '``ret``' instruction in the called function, control
8905flow continues with the instruction after the function call, and the
8906return value of the function is bound to the result argument.
8907
8908Example:
8909""""""""
8910
8911.. code-block:: llvm
8912
8913 %retval = call i32 @test(i32 %argc)
8914 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8915 %X = tail call i32 @foo() ; yields i32
8916 %Y = tail call fastcc i32 @foo() ; yields i32
8917 call void %foo(i8 97 signext)
8918
8919 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008920 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008921 %gr = extractvalue %struct.A %r, 0 ; yields i32
8922 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8923 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8924 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8925
8926llvm treats calls to some functions with names and arguments that match
8927the standard C99 library as being the C99 library functions, and may
8928perform optimizations or generate code for them under that assumption.
8929This is something we'd like to change in the future to provide better
8930support for freestanding environments and non-C-based languages.
8931
8932.. _i_va_arg:
8933
8934'``va_arg``' Instruction
8935^^^^^^^^^^^^^^^^^^^^^^^^
8936
8937Syntax:
8938"""""""
8939
8940::
8941
8942 <resultval> = va_arg <va_list*> <arglist>, <argty>
8943
8944Overview:
8945"""""""""
8946
8947The '``va_arg``' instruction is used to access arguments passed through
8948the "variable argument" area of a function call. It is used to implement
8949the ``va_arg`` macro in C.
8950
8951Arguments:
8952""""""""""
8953
8954This instruction takes a ``va_list*`` value and the type of the
8955argument. It returns a value of the specified argument type and
8956increments the ``va_list`` to point to the next argument. The actual
8957type of ``va_list`` is target specific.
8958
8959Semantics:
8960""""""""""
8961
8962The '``va_arg``' instruction loads an argument of the specified type
8963from the specified ``va_list`` and causes the ``va_list`` to point to
8964the next argument. For more information, see the variable argument
8965handling :ref:`Intrinsic Functions <int_varargs>`.
8966
8967It is legal for this instruction to be called in a function which does
8968not take a variable number of arguments, for example, the ``vfprintf``
8969function.
8970
8971``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8972function <intrinsics>` because it takes a type as an argument.
8973
8974Example:
8975""""""""
8976
8977See the :ref:`variable argument processing <int_varargs>` section.
8978
8979Note that the code generator does not yet fully support va\_arg on many
8980targets. Also, it does not currently support va\_arg with aggregate
8981types on any target.
8982
8983.. _i_landingpad:
8984
8985'``landingpad``' Instruction
8986^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8987
8988Syntax:
8989"""""""
8990
8991::
8992
David Majnemer7fddecc2015-06-17 20:52:32 +00008993 <resultval> = landingpad <resultty> <clause>+
8994 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008995
8996 <clause> := catch <type> <value>
8997 <clause> := filter <array constant type> <array constant>
8998
8999Overview:
9000"""""""""
9001
9002The '``landingpad``' instruction is used by `LLVM's exception handling
9003system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009004is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009005code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009006defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009007re-entry to the function. The ``resultval`` has the type ``resultty``.
9008
9009Arguments:
9010""""""""""
9011
David Majnemer7fddecc2015-06-17 20:52:32 +00009012The optional
Sean Silvab084af42012-12-07 10:36:55 +00009013``cleanup`` flag indicates that the landing pad block is a cleanup.
9014
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009015A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009016contains the global variable representing the "type" that may be caught
9017or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9018clause takes an array constant as its argument. Use
9019"``[0 x i8**] undef``" for a filter which cannot throw. The
9020'``landingpad``' instruction must contain *at least* one ``clause`` or
9021the ``cleanup`` flag.
9022
9023Semantics:
9024""""""""""
9025
9026The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009027:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009028therefore the "result type" of the ``landingpad`` instruction. As with
9029calling conventions, how the personality function results are
9030represented in LLVM IR is target specific.
9031
9032The clauses are applied in order from top to bottom. If two
9033``landingpad`` instructions are merged together through inlining, the
9034clauses from the calling function are appended to the list of clauses.
9035When the call stack is being unwound due to an exception being thrown,
9036the exception is compared against each ``clause`` in turn. If it doesn't
9037match any of the clauses, and the ``cleanup`` flag is not set, then
9038unwinding continues further up the call stack.
9039
9040The ``landingpad`` instruction has several restrictions:
9041
9042- A landing pad block is a basic block which is the unwind destination
9043 of an '``invoke``' instruction.
9044- A landing pad block must have a '``landingpad``' instruction as its
9045 first non-PHI instruction.
9046- There can be only one '``landingpad``' instruction within the landing
9047 pad block.
9048- A basic block that is not a landing pad block may not include a
9049 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009050
9051Example:
9052""""""""
9053
9054.. code-block:: llvm
9055
9056 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009057 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009058 catch i8** @_ZTIi
9059 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009060 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009061 cleanup
9062 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009063 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009064 catch i8** @_ZTIi
9065 filter [1 x i8**] [@_ZTId]
9066
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009067.. _i_catchpad:
9068
9069'``catchpad``' Instruction
9070^^^^^^^^^^^^^^^^^^^^^^^^^^
9071
9072Syntax:
9073"""""""
9074
9075::
9076
9077 <resultval> = catchpad within <catchswitch> [<args>*]
9078
9079Overview:
9080"""""""""
9081
9082The '``catchpad``' instruction is used by `LLVM's exception handling
9083system <ExceptionHandling.html#overview>`_ to specify that a basic block
9084begins a catch handler --- one where a personality routine attempts to transfer
9085control to catch an exception.
9086
9087Arguments:
9088""""""""""
9089
9090The ``catchswitch`` operand must always be a token produced by a
9091:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9092ensures that each ``catchpad`` has exactly one predecessor block, and it always
9093terminates in a ``catchswitch``.
9094
9095The ``args`` correspond to whatever information the personality routine
9096requires to know if this is an appropriate handler for the exception. Control
9097will transfer to the ``catchpad`` if this is the first appropriate handler for
9098the exception.
9099
9100The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9101``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9102pads.
9103
9104Semantics:
9105""""""""""
9106
9107When the call stack is being unwound due to an exception being thrown, the
9108exception is compared against the ``args``. If it doesn't match, control will
9109not reach the ``catchpad`` instruction. The representation of ``args`` is
9110entirely target and personality function-specific.
9111
9112Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9113instruction must be the first non-phi of its parent basic block.
9114
9115The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9116instructions is described in the
9117`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9118
9119When a ``catchpad`` has been "entered" but not yet "exited" (as
9120described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9121it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9122that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9123
9124Example:
9125""""""""
9126
Renato Golin124f2592016-07-20 12:16:38 +00009127.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009128
9129 dispatch:
9130 %cs = catchswitch within none [label %handler0] unwind to caller
9131 ;; A catch block which can catch an integer.
9132 handler0:
9133 %tok = catchpad within %cs [i8** @_ZTIi]
9134
David Majnemer654e1302015-07-31 17:58:14 +00009135.. _i_cleanuppad:
9136
9137'``cleanuppad``' Instruction
9138^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9139
9140Syntax:
9141"""""""
9142
9143::
9144
David Majnemer8a1c45d2015-12-12 05:38:55 +00009145 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009146
9147Overview:
9148"""""""""
9149
9150The '``cleanuppad``' instruction is used by `LLVM's exception handling
9151system <ExceptionHandling.html#overview>`_ to specify that a basic block
9152is a cleanup block --- one where a personality routine attempts to
9153transfer control to run cleanup actions.
9154The ``args`` correspond to whatever additional
9155information the :ref:`personality function <personalityfn>` requires to
9156execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009157The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009158match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9159The ``parent`` argument is the token of the funclet that contains the
9160``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9161this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009162
9163Arguments:
9164""""""""""
9165
9166The instruction takes a list of arbitrary values which are interpreted
9167by the :ref:`personality function <personalityfn>`.
9168
9169Semantics:
9170""""""""""
9171
David Majnemer654e1302015-07-31 17:58:14 +00009172When the call stack is being unwound due to an exception being thrown,
9173the :ref:`personality function <personalityfn>` transfers control to the
9174``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009175As with calling conventions, how the personality function results are
9176represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009177
9178The ``cleanuppad`` instruction has several restrictions:
9179
9180- A cleanup block is a basic block which is the unwind destination of
9181 an exceptional instruction.
9182- A cleanup block must have a '``cleanuppad``' instruction as its
9183 first non-PHI instruction.
9184- There can be only one '``cleanuppad``' instruction within the
9185 cleanup block.
9186- A basic block that is not a cleanup block may not include a
9187 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009188
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009189When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9190described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9191it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9192that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009193
David Majnemer654e1302015-07-31 17:58:14 +00009194Example:
9195""""""""
9196
Renato Golin124f2592016-07-20 12:16:38 +00009197.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009198
David Majnemer8a1c45d2015-12-12 05:38:55 +00009199 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009200
Sean Silvab084af42012-12-07 10:36:55 +00009201.. _intrinsics:
9202
9203Intrinsic Functions
9204===================
9205
9206LLVM supports the notion of an "intrinsic function". These functions
9207have well known names and semantics and are required to follow certain
9208restrictions. Overall, these intrinsics represent an extension mechanism
9209for the LLVM language that does not require changing all of the
9210transformations in LLVM when adding to the language (or the bitcode
9211reader/writer, the parser, etc...).
9212
9213Intrinsic function names must all start with an "``llvm.``" prefix. This
9214prefix is reserved in LLVM for intrinsic names; thus, function names may
9215not begin with this prefix. Intrinsic functions must always be external
9216functions: you cannot define the body of intrinsic functions. Intrinsic
9217functions may only be used in call or invoke instructions: it is illegal
9218to take the address of an intrinsic function. Additionally, because
9219intrinsic functions are part of the LLVM language, it is required if any
9220are added that they be documented here.
9221
9222Some intrinsic functions can be overloaded, i.e., the intrinsic
9223represents a family of functions that perform the same operation but on
9224different data types. Because LLVM can represent over 8 million
9225different integer types, overloading is used commonly to allow an
9226intrinsic function to operate on any integer type. One or more of the
9227argument types or the result type can be overloaded to accept any
9228integer type. Argument types may also be defined as exactly matching a
9229previous argument's type or the result type. This allows an intrinsic
9230function which accepts multiple arguments, but needs all of them to be
9231of the same type, to only be overloaded with respect to a single
9232argument or the result.
9233
9234Overloaded intrinsics will have the names of its overloaded argument
9235types encoded into its function name, each preceded by a period. Only
9236those types which are overloaded result in a name suffix. Arguments
9237whose type is matched against another type do not. For example, the
9238``llvm.ctpop`` function can take an integer of any width and returns an
9239integer of exactly the same integer width. This leads to a family of
9240functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9241``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9242overloaded, and only one type suffix is required. Because the argument's
9243type is matched against the return type, it does not require its own
9244name suffix.
9245
9246To learn how to add an intrinsic function, please see the `Extending
9247LLVM Guide <ExtendingLLVM.html>`_.
9248
9249.. _int_varargs:
9250
9251Variable Argument Handling Intrinsics
9252-------------------------------------
9253
9254Variable argument support is defined in LLVM with the
9255:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9256functions. These functions are related to the similarly named macros
9257defined in the ``<stdarg.h>`` header file.
9258
9259All of these functions operate on arguments that use a target-specific
9260value type "``va_list``". The LLVM assembly language reference manual
9261does not define what this type is, so all transformations should be
9262prepared to handle these functions regardless of the type used.
9263
9264This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9265variable argument handling intrinsic functions are used.
9266
9267.. code-block:: llvm
9268
Tim Northoverab60bb92014-11-02 01:21:51 +00009269 ; This struct is different for every platform. For most platforms,
9270 ; it is merely an i8*.
9271 %struct.va_list = type { i8* }
9272
9273 ; For Unix x86_64 platforms, va_list is the following struct:
9274 ; %struct.va_list = type { i32, i32, i8*, i8* }
9275
Sean Silvab084af42012-12-07 10:36:55 +00009276 define i32 @test(i32 %X, ...) {
9277 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009278 %ap = alloca %struct.va_list
9279 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009280 call void @llvm.va_start(i8* %ap2)
9281
9282 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009283 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009284
9285 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9286 %aq = alloca i8*
9287 %aq2 = bitcast i8** %aq to i8*
9288 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9289 call void @llvm.va_end(i8* %aq2)
9290
9291 ; Stop processing of arguments.
9292 call void @llvm.va_end(i8* %ap2)
9293 ret i32 %tmp
9294 }
9295
9296 declare void @llvm.va_start(i8*)
9297 declare void @llvm.va_copy(i8*, i8*)
9298 declare void @llvm.va_end(i8*)
9299
9300.. _int_va_start:
9301
9302'``llvm.va_start``' Intrinsic
9303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9304
9305Syntax:
9306"""""""
9307
9308::
9309
Nick Lewycky04f6de02013-09-11 22:04:52 +00009310 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009311
9312Overview:
9313"""""""""
9314
9315The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9316subsequent use by ``va_arg``.
9317
9318Arguments:
9319""""""""""
9320
9321The argument is a pointer to a ``va_list`` element to initialize.
9322
9323Semantics:
9324""""""""""
9325
9326The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9327available in C. In a target-dependent way, it initializes the
9328``va_list`` element to which the argument points, so that the next call
9329to ``va_arg`` will produce the first variable argument passed to the
9330function. Unlike the C ``va_start`` macro, this intrinsic does not need
9331to know the last argument of the function as the compiler can figure
9332that out.
9333
9334'``llvm.va_end``' Intrinsic
9335^^^^^^^^^^^^^^^^^^^^^^^^^^^
9336
9337Syntax:
9338"""""""
9339
9340::
9341
9342 declare void @llvm.va_end(i8* <arglist>)
9343
9344Overview:
9345"""""""""
9346
9347The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9348initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9349
9350Arguments:
9351""""""""""
9352
9353The argument is a pointer to a ``va_list`` to destroy.
9354
9355Semantics:
9356""""""""""
9357
9358The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9359available in C. In a target-dependent way, it destroys the ``va_list``
9360element to which the argument points. Calls to
9361:ref:`llvm.va_start <int_va_start>` and
9362:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9363``llvm.va_end``.
9364
9365.. _int_va_copy:
9366
9367'``llvm.va_copy``' Intrinsic
9368^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9369
9370Syntax:
9371"""""""
9372
9373::
9374
9375 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9376
9377Overview:
9378"""""""""
9379
9380The '``llvm.va_copy``' intrinsic copies the current argument position
9381from the source argument list to the destination argument list.
9382
9383Arguments:
9384""""""""""
9385
9386The first argument is a pointer to a ``va_list`` element to initialize.
9387The second argument is a pointer to a ``va_list`` element to copy from.
9388
9389Semantics:
9390""""""""""
9391
9392The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9393available in C. In a target-dependent way, it copies the source
9394``va_list`` element into the destination ``va_list`` element. This
9395intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9396arbitrarily complex and require, for example, memory allocation.
9397
9398Accurate Garbage Collection Intrinsics
9399--------------------------------------
9400
Philip Reamesc5b0f562015-02-25 23:52:06 +00009401LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009402(GC) requires the frontend to generate code containing appropriate intrinsic
9403calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009404intrinsics in a manner which is appropriate for the target collector.
9405
Sean Silvab084af42012-12-07 10:36:55 +00009406These intrinsics allow identification of :ref:`GC roots on the
9407stack <int_gcroot>`, as well as garbage collector implementations that
9408require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009409Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009410these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009411details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009412
Philip Reamesf80bbff2015-02-25 23:45:20 +00009413Experimental Statepoint Intrinsics
9414^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9415
9416LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009417collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009418to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009419:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009420differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009421<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009422described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009423
9424.. _int_gcroot:
9425
9426'``llvm.gcroot``' Intrinsic
9427^^^^^^^^^^^^^^^^^^^^^^^^^^^
9428
9429Syntax:
9430"""""""
9431
9432::
9433
9434 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9435
9436Overview:
9437"""""""""
9438
9439The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9440the code generator, and allows some metadata to be associated with it.
9441
9442Arguments:
9443""""""""""
9444
9445The first argument specifies the address of a stack object that contains
9446the root pointer. The second pointer (which must be either a constant or
9447a global value address) contains the meta-data to be associated with the
9448root.
9449
9450Semantics:
9451""""""""""
9452
9453At runtime, a call to this intrinsic stores a null pointer into the
9454"ptrloc" location. At compile-time, the code generator generates
9455information to allow the runtime to find the pointer at GC safe points.
9456The '``llvm.gcroot``' intrinsic may only be used in a function which
9457:ref:`specifies a GC algorithm <gc>`.
9458
9459.. _int_gcread:
9460
9461'``llvm.gcread``' Intrinsic
9462^^^^^^^^^^^^^^^^^^^^^^^^^^^
9463
9464Syntax:
9465"""""""
9466
9467::
9468
9469 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9470
9471Overview:
9472"""""""""
9473
9474The '``llvm.gcread``' intrinsic identifies reads of references from heap
9475locations, allowing garbage collector implementations that require read
9476barriers.
9477
9478Arguments:
9479""""""""""
9480
9481The second argument is the address to read from, which should be an
9482address allocated from the garbage collector. The first object is a
9483pointer to the start of the referenced object, if needed by the language
9484runtime (otherwise null).
9485
9486Semantics:
9487""""""""""
9488
9489The '``llvm.gcread``' intrinsic has the same semantics as a load
9490instruction, but may be replaced with substantially more complex code by
9491the garbage collector runtime, as needed. The '``llvm.gcread``'
9492intrinsic may only be used in a function which :ref:`specifies a GC
9493algorithm <gc>`.
9494
9495.. _int_gcwrite:
9496
9497'``llvm.gcwrite``' Intrinsic
9498^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9499
9500Syntax:
9501"""""""
9502
9503::
9504
9505 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9506
9507Overview:
9508"""""""""
9509
9510The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9511locations, allowing garbage collector implementations that require write
9512barriers (such as generational or reference counting collectors).
9513
9514Arguments:
9515""""""""""
9516
9517The first argument is the reference to store, the second is the start of
9518the object to store it to, and the third is the address of the field of
9519Obj to store to. If the runtime does not require a pointer to the
9520object, Obj may be null.
9521
9522Semantics:
9523""""""""""
9524
9525The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9526instruction, but may be replaced with substantially more complex code by
9527the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9528intrinsic may only be used in a function which :ref:`specifies a GC
9529algorithm <gc>`.
9530
9531Code Generator Intrinsics
9532-------------------------
9533
9534These intrinsics are provided by LLVM to expose special features that
9535may only be implemented with code generator support.
9536
9537'``llvm.returnaddress``' Intrinsic
9538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9539
9540Syntax:
9541"""""""
9542
9543::
9544
George Burgess IVfbc34982017-05-20 04:52:29 +00009545 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +00009546
9547Overview:
9548"""""""""
9549
9550The '``llvm.returnaddress``' intrinsic attempts to compute a
9551target-specific value indicating the return address of the current
9552function or one of its callers.
9553
9554Arguments:
9555""""""""""
9556
9557The argument to this intrinsic indicates which function to return the
9558address for. Zero indicates the calling function, one indicates its
9559caller, etc. The argument is **required** to be a constant integer
9560value.
9561
9562Semantics:
9563""""""""""
9564
9565The '``llvm.returnaddress``' intrinsic either returns a pointer
9566indicating the return address of the specified call frame, or zero if it
9567cannot be identified. The value returned by this intrinsic is likely to
9568be incorrect or 0 for arguments other than zero, so it should only be
9569used for debugging purposes.
9570
9571Note that calling this intrinsic does not prevent function inlining or
9572other aggressive transformations, so the value returned may not be that
9573of the obvious source-language caller.
9574
Albert Gutowski795d7d62016-10-12 22:13:19 +00009575'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009576^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009577
9578Syntax:
9579"""""""
9580
9581::
9582
George Burgess IVfbc34982017-05-20 04:52:29 +00009583 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +00009584
9585Overview:
9586"""""""""
9587
9588The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9589pointer to the place in the stack frame where the return address of the
9590current function is stored.
9591
9592Semantics:
9593""""""""""
9594
9595Note that calling this intrinsic does not prevent function inlining or
9596other aggressive transformations, so the value returned may not be that
9597of the obvious source-language caller.
9598
9599This intrinsic is only implemented for x86.
9600
Sean Silvab084af42012-12-07 10:36:55 +00009601'``llvm.frameaddress``' Intrinsic
9602^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9603
9604Syntax:
9605"""""""
9606
9607::
9608
9609 declare i8* @llvm.frameaddress(i32 <level>)
9610
9611Overview:
9612"""""""""
9613
9614The '``llvm.frameaddress``' intrinsic attempts to return the
9615target-specific frame pointer value for the specified stack frame.
9616
9617Arguments:
9618""""""""""
9619
9620The argument to this intrinsic indicates which function to return the
9621frame pointer for. Zero indicates the calling function, one indicates
9622its caller, etc. The argument is **required** to be a constant integer
9623value.
9624
9625Semantics:
9626""""""""""
9627
9628The '``llvm.frameaddress``' intrinsic either returns a pointer
9629indicating the frame address of the specified call frame, or zero if it
9630cannot be identified. The value returned by this intrinsic is likely to
9631be incorrect or 0 for arguments other than zero, so it should only be
9632used for debugging purposes.
9633
9634Note that calling this intrinsic does not prevent function inlining or
9635other aggressive transformations, so the value returned may not be that
9636of the obvious source-language caller.
9637
Reid Kleckner60381792015-07-07 22:25:32 +00009638'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9640
9641Syntax:
9642"""""""
9643
9644::
9645
Reid Kleckner60381792015-07-07 22:25:32 +00009646 declare void @llvm.localescape(...)
9647 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009648
9649Overview:
9650"""""""""
9651
Reid Kleckner60381792015-07-07 22:25:32 +00009652The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9653allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009654live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009655computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009656
9657Arguments:
9658""""""""""
9659
Reid Kleckner60381792015-07-07 22:25:32 +00009660All arguments to '``llvm.localescape``' must be pointers to static allocas or
9661casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009662once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009663
Reid Kleckner60381792015-07-07 22:25:32 +00009664The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009665bitcasted pointer to a function defined in the current module. The code
9666generator cannot determine the frame allocation offset of functions defined in
9667other modules.
9668
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009669The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9670call frame that is currently live. The return value of '``llvm.localaddress``'
9671is one way to produce such a value, but various runtimes also expose a suitable
9672pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009673
Reid Kleckner60381792015-07-07 22:25:32 +00009674The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9675'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009676
Reid Klecknere9b89312015-01-13 00:48:10 +00009677Semantics:
9678""""""""""
9679
Reid Kleckner60381792015-07-07 22:25:32 +00009680These intrinsics allow a group of functions to share access to a set of local
9681stack allocations of a one parent function. The parent function may call the
9682'``llvm.localescape``' intrinsic once from the function entry block, and the
9683child functions can use '``llvm.localrecover``' to access the escaped allocas.
9684The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9685the escaped allocas are allocated, which would break attempts to use
9686'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009687
Renato Golinc7aea402014-05-06 16:51:25 +00009688.. _int_read_register:
9689.. _int_write_register:
9690
9691'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9693
9694Syntax:
9695"""""""
9696
9697::
9698
9699 declare i32 @llvm.read_register.i32(metadata)
9700 declare i64 @llvm.read_register.i64(metadata)
9701 declare void @llvm.write_register.i32(metadata, i32 @value)
9702 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009703 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009704
9705Overview:
9706"""""""""
9707
9708The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9709provides access to the named register. The register must be valid on
9710the architecture being compiled to. The type needs to be compatible
9711with the register being read.
9712
9713Semantics:
9714""""""""""
9715
9716The '``llvm.read_register``' intrinsic returns the current value of the
9717register, where possible. The '``llvm.write_register``' intrinsic sets
9718the current value of the register, where possible.
9719
9720This is useful to implement named register global variables that need
9721to always be mapped to a specific register, as is common practice on
9722bare-metal programs including OS kernels.
9723
9724The compiler doesn't check for register availability or use of the used
9725register in surrounding code, including inline assembly. Because of that,
9726allocatable registers are not supported.
9727
9728Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009729architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009730work is needed to support other registers and even more so, allocatable
9731registers.
9732
Sean Silvab084af42012-12-07 10:36:55 +00009733.. _int_stacksave:
9734
9735'``llvm.stacksave``' Intrinsic
9736^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9737
9738Syntax:
9739"""""""
9740
9741::
9742
9743 declare i8* @llvm.stacksave()
9744
9745Overview:
9746"""""""""
9747
9748The '``llvm.stacksave``' intrinsic is used to remember the current state
9749of the function stack, for use with
9750:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9751implementing language features like scoped automatic variable sized
9752arrays in C99.
9753
9754Semantics:
9755""""""""""
9756
9757This intrinsic returns a opaque pointer value that can be passed to
9758:ref:`llvm.stackrestore <int_stackrestore>`. When an
9759``llvm.stackrestore`` intrinsic is executed with a value saved from
9760``llvm.stacksave``, it effectively restores the state of the stack to
9761the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9762practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9763were allocated after the ``llvm.stacksave`` was executed.
9764
9765.. _int_stackrestore:
9766
9767'``llvm.stackrestore``' Intrinsic
9768^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9769
9770Syntax:
9771"""""""
9772
9773::
9774
9775 declare void @llvm.stackrestore(i8* %ptr)
9776
9777Overview:
9778"""""""""
9779
9780The '``llvm.stackrestore``' intrinsic is used to restore the state of
9781the function stack to the state it was in when the corresponding
9782:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9783useful for implementing language features like scoped automatic variable
9784sized arrays in C99.
9785
9786Semantics:
9787""""""""""
9788
9789See the description for :ref:`llvm.stacksave <int_stacksave>`.
9790
Yury Gribovd7dbb662015-12-01 11:40:55 +00009791.. _int_get_dynamic_area_offset:
9792
9793'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009794^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009795
9796Syntax:
9797"""""""
9798
9799::
9800
9801 declare i32 @llvm.get.dynamic.area.offset.i32()
9802 declare i64 @llvm.get.dynamic.area.offset.i64()
9803
Lang Hames10239932016-10-08 00:20:42 +00009804Overview:
9805"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009806
9807 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9808 get the offset from native stack pointer to the address of the most
9809 recent dynamic alloca on the caller's stack. These intrinsics are
9810 intendend for use in combination with
9811 :ref:`llvm.stacksave <int_stacksave>` to get a
9812 pointer to the most recent dynamic alloca. This is useful, for example,
9813 for AddressSanitizer's stack unpoisoning routines.
9814
9815Semantics:
9816""""""""""
9817
9818 These intrinsics return a non-negative integer value that can be used to
9819 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9820 on the caller's stack. In particular, for targets where stack grows downwards,
9821 adding this offset to the native stack pointer would get the address of the most
9822 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009823 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009824 one past the end of the most recent dynamic alloca.
9825
9826 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9827 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9828 compile-time-known constant value.
9829
9830 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +00009831 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +00009832
Sean Silvab084af42012-12-07 10:36:55 +00009833'``llvm.prefetch``' Intrinsic
9834^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9835
9836Syntax:
9837"""""""
9838
9839::
9840
9841 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9842
9843Overview:
9844"""""""""
9845
9846The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9847insert a prefetch instruction if supported; otherwise, it is a noop.
9848Prefetches have no effect on the behavior of the program but can change
9849its performance characteristics.
9850
9851Arguments:
9852""""""""""
9853
9854``address`` is the address to be prefetched, ``rw`` is the specifier
9855determining if the fetch should be for a read (0) or write (1), and
9856``locality`` is a temporal locality specifier ranging from (0) - no
9857locality, to (3) - extremely local keep in cache. The ``cache type``
9858specifies whether the prefetch is performed on the data (1) or
9859instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9860arguments must be constant integers.
9861
9862Semantics:
9863""""""""""
9864
9865This intrinsic does not modify the behavior of the program. In
9866particular, prefetches cannot trap and do not produce a value. On
9867targets that support this intrinsic, the prefetch can provide hints to
9868the processor cache for better performance.
9869
9870'``llvm.pcmarker``' Intrinsic
9871^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9872
9873Syntax:
9874"""""""
9875
9876::
9877
9878 declare void @llvm.pcmarker(i32 <id>)
9879
9880Overview:
9881"""""""""
9882
9883The '``llvm.pcmarker``' intrinsic is a method to export a Program
9884Counter (PC) in a region of code to simulators and other tools. The
9885method is target specific, but it is expected that the marker will use
9886exported symbols to transmit the PC of the marker. The marker makes no
9887guarantees that it will remain with any specific instruction after
9888optimizations. It is possible that the presence of a marker will inhibit
9889optimizations. The intended use is to be inserted after optimizations to
9890allow correlations of simulation runs.
9891
9892Arguments:
9893""""""""""
9894
9895``id`` is a numerical id identifying the marker.
9896
9897Semantics:
9898""""""""""
9899
9900This intrinsic does not modify the behavior of the program. Backends
9901that do not support this intrinsic may ignore it.
9902
9903'``llvm.readcyclecounter``' Intrinsic
9904^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9905
9906Syntax:
9907"""""""
9908
9909::
9910
9911 declare i64 @llvm.readcyclecounter()
9912
9913Overview:
9914"""""""""
9915
9916The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9917counter register (or similar low latency, high accuracy clocks) on those
9918targets that support it. On X86, it should map to RDTSC. On Alpha, it
9919should map to RPCC. As the backing counters overflow quickly (on the
9920order of 9 seconds on alpha), this should only be used for small
9921timings.
9922
9923Semantics:
9924""""""""""
9925
9926When directly supported, reading the cycle counter should not modify any
9927memory. Implementations are allowed to either return a application
9928specific value or a system wide value. On backends without support, this
9929is lowered to a constant 0.
9930
Tim Northoverbc933082013-05-23 19:11:20 +00009931Note that runtime support may be conditional on the privilege-level code is
9932running at and the host platform.
9933
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009934'``llvm.clear_cache``' Intrinsic
9935^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9936
9937Syntax:
9938"""""""
9939
9940::
9941
9942 declare void @llvm.clear_cache(i8*, i8*)
9943
9944Overview:
9945"""""""""
9946
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009947The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9948in the specified range to the execution unit of the processor. On
9949targets with non-unified instruction and data cache, the implementation
9950flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009951
9952Semantics:
9953""""""""""
9954
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009955On platforms with coherent instruction and data caches (e.g. x86), this
9956intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009957cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009958instructions or a system call, if cache flushing requires special
9959privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009960
Sean Silvad02bf3e2014-04-07 22:29:53 +00009961The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009962time library.
Renato Golin93010e62014-03-26 14:01:32 +00009963
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009964This instrinsic does *not* empty the instruction pipeline. Modifications
9965of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009966
Justin Bogner61ba2e32014-12-08 18:02:35 +00009967'``llvm.instrprof_increment``' Intrinsic
9968^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9969
9970Syntax:
9971"""""""
9972
9973::
9974
9975 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9976 i32 <num-counters>, i32 <index>)
9977
9978Overview:
9979"""""""""
9980
9981The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9982frontend for use with instrumentation based profiling. These will be
9983lowered by the ``-instrprof`` pass to generate execution counts of a
9984program at runtime.
9985
9986Arguments:
9987""""""""""
9988
9989The first argument is a pointer to a global variable containing the
9990name of the entity being instrumented. This should generally be the
9991(mangled) function name for a set of counters.
9992
9993The second argument is a hash value that can be used by the consumer
9994of the profile data to detect changes to the instrumented source, and
9995the third is the number of counters associated with ``name``. It is an
9996error if ``hash`` or ``num-counters`` differ between two instances of
9997``instrprof_increment`` that refer to the same name.
9998
9999The last argument refers to which of the counters for ``name`` should
10000be incremented. It should be a value between 0 and ``num-counters``.
10001
10002Semantics:
10003""""""""""
10004
10005This intrinsic represents an increment of a profiling counter. It will
10006cause the ``-instrprof`` pass to generate the appropriate data
10007structures and the code to increment the appropriate value, in a
10008format that can be written out by a compiler runtime and consumed via
10009the ``llvm-profdata`` tool.
10010
Xinliang David Li4ca17332016-09-18 18:34:07 +000010011'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010012^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010013
10014Syntax:
10015"""""""
10016
10017::
10018
10019 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
10020 i32 <num-counters>,
10021 i32 <index>, i64 <step>)
10022
10023Overview:
10024"""""""""
10025
10026The '``llvm.instrprof_increment_step``' intrinsic is an extension to
10027the '``llvm.instrprof_increment``' intrinsic with an additional fifth
10028argument to specify the step of the increment.
10029
10030Arguments:
10031""""""""""
10032The first four arguments are the same as '``llvm.instrprof_increment``'
10033instrinsic.
10034
10035The last argument specifies the value of the increment of the counter variable.
10036
10037Semantics:
10038""""""""""
10039See description of '``llvm.instrprof_increment``' instrinsic.
10040
10041
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010042'``llvm.instrprof_value_profile``' Intrinsic
10043^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10044
10045Syntax:
10046"""""""
10047
10048::
10049
10050 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
10051 i64 <value>, i32 <value_kind>,
10052 i32 <index>)
10053
10054Overview:
10055"""""""""
10056
10057The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
10058frontend for use with instrumentation based profiling. This will be
10059lowered by the ``-instrprof`` pass to find out the target values,
10060instrumented expressions take in a program at runtime.
10061
10062Arguments:
10063""""""""""
10064
10065The first argument is a pointer to a global variable containing the
10066name of the entity being instrumented. ``name`` should generally be the
10067(mangled) function name for a set of counters.
10068
10069The second argument is a hash value that can be used by the consumer
10070of the profile data to detect changes to the instrumented source. It
10071is an error if ``hash`` differs between two instances of
10072``llvm.instrprof_*`` that refer to the same name.
10073
10074The third argument is the value of the expression being profiled. The profiled
10075expression's value should be representable as an unsigned 64-bit value. The
10076fourth argument represents the kind of value profiling that is being done. The
10077supported value profiling kinds are enumerated through the
10078``InstrProfValueKind`` type declared in the
10079``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10080index of the instrumented expression within ``name``. It should be >= 0.
10081
10082Semantics:
10083""""""""""
10084
10085This intrinsic represents the point where a call to a runtime routine
10086should be inserted for value profiling of target expressions. ``-instrprof``
10087pass will generate the appropriate data structures and replace the
10088``llvm.instrprof_value_profile`` intrinsic with the call to the profile
10089runtime library with proper arguments.
10090
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010091'``llvm.thread.pointer``' Intrinsic
10092^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10093
10094Syntax:
10095"""""""
10096
10097::
10098
10099 declare i8* @llvm.thread.pointer()
10100
10101Overview:
10102"""""""""
10103
10104The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10105pointer.
10106
10107Semantics:
10108""""""""""
10109
10110The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10111for the current thread. The exact semantics of this value are target
10112specific: it may point to the start of TLS area, to the end, or somewhere
10113in the middle. Depending on the target, this intrinsic may read a register,
10114call a helper function, read from an alternate memory space, or perform
10115other operations necessary to locate the TLS area. Not all targets support
10116this intrinsic.
10117
Sean Silvab084af42012-12-07 10:36:55 +000010118Standard C Library Intrinsics
10119-----------------------------
10120
10121LLVM provides intrinsics for a few important standard C library
10122functions. These intrinsics allow source-language front-ends to pass
10123information about the alignment of the pointer arguments to the code
10124generator, providing opportunity for more efficient code generation.
10125
10126.. _int_memcpy:
10127
10128'``llvm.memcpy``' Intrinsic
10129^^^^^^^^^^^^^^^^^^^^^^^^^^^
10130
10131Syntax:
10132"""""""
10133
10134This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10135integer bit width and for different address spaces. Not all targets
10136support all bit widths however.
10137
10138::
10139
10140 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10141 i32 <len>, i32 <align>, i1 <isvolatile>)
10142 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10143 i64 <len>, i32 <align>, i1 <isvolatile>)
10144
10145Overview:
10146"""""""""
10147
10148The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10149source location to the destination location.
10150
10151Note that, unlike the standard libc function, the ``llvm.memcpy.*``
10152intrinsics do not return a value, takes extra alignment/isvolatile
10153arguments and the pointers can be in specified address spaces.
10154
10155Arguments:
10156""""""""""
10157
10158The first argument is a pointer to the destination, the second is a
10159pointer to the source. The third argument is an integer argument
10160specifying the number of bytes to copy, the fourth argument is the
10161alignment of the source and destination locations, and the fifth is a
10162boolean indicating a volatile access.
10163
10164If the call to this intrinsic has an alignment value that is not 0 or 1,
10165then the caller guarantees that both the source and destination pointers
10166are aligned to that boundary.
10167
10168If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10169a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10170very cleanly specified and it is unwise to depend on it.
10171
10172Semantics:
10173""""""""""
10174
10175The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10176source location to the destination location, which are not allowed to
10177overlap. It copies "len" bytes of memory over. If the argument is known
10178to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010179argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010180
10181'``llvm.memmove``' Intrinsic
10182^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10183
10184Syntax:
10185"""""""
10186
10187This is an overloaded intrinsic. You can use llvm.memmove on any integer
10188bit width and for different address space. Not all targets support all
10189bit widths however.
10190
10191::
10192
10193 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10194 i32 <len>, i32 <align>, i1 <isvolatile>)
10195 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10196 i64 <len>, i32 <align>, i1 <isvolatile>)
10197
10198Overview:
10199"""""""""
10200
10201The '``llvm.memmove.*``' intrinsics move a block of memory from the
10202source location to the destination location. It is similar to the
10203'``llvm.memcpy``' intrinsic but allows the two memory locations to
10204overlap.
10205
10206Note that, unlike the standard libc function, the ``llvm.memmove.*``
10207intrinsics do not return a value, takes extra alignment/isvolatile
10208arguments and the pointers can be in specified address spaces.
10209
10210Arguments:
10211""""""""""
10212
10213The first argument is a pointer to the destination, the second is a
10214pointer to the source. The third argument is an integer argument
10215specifying the number of bytes to copy, the fourth argument is the
10216alignment of the source and destination locations, and the fifth is a
10217boolean indicating a volatile access.
10218
10219If the call to this intrinsic has an alignment value that is not 0 or 1,
10220then the caller guarantees that the source and destination pointers are
10221aligned to that boundary.
10222
10223If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10224is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10225not very cleanly specified and it is unwise to depend on it.
10226
10227Semantics:
10228""""""""""
10229
10230The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10231source location to the destination location, which may overlap. It
10232copies "len" bytes of memory over. If the argument is known to be
10233aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010234otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010235
10236'``llvm.memset.*``' Intrinsics
10237^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10238
10239Syntax:
10240"""""""
10241
10242This is an overloaded intrinsic. You can use llvm.memset on any integer
10243bit width and for different address spaces. However, not all targets
10244support all bit widths.
10245
10246::
10247
10248 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10249 i32 <len>, i32 <align>, i1 <isvolatile>)
10250 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10251 i64 <len>, i32 <align>, i1 <isvolatile>)
10252
10253Overview:
10254"""""""""
10255
10256The '``llvm.memset.*``' intrinsics fill a block of memory with a
10257particular byte value.
10258
10259Note that, unlike the standard libc function, the ``llvm.memset``
10260intrinsic does not return a value and takes extra alignment/volatile
10261arguments. Also, the destination can be in an arbitrary address space.
10262
10263Arguments:
10264""""""""""
10265
10266The first argument is a pointer to the destination to fill, the second
10267is the byte value with which to fill it, the third argument is an
10268integer argument specifying the number of bytes to fill, and the fourth
10269argument is the known alignment of the destination location.
10270
10271If the call to this intrinsic has an alignment value that is not 0 or 1,
10272then the caller guarantees that the destination pointer is aligned to
10273that boundary.
10274
10275If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10276a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10277very cleanly specified and it is unwise to depend on it.
10278
10279Semantics:
10280""""""""""
10281
10282The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10283at the destination location. If the argument is known to be aligned to
10284some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010285it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010286
10287'``llvm.sqrt.*``' Intrinsic
10288^^^^^^^^^^^^^^^^^^^^^^^^^^^
10289
10290Syntax:
10291"""""""
10292
10293This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10294floating point or vector of floating point type. Not all targets support
10295all types however.
10296
10297::
10298
10299 declare float @llvm.sqrt.f32(float %Val)
10300 declare double @llvm.sqrt.f64(double %Val)
10301 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10302 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10303 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10304
10305Overview:
10306"""""""""
10307
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010308The '``llvm.sqrt``' intrinsics return the square root of the specified value,
Justin Lebarcb9b41d2017-01-27 00:58:03 +000010309returning the same value as the libm '``sqrt``' functions would, but without
10310trapping or setting ``errno``.
Sean Silvab084af42012-12-07 10:36:55 +000010311
10312Arguments:
10313""""""""""
10314
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010315The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010316
10317Semantics:
10318""""""""""
10319
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010320This function returns the square root of the operand if it is a nonnegative
10321floating point number.
Sean Silvab084af42012-12-07 10:36:55 +000010322
10323'``llvm.powi.*``' Intrinsic
10324^^^^^^^^^^^^^^^^^^^^^^^^^^^
10325
10326Syntax:
10327"""""""
10328
10329This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10330floating point or vector of floating point type. Not all targets support
10331all types however.
10332
10333::
10334
10335 declare float @llvm.powi.f32(float %Val, i32 %power)
10336 declare double @llvm.powi.f64(double %Val, i32 %power)
10337 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10338 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10339 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10340
10341Overview:
10342"""""""""
10343
10344The '``llvm.powi.*``' intrinsics return the first operand raised to the
10345specified (positive or negative) power. The order of evaluation of
10346multiplications is not defined. When a vector of floating point type is
10347used, the second argument remains a scalar integer value.
10348
10349Arguments:
10350""""""""""
10351
10352The second argument is an integer power, and the first is a value to
10353raise to that power.
10354
10355Semantics:
10356""""""""""
10357
10358This function returns the first value raised to the second power with an
10359unspecified sequence of rounding operations.
10360
10361'``llvm.sin.*``' Intrinsic
10362^^^^^^^^^^^^^^^^^^^^^^^^^^
10363
10364Syntax:
10365"""""""
10366
10367This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10368floating point or vector of floating point type. Not all targets support
10369all types however.
10370
10371::
10372
10373 declare float @llvm.sin.f32(float %Val)
10374 declare double @llvm.sin.f64(double %Val)
10375 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10376 declare fp128 @llvm.sin.f128(fp128 %Val)
10377 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10378
10379Overview:
10380"""""""""
10381
10382The '``llvm.sin.*``' intrinsics return the sine of the operand.
10383
10384Arguments:
10385""""""""""
10386
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010387The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010388
10389Semantics:
10390""""""""""
10391
10392This function returns the sine of the specified operand, returning the
10393same values as the libm ``sin`` functions would, and handles error
10394conditions in the same way.
10395
10396'``llvm.cos.*``' Intrinsic
10397^^^^^^^^^^^^^^^^^^^^^^^^^^
10398
10399Syntax:
10400"""""""
10401
10402This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10403floating point or vector of floating point type. Not all targets support
10404all types however.
10405
10406::
10407
10408 declare float @llvm.cos.f32(float %Val)
10409 declare double @llvm.cos.f64(double %Val)
10410 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10411 declare fp128 @llvm.cos.f128(fp128 %Val)
10412 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10413
10414Overview:
10415"""""""""
10416
10417The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10418
10419Arguments:
10420""""""""""
10421
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010422The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010423
10424Semantics:
10425""""""""""
10426
10427This function returns the cosine of the specified operand, returning the
10428same values as the libm ``cos`` functions would, and handles error
10429conditions in the same way.
10430
10431'``llvm.pow.*``' Intrinsic
10432^^^^^^^^^^^^^^^^^^^^^^^^^^
10433
10434Syntax:
10435"""""""
10436
10437This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10438floating point or vector of floating point type. Not all targets support
10439all types however.
10440
10441::
10442
10443 declare float @llvm.pow.f32(float %Val, float %Power)
10444 declare double @llvm.pow.f64(double %Val, double %Power)
10445 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10446 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10447 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10448
10449Overview:
10450"""""""""
10451
10452The '``llvm.pow.*``' intrinsics return the first operand raised to the
10453specified (positive or negative) power.
10454
10455Arguments:
10456""""""""""
10457
10458The second argument is a floating point power, and the first is a value
10459to raise to that power.
10460
10461Semantics:
10462""""""""""
10463
10464This function returns the first value raised to the second power,
10465returning the same values as the libm ``pow`` functions would, and
10466handles error conditions in the same way.
10467
10468'``llvm.exp.*``' Intrinsic
10469^^^^^^^^^^^^^^^^^^^^^^^^^^
10470
10471Syntax:
10472"""""""
10473
10474This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10475floating point or vector of floating point type. Not all targets support
10476all types however.
10477
10478::
10479
10480 declare float @llvm.exp.f32(float %Val)
10481 declare double @llvm.exp.f64(double %Val)
10482 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10483 declare fp128 @llvm.exp.f128(fp128 %Val)
10484 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10485
10486Overview:
10487"""""""""
10488
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010489The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
10490value.
Sean Silvab084af42012-12-07 10:36:55 +000010491
10492Arguments:
10493""""""""""
10494
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010495The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010496
10497Semantics:
10498""""""""""
10499
10500This function returns the same values as the libm ``exp`` functions
10501would, and handles error conditions in the same way.
10502
10503'``llvm.exp2.*``' Intrinsic
10504^^^^^^^^^^^^^^^^^^^^^^^^^^^
10505
10506Syntax:
10507"""""""
10508
10509This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10510floating point or vector of floating point type. Not all targets support
10511all types however.
10512
10513::
10514
10515 declare float @llvm.exp2.f32(float %Val)
10516 declare double @llvm.exp2.f64(double %Val)
10517 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10518 declare fp128 @llvm.exp2.f128(fp128 %Val)
10519 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10520
10521Overview:
10522"""""""""
10523
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010524The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
10525specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010526
10527Arguments:
10528""""""""""
10529
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010530The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010531
10532Semantics:
10533""""""""""
10534
10535This function returns the same values as the libm ``exp2`` functions
10536would, and handles error conditions in the same way.
10537
10538'``llvm.log.*``' Intrinsic
10539^^^^^^^^^^^^^^^^^^^^^^^^^^
10540
10541Syntax:
10542"""""""
10543
10544This is an overloaded intrinsic. You can use ``llvm.log`` on any
10545floating point or vector of floating point type. Not all targets support
10546all types however.
10547
10548::
10549
10550 declare float @llvm.log.f32(float %Val)
10551 declare double @llvm.log.f64(double %Val)
10552 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10553 declare fp128 @llvm.log.f128(fp128 %Val)
10554 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10555
10556Overview:
10557"""""""""
10558
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010559The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
10560value.
Sean Silvab084af42012-12-07 10:36:55 +000010561
10562Arguments:
10563""""""""""
10564
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010565The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010566
10567Semantics:
10568""""""""""
10569
10570This function returns the same values as the libm ``log`` functions
10571would, and handles error conditions in the same way.
10572
10573'``llvm.log10.*``' Intrinsic
10574^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10575
10576Syntax:
10577"""""""
10578
10579This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10580floating point or vector of floating point type. Not all targets support
10581all types however.
10582
10583::
10584
10585 declare float @llvm.log10.f32(float %Val)
10586 declare double @llvm.log10.f64(double %Val)
10587 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10588 declare fp128 @llvm.log10.f128(fp128 %Val)
10589 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10590
10591Overview:
10592"""""""""
10593
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010594The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
10595specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010596
10597Arguments:
10598""""""""""
10599
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010600The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010601
10602Semantics:
10603""""""""""
10604
10605This function returns the same values as the libm ``log10`` functions
10606would, and handles error conditions in the same way.
10607
10608'``llvm.log2.*``' Intrinsic
10609^^^^^^^^^^^^^^^^^^^^^^^^^^^
10610
10611Syntax:
10612"""""""
10613
10614This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10615floating point or vector of floating point type. Not all targets support
10616all types however.
10617
10618::
10619
10620 declare float @llvm.log2.f32(float %Val)
10621 declare double @llvm.log2.f64(double %Val)
10622 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10623 declare fp128 @llvm.log2.f128(fp128 %Val)
10624 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10625
10626Overview:
10627"""""""""
10628
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010629The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
10630value.
Sean Silvab084af42012-12-07 10:36:55 +000010631
10632Arguments:
10633""""""""""
10634
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010635The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010636
10637Semantics:
10638""""""""""
10639
10640This function returns the same values as the libm ``log2`` functions
10641would, and handles error conditions in the same way.
10642
10643'``llvm.fma.*``' Intrinsic
10644^^^^^^^^^^^^^^^^^^^^^^^^^^
10645
10646Syntax:
10647"""""""
10648
10649This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10650floating point or vector of floating point type. Not all targets support
10651all types however.
10652
10653::
10654
10655 declare float @llvm.fma.f32(float %a, float %b, float %c)
10656 declare double @llvm.fma.f64(double %a, double %b, double %c)
10657 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10658 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10659 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10660
10661Overview:
10662"""""""""
10663
10664The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10665operation.
10666
10667Arguments:
10668""""""""""
10669
10670The argument and return value are floating point numbers of the same
10671type.
10672
10673Semantics:
10674""""""""""
10675
10676This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010677would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010678
10679'``llvm.fabs.*``' Intrinsic
10680^^^^^^^^^^^^^^^^^^^^^^^^^^^
10681
10682Syntax:
10683"""""""
10684
10685This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10686floating point or vector of floating point type. Not all targets support
10687all types however.
10688
10689::
10690
10691 declare float @llvm.fabs.f32(float %Val)
10692 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010693 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010694 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010695 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010696
10697Overview:
10698"""""""""
10699
10700The '``llvm.fabs.*``' intrinsics return the absolute value of the
10701operand.
10702
10703Arguments:
10704""""""""""
10705
10706The argument and return value are floating point numbers of the same
10707type.
10708
10709Semantics:
10710""""""""""
10711
10712This function returns the same values as the libm ``fabs`` functions
10713would, and handles error conditions in the same way.
10714
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010715'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010717
10718Syntax:
10719"""""""
10720
10721This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10722floating point or vector of floating point type. Not all targets support
10723all types however.
10724
10725::
10726
Matt Arsenault64313c92014-10-22 18:25:02 +000010727 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10728 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10729 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10730 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10731 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010732
10733Overview:
10734"""""""""
10735
10736The '``llvm.minnum.*``' intrinsics return the minimum of the two
10737arguments.
10738
10739
10740Arguments:
10741""""""""""
10742
10743The arguments and return value are floating point numbers of the same
10744type.
10745
10746Semantics:
10747""""""""""
10748
10749Follows the IEEE-754 semantics for minNum, which also match for libm's
10750fmin.
10751
10752If either operand is a NaN, returns the other non-NaN operand. Returns
10753NaN only if both operands are NaN. If the operands compare equal,
10754returns a value that compares equal to both operands. This means that
10755fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10756
10757'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010759
10760Syntax:
10761"""""""
10762
10763This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10764floating point or vector of floating point type. Not all targets support
10765all types however.
10766
10767::
10768
Matt Arsenault64313c92014-10-22 18:25:02 +000010769 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10770 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10771 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10772 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10773 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010774
10775Overview:
10776"""""""""
10777
10778The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10779arguments.
10780
10781
10782Arguments:
10783""""""""""
10784
10785The arguments and return value are floating point numbers of the same
10786type.
10787
10788Semantics:
10789""""""""""
10790Follows the IEEE-754 semantics for maxNum, which also match for libm's
10791fmax.
10792
10793If either operand is a NaN, returns the other non-NaN operand. Returns
10794NaN only if both operands are NaN. If the operands compare equal,
10795returns a value that compares equal to both operands. This means that
10796fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10797
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010798'``llvm.copysign.*``' Intrinsic
10799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10800
10801Syntax:
10802"""""""
10803
10804This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10805floating point or vector of floating point type. Not all targets support
10806all types however.
10807
10808::
10809
10810 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10811 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10812 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10813 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10814 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10815
10816Overview:
10817"""""""""
10818
10819The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10820first operand and the sign of the second operand.
10821
10822Arguments:
10823""""""""""
10824
10825The arguments and return value are floating point numbers of the same
10826type.
10827
10828Semantics:
10829""""""""""
10830
10831This function returns the same values as the libm ``copysign``
10832functions would, and handles error conditions in the same way.
10833
Sean Silvab084af42012-12-07 10:36:55 +000010834'``llvm.floor.*``' Intrinsic
10835^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10836
10837Syntax:
10838"""""""
10839
10840This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10841floating point or vector of floating point type. Not all targets support
10842all types however.
10843
10844::
10845
10846 declare float @llvm.floor.f32(float %Val)
10847 declare double @llvm.floor.f64(double %Val)
10848 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10849 declare fp128 @llvm.floor.f128(fp128 %Val)
10850 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10851
10852Overview:
10853"""""""""
10854
10855The '``llvm.floor.*``' intrinsics return the floor of the operand.
10856
10857Arguments:
10858""""""""""
10859
10860The argument and return value are floating point numbers of the same
10861type.
10862
10863Semantics:
10864""""""""""
10865
10866This function returns the same values as the libm ``floor`` functions
10867would, and handles error conditions in the same way.
10868
10869'``llvm.ceil.*``' Intrinsic
10870^^^^^^^^^^^^^^^^^^^^^^^^^^^
10871
10872Syntax:
10873"""""""
10874
10875This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10876floating point or vector of floating point type. Not all targets support
10877all types however.
10878
10879::
10880
10881 declare float @llvm.ceil.f32(float %Val)
10882 declare double @llvm.ceil.f64(double %Val)
10883 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10884 declare fp128 @llvm.ceil.f128(fp128 %Val)
10885 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10886
10887Overview:
10888"""""""""
10889
10890The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10891
10892Arguments:
10893""""""""""
10894
10895The argument and return value are floating point numbers of the same
10896type.
10897
10898Semantics:
10899""""""""""
10900
10901This function returns the same values as the libm ``ceil`` functions
10902would, and handles error conditions in the same way.
10903
10904'``llvm.trunc.*``' Intrinsic
10905^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10906
10907Syntax:
10908"""""""
10909
10910This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10911floating point or vector of floating point type. Not all targets support
10912all types however.
10913
10914::
10915
10916 declare float @llvm.trunc.f32(float %Val)
10917 declare double @llvm.trunc.f64(double %Val)
10918 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10919 declare fp128 @llvm.trunc.f128(fp128 %Val)
10920 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10921
10922Overview:
10923"""""""""
10924
10925The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10926nearest integer not larger in magnitude than the operand.
10927
10928Arguments:
10929""""""""""
10930
10931The argument and return value are floating point numbers of the same
10932type.
10933
10934Semantics:
10935""""""""""
10936
10937This function returns the same values as the libm ``trunc`` functions
10938would, and handles error conditions in the same way.
10939
10940'``llvm.rint.*``' Intrinsic
10941^^^^^^^^^^^^^^^^^^^^^^^^^^^
10942
10943Syntax:
10944"""""""
10945
10946This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10947floating point or vector of floating point type. Not all targets support
10948all types however.
10949
10950::
10951
10952 declare float @llvm.rint.f32(float %Val)
10953 declare double @llvm.rint.f64(double %Val)
10954 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10955 declare fp128 @llvm.rint.f128(fp128 %Val)
10956 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10957
10958Overview:
10959"""""""""
10960
10961The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10962nearest integer. It may raise an inexact floating-point exception if the
10963operand isn't an integer.
10964
10965Arguments:
10966""""""""""
10967
10968The argument and return value are floating point numbers of the same
10969type.
10970
10971Semantics:
10972""""""""""
10973
10974This function returns the same values as the libm ``rint`` functions
10975would, and handles error conditions in the same way.
10976
10977'``llvm.nearbyint.*``' Intrinsic
10978^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10979
10980Syntax:
10981"""""""
10982
10983This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10984floating point or vector of floating point type. Not all targets support
10985all types however.
10986
10987::
10988
10989 declare float @llvm.nearbyint.f32(float %Val)
10990 declare double @llvm.nearbyint.f64(double %Val)
10991 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10992 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10993 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10994
10995Overview:
10996"""""""""
10997
10998The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10999nearest integer.
11000
11001Arguments:
11002""""""""""
11003
11004The argument and return value are floating point numbers of the same
11005type.
11006
11007Semantics:
11008""""""""""
11009
11010This function returns the same values as the libm ``nearbyint``
11011functions would, and handles error conditions in the same way.
11012
Hal Finkel171817e2013-08-07 22:49:12 +000011013'``llvm.round.*``' Intrinsic
11014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11015
11016Syntax:
11017"""""""
11018
11019This is an overloaded intrinsic. You can use ``llvm.round`` on any
11020floating point or vector of floating point type. Not all targets support
11021all types however.
11022
11023::
11024
11025 declare float @llvm.round.f32(float %Val)
11026 declare double @llvm.round.f64(double %Val)
11027 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11028 declare fp128 @llvm.round.f128(fp128 %Val)
11029 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11030
11031Overview:
11032"""""""""
11033
11034The '``llvm.round.*``' intrinsics returns the operand rounded to the
11035nearest integer.
11036
11037Arguments:
11038""""""""""
11039
11040The argument and return value are floating point numbers of the same
11041type.
11042
11043Semantics:
11044""""""""""
11045
11046This function returns the same values as the libm ``round``
11047functions would, and handles error conditions in the same way.
11048
Sean Silvab084af42012-12-07 10:36:55 +000011049Bit Manipulation Intrinsics
11050---------------------------
11051
11052LLVM provides intrinsics for a few important bit manipulation
11053operations. These allow efficient code generation for some algorithms.
11054
James Molloy90111f72015-11-12 12:29:09 +000011055'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011056^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011057
11058Syntax:
11059"""""""
11060
11061This is an overloaded intrinsic function. You can use bitreverse on any
11062integer type.
11063
11064::
11065
11066 declare i16 @llvm.bitreverse.i16(i16 <id>)
11067 declare i32 @llvm.bitreverse.i32(i32 <id>)
11068 declare i64 @llvm.bitreverse.i64(i64 <id>)
11069
11070Overview:
11071"""""""""
11072
11073The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011074bitpattern of an integer value; for example ``0b10110110`` becomes
11075``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011076
11077Semantics:
11078""""""""""
11079
Yichao Yu5abf14b2016-11-23 16:25:31 +000011080The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011081``M`` in the input moved to bit ``N-M`` in the output.
11082
Sean Silvab084af42012-12-07 10:36:55 +000011083'``llvm.bswap.*``' Intrinsics
11084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11085
11086Syntax:
11087"""""""
11088
11089This is an overloaded intrinsic function. You can use bswap on any
11090integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11091
11092::
11093
11094 declare i16 @llvm.bswap.i16(i16 <id>)
11095 declare i32 @llvm.bswap.i32(i32 <id>)
11096 declare i64 @llvm.bswap.i64(i64 <id>)
11097
11098Overview:
11099"""""""""
11100
11101The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11102values with an even number of bytes (positive multiple of 16 bits).
11103These are useful for performing operations on data that is not in the
11104target's native byte order.
11105
11106Semantics:
11107""""""""""
11108
11109The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11110and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11111intrinsic returns an i32 value that has the four bytes of the input i32
11112swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11113returned i32 will have its bytes in 3, 2, 1, 0 order. The
11114``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11115concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11116respectively).
11117
11118'``llvm.ctpop.*``' Intrinsic
11119^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11120
11121Syntax:
11122"""""""
11123
11124This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11125bit width, or on any vector with integer elements. Not all targets
11126support all bit widths or vector types, however.
11127
11128::
11129
11130 declare i8 @llvm.ctpop.i8(i8 <src>)
11131 declare i16 @llvm.ctpop.i16(i16 <src>)
11132 declare i32 @llvm.ctpop.i32(i32 <src>)
11133 declare i64 @llvm.ctpop.i64(i64 <src>)
11134 declare i256 @llvm.ctpop.i256(i256 <src>)
11135 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11136
11137Overview:
11138"""""""""
11139
11140The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11141in a value.
11142
11143Arguments:
11144""""""""""
11145
11146The only argument is the value to be counted. The argument may be of any
11147integer type, or a vector with integer elements. The return type must
11148match the argument type.
11149
11150Semantics:
11151""""""""""
11152
11153The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11154each element of a vector.
11155
11156'``llvm.ctlz.*``' Intrinsic
11157^^^^^^^^^^^^^^^^^^^^^^^^^^^
11158
11159Syntax:
11160"""""""
11161
11162This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11163integer bit width, or any vector whose elements are integers. Not all
11164targets support all bit widths or vector types, however.
11165
11166::
11167
11168 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11169 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11170 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11171 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11172 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011173 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011174
11175Overview:
11176"""""""""
11177
11178The '``llvm.ctlz``' family of intrinsic functions counts the number of
11179leading zeros in a variable.
11180
11181Arguments:
11182""""""""""
11183
11184The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011185any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011186type must match the first argument type.
11187
11188The second argument must be a constant and is a flag to indicate whether
11189the intrinsic should ensure that a zero as the first argument produces a
11190defined result. Historically some architectures did not provide a
11191defined result for zero values as efficiently, and many algorithms are
11192now predicated on avoiding zero-value inputs.
11193
11194Semantics:
11195""""""""""
11196
11197The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11198zeros in a variable, or within each element of the vector. If
11199``src == 0`` then the result is the size in bits of the type of ``src``
11200if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11201``llvm.ctlz(i32 2) = 30``.
11202
11203'``llvm.cttz.*``' Intrinsic
11204^^^^^^^^^^^^^^^^^^^^^^^^^^^
11205
11206Syntax:
11207"""""""
11208
11209This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11210integer bit width, or any vector of integer elements. Not all targets
11211support all bit widths or vector types, however.
11212
11213::
11214
11215 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11216 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11217 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11218 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11219 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011220 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011221
11222Overview:
11223"""""""""
11224
11225The '``llvm.cttz``' family of intrinsic functions counts the number of
11226trailing zeros.
11227
11228Arguments:
11229""""""""""
11230
11231The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011232any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011233type must match the first argument type.
11234
11235The second argument must be a constant and is a flag to indicate whether
11236the intrinsic should ensure that a zero as the first argument produces a
11237defined result. Historically some architectures did not provide a
11238defined result for zero values as efficiently, and many algorithms are
11239now predicated on avoiding zero-value inputs.
11240
11241Semantics:
11242""""""""""
11243
11244The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11245zeros in a variable, or within each element of a vector. If ``src == 0``
11246then the result is the size in bits of the type of ``src`` if
11247``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11248``llvm.cttz(2) = 1``.
11249
Philip Reames34843ae2015-03-05 05:55:55 +000011250.. _int_overflow:
11251
Sean Silvab084af42012-12-07 10:36:55 +000011252Arithmetic with Overflow Intrinsics
11253-----------------------------------
11254
John Regehr6a493f22016-05-12 20:55:09 +000011255LLVM provides intrinsics for fast arithmetic overflow checking.
11256
11257Each of these intrinsics returns a two-element struct. The first
11258element of this struct contains the result of the corresponding
11259arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11260the result. Therefore, for example, the first element of the struct
11261returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11262result of a 32-bit ``add`` instruction with the same operands, where
11263the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11264
11265The second element of the result is an ``i1`` that is 1 if the
11266arithmetic operation overflowed and 0 otherwise. An operation
11267overflows if, for any values of its operands ``A`` and ``B`` and for
11268any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11269not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11270``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11271``op`` is the underlying arithmetic operation.
11272
11273The behavior of these intrinsics is well-defined for all argument
11274values.
Sean Silvab084af42012-12-07 10:36:55 +000011275
11276'``llvm.sadd.with.overflow.*``' Intrinsics
11277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11278
11279Syntax:
11280"""""""
11281
11282This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11283on any integer bit width.
11284
11285::
11286
11287 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11288 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11289 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11290
11291Overview:
11292"""""""""
11293
11294The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11295a signed addition of the two arguments, and indicate whether an overflow
11296occurred during the signed summation.
11297
11298Arguments:
11299""""""""""
11300
11301The arguments (%a and %b) and the first element of the result structure
11302may be of integer types of any bit width, but they must have the same
11303bit width. The second element of the result structure must be of type
11304``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11305addition.
11306
11307Semantics:
11308""""""""""
11309
11310The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011311a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011312first element of which is the signed summation, and the second element
11313of which is a bit specifying if the signed summation resulted in an
11314overflow.
11315
11316Examples:
11317"""""""""
11318
11319.. code-block:: llvm
11320
11321 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11322 %sum = extractvalue {i32, i1} %res, 0
11323 %obit = extractvalue {i32, i1} %res, 1
11324 br i1 %obit, label %overflow, label %normal
11325
11326'``llvm.uadd.with.overflow.*``' Intrinsics
11327^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11328
11329Syntax:
11330"""""""
11331
11332This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11333on any integer bit width.
11334
11335::
11336
11337 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11338 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11339 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11340
11341Overview:
11342"""""""""
11343
11344The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11345an unsigned addition of the two arguments, and indicate whether a carry
11346occurred during the unsigned summation.
11347
11348Arguments:
11349""""""""""
11350
11351The arguments (%a and %b) and the first element of the result structure
11352may be of integer types of any bit width, but they must have the same
11353bit width. The second element of the result structure must be of type
11354``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11355addition.
11356
11357Semantics:
11358""""""""""
11359
11360The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011361an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011362first element of which is the sum, and the second element of which is a
11363bit specifying if the unsigned summation resulted in a carry.
11364
11365Examples:
11366"""""""""
11367
11368.. code-block:: llvm
11369
11370 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11371 %sum = extractvalue {i32, i1} %res, 0
11372 %obit = extractvalue {i32, i1} %res, 1
11373 br i1 %obit, label %carry, label %normal
11374
11375'``llvm.ssub.with.overflow.*``' Intrinsics
11376^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11377
11378Syntax:
11379"""""""
11380
11381This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11382on any integer bit width.
11383
11384::
11385
11386 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11387 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11388 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11389
11390Overview:
11391"""""""""
11392
11393The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11394a signed subtraction of the two arguments, and indicate whether an
11395overflow occurred during the signed subtraction.
11396
11397Arguments:
11398""""""""""
11399
11400The arguments (%a and %b) and the first element of the result structure
11401may be of integer types of any bit width, but they must have the same
11402bit width. The second element of the result structure must be of type
11403``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11404subtraction.
11405
11406Semantics:
11407""""""""""
11408
11409The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011410a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011411first element of which is the subtraction, and the second element of
11412which is a bit specifying if the signed subtraction resulted in an
11413overflow.
11414
11415Examples:
11416"""""""""
11417
11418.. code-block:: llvm
11419
11420 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11421 %sum = extractvalue {i32, i1} %res, 0
11422 %obit = extractvalue {i32, i1} %res, 1
11423 br i1 %obit, label %overflow, label %normal
11424
11425'``llvm.usub.with.overflow.*``' Intrinsics
11426^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11427
11428Syntax:
11429"""""""
11430
11431This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11432on any integer bit width.
11433
11434::
11435
11436 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11437 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11438 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11439
11440Overview:
11441"""""""""
11442
11443The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11444an unsigned subtraction of the two arguments, and indicate whether an
11445overflow occurred during the unsigned subtraction.
11446
11447Arguments:
11448""""""""""
11449
11450The arguments (%a and %b) and the first element of the result structure
11451may be of integer types of any bit width, but they must have the same
11452bit width. The second element of the result structure must be of type
11453``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11454subtraction.
11455
11456Semantics:
11457""""""""""
11458
11459The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011460an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011461the first element of which is the subtraction, and the second element of
11462which is a bit specifying if the unsigned subtraction resulted in an
11463overflow.
11464
11465Examples:
11466"""""""""
11467
11468.. code-block:: llvm
11469
11470 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11471 %sum = extractvalue {i32, i1} %res, 0
11472 %obit = extractvalue {i32, i1} %res, 1
11473 br i1 %obit, label %overflow, label %normal
11474
11475'``llvm.smul.with.overflow.*``' Intrinsics
11476^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11477
11478Syntax:
11479"""""""
11480
11481This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11482on any integer bit width.
11483
11484::
11485
11486 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11487 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11488 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11489
11490Overview:
11491"""""""""
11492
11493The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11494a signed multiplication of the two arguments, and indicate whether an
11495overflow occurred during the signed multiplication.
11496
11497Arguments:
11498""""""""""
11499
11500The arguments (%a and %b) and the first element of the result structure
11501may be of integer types of any bit width, but they must have the same
11502bit width. The second element of the result structure must be of type
11503``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11504multiplication.
11505
11506Semantics:
11507""""""""""
11508
11509The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011510a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011511the first element of which is the multiplication, and the second element
11512of which is a bit specifying if the signed multiplication resulted in an
11513overflow.
11514
11515Examples:
11516"""""""""
11517
11518.. code-block:: llvm
11519
11520 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11521 %sum = extractvalue {i32, i1} %res, 0
11522 %obit = extractvalue {i32, i1} %res, 1
11523 br i1 %obit, label %overflow, label %normal
11524
11525'``llvm.umul.with.overflow.*``' Intrinsics
11526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11527
11528Syntax:
11529"""""""
11530
11531This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11532on any integer bit width.
11533
11534::
11535
11536 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11537 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11538 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11539
11540Overview:
11541"""""""""
11542
11543The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11544a unsigned multiplication of the two arguments, and indicate whether an
11545overflow occurred during the unsigned multiplication.
11546
11547Arguments:
11548""""""""""
11549
11550The arguments (%a and %b) and the first element of the result structure
11551may be of integer types of any bit width, but they must have the same
11552bit width. The second element of the result structure must be of type
11553``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11554multiplication.
11555
11556Semantics:
11557""""""""""
11558
11559The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011560an unsigned multiplication of the two arguments. They return a structure ---
11561the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011562element of which is a bit specifying if the unsigned multiplication
11563resulted in an overflow.
11564
11565Examples:
11566"""""""""
11567
11568.. code-block:: llvm
11569
11570 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11571 %sum = extractvalue {i32, i1} %res, 0
11572 %obit = extractvalue {i32, i1} %res, 1
11573 br i1 %obit, label %overflow, label %normal
11574
11575Specialised Arithmetic Intrinsics
11576---------------------------------
11577
Owen Anderson1056a922015-07-11 07:01:27 +000011578'``llvm.canonicalize.*``' Intrinsic
11579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11580
11581Syntax:
11582"""""""
11583
11584::
11585
11586 declare float @llvm.canonicalize.f32(float %a)
11587 declare double @llvm.canonicalize.f64(double %b)
11588
11589Overview:
11590"""""""""
11591
11592The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011593encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011594implementing certain numeric primitives such as frexp. The canonical encoding is
11595defined by IEEE-754-2008 to be:
11596
11597::
11598
11599 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011600 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011601 numbers, infinities, and NaNs, especially in decimal formats.
11602
11603This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011604conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011605according to section 6.2.
11606
11607Examples of non-canonical encodings:
11608
Sean Silvaa1190322015-08-06 22:56:48 +000011609- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011610 converted to a canonical representation per hardware-specific protocol.
11611- Many normal decimal floating point numbers have non-canonical alternative
11612 encodings.
11613- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011614 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011615 a zero of the same sign by this operation.
11616
11617Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11618default exception handling must signal an invalid exception, and produce a
11619quiet NaN result.
11620
11621This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011622that the compiler does not constant fold the operation. Likewise, division by
116231.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011624-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11625
Sean Silvaa1190322015-08-06 22:56:48 +000011626``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011627
11628- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11629- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11630 to ``(x == y)``
11631
11632Additionally, the sign of zero must be conserved:
11633``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11634
11635The payload bits of a NaN must be conserved, with two exceptions.
11636First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011637must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011638usual methods.
11639
11640The canonicalization operation may be optimized away if:
11641
Sean Silvaa1190322015-08-06 22:56:48 +000011642- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011643 floating-point operation that is required by the standard to be canonical.
11644- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011645 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011646
Sean Silvab084af42012-12-07 10:36:55 +000011647'``llvm.fmuladd.*``' Intrinsic
11648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11649
11650Syntax:
11651"""""""
11652
11653::
11654
11655 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11656 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11657
11658Overview:
11659"""""""""
11660
11661The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011662expressions that can be fused if the code generator determines that (a) the
11663target instruction set has support for a fused operation, and (b) that the
11664fused operation is more efficient than the equivalent, separate pair of mul
11665and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011666
11667Arguments:
11668""""""""""
11669
11670The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11671multiplicands, a and b, and an addend c.
11672
11673Semantics:
11674""""""""""
11675
11676The expression:
11677
11678::
11679
11680 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11681
11682is equivalent to the expression a \* b + c, except that rounding will
11683not be performed between the multiplication and addition steps if the
11684code generator fuses the operations. Fusion is not guaranteed, even if
11685the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011686corresponding llvm.fma.\* intrinsic function should be used
11687instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011688
11689Examples:
11690"""""""""
11691
11692.. code-block:: llvm
11693
Tim Northover675a0962014-06-13 14:24:23 +000011694 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011695
Amara Emersoncf9daa32017-05-09 10:43:25 +000011696
11697Experimental Vector Reduction Intrinsics
11698----------------------------------------
11699
11700Horizontal reductions of vectors can be expressed using the following
11701intrinsics. Each one takes a vector operand as an input and applies its
11702respective operation across all elements of the vector, returning a single
11703scalar result of the same element type.
11704
11705
11706'``llvm.experimental.vector.reduce.add.*``' Intrinsic
11707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11708
11709Syntax:
11710"""""""
11711
11712::
11713
11714 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
11715 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
11716
11717Overview:
11718"""""""""
11719
11720The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
11721reduction of a vector, returning the result as a scalar. The return type matches
11722the element-type of the vector input.
11723
11724Arguments:
11725""""""""""
11726The argument to this intrinsic must be a vector of integer values.
11727
11728'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
11729^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11730
11731Syntax:
11732"""""""
11733
11734::
11735
11736 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
11737 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
11738
11739Overview:
11740"""""""""
11741
11742The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating point
11743``ADD`` reduction of a vector, returning the result as a scalar. The return type
11744matches the element-type of the vector input.
11745
11746If the intrinsic call has fast-math flags, then the reduction will not preserve
11747the associativity of an equivalent scalarized counterpart. If it does not have
11748fast-math flags, then the reduction will be *ordered*, implying that the
11749operation respects the associativity of a scalarized reduction.
11750
11751
11752Arguments:
11753""""""""""
11754The first argument to this intrinsic is a scalar accumulator value, which is
11755only used when there are no fast-math flags attached. This argument may be undef
11756when fast-math flags are used.
11757
11758The second argument must be a vector of floating point values.
11759
11760Examples:
11761"""""""""
11762
11763.. code-block:: llvm
11764
11765 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
11766 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
11767
11768
11769'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
11770^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11771
11772Syntax:
11773"""""""
11774
11775::
11776
11777 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
11778 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
11779
11780Overview:
11781"""""""""
11782
11783The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
11784reduction of a vector, returning the result as a scalar. The return type matches
11785the element-type of the vector input.
11786
11787Arguments:
11788""""""""""
11789The argument to this intrinsic must be a vector of integer values.
11790
11791'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
11792^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11793
11794Syntax:
11795"""""""
11796
11797::
11798
11799 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
11800 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
11801
11802Overview:
11803"""""""""
11804
11805The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating point
11806``MUL`` reduction of a vector, returning the result as a scalar. The return type
11807matches the element-type of the vector input.
11808
11809If the intrinsic call has fast-math flags, then the reduction will not preserve
11810the associativity of an equivalent scalarized counterpart. If it does not have
11811fast-math flags, then the reduction will be *ordered*, implying that the
11812operation respects the associativity of a scalarized reduction.
11813
11814
11815Arguments:
11816""""""""""
11817The first argument to this intrinsic is a scalar accumulator value, which is
11818only used when there are no fast-math flags attached. This argument may be undef
11819when fast-math flags are used.
11820
11821The second argument must be a vector of floating point values.
11822
11823Examples:
11824"""""""""
11825
11826.. code-block:: llvm
11827
11828 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
11829 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
11830
11831'``llvm.experimental.vector.reduce.and.*``' Intrinsic
11832^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11833
11834Syntax:
11835"""""""
11836
11837::
11838
11839 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
11840
11841Overview:
11842"""""""""
11843
11844The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
11845reduction of a vector, returning the result as a scalar. The return type matches
11846the element-type of the vector input.
11847
11848Arguments:
11849""""""""""
11850The argument to this intrinsic must be a vector of integer values.
11851
11852'``llvm.experimental.vector.reduce.or.*``' Intrinsic
11853^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11854
11855Syntax:
11856"""""""
11857
11858::
11859
11860 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
11861
11862Overview:
11863"""""""""
11864
11865The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
11866of a vector, returning the result as a scalar. The return type matches the
11867element-type of the vector input.
11868
11869Arguments:
11870""""""""""
11871The argument to this intrinsic must be a vector of integer values.
11872
11873'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
11874^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11875
11876Syntax:
11877"""""""
11878
11879::
11880
11881 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
11882
11883Overview:
11884"""""""""
11885
11886The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
11887reduction of a vector, returning the result as a scalar. The return type matches
11888the element-type of the vector input.
11889
11890Arguments:
11891""""""""""
11892The argument to this intrinsic must be a vector of integer values.
11893
11894'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
11895^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11896
11897Syntax:
11898"""""""
11899
11900::
11901
11902 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
11903
11904Overview:
11905"""""""""
11906
11907The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
11908``MAX`` reduction of a vector, returning the result as a scalar. The return type
11909matches the element-type of the vector input.
11910
11911Arguments:
11912""""""""""
11913The argument to this intrinsic must be a vector of integer values.
11914
11915'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
11916^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11917
11918Syntax:
11919"""""""
11920
11921::
11922
11923 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
11924
11925Overview:
11926"""""""""
11927
11928The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
11929``MIN`` reduction of a vector, returning the result as a scalar. The return type
11930matches the element-type of the vector input.
11931
11932Arguments:
11933""""""""""
11934The argument to this intrinsic must be a vector of integer values.
11935
11936'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
11937^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11938
11939Syntax:
11940"""""""
11941
11942::
11943
11944 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
11945
11946Overview:
11947"""""""""
11948
11949The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
11950integer ``MAX`` reduction of a vector, returning the result as a scalar. The
11951return type matches the element-type of the vector input.
11952
11953Arguments:
11954""""""""""
11955The argument to this intrinsic must be a vector of integer values.
11956
11957'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
11958^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11959
11960Syntax:
11961"""""""
11962
11963::
11964
11965 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
11966
11967Overview:
11968"""""""""
11969
11970The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
11971integer ``MIN`` reduction of a vector, returning the result as a scalar. The
11972return type matches the element-type of the vector input.
11973
11974Arguments:
11975""""""""""
11976The argument to this intrinsic must be a vector of integer values.
11977
11978'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
11979^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11980
11981Syntax:
11982"""""""
11983
11984::
11985
11986 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
11987 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
11988
11989Overview:
11990"""""""""
11991
11992The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating point
11993``MAX`` reduction of a vector, returning the result as a scalar. The return type
11994matches the element-type of the vector input.
11995
11996If the intrinsic call has the ``nnan`` fast-math flag then the operation can
11997assume that NaNs are not present in the input vector.
11998
11999Arguments:
12000""""""""""
12001The argument to this intrinsic must be a vector of floating point values.
12002
12003'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12004^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12005
12006Syntax:
12007"""""""
12008
12009::
12010
12011 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12012 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12013
12014Overview:
12015"""""""""
12016
12017The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating point
12018``MIN`` reduction of a vector, returning the result as a scalar. The return type
12019matches the element-type of the vector input.
12020
12021If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12022assume that NaNs are not present in the input vector.
12023
12024Arguments:
12025""""""""""
12026The argument to this intrinsic must be a vector of floating point values.
12027
Sean Silvab084af42012-12-07 10:36:55 +000012028Half Precision Floating Point Intrinsics
12029----------------------------------------
12030
12031For most target platforms, half precision floating point is a
12032storage-only format. This means that it is a dense encoding (in memory)
12033but does not support computation in the format.
12034
12035This means that code must first load the half-precision floating point
12036value as an i16, then convert it to float with
12037:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12038then be performed on the float value (including extending to double
12039etc). To store the value back to memory, it is first converted to float
12040if needed, then converted to i16 with
12041:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12042i16 value.
12043
12044.. _int_convert_to_fp16:
12045
12046'``llvm.convert.to.fp16``' Intrinsic
12047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12048
12049Syntax:
12050"""""""
12051
12052::
12053
Tim Northoverfd7e4242014-07-17 10:51:23 +000012054 declare i16 @llvm.convert.to.fp16.f32(float %a)
12055 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012056
12057Overview:
12058"""""""""
12059
Tim Northoverfd7e4242014-07-17 10:51:23 +000012060The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12061conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000012062
12063Arguments:
12064""""""""""
12065
12066The intrinsic function contains single argument - the value to be
12067converted.
12068
12069Semantics:
12070""""""""""
12071
Tim Northoverfd7e4242014-07-17 10:51:23 +000012072The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12073conventional floating point format to half precision floating point format. The
12074return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012075
12076Examples:
12077"""""""""
12078
12079.. code-block:: llvm
12080
Tim Northoverfd7e4242014-07-17 10:51:23 +000012081 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012082 store i16 %res, i16* @x, align 2
12083
12084.. _int_convert_from_fp16:
12085
12086'``llvm.convert.from.fp16``' Intrinsic
12087^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12088
12089Syntax:
12090"""""""
12091
12092::
12093
Tim Northoverfd7e4242014-07-17 10:51:23 +000012094 declare float @llvm.convert.from.fp16.f32(i16 %a)
12095 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012096
12097Overview:
12098"""""""""
12099
12100The '``llvm.convert.from.fp16``' intrinsic function performs a
12101conversion from half precision floating point format to single precision
12102floating point format.
12103
12104Arguments:
12105""""""""""
12106
12107The intrinsic function contains single argument - the value to be
12108converted.
12109
12110Semantics:
12111""""""""""
12112
12113The '``llvm.convert.from.fp16``' intrinsic function performs a
12114conversion from half single precision floating point format to single
12115precision floating point format. The input half-float value is
12116represented by an ``i16`` value.
12117
12118Examples:
12119"""""""""
12120
12121.. code-block:: llvm
12122
David Blaikiec7aabbb2015-03-04 22:06:14 +000012123 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012124 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012125
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012126.. _dbg_intrinsics:
12127
Sean Silvab084af42012-12-07 10:36:55 +000012128Debugger Intrinsics
12129-------------------
12130
12131The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12132prefix), are described in the `LLVM Source Level
12133Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
12134document.
12135
12136Exception Handling Intrinsics
12137-----------------------------
12138
12139The LLVM exception handling intrinsics (which all start with
12140``llvm.eh.`` prefix), are described in the `LLVM Exception
12141Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
12142
12143.. _int_trampoline:
12144
12145Trampoline Intrinsics
12146---------------------
12147
12148These intrinsics make it possible to excise one parameter, marked with
12149the :ref:`nest <nest>` attribute, from a function. The result is a
12150callable function pointer lacking the nest parameter - the caller does
12151not need to provide a value for it. Instead, the value to use is stored
12152in advance in a "trampoline", a block of memory usually allocated on the
12153stack, which also contains code to splice the nest value into the
12154argument list. This is used to implement the GCC nested function address
12155extension.
12156
12157For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12158then the resulting function pointer has signature ``i32 (i32, i32)*``.
12159It can be created as follows:
12160
12161.. code-block:: llvm
12162
12163 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012164 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012165 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12166 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12167 %fp = bitcast i8* %p to i32 (i32, i32)*
12168
12169The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12170``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12171
12172.. _int_it:
12173
12174'``llvm.init.trampoline``' Intrinsic
12175^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12176
12177Syntax:
12178"""""""
12179
12180::
12181
12182 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
12183
12184Overview:
12185"""""""""
12186
12187This fills the memory pointed to by ``tramp`` with executable code,
12188turning it into a trampoline.
12189
12190Arguments:
12191""""""""""
12192
12193The ``llvm.init.trampoline`` intrinsic takes three arguments, all
12194pointers. The ``tramp`` argument must point to a sufficiently large and
12195sufficiently aligned block of memory; this memory is written to by the
12196intrinsic. Note that the size and the alignment are target-specific -
12197LLVM currently provides no portable way of determining them, so a
12198front-end that generates this intrinsic needs to have some
12199target-specific knowledge. The ``func`` argument must hold a function
12200bitcast to an ``i8*``.
12201
12202Semantics:
12203""""""""""
12204
12205The block of memory pointed to by ``tramp`` is filled with target
12206dependent code, turning it into a function. Then ``tramp`` needs to be
12207passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
12208be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
12209function's signature is the same as that of ``func`` with any arguments
12210marked with the ``nest`` attribute removed. At most one such ``nest``
12211argument is allowed, and it must be of pointer type. Calling the new
12212function is equivalent to calling ``func`` with the same argument list,
12213but with ``nval`` used for the missing ``nest`` argument. If, after
12214calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
12215modified, then the effect of any later call to the returned function
12216pointer is undefined.
12217
12218.. _int_at:
12219
12220'``llvm.adjust.trampoline``' Intrinsic
12221^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12222
12223Syntax:
12224"""""""
12225
12226::
12227
12228 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
12229
12230Overview:
12231"""""""""
12232
12233This performs any required machine-specific adjustment to the address of
12234a trampoline (passed as ``tramp``).
12235
12236Arguments:
12237""""""""""
12238
12239``tramp`` must point to a block of memory which already has trampoline
12240code filled in by a previous call to
12241:ref:`llvm.init.trampoline <int_it>`.
12242
12243Semantics:
12244""""""""""
12245
12246On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012247different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000012248intrinsic returns the executable address corresponding to ``tramp``
12249after performing the required machine specific adjustments. The pointer
12250returned can then be :ref:`bitcast and executed <int_trampoline>`.
12251
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012252.. _int_mload_mstore:
12253
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012254Masked Vector Load and Store Intrinsics
12255---------------------------------------
12256
12257LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
12258
12259.. _int_mload:
12260
12261'``llvm.masked.load.*``' Intrinsics
12262^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12263
12264Syntax:
12265"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012266This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012267
12268::
12269
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012270 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12271 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012272 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012273 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012274 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012275 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012276
12277Overview:
12278"""""""""
12279
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012280Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012281
12282
12283Arguments:
12284""""""""""
12285
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012286The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012287
12288
12289Semantics:
12290""""""""""
12291
12292The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
12293The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
12294
12295
12296::
12297
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012298 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012299
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012300 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000012301 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012302 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012303
12304.. _int_mstore:
12305
12306'``llvm.masked.store.*``' Intrinsics
12307^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12308
12309Syntax:
12310"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012311This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012312
12313::
12314
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012315 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
12316 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012317 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012318 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012319 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012320 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012321
12322Overview:
12323"""""""""
12324
12325Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12326
12327Arguments:
12328""""""""""
12329
12330The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12331
12332
12333Semantics:
12334""""""""""
12335
12336The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
12337The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
12338
12339::
12340
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012341 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012342
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012343 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000012344 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012345 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
12346 store <16 x float> %res, <16 x float>* %ptr, align 4
12347
12348
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012349Masked Vector Gather and Scatter Intrinsics
12350-------------------------------------------
12351
12352LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
12353
12354.. _int_mgather:
12355
12356'``llvm.masked.gather.*``' Intrinsics
12357^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12358
12359Syntax:
12360"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012361This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012362
12363::
12364
Elad Cohenef5798a2017-05-03 12:28:54 +000012365 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12366 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
12367 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012368
12369Overview:
12370"""""""""
12371
12372Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
12373
12374
12375Arguments:
12376""""""""""
12377
12378The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
12379
12380
12381Semantics:
12382""""""""""
12383
12384The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
12385The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
12386
12387
12388::
12389
Elad Cohenef5798a2017-05-03 12:28:54 +000012390 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012391
12392 ;; The gather with all-true mask is equivalent to the following instruction sequence
12393 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
12394 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
12395 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
12396 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
12397
12398 %val0 = load double, double* %ptr0, align 8
12399 %val1 = load double, double* %ptr1, align 8
12400 %val2 = load double, double* %ptr2, align 8
12401 %val3 = load double, double* %ptr3, align 8
12402
12403 %vec0 = insertelement <4 x double>undef, %val0, 0
12404 %vec01 = insertelement <4 x double>%vec0, %val1, 1
12405 %vec012 = insertelement <4 x double>%vec01, %val2, 2
12406 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
12407
12408.. _int_mscatter:
12409
12410'``llvm.masked.scatter.*``' Intrinsics
12411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12412
12413Syntax:
12414"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012415This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012416
12417::
12418
Elad Cohenef5798a2017-05-03 12:28:54 +000012419 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
12420 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
12421 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012422
12423Overview:
12424"""""""""
12425
12426Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12427
12428Arguments:
12429""""""""""
12430
12431The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12432
12433
12434Semantics:
12435""""""""""
12436
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012437The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012438
12439::
12440
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012441 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000012442 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012443
12444 ;; It is equivalent to a list of scalar stores
12445 %val0 = extractelement <8 x i32> %value, i32 0
12446 %val1 = extractelement <8 x i32> %value, i32 1
12447 ..
12448 %val7 = extractelement <8 x i32> %value, i32 7
12449 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12450 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12451 ..
12452 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12453 ;; Note: the order of the following stores is important when they overlap:
12454 store i32 %val0, i32* %ptr0, align 4
12455 store i32 %val1, i32* %ptr1, align 4
12456 ..
12457 store i32 %val7, i32* %ptr7, align 4
12458
12459
Sean Silvab084af42012-12-07 10:36:55 +000012460Memory Use Markers
12461------------------
12462
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012463This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012464memory objects and ranges where variables are immutable.
12465
Reid Klecknera534a382013-12-19 02:14:12 +000012466.. _int_lifestart:
12467
Sean Silvab084af42012-12-07 10:36:55 +000012468'``llvm.lifetime.start``' Intrinsic
12469^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12470
12471Syntax:
12472"""""""
12473
12474::
12475
12476 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12477
12478Overview:
12479"""""""""
12480
12481The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12482object's lifetime.
12483
12484Arguments:
12485""""""""""
12486
12487The first argument is a constant integer representing the size of the
12488object, or -1 if it is variable sized. The second argument is a pointer
12489to the object.
12490
12491Semantics:
12492""""""""""
12493
12494This intrinsic indicates that before this point in the code, the value
12495of the memory pointed to by ``ptr`` is dead. This means that it is known
12496to never be used and has an undefined value. A load from the pointer
12497that precedes this intrinsic can be replaced with ``'undef'``.
12498
Reid Klecknera534a382013-12-19 02:14:12 +000012499.. _int_lifeend:
12500
Sean Silvab084af42012-12-07 10:36:55 +000012501'``llvm.lifetime.end``' Intrinsic
12502^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12503
12504Syntax:
12505"""""""
12506
12507::
12508
12509 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12510
12511Overview:
12512"""""""""
12513
12514The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12515object's lifetime.
12516
12517Arguments:
12518""""""""""
12519
12520The first argument is a constant integer representing the size of the
12521object, or -1 if it is variable sized. The second argument is a pointer
12522to the object.
12523
12524Semantics:
12525""""""""""
12526
12527This intrinsic indicates that after this point in the code, the value of
12528the memory pointed to by ``ptr`` is dead. This means that it is known to
12529never be used and has an undefined value. Any stores into the memory
12530object following this intrinsic may be removed as dead.
12531
12532'``llvm.invariant.start``' Intrinsic
12533^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12534
12535Syntax:
12536"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012537This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012538
12539::
12540
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012541 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012542
12543Overview:
12544"""""""""
12545
12546The '``llvm.invariant.start``' intrinsic specifies that the contents of
12547a memory object will not change.
12548
12549Arguments:
12550""""""""""
12551
12552The first argument is a constant integer representing the size of the
12553object, or -1 if it is variable sized. The second argument is a pointer
12554to the object.
12555
12556Semantics:
12557""""""""""
12558
12559This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12560the return value, the referenced memory location is constant and
12561unchanging.
12562
12563'``llvm.invariant.end``' Intrinsic
12564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12565
12566Syntax:
12567"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012568This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012569
12570::
12571
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012572 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012573
12574Overview:
12575"""""""""
12576
12577The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12578memory object are mutable.
12579
12580Arguments:
12581""""""""""
12582
12583The first argument is the matching ``llvm.invariant.start`` intrinsic.
12584The second argument is a constant integer representing the size of the
12585object, or -1 if it is variable sized and the third argument is a
12586pointer to the object.
12587
12588Semantics:
12589""""""""""
12590
12591This intrinsic indicates that the memory is mutable again.
12592
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012593'``llvm.invariant.group.barrier``' Intrinsic
12594^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12595
12596Syntax:
12597"""""""
12598
12599::
12600
12601 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12602
12603Overview:
12604"""""""""
12605
12606The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12607established by invariant.group metadata no longer holds, to obtain a new pointer
12608value that does not carry the invariant information.
12609
12610
12611Arguments:
12612""""""""""
12613
12614The ``llvm.invariant.group.barrier`` takes only one argument, which is
12615the pointer to the memory for which the ``invariant.group`` no longer holds.
12616
12617Semantics:
12618""""""""""
12619
12620Returns another pointer that aliases its argument but which is considered different
12621for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12622
Andrew Kaylora0a11642017-01-26 23:27:59 +000012623Constrained Floating Point Intrinsics
12624-------------------------------------
12625
12626These intrinsics are used to provide special handling of floating point
12627operations when specific rounding mode or floating point exception behavior is
12628required. By default, LLVM optimization passes assume that the rounding mode is
12629round-to-nearest and that floating point exceptions will not be monitored.
12630Constrained FP intrinsics are used to support non-default rounding modes and
12631accurately preserve exception behavior without compromising LLVM's ability to
12632optimize FP code when the default behavior is used.
12633
12634Each of these intrinsics corresponds to a normal floating point operation. The
12635first two arguments and the return value are the same as the corresponding FP
12636operation.
12637
12638The third argument is a metadata argument specifying the rounding mode to be
12639assumed. This argument must be one of the following strings:
12640
12641::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012642
Andrew Kaylora0a11642017-01-26 23:27:59 +000012643 "round.dynamic"
12644 "round.tonearest"
12645 "round.downward"
12646 "round.upward"
12647 "round.towardzero"
12648
12649If this argument is "round.dynamic" optimization passes must assume that the
12650rounding mode is unknown and may change at runtime. No transformations that
12651depend on rounding mode may be performed in this case.
12652
12653The other possible values for the rounding mode argument correspond to the
12654similarly named IEEE rounding modes. If the argument is any of these values
12655optimization passes may perform transformations as long as they are consistent
12656with the specified rounding mode.
12657
12658For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12659"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12660'x-0' should evaluate to '-0' when rounding downward. However, this
12661transformation is legal for all other rounding modes.
12662
12663For values other than "round.dynamic" optimization passes may assume that the
12664actual runtime rounding mode (as defined in a target-specific manner) matches
12665the specified rounding mode, but this is not guaranteed. Using a specific
12666non-dynamic rounding mode which does not match the actual rounding mode at
12667runtime results in undefined behavior.
12668
12669The fourth argument to the constrained floating point intrinsics specifies the
12670required exception behavior. This argument must be one of the following
12671strings:
12672
12673::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012674
Andrew Kaylora0a11642017-01-26 23:27:59 +000012675 "fpexcept.ignore"
12676 "fpexcept.maytrap"
12677 "fpexcept.strict"
12678
12679If this argument is "fpexcept.ignore" optimization passes may assume that the
12680exception status flags will not be read and that floating point exceptions will
12681be masked. This allows transformations to be performed that may change the
12682exception semantics of the original code. For example, FP operations may be
12683speculatively executed in this case whereas they must not be for either of the
12684other possible values of this argument.
12685
12686If the exception behavior argument is "fpexcept.maytrap" optimization passes
12687must avoid transformations that may raise exceptions that would not have been
12688raised by the original code (such as speculatively executing FP operations), but
12689passes are not required to preserve all exceptions that are implied by the
12690original code. For example, exceptions may be potentially hidden by constant
12691folding.
12692
12693If the exception behavior argument is "fpexcept.strict" all transformations must
12694strictly preserve the floating point exception semantics of the original code.
12695Any FP exception that would have been raised by the original code must be raised
12696by the transformed code, and the transformed code must not raise any FP
12697exceptions that would not have been raised by the original code. This is the
12698exception behavior argument that will be used if the code being compiled reads
12699the FP exception status flags, but this mode can also be used with code that
12700unmasks FP exceptions.
12701
12702The number and order of floating point exceptions is NOT guaranteed. For
12703example, a series of FP operations that each may raise exceptions may be
12704vectorized into a single instruction that raises each unique exception a single
12705time.
12706
12707
12708'``llvm.experimental.constrained.fadd``' Intrinsic
12709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12710
12711Syntax:
12712"""""""
12713
12714::
12715
12716 declare <type>
12717 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12718 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012719 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012720
12721Overview:
12722"""""""""
12723
12724The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
12725two operands.
12726
12727
12728Arguments:
12729""""""""""
12730
12731The first two arguments to the '``llvm.experimental.constrained.fadd``'
12732intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12733of floating point values. Both arguments must have identical types.
12734
12735The third and fourth arguments specify the rounding mode and exception
12736behavior as described above.
12737
12738Semantics:
12739""""""""""
12740
12741The value produced is the floating point sum of the two value operands and has
12742the same type as the operands.
12743
12744
12745'``llvm.experimental.constrained.fsub``' Intrinsic
12746^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12747
12748Syntax:
12749"""""""
12750
12751::
12752
12753 declare <type>
12754 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
12755 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012756 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012757
12758Overview:
12759"""""""""
12760
12761The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
12762of its two operands.
12763
12764
12765Arguments:
12766""""""""""
12767
12768The first two arguments to the '``llvm.experimental.constrained.fsub``'
12769intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12770of floating point values. Both arguments must have identical types.
12771
12772The third and fourth arguments specify the rounding mode and exception
12773behavior as described above.
12774
12775Semantics:
12776""""""""""
12777
12778The value produced is the floating point difference of the two value operands
12779and has the same type as the operands.
12780
12781
12782'``llvm.experimental.constrained.fmul``' Intrinsic
12783^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12784
12785Syntax:
12786"""""""
12787
12788::
12789
12790 declare <type>
12791 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
12792 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012793 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012794
12795Overview:
12796"""""""""
12797
12798The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
12799its two operands.
12800
12801
12802Arguments:
12803""""""""""
12804
12805The first two arguments to the '``llvm.experimental.constrained.fmul``'
12806intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12807of floating point values. Both arguments must have identical types.
12808
12809The third and fourth arguments specify the rounding mode and exception
12810behavior as described above.
12811
12812Semantics:
12813""""""""""
12814
12815The value produced is the floating point product of the two value operands and
12816has the same type as the operands.
12817
12818
12819'``llvm.experimental.constrained.fdiv``' Intrinsic
12820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12821
12822Syntax:
12823"""""""
12824
12825::
12826
12827 declare <type>
12828 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
12829 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012830 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012831
12832Overview:
12833"""""""""
12834
12835The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
12836its two operands.
12837
12838
12839Arguments:
12840""""""""""
12841
12842The first two arguments to the '``llvm.experimental.constrained.fdiv``'
12843intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12844of floating point values. Both arguments must have identical types.
12845
12846The third and fourth arguments specify the rounding mode and exception
12847behavior as described above.
12848
12849Semantics:
12850""""""""""
12851
12852The value produced is the floating point quotient of the two value operands and
12853has the same type as the operands.
12854
12855
12856'``llvm.experimental.constrained.frem``' Intrinsic
12857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12858
12859Syntax:
12860"""""""
12861
12862::
12863
12864 declare <type>
12865 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
12866 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012867 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012868
12869Overview:
12870"""""""""
12871
12872The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
12873from the division of its two operands.
12874
12875
12876Arguments:
12877""""""""""
12878
12879The first two arguments to the '``llvm.experimental.constrained.frem``'
12880intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12881of floating point values. Both arguments must have identical types.
12882
12883The third and fourth arguments specify the rounding mode and exception
12884behavior as described above. The rounding mode argument has no effect, since
12885the result of frem is never rounded, but the argument is included for
12886consistency with the other constrained floating point intrinsics.
12887
12888Semantics:
12889""""""""""
12890
12891The value produced is the floating point remainder from the division of the two
12892value operands and has the same type as the operands. The remainder has the
12893same sign as the dividend.
12894
12895
Andrew Kaylorf4660012017-05-25 21:31:00 +000012896Constrained libm-equivalent Intrinsics
12897--------------------------------------
12898
12899In addition to the basic floating point operations for which constrained
12900intrinsics are described above, there are constrained versions of various
12901operations which provide equivalent behavior to a corresponding libm function.
12902These intrinsics allow the precise behavior of these operations with respect to
12903rounding mode and exception behavior to be controlled.
12904
12905As with the basic constrained floating point intrinsics, the rounding mode
12906and exception behavior arguments only control the behavior of the optimizer.
12907They do not change the runtime floating point environment.
12908
12909
12910'``llvm.experimental.constrained.sqrt``' Intrinsic
12911^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12912
12913Syntax:
12914"""""""
12915
12916::
12917
12918 declare <type>
12919 @llvm.experimental.constrained.sqrt(<type> <op1>,
12920 metadata <rounding mode>,
12921 metadata <exception behavior>)
12922
12923Overview:
12924"""""""""
12925
12926The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
12927of the specified value, returning the same value as the libm '``sqrt``'
12928functions would, but without setting ``errno``.
12929
12930Arguments:
12931""""""""""
12932
12933The first argument and the return type are floating point numbers of the same
12934type.
12935
12936The second and third arguments specify the rounding mode and exception
12937behavior as described above.
12938
12939Semantics:
12940""""""""""
12941
12942This function returns the nonnegative square root of the specified value.
12943If the value is less than negative zero, a floating point exception occurs
12944and the the return value is architecture specific.
12945
12946
12947'``llvm.experimental.constrained.pow``' Intrinsic
12948^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12949
12950Syntax:
12951"""""""
12952
12953::
12954
12955 declare <type>
12956 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
12957 metadata <rounding mode>,
12958 metadata <exception behavior>)
12959
12960Overview:
12961"""""""""
12962
12963The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
12964raised to the (positive or negative) power specified by the second operand.
12965
12966Arguments:
12967""""""""""
12968
12969The first two arguments and the return value are floating point numbers of the
12970same type. The second argument specifies the power to which the first argument
12971should be raised.
12972
12973The third and fourth arguments specify the rounding mode and exception
12974behavior as described above.
12975
12976Semantics:
12977""""""""""
12978
12979This function returns the first value raised to the second power,
12980returning the same values as the libm ``pow`` functions would, and
12981handles error conditions in the same way.
12982
12983
12984'``llvm.experimental.constrained.powi``' Intrinsic
12985^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12986
12987Syntax:
12988"""""""
12989
12990::
12991
12992 declare <type>
12993 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
12994 metadata <rounding mode>,
12995 metadata <exception behavior>)
12996
12997Overview:
12998"""""""""
12999
13000The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
13001raised to the (positive or negative) power specified by the second operand. The
13002order of evaluation of multiplications is not defined. When a vector of floating
13003point type is used, the second argument remains a scalar integer value.
13004
13005
13006Arguments:
13007""""""""""
13008
13009The first argument and the return value are floating point numbers of the same
13010type. The second argument is a 32-bit signed integer specifying the power to
13011which the first argument should be raised.
13012
13013The third and fourth arguments specify the rounding mode and exception
13014behavior as described above.
13015
13016Semantics:
13017""""""""""
13018
13019This function returns the first value raised to the second power with an
13020unspecified sequence of rounding operations.
13021
13022
13023'``llvm.experimental.constrained.sin``' Intrinsic
13024^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13025
13026Syntax:
13027"""""""
13028
13029::
13030
13031 declare <type>
13032 @llvm.experimental.constrained.sin(<type> <op1>,
13033 metadata <rounding mode>,
13034 metadata <exception behavior>)
13035
13036Overview:
13037"""""""""
13038
13039The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
13040first operand.
13041
13042Arguments:
13043""""""""""
13044
13045The first argument and the return type are floating point numbers of the same
13046type.
13047
13048The second and third arguments specify the rounding mode and exception
13049behavior as described above.
13050
13051Semantics:
13052""""""""""
13053
13054This function returns the sine of the specified operand, returning the
13055same values as the libm ``sin`` functions would, and handles error
13056conditions in the same way.
13057
13058
13059'``llvm.experimental.constrained.cos``' Intrinsic
13060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13061
13062Syntax:
13063"""""""
13064
13065::
13066
13067 declare <type>
13068 @llvm.experimental.constrained.cos(<type> <op1>,
13069 metadata <rounding mode>,
13070 metadata <exception behavior>)
13071
13072Overview:
13073"""""""""
13074
13075The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
13076first operand.
13077
13078Arguments:
13079""""""""""
13080
13081The first argument and the return type are floating point numbers of the same
13082type.
13083
13084The second and third arguments specify the rounding mode and exception
13085behavior as described above.
13086
13087Semantics:
13088""""""""""
13089
13090This function returns the cosine of the specified operand, returning the
13091same values as the libm ``cos`` functions would, and handles error
13092conditions in the same way.
13093
13094
13095'``llvm.experimental.constrained.exp``' Intrinsic
13096^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13097
13098Syntax:
13099"""""""
13100
13101::
13102
13103 declare <type>
13104 @llvm.experimental.constrained.exp(<type> <op1>,
13105 metadata <rounding mode>,
13106 metadata <exception behavior>)
13107
13108Overview:
13109"""""""""
13110
13111The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
13112exponential of the specified value.
13113
13114Arguments:
13115""""""""""
13116
13117The first argument and the return value are floating point numbers of the same
13118type.
13119
13120The second and third arguments specify the rounding mode and exception
13121behavior as described above.
13122
13123Semantics:
13124""""""""""
13125
13126This function returns the same values as the libm ``exp`` functions
13127would, and handles error conditions in the same way.
13128
13129
13130'``llvm.experimental.constrained.exp2``' Intrinsic
13131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13132
13133Syntax:
13134"""""""
13135
13136::
13137
13138 declare <type>
13139 @llvm.experimental.constrained.exp2(<type> <op1>,
13140 metadata <rounding mode>,
13141 metadata <exception behavior>)
13142
13143Overview:
13144"""""""""
13145
13146The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
13147exponential of the specified value.
13148
13149
13150Arguments:
13151""""""""""
13152
13153The first argument and the return value are floating point numbers of the same
13154type.
13155
13156The second and third arguments specify the rounding mode and exception
13157behavior as described above.
13158
13159Semantics:
13160""""""""""
13161
13162This function returns the same values as the libm ``exp2`` functions
13163would, and handles error conditions in the same way.
13164
13165
13166'``llvm.experimental.constrained.log``' Intrinsic
13167^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13168
13169Syntax:
13170"""""""
13171
13172::
13173
13174 declare <type>
13175 @llvm.experimental.constrained.log(<type> <op1>,
13176 metadata <rounding mode>,
13177 metadata <exception behavior>)
13178
13179Overview:
13180"""""""""
13181
13182The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
13183logarithm of the specified value.
13184
13185Arguments:
13186""""""""""
13187
13188The first argument and the return value are floating point numbers of the same
13189type.
13190
13191The second and third arguments specify the rounding mode and exception
13192behavior as described above.
13193
13194
13195Semantics:
13196""""""""""
13197
13198This function returns the same values as the libm ``log`` functions
13199would, and handles error conditions in the same way.
13200
13201
13202'``llvm.experimental.constrained.log10``' Intrinsic
13203^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13204
13205Syntax:
13206"""""""
13207
13208::
13209
13210 declare <type>
13211 @llvm.experimental.constrained.log10(<type> <op1>,
13212 metadata <rounding mode>,
13213 metadata <exception behavior>)
13214
13215Overview:
13216"""""""""
13217
13218The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
13219logarithm of the specified value.
13220
13221Arguments:
13222""""""""""
13223
13224The first argument and the return value are floating point numbers of the same
13225type.
13226
13227The second and third arguments specify the rounding mode and exception
13228behavior as described above.
13229
13230Semantics:
13231""""""""""
13232
13233This function returns the same values as the libm ``log10`` functions
13234would, and handles error conditions in the same way.
13235
13236
13237'``llvm.experimental.constrained.log2``' Intrinsic
13238^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13239
13240Syntax:
13241"""""""
13242
13243::
13244
13245 declare <type>
13246 @llvm.experimental.constrained.log2(<type> <op1>,
13247 metadata <rounding mode>,
13248 metadata <exception behavior>)
13249
13250Overview:
13251"""""""""
13252
13253The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
13254logarithm of the specified value.
13255
13256Arguments:
13257""""""""""
13258
13259The first argument and the return value are floating point numbers of the same
13260type.
13261
13262The second and third arguments specify the rounding mode and exception
13263behavior as described above.
13264
13265Semantics:
13266""""""""""
13267
13268This function returns the same values as the libm ``log2`` functions
13269would, and handles error conditions in the same way.
13270
13271
13272'``llvm.experimental.constrained.rint``' Intrinsic
13273^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13274
13275Syntax:
13276"""""""
13277
13278::
13279
13280 declare <type>
13281 @llvm.experimental.constrained.rint(<type> <op1>,
13282 metadata <rounding mode>,
13283 metadata <exception behavior>)
13284
13285Overview:
13286"""""""""
13287
13288The '``llvm.experimental.constrained.rint``' intrinsic returns the first
13289operand rounded to the nearest integer. It may raise an inexact floating point
13290exception if the operand is not an integer.
13291
13292Arguments:
13293""""""""""
13294
13295The first argument and the return value are floating point numbers of the same
13296type.
13297
13298The second and third arguments specify the rounding mode and exception
13299behavior as described above.
13300
13301Semantics:
13302""""""""""
13303
13304This function returns the same values as the libm ``rint`` functions
13305would, and handles error conditions in the same way. The rounding mode is
13306described, not determined, by the rounding mode argument. The actual rounding
13307mode is determined by the runtime floating point environment. The rounding
13308mode argument is only intended as information to the compiler.
13309
13310
13311'``llvm.experimental.constrained.nearbyint``' Intrinsic
13312^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13313
13314Syntax:
13315"""""""
13316
13317::
13318
13319 declare <type>
13320 @llvm.experimental.constrained.nearbyint(<type> <op1>,
13321 metadata <rounding mode>,
13322 metadata <exception behavior>)
13323
13324Overview:
13325"""""""""
13326
13327The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
13328operand rounded to the nearest integer. It will not raise an inexact floating
13329point exception if the operand is not an integer.
13330
13331
13332Arguments:
13333""""""""""
13334
13335The first argument and the return value are floating point numbers of the same
13336type.
13337
13338The second and third arguments specify the rounding mode and exception
13339behavior as described above.
13340
13341Semantics:
13342""""""""""
13343
13344This function returns the same values as the libm ``nearbyint`` functions
13345would, and handles error conditions in the same way. The rounding mode is
13346described, not determined, by the rounding mode argument. The actual rounding
13347mode is determined by the runtime floating point environment. The rounding
13348mode argument is only intended as information to the compiler.
13349
13350
Sean Silvab084af42012-12-07 10:36:55 +000013351General Intrinsics
13352------------------
13353
13354This class of intrinsics is designed to be generic and has no specific
13355purpose.
13356
13357'``llvm.var.annotation``' Intrinsic
13358^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13359
13360Syntax:
13361"""""""
13362
13363::
13364
13365 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13366
13367Overview:
13368"""""""""
13369
13370The '``llvm.var.annotation``' intrinsic.
13371
13372Arguments:
13373""""""""""
13374
13375The first argument is a pointer to a value, the second is a pointer to a
13376global string, the third is a pointer to a global string which is the
13377source file name, and the last argument is the line number.
13378
13379Semantics:
13380""""""""""
13381
13382This intrinsic allows annotation of local variables with arbitrary
13383strings. This can be useful for special purpose optimizations that want
13384to look for these annotations. These have no other defined use; they are
13385ignored by code generation and optimization.
13386
Michael Gottesman88d18832013-03-26 00:34:27 +000013387'``llvm.ptr.annotation.*``' Intrinsic
13388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13389
13390Syntax:
13391"""""""
13392
13393This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
13394pointer to an integer of any width. *NOTE* you must specify an address space for
13395the pointer. The identifier for the default address space is the integer
13396'``0``'.
13397
13398::
13399
13400 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13401 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
13402 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
13403 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
13404 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
13405
13406Overview:
13407"""""""""
13408
13409The '``llvm.ptr.annotation``' intrinsic.
13410
13411Arguments:
13412""""""""""
13413
13414The first argument is a pointer to an integer value of arbitrary bitwidth
13415(result of some expression), the second is a pointer to a global string, the
13416third is a pointer to a global string which is the source file name, and the
13417last argument is the line number. It returns the value of the first argument.
13418
13419Semantics:
13420""""""""""
13421
13422This intrinsic allows annotation of a pointer to an integer with arbitrary
13423strings. This can be useful for special purpose optimizations that want to look
13424for these annotations. These have no other defined use; they are ignored by code
13425generation and optimization.
13426
Sean Silvab084af42012-12-07 10:36:55 +000013427'``llvm.annotation.*``' Intrinsic
13428^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13429
13430Syntax:
13431"""""""
13432
13433This is an overloaded intrinsic. You can use '``llvm.annotation``' on
13434any integer bit width.
13435
13436::
13437
13438 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
13439 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
13440 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
13441 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
13442 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
13443
13444Overview:
13445"""""""""
13446
13447The '``llvm.annotation``' intrinsic.
13448
13449Arguments:
13450""""""""""
13451
13452The first argument is an integer value (result of some expression), the
13453second is a pointer to a global string, the third is a pointer to a
13454global string which is the source file name, and the last argument is
13455the line number. It returns the value of the first argument.
13456
13457Semantics:
13458""""""""""
13459
13460This intrinsic allows annotations to be put on arbitrary expressions
13461with arbitrary strings. This can be useful for special purpose
13462optimizations that want to look for these annotations. These have no
13463other defined use; they are ignored by code generation and optimization.
13464
13465'``llvm.trap``' Intrinsic
13466^^^^^^^^^^^^^^^^^^^^^^^^^
13467
13468Syntax:
13469"""""""
13470
13471::
13472
13473 declare void @llvm.trap() noreturn nounwind
13474
13475Overview:
13476"""""""""
13477
13478The '``llvm.trap``' intrinsic.
13479
13480Arguments:
13481""""""""""
13482
13483None.
13484
13485Semantics:
13486""""""""""
13487
13488This intrinsic is lowered to the target dependent trap instruction. If
13489the target does not have a trap instruction, this intrinsic will be
13490lowered to a call of the ``abort()`` function.
13491
13492'``llvm.debugtrap``' Intrinsic
13493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13494
13495Syntax:
13496"""""""
13497
13498::
13499
13500 declare void @llvm.debugtrap() nounwind
13501
13502Overview:
13503"""""""""
13504
13505The '``llvm.debugtrap``' intrinsic.
13506
13507Arguments:
13508""""""""""
13509
13510None.
13511
13512Semantics:
13513""""""""""
13514
13515This intrinsic is lowered to code which is intended to cause an
13516execution trap with the intention of requesting the attention of a
13517debugger.
13518
13519'``llvm.stackprotector``' Intrinsic
13520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13521
13522Syntax:
13523"""""""
13524
13525::
13526
13527 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
13528
13529Overview:
13530"""""""""
13531
13532The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
13533onto the stack at ``slot``. The stack slot is adjusted to ensure that it
13534is placed on the stack before local variables.
13535
13536Arguments:
13537""""""""""
13538
13539The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
13540The first argument is the value loaded from the stack guard
13541``@__stack_chk_guard``. The second variable is an ``alloca`` that has
13542enough space to hold the value of the guard.
13543
13544Semantics:
13545""""""""""
13546
Michael Gottesmandafc7d92013-08-12 18:35:32 +000013547This intrinsic causes the prologue/epilogue inserter to force the position of
13548the ``AllocaInst`` stack slot to be before local variables on the stack. This is
13549to ensure that if a local variable on the stack is overwritten, it will destroy
13550the value of the guard. When the function exits, the guard on the stack is
13551checked against the original guard by ``llvm.stackprotectorcheck``. If they are
13552different, then ``llvm.stackprotectorcheck`` causes the program to abort by
13553calling the ``__stack_chk_fail()`` function.
13554
Tim Shene885d5e2016-04-19 19:40:37 +000013555'``llvm.stackguard``' Intrinsic
13556^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13557
13558Syntax:
13559"""""""
13560
13561::
13562
13563 declare i8* @llvm.stackguard()
13564
13565Overview:
13566"""""""""
13567
13568The ``llvm.stackguard`` intrinsic returns the system stack guard value.
13569
13570It should not be generated by frontends, since it is only for internal usage.
13571The reason why we create this intrinsic is that we still support IR form Stack
13572Protector in FastISel.
13573
13574Arguments:
13575""""""""""
13576
13577None.
13578
13579Semantics:
13580""""""""""
13581
13582On some platforms, the value returned by this intrinsic remains unchanged
13583between loads in the same thread. On other platforms, it returns the same
13584global variable value, if any, e.g. ``@__stack_chk_guard``.
13585
13586Currently some platforms have IR-level customized stack guard loading (e.g.
13587X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
13588in the future.
13589
Sean Silvab084af42012-12-07 10:36:55 +000013590'``llvm.objectsize``' Intrinsic
13591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13592
13593Syntax:
13594"""""""
13595
13596::
13597
George Burgess IV56c7e882017-03-21 20:08:59 +000013598 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
13599 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000013600
13601Overview:
13602"""""""""
13603
13604The ``llvm.objectsize`` intrinsic is designed to provide information to
13605the optimizers to determine at compile time whether a) an operation
13606(like memcpy) will overflow a buffer that corresponds to an object, or
13607b) that a runtime check for overflow isn't necessary. An object in this
13608context means an allocation of a specific class, structure, array, or
13609other object.
13610
13611Arguments:
13612""""""""""
13613
George Burgess IV56c7e882017-03-21 20:08:59 +000013614The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
13615a pointer to or into the ``object``. The second argument determines whether
13616``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
13617is unknown. The third argument controls how ``llvm.objectsize`` acts when
13618``null`` is used as its pointer argument. If it's true and the pointer is in
13619address space 0, ``null`` is treated as an opaque value with an unknown number
13620of bytes. Otherwise, ``llvm.objectsize`` reports 0 bytes available when given
13621``null``.
13622
13623The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000013624
13625Semantics:
13626""""""""""
13627
13628The ``llvm.objectsize`` intrinsic is lowered to a constant representing
13629the size of the object concerned. If the size cannot be determined at
13630compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
13631on the ``min`` argument).
13632
13633'``llvm.expect``' Intrinsic
13634^^^^^^^^^^^^^^^^^^^^^^^^^^^
13635
13636Syntax:
13637"""""""
13638
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013639This is an overloaded intrinsic. You can use ``llvm.expect`` on any
13640integer bit width.
13641
Sean Silvab084af42012-12-07 10:36:55 +000013642::
13643
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013644 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000013645 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
13646 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
13647
13648Overview:
13649"""""""""
13650
13651The ``llvm.expect`` intrinsic provides information about expected (the
13652most probable) value of ``val``, which can be used by optimizers.
13653
13654Arguments:
13655""""""""""
13656
13657The ``llvm.expect`` intrinsic takes two arguments. The first argument is
13658a value. The second argument is an expected value, this needs to be a
13659constant value, variables are not allowed.
13660
13661Semantics:
13662""""""""""
13663
13664This intrinsic is lowered to the ``val``.
13665
Philip Reamese0e90832015-04-26 22:23:12 +000013666.. _int_assume:
13667
Hal Finkel93046912014-07-25 21:13:35 +000013668'``llvm.assume``' Intrinsic
13669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13670
13671Syntax:
13672"""""""
13673
13674::
13675
13676 declare void @llvm.assume(i1 %cond)
13677
13678Overview:
13679"""""""""
13680
13681The ``llvm.assume`` allows the optimizer to assume that the provided
13682condition is true. This information can then be used in simplifying other parts
13683of the code.
13684
13685Arguments:
13686""""""""""
13687
13688The condition which the optimizer may assume is always true.
13689
13690Semantics:
13691""""""""""
13692
13693The intrinsic allows the optimizer to assume that the provided condition is
13694always true whenever the control flow reaches the intrinsic call. No code is
13695generated for this intrinsic, and instructions that contribute only to the
13696provided condition are not used for code generation. If the condition is
13697violated during execution, the behavior is undefined.
13698
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013699Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000013700used by the ``llvm.assume`` intrinsic in order to preserve the instructions
13701only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013702if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000013703sufficient overall improvement in code quality. For this reason,
13704``llvm.assume`` should not be used to document basic mathematical invariants
13705that the optimizer can otherwise deduce or facts that are of little use to the
13706optimizer.
13707
Daniel Berlin2c438a32017-02-07 19:29:25 +000013708.. _int_ssa_copy:
13709
13710'``llvm.ssa_copy``' Intrinsic
13711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13712
13713Syntax:
13714"""""""
13715
13716::
13717
13718 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
13719
13720Arguments:
13721""""""""""
13722
13723The first argument is an operand which is used as the returned value.
13724
13725Overview:
13726""""""""""
13727
13728The ``llvm.ssa_copy`` intrinsic can be used to attach information to
13729operations by copying them and giving them new names. For example,
13730the PredicateInfo utility uses it to build Extended SSA form, and
13731attach various forms of information to operands that dominate specific
13732uses. It is not meant for general use, only for building temporary
13733renaming forms that require value splits at certain points.
13734
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013735.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000013736
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013737'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000013738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13739
13740Syntax:
13741"""""""
13742
13743::
13744
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013745 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000013746
13747
13748Arguments:
13749""""""""""
13750
13751The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013752metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000013753
13754Overview:
13755"""""""""
13756
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013757The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
13758with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000013759
Peter Collingbourne0312f612016-06-25 00:23:04 +000013760'``llvm.type.checked.load``' Intrinsic
13761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13762
13763Syntax:
13764"""""""
13765
13766::
13767
13768 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
13769
13770
13771Arguments:
13772""""""""""
13773
13774The first argument is a pointer from which to load a function pointer. The
13775second argument is the byte offset from which to load the function pointer. The
13776third argument is a metadata object representing a :doc:`type identifier
13777<TypeMetadata>`.
13778
13779Overview:
13780"""""""""
13781
13782The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
13783virtual table pointer using type metadata. This intrinsic is used to implement
13784control flow integrity in conjunction with virtual call optimization. The
13785virtual call optimization pass will optimize away ``llvm.type.checked.load``
13786intrinsics associated with devirtualized calls, thereby removing the type
13787check in cases where it is not needed to enforce the control flow integrity
13788constraint.
13789
13790If the given pointer is associated with a type metadata identifier, this
13791function returns true as the second element of its return value. (Note that
13792the function may also return true if the given pointer is not associated
13793with a type metadata identifier.) If the function's return value's second
13794element is true, the following rules apply to the first element:
13795
13796- If the given pointer is associated with the given type metadata identifier,
13797 it is the function pointer loaded from the given byte offset from the given
13798 pointer.
13799
13800- If the given pointer is not associated with the given type metadata
13801 identifier, it is one of the following (the choice of which is unspecified):
13802
13803 1. The function pointer that would have been loaded from an arbitrarily chosen
13804 (through an unspecified mechanism) pointer associated with the type
13805 metadata.
13806
13807 2. If the function has a non-void return type, a pointer to a function that
13808 returns an unspecified value without causing side effects.
13809
13810If the function's return value's second element is false, the value of the
13811first element is undefined.
13812
13813
Sean Silvab084af42012-12-07 10:36:55 +000013814'``llvm.donothing``' Intrinsic
13815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13816
13817Syntax:
13818"""""""
13819
13820::
13821
13822 declare void @llvm.donothing() nounwind readnone
13823
13824Overview:
13825"""""""""
13826
Juergen Ributzkac9161192014-10-23 22:36:13 +000013827The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000013828three intrinsics (besides ``llvm.experimental.patchpoint`` and
13829``llvm.experimental.gc.statepoint``) that can be called with an invoke
13830instruction.
Sean Silvab084af42012-12-07 10:36:55 +000013831
13832Arguments:
13833""""""""""
13834
13835None.
13836
13837Semantics:
13838""""""""""
13839
13840This intrinsic does nothing, and it's removed by optimizers and ignored
13841by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000013842
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013843'``llvm.experimental.deoptimize``' Intrinsic
13844^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13845
13846Syntax:
13847"""""""
13848
13849::
13850
13851 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
13852
13853Overview:
13854"""""""""
13855
13856This intrinsic, together with :ref:`deoptimization operand bundles
13857<deopt_opbundles>`, allow frontends to express transfer of control and
13858frame-local state from the currently executing (typically more specialized,
13859hence faster) version of a function into another (typically more generic, hence
13860slower) version.
13861
13862In languages with a fully integrated managed runtime like Java and JavaScript
13863this intrinsic can be used to implement "uncommon trap" or "side exit" like
13864functionality. In unmanaged languages like C and C++, this intrinsic can be
13865used to represent the slow paths of specialized functions.
13866
13867
13868Arguments:
13869""""""""""
13870
13871The intrinsic takes an arbitrary number of arguments, whose meaning is
13872decided by the :ref:`lowering strategy<deoptimize_lowering>`.
13873
13874Semantics:
13875""""""""""
13876
13877The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
13878deoptimization continuation (denoted using a :ref:`deoptimization
13879operand bundle <deopt_opbundles>`) and returns the value returned by
13880the deoptimization continuation. Defining the semantic properties of
13881the continuation itself is out of scope of the language reference --
13882as far as LLVM is concerned, the deoptimization continuation can
13883invoke arbitrary side effects, including reading from and writing to
13884the entire heap.
13885
13886Deoptimization continuations expressed using ``"deopt"`` operand bundles always
13887continue execution to the end of the physical frame containing them, so all
13888calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
13889
13890 - ``@llvm.experimental.deoptimize`` cannot be invoked.
13891 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
13892 - The ``ret`` instruction must return the value produced by the
13893 ``@llvm.experimental.deoptimize`` call if there is one, or void.
13894
13895Note that the above restrictions imply that the return type for a call to
13896``@llvm.experimental.deoptimize`` will match the return type of its immediate
13897caller.
13898
13899The inliner composes the ``"deopt"`` continuations of the caller into the
13900``"deopt"`` continuations present in the inlinee, and also updates calls to this
13901intrinsic to return directly from the frame of the function it inlined into.
13902
Sanjoy Dase0aa4142016-05-12 01:17:38 +000013903All declarations of ``@llvm.experimental.deoptimize`` must share the
13904same calling convention.
13905
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013906.. _deoptimize_lowering:
13907
13908Lowering:
13909"""""""""
13910
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000013911Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
13912symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
13913ensure that this symbol is defined). The call arguments to
13914``@llvm.experimental.deoptimize`` are lowered as if they were formal
13915arguments of the specified types, and not as varargs.
13916
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013917
Sanjoy Das021de052016-03-31 00:18:46 +000013918'``llvm.experimental.guard``' Intrinsic
13919^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13920
13921Syntax:
13922"""""""
13923
13924::
13925
13926 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
13927
13928Overview:
13929"""""""""
13930
13931This intrinsic, together with :ref:`deoptimization operand bundles
13932<deopt_opbundles>`, allows frontends to express guards or checks on
13933optimistic assumptions made during compilation. The semantics of
13934``@llvm.experimental.guard`` is defined in terms of
13935``@llvm.experimental.deoptimize`` -- its body is defined to be
13936equivalent to:
13937
Renato Golin124f2592016-07-20 12:16:38 +000013938.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000013939
Renato Golin124f2592016-07-20 12:16:38 +000013940 define void @llvm.experimental.guard(i1 %pred, <args...>) {
13941 %realPred = and i1 %pred, undef
13942 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000013943
Renato Golin124f2592016-07-20 12:16:38 +000013944 leave:
13945 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
13946 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000013947
Renato Golin124f2592016-07-20 12:16:38 +000013948 continue:
13949 ret void
13950 }
Sanjoy Das021de052016-03-31 00:18:46 +000013951
Sanjoy Das47cf2af2016-04-30 00:55:59 +000013952
13953with the optional ``[, !make.implicit !{}]`` present if and only if it
13954is present on the call site. For more details on ``!make.implicit``,
13955see :doc:`FaultMaps`.
13956
Sanjoy Das021de052016-03-31 00:18:46 +000013957In words, ``@llvm.experimental.guard`` executes the attached
13958``"deopt"`` continuation if (but **not** only if) its first argument
13959is ``false``. Since the optimizer is allowed to replace the ``undef``
13960with an arbitrary value, it can optimize guard to fail "spuriously",
13961i.e. without the original condition being false (hence the "not only
13962if"); and this allows for "check widening" type optimizations.
13963
13964``@llvm.experimental.guard`` cannot be invoked.
13965
13966
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000013967'``llvm.load.relative``' Intrinsic
13968^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13969
13970Syntax:
13971"""""""
13972
13973::
13974
13975 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
13976
13977Overview:
13978"""""""""
13979
13980This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
13981adds ``%ptr`` to that value and returns it. The constant folder specifically
13982recognizes the form of this intrinsic and the constant initializers it may
13983load from; if a loaded constant initializer is known to have the form
13984``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
13985
13986LLVM provides that the calculation of such a constant initializer will
13987not overflow at link time under the medium code model if ``x`` is an
13988``unnamed_addr`` function. However, it does not provide this guarantee for
13989a constant initializer folded into a function body. This intrinsic can be
13990used to avoid the possibility of overflows when loading from such a constant.
13991
Andrew Trick5e029ce2013-12-24 02:57:25 +000013992Stack Map Intrinsics
13993--------------------
13994
13995LLVM provides experimental intrinsics to support runtime patching
13996mechanisms commonly desired in dynamic language JITs. These intrinsics
13997are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000013998
13999Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000014000-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000014001
14002These intrinsics are similar to the standard library memory intrinsics except
14003that they perform memory transfer as a sequence of atomic memory accesses.
14004
14005.. _int_memcpy_element_atomic:
14006
14007'``llvm.memcpy.element.atomic``' Intrinsic
Igor Laevskyfedab152016-12-29 15:08:57 +000014008^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000014009
14010Syntax:
14011"""""""
14012
14013This is an overloaded intrinsic. You can use ``llvm.memcpy.element.atomic`` on
14014any integer bit width and for different address spaces. Not all targets
14015support all bit widths however.
14016
14017::
14018
14019 declare void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* <dest>, i8* <src>,
14020 i64 <num_elements>, i32 <element_size>)
14021
14022Overview:
14023"""""""""
14024
14025The '``llvm.memcpy.element.atomic.*``' intrinsic performs copy of a block of
14026memory from the source location to the destination location as a sequence of
14027unordered atomic memory accesses where each access is a multiple of
14028``element_size`` bytes wide and aligned at an element size boundary. For example
14029each element is accessed atomically in source and destination buffers.
14030
14031Arguments:
14032""""""""""
14033
14034The first argument is a pointer to the destination, the second is a
14035pointer to the source. The third argument is an integer argument
14036specifying the number of elements to copy, the fourth argument is size of
14037the single element in bytes.
14038
14039``element_size`` should be a power of two, greater than zero and less than
14040a target-specific atomic access size limit.
14041
14042For each of the input pointers ``align`` parameter attribute must be specified.
14043It must be a power of two and greater than or equal to the ``element_size``.
14044Caller guarantees that both the source and destination pointers are aligned to
14045that boundary.
14046
14047Semantics:
14048""""""""""
14049
14050The '``llvm.memcpy.element.atomic.*``' intrinsic copies
14051'``num_elements`` * ``element_size``' bytes of memory from the source location to
14052the destination location. These locations are not allowed to overlap. Memory copy
14053is performed as a sequence of unordered atomic memory accesses where each access
14054is guaranteed to be a multiple of ``element_size`` bytes wide and aligned at an
14055element size boundary.
14056
14057The order of the copy is unspecified. The same value may be read from the source
14058buffer many times, but only one write is issued to the destination buffer per
14059element. It is well defined to have concurrent reads and writes to both source
14060and destination provided those reads and writes are at least unordered atomic.
14061
14062This intrinsic does not provide any additional ordering guarantees over those
14063provided by a set of unordered loads from the source location and stores to the
14064destination.
14065
14066Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000014067"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000014068
14069In the most general case call to the '``llvm.memcpy.element.atomic.*``' is lowered
14070to a call to the symbol ``__llvm_memcpy_element_atomic_*``. Where '*' is replaced
14071with an actual element size.
14072
14073Optimizer is allowed to inline memory copy when it's profitable to do so.